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Abstract

We show that a local average treatment effect (LATE) can sometimes be identified and consistently

estimated when treatment is mismeasured, or when treatment is estimated using a possibly misspecified

structural model. Our associated estimator, which we call Mismeasurement Robust LATE (MR-LATE), is

based on differencing two different mismeasures of treatment. In our empirical application, treatment

is a measure of empowerment: whether a wife has control of substantial household resources. Due

to measurement difficulties and sharing of goods within a household, this treatment cannot be directly

observed without error, and so must be estimated. Our outcomes are health indicators of family members.

We first estimate a structural model to obtain the otherwise unobserved treatment indicator. Then, using

changes in inheritance laws in India as an instrument, we apply our new MR-LATE estimator. We find

that women’s empowerment substantially decreases their probability of being anemic or underweight,

and increases children’s likelihood of receiving vaccinations. We find no evidence of negative effects on

men’s health.
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1 Introduction

In the estimation of causal effects, treatment is often observed with measurement error, also called

misclassification error in the case of discrete treatments. We show that a local average treatment

effect (LATE) can sometimes be identified and consistently estimated even though treatment is mis-

measured. Our associated estimator, which we call MR-LATE (for Mismeasurement Robust LATE) is

based on the difference between two different mismeasures of treatment. Unlike, e.g, Ura (2015),

who only obtains bounds, our MR-LATE estimator (which is empirically trivial to implement) can

sometimes point identify LATE.

Treatment indicators can be mismeasured for a variety of reasons, such as reporting and record-

ing errors. In addition, if treatment is not directly observed and must itself be estimated based on

some model, then both misspecification of the model and estimation error in the estimated treat-

ment can be interpreted as measurement errors in the observed (i.e., estimated) treatment. While

our estimator should be useful in many applications where treatment is observed with error, we

want to emphasize its potential in applications where treatment is estimated. Due to estimation

and potential specification error in treatment estimation, treatment is rarely estimated (particularly

structurally estimated) in the causal literature. This is unfortunate, because only considering treat-

ments that are directly observable greatly limits the potential economic significance of estimated

causal effects.

For example, in our empirical application we define treatment as a wife having actual (not

merely reported) control of substantial household resources. This is difficult to observe, in part

due to shared consumption within the household, and so must be estimated. Our outcomes are

health measures of household members, and our instrument is a plausibly exogenous change in

inheritance laws in India. A typical causal analysis might look directly at the causal impact of the law

change on health, but this would tell us nothing about how other changes in women’s empowerment

might impact health. In contrast, a typically structural analysis of this problem would require not

only modeling resource shares (i.e., each member’s share of total household consumption), but also

structurally modeling how inheritance laws affect resource shares, and how resource shares affect

health. Many might find these structural models implausible. This summarizes the commonly

noted tradeoff that causal reduced form analyses typically answer problems of lesser interest, while

structural analyses depend on strong assumptions regarding underlying true behavior.

Our analysis seeks to combine the best of both worlds. We know little about exactly how female

power in the form of resource shares may affect health outcomes, and so we address that question

using LATE estimation. A great deal more is known about the economics of household consumption,

so we employ structural estimation to obtain resource shares, and we employ our new MR-LATE

estimator to account for the inevitable estimation and specification errors that arise from employing

a structural model of treatment. The end result is that instead of asking what the impact is of a

particular randomized intervention (the inheritance law change), we address a more general ques-

tion: What is the impact of empowering women (by giving them control of household resources)
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on family health?

There are many other examples of potential treatments of clear economic significance, that are

rarely analyzed causally, because the treatments themselves would need to be estimated. Examples

of such treatments are measures of expectations, ability, opportunity, or utility. One might be inter-

ested, for example, in quantifying the effect of individuals’ future discount rates on their probability

of dropping out of school, or the effect of individuals’ risk aversion on their investment decisions, or

the effect of abilities like non-cognitive skills on future earnings. These are typically estimated using

fully structural models. The alternative we propose is using structure to estimate the treatment, and

causal methods to estimate the treatment effect, accounting for estimation and specification error

in the structural estimation of treatment.

