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Abstract 

As methods for internal validity improve, methodological concerns have shifted toward assessing 

how well the research community can extrapolate from individual studies.  Under recent federal 

granting initiatives, over $1 billion has been awarded to education programs that have been 

validated by a single randomized or natural experiment.  If these experiments have weak external 

validity, scientific advancement is delayed and federal education funding might be squandered.  

By analyzing trials clustered within interventions, this research describes how well a single study’s 

results are predicted by additional studies of the same intervention in addition to analyzing how 

well study samples match the target populations of interventions. I find that U.S. education trials 

are conducted on samples of students who are systematically less white and more 

socioeconomically disadvantaged that the overall student population.  Moreover, I find that effect 

sizes tend to decay in the second and third trials of interventions. 

 

I. Introduction and Prior Literature 

As randomized and natural experiments continue to gain acceptance as the preferred standards 

for causal inference, the locus of methodological concern in applied social science is shifting 

toward external validity (Cook, 2014; Orr, 2015).  An abiding concern is that results from these 

methods are local to the setting and population in which they are conducted, with a 

consequent lack of generalizability masked by a veneer of rigor.  Scholars from fields as 

disparate as economics (Wolpin, 2011) and philosophy (Cartwright, 2007, Chapters 15–16) have 

commented specifically on the insufficiency of randomized trials (RCTs) alone to inform critical 

policy decisions.  Cook (cite) offers a conceptual model for generalizing causal knowledge, 
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noting challenges of representation and extrapolation at the levels of units, treatments, 

outcome measures, settings, and time- features of research that are largely orthogonal to the 

details of internal validity.  Without careful attention to these challenges, even the strongest 

inferential strategies faces grave epistemological shortcomings. 

In education research these concerns are not merely academic, as the policy consequences of 

randomized and natural experiments can hinge crucially on scale and context.  The oft-cited 

Tennessee STAR experiment improved the educational achievement of low-performing 

students through reduced pupil-teacher ratios (Schanzenbach, 2006), yet such gains eluded 

California students when the state implemented similar changes at a larger scale (Stecher, 

Bohrnstedt, Kirst, McRobbie, & Williams, 2001).  Conversely, five field experiments of 

performance pay for teachers fail to find any effect of linking salary bonuses to student test 

scores, yet a recent natural experiment has revealed that such coupling of teacher salary and 

student test scores can have marked effects on subsequent teacher and student performance 

(Dee & Wyckoff, 2015).  More broadly, for three of the four educational interventions awarded 

an Investing in Innovation Initiative (i3) scale-up grant in 2010 (KIPP, Success for All, Teach for 

America, Reading Recovery1), impacts on students were substantially lower than impacts from 

the initial experimental trials of each intervention (Clark, Isenberg, Liu, Makowsky, & Zukiewicz, 

2015; May, Sirinides, Gray, & Goldsworthy, 2016; Quint, Zhu, Balu, Rappaport, & DeLaurentis, 

2015; Tuttle et al., 2015).  As these examples illustrate, extrapolating from a single study can be 

a dubious enterprise without careful attention to external validity. 

Unfortunately, little is currently known about the external validity of rigorous education 

research in the United States.  Recent evidence from impact evaluations in the developing 

world raises concerns about lack of protocol fidelity as well as poor external validity (Vivalt, 

2015), while a study of U.S.-based energy conservation experiments reveals that even multiple 

RCTs do not yield average treatment effects that correctly predict future experimental results 

(Allcott, 2015).  The limited evidence from domestic education research is not reassuring.  An 

analysis of U.S. school districts that have participated in eleven randomized control trials of 

                                                           
1 See http://www2.ed.gov/programs/innovation/awards.html  

http://www2.ed.gov/programs/innovation/awards.html
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educational interventions found that those districts are poorer and more ethnically diverse, 

have a greater number of English language learners, and perform worse on standardized tests 

of literacy and numeracy than the national average of districts that could potentially implement 

any of the eleven interventions (Stuart, Bell, Ebnesajjad, Olsen, & Orr, 2016).  An additional 

analysis of those participating districts finds that they responded more weakly to a federal 

policy intervention than the typical district, suggesting a correlation between study 

participation and potential outcomes (Bell, Olsen, Orr, & Stuart, 2016).  This is troubling in a 

research environment where a single trial can trigger hefty public investment in an intervention 

and shape legislation (Bogenschneider & Corbett, 2010; Haskins & Margolis, 2015).  

