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Abstract
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plications, including (i) jumps and crashes, (ii) significant revisions in unin-
formed belief due to small changes in the market price, (iii) “upward-sloping”
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Keywords: asymmetric information, noisy rational expectations, Grossman-
Stiglitz, equilibrium multiplicity

∗A previous version of this paper was circulated under the title “On the uniqueness of equilibrium
in the Grossman-Stiglitz noisy REE model”. We thank Dimitri Vayanos, Bradyn Breon-Drish, Georgy
Chabakauri, Christian Hellwig, John Kuong, Aytek Malkhozov, Christine Parlour, Lasse Pedersen,
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In their seminal papers, Grossman and Stiglitz (1980) (GS, henceforth) and Hellwig

(1980) (H, henceforth) present frameworks for noisy rational expectations economies

(REE) which have since become workhorse models studying asymmetric information in

competitive financial markets. In such environments, prices have a dual role: to clear

the market and to collect and transmit the private information of investors to each other.

By introducing noise in the process, the models resolve the paradox of fully-revealing

equilibria: Those who expend resources to obtain information achieve better allocation.

Since the information transmission process is noisy, a central question of financial

economics is to what extent prices reflect fundamentals versus noise in equilibrium. To

answer this question, GS and H conjecture equilibrium price functions that are linear in

the state variables, and show that when random variables are jointly normally distributed

and investors have exponential (i.e., CARA) utilities, such equilibria exist and their

endogenous parameters are uniquely pinned down. However, the question whether there

exist other equilibria of the two models, which are potentially less tractable but offer

more realistic predictions, has not been answered.

The first contribution of the paper is to show that the well-known linear equilibrium

of the GS model is the unique equilibrium when allowing for any continuous equilibrium

price function, linear or not. Our solution method is different from the usual “conjecture

and verify” approach, in which conjecturing a specific functional form limits the study

of existence and uniqueness to the class of linear functions. As a by-product, we also

obtain a more general uniqueness result: Regardless of other distributional assumptions,

as long as the demand function of informed traders is additively separable in their signal

and the price, which only depends on the distribution of the asset payoff conditional on

the signal, there exists at most one equilibrium with a continuous price function.

Our main contribution is to show that once we relax the assumption of a continuous

price function, there exist other equilibria. The general idea behind our construction is

to partition the state space of the relevant random variables of the model, the signal of

informed traders and the noisy supply, into a (potentially infinite) union of disjoint sets,

and to create “local noisy REEs” on each of these smaller sets. As long as the images

of the local equilibrium price functions are disjoint, a combination of these functions
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becomes a valid equilibrium price function for the overall economy. In our discontinuous

equilibria, unlike in the standard equilibrium, uninformed agents not only learn the linear

combination of the signal and noisy supply, but also learn from the price level which

local set the shocks belong to. In a special case of having two local REEs this means

uninformed agents can tell apart if the residual demand they face, i.e., informed demand

minus supply, is the result of a good signal coupled with a high supply shock (“liquidity

crisis”), or if it is the result of a bad signal and low supply shock (“fundamental crisis”).

Hence, uninformed agents know more than what is usually assumed in linear equilibria.

Our leading example of a class of discontinuous but still tractable equilibria, given in

closed form, gives rise to a number of phenomena that are absent from the standard linear

equilibrium. First, small changes in the asset payoff can lead to large price changes, i.e.,

jumps and crashes. Second, a small change in the market price can lead to a significant

revision in the uninformed belief about expected payoff. Third, the demand curve of

uninformed agents is locally downward-sloping but not globally; that is, uninformed

agents can demand more at a higher price (in GS it is always downward-sloping). Fourth,

uninformed agents’ expected return can be higher when the price is higher, leading to

price drift (in GS the expected return always decreases in the price, and there is reversal).

Fifth, future returns are positively (negatively) skewed after high (low) prices.

Our construction method also opens up a large set of additional equilibria. We fur-

ther show that discontinuous equilibria with a similar construction and still in closed

form can be arbitrarily close to fully revealing if the state space is partitioned sufficiently

finely. That is, uninformed agents can learn the signal of informed agents almost per-

fectly despite the supply shock that was introduced into the GS model to prevent prices

to be fully revealing. The Grossman-Stiglitz paradox thus reemerges: If information

acquisition is costly, agents do not want to spend resources to become informed, because

uninformed traders can almost perfectly extract their signal from market prices.

Finally, we show that our construction method also works in the H model in which

multiple agents with differential information about the payoff trade. This implies that

the existence of discontinuous equilibria is not a symptom specific to the two-type setting

of GS, but is relevant for a much larger class of informational models.
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The closest papers to ours are Breon-Drish (2010, 2014). Breon-Drish (2010) studies a

GS model with normal mixture distributions, finds a continuous equilibrium numerically,

and demonstrates that it has very distinct features compared to the usual GS model.

Breon-Drish (2015) studies existence and uniqueness among continuous equilibria in GS-

and H-type models with distributions from the exponential class. Besides establishing

uniqueness of the standard linear GS equilibrium among all continuous price functions,

our paper complements these studies by constructing discontinuous price functions and

showing that they have very different economic implications from the standard GS and

H predictions. Our contribution also lies in the fact that, comparing to these papers,

our uniqueness proof is significantly simpler.

Although the theory of fully-revealing REEs is largely complete with many studies

on generic existence and uniqueness, and some non-generic examples of non-existence

(see, e.g., Radner (1979), Bray (1981), Jordan (1982, 1983)), much less is known about

partially-revealing REEs. Previous studies were mainly concerned with the existence of

equilibrium; see, for example, Grossman (1976), Grossman and Stiglitz (1980), Hellwig

(1980), Diamond and Verrecchia (1981). Ausubel (1990a, 1990b) study existence and

uniqueness of a partially-revealing REE under certain conditions; we study uniqueness

of equilibrium in the classic models of GS and H.1 The idea behind our construction

of discontinuous equilibria is closely related to but nevertheless distinct from Jordan

(1982). First, Jordan (1982) studies non-noisy environments where the dimension of

prices is lower than the dimension of private signals, whereas we study REEs with supply

noise. Second, Jordan (1982) shows the existence of equilibria that are discontinuous

everywhere (and hence do not describe realistic market behaviour); in contrast, our

equilibria are given in closed form, are discontinuous only on zero-measure sets with a

countable number of jumps in the price function, and we can study meaningful properties

of these equilibria. Finally, unlike Jordan (1982), our construction does not build on

deep mathematical results.

There is a related literature that builds on GS and H to display real-world eco-

nomic phenomena that the basic models cannot bring forth, by either departing from the

1See also DeMarzo and Skiadas (1998), who show uniqueness of the fully revealing REE in Grossman
(1976) and give examples of partially-revealing equilibria when payoffs are non-normal.
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CARA-normal framework or introducing additional frictions. These papers assume, e.g.,

traders with hedging or portfolio rebalancing motives (see, e.g., Gennotte and Leland

(1990)), feedback from prices to fundamentals or production decisions (e.g., Subrah-

manyam and Titman (2001), Ozdenoren and Yuan (2008), Sockin and Xiong (2014)),

different utility functions and/or distributions of random variables (e.g., Barlevy and

Veronesi (2003), Albagli, Hellwig, and Tsyvinski (2013)), trading constraints such as

short-sale or borrowing constraints (e.g., Yuan (2005), Bai, Chang, and Wang (2006),

Venter (2011)), or higher-order expectations and coordination motives (e.g., Angeletos

and Werning (2006)).2 In contrast, our focus is on discontinuous equilibria of the basic

models, without additional ingredients or different assumptions, and we show that these

equilibria already have realistic market properties.

The remainder of the paper is organized as follows. Section 1 presents the textbook

GS model. Section 2 shows that the well-known linear equilibrium is the unique con-

tinuous equilibrium of the economy. Section 3 provides a class of discontinuous price

functions, studies their properties, and provides almost-fully-revealing price functions.

Section 4 constructs discontinuous equilibria in the H model. Finally, Section 5 con-

cludes. Proofs are collected in the Appendix and the Online Appendix.

1 Model

This section introduces the baseline asymmetric information model, as in Grossman and

Stiglitz (1980). There are two periods, t = 0 and 1. Two securities, a riskless and a

risky asset, are traded in a competitive market in Period 0, and pay off in Period 1. The

riskless asset is in infinite supply, and pays off one unit with certainty. The risky asset is

assumed to be in an aggregate supply of u shares, and pays off d units. We assume that

d and u are independent, normally distributed random variables, with means normalized

to zero and variances σ2
d and σ2

u, respectively. These distributions constitute a common

prior for all agents. We use the riskless asset as numeraire, and denote the price of the

risky asset in Period 0 by p.

2See also settings with multiple or derivative assets and cross-market learning, e.g., Admati (1985),
Goldstein, Li, and Yang (2014), Chabakauri, Yuan, and Zachariadis (2014) and Malamud (2014).
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The asset market is populated by a continuum of agents in measure one. Agents have

exponential utility over wealth W in Period 1, U (W ) = − exp (−αW ), where α > 0 is

the coefficient of absolute risk aversion; to simplify the discussion, we assume that all

agents have the same risk-aversion parameter. We normalize agents’ initial endowments

in the riskless and risky assets to zero, as the assumption of CARA-utility implies that

optimal asset holdings are independent of the starting wealth. Thus, if in Period 0 an

agent buys x units of the risky asset, her terminal wealth in Period 1 equals capital gains

from trading the risky asset: W = (d− p) x. None of the agents face any trading (e.g.

short-sale or leverage) constraints.

Agents are heterogeneous with respect to their information; they can be either in-

formed or uninformed. Informed traders, in measure 0 < ω < 1, observe a signal s

about the risky asset payoff d. The signal is given by s = d + ε, where ε is normal

with mean zero and variance σ2
ε , and is independent of d and u. The rest of the agents,

in measure 1 − ω, are uninformed, and do not receive private information about d.

Besides potentially receiving the signal s, agents’ information sets are identical; they

contain knowledge about the setup of the economy (e.g., the common prior and agents’

preferences) and everything agents can infer from the market price p.3 We denote the

expectation and variance conditional on information set I by E [.|I] and V ar [.|I].

We define an equilibrium of the above economy the standard way:

Definition 1. A rational expectations equilibrium (REE) consists of a measurable price

function P (s, u), P : R2 → R, and measurable demand functions of informed and

uninformed traders, xI (s, p) and xU (p), xI : R
2 → R and xU : R → R, such that4

1. demand is optimal for informed traders:

xI (s, p) ∈ argmax
x

E [− exp {−α (d− p) x} |s, P (s, u) = p] ; (1)

3As it is standard in models with informational asymmetry, the presence of random supply u ensures
that the price does not reveal informed traders’ signal perfectly, and hence the Grossman-Stiglitz para-
dox does not apply. Mathematically equivalent alternative ways to introduce noise in the information
transmission process would be to assume the presence of noise traders who submit a random price-
inelastic demand for reasons exogenous to the model, or, following Wang (1994), to endow informed
traders with an investor-specific technology or liquidity shock that correlates with the asset payoff.

4Requiring that P is (s, u)-measurable implies that the price contains no more information than is
possessed by all the investors taken together, and hence satisfies the Kreps (1977) criterion.
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2. demand is optimal for uninformed traders:

xU (p) ∈ argmax
x

E [− exp {−α (d− p) x} |P (s, u) = p] ; (2)

3. the asset market clears at the equilibrium price in all (s, u) states:

ωxI (s, P (s, u)) + (1− ω) xU (P (s, u)) = u. (3)

2 The unique continuous equilibrium

The standard solution applied by the literature is the so-called “conjecture and verify”

method; see, e.g., Brunnermeier (2001), Vives (2008), or Veldkamp (2011). According

to this, solving for an equilibrium of the financial market requires three fairly standard

steps: First, we postulate an REE price function P . Second, given the price, we derive

the belief and optimal demand of uninformed traders. Finally, we check under what

conditions the market clears at the conjectured price. The problem with this method

is that guessing a particular form for the equilibrium price function naturally limits the

set of equilibria available for consideration. Instead, we start by looking at optimal

informed demand and the market-clearing condition first, determine what uninformed

agents learn through this channel, and show that they cannot learn more if the price

function is to be continuous.

Suppose an equilibrium exists, and fix the function P . First, we make the observation

that informed demand is independent of the equilibrium price function. For an informed

trader, who trades with other informed traders endowed with the same information and

uninformed traders, the price conveys no additional information relative to observing

the signal s. Hence, the information set II = {s, P (s, u) = p} in (1) is equivalent to

II = {s}. Given the joint normality of d and ε, d is normal conditional on s = d + ε

with mean and variance

E [d|s] = βss and V ar [d|s] = βsσ
2
ε ,
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where

βs =
Cov [d, s]

V ar [s]
=

σ2
d

σ2
d + σ2

ε

. (4)

Conditional normality of d and exponential utility together further imply that (1) is

equivalent to a mean-variance problem, and informed traders’ optimal demand function

is

xI (s, p) =
E [d|s]− p

αV ar [d|s] =
βss− p

αβsσ2
ε

. (5)

Next, we substitute this informed demand into the market-clearing condition (3):

ω
βss− p

αβsσ2
ε

+ (1− ω) xU (P (s, u) = p) = u. (6)

After rearranging, we obtain

s− Cu = g (p) , (7)

where C = ασ2
ε

ω
and

g (p) =
1

βs

p− (1− ω)CxU (P (s, u) = p) . (8)

Notice that since uninformed agents know the equilibrium form of P and observe p, from

(8) they know g (p).5 Therefore, from (7), a price realization p always reveals the linear

combination s − Cu, irrespective of what the exact function P is. We summarize and

reinterpret this result graphically:

Lemma 1. Suppose an equilibrium exists. Fix a price function P and any realization

p. Then the set of all possible (s, u) pairs for which P (s, u) = p is a subset of a single

straight line on the (s, u) plane with slope 1/C.

As such a line can be defined by its intercept with the horizontal axis, we can refer

to it either as the line of points that satisfy s−Cu = l for a constant l, or, with a slight

abuse of notation, simply call it line l.

The main question is whether a realization p can tell more about s than just revealing

s− Cu. In what follows, we make some simple observations based on (7) to argue that

5This observation is the noisy equivalent of obtaining information from the traded quantity, as in
Kreps (1977).
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Figure 1. Proof of Lemma 2

If there exist (s1, u1) and (s2, u2) such that they satisfy s−Cu = l for a fixed constant l
but P (s1, u1) 6= P (s2, u2), there also exist two points, one on the l line and one outside,
on an arbitrary γ curve, such that P (s∗, u∗) = P (s∗, u∗), which contradicts that they
should be on a single line with slope 1/C.

if P (s, u) is continuous in both arguments, it cannot. Hence, in any equilibrium p and

s− Cu are observationally equivalent.

Suppose that the converse is true, and P (s, u) is a continuous function of s and u

not only through s − Cu, i.e., it is not (s− Cu)-measurable. Put graphically, this is

equivalent to having two price realizations p1 6= p2 so that the information they reveal

are disjoint subsets of the same straight line: g (p1) = g (p2) = l for some l. That

is, there are two pairs (s1, u1) 6= (s2, u2) that correspond to the two different prices,

P (s1, u1) = p1 and P (s2, u2) = p2, while s1 − Cu1 = l = s2 − Cu2; see Figure 1.

As P (s, u) is a continuous function of the random variables s and u, the Intermediate

Value Theorem implies that if we connect (s1, u1) and (s2, u2) with any simple curve of

the plane, there must be at least one (s, u) point on this curve where P (s, u) = p1+p2
2

.

We apply this theorem to two curves. The first is simply the segment connecting

(s1, u1) and (s2, u2), part of line l; there exists at least one point, denoted by (s∗, u∗),

such that s∗ − Cu∗ = l and P (s∗, u∗) = p1+p2
2

. The second can be any γ curve whose
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intersection with the line is only (s1, u1) and (s2, u2). This gives at least one point outside

l, denoted by (s∗, u∗), such that P (s∗, u∗) =
p1+p2

2
. Given that (s∗, u∗) /∈ l, it must be

that s∗ − Cu∗ 6= l. Hence we found two points of the (s, u) plane that admit the same

price, P (s∗, u∗) = P (s∗, u∗) =
p1+p2

2
, but g

(
p1+p2

2

)
= s∗ − Cu∗ 6= s∗ − Cu∗ = g

(
p1+p2

2

)
.

Graphically (see Figure 1), (s∗, u∗) and (s∗, u∗) should be on a straight line with slope

1/C, but they are clearly not, and it contradicts Lemma 1. To summarize:

Lemma 2. Suppose an equilibrium exists. Fix a continuous equilibrium price function

P and any realization p. Then the set of all (s, u) pairs for which P (s, u) = p is a whole

straight line on the (s, u) plane with slope 1/C.