Stemming from the work of Amartya Sen and many others, there is a large literature pointing

to the importance of female empowerment in the household. We rely on the collective households

framework to structurally recover a measure of bargaining power and, in turn, to estimate our

unobserved treatment variable. In this framework, a household is characterized as a collection of

individuals, each of whom has a well defined utility function, and who interact to generate Pareto

efficient allocations. Recent advances in this literature permit the recovery of resource shares (or

sharing rule). These measures correspond to intra-household bargaining power or control.

We estimate resource shares for women, men or children in the household using detailed expen-

diture data from the 2011-2012 National Sample Survey (NSS) of Consumer Expenditure in India.

Due to the lack of NSS data on health outcomes, we use these estimates to perform an out-of-sample

prediction on the 2005-2006 Indian National Family Health Survey (NFHS-3), which includes the

same socio-economic characteristics of individuals and households as the NSS dataset and detailed

information about women’s (aged 15 to 49), men’s (aged 15 to 54) and children’s (aged 0 to 5)

health indicators. Given this structural estimation of resource shares, we use our new LATE estima-

tor to study the causal effect of living in households with relatively highly empowered women on

household members’ health status. We define a household to be treated if it falls above the median

(or other cutoff) of the distribution of our preferred measure of women’s empowerment, i.e., the

fraction of parents’ resources devoted to the mother. We exploit changes to the Indian inheritance

law to construct our instrumental variable. Specifically, we focus on women’s exposure to the Hindu

Succession Act (HSA) amendments that equalized women’s inheritance rights to men’s in several

Indian states between 1976 and 2005.

We find that accounting for specification, estimation, and/or measurement error in the esti-

mate of treatment is empirically important, with some substantial differences between the standard

LATE estimator and our MR-LATE estimator. The results of our empirical analysis indicate that

women’s empowerment positively affects women’s and children’s health outcomes, but does not

affect men’s health outcomes. Our most conservative estimates indicate that the average causal

effect on women’s body mass index (BMI) is 1.72 and that women in above-median households

are 7 percent less likely to be underweight. Moreover, empowered mothers face longer intervals

between births, which may improve maternal health and reduce the risk of anemia. Also, mother’s
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empowerment positively affects children’s likelihood to receive vaccinations. The average causal

effect on children’s probability of receiving a vaccine is an increase of 0.29 in probability, mainly

driven by immunization against polio.

The next section is a literature review. This is followed by our identification proof and the

derivation of our MR-LATE estimator, including a small Monte-Carlo study of its small sample prop-

erties. We then describe our empirical application and results, followed by Conclusions. Proofs and

additional material are in an Appendix.

2 Literature Review

Papers empirically documenting substantial measurement (misclassification) errors in observed

treatments include Bollinger (1996), Angrist and Krueger (1999), Kane, Rouse, and Staiger (1999),

Card, (2001), Black et al. (2003), and Hernandez and Pudney (2007). Homogeneous treatment ef-

fects, corresponding to estimation of constant coefficients of a mismeasured binary regressor, have

been estimated using instruments by many authors, including Aigner (1973), Kane, Rouse, and

Staiger (1999), Black, Berger, and Scott (2000) and Frazis and Loewenstein (2003).

When treatment is mismeasured, point identification (and associated estimators) of average

treatment effects (without assuming treatment effects are homogeneous) are provided by Mahajan

(2006), Lewbel (2007) and Hu (2008). These papers obtain identification exploiting the assump-

tion that true treatment is exogenous. Under more general conditions bounds on average treat-

ment effects with misclassified treatment are provided by Klepper (1988), Manski (1990), Bollinger

(1996), Kreider and Pepper (2007), Molinari (2008), and Imai and Yamamoto (2010), and Kreider,

Pepper, Gundersen, and Jollie (2012).

The causal effect we focus on identifying and estimating is the local average treatment effect

(LATE) of Imbens and Angrist (1994) and Angrist et al. (1996), which is applicable when the true

treatment is endogenous, an exogenous instrument is available, and treatment effects are not homo-

geneous. Ura (2015) also considers estimation of LATE with mismeasured treatment and standard

LATE instrument assumptions1, but only obtains set identification bounds. We obtain point identi-

fication by making use of two rather than a single mismeasured treatment indicator.

The structure of our estimation problem is that a randomized instrument affects mismeasured

treatment, and the true treatment then affects an outcome. A similar structure arises in models

where outcomes of interest and randomized treatment are not available in the same data set. In

these models, a randomized treatment (corresponding to our instrument) affects an intermediate

outcome called a statistical surrogate (see Prentice (1989)), corresponding to our treatment in-

dicator. The surrogate then effects (or at least strongly correlates with) the outcome of interest.