I contribute to this literature by providing the first extensive assessment of external validity in 

U.S. education research by meta-analyzing over 300 education-related interventions conducted 

in the United States in the past two decades.  Using the newly available data on interventions 

and trials from the Institute for Education Sciences’ What Works Clearinghouse – a repository 

of rigorous random and natural experiments maintained by the U.S. Department of Education –   

I address the following two primary research questions: (1) how representative of U.S. students 

are the samples selected for participation in U.S. trials of education interventions and (2) how 

much can be extrapolated from these trials.  Within the endeavor to generalize causal 

knowledge, the first question addresses the representation function (Cook, 2014, p. 527) by 

investigating the degree to which trial samples match the target populations of the intervention 

being studied along numerous dimensions such as geographic location, student demographic 

profiles, school financial resources, racial and socioeconomic segregation, and student 

achievement.  The second question addresses the extrapolation function (Cook, 2014, p. 527) 

by analyzing how well a single trial’s results are predicted by additional trials of the same 

intervention.  Using trials clustered within interventions, a Bayesian prediction framework will 

provide summary measures of precision across trials.  The analysis will also leverage the 

temporal ordering of the trials to determine whether or not effects decay in subsequent trials 

of an initially promising intervention, as anecdotal evidence suggests is common. 
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The results of this study will provide a comprehensive description of external validity in recent 

U.S. education research while also suggesting features of research on which the scientific 

community and funding agencies should focus. 

 To preview the results, I find that study samples are systematically unrepresentative of 

students in the national as a whole.  Education trials are conducted on student samples that are 

less white, more socioeconomically disadvantaged, and more likely to have limited English 

proficiency than the national average of districts.  Moreover, effect sizes exhibit decay over 

subsequent trials for interventions subject to two or three trials, though the pattern is less clear 

for interventions subject to between four and eight trials. 

In the remainder of the paper, I present the analytic framework and describe the newly 

available What Works Clearinghouse data before moving on the results and a discussion of their 

implications. 

II. Analysis 

The analysis is structured around two primary questions: (1) how representative are studies of 

education interventions; and (2) how much can one extrapolate from a single study. Two 

complementary sets of analyses will be undertaken to evaluate the representativeness of the 

WWC trial samples.  The first set assesses the degree of demographic similarity between the 

WWC trial samples and the population of students targeted by the interventions therein.  The 

second set inverts the first by analyzing the relative achievement and socioeconomic conditions 

of the students in school districts that are demographically similar to the WWC trial samples. 

Operationally, similarity is measured as the standardized difference between each trial 

sample’s characteristics and the mean of the population of schools and districts for each 

demographic variable (race, socioeconomic status, English language ability, individualized 

education plan), as well as the multidimensional distance between each trial sample’s 

demographic composition and the multivariate centroid of the population of schools and 

districts.  As sample compositions differ across outcomes within a trial, the median of each 

demographic variable across outcomes for that trial is used.  Equation one presents the 

standardized, univariate distance measures calculated for each demographic variable in each 
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trial, where D is the kth demographic variable in the ith study, µ is the enrollment-weighted 

population mean of the kth demographic variable, and σ is the population standard deviation of 

the kth demographic variable. 