Therefore, it must be that g : p 7→ l is a one-to-one partial mapping, i.e., a price

realization p is equivalent to the realization of l = s − Cu. Formally, Lemma 2 implies

that P is (s− Cu)-measurable, i.e., P (s, u) is a function of s and u only through s−Cu.

To determine the equilibrium function P , the final step is to use the prior belief

of uninformed traders to derive their optimal demand. As their prior about (d, s, u) is

jointly normal, Bayesian updating implies d is also normally distributed conditional on

s − Cu. Combining it with the exponential utility, uninformed agents face a CARA-

normal optimization problem, and optimal uninformed demand simply becomes

xU (l, p) =
E [d|s− Cu = l]− p

αV ar [d|s− Cu = l]
, (9)

where the expectation is linear in l and the variance is constant:

E [d|s− Cu = l] = βll and V ar [d|s− Cu = l] = βl

(
σ2
ε + C2σ2

u

)
(10)

with

βl =
Cov [d, s− Cu]

V ar [s− Cu]
=

σ2
d

σ2
d + σ2

ε + C2σ2
u

.6

Combining (3), (9), and (10), and using l = s−Cu, p is linear in l. After some algebra,

we obtain the following result:

6We note that while we define the optimal uninformed demand as xU (p) in (2), in (9) we slightly
abuse our notation with the dependence on l. The only reason for this is to emphasize the information
and substitution effects, as it is commonly done in the literature.
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Theorem 1. If we restrict the equilibrium price function to be continuous, there exists

a unique equilibrium of the economy. It is linear in the state variables, PGS (s, u) =

B (s− Cu), with constants B =
σ2
d(σ2

ε+ωC2σ2
u)

σ2
ε(σ

2
ε+C2σ2

u)+σ2
d
(σ2

ε+ωC2σ2
u)

> 0 and C = ασ2
ε

ω
> 0.

While our main focus is on the standard GS setting, we note that Lemmas 1 and 2

imply a more general uniqueness result. In particular, as long as the optimal informed

demand is additively separable in signal s and price p, which depends only on the

distribution of the asset payoff d conditional on the signal s, we obtain the form (7).

After Lemma 2, this leads to the price function being (s− Cu)-measurable, pins down

the exact functional form of uninformed demand xU (l, p), and implies there is at most

one market-clearing price for each realization of the state variables, irrespective of the

unconditional distributions of d and u.7

3 Discontinuous price functions

In this section we show that if the price function P is (s, u)-measurable but not continu-

ous, there are more equilibria. We first argue that if an equilibrium exists, it is perfectly

pinned down by the information set of uninformed traders. Afterwards, by choosing an

appropriate information set, we provide a tractable class of discontinuous equilibria that

differ from the GS price everywhere and are discontinuous only on zero-measure sets.

We start by introducing the following definition:

Definition 2. Let P be an equilibrium price function and p ∈ R arbitrary. We call a

subset R of the (s, u) plane the p-level (information) set, if P (s, u) = p for all (s, u) ∈ R

and P (s, u) 6= p for all (s, u) /∈ R. If a subset R is the p-level set for some p, we call it

a level set under P .

Put differently, a level set is the set of (s, u) points that uninformed investors cannot

distinguish from each other in equilibrium because P takes the same value on all of

7Whether an equilibrium exists, depends on the distribution of the asset payoff conditional on the
information content of the price, d|s − Cu. Breon-Drish (2015) provides sufficient conditions both for
informed demand being additively separable, and for existence of the continuous equilibrium.
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them. Hence, level sets, disjoint by definition, are the atoms of a partition of the (s, u)

space that describes what uninformed investors learn in equilibrium.

From Definitions 1 and 2 it is clear that every subset R can be the p-level set for at

most one p, regardless of how the price function P behaves on the rest of the plane.8

This is because with the priors on s and u and the information (s, u) ∈ R the optimal

uninformed demand function can be calculated and thus is well-defined. In turn, in each

state (s, u) ∈ R we can obtain the only p that satisfies the market-clearing condition for

this uninformed and informed demands. In equilibrium it must be that all (s, u) ∈ R

lead to the same p, otherwise uninformed agents would be able to distinguish between

these states, and R would not be an equilibrium p-level set. Thus, if there exists a p for

which R is a p-level set, it is uniquely determined.9

Suppose now that we have a partition of the plane; based on the above, each subset

R has a uniquely pinned down p that can be the equilibrium price realization, if any.

Thus, the partition and the corresponding set of p values together determine what the

function P can be. However, P must also satisfy a consistency requirement: if we obtain

the same price realization p for two regions R1 and R2, P is not a valid equilibrium price

function, because the p-level set is R1∪R2 rather than any of them alone. The following

lemma summarizes the relationship between P and its level sets:

Lemma 3. For any subset R there is at most one p such that R is the p-level set under

some P . Also, for any partition of the (s, u) plane there exists at most one P such that

the parts of the partition are the level sets under P .

With the help of Definition 2, we can also rephrase the results of Section 2. Lemma

1 states that for any equilibrium price function P , continuous or not, each p-level set

is a subset of a line with slope 1/C, and Lemma 2 claims that if the price function is

continuous, then the level sets are the whole lines with slope 1/C.

To obtain a discontinuous equilibrium price function, we need to provide a partition

of the state space whose atoms are strict subsets of lines with slope 1/C. One way to do

8In fact, R stays a p-level set even if we change the values of P outside R to anything different from
p.

9These steps are illustrated in Appendix B for a special case, where we provide the constructive
proof for Theorem 2.
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this is to “cut” each level set of PGS into two half-lines that become the level sets under

the new price function by applying an infinite curve that intersects all lines with slope

1/C exactly once. Hence, this curve, which is sufficient to characterize the new partition,

can be given as a function of l. Formally, we look for a function s̄ : R → R that cuts

each line l into a left half-line, given by l− = {(s, u) : s− Cu = l and s < s̄ (l)}, and a

right half-line l+ = {(s, u) : s− Cu = l and s ≥ s̄ (l)}, and the level sets of the new price

function P become these left and right half-lines. Our main result is that it is possible

to construct a class of equilibria by a “linear cut”, i.e., when s̄ is linear in l:10

Theorem 2. There exist a continuum of discontinuous equilibria of the economy created

with a linear cut (LC, henceforth) and given in closed form:

PLC (s, u) =







P− (s− Cu) if s− ωCu < D
βs

P+ (s− Cu) if s− ωCu ≥ D
βs
,

(11)

with

P− (l) = (1 + ρ)Bl − ρD + ζΨ−1
ρ (−λ (Bl −D)) , (12)

and

P+ (l) = (1 + ρ)Bl − ρD − ζΨ−1
ρ (λ (Bl −D)) , (13)

where D ∈ R arbitrary; B, C, and βs are those in Theorem 1 and (4); ρ, ζ, and λ are

positive constants given in (A-21); and if φ (.) denotes the pdf of the standard normal

distribution and Φ (.) is the corresponding cdf, then

Ψρ (x) = (1 + ρ) x+
φ (x)

Φ (x)

is an invertible function whose properties we collect in Appendix A. The functions P−

and P+ are both increasing, infinitely differentiable, and their images are (−∞, D) and

(D,∞), respectively. PLC takes all real values except for D.

10Graphically, this cut can be thought of as the (s̄ (l) , ū (l)) points of the (s, u) plane, where ū (l) =
s̄(l)−l

C
. If s̄ is linear in l, ū is linear too, and the set {(s̄ (l) , ū (l)) : l ∈ R} is a straight line on the plane;

see the bottom right panel of Figure 2 for illustration. From here s < s̄ (l) or s ≥ s̄ (l) are equivalent to
a linear combination of s and u being above or below a threshold, leading to (11). E.g., s− ωCu < D

βs

can also be written as s < s̄ (l) with s̄ (l) = D−ωβsl

(1−ω)βs
, and we use the two notations interchangeably.
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Appendix B contains the details of the constructive proof. It includes four steps.

First, we conjecture that the level sets are half-lines. This means a price reveals both

the line l, i.e., the linear combination of signal s and noisy supply u, and that s is above

or below a threshold s̄ (l), and we formally express the belief of uninformed agents.

Second, given the belief, we solve uninformed agents’ optimization problem and derive

the demand function. Third, we apply market clearing to obtain an implicit equation

that the equilibrium price must satisfy. Finally, we show that under the linear cut given

in (11) the beliefs are rational, i.e., the level sets are the conjectured half-lines.

Figure 2 illustrates the price function proposed in Theorem 2 and compares it to

the GS price of Theorem 1. The upper left panel shows PGS as a function of s and u,

and the middle left panel shows PGS as a function of l = s − Cu. The price function

is represented by a plane and a line, respectively, because PGS is linear in l and hence

in s and u. The bottom left panel illustrates the level sets of PGS for different price

realizations: e.g., for any p∗ ∈ R, the set of points that solve PGS (s, u) = p∗ is a whole

line with slope 1/C, represented by asterisks in the bottom left panel.

The upper right panel shows the price function PLC obtained by a linear cut as a

function of s and u, and the middle right panel plots PLC for values of l = s − Cu.

While PLC is a monotonic function of s and u, it is not l-measurable any more, as it

also depends on whether s is on the right or left half-line of l. The dashed curve on

the middle right panel corresponds to P−, the restriction of PLC to left half-lines; i.e.,

P− (l) = PLC (s, u) for all (s, u) ∈ l−. Similarly P+ (l) tells us what the equilibrium price

is on the right half of line l, and is represented by the solid curve. For comparison, the

dotted line shows PGS (l).

The bottom right panel illustrates the level sets of PLC . For any p 6= D, the p-level

set is a half-line with slope 1/C; in particular, prices below D indicate a left half-line,

and prices above D indicate a right half-line. For instance, as the middle panel shows,

prices p◦ < D < p△ reveal the same l, but they also indicate whether the signal is low

or high. Thus, the two level sets, illustrated by circles and by triangles on the bottom

right panel, respectively, are the two halves of the same line. The dotted-dashed line

indicates the cut s̄ (l). Figure 2 shows that it is possible to choose the cut such that

13
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Figure 2. The price function with linear cut, PLC

This figure illustrates the price function proposed in Theorem 2 and compares it to
the GS price of Theorem 1. The upper left panel shows PGS as a function of s and
u. The middle left panel shows PGS as a function of l, and for two particular p (and l)
realizations the bottom left panel illustrates the level sets of PGS with the same markers.
The upper right panel shows the price function PLC obtained by a linear cut as a function
of s and u. The middle right panel shows PLC for each l: The solid (dashed) curve is P+

(P−) as a function of l, but PLC is not l-measurable; moreover, D is not attained as a
price realization. The bottom right panel illustrates the level sets for four different price
realizations, with the actual prices plotted on the middle panel with the same markers.
The dotted-dashed line indicates the cut s̄ (l). The parameters are set to σd = 0.6,
σu = 0.3, σε = 0.4, α = 2, ω = 0.1, D = 0.
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P− (l) and P+ (l) are both invertible functions and their images are disjoint, therefore

every p-level set is exactly one half-line, and PLC is a valid equilibrium price function.

One economic interpretation of the difference between the GS and LC equilibria

can be illustrated by revisiting the market-clearing condition (6). When uninformed

traders learn the linear combination l = s − Cu, they obtain information about the

residual demand they face, i.e., informed demand minus supply. In the GS equilibrium

uninformed agents only know l, and they cannot distinguish whether the residual demand

is the result of a good signal (informed traders buying more) coupled with a high supply

shock, which we think of as a state when asset fundamentals are good but there is a

“liquidity crisis”, or if it is the outcome of a bad signal and low supply shock, i.e., a

“fundamental crisis”. In contrast, in the LC equilibrium uninformed traders know the

residual demand and also learn about its composition: they are able to tell apart bad

liquidity from bad fundamental states. Therefore, in the former they buy more and drive

the equilibrium price above the GS price of the same state, and in the latter they buy

less and the equilibrium price is below the GS price.

The cut s̄ (l) has an important role in this equilibrium. Suppose that a D-level set,

D ∈ R, consists of only one point, i.e., is a singleton (s̄, ū). Then D perfectly reveals

the informed signal s̄, and uninformed traders become informed, too; from (5), the

demand of each rational agent is hence βss̄−D
αβsσ2

ε
. By market clearing this demand must

equal supply ū, and rearranging, we obtain s̄ − ωCū = D/βs. Thus, {(s̄, ū) ∈ R2 :

s̄− ωCū = D/βs} are the points that would individually be D-level singletons.11 From

here the equilibrium price on any left half-line must be below D: the random variable

d|s=s̄ first-order stochastically dominates d|s<s̄, hence investors demand more and the

equilibrium price is higher in the former case. That is, PLC (s, u) = P− (s− Cu) < D

for all (s, u) satisfying s−ωCu < D/βs. Similarly, PLC (s, u) = P+ (s− Cu) > D for all

(s, u) satisfying s− ωCu > D/βs.

To illustrate that LC equilibria are not only well-crafted pathological examples of dis-

continuous equilibria, we next show that the proposed price function has many realistic

properties that the standard linear equilibrium does not have.

11Note that while each of these points is a D-level set, their union is not: it would violate Lemma 1.
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Proposition 1. Small changes in s and u can lead to large discontinuous changes in

the price, i.e., jumps and crashes, given by ∆P (l) = P+ (l)− P− (l). ∆P (l) is positive

for all l, reaches its minimum at l = D/B, and has limits liml→±∞∆P (l) = ∞.

Proposition 1 describes price sensitivity to signal and supply shocks. We note that

large price movements can happen independently of the asset value: since s − ωCu =

D/βs is an infinite line on the plane, for all s ∈ R there exists a unique u ∈ R such that a

discontinuous shift occurs at (s, u). These price movements can be arbitrarily large, and

larger movements happen at more extreme values of s and u, i.e., when l is further away

from D/B. Interestingly, the discontinuous price movements occur to/from moderate

prices close to D; see Figure 2.

Proposition 2. Uninformed agents’ expectation of the asset payoff is non-monotonic

in the price, conditional variance is non-constant, and skewness is non-zero. Moreover,

a small change in the market price can lead to a large revision in the expectated payoff.

Figure 3 illustrates the properties of the price function with linear cut compared to

the GS price. The upper left panel shows the expected payoff conditional on the price

realization, E [d|P = p], in the two equilibria. Notably, the conditional expectation is

non-monotonic in the LC equilibrium: a higher price realization does not necessarily

indicate a higher expected payoff. To understand the particular shape, consider, e.g.,

the case when the price decreases from ∞ to D. In this case every price level reveals

both the residual demand, l, and that both the signal and the supply shock are high

(s ≥ s̄). For very high prices this additional information is not very helpful, because s̄

is low. When p decreases, the residual demand l decreases. On the other hand, s̄ (l) is

a decreasing function of l, so s̄ increases, and uninformed agents become more certain

that informed traders have a good signal. That is, even though residual demand goes

down, it decreases because the supply shock increases faster than how informed traders

are buying. Nevertheless, signal s increases on average, and E [d|P = p] goes to infinity.

The upper right panel shows the conditional variance, V ar [d|P = p], in the two

equilibria. As the joint distribution of the price and payoff is non-normal, conditional

variance is non-constant in the new equilibrium: It is always lower than in the GS
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Figure 3. Properties of PLC

This figure illustrates the equilibrium properties of the LC price function (solid line
on all panels) compared to the GS equilibrium (dotted line). The upper left panel
shows that uninformed agents’ conditional expectation of the payoff, E [d|P = p], is
non-monotonic under PLC . The upper right panel shows that the conditional variance,
V ar [d|P = p], is non-constant. The middle left panel shows that the conditional skew-
ness, Skew [d|P = p], is positive for high (p > D) prices and negative for low (p < D)
prices. The middle right panel shows that the optimal uninformed demand curve, xU (p),
is globally not downward-sloping in the LC equilibrium, and a higher price can induce
uninformed traders to buy more of the asset. The bottom panel shows the expected re-
turn of uninformed traders, E [d− p|P = p]; a higher price can imply a higher expected
return. The parameters are set to σd = 0.6, σu = 0.3, σε = 0.4, α = 2, ω = 0.1, D = 0.
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equilibrium, because uninformed investors do not only learn the residual demand, as in

GS, but also how informed agents are trading. When the price and thus l are very high,

s̄ is low, uninformed agents’ belief about s is similar to that in the GS equilibrium, and

the conditional variance is close to V ar [d|l]. When p and l decrease, s̄ increases, and

uninformed agents become more certain that informed traders have a good signal. Payoff

volatility is especially small when the price is close to D: uninformed agents’ conditional

distribution is concentrated on the point s̄, and the conditional variance converges to

the uncertainty of informed traders, V ar [d|s].

The middle left panel shows the conditional skewness of the payoff, Skew [d|P = p],

in the two equilibria. Unlike in GS, in which joint normality implies zero skewness, it is

generally non-zero in the LC equilibrium due to non-normality. In particular, skewness

is positive for high prices and negative for low prices. The reason for this is that high

prices imply an uninformed belief that is truncated normal with a truncation from below

(s ≥ s̄) and low prices imply beliefs truncated from above (s < s̄).