These estimators require that the surrogate satisfy a strong conditional independence assumption.

1Specifically, the instrument must satisfy the exclusion restriction and weakly increase the true treatment (Imbens and Angrist, 1994; Angrist
et al., 1996). In the case of a continuous misclassified treatment, Lewbel (1998), Song et al. (2015), Hu et al. (2015) and Song (2015) use
instruments and further exclusion restrictions to obtain identification and estimation of average marginal effects with classical or nonclassical
measurement error in a nonparametric or semiparametric context.
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See, e.g., Rosenbaum (1984); Begg and Leung (2000); Frangakis and Rubin (2002); VanderWeele

(2015). Athey et al. (2016) overcome this limitation by observing multiple surrogates, that together

are used to model the impact on the outcome of an underlying latent surrogate with the desired

properties. In a roughly analogous way, we exploit multiple (two) mismeasures of treatment to

model the impact on the outcome of an underlying latent (true) treatment that has the desired

properties. Beyond this analogy, however, the details of their estimator and underlying assump-

tions are completely different from ours.

Our structural model of treatment is based on the collective household framework pioneered by

Becker (1965, 1981), Apps and Rees (1988) and Chiappori (1988, 1992), in which each household

is characterized as a collection of individuals, each of whom has a well defined utility function, and

who interact to generate Pareto efficient allocations. Recent advances in this literature permit the

recovery of resource shares (or sharing rule), defined as each member’s share of total household

consumption (Lewbel and Pendakur (2008), Browning et al. (2013), Dunbar et al. (2013)). Our

particular model is based on Dunbar et al. (2013) and Calvi (2016), which obtain resource shares

from estimates of Engel curves (demand equations holding prices constant) of clothing items that

are consumed exclusively by women, men or children.

From a policy perspective, our results contribute to the general literature estimating the effect

of women bargaining power on adults’ or children’s outcomes. Related to our application, legal

reforms aimed at improving women’s property rights, inheritance rights in particular, have been

used in the literature for this purpose.2 In the Indian context, Deininger et al. (2013), for example,

find evidence of an increase of women’s likelihood of inheriting land following the introduction

of Hindu Succession Act (HSA) amendments that equalized women’s inheritance rights to men’s

in several Indian states between 1976 and 2005. Moreover, Roy (2008) documents that women’s

exposure to the HSA reforms improves their bargaining power and autonomy within their marital

families, while Roy (2013), Deininger et al. (2013), and Bose and Das (2015) indicate that it in-

creases female education. Jain (2014) shows that HSA reforms mitigate son preference, and might

be effective in reducing mortality differences between boys and girls in rural India. Finally, Heath

and Tan (2014) argue that the HSA amendments increase women’s labor supply, especially into

high-paying jobs, while Calvi (2016) shows that they improve adult women’s health outcomes and

their access to household resources.3

Finally, this paper contributes to the long-standing debate on the relative benefits and limitations

of causal vs. structural modeling. Proponents of causal methods based on randomization question

2Parallel to these studies, an extensive literature studying the effects of Conditional Cash Transfer programs in developing countries has
shown that providing women with a large amount of cash in their hands can significantly increase, e.g., the budget shares of expenditures
on clothing for children and lower shares of alcohol (Attanasio and Lechene, 2002), increase children’s health and education, and livestock
(Rubalcava et al., 2009) and improve child development (Macours et al., 2012; Tommasi, 2015). Differently from all this literature, we are able
to provide a more accurate assessment of the effect of women’s empowerment on family member’s outcomes. Indeed, following our approach,
we are able to relate a quantitative improvement in women’s and other family members’ health status, to a quantitative, tangible, improvement
in women’s bargaining position within the household.