      𝑠𝑖𝑘 =  
(𝐷𝑖𝑘 − µ𝑘)

𝜎𝑘
⁄                                                                       (1) 

Equation two presents the Mahalanobis distance of a single trial’s demographic composition 

from the centroid of the target population’s demographic variables.  After standardizing the 

demographic variables with equation one and setting the population means equal to zero, the 

Mahalanobis distance reduces to the following: 

𝑀𝑖 =  √∑ 𝑠𝑖𝑘
2𝑛

𝑖=1                                                                             (2)  

Sik and Mi are also calculated for each school and district in the SEDA and CCD.  Each WWC trial 

receives corresponding scores πik and λi equal to the proportion of schools and districts in the 

population with absolute values of sik and Mi larger than their own.  The primary summary 

statistics are π̅𝑘 and �̅�, the means of πik for each of k demographic variables and the mean of λi 

respectively.  These summary statistics provide scale-invariant measures of how aberrant the 

trial samples are from the population of schools and districts. 

Classical tests for the statistical significance of π̅𝑗 and �̅� are inappropriate, as these trial samples 

are not likely to have been sampled randomly from the population of schools (Stuart et al., 

2016, pp. 3–5).  Instead, to provide a measure of how likely these values are to have arrived by 

a random sample of schools and districts, a bootstrap procedure is used by taking 5000 random 

samples (with replacement) of n schools and districts and computing π̅𝑗 and �̅� for each sample.  

The number n of schools and districts selected are chosen to match the number of trials in the 

WWC appropriate for each demographic test.  The resulting p-values are the proportion of 

bootstrapped summary statistics that are at least as large as the corresponding statistics from 

the WWC studies.  In order to control the false discovery rate across multiple hypothesis tests, 

the entire set of p-values from this set of tests (group A in table 1) are transformed into 

sharpened q-values (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001). 
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In the second set of analyses, Mi values are used to identify districts with demographic 

characteristics similar to those of the WWC trial samples.  Specifically, each trial is assigned a 

set of three districts from the SEDA whose Mi values are the closest to that trial’s.  The resulting 

set of matched districts serve as the represented population and are compared to the general 

target population of districts using the full SEDA data.  Using the newly available SEDA rather 

than the CCD allows national, district-level comparisons to be made on the basis of 

standardized performance of literacy and numeracy, gaps in performance by ethnicity and 

socioeconomic status, the degree of segregation within the district, and socioeconomic 

conditions of the area in which the district resides.  The key variables of interest from the SEDA 

are listed in table 3.  The same procedures for calculating summary and test statistics from the 

first set of analyses are employed here as well, with subscripts s to denote use of the SEDA 

data.  All p-values from this second set of tests (group B in table 1) are transformed into 

sharpened q-values. 

The second primary phase of the analysis leverages the 91 multi-trial interventions from the 

WWC flat file to evaluate how well trials predict one another within interventions.  The 

motivation for this section of the research is the extrapolation problem that frequently bedevils 

scholars, program funders, and policymakers alike: given all available information on prior trials 

of an intervention, what should one expect from an additional trial?  The first primary question 

in this fundamentally Bayesian inquiry is whether effect sizes exhibit systematic decay over 

subsequent trials.  Decay may result from difficulties scaling up interventions (Clark et al., 2015; 

Quint et al., 2015; Tuttle et al., 2015), expanding them to a group of students less amenable to 

the treatment,2 or an increase in the performance of the counterfactual group (Lemons, Fuchs, 

Gilbert, & Fuchs, 2014).  More cynically, decay may be the result of selection bias in the choice 

of which interventions receive subsequent trials.  In this rendering, initially promising trials are 

merely the right tail of a sampling distribution centered closer to zero and thus any subsequent 

trial should be expected to revert to the mean (Ioannidis, 2005).  The second primary question 

concerns the variance of trials within interventions.  High variance may be the result of 

                                                           
2 This is a perennial concern in early childhood education research.  See Weiland and Yoshikawa (2013, pp. 2126–
2127) for a brief discussion of impact estimates of pre-kindergarten across socioeconomic and ethnic groups. 
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heterogeneous treatment effects between groups or contexts that differ across trials (Feller, 

Grindal, Miratrix, & Page, 2016), or merely poor protocol fidelity (Ginsburg & Smith, 2016, pp. 