Proposition 3. Non-monotonic belief moments about the payoff lead to an uninformed

demand curve xU (p) that is globally not downward-sloping.

The middle right panel of Figure 3 shows the equilibrium demand function of unin-

formed traders in the two equilibria. In the GS equilibrium, demand is always downward

sloping: a higher price induces uninformed agents to buy more because it indicates a

higher payoff (information effect), but agents want to buy less due to the substitution

effect. As it is well-known, in the GS equilibrium the latter effect dominates the for-

mer, and uninformed demand curves slope down. On the other hand, the demand curve

in the LC equilibrium is globally non-monotonic even if it is locally downward-sloping

everywhere: Uninformed traders are willing to buy more when the price increases from

below D to above D, because prices above D reveal a high signal with little uncertainty,

whereas prices below D reveal a low signal (see the two upper panels of Figure 3 and the

corresponding discussion after Proposition 2). That is, the information effect is (locally)

so strong in this case that it dominates the substitution effect.
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There is an extensive literature recognizing that if trading in financial markets ag-

gregates information and the resulting prices can feed back to real activity, it introduces

complementarities among traders and can lead to upward-sloping demand curves.12 In

contrast, our LC equilibrium emerges in the standard GS model, and is purely the result

of complementarity in trading among uninformed traders who do not possess any private

signals, but through their trading affect to what extent the signal of informed traders

gets incorporated into the price. That is, if an uninformed trader believes that some

prices contain more positive information about the payoff than others, she is willing to

buy more of the asset. As all uninformed traders increase their demands, the equilibrium

price is pushed above D. Thus, high prices indeed reveal better signals than low prices,

and expectations are rational.

To further illustrate the differences of the two equilibria, we present two results

on return predictability in the LC price function that cannot happen in the standard

GS equilibrium. For this end, we study the properties of d − p, the future return that

investors earn between Periods 0 and 1, conditional on the Period-0 price p, and interpret

a higher p as a higher past return.13

Our first result is related to the literature on price momentum, documented both in

the cross section (recent winners outperforming recent losers; see, e.g., Jegadeesh and

Titman (1993)) and in the time series (positive predictability from a security’s own past

returns; Moskowitz, Ooi, and Pedersen (2012)).

Proposition 4. A higher past return can lead to a higher expected future return, that

is, E [d− p|p] can be increasing in p.

The bottom panel of Figure 3 plots the expected future return conditional on the

past return realization in the GS and the LC equilibria. As it is also shown by Banerjee,

12See, e.g., Subrahmanyam and Titman (2001), Ozdenoren and Yuan (2008), and Sockin and Xiong
(2014).

13Formally, we could assume that there is a Period −1 before informed agents receive their signal.
Since all agents are ex ante identical and have prior E [d] = 0, following Banerjee, Kaniel, and Kremer
(2009) we could assume that if agents traded in this Period −1, p−1 = 0 is the price that would prevail.
Thus, p − p−1 = p also gives the (past) return between Periods −1 and 0. A proper treatment of a
Period −1 would be to assume rational agents trading and optimizing in a 3-period (dynamic) setting,
as in, e.g., Vayanos and Wang (2012), and to obtain an equilibrium p−1. Due to invariance to additive
constants, however, the results of Propositions 4 and 5 would not change.
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Kaniel, and Kremer (2009), in the GS equilibrium expected return is always downward-

sloping, higher prices imply lower subsequent expected returns, and the equilibrium

displays price reversal. Notably, however, the expected return is non-monotonic in the

new equilibrium: a higher price realization can indicate a higher expected return when

the price is close to D, because a price slightly above D reveals a high signal–high

supply shock combination, leading to a jump in the payoff expectation of uninformed

traders. Thus, in the LC equilibrium higher prices (higher past returns) can imply higher

subsequent returns, and the equilibrium can display price drift.14

Several recent empirical papers study the asset pricing implications of skewness, and

find that securities with positively skewed returns tend to be overpriced; see, e.g., Boyer,

Mitton, and Vorkink (2010) and Conrad, Dittmar, and Ghysels (2013). Previous theories

in line with these predictions generally obtain non-trivial return skewness by exogenously

assuming non-normal asset payoff distributions.15 In contrast, in our model non-zero

skewness is due to a non-linear equilibrium price function of normally distributed state

variables in the standard GS framework:

Proposition 5. Conditional skewness of future returns, Skew [d− p|p], is negative for

low prices and positive for high prices.

Because skewness is invariant to additive constants, Skew [d− p|p] = Skew [d|p], this
proposition formalizes the middle left panel of Figure 3. As discussed in Proposition 2,

beyond the residual demand, high prices also reveal that the signal is above a threshold

(s ≥ s̄), which means that future returns are bounded from below but can be arbitrarily

14With the help of the expected return, we can revisit the uninformed demand curve and show
that while its overall shape is different from that in the GS equilibrium, it can be motivated in a

similar way. In the linear equilibrium uninformed demand is given by E[d|PGS=p]−p

αV ar[d|PGS=p] , and since the

variance is constant and the expected return, defined as E [d|PGS = p] − p, decreases linearly in the
price, uninformed demand also decreases linearly. The bottom panel of Figure 3 illustrates the expected
return in the LC equilibrium. Combining it with the shape of the conditional variance, xU (p) is very

similar to what E[d|PLC=p]−p

αV ar[d|PLC=p] would be. That is, uninformed demand in the discontinuous equilibrium

behaves approximately the same way as the optimal demand in a mean-variance world, even though it
is not a CARA-normal setting.

15See, e.g., Brunnermeier and Parker (2005) and Brunnermeier, Gollier, and Parker (2007), who
develop models of optimal (non-rational) expectations; Barberis and Huang (2008), who use cumulative
prospect theory; Mitton and Vorkink (2007), who set up a model where investors have heterogeneous
preference for skewness; and Albagli, Hellwig, and Tsyvinski (2013), who provide a general theory of
information aggregation that can be applied outside the standard CARA-normal framework.
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high, creating positive skewness. Conversely, low prices reveal that the signal is from a

lower half-line, i.e., future returns are capped from above but can be arbitrarily negative.

In contrast, in the GS equilibrium the price is a linear function of the state variables,

and due to joint normality, return skewness is always zero.

3.1 On the possibility of informationally efficient markets

So far we have only considered equilibria where we partition the (s, u) plane into two half-

planes by one linear cut s̄. The equilibrium presented in Theorem 2, however, has two

important features that allow us to generalize our results: First, the cut s−ωCu = D/βs

(or, equivalently, s̄ (l) = D−ωβsl
(1−ω)βs

) leads to a partition where prices on left half-lines, P−,

are all below D, whereas prices on right half-lines, P+, are all above D. Second, the

functions P− and P+ obtained with this linear cut are monotonically increasing.

Based on these observations, we next consider a countable number of subsets that

we partition the (s, u) plane into. Let us denote s̄n (l) = Dn−ωβsl
(1−ω)βs

for some indices

n ∈ Z ⊆ Z, where Dn ∈ R arbitrary that satisfy Dn < Dn+1 for all n ∈ Z. We show

that these cuts together also generate a valid REE price function:

Theorem 3. There exists an equilibrium of the asset market that is created by a count-

able number of parallel linear cuts and given by

PLCm (s, u) =
∑

n∈Z
1{Dn

βs
≤s−ωCu<

Dn+1

βs

}Pn (s− Cu) , (14)

where 1{.} is the indicator function; Pn, n ∈ Z, are monotonically increasing R → R

functions given in closed form in (A-31), and Dn < Pn (l) < Dn+1 for all l ∈ R.

Our construction method opens up a large set of additional equilibria besides the LC

equilibrium. PLCm is a simple generalization of PLC by partitioning the state space to

a countable number of local REEs instead of just two. PLCm is a union of (potentially)

infinitely many local price functions Pn that have disjoint domains and disjoint images.

Therefore, from a given price realization uninformed traders first learn which subset of

the state space s is located in, in the form of a strip Dn/βs ≤ s − ωCu < Dn+1/βs.
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Figure 4. Properties of PLCm

The top left panel illustrates the price function PLC2 with only two parallel linear cuts
at D0 = 0 and D1 = 1. The top right panel illustrates the price function PLCm created
by linear cuts for all Dn = n, n ∈ Z. The bottom left panel shows what uninformed
traders learn about s from a price realization p of PLCm. If, e.g., D0 = 0 < p < 1 = D1,
illustrated by the shaded area of the top right panel figure, uninformed traders learn
that s̄0 (l) ≤ s < s̄1 (l), i.e., the signal is from the shaded area of the bottom left panel
figure. The price function, through its local component (in this case P0), also reveals
s−Cu, i.e., s is on the solid line of the bottom left panel. The two observations together
reveal that s is from the intersection of the shaded area and the solid line, i.e., the bold
solid line. The bottom right panel shows the uncertainty faced by uninformed agents
as a function of the price, V ar [d|PLCm = p] (solid line), together with the conditional
variance of uninformed agents in the GS equilibrium, V ar [d|l] (dotted line), and the
conditional variance of informed agents, V ar [d|s] (dashed line). The other parameters
are set to σd = 0.6, σu = 0.3, σε = 0.4, α = 2, ω = 0.1.

Theorem 3 also states that all Pn functions are increasing, thus invertible, and unin-

formed agents learn the linear combination l = s − Cu. Hence, overall they learn that

the signal is from the segment [s̄n (l) , s̄n+1 (l)). The top left panel of Figure 4 shows an

equilibrium price function (denoted by PLC2) with only two cuts at D0 and D1 > D0.

The top right panel of Figure 4 illustrates PLCm for infinitely many cuts for different
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values of l, and the bottom left panel shows what uninformed traders learn about s from

a price realization p.

Next we define ∆s = supn,l (s̄n+1 (l)− s̄n (l)) = supn
Dn+1−Dn

(1−ω)βs
. ∆s measures how

fine the partition is, i.e., how close cuts are to each other. Since uninformed agents

learn from a price realization the interval in which s is, the smaller s̄n+1 − s̄n becomes

(while being non-negative by definition), the more precisely uninformed agents can in-

fer s from the market price. Another way to illustrate the precision of uninformed

agents’ information is to consider the conditional variance V ar [d|P = p], which is sim-

ply V ar [d|s̄n (l) ≤ s < s̄n+1 (l)] when Dn < p = p (l) < Dn+1. We define the degree of

uncertainty uninformed agents face in equilibrium, in addition to that faced by informed

traders, by ∆V ar = suppV ar [d|P = p]−V ar [d|s]; see the bottom right panel of Figure

4. When Dn+1 − Dn → 0, uninformed traders learn the signal s almost perfectly, and

the difference in uncertainty disappears.16,17 Formally, we have the following result:

Theorem 4. For every ǫ > 0 there exist equilibria of the asset market such that the

partition of the state space is finer than ǫ, i.e., ∆s < ǫ. Moreover, for every δ > 0 there

exist equilibria such that uninformed traders’ conditional variance about the asset payoff

is closer to the conditional variance of informed traders than δ, i.e., ∆V ar < δ.

Theorem 4 states that discontinuous equilibria, created by infinitely many parallel

linear cuts, can be arbitrarily close to fully-revealing by partitioning the state space

sufficiently finely. In a series of equilibria that satisfy ∆s → 0 or ∆V ar → 0 uninformed

agents can learn the signal of informed agents almost perfectly. This leads to almost-

full revelation despite the supply shock u that is introduced to the GS model to prevent

prices from being fully-revealing, and in spite of the fact that a fully-revealing REE of the

economy does not exist. The Grossman-Stiglitz paradox thus reemerges: If information

acquisition is costly, agents do not want to become informed, because uninformed traders

can extract their information almost perfectly from market prices for free.

16Notice that, unlike in the majority of the literature, in all equilibria discussed in Section 3, the
posterior belief of uninformed traders is non-normal, and information precision is not fully captured
by variance. Nevertheless, V ar [d|P = p] converging to V ar [d|s] uniformly is sufficient for uninformed
traders to learn the signal almost perfectly.

17Alternatively, we could measure informational (in)efficiency by the ratio V ar [d|s] /V ar [d|p], as in
GS. Theorem 4 would then state that there exist equilibria with this ratio being arbitrarily close to 1.
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4 Equilibrium multiplicity with differential information

To show that the existence of discontinuous equilibria is not specific to the GS model,

but is relevant for a much larger class of informational models, we next study an economy

that generalizes GS to differential information, following Hellwig (1980) and Diamond

and Verrecchia (1981), and consider its continuum-agent version in the spirit of Admati

(1985). Similarly to the GS model, there are two periods, t = 0 and 1. Two securities,

a riskless and a risky asset, are traded in a competitive market in Period 0, and pay off

in Period 1. The riskless asset is in infinite supply, and pays off one unit with certainty.

The risky asset is assumed to be in an aggregate supply of u shares, and pays off d units.

The random variables d and u are independent and have jointly normal distribution with

zero means and variances σ2
d and σ2

u, respectively. We use the riskless asset as numeraire,

and denote the price of the risky asset in Period 0 by p.

The asset market is populated by a continuum of agents in measure one. Agents have

exponential utility over wealth W in Period 1, U (W ) = − exp (−αW ), where α > 0 is

the coefficient of absolute risk aversion. Normalizing agents’ initial endowments in the

riskless and risky assets to zero, if an agent buys x units of the risky asset, her terminal

wealth in Period 1 equals capital gains from trading: W = (d− p) x. None of the agents

face any trading (e.g., short-sale or leverage) constraints.

Unlike in GS, we assume that all traders receive some additional information about

the payoff of the risky asset. In particular, agent i receives private signal si = d + εi

where εi ∼ N (0, σ2
ε) i.i.d across agents and independent of both d and u. Throughout

our analysis we assume that the law of large numbers holds, namely the “average” of

signals si is d:
∫

i
sidi = d. Besides the private signals, agents also make use of the

information content of the market price p.18

We define an equilibrium of the above economy the standard way:

18Our result on multiple equilibria in the differential information model does not hinge on the as-
sumption of infinitely many agents. A finite number of traders, however, would further complicate our
calculations, because in that version the market price would be a function of the supply noise and the
average of private signals, instead of the true payoff, and hence would include two noise components
beyond the payoff d.
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Definition 3. A rational expectations equilibrium (REE) consists of a measurable price

function P (d, u), P : R2 → R, and measurable individual strategies xi (si, p), xi : R
2 →

R, such that

1. demand is optimal for trader i:

xi (si, p) ∈ argmax
x

E [− exp {−α (d− p) x} |si, P = p] ; (15)

2. the asset market clears at the equilibrium price in all states:

∫

i

xi (si, P (d, u)) di = u. (16)

The standard way of solving the model is to conjecture an equilibrium price func-

tion (or its information content) linear in d and u, deriving optimal demands, plugging

them into the market-clearing condition, and finally matching the coefficients with the

conjecture. These steps yield the following result:

Theorem 5 (Hellwig (1980), Admati (1985)). There exists a unique linear equilibrium

of the economy with the price function given by PH (d, u) = F (d−Gu), with constants

F =
σ2
d
σ2
ε+σ2

d
G2σ2

u

σ2
d
σ2
ε+σ2

d
G2σ2

u+σ2
εG

2σ2
u
> 0 and G = ασ2

ε > 0.

Unfortunately, we have not been able to obtain a uniqueness result on continuous

equilibrium functions, as in Section 2.19 We nevertheless provide a class of discontinuous

(and hence non-linear) equilibria of the model with dispersed information:

Theorem 6. There exist a continuum of discontinuous equilibria given by

PLC,H (d, u) =







P− (l) = J − χΨ0

(
J−Fl
χ

)

= Fl − χ
φ(J−Fl

χ )
Φ(J−Fl

χ )
if d < J

P+ (l) = J + χΨ0

(

−J−Fl
χ

)

= Fl + χ
φ(−J−Fl

χ )
Φ(−J−Fl

χ )
if d ≥ J ,

(17)

where J ∈ R arbitrary, F and G are those in Theorem 5, l = d − Gu, χ = σd

√
1− F ,

and Ψ0 (x) = x+ φ(x)
Φ(x)

is a positive and increasing (hence invertible) function.

19The reason for this is that informed traders in the GS model do not learn from the price, thus
their demand is independent from the price function. In the present setting changing the price function
affects optimal demands in non-trivial ways, because all agents can learn new information from prices.
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The construction of this equilibrium is the same as in the GS setup; moreover, the

properties of the equilibrium are qualitatively identical to those described in Section 3.20

Discontinuous equilibria are thus not restricted to the GS model, and can be relevant in

a larger class of informational models.