3Legal reforms in other countries have been studied as well. La Ferrara and Milazzo (2014), for example, exploit an amendment to Ghana’s
Intestate Succession Law and compare differential responses of matrilineal and patrilineal ethnic groups, finding that parents substitute land
inheritance with children’s education. Harari (2014) analyzes a law reform meant to equalize inheritance rights for Kenyan women and shows
that women exposed to the reform are more educated, less likely to undergo genital mutilation, and have higher age at marriage and at first
child.
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the validity of results obtained from complex and questionable structural modeling assumptions

(Angrist and Pischke, 2010; Imbens, 2010). Advocates of the structural approach, instead, stress the

much richer insights that can be obtained when one allows economic theory to guide the empirical

work (Wolpin, 2013). Recent contributions in the econometrics literature have started to formally

unify the two camps in order to overcome these divisions (Vytlacil (2002), Heckman et al. (2006);

Heckman and Vytlacil (2007); Pearl (2009). Heckman (2010), for example, proposes to combine

the best features of both the structural and the causal modeling approaches in what he calls a third

way of policy analysis, while Lewbel (2016) argues that the best strategy for identification is often

to combine the strengths of both approaches. We make a further step in this direction and show

that relying on a structure provided by economic theory can significantly expand the set of causal

questions that researchers can answer, when combined with statistical techniques that account for

the estimation and specification errors of structural models.

3 LATE With Mismeasured or Misspecified Treatment

This section is organized in three parts. First, we describe our theoretical framework and derive our

new MR-LATE estimator. Second, we provide a practical example of treatment indicators of the type

that allows identification of LATE in this context. Finally, we implement a Monte Carlo experiment

to verify that the estimator complies with the predictions of the theory.

3.1 Set Up and Identification

We begin by defining notation. We ignore covariates for now, as everything immediately extends to

conditioning on covariates X . Let D be the unobserved true binary treatment variable that affects the

outcome of interest. Not only is D unobserved, but we also do not assume that D can be consistently

estimated.

Let Z be a randomized binary instrument that affects the treatment D. Define random binary

variables D0 and D1 as potential treatments Dz = D (z) for possible realizations z of Z . Then by

construction:

D = (1− Z)D0 + Z D1 = D0 + (D1 − D0) Z (1)

Let Y be an observed outcome of interest. Define random variables Y0 and Y1 as potential outcomes

Yd = Y (d) for possible realizations d of D. Then:

Y = (1− D)Y0 + DY1 = Y0 + (Y1 − Y0)D = Y0 + (Y1 − Y0) [(1− Z)D0 + Z D1] (2)

Assumption 1. Y and D satisfy the standard Imbens and Angrist (1994) LATE assumptions:

i. 0< E (D)< 1, 0< E (Z)< 1 and Z ⊥ (Y1, Y0, D1, D0).

ii. (Y1, Y0, D1, D0, Z) are independent across individuals and have finite means.

iii. No defiers, that is, Pr (D0 = 1 and D1 = 0) = 0.
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Let C denote a complier, that is, someone who has D0 = 0 and D1 = 1. The Imbens and Angrist

(1994) LATE is:
cov (Y, Z)
cov (D, Z)

= E (Y1 − Y0 | C) = LAT E (3)

While we observe a sample of observations of Y and Z , we cannot implement the above LATE

estimator because we do not observe D. Assume instead that we observe a binary treatment indica-

tor T (later we will make use of two such indicators, but just consider one for now). T could be a

proxy or an estimate of D, or T could be an observation of D that is sometimes mismeasured (i.e.,

T correctly measures D when T = D, and incorrectly measures when T = 1− D). In our empirical

application, T will be an estimate of D based on a structural model, so for some individuals T will

not equal D either because of estimation error or because the structural model may be misspecified.

Our goal is to point identify and estimate LATE, even though D is not directly observed and cannot

be consistently estimated.4

Define random variables T0 and T1 as potential observed treatments, or potential estimated

treatments, so Td = T (d) for possible realizations d of D. Then:

T = (1− D) T0 + DT1 (4)

The random binary variables T0 and T1 can be interpreted as indicators of whether treatment is

correctly measured or not. In particular, if T0 = 0 and T1 = 1, then treatment is not mismeasured.

This shows the two possible types of measurement or classification error. If T0 = 1, then a true

D = 0 is misclassified as treated, while if T1 = 0, then a true D = 1 is misclassified as untreated.