8–11).  Even in the absence of systematic decay, high variance across trials will limit the ability 

to draw strong inference around average treatment effects and their attendant social welfare 

and policy implications.  Operationally, I analyze which study variables best predict effect size. 

The estimation procedures begin, somewhat simply, by calculating, for each multi-trial 

intervention in the WWC file (n=85), the percent difference between the effect size of each trial 

and that of the prior trials of the same intervention on the same outcome domain.  Most trials 

assess the impact of an intervention on more than one outcome domain, such as literacy and 

numeracy, and subsequent trials often use a slightly different measure (ex. SAT vs. ACT scores) 

within the same outcome domain.  As one purpose of this analysis is to assess the stability of 

results across trials, the primary linkage of trials within interventions is outcome domains rather 

than the narrower outcome measures.  The WWC assigns a domain to each outcome assessed 

in each trial, yet the full list includes domain labels that are broad enough to contain 

meaningfully different outcomes (ex. “labor market outcomes”) as well as multiple domain 

labels for what appear to be similar outcomes (ex. “English language development” and 

“language development”).  These “jingle” and “jangle” fallacies, respectively, are well known to 

scholars of child development and frustrate the task of causal generalization across trials.  A 

trade-off must be made between overly specific domain labels that risk obscuring variance 

across similar outcomes and uselessly broad domain labels that are unable to differentiate 

among substantively distinct outcomes, thus inflating inter-trial variance.  The WWC domain 

labels are used as a guide, but recoding does occur in some cases. 

Equation 3 presents the formal calculation of the change, Δij, where θij is the effect size from 

the ith trial of the jth intervention, µi-1, j is the effect size from the prior trial of the jth 

intervention. 

𝛥𝑖𝑗  =  𝜃𝑖 − 𝜃𝑖−1,𝑗                                                                             (3) 

Interventions with at least two trials of the same outcome domain receive a value of Δij for each 

trial, from the second to the nth.  The summary statistics of interest are the means and medians, 



8 
 

�̅�𝑖   and �̃�𝑖 respectively, of Δij, from i=2 to i=n.  The statistical significance of �̅�𝑖   and �̃�𝑖 will be 

assessed through permutation tests based on 5000 draws of the data wherein the order of 

trials within interventions is randomly assigned. 

III. Sample Selection 

The analysis sample is drawn from three data sets: the What Works Clearinghouse’s (WWC) 

summary file of education interventions, the National Center for Education Statistics’ Common 

Core of Data (CCD) files, and the Stanford Education Data Archive (SEDA) of district 

characteristics and student achievement.  The WWC file contains data on study characteristics 

(year, intervention, outcome measure, domain, setting, geographic location), average student 

characteristics (grade-level, gender, race, socioeconomic status, English language ability), and 

statistical test information (sample sizes, post-treatment means and standard deviations by 

treatment status, effect size, statistical significance).  The CCD files contain district- and school-

level demographic and financial information for all public K-12 schools in the United States.  The 

SEDA files contain district-level data on student achievement (means and gaps on a common 

scale by year-grade-demographic group), district characteristics (geographic location, 

segregation by race and socioeconomic status), and socioeconomic data for the region in which 

the school district is located (education levels, employment, SNAP participation, household 

income levels and inequality). 

The WWC data is the focus of the analysis, whereas the SEDA and CCD data are used to 

compose the universe of schools and districts from which intervention trial samples are drawn.  

The units of analyses are individual studies of education interventions as well as the 

interventions themselves (many of which have been subject to multiple trials).  The 

interventions and studies used are those contained in the WWC data which involved 

elementary and secondary students in the United States from 1998 to 2016.  As can be seen in 

table 1, the WWC data contains tests (“findings”) from 534 trials of 309 interventions.  Most are 

randomized control trials, but a substantial portion come from natural experiments.  Regardless 

of the inferential method, all trials analyzed here have been given one of the top two ratings in 

the WWC’s evidence review system and thus meet the Institute of Educational Sciences 

standards for causal evidence.  As table 2 reveals, 85 of the interventions have been subjected 



9 
 

to more than one trial, while 40 interventions have been subjected to at least three trials.  The 

publication dates of the trials are contained in figure 2.  Figure 1 contains the distribution of 

effect sizes for the WWC trials.  Each results from the trials contained in the WWC is 

standardized into the effect of the treatment on the outcome in terms of the outcomes 

standard deviations, Cohen’s D.  The trial-weighted mean effect in this data is .24, with a 

standard deviation of .37. 