5 Conclusion

The standard method of conjecturing and then verifying a linear equilibrium price func-

tion has become widely used in models of asymmetric or differential information. While

papers following this technique usually show that the price function is unique in the

linear class, they do not know anything outside the linear class (see, e.g., Brunnermeier

(2001), Vives (2008), and Veldkamp (2011), and the references therein). In this paper

we study whether there exist other equilibria, to understand whether predictions based

on the linear equilibrium are robust predictions about all the equilibria of such models.

First, using a solution method different from the usual “conjecture and verify” ap-

proach, we show that the linear equilibrium of the GS model is unique when allowing for

any continuous equilibrium price function. We also construct discontinuous equilibria in

the GS and H models and show that they lead to very different (and realistic) economic

phenomena compared to the linear one, and that there exist discontinuous equilibria

arbitrarily close to being fully-revealing.

Throughout our analysis we restrict our attention to the settings of GS and H. There

are many directions we could look to extend our results. First, it would be interesting

to see whether we could provide similar statements about equilibrium uniqueness when

allowing for a larger class of distributions and utility functions. Second, an important

question is whether our (non-)uniqueness results would hold in a modification of the

model that incorporates imperfect competition, as in Kyle (1989). These problems are

left for future research.

20For example, quite surprisingly but similar the GS model, the cut is again along the points that
would correspond to singleton level sets; see the related discussion on page 15.
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Appendix A Preliminary results

In this appendix we collect properties of some functions that are used in Appendix B. The
functions φ (.) and Φ (.) denote the pdf and cdf of the standard normal distribution, respectvely.
The proofs of these lemmas are provided in the Online Appendix.

Lemma 4. The function

Ψ−1 (x) =
φ (x)

Φ (x)
(A-1)

has the following three sets of properties:

(i) Ψ−1 (x) > 0 ∀x ∈ R, and its limits are limx→−∞Ψ−1 (x) = ∞ and limx→∞Ψ−1 (x) = 0.

(ii) Ψ−1 (x) is decreasing; its slope satisfies −1 < Ψ′
−1 (x) < 0 for all x ∈ R with limits

limx→−∞Ψ′
−1 (x) = −1 and limx→∞Ψ′

−1 (x) = 0, and Ψ′
−1 increases monotonically in between.

(iii) Ψ−1 (x) is convex: Ψ′′
−1 (x) > 0 for all x ∈ R.

Lemma 5. Suppose ρ ≥ 0 constant. The function

Ψρ (x) = (1 + ρ)x+
φ (x)

Φ (x)

has the following properties:
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(i) If ρ = 0, Ψ0 (x) > 0 for all x ∈ R, and its limits are limx→−∞Ψ0 (x) = 0 and
limx→∞Ψ0 (x) = ∞. If ρ > 0, Ψρ (x) takes every real value and its limits are limx→−∞Ψρ (x) =
−∞ and limx→∞Ψρ (x) = ∞.

(ii) Ψρ (x) is increasing; its slope satisfies ρ < Ψ′
ρ (x) < 1 + ρ for all x ∈ R with limits

limx→−∞Ψ′
ρ (x) = ρ and limx→∞Ψ′

ρ (x) = 1 + ρ, and Ψ′
ρ increases monotonically in between.

(iii) Ψρ (x) is convex: Ψ′′
ρ (x) > 0 for all x ∈ R.

Lemma 6. Suppose ρ ≥ 0 and M > 0 constants. The function

Ωρ (x) = (1 + ρ)x+
φ (x+M)− φ (x−M)

Φ (x+M)− Φ (x−M)
(A-2)

has the following properties:

(i) If ρ = 0, Ω0 has limits limx→−∞Ω0 (x) = −M and limx→∞Ω0 (x) = −M . If ρ > 0,
Ωρ (x) takes every real value and its limits are limx→−∞Ωρ (x) = −∞ and limx→∞Ωρ (x) = ∞.

(ii) Ωρ (x) is always increasing, and its slope satisfies ρ < Ω′
ρ (x) < ρ+M2 for all x ∈ R.

Appendix B Proofs of Theorems 2-6

Proof of Theorem 2. We provide a constructive proof that there exist discontinuous price func-
tions described in Section 3. We derive the relationship between level sets and the price real-
izations for a large class of price functions in four steps: First, we formally derive the belief
of uninformed agents if they learn something in addition to the usual GS information, i.e., if
the price reveals both the linear combination of signal s and the noisy supply u, and that s is
in a certain segment of the real line. Second, given the belief, we derive the demand function
of uninformed traders. Third, we apply market clearing to obtain an implicit equation that
any equilibrium price function must satisfy. Fourth, we show existence of an equilibrium by
choosing level sets to be half-lines in a particular form so the attained prices produce a valid
price function, and provide equilibrium prices in closed form in this equilibrium.

Posterior distribution. In the standard GS model (see also Section 2), uninformed agents have
prior d ∼ N

(
0, σ2

d

)
, and infer another piece of information from the price in the form of the

linear combination l = s− Cu, where s = d+ ε, ε ∼ N
(
0, σ2

ε

)
, u ∼ N

(
0, σ2

u

)
, and C ∈ R+ is

given in Theorem 1. Standard Bayesian updating then implies that the posterior distribution

is d|s−Cu=l ∼ N
(

βll, σ
2
d|l

)

with

βl =
σ2
d

σ2
d + σ2

ε + C2σ2
u

and σ2
d|l = βl

(
σ2
ε + C2σ2

u

)
,

as in (10).21 Put differently, the posterior pdf is

fd|l (d|s− Cu = l) =
1

σd|l
φ

(
d− βll

σd|l

)

.

Suppose now that besides the linear combination l, uninformed agents also learn that
s ∈ S ≡ (s̄1, s̄2) for arbitrary s̄1, s̄2 ∈ R ∪ {−∞,∞} and s̄1 < s̄2. Since the priors are jointly

21To simplify our formulas, in the appendix we denote the conditional variance V ar [.|I] by σ2
.|I .
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normal, the posterior distribution conditional on these two additional pieces of information
becomes truncated normal. After some algebra, we obtain that the posterior pdf is given by

fd|L (d|L) = 1

σd|l
φ

(
d− βll

σd|l

) Φ

(
σl|d

σl|sσε

(

s̄2 −
σ2
l|s

d+σ2
ε l

σ2
l|d

))

− Φ

(
σl|d

σl|sσε

(

s̄1 −
σ2
l|s

d+σ2
ε l

σ2
l|d

))

Φ
(
1
θ

(

s̄2 − σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄1 − σ2
s

σ2
l

l
)) ,

(A-3)
where we introduce the notation L for the information set {s− Cu = l, s ∈ S}, and define

σ2
l|s = C2σ2

u, σ
2
l|d = σ2

ε + C2σ2
u, σ

2
s = σ2

d + σ2
ε , σ

2
l = σ2

d + σ2
ε + C2σ2

u, and θ =
σl|sσs
σl

= σs|l.

Notice that if we fix l and pick s̄1 = −∞ and s̄2 = ∞, uninformed agents’ belief becomes

d|s−Cu=l ∼ N
(

βll, σ
2
d|l

)

, i.e., the posterior belief in the standard linear equilibrium.

Naturally, the above formula (and thus the results below) would still hold if we had a
closed or half-closed-half-open interval instead of an open one. Moreover, (A-3) can easily be
extended to the case when S is a disjoint union of a countable number of intervals instead of
only one.

Uninformed optimization problem. Next, we solve the optimization problem

max
x

E [− exp {−α (d− p)x} |L] . (A-4)

From (A-3) and using Lemma 8, we can show that

E [exp (−αdx) |L] = exp

{

−α

(

βllx− 1

2
ασ2

d|lx
2

)}

×

×
Φ

(

1
θ

[

s̄2 −
(

σ2
s

σ2
l

l − α
σ2
l|s

σ2
d

σ2
l

x

)])

− Φ

(

1
θ

[

s̄1 −
(

σ2
s

σ2
l

l − α
σ2
l|s

σ2
d

σ2
l

x

)])

Φ
(
1
θ

(

s̄2 − σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄1 − σ2
s

σ2
l

l
)) ,

hence the optimization problem (A-4) is equivalent to

max
x

− exp

{

−α

[

(βll − p)x− 1

2
ασ2

d|lx
2

]}

×

×
[

Φ

(

1

θ

[

s̄2 −
(

σ2
s

σ2
l

l − α
σ2
l|sσ

2
d

σ2
l

x

)])

− Φ

(

1

θ

[

s̄1 −
(

σ2
s

σ2
l

l − α
σ2
l|sσ

2
d

σ2
l

x

)])]

,

where the first component is the usual term that illustrates the equivalence of the CARA-
normal optimization problem to a mean-variance problem, and the second term adjusts the
maximand with the truncated belief. After deriving and rearranging the FOC, we obtain the
following equation that optimal uninformed demand must solve for given belief and price:

0 = βll − p− ασ2
d|lx− θβs

φ

(

1
θ

[

s̄2 −
(

σ2
s

σ2
l

l − α
σ2
l|s

σ2
d

σ2
l

x

)])

− φ

(

1
θ

[

s̄1 −
(

σ2
s

σ2
l

l − α
σ2
l|s

σ2
d

σ2
l

x

)])

Φ

(

1
θ

[

s̄2 −
(

σ2
s

σ2
l

l − α
σ2
l|s

σ2
d

σ2
l

x

)])

− Φ

(

1
θ

[

s̄1 −
(

σ2
s

σ2
l

l − α
σ2
l|s

σ2
d

σ2
l

x

)]) .

(A-5)
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The first three terms of the RHS are the same as in the linear equilibrium that lead to the
optimal uninformed demand (9); the last term is the adjustment for the truncated beliefs.22

Market-clearing price. We rearrange the market-clearing condition (6) and obtain that in
equilibrium we must have

xU =
p− βs (s− Cu)

(1− ω)βsC
=

p− βsl

(1− ω)βsC
. (A-6)

With the help of (A-6), we replace the uninformed demand in (A-5). After rearranging, we
obtain the following equation that the equilibrium price p corresponding to the information
set L solves:

0 = Bl − p− θ

κ

φ
(
1
θ [s̄2 + ϑp− ξl]

)
− φ

(
1
θ [s̄1 + ϑp− ξl]

)

Φ
(
1
θ [s̄2 + ϑp− ξl]

)
− Φ

(
1
θ [s̄1 + ϑp− ξl]

) , (A-7)

where B is the same as in Theorem 1, and

ϑ =
αθ2

(1− ω)C
, κ = ϑ+

1

βs (1− ω)
and ξ = κB − ω

1− ω
(A-8)

with 0 < ϑ < κ. Notice that setting (s̄1, s̄2) = (−∞,∞) means the last term of the RHS of
(A-7) is zero, and we get back the GS equilibrium price p = Bl.

Closed-form expression for price with half-lines. While in general the RHS of (A-7) is a non-
invertible function of p, it is in the two special cases we consider when S is either a lower or
an upper half-line.

First, we assume S = (s̄1, s̄2) = (−∞, s̄), i.e., formally, the information set of uninformed
traders is L− (l) = {s− Cu = l, s < s̄}. Denoting the equilibrium price by p−, (A-7) simplifies
to

0 = Bl − p− − θ

κ

φ
(
1
θ [s̄+ ϑp− − ξl]

)

Φ
(
1
θ [s̄+ ϑp− − ξl]

) . (A-9)

Rearranging, we obtain

κ

ϑθ
[(ϑB − ξ) l + s̄] =

κ

ϑθ
[s̄+ ϑp− − ξl] +

φ
(
1
θ [s̄+ ϑp− − ξl]

)

Φ
(
1
θ [s̄+ ϑp− − ξl]

) = Ψρ

(
1

θ
[s̄+ ϑp− − ξl]

)

.

where ρ ≡ κ−ϑ
ϑ > 0, and Ψρ (.) is the strictly increasing and hence invertible function defined

in Lemma 5. Applying Ψ−1
ρ to both sides and rearranging then yields

p− =
ξl − s̄

ϑ
+

θ

ϑ
Ψ−1

ρ

( κ

ϑθ
[(Bϑ− ξ) l + s̄]

)

. (A-10)

Second, we assume S = [s̄,∞), i.e., the information set of uninformed agents is L+ (l) =
{s− Cu = l, s ≥ s̄}. Denoting the equilibrium price by p+, (A-7) simplifies to

0 = Bl − p+ − θ

κ

−φ
(
1
θ [s̄+ ϑp+ − ξl]

)

1− Φ
(
1
θ [s̄+ ϑp+ − ξl]

) = Bl − p+ +
θ

κ

φ
(
−1

θ [s̄+ ϑp+ − ξl]
)

Φ
(
−1

θ [s̄+ ϑp+ − ξl]
) . (A-11)

22Notice that the FOC of (A-4) is sufficient for optimality because the problem is concave: the second

derivative of the expectation w.r.t. x is given by E
[

−α2 (d− p)
2
exp {−α (d− p)x} |L

]

< 0.
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Performing the same steps as in the p− case yields

p+ =
ξl − s̄

ϑ
− θ

ϑ
Ψ−1

ρ

(

− κ

ϑθ
[(Bϑ− ξ) l + s̄]

)

. (A-12)

Equilibrium with a linear cut. Finally, we want to choose s̄ such that the prices obtained in
(A-10) and (A-12) correspond to a valid price function, i.e., it is a bijection between the price
values and the level sets of P .

We conjecture a linear cut of the plane into two halves by s̄ (l) = Γl +Θ, where Γ,Θ ∈ R

are constants to be determined. Equations (A-10) and (A-12) then become

P− (l) ≡ p− =
(ξ − Γ) l −Θ

ϑ
+

θ

ϑ
Ψ−1

ρ

( κ

ϑθ
[(Bϑ− ξ + Γ) l +Θ]

)

(A-13)

and

P+ (l) ≡ p+ =
(ξ − Γ) l −Θ

ϑ
− θ

ϑ
Ψ−1

ρ

(

− κ

ϑθ
[(Bϑ− ξ + Γ) l +Θ]

)

, (A-14)

where we introduce P− (l) and P+ (l) to be able to discuss the properties of the equilibrium
prices p− and p+ for different l realizations, i.e. to think about them as functions of l. This
way

P (s, u) ≡
{

P− (s− Cu) = P− (l) if s < s̄ (l)
P+ (s− Cu) = P+ (l) if s ≥ s̄ (l)

is a valid equilibrium price function if P− (l) and P+ (l) are two invertible functions of l and
their images are disjoint. One way to satisfy these requirements is to make both P− and
P+ monotone increasing functions such that liml→∞ P− (l) and liml→−∞ P+ (l) are both finite
while liml→∞ P− (l) < liml→−∞ P+ (l). From (A-13) and (A-14) it is also imminent that P−
and P+ are differentiable everywhere.

Instead of rewriting (A-13) and (A-14) to analyze P− and P+, we proceed from (A-9) and
(A-11). We start with P− and derive the appropriate constants Γ,Θ ∈ R from there; then we
look at P+ and confirm it behaves accordingly.

Substituting s̄ (l) = Γl +Θ into (A-9) and rearranging, we obtain

1

θ
[(κB + Γ− ξ) l +Θ− (κ− ϑ)P− (l)] = Ψ0

(
1

θ
[(Γ− ξ) l +Θ+ ϑP− (l)]

)

, (A-15)

where in the last step we used the definition of Ψ0. Since P− is a function of l, (A-15) has to
hold for all l as an identity. Hence, the derivative of the two sides w.r.t. l must be that same
too, that is,

1

θ

[
(κB + Γ− ξ)− (κ− ϑ)P ′

− (l)
]
=

1

θ

[
(Γ− ξ) + ϑP ′

− (l)
]
Ψ′

0

(
1

θ
[(Γ− ξ) l +Θ+ ϑP− (l)]

)

.

(A-16)
We want to choose Γ and Θ such that liml→∞ P− (l) is finite, which also means liml→∞ P ′

− (l) =
0. Taking the limits of both sides of (A-16), we have

κB + Γ− ξ

θ
=

Γ− ξ

θ
lim
l→∞

Ψ′
0

(
1

θ
[(Γ− ξ) l +Θ+ ϑP− (l)]

)

. (A-17)
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First, notice that from Lemma 4 Ψ′
0 is bounded, and thus Γ = ξ would make the RHS zero

while the LHS is not. Therefore, Γ− ξ 6= 0, and rearranging (A-17) we obtain

1 +
κB

Γ− ξ
= lim

l→∞
Ψ′

0

(
1

θ
[(Γ− ξ) l +Θ+ ϑP− (l)]

)

. (A-18)

Moreover, liml→∞ P− (l) being finite and Γ− ξ 6= 0 together imply that

lim
l→∞

1

θ
[(Γ− ξ) l +Θ+ ϑP− (l)] =

{
−∞ if Γ < ξ
∞ if Γ > ξ,

hence from Lemma 4 we get

lim
l→∞

Ψ′
0

(
1

θ
[(Γ− ξ) l +Θ+ ϑP− (l)]

)

=

{
0 if Γ < ξ
1 if Γ > ξ.