Assumption 2. Assumptions involving T:

i. Z ⊥ (Y1, Y0, D1, D0, T1, T0)

ii. (T1, T0)⊥ (Y1, Y0) | C
iii. E (T1 − T0 | C) 6= 0

Assumption 2-i just combines the LATE unconfoundedness assumption that Z ⊥ (Y1, Y0, D1, D0)

with the assumption that the instrument is also independent of the potential measurement errors,

and hence of (T1, T0). The standard assumption that Z is randomized by experimental or quasi-

experimental design is sufficient but stronger than necessary to have 2-i hold. Assumption 2-ii says

that, for compliers, the potential mismeasures (T1, T0) are independent of the potential outcomes

(Y1, Y0). Combined with unconfoundedness, this corresponds to the usual classical assumption that

measurement errors are unrelated to outcomes.5 Assumption 2-iii is a minimal relevance condition

saying that T provides some information regarding D. This assumption implies that, at least for

compliers, the correlation between D and T is nonzero.

4Although we observe T and not D, people’s behavior is still based on their actual D. So, e.g., introducing measurement error does not
change the no defiers assumption. If we incorrectly assumed behavior was based on T , estimating LATE using T in place of D, then what would
appear to be defiers could exist. But that would not be the primary source of bias in LATE estimates that ignore the measurement error. Since
we never have data from the same person in both a treated and untreated state, we wouldn’t see the no defiers assumption being violated in
any case.

5A sufficient condition for Assumption 2-ii to hold is that (T1, T0) ⊥ (Y1, Y0, D1, D0), meaning that the measurement errors are independent
of the potential outcomes and potential treatments. If this stronger condition holds then q = E (T0)/E (T1 − T0), but we do not require this.
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Let pd = E (Td | C) and define q by:

q =
p1

p1 − p0
(5)

By definition, p1 is the probability that a complier would have their treatment correctly observed

if they were assigned the true treatment D = 1 (i.e., the probability that a complier would have

T = 1 if they were assigned D = 1). Similarly, p0 is the probability that a complier would have their

treatment incorrectly observed (meaning T = 1) if they were assigned the true treatment D = 0.

Assumption 2-iii ensures that the denominator of q is nonzero, so q is finite. Define λ by:

λ=
cov (Y T, Z)
cov (T, Z)

=
E (Y T | Z = 1)− E (Y T | Z = 0)

E (T | Z = 1)− E (T | Z = 0)
(6)

Theorem 1. Let Assumptions 1 and 2 hold. Then:

λ= E [qY1 + (1− q)Y0 | C] (7)

Proof. See Appendix A.1.

Elements of theorem 1, and results related to theorem 1, appear in some earlier work, including

Ura (2015) and references therein. Our primary novelty will be in how we make use of these

relationships. There are two ways in which a mismeasured T could differ from the true D: either T

might be zero when D is one (i.e., a treated person can be mismeasured as untreated) or T might

be one when D is zero (i.e., an untreated person can be mismeasured as treated). The third and

fourth possibilities, corresponding to cases that are not mismeasured, are when D and T both equal

zero or both equal one. To make use of theorem 1, assume we observe two different mismeasures

of treatment, called T a and T b. These could be, for instance, two proxies or two different estimates

of D.

Recalling that pd = E (Td | C), let pa
d = E

�

T a
d | C

�

and pb
d = E

�

T b
d | C

�

, where T a
d and T b

d are the

potential outcomes associated with treatments T a and T b. Similarly, define qa, qb, λa, λb, and our

MR-LATE estimator as follows:

qa =
pa

1

pa
1 − pa

0

, qb =
pb

1

pb
1 − pb

0

,

λa =
cov (T aY, Z)
cov (T a, Z)

, λb =
cov

�

T bY, Z
�

cov (T b, Z)
, and MR-LATE = λa −λb

This corollary follows immediately.

Corollary 1. Let Assumption 1 hold, and let Assumption 2 hold with T = T a and with T = T b. Then

MR-LATE =
�

qa − qb
�

E [Y1 − Y0 | C] =
�

qa − qb
�

LAT E (8)

Corollary 1 has some immediate implications, which are:
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Corollary 2. Let Assumption 1 hold, and let Assumption 2 hold with T = T a and with T = T b.

Then MR-LATE equals LATE when qa − qb = 1. A sufficient condition for MR-LATE to equal LATE is

pa
0 = pb

1 = 0.

The fact that MR-LATE equals LATE when pa
0 = pb

1 = 0 follows from equations (8) and (5).

More generally, MR-LATE provides a good approximation to LATE when pa
0 and pb

1 are close to zero.