V. Results 

To begin with the representation function, I find that study samples are less white, more 

socioeconomically disadvantaged, and less proficient in English than districts as a whole.  Table 

3 lists simple comparisons of the proportion of each demographic group in the districts 

contained in the Common Core of Data (CCD) and the trials in the WWC.  The main results are 

presented in table 4.  The student composition in the WWC trials are in the upper tercile of 

proportion Hispanic and free-lunch eligibility (the common metric of socioeconomic 

disadvantage).  For the rest of the demographic variables, the WWC trials are in the upper 

quintile district, meaning that over 80% of districts in the United States have demographic 

profiles closer to the national average than the WWC trials.  This raises serious concerns about 

the generalizability of the rigorous causal information contained in the WWC. 

Moving to the extrapolation function, I find that effect sizes exhibit systematic decay in the first 

two follow-up trials, but am unable to distinguish a pattern in further trials.  Figure 3 displays 

the pattern of results for interventions subject to more than one trial.  The mean and median 

effect in the second trial decrease by .097 and .042 standard deviations, respectively.  The 

mean and median effect decrease even more by the third trial, to .121 and .057 standard 

deviations less than the original effects.  All results from the second and third trial are 

distinguishable from random noise, however I am unable to do so for the rest of the follow-up 

trials.  This is largely due to the diminishing number of interventions subject to further trials. 

While these results point to serious challenges in generalizing causal knowledge from rigorous 

trials of education interventions in the U.S., several questions are yet to be answered.  First, 

while demographic variables are likely correlates of important moderators and mediators for 
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education interventions, it is still unclear whether or not trial samples are aberrant on those 

elements themselves.  Second, further work should be done to examine, to the extent possible, 

why effect sizes decay and whether this is attributable to a difference in outcomes, sample 

characteristics, settings, or the like. 

Table 1: Trial Data in the What Works Clearinghouse 

WWC Data RCT QED Total 

Interventions 246 101 309 

Trials 393 141 534 

Findings 1921 682 2603 

Intervention-Outcome 

Matches 

399 148 506 

 

Table 2: Multi-Trial Interventions in the What Works Clearinghouse 

Number of Trials Number of Interventions Intervention-Outcomes 

1 268 409 

2 45 60 

3 18 21 

4 6 7 

5 10 4 

6 2 2 

7 3 2 

8 1 1 
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Figure 1: All Effects from the WWC data 
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Table 3: WWC vs. CCD 

Demographic 

Mean Proportion 

(SD) 

Districts in U.S. WWC Trials p-value 

African-American .16822498 

(.20928031) 

.28700856 

(.0723077) 

<0.001 

Hispanic .20653194 

(.24377424) 

.27605177 

(.09985937) 

<0.001 

Asian .04707013 

(.07947539) 

.03306675 

(.02224536) 

<0.001 

White .55917652 

(.31147693) 

.39372461 

(.10072037) 

<0.001 

Eligible for Free 

Lunch 

.44058706 

(.23065425) 

.55955783 

(.15323555) 

<0.001 

English Language 

Learner 

.09537689 

(.11591922) 

.06224852 

(.05549068) 

<0.001 

 

Table 4: Poor Representation in WWC Trials 

Demographic Variable Proportion of Districts more 

Aberrant than WWC Trials  

African-American .117 

Hispanic .332 

Asian .112 

White .172 

Eligible for Free Lunch .369 

English Language Learner .145 
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Figure 2: Tests in the WWC 
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Figure 3: Systematic Decay in Early Follow-up Trials 
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