However, κB
Γ−ξ 6= 0 means the LHS of (A-18) cannot be 1, and thus (A-18) can only hold if

Γ = ξ − κB < ξ. Substituting it into (A-15), we obtain

Θ + (ϑ− κ)P− (l)

θ
= Ψ0

(−κBl +Θ+ ϑP− (l)

θ

)

. (A-19)

Taking the limit of both sides when l → ∞ and using the above observations, we obtain

Θ

θ
+

ϑ− κ

θ
lim
l→∞

P− (l) = lim
l→∞

Ψ0

(−κBl +Θ+ ϑP− (l)

θ

)

= 0.

Introducing the notation D ≡ Θ
κ−ϑ = (1− ω)βsΘ, we obtain liml→∞ P− (l) = D; the limit is

indeed finite. Moreover, substituting Γ = ξ−κB and the definition of D into (A-13), we obtain

P− (l) =
κBl − (κ− ϑ)D

ϑ
+
θ

ϑ
Ψ−1

ρ

(

−κρ

θ
(Bl −D)

)

= (1 + ρ)Bl−ρD+
θ

ϑ
Ψ−1

ρ

(

−κρ

θ
(Bl −D)

)

,

(A-20)
which is identical to (12) if we note that

ρ =
κ− ϑ

ϑ
, ζ =

θ

ϑ
, and λ =

κρ

θ
, (A-21)

all positive constants. Moreover, after some algebra we also get that Γ = ξ − κB simplifies to
Γ = − ω

1−ω , as in (11).

Finally, to show that P− is a monotone function, we differentiate (A-20) w.r.t l. Using
Γ = ξ − κB and rearranging,

P ′
− (l) = (1 + ρ)B

(

1− ρ

Ψ′
ρ

(
Ψ−1

ρ

(
−κρ

θ (Bl −D)
))

)

. (A-22)

But Lemma 5 implies ρ < Ψ′
ρ (x) for all x ∈ R, so 1− ρ

Ψ′
ρ(x)

> 0 for all x ∈ R, and hence P− (l)

is strictly increasing for all l ∈ R, thus invertible.
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For P+, we first substitute Γ = ξ − κB into (A-14) and differentiate to obtain

P ′
+ (l) = (1 + ρ)B

(

1− ρ

Ψ′
ρ

(
Ψ−1

ρ

(
1
θ

(
ρκBl − κΘ

ϑ

)))

)

. (A-23)

Lemma 5 implies ρ < Ψ′
ρ (x) for all x ∈ R, so 1 − ρ

Ψ′
ρ(x)

> 0 for all x ∈ R, and hence P+ (l)

is monotone increasing for all l ∈ R, thus invertible. Moreover, due to monotonicity, the
limit liml→−∞ P+ (l) exists, and it is either −∞ or finite. Next, we substitute s̄ (l) = Γl + Θ,
Γ = ξ − κB, and D = Θ

κ−ϑ into (A-11) and rearrange to obtain a form similar to (A-19):

(κ− ϑ)P+ (l)−Θ

θ
= Ψ0

(
κBl −Θ− ϑP+ (l)

θ

)

. (A-24)

Taking the limit of both sides when l → −∞ and using the above observations, we obtain

κ− ϑ

θ
lim

l→−∞
P+ (l)− Θ

θ
= lim

l→−∞
Ψ0

(
κBl −Θ− ϑP+ (l)

θ

)

. (A-25)

Notice that liml→−∞ P+ (l) = −∞ would imply that the LHS of this equation is −∞ due to
κ−ϑ
θ > 0, which cannot happen because Ψ0 (x) > 0 for all x ∈ R and hence the RHS of the

equation must be non-negative. Hence, we must have a finite liml→−∞ P+ (l). In this case,
however, the RHS simplifies to

lim
l→−∞

Ψ0

(
κBl −Θ− ϑP+ (l)

θ

)

= lim
x→−∞

Ψ0 (x) = 0,

and plugging it back to (A-25) we obtain

lim
l→−∞

P+ (l) =
Θ

κ− ϑ
= D = lim

l→∞
P− (l) .

Therefore, both P− and P+ are increasing functions and there is no overlap in their images.
Hence, PLC is a valid price function. Substituting Γ = ξ − κB and D = Θ

κ−ϑ into (A-14) then
yields (13), and concludes the proof of Theorem 2.

Proof of Theorem 3. Let us suppose that in equilibrium uninformed agents learn both the
linear combination l = s − Cu and that s and u satisfy Dn/βs ≤ s − ωCu < Dn+1/βs with
Dn < Dn+1, or, alternatively, that s ∈ Sn = [s̄n (l) , s̄n+1 (l)) with s̄n (l) = Dn−ωβsl

(1−ω)βs
. The

posterior pdf of uninformed agents’ belief is then given, just as in (A-3), by

fd|Ln
(d|Ln) =

1

σd|l
φ

(
d− βll

σd|l

) Φ

(
σl|d

σl|sσε

(

s̄n+1 (l)−
σ2
l|s

d+σ2
ε l

σ2
l|d

))

− Φ

(
σl|d

σl|sσε

(

s̄n (l)−
σ2
l|s

d+σ2
ε l

σ2
l|d

))

Φ
(
1
θ

(

s̄n+1 (l)− σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄n (l)− σ2
s

σ2
l

l
)) ,

(A-26)
where Ln denotes the information set {s− Cu = l, s ∈ Sn}. After the same steps as in the proof
of Theorem 2, i.e., solving the uninformed optimization problem and clearing the market, we
obtain a result identical to (A-7): Pn (l) must satisfy the following equation for all l:

0 = Bl − Pn (l)−
θ

κ

φ
(
1
θ [s̄n+1 (l) + ϑPn (l)− ξl]

)
− φ

(
1
θ [s̄n (l) + ϑPn (l)− ξl]

)

Φ
(
1
θ [s̄n+1 (l) + ϑPn (l)− ξl]

)
− Φ

(
1
θ [s̄n (l) + ϑPn (l)− ξl]

) , (A-27)
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where ϑ, κ and ξ are given in (A-8). After some algebra, we rewrite (A-27) as

− 1

θ
κρBl = (1 + ρ)

1

θ

[

− ω

1− ω
l + ϑPn (l)− ξl

]

(A-28)

+
φ
(
1
θ [s̄n+1 (l) + ϑPn (l)− ξl]

)
− φ

(
1
θ [s̄n (l) + ϑPn (l)− ξl]

)

Φ
(
1
θ [s̄n+1 (l) + ϑPn (l)− ξl]

)
− Φ

(
1
θ [s̄n (l) + ϑPn (l)− ξl]

) .

From the definition of s̄n (l) notice that the term 1
θ

[

− ω
1−ω l + ϑPn (l)− ξl

]

and the arguments

of φ (.) and Φ (.) on the RHS of (A-28) only differ in additive constants, prompting the notation

K (l) =
1

θ

[

− ω

1− ω
l + ϑPn (l)− ξl

]

+
1

2θ

Dn +Dn+1

(1− ω)βs
and M =

1

2θ

Dn+1 −Dn

(1− ω)βs
,

which, due to (A-8), simplify to

K (l) =
1

θ
[−κBl + ϑPn (l)] +

κ− ϑ

θ

Dn +Dn+1

2
and M =

κ− ϑ

θ

Dn+1 −Dn

2
> 0. (A-29)

Applying (A-8), the definition of ρ, and (A-29), after some algebra (A-28) becomes

−κρ

θ

(

Bl − Dn+1 +Dn

2

)

= (1 + ρ)K (l) +
φ (K (l) +M)− φ (K (l)−M)

Φ (K (l) +M)− Φ (K (l)−M)
= Ωρ (K (l)) ,

(A-30)
where the last equality follows from the definition of Ωρ (x) in (A-2). Part (ii) of Lemma 6
states that Ωρ is an increasing function that takes all real values if ρ > 0, hence, we can apply
its inverse on both sides of (A-30) to obtain

Ω−1
ρ

(

−κρ

θ

(

Bl − Dn+1 +Dn

2

))

= K(l) .

Combining the last equation with (A-29), after some algebra and using the notation (A-21),
we get

Pn (l) = (1 + ρ)Bl − ρ
Dn +Dn+1

2
+ ζΩ−1

ρ

(

−λ

(

Bl − Dn+1 +Dn

2

))

(A-31)

as a closed-form expression for Pn (l).

For the monotonicity of Pn, we differentiate (A-31) and simplify, which yields

P ′
n (l) = (1 + ρ)B



1− ρ

Ω′
ρ

(

Ω−1
ρ

(

−κρ
θ

(

Bl − Dn+1+Dn

2

)))



 .

But part (ii) of Lemma 6 states that Ω′
ρ (x) > ρ for all x ∈ R, which implies P ′

n (l) > 0 for all
l ∈ R, i.e., Pn is an increasing function.

Next we rearrange (A-30) as

−κ− ϑ

θ

(

Pn (l)−
Dn +Dn+1

2

)

= K(l) +
φ (K (l) +M)− φ (K (l)−M)

Φ (K (l) +M)− Φ (K (l)−M)
= Ω0 (K (l)) .

(A-32)
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Part (ii) of Lemma 6 states that −M < Ω0 (x) < M for all x ∈ R, hence,from (A-29) and
(A-32), we can write

−M < −κ− ϑ

θ

(

Pn (l)−
Dn +Dn+1

2

)

< M .

After some algebra, this is equivalent to Dn < Pn (l) < Dn+1. As long as Dn+1 is finite, Pn is
bounded from above, but it is also increasing, which implies liml→∞ Pn (l) exists and is finite
(at most Dn+1). But then from (A-29) it must be liml→∞K (l) = −∞. Rearranging (A-32) as

Pn (l) =
Dn +Dn+1

2
− θ

κ− ϑ
Ω0 (K (l)) ,

taking the limit l → ∞ of both sides, and using part (i) of Lemma 6, we end up with

lim
l→∞

Pn (l) =
Dn +Dn+1

2
− θ

κ− ϑ
lim
l→∞

Ω0 (K (l)) =
Dn +Dn+1

2
− θ

κ− ϑ
(−M) = Dn+1.

Similarly, we can show that liml→−∞ Pn (l) = Dn, which concludes the proof of Theorem 3.

Proof of Theorem 4. The first part of the theorem is straightforward: from the equilibrium
form s̄n (l) = Dn−ωβsl

(1−ω)βs
it is imminent that s̄n+1 (l) − s̄n (l) = Dn+1−Dn

(1−ω)βs
. Therefore, for any

ǫ > 0 choosing a partition in which Dn+1 − Dn < (1− ω)βsǫ for all n ∈ Z will imply that
∆s = supn [s̄n+1 (l)− s̄n (l)] < ǫ.

For the second part of the theorem, to express the conditional variance V ar [d|p], which
is equivalent to V ar [d|Ln] = V ar [d|l, s ∈ Sn] when Dn < p = Pn (l) < Dn+1, we need to do
calculations similar to those in the proof of Proposition 2. As

V ar [d|Ln] = E
[
d2|Ln

]
− E2 [d|Ln] , (A-33)

we first need to determine the expectations. From (A-26), we can write

E [d|Ln] =

∞∫

−∞

dfd|Ln
(d|Ln) dd =

∞∫

−∞
d 1
σd|l

φ
(

1
σd|l

(d− βll)
)

Φ

(

− σl|s

σl|dσε

(

d− σ2
l|d

s̄n+1−σ2
ε l

σ2
l|s

))

dd

Φ
(
1
θ

(

s̄n+1 − σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄n − σ2
s

σ2
l

l
))

−

∞∫

−∞
d 1
σd|l

φ
(

1
σd|l

(d− βll)
)

Φ

(

− σl|s

σl|dσε

(

d− σ2
l|d

s̄n−σ2
ε l

σ2
l|s

))

dd

Φ
(
1
θ

(

s̄n+1 − σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄n − σ2
s

σ2
l

l
)) .

To express the two integrals in closed form, we use Lemma 9 for

X =
1

σd|l
, x = βll, Y = −

σl|s
σl|dσε

, and y =
σ2
l|ds̄n+1 − σ2

ε l

σ2
l|s

(A-34)

and

X =
1

σd|l
, x = βll, Y = −

σl|s
σl|dσε

, and y =
σ2
l|ds̄n − σ2

ε l

σ2
l|s

, (A-35)
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respectively. After rearranging the result, we obtain

E [d|Ln] = βll −
√

σ2
d|l − σ2

d|l

φ
(
1
θ

(

s̄n+1 − σ2
s

σ2
l

l
))

− φ
(
1
θ

(

s̄n − σ2
s

σ2
l

l
))

Φ
(
1
θ

(

s̄n+1 − σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄n − σ2
s

σ2
l

l
)) . (A-36)

Similarly, we express the expectation of the squared payoff:

E
[
d2|Ln

]
=

∞∫

−∞

d2fd|Ln
(d|Ln) dd =

∞∫

−∞
d2 1

σd|l
φ
(

1
σd|l

(d− βll)
)

Φ

(

− σl|s

σl|dσε

(

d− σ2
l|d

s̄n+1−σ2
ε l

σ2
l|s

))

dd

Φ
(
1
θ

(

s̄n+1 − σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄n − σ2
s

σ2
l

l
))

−

∞∫

−∞
d2 1

σd|l
φ
(

1
σd|l

(d− βll)
)

Φ

(

− σl|s

σl|dσε

(

d− σ2
l|d

s̄n−σ2
ε l

σ2
l|s

))

dd

Φ
(
1
θ

(

s̄n+1 − σ2
s

σ2
l

l
))

− Φ
(
1
θ

(

s̄n − σ2
s

σ2
l

l
)) ,

and to express the two integrals in closed form, we use Lemma 10 for (A-34) and (A-35), respec-
tively. Substituting the expression we obtain this way into (A-33), using (A-36), rearranging,
and using the simplifying notation

Π (l) =
1

2

[
1

θ

(

s̄n+1 −
σ2
s

σ2
l

l

)

+
1

θ

(

s̄n − σ2
s

σ2
l

l

)]

= −1

θ

(
ω

1− ω
+

σ2
s

σ2
l

)

l +
κ− ϑ

θ

Dn+1 +Dn

2

and

M =
1

2

[
1

θ

(

s̄n+1 −
σ2
s

σ2
l

l

)

− 1

θ

(

s̄n − σ2
s

σ2
l

l

)]

=
κ− ϑ

θ

Dn+1 −Dn

2
,

where M is the same as in (A-29), we obtain

V ar [d|l, s ∈ Sn] = σ2
d|l −

(

σ2
d|l − σ2

d|s

) (Π (l) +M)φ (Π (l) +M)− (Π (l)−M)φ (Π (l)−M)

Φ (Π (l) +M)− Φ (Π (l)−M)

−
(

σ2
d|l − σ2

d|s

)( φ (Π (l) +M)− φ (Π (l)−M)

Φ (Π (l) +M)− Φ (Π (l)−M)

)2

= σ2
d|s +

(

σ2
d|l − σ2

d|s

)

Ω′
0 (Π (l)) ,

(A-37)

where the second equality recognizes the derivative of Ω0 (x); see, e.g., (OA-6). Since part
(ii) of Lemma 6 states that Ω′

0 (x) < M2 for all x ∈ R, (A-37) implies V ar [d|l, s ∈ Sn] <

σ2
d|s +

(

σ2
d|l − σ2

d|s

)

M2 for all l ∈ R, and thus we have obtained that

V ar [d|p]− σ2
d|s <

(

σ2
d|l − σ2

d|s

)

M2 =
1

4

(

σ2
d|l − σ2

d|s

)(κ− ϑ

θ

)2

(Dn+1 −Dn)
2

for all prices Dn < p < Dn+1. But then for any δ > 0 choosing a partition of the state space
that satisfies

Dn+1 −Dn ≤ 2

κ−ϑ
θ

√

σ2
d|l − σ2

d|s

√
δ

for all n ∈ Z will provide an equilibrium in which ∆V ar = supp V ar [d|p] − σ2
d|s < δ, i.e.,

the uncertainty that uninformed traders face is only δ larger than the uncertainty of informed
traders. This completes the proof of Theorem 4.
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Proof of Theorems 5 and 6. We follow the same steps as in the GS case.

Posterior distribution. In the standard differential information model (Hellwig (1980), Dia-
mond and Verrecchia (1981), Admati (1985)), agent i has prior d ∼ N

(
0, σ2

d

)
, observes the

private signal si = d + εi, εi ∼ N
(
0, σ2

ε

)
, and infers another piece of information from the

price in the form of the linear combination l = d − Gu, where u ∼ N
(
0, σ2

u

)
and G ∈ R+.