Having pa
0 = 0 means that, among compliers, the probability that T a

0 = 1 is zero, so all compliers

who have D = 0 must also have T a = 0. So pa
0 = 0 if, among compliers, the treatment measure T a

only has one kind of measurement error, never mistaking the actually treated as untreated, even if

it is frequently wrong about mistaking the actually untreated as treated. More generally, pa
0 will be

close to zero if T a rarely mistakes the treated as untreated.

Having pb
1 = 0 is a little more peculiar, since it says that all compliers who have D = 1 must also

have T b = 0. This means that, among compliers, it is not T b but 1− T b that only has one kind of

measurement error, never mistaking the actually untreated as treated, even if it is frequently wrong

about mistaking the actually treated as untreated.

A simple summary is this: having MR-LATE equal LATE requires that D − T a never equals one

and D−T b never equals zero. And having MR-LATE be a good approximation to LATE requires that

D− T a and D− T b rarely equal one and zero, respectively. It is also possible that Corollary 1 could

be used for set identification, in particular, if follows immediately that MR-LATE signs LATE when

0< qa − qb, and MR-LATE bounds LATE when 0≤ qa − qb ≤ 1.

The estimation of λa−λb and hence of MR-LATE is extremely simple. Assume we have iid obser-

vations of the vector
�

Yi, Zi, T a
i , T b

i

�

for individuals i = 1, ..., n. Then consider a linear instrumental

variables regression of Yi T
a
i on a constant and on T a

i , using as instruments a constant and Zi. Let

the estimated coefficient of T a
i in this regression be bλa. Similarly, let bλb be the estimated of coef-

ficient of T b
i in a linear instrumental variables regression of Yi T

b
i on a constant and on T b

i , again

using as instruments a constant and Zi. MR-LATE is then just the difference between the estimated

coefficients of treatment in these two 2SLS regressions.

3.2 Illustrative Example

Define the indicator function I (·) to equal one if its argument is true, and zero otherwise. Suppose

that D is determined by a threshold crossing model, so D = I (R∗ ≥ e), meaning that an individual is

treated if and only if some variable R∗ exceeds a random threshold e. In our empirical application,

R∗ will be the wife’s share of resources (in percentage terms) spent on adults in a household, and

treatment D is defined as the wife having relatively high control of household resources.

Suppose we do not observe R∗ correctly (either because of measurement error, or because it’s

estimated using some model, which might itself be misspecified). Instead, what we observe is a

variable R, with R= R∗+ ε where ε is some unknown random measurement error, or estimation or
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specification error. Assume e and ε are independent of Z and R∗.6

Let κa and κb be two constants chosen by the researcher, with κa > κb, and define treatment

measures T a and T b by

T a = I (R≥ κa) and T b = I
�

R< κb
�

.

Note that R≥ κa implies R∗ ≥ κa − ε so, by construction,

pa
0 = Pr (R∗ ≥ κa − ε | R∗ < e)

Therefore, if κa is larger than the maximum value that ε + e can take on, then pa
0 = 0. More

generally, pa
0 is near zero if the chance that ε + e is greater than κa is small. The intuition here

is straightforward: An individual is untreated, having D = 0, when the true R∗ is small. So if we

define T a to equal one only when the observed or estimated R is very large, then the probability

of having T a = 1 when D = 0 is very small, or zero, meaning that pa
0 is near or equal to zero, as

required.

We could guarantee that pa
0 is zero by taking κa to be infinite (or just greater than the largest

value that R can take on). But then pa
1 = Pr (R∗ ≥ κa − ε | R∗ ≥ e) would also equal zero, and having

pa
0 = pa

1 violates Assumption 2-iii. More generally, we have a tradeoff, in that the larger κa is, the

more likely pa
1 is to be close to or equal to zero, but also, the larger κa is, the less informative T a is as

a measure of treatment (e.g., the lower is the correlation between T a and the true D). Equivalently,

we want qa to be as close to one as possible, which ideally means choosing a moderate value of κa,

to both make pa
0 small and pa

1 large. This tradeoff will be visible in our Monte Carlo analysis.

A comparable construction applies to T b, where

pb
1 = Pr

�

R∗ < κb − ε | R∗ ≥ e
�

so pb
1 = 0 if κb is less than the minimum value that ε + e can take on, and pb

1 is near zero if the

chance of ε + e being less than κb is small.