Standard Bayesian updating then implies that the posterior distribution is d|si,d−Gu=l ∼
N
(

γssi + γll, σ
2
d|s,l

)

with

γs =
σ2
dG

2σ2
u

σ2
dG

2σ2
u + σ2

dσ
2
ε + σ2

εG
2σ2

u

, γl =
σ2
dσ

2
ε

σ2
dG

2σ2
u + σ2

dσ
2
ε + σ2

εG
2σ2

u

, and σ2
d|s,l = γsσ

2
ε ;

that is, the posterior pdf is

fd|si,d−Gu (d|si, l) =
1

σd|s,l
φ

(
d− (γssi + γll)

σd|s,l

)

.

Suppose now that besides the linear combination l, agent i also learns that d ∈ D ≡
(
d̄1, d̄2

)

for d̄1, d̄2 ∈ R∪{−∞,∞} and d̄1 < d̄2. Since the priors on d, εi and u are normal, the posterior
distribution conditional on all the information available to agent i is a generalization of the
truncated normal distribution, and it is easy to show that has pdf

fd|Li
(d|Li) = 1d∈D

1

σd|s,l

φ
(
d−(γssi+γll)

σd|s,l

)

Φ
(
d̄2i−(γssi+γll)

σd|s,l

)

− Φ
(
d̄2i−1−(γssi+γll)

σd|s,l

) , (A-38)

where we introduce the simplifying notation Li for the information set {si, d−Gu = l, d ∈ D}.
Notice that if we fix l and pick d̄1 = −∞ and d̄2 = ∞ , agent i’s belief becomes d|st,l ∼
N
(

γssi + γll, σ
2
d|s,l

)

, i.e., the posterior belief in the standard linear equilibrium. Naturally,

the formula above (and thus the results below) would still hold if we had a closed or a half-
open-half-closed interval instead of an open one. Moreover, (A-38) can easily be extended to
the case when D is a disjoint union of a countable number of intervals instead of only one.

Optimization problems. Next, we solve the optimization problem

max
x

E [− exp (−α (d− p)x) |Li] . (A-39)

From (A-38), after some algebra we show that the optimization problem (A-39) is equivalent
to

max
x

− exp

{

−α

[

(γssi + γll − p)x− 1

2
ασ2

d|s,lx
2

]}

×

×
[

Φ

(
1

σd|s,l

[

d̄2 −
(

γssi + γll − ασ2
d|s,lx

)])

− Φ

(
1

σd|s,l

[

d̄1 −
(

(γssi + γll)− ασ2
d|s,lx

)])]

,

where the first component is the usual term that illustrates the CARA-normal optimization
problem is equivalent to a mean-variance problem, and the second term adjusts the maximand
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with the ’truncated’ belief. After deriving and rearranging the FOC, we obtain the inverse
demand function of agent i:

0 = γssi + γll − p− ασ2
d|s,lxi − σd|s,l

φ

(

d̄2−
(

γssi+γll−ασ2
d|s,l

xi

)

σd|s,l

)

− φ

(

d̄1−
(

γssi+γll−ασ2
d|s,l

xi

)

σd|s,l

)

Φ

(

d̄2−
(

γssi+γll−ασ2
d|s,l

xi

)

σd|s,l

)

− Φ

(

d̄1−
(

γssi+γll−ασ2
d|s,l

xi

)

σd|s,l

) .

(A-40)

Optimal demand and equilibrium price in the linear equilibrium. In the standard linear equilib-
rium where agents only learn the linear combination l from the market price we have d̄1 = −∞
and d̄2 = ∞. Substituting these values into (A-40) and rearranging, we obtain that agent i’s
optimal demand curve is

xi =
γssi + γll − p

ασ2
d|s,l

.

Imposing market clearing, we get

u =

∫

xi (si, p) di =

∫
γssi + γll − p

ασ2
d|s,l

di =
γsd+ γll − p

ασ2
d|s,l

,

that is

p = γs

(

d−
ασ2

d|s,l
γs

u

)

+ γll. (A-41)

Thus, the equilibrium price only depends on d and u through l = d−Gu iff G = ασ2
d|s,l/γs =

ασ2
ε . Substituting it back into (A-41) we obtain p = (γs + γl) l, which yields the F given in

Theorem 5 and concludes its proof.

Optimal demand curves with half-lines. Next we rewrite ( A-40) and express optimal demand
curves in the two special cases when all agents learn the same additional information about d
in the form of either d < d̄ or d ≥ d̄. On the ’lower half-line’ when d̄1 = −∞ and d̄2 = d̄, i.e.
the information set of agent i is given by Li,− =

{
si, d− Cu = l, d < d̄

}
, (A-40) simplifies to

0 = γssi + γll − p− ασ2
d|s,lxi − σd|s,l

φ
(

1
σd|s,l

[

d̄−
(

γssi + γll − ασ2
d|s,lxi

)])

Φ
(

1
σd|s,l

[

d̄−
(

γssi + γll − ασ2
d|s,lxi

)]) .

After rearranging this equation, we obtain

d̄− p

σd|s,l
= Ψ0

(
1

σd|s,l

[

d̄−
(

γssi + γll − ασ2
d|s,lxi

)])

, (A-42)

where Ψ0 (.) is the strictly increasing function defined in Lemma 5, which is invertible as long
as d̄− p is positive; we conjecture that this is the case, and verify later. Applying Ψ−1

0 to both
sides of (A-42) and rearranging, we obtain that agent i’s optimal demand function under the
information set Li,− is given by

xi,− (si, p) =
γssi + γll − d̄+ σd|s,lΨ

−1
0

(
d̄−p
σd|s,l

)

ασ2
d|s,l

. (A-43)
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Similarly, suppose now that all agents learn that d is from an ’upper half-line’, d̄1 = d̄ and
d̄2 = ∞, i.e. the information set of agent i is given by Li,+ =

{
si, d− Cu = l, d ≥ d̄

}
. Equation

(A-40) in this case becomes

0 = γssi + γll − p− ασ2
d|s,lxi + σd|s,l

φ
(

− 1
σd|s,l

[

d̄−
(

γssi + γll − ασ2
d|s,lxi

)])

Φ
(

− 1
σd|s,l

[

d̄−
(

γssi + γll − ασ2
d|s,lxi

)]) ,

which is equivalent to

− d̄− p

σd|s,l
= Ψ0

(

− 1

σd|s,l

[

d̄−
(

γssi + γll − ασ2
d|s,lxi

)])

. (A-44)

Applying Ψ−1
0 to both sides of (A-44) and rearranging, we obtain that agent i’s optimal demand

function under the information set Li,+ is given by

xi,+ (si, p) =
γssi + γll − d̄− σd|s,lΨ

−1
0

(

− d̄−p
σd|s,l

)

ασ2
d|s,l

. (A-45)

Market clearing and equilibrium prices. Note that the optimal demand curves (A-43) and
(A-45) depend linearly on the private signals si, and that the argument of Ψ−1

0 is common
across all agents, as we assumed they all share the same belief about the truncation d < d̄
or d ≥ d̄. The exact law of large numbers hence implies that aggregating individual demands
works the same way as in the linear case. Moreover, it illustrates that our example would also
work in a version of the model with a finite number of agents; in that case both the usual
linear and our discontinuous equilibrium price function reveals a noisy version of the average
private signal of investors instead of a noisy version of the payoff d; see, e.g., Hellwig (1980).

In particular, suppose we are on a lower half-line. Using the optimal demand curves (A-43),
the market-clearing condition (16) becomes

u =

∫

xi,− (si, p) di =

∫ γssi + γll − d̄+ σd|s,lΨ
−1
0

(
d̄−p
σd|s,l

)

ασ2
d|s,l

di =
γsd+ γll − d̄+ σd|s,lΨ

−1
0

(
d̄−p
σd|s,l

)

ασ2
d|s,l

.

Rearranging, applying Ψ0 to both sides of the equation, then further rearranging, we obtain
the equilibrium price function

P− (l) = d̄ (l)− σd|s,lΨ0

(
d̄ (l)− (γs + γl) l

σd|s,l

)

. (A-46)

Note that we needed d̄ − p > 0 for (A-42) to be invertible, but as Ψ0 (x) > 0 for all x ∈ R,
prices on lower half-lines are always below the cut d̄.

Similarly, suppose we are on an upper half-line. From the optimal demand curves (A-45),
(16) becomes

u =

∫

xi,+ (si, p) di =
γsd+ γll − d̄− σd|s,lΨ

−1
0

(

− d̄−p
σd|s,l

)

ασ2
d|s,l

.
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Rearranging, we obtain the equilibrium price function

P+ (l) = d̄ (l) + σd|s,lΨ0

(

− d̄ (l)− (γs + γl) l

σd|s,l

)

. (A-47)

We needed d̄ − p < 0 for (A-44) to be invertible, but as Ψ0 (x) > 0 for all x ∈ R, prices on
upper half-lines are always above the cut d̄.

Equilibrium with a linear cut. Finally, we want to choose d̄ such that the prices obtained in
(A-46) and (A-47) correspond to a valid price function, i.e., it is a bijection between the price
values and the level sets of P .

We claim that a vertical linear cut of the plane d̄ (l) = J into two halves works well for any
J ∈ R. With detailed calculations following those of the GS case, we can show that these are
the only linear cuts that provide valid equilibrium price functions. However, for brevity, we
omit these calculations.

Substituting d̄ (l) = J and F = γs + γl into (A-46) and (A-47) we obtain

P− (l) = J − σd|s,lΨ0

(
J − Fl

σd|s,l

)

and P+ (l) = J + σd|s,lΨ0

(

−J − Fl

σd|s,l

)

, (A-48)

which is the same as (17) due to χ = σd|s,l. To show that these provide a valid price function

P (d, u) =

{
P− (d−Gu) if d < J
P+ (d−Gu) if d ≥ J ,

we need to show that P− and P+ are both invertible functions, and that their images are
disjoint.

Differentiating P− and P+ in (A-48), we get

P ′
− (l) = FΨ′

0

(
J − Fl

χ

)

and P ′
+ (l) = FΨ′

0

(

−J − Fl

χ

)

.

But Lemma 5 implies Ψ′
0 (x) > 0 for all x ∈ R, therefore, P− (l) and P+ (l) are both increasing

and thus invertible functions. Moreover, as Ψ0 (x) > 0 for all x ∈ R, P− (l) < J < P+ (l) for
all x ∈ R and hence their images are disjoint. Finally, using Lemma 5 we also have

lim
l→∞

P− (l) = J − χ lim
l→∞

Ψ0

(
J − Fl

χ

)

= J − χ lim
x→−∞

Ψ0 (x) = J and

lim
l→−∞

P+ (l) = J + χ lim
l→−∞

Ψ0

(

−J − Fl

χ

)

= J + χ lim
x→−∞

Ψ0 (x) = J .

We conclude that the equilibrium price as a function of l qualitatively looks the same as our
leading example for a discontinuous equilibrium price function of the GS model. This concludes
the proof of Theorem 6.
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Online Appendix to “Multiple Equilibria in Noisy

Rational Expectations Economies”

This online appendix contains the proofs of lemmas stated in Appendix A, useful closed
forms for certain integral expressions, and the proofs of Propositions 1-5. For tractability, we
restate the original lemmas, too. The functions φ (.) and Φ (.) denote the pdf and cdf of the
standard normal distribution, respectvely.

Appendix OA-1 Useful function properties

Lemma 4. The function

Ψ−1 (x) =
φ (x)

Φ (x)
(OA-1)

has the following three sets of properties:

(i) Ψ−1 (x) > 0 ∀x ∈ R, and its limits are limx→−∞Ψ−1 (x) = ∞ and limx→∞Ψ−1 (x) = 0.

(ii) Ψ−1 (x) is decreasing; its slope satisfies −1 < Ψ′
−1 (x) < 0 for all x ∈ R with limits

limx→−∞Ψ′
−1 (x) = −1 and limx→∞Ψ′

−1 (x) = 0, and Ψ′
−1 increases monotonically in between.

(iii) Ψ−1 (x) is convex: Ψ′′
−1 (x) > 0 for all x ∈ R.

Proof. Ψ−1 is closely related to the so-called inverse Mills ratio or hazard function of the
standard normal distribution, widely used in econometric analysis with truncated distributions
(see, e.g., Greene (2003)). In particular, the inverse Mills ratio is given by φ (x) / [1− Φ (x)] =
Ψ−1 (−x), and thus some parts of (i)-(iii) follow directly from certain properties of the inverse
Mills ratio. We nevertheless provide some proofs that are useful for later parts of the appendix.

Throughout the proof we make repeated use of the fact that the first derivatives of φ (x)
and φ2 (x) are given by

φ′ (x) = −xφ (x) and
(
φ2 (x)

)′
= −2xφ2 (x) .

(i) The first part of the statement holds because φ (x) ,Φ (x) > 0 for all x ∈ R. The third
part of the statement follows from limx→∞ φ (x) = 0 and limx→∞Φ (x) = 1. Regarding the
middle part of the statement, limx→−∞ φ (x) = limx→−∞Φ (x) = 0, hence we use l’Hôpital’s
rule to obtain

lim
x→−∞

φ (x)

Φ (x)
= lim

x→−∞
φ′ (x)
Φ′ (x)

= lim
x→−∞

−xφ (x)

φ (x)
= lim

x→−∞
(−x) = ∞.

(ii) First, differentiating Ψ−1 we have

Ψ′
−1 (x) = −φ (x) [φ (x) + xΦ (x)]

Φ2 (x)
= −Ψ−1 (x) [x+Ψ−1 (x)] . (OA-2)

We start with the limits: The second limit result of (ii) follows from limx→∞Φ (x) = 1,
limx→∞ φ (x) = 0, and limx→∞ xφ (x) = 0. On the other hand, when x → −∞, both the
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numerator and the denominator of (OA-2) converge to zero, hence with the repeated use of
l’Hôpital’s rule we obtain

lim
x→−∞

φ (x) [φ (x) + xΦ (x)]

Φ2 (x)
= lim

x→−∞
−x [φ (x) + xΦ (x)] + Φ (x)

2Φ (x)
= lim

x→−∞
−xΦ (x)

φ (x)
(OA-3)

= lim
x→−∞

−xφ (x)− Φ (x)

−xφ (x)
= lim

x→−∞

(
x2 − 2

)
φ (x)

(x2 − 1)φ (x)
= lim

x→−∞
x2 − 2

x2 − 1
= 1,

Finally, −1 < Ψ′
−1 (x) < 0 ∀x ∈ R will follow from the combination of the limits and the

convexity of Ψ−1: then Ψ′
−1 is monotone increasing on R, hence it is bounded from above and

below by its values at x → ±∞.

(iii) Convexity of Ψ−1 (x) is equivalent to the convexity of Ψ−1 (−x) = φ (x) / [1− Φ (x)],
which is the inverse Mills ratio of the standard normal distribution. Since its convexity is
proven in Sampford (1953), we omit it here.

Lemma 5. Suppose ρ ≥ 0 constant. The function

Ψρ (x) = (1 + ρ)x+
φ (x)

Φ (x)

has the following properties:

(i) If ρ = 0, Ψ0 (x) > 0 for all x ∈ R, and its limits are limx→−∞Ψ0 (x) = 0 and
limx→∞Ψ0 (x) = ∞. If ρ > 0, Ψρ (x) takes every real value and its limits are limx→−∞Ψρ (x) =
−∞ and limx→∞Ψρ (x) = ∞.

(ii) Ψρ (x) is increasing; its slope satisfies ρ < Ψ′
ρ (x) < 1 + ρ for all x ∈ R with limits

limx→−∞Ψ′
ρ (x) = ρ and limx→∞Ψ′

ρ (x) = 1 + ρ, and Ψ′
ρ increases monotonically in between.

(iii) Ψρ (x) is convex: Ψ′′
ρ (x) > 0 for all x ∈ R.

Proof. We first prove everything for the case ρ = 0.

(i) First, notice that Ψ0 (x) = x+Ψ−1 (x) =
φ(x)+xΦ(x)

Φ(x) . It can be shown that

lim
x→−∞

[φ (x) + xΦ (x)] = 0 and lim
x→∞

[φ (x) + xΦ (x)] = ∞,

moreover,
d

dx
[φ (x) + xΦ (x)] = Φ (x) > 0,

hence φ (x) + xΦ (x) is positive and diverges to infinity. This implies Ψ0 (x) > 0 and the limit
when x → ∞. For the other limit, limx→−∞Φ (x) = limx→−∞ [φ (x) + xΦ (x)] = 0, so using
l’Hoŝpital’s rule twice we obtain

lim
x→−∞

φ (x) + xΦ (x)

Φ (x)
= lim

x→−∞
Φ (x)

φ (x)
= lim

x→−∞
φ (x)

−xφ (x)
= lim

x→−∞

(

−1

x

)

= 0.

(ii)-(iii) Differentiating Ψ0 we obtain Ψ′
0 (x) = 1 + Ψ′

−1 (x) and Ψ′′
0 (x) = Ψ′′

−1 (x), so the
statements on the limits of Ψ′

0 and the convexity of Ψ0 follow from (ii) and (iii) of Lemma 4,
respectively.
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Finally, the rest of the results for ρ > 0 follow from changing the function values by ρx,
which increases the slope everywhere by ρ while not affecting convexity.

Lemma 6. Suppose ρ ≥ 0 and M > 0 constants. The function

Ωρ (x) = (1 + ρ)x+
φ (x+M)− φ (x−M)

Φ (x+M)− Φ (x−M)
(OA-4)

has the following properties:

(i) If ρ = 0, Ω0 has limits limx→−∞Ω0 (x) = −M and limx→∞Ω0 (x) = −M . If ρ > 0,
Ωρ (x) takes every real value and its limits are limx→−∞Ωρ (x) = −∞ and limx→∞Ωρ (x) = ∞.

(ii) Ωρ (x) is always increasing, and its slope satisfies ρ < Ω′
ρ (x) < ρ+M2 for all x ∈ R.

Proof. We first prove everything for the case ρ = 0.

(i) We start by writing

lim
x→∞

Ω0 (x) = lim
x→∞

x [Φ (x+M)− Φ (x−M)] + φ (x+M)− φ (x−M)

Φ (x+M)− Φ (x−M)

= lim
x→∞

Φ (x+M)− Φ (x−M)−Mφ (x+M)−M (x−M)φ (x−M)

φ (x+M)− φ (x−M)

= lim
x→∞

Φ (x+M)− Φ (x−M)

φ (x+M)− φ (x−M)
−M lim

x→∞
φ (x+M) + φ (x−M)

φ (x+M)− φ (x−M)
,

where the first equality is simple algebra, in the second equality we use l’Hôpital’s rule because
both the numerator and the denominator converge to zero and then simplify the numerator,
and the third equality holds as long as the two limits are not both ∞ or both −∞ at the same
time, which we confirm shortly. Starting with the first term, we write

lim
x→∞

Φ (x+M)− Φ (x−M)

φ (x+M)− φ (x−M)
= lim

x→∞
φ (x+M)− φ (x−M)

− (x+M)φ (x+M) + (x−M)φ (x−M)

= lim
x→∞

exp {−2Mx} − 1

− (x+M) exp {−2Mx}+ (x−M)
= lim

x→∞
−1

(x−M)
= 0,

where in the first step we use l’Hospital’s rule, then we divide each term by φ (x−M) and use

φ (x+M)

φ (x−M)
= exp

{

(x−M)2

2
− (x+M)2

2

}

= exp {−2Mx} , (OA-5)

finally we apply limx→∞ exp {−2Mx} = limx→∞ x exp {−2Mx} = 0 because M > 0. On the
other hand, we have

lim
x→∞

φ (x+M) + φ (x−M)

φ (x+M)− φ (x−M)
= lim

x→∞
exp {−2Mx}+ 1

exp {−2Mx} − 1
= lim

x→∞
1

−1
= −1,

where in the first step we divide each term by φ (x−M) and use (OA-5), in the second step we
use limx→∞ exp {−2Mx} = 0. Therefore, limx→∞Ω0 (x) = M . Finally, it is easy to confirm
that Ω0 is an odd function, Ω0 (−x) = −Ω0 (x), which implies limx→−∞Ω0 (x) = −M .
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(ii) Differentiating Ω0 (x) we obtain

Ω′
0 (x) = 1− (x+M)φ (x+M)− (x−M)φ (x−M)

Φ (x+M)− Φ (x−M)
−
(
φ (x+M)− φ (x−M)

Φ (x+M)− Φ (x−M)

)2

,

(OA-6)
but it is well-known that the expression on the RHS is the variance of a truncated standard
normal distribution, i.e. Ω′

0 (x) = V ar [Y |x−M < Y < x+M ] where Y ∼ N (0, 1). Since the
variance of a random variable is always positive, Ω0 must be an increasing function, Ω′

0 (x) > 0.

For the other side of the inequality, we rewrite (OA-6) as

Ω′
0 (x) = 1−(x+M)φ (x+M)− (x−M)φ (x−M)

Φ (x+M)− Φ (x−M)
+x2+2x

φ (x+M)− φ (x−M)

Φ (x+M)− Φ (x−M)
−Ω2

0 (x) .

(OA-7)
The last term is Ω2

0 (x), and hence ≥ 0 always. On the other hand, using φ′ (x) = −xφ (x) and
d(xφ(x))

dx =
(
1− x2

)
φ (x), we can write

Φ (x+M)− Φ (x−M) =

x+M∫

x−M

φ (z) dz, φ (x+M)− φ (x−M) =

x+M∫

x−M

(−z)φ (z) dz, and

(x+M)φ (x+M)− (x−M)φ (x−M) =

x+M∫

x−M

(
1− z2

)
φ (z) dz.

Using these identities and collecting terms, the non-Ω2
0 (x) terms of (OA-7) simplify to

1− (x+M)φ (x+M)− (x−M)φ (x−M)

Φ (x+M)− Φ (x−M)
+ x2 + 2x

φ (x+M)− φ (x−M)

Φ (x+M)− Φ (x−M)
=

=

x+M∫

x−M

φ (z) dz −
x+M∫

x−M

(
1− z2

)
φ (z) dz + x2

x+M∫

x−M

φ (z) dz + 2x
x+M∫

x−M

(−z)φ (z) dz

Φ (x+M)− Φ (x−M)

=

x+M∫

x−M

[
1−

(
1− z2

)
+ x2 − 2xz

]
φ (z) dz

Φ (x+M)− Φ (x−M)
=

x+M∫

x−M

(z − x)2 φ (z) dz

Φ (x+M)− Φ (x−M)
.

But for all x−M < z < x+M we have (z − x)2 < M , therefore

x+M∫

x−M

(z − x)2 φ (z) dz

Φ (x+M)− Φ (x−M)
<

M2
x+M∫

x−M

φ (z) dz

Φ (x+M)− Φ (x−M)
= M2.

From here, (OA-7) yields Ω′
0 (x) < M2 − Ω2

0 (x) < M2.

Finally, the results for ρ > 0 follow from changing the function values by ρx, which diverges
when x → ±∞, and increasing the slope everywhere by ρ.

Lemma 7. The function
̥ (x) = −

[
Ψ−1

ρ (x) + Ψ−1
ρ (−x)

]
(OA-8)

is positive, convex, and even, it reaches its minimum at zero, and diverges to ∞ for x → ±∞.

4



Proof. It is imminent from the definition that ̥ (x) is an even function, i.e. ̥ (x) = ̥ (−x).
Moreover, Ψρ (x) is convex from Lemma 5, therefore Ψ−1

ρ is concave, and ̥ is also convex.
Since ̥ is both symmetric with respect to the vertical axis and convex, it reaches its minimum
at zero. Let us denote the unique root of Ψρ by x̄, i.e. for which Ψρ (x̄) = 0; it is easy to see from
the definition of Ψρ that x̄ < 0. Therefore, the minimum of ̥ is ̥ (0) = −2Ψ−1

ρ (0) = −2x̄ > 0.
Finally, symmetry and convexity, together with the fact that ̥’s domain is the whole R, imply
that ̥ is increasing on R+ and hence diverges: limx→∞̥ (x) = ∞. Symmetry then also
implies limx→−∞̥ (x) = ∞.

Appendix OA-2 Useful integrals

Lemma 8. If X,Y, x, y ∈ R are constants, we have

∞∫

−∞

Xφ (X (t− x)) Φ (Y (t− y)) dt = Φ

(
XY√

X2 + Y 2
(x− y)

)

. (OA-9)

Proof. We write the LHS of (OA-9) as

∞∫

−∞

Xφ (X (t− x)) Φ (Y (t− y)) dt =

∞∫

−∞

Xφ (X (t− x))

0∫

−∞

Y φ (Y (w + t− y)) dwdt

=

0∫

−∞

∞∫

−∞

Xφ (X (t− x))Y φ (Y (t− (y − w))) dtdw

=

0∫

−∞

XY φ

(
XY√

X2 + Y 2
[w − (y − x)]

) ∞∫

−∞

φ

(
√

X2 + Y 2

[

t− X2x+ Y 2 (y − w)

X2 + Y 2

])

dtdw

=

0∫

−∞

XY√
X2 + Y 2

φ

(
XY√

X2 + Y 2
[w − (y − x)]

)

dw = Φ

(
XY√

X2 + Y 2
(x− y)

)

,

where the first equality is due to Φ (z) =
∫ 0
−∞ φ (Y (w + z)) dw, the second uses Fubini to

change the order of integration, the third collects the t terms, the fourth recognizes that
the inner integral equals 1/

√
X2 + Y 2, and the fifth performs the integral. This confirms

(OA-9).

Lemma 9. If X,Y, x, y ∈ R are constants, we have

∞∫

−∞

tXφ (X (t− x)) Φ (Y (t− y)) dt (OA-10)

= xΦ

(
XY√

X2 + Y 2
(x− y)

)

+
1

X2

XY√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

.
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Proof. We first rewrite the LHS of (OA-10) as

∞∫

−∞

tXφ (X (t− x)) Φ (Y (t− y)) dt = x

∞∫

−∞

Xφ (X (t− x)) Φ (Y (t− y)) dt (OA-11)

− 1

X

∞∫

−∞

[
−X2 (t− x)

]
φ (X (t− x)) Φ (Y (t− y)) dt.

Observing the second term of the RHS, we can write

∞∫

−∞

f ′

︷ ︸︸ ︷
[
−X2 (t− x)

]
φ (X (t− x))

g
︷ ︸︸ ︷

Φ (Y (t− y)) dt

= [φ (X (t− x)) Φ (Y (t− y))]∞−∞ −
∞∫

−∞

f
︷ ︸︸ ︷

φ (X (t− x))

g′
︷ ︸︸ ︷

Y φ (Y (t− y)) dt

= −Y

∞∫

−∞

φ (X (t− x))φ (Y (t− y)) dt

= − Y√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

) ∞∫

−∞

√

X2 + Y 2φ

(
√

X2 + Y 2

(

t− X2x+ Y 2y

X2 + Y 2

))

dt

= − Y√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

.

where the first equality is due to integration by parts, the second uses that Φ (Y (t− y)) is
bounded and limt→±∞ φ (X (t− x)) = 0 hence the [.]∞−∞ term is zero, the third collects all t
terms, and the fourth recognizes that the remaining integral equals 1. Returning to (OA-11),
we thus have

∞∫

−∞

tXφ (X (t− x)) Φ (Y (t− y)) dt

= x

∞∫

−∞

Xφ (X (t− x)) Φ (Y (t− y)) dt+
1

X

Y√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

= xΦ

(
XY√

X2 + Y 2
(x− y)

)

+
1

X2

XY√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

where the second equality uses (OA-9). This yields (OA-10).

Lemma 10. If X,Y, x, y ∈ R are constants, we have

∞∫

−∞

t2Xφ (X (t− x)) Φ (Y (t− y)) dt =

(

x2 +
1

X2

)

Φ

(
XY√

X2 + Y 2
(x− y)

)

(OA-12)

+

(

x+
X2x+ Y 2y

X2 + Y 2

)
1

X2

XY√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

.
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Proof. We start by decomposing the LHS of (OA-12) as

∞∫

−∞

t2Xφ (X (t− x)) Φ (Y (t− y)) dt = x

∞∫

−∞

tXφ (X (t− x)) Φ (Y (t− y)) dt (OA-13)

+

∞∫

−∞

(t− x) tXφ (X (t− x)) Φ (Y (t− y)) dt.

We first rewrite the second term of the RHS as

∞∫

−∞

(t− x) tXφ (X (t− x)) Φ (Y (t− y)) dt

= − 1

X

∞∫

−∞

f ′

︷ ︸︸ ︷
[
−X2 (t− x)

]
φ (X (t− x))

g
︷ ︸︸ ︷

tΦ (Y (t− y)) dt

= − 1

X




[φ (X (t− x)) tΦ (Y (t− y))]∞−∞ −

∞∫

−∞

f
︷ ︸︸ ︷

φ (X (t− x))

g′
︷ ︸︸ ︷

[Φ (Y (t− y)) + Y tφ (Y (t− y))] dt






=
1

X2

∞∫

−∞

Xφ (X (t− x)) Φ (Y (t− y)) dt+
Y

X

∞∫

−∞

tφ (X (t− x))φ (Y (t− y)) dt

=
1

X2
Φ

(
XY√

X2 + Y 2
(x− y)

)

+
Y

X

∞∫

−∞

tφ (X (t− x))φ (Y (t− y)) dt

=
1

X2
Φ

(
XY√

X2 + Y 2
(x− y)

)

+
Y

X

1√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

×

×
∞∫

−∞

t
√

X2 + Y 2φ

(
√

X2 + Y 2

(

t− X2x+ Y 2y

X2 + Y 2

))

dt

=
1

X2
Φ

(
XY√

X2 + Y 2
(x− y)

)

+
1

X2

XY√
X2 + Y 2

X2x+ Y 2y

X2 + Y 2
φ

(
XY√

X2 + Y 2
(x− y)

)

,

where the second equality is due to integration by parts, the third uses that the [.]∞−∞ term
is zero and decomposes the integral, the fourth uses (OA-9), the fifth collects the t terms in
the integral and brings the rest outside the integral, and the sixth recognizes that the integral

is the expected value of a normally distributed random variable with mean X2x+Y 2y
X2+Y 2 and thus

7



is equal to this term. On the other hand, the first term of (OA-13) follows from (OA-10).
Substituting these into (OA-13), we obtain

∞∫

−∞

t2Xφ (X (t− x)) Φ (Y (t− y)) dt

= xΦ

(
XY√

X2 + Y 2
(x− y)

)


x+
1

X2

XY√
X2 + Y 2

φ
(

XY√
X2+Y 2

(x− y)
)

Φ
(

XY√
X2+Y 2

(x− y)
)





+
1

X2
Φ

(
XY√

X2 + Y 2
(x− y)

)

+
1

X2

XY√
X2 + Y 2

X2x+ Y 2y

X2 + Y 2
φ

(
XY√

X2 + Y 2
(x− y)

)

,

which is equivalent to (OA-12).

Lemma 11. If X,Y, x, y ∈ R are constants, we have

∞∫

−∞

t3Xφ (X (t− x)) Φ (Y (t− y)) dt = x

(

x2 +
3

X2

)

Φ

(
XY√

X2 + Y 2
(x− y)

)

(OA-14)

+
1

X2

[

x

(

x+
X2x+ Y 2y

X2 + Y 2

)

+

(
X2x+ Y 2y

X2 + Y 2

)2

+
2

X2
+

1

X2 + Y 2

]

XY√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

.

Proof. We write

∞∫

−∞

t3Xφ (X (t− x)) Φ (Y (t− y)) dt = x

∞∫

−∞

t2Xφ (X (t− x)) Φ (Y (t− y)) dt

+

∞∫

−∞

t2 (t− x)Xφ (X (t− x)) Φ (Y (t− y)) dt,

where the first term, because of (OA-12), becomes

x

∞∫

−∞

t2Xφ (X (t− x)) Φ (Y (t− y)) dt = x

(

x2 +
1

X2

)

Φ

(
XY√

X2 + Y 2
(x− y)

)

+ x

(

x+
X2x+ Y 2y

X2 + Y 2

)
1

X2

XY√
X2 + Y 2

φ

(
XY√

X2 + Y 2
(x− y)

)

.
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The second term can be written as

∞∫

−∞

t2 (t− x)Xφ (X (t− x)) Φ (Y (t− y)) dt

= − 1

X

∞∫

−∞

f ′

︷ ︸︸ ︷
[
−X2 (t− x)

]
φ (X (t− x))

g
︷ ︸︸ ︷

t2Φ (Y (t− y)) dt

= − 1

X






[
φ (X (t− x)) t2Φ (Y (t− y))

]∞
−∞ −

∞∫

−∞

f
︷ ︸︸ ︷

φ (X (t− x))

g′
︷ ︸︸ ︷
[
2tΦ (Y (t− y)) + Y t2φ (Y (t− y))

]
dt






=
1

X

∞∫

−∞

φ (X (t− x))
[
2tΦ (Y (t− y)) + Y t2φ (Y (t− y))

]
dt

=
1

X



2

∞∫

−∞

tφ (X (t− x)) Φ (Y (t− y)) dt+ Y

∞∫

−∞

t2φ (X (t− x))φ (Y (t− y)) dt



 .