Point identification, where MR-LATE equals the true LATE in this example, requires that ε + e

be bounded from both above and below, and that κb and κa are chosen to lie outside these bounds

(but still within the range of R∗ and R). In some contexts, we may have sufficient information to

know these bounds, e.g., the threshold e might be an observable policy variable, and the measure-

ment error ε might be rounding errors of known maximum possible magnitude.7 In our empirical

application, where R∗ is the wife’s resource share, we cannot be certain that our choices of κb and

κa will point identify LATE, but we can choose large enough values to be confident that pa
0 and pb

1

are at least close to, if not equal to, zero.

The estimation of MR-LATE in this application is as described at the end of the previous section,
6The assumption that e and ε are independent of Z and R∗ is not necessary. We only assume this here to simplify the exposition. Specifically,

we provide probabilities pa
0 and pb

1 that apply to the whole population, not specifically conditioning on compliers. If e or ε correlate with Z
or R∗, then the correct expressions for pa

0 and pb
1 will need to condition on compliers, and will therefore be more complicated, though the

corresponding intuition regarding identification would be the same.
7For example, if the observed R equals R∗ rounded to the nearest integer, then |ε | ≤ 1/2. More generally, if R is reported interval data, then

|ε | is bounded by half the length of the largest interval.
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taking T a = I (R≥ κa) and T b = I
�

R< κb
�

. It is interesting to contrast this with ordinary LATE

estimation. In this context, one would typically construct T = I (R≥ c), where c is one’s best guess

of the midpoint of ε + e, thereby constructing T to be as close as possible to the true unknown

D. But estimation of LATE using this T in place of the true unknown D would be typically be

substantially biased. The problem with replacing the unknown D with the known T in an ordinary

LATE estimation is that compliers who have R close to c are precisely those who are most likely to

be misclassified. An alternative would be to apply Ura (2015) to obtain bounds on LATE using this

T . However, our MR-LATE estimator is likely to be more informative than Ura’s bounds, because

we exploit the additional information contained in having, and making use of, the two mismeasures

T a and T b, instead of just one measure T .

A final question is, when we don’t know bounds for ε + e, how should the practitioner choose

κa and κb? One possibility is to make use of distributional assumptions and other available infor-

mation. For example, the threshold e could be a policy variable, or lie in some range set by theory.

If R is estimated, then one could choose κa and κb to contain a 95% or 99% confidence region

of ε, thereby accounting for estimation error (though not specification error). Alternatively, if the

difference between R is R∗ is measurement error, then usable distribution data might be available

from a validation sample.

3.3 Monte Carlo Simulations

In this section, we provide Monte Carlo experiments to check finite sample properties of our esti-

mator. In our data generating process (DGP), true and measured treatment is determined as in the

above illustrative example, so

D = I (R∗ ≥ e) and R= R∗ + ε

where the econometrician observes D and R, but not R∗, ε, or e. We let R∗ depend linearly on a

covariate X , an instrument Z , an unobserved random component S, and a random error U , so

R∗ = c +αX + βZ + γS + U .

We let e = 0, so D = I (R∗ ≥ 0). This is without loss of generality, because random variation in e is

observationally equivalent to variation in U and ε.

We construct unobserved potential outcomes Y0 and Y1, and the corresponding observed out-

come Y , as

Y0 = 0.5+ X + S + V0

Y1 = 1.5+ X + S + V1

Y = (1− D)Y0 + DY1

11



where V0 and V1 are additional random unobserved errors. The presence of the unobserved random

component S in determining both treatment D and potential outcomes Y0 and Y1 makes treatment

endogenous. By construction, the average treatment effect equals one.

The exogenously determined variables, errors, and parameter values in our simulations are set

as follows.


















































X ∼ N(0, 1), S ∼ N(0,0.1), Z = 1(∼ U(0,1)> 0.9)

(ε, V0, V1)∼ N(0,Ω)

Ω=









σ 0 0

0 1 0

0 0 1









α= 0.1, β = 0.1, γ= 0.1, c = 0.4, σ = 0.1

These parameter values are chosen to simulate a situation that resembles our empirical application.

We also consider drawing the measurement error ε from bounded (truncated normal) distributions,

where the support of ε is constrained to lie in the range from −k to k for varying choices of k. When

k = 0, then ε is identically zero, meaning that R equals R∗. So in the case when k = 0, there is no

measurement error, and the observed treatment indicator T in that case equals the true treatment

indicator D.