Equation (OA-10) implies that the first term inside the bracket is

2

∞∫

−∞

tφ (X (t− x)) Φ (Y (t− y)) dt =
2

X

∞∫

−∞

tXφ (X (t− x)) Φ (Y (t− y)) dt

=
2

X
Φ

(
XY√

X2 + Y 2
(x− y)

)


x+
1

X2

XY√
X2 + Y 2

φ
(

XY√
X2+Y 2

(x− y)
)

Φ
(

XY√
X2+Y 2

(x− y)
)



 ,

on the other hand

∞∫

−∞

t2φ (X (t− x))φ (Y (t− y)) dt

=
1√

X2 + Y 2
φ

(
XY√

X2 + Y 2
(x− y)

) ∞∫

−∞

√

X2 + Y 2t2φ

(
√

X2 + Y 2

(

t− X2x+ Y 2y

X2 + Y 2

))

dt

=
1√

X2 + Y 2
φ

(
XY√

X2 + Y 2
(x− y)

)[(
X2x+ Y 2y

X2 + Y 2

)2

+
1

X2 + Y 2

]

,

because the integral is simply E
[
t2
]
= E2 [t] + V ar [t], where t ∼ N

(
X2x+Y 2y
X2+Y 2 , 1

X2+Y 2

)

.

Combining these results, after some algebra we obtain (OA-14).
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Appendix OA-3 Proofs of Propositions 1-5

Proof of Proposition 1. From (13) and (12), after some algebra, we obtain that the difference
between the price on the right and left side of s̄ (l) is given by

∆P (l) = P+ (l)− P− (l) = − θ

ϑ

[
Ψ−1

ρ (λ (Bl −D)) + Ψ−1
ρ (λ (Bl −D))

]
=

θ

ϑ
̥ (λ (Bl −D)) ,

where ̥ (.) is defined in (OA-8). The properties of ∆P (.) then follow from Lemma 7.

Proof of Propositions 2 and 5. In the GS equilibrium, expectation and variance conditional
on the information content of the market price, E [d|l] and V ar [d|l], are given by (10); the
expectation is linear in l and, due to the joint normality, conditional variance is constant. Since
the market price p is then linear in l, the expectation E [d|PGS = p] is linearly increasing in p,
the variance V ar [d|PGS = l] is constant, and Skew [d|PGS = p] = 0 due to joint normality.

In the LC equilbirum, the price reveals both l and the halfline (either s < s̄ (l) or s ≥ s̄ (l)).
Hence, for all p < D we have E [d|PLC = p] = E [d|l, s < s̄ (l)] and for all p > D we have
E [d|PLC = p] = E [d|l,≥ s̄ (l)], and similarly for conditional variance and skewness.

Conditional expectation and its properties. To obtain E [d|l, s < s̄ (l)] we first rewrite (A-3) for
the case s ∈ (−∞, s̄):

fd|l,s<s̄ (d|l, s < s̄) =
1

σd|l
φ

(
1

σd|l
(d− βll)

) Φ

(

− σl|s

σl|dσε

(

d− σ2
l|d

s̄−σ2
ε l

σ2
l|s

))

Φ
(
1
θ

(

s̄− σ2
s

σ2
l

l
)) , (OA-15)

and thus, introducing the notation E [d|l−] = E [d|l, s < s̄], we have

E [d|l−] =
∞∫

−∞

dfd|l,s<s̄ (d|l, s < s̄) dd

=
1

Φ
(
1
θ

(

s̄− σ2
s

σ2
l

l
))

∞∫

−∞

d
1

σd|l
φ

(
1

σd|l
(d− βll)

)

Φ

(

−
σl|s

σl|dσε

(

d−
σ2
l|ds̄− σ2

ε l

σ2
l|s

))

dd.

To express the integral in closed form, we use Lemma 9 for

X =
1

σd|l
, x = βll, Y = −

σl|s
σl|dσε

, and y =
σ2
l|ds̄− σ2

ε l

σ2
l|s

. (OA-16)

After rearranging the result, we obtain

E [d|l−] = βll −
σl|sσ

2
d

σsσl

φ
(
1
θ

(

s̄− σ2
s

σ2
l

l
))

Φ
(
1
θ

(

s̄− σ2
s

σ2
l

l
)) = βll −

√

σ2
d|l − σ2

d|s Ψ−1 (Λ (l)) , (OA-17)
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where we use the definition of Ψ−1 and that σ2
d|s ≤ σ2

d|l due to l = s − Cu being a noisy
information about s, and introduce the notation

Λ (l) =
1

θ

(

s̄ (l)− σ2
s

σ2
l

l

)

. (OA-18)

Similarly, for the case s ∈ (s̄,∞), (A-3) becomes

fd|l,s≥s̄ (d|l, s ≥ s̄) =
1

σd|l
φ

(
1

σd|l
(d− βll)

) Φ

(
σl|s

σl|dσε

(

d− σ2
l|d

s̄−σ2
ε l

σ2
l|s

))

Φ
(

−1
θ

(

s̄− σ2
s

σ2
l

l
)) , (OA-19)

and thus

E [d|l+] = E [d|l, s ≥ s̄] =

∞∫

−∞

dfd|l,s≥s̄ (d|l, s ≥ s̄) dd

=
1

Φ
(

−1
θ

(

s̄− σ2
s

σ2
l

l
))

∞∫

−∞

d
1

σd|l
φ

(
1

σd|l
(d− βll)

)

Φ

(

σl|s
σl|dσε

(

d−
σ2
l|ds̄− σ2

ε l

σ2
l|s

))

dd.

To express the integral in closed form, we use Lemma 9 for

X =
1

σd|l
, x = βll, Y =

σl|s
σl|dσε

, and y =
σ2
l|ds̄− σ2

ε l

σ2
l|s

. (OA-20)

After simplifying the result, we obtain

E [d|l+] = βll +
σl|sσ

2
d

σsσl

φ
(

−1
θ

(

s̄− σ2
s

σ2
l

l
))

Φ
(

−1
θ

(

s̄− σ2
s

σ2
l

l
)) = βll +

√

σ2
d|l − σ2

d|sΨ−1 (−Λ (l)) . (OA-21)

We next confirm the properties of E [d|p] when p ∈ (D,∞); the p ∈ (−∞, D) case follows
analogously. For this, we start with studying the limits of E [d|l+] when l → ±∞. Notice that
since the equilibrium s̄ (l) is linear and decreasing in l, Λ is also linearly decreasing and thus

lim
l→−∞

Λ (l) = ∞ and lim
l→∞

Λ (l) = −∞. (OA-22)

According to Lemma 4, we then have

lim
l→∞

Ψ−1 (−Λ (l)) = lim
x→∞

Ψ−1 (x) = 0, (OA-23)

and thus E [d|l+] behaves like βll when l → ∞. On the other hand, after some algebra we can
rewrite (OA-21) as

E [d|l+] = βss̄+
√

σ2
d|l − σ2

d|sΨ0 (−Λ (l)) .

But according to Lemma 5,

lim
l→−∞

Ψ0 (−Λ (l)) = lim
x→−∞

Ψ0 (x) = 0,

11



hence liml→−∞E [d|l+] = liml→−∞ βss̄ (l) = ∞. As l → ∞ is equivalent to p → ∞ and
l → −∞ to p ց D, we have shown that for both extremes of (D,∞), E [d|p] goes to infinity.

Next we study the shape of E [d|p] as a function of p. Since both E [d|l+] and P+ (l) are
infinitely differentiable functions of l on (D,∞), the slope of E [d|p] satisfies

dE [d|p]
dp

=
dE[d|l+]

dl

P ′
+ (l)

. (OA-24)

Because P+ is an increasing function, the denominator of the RHS is positive, and the LHS
has the same sign as the numerator of the RHS. From (OA-21) and Lemma 4 we know get
that E [d|l+] is convex in l, which, together with its limits, implies that there is a unique

l∗ ∈ (D,∞) for which dE[d|l+]
dl |l=l∗ = 0, and the slope is negative for all l < l∗ and positive for

all l > l∗. Therefore, we can conclude that E [d|p] is decreasing for all p ∈ (D,P+ (l∗)), reaches
its minimum at p = P+ (l∗), and increaseses (to infinity) when p ∈ (P+ (l∗) ,∞).

Conditional variance and its properties. For variances, we have

V ar [d|l−] = V ar [d|l, s < s̄] = E
[
d2|l−

]
− E2 [d|l−] . (OA-25)

From (OA-15),

E
[
d2|l−

]
=

∞∫

−∞

d2fd|l,s<s̄ (d|l, s < s̄) dd

=
1

Φ
(
1
θ

(

s̄− σ2
s

σ2
l

l
))

∞∫

−∞

d2
1

σd|l
φ

(
1

σd|l
(d− βll)

)

Φ

(

−
σl|s

σl|dσε

(

d−
σ2
l|ds̄− σ2

ε l

σ2
l|s

))

dd,

and to express the integral in closed form, we can use Lemma 10 for (OA-16). Substituting it
into (OA-25), using (OA-17) and (OA-18), and rearranging, we finally obtain

V ar [d|l−] = σ2
d|l−

(

σ2
d|l − σ2

d|s

)

Ψ−1 (Λ (l)) [Λ (l) + Ψ−1 (Λ (l))] = σ2
d|l+

(

σ2
d|l − σ2

d|s

)

Ψ′
−1 (Λ (l)) ,

(OA-26)
where the second step recognizes the derivative of Ψ−1 (x); see, e.g., (OA-2). Proceeding
similarly for the s ≥ s̄ case, we get

V ar [d|l+] = σ2
d|l +

(

σ2
d|l − σ2

d|s

)

Ψ′
−1 (−Λ (l)) . (OA-27)

Here we consider limp→∞ V ar [d|p] and limpցD V ar [d|p]; the other two limits when p → −∞
and p ր D follow similarly. First, (OA-22) and (OA-27) together imply

lim
p→∞

V ar [d|p] = lim
l→∞

V ar [d|l+] = σ2
d|l +

(

σ2
d|l − σ2

d|s

)

lim
x→∞

Ψ′
−1 (x) = σ2

d|l, (OA-28)

where in the last step we used (ii) of Lemma 4. Similarly, we write

lim
pցD

V ar [d|p] = lim
l→−∞

V ar [d|l+] = σ2
d|l +

(

σ2
d|l − σ2

d|s

)

lim
x→−∞

Ψ′
−1 (x) = σ2

d|s, (OA-29)

where again the last step follows from (ii) of Lemma 4.
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Regarding the shape of the conditional variance, we show that it increases on (D,∞):
From (OA-22) we have that when l increases, −Λ (l) also increases. According to Lemma 4,
Ψ−1 is a convex function, therefore Ψ′

−1 (−Λ (l)) increases in l. (OA-27) then implies that
V ar [d|l+] also increases in l, and since P+ (l) increases in l, V ar [d|p] increases in p on (D,∞).
Analogously, we get that V ar [d|p] is decreasing for p ∈ (−∞, D).

Conditional skewness and its properties. For the skewness of returns, we have to compute the
third central moment:

Skew [d− p|p] = Skew [d|p] = E
[

(d− E [d|p])3 |p
]

= E
[
d3|p

]
− 3E [d|p]V ar [d|p]− E3 [d|p] .

(OA-30)
Because the distribution of d|p when s ∈ (−∞, s̄) is given by (OA-15), to express the first term
of the RHS, we use Lemma 11 for (OA-16) and, after some algebra, obtain

E
[
d3|l−

]
= (βll)

3 + 3σ2
d|lβll −

[

(βll)
2 + βlβsls̄+ (βss̄)

2 + 2σ2
d|l + σ2

d|s

]√

σ2
d|l − σ2

d|sΨ−1 (Λ (l)) .

Substituting it into (OA-30), combining with (OA-17) and (OA-26) and rearranging, yields
the following expression for skewness:

Skew [d− p|l−] = −
(

σ2
d|l − σ2

d|s

)3/2
Ψ−1 (Λ (l)) {[Λ (l) + Ψ−1 (Λ (l))] [Λ (l) + 2Ψ−1 (Λ (l))]− 1} .

(OA-31)
However, differentiating (A-1) twice we obtain

Ψ′′
−1 (x) = Ψ−1 (x) {[x+Ψ−1 (x)] [x+ 2Ψ−1 (x)]− 1} , (OA-32)

therefore, (OA-31) simplifies to

Skew [d− p|l−] = −
(

σ2
d|l − σ2

d|s

)3/2
Ψ′′

−1 (Λ (l)) . (OA-33)

Similarly, for the l+ case we use Lemma 11 for (OA-20), and obtain

E
[
d3|l+

]
= (βll)

3+3σ2
d|lβll+

[

(βll)
2 + βlβsls̄+ (βss̄)

2 + 2σ2
d|l + σ2

d|s

]√

σ2
d|l − σ2

d|sΨ−1 (−Λ (l)) .

Substituting it into (OA-30), combining it with (OA-21) and (OA-27) and rearranging, yields
that skewness is given by

Skew [d− p|l+] =
(

σ2
d|l − σ2

d|s

)3/2
Ψ′′

−1 (−Λ (l)) . (OA-34)

But part (iii) of Lemma 4 states that Ψ−1 (x) is convex, i.e., Ψ′′
−1 (x) > 0 for all x ∈ R.

Therefore, (OA-33) implies skewness is negative for all p < D and (OA-34) implies skewness
is positive for all p > D. This completes the proof of Propositions 2 and 5.

Proof of Proposition 3. Formally, we show that xU (p) is downward sloping both on (−∞, D)
and (D,∞), and has limits limp→−∞ xU (p) = limpցD xU (p) = ∞ and limpրD xU (p) =
limp→∞ xU (p) = −∞.
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We look at the p ∈ (D,∞) case here. As in equilibrium uninformed demand xU satisfies
(A-6) while the price on (D,∞) is given by (13), we simply have

lim
pցD

xU (p) = lim
l→−∞

P+ (l)− βsl

(1− ω)βsC
=

D

(1− ω)βsC
− lim

l→−∞
l

(1− ω)C
= ∞.

On the other hand, from (A-23) we have

lim
l→∞

P ′
+ (l) = (1 + ρ)B

(

1− ρ

liml→∞Ψ′
ρ

(
Ψ−1

ρ

(
1
θ

(
ρκBl − κΘ

ϑ

)))

)

= B, (OA-35)

where the second equality is due to part (ii) of Lemma 5. But then because B < βs, we must
have liml→∞ [P+ (l)− βsl] = −∞, and hence

lim
p→∞

xU (p) = lim
l→∞

P+ (l)− βsl

(1− ω)βsC
= −∞.

Finally, we want to show that xU (p) is locally downward sloping everywhere on (D,∞). For
this end, since both xU and P+ are differentiable functions, we can write the slope as

dxU
dp

=
dxU

dl
dP+

dl

=
1

(1− ω)βsC

(

1− βs
P ′
+ (l)

)

i.e. dxU/dp < 0 iff P ′
+ (l) < βs. Going back to (A-23), Lemma 5 implies Ψ′

ρ (x) < 1 + ρ for all

x ∈ R, so 1 − ρ
Ψ′

ρ(x)
< 1

1+ρ for all x ∈ R, and, after some algebra, we obtain P ′
+ (l) < B < βs.

Therefore, xU (p) is downward sloping on (D,∞), and has limits limpցD xU (p) = ∞ and
limp→∞ xU (p) = −∞.

Analogously, we can show that limp→−∞ xU (p) = ∞ and limpրD xU (p) = −∞, with
dxU/dp < 0 for all p ∈ (−∞, D). But this means that there is a jump in uninformed demand
at p = D, and hence it is globally not downward sloping.

Proof of Proposition 4. From the proof of Proposition 2 we obtain both limpցD E [d− p|p] =
limpցD E [d|p] − D = ∞ and limpրD E [d− p|p] = limpրD E [d|p] − D = −∞. But as
P+ (l) , P− (l), E [d|l+] and E [d|l−] are all continuous functions of l, E [d− p|p] is continu-
ous on both (−∞, D) and (D,∞). Continuity together with the limits for p ր D and p ց D
implies that around p = D there is a jump in the expected return, and, unlike in the GS
equilibrium, a higher price can imply a higher expected return. Formally, for any expected
return level r̄ there exists a price level p̄ > D such that E [d− p|p] > r̄ for all p ∈ (D, p̄), and
for any expected return level r there exists a price level p < D such that E [d− p|p] < r for all

p ∈
(
p,D

)
.

Finally, although this is not required to the proposition, we can show that expected return
E [d− p|p] behaves similarly to that in the GS model when p is either very high or very low
(p → ±∞), in line with the bottom panel of Figure 3. Part (ii) of Lemma 4 and (OA-18) imply
liml→∞Ψ−1 (−Λ (l)) = 0, thus from (OA-21), liml→∞ (E [d|l+]− βll) = 0. Combining it with
(OA-35), we obtain

lim
l→∞

d (E [d|l+]− P+ (l))

dl
= βl −B < 0.

Therefore, limp→∞E [d− p|p] = liml→∞ (E [d|l+]− P+ (l)) = −∞. Analogously, we can show
that limp→−∞E [d− p|p] = liml→−∞ (E [d|l−]− P− (l)) = ∞.
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