Define T = I (R≥ 0). MR-LATE does not depend on this T , but if one were to ignore the mea-

surement error in R, one would apply the usual LATE estimator using T in place of the unobserved

D. To calculate MR-LATE we let T a = I (R≥ κa) and T b = I
�

R< κb
�

where κa = κ and κb = −κ,

for varying choices of the constant κ.

We compare three different estimators. One is an ordinary least squares (OLS) regression of Y

on a constant, T , and X , with the estimated coefficient of T being the OLS estimate of the treatment

effect. Second is this same regression, but estimated using linear two stage least squares (2SLS),

where Z is the instrument for T . The estimated 2SLS coefficient of T in this regression corresponds

to the usual LATE estimator, which ignores the measurement error in T . Third is our MR-LATE

estimator, which we obtain as follows: First, we regress Y T a on a constant, T a, and X , using 2SLS

where Z is the instrument for T a. Then do the same using T b in place of T a. Letting bλa and bλb be

the estimated 2SLS coefficients of T a and T b, respectively, the MR-LATE estimate is then bλa − bλb.

Table 1 sets out our first simulation results. For these simulations, we bound ε, and assuming the

bound k is known to the econometrician, we set κ = k. So in this set of simulations for any k MR-

LATE point identifies LATE. The Table reports results for three different values of k: 0, 5, and 10. In

the case where k = 0, the observed treatment T is not mismeasured, so in that case 2SLS consistently

estimates LATE, and in that case MR-LATE is numerically identical to LATE8. Having k equal 5 and

10 corresponds roughly to 10% and 20% of observations being misclassified, respectively.

The DGP process is simulated 10,000 times, each using a sample size of 10,000. In Table 1,

when the measurement error is zero (k = 0), both LATE and MR-LATE are identical and almost
8More generally, one can readily check that if T a = D and T b = 1− D, then MR-LATE becomes identical to the standard LATE estimator.
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Table 1: OLS vs 2SLS vs MR-LATE when ε is bounded at κ

True value: E[Y1|C]− E[Y0|C] = 1.500 - 0.500 = 1.000

k = 0 k = 0.05 k = 0.10

OLS 2SLS MR-LATE OLS 2SLS MR-LATE OLS 2SLS MR-LATE

E[Y1|C] 1.507 1.500 1.490 1.420 1.515 1.500 1.342 1.560 1.507
E[Y0|C] 0.492 0.500 0.491 0.593 0.485 0.483 0.686 0.440 0.480
T 1.017 0.999 0.999 0.826 1.030 1.017 0.656 1.120 1.027
sd 0.084 0.098 0.098 0.018 0.104 0.084 0.020 0.117 0.092
Bias 0.017 -0.001 -0.001 -0.174 0.030 0.017 -0.344 0.120 0.027
MSE 0.007 0.010 0.010 0.030 0.012 0.007 0.118 0.028 0.009

Notes: Results are based on 10,000 simulations of 10,000 observations each. We simulate various measurement errors and the availability of a strong and exogenous
instrument. When k = 0 means that there is no measurement error. Whereas, measurement error with k = 0.05 (k = 0.10) means that we estimate R that are on average
+/- 5% (+/- 10%) of the true value. This means that roughly 10% (20%) of sample is wrongly observed to either treatment or control.

Figure 1: MR-LATE performances as the sample grows

Table 2: Optimal k when ε is not bounded

True value: 1.000

MR-LATE

OLS 2SLS k = 0 k = 1 k = 5 k = 10 k = 13 k = 25

T 0.596 1.272 1.272 1.237 1.143 1.095 1.089 1.127
sd 0.021 0.152 0.152 0.146 0.130 0.122 0.121 0.161
Bias -0.404 0.272 0.272 0.237 0.143 0.090 0.089 0.127
MSE 0.164 0.097 0.097 0.078 0.037 0.024 0.023 0.042

Notes: Results are based on 10,000 simulations of 10,000 observations each.
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unbiased, while OLS shows a small upward bias due to the endogeneity of the treatment. With

larger k, OLS is substantially downward biased, as the standard attenuation bias from regressor

mismeasurement dominates the bias due to endogeneity. In contrast, the table shows that 2SLS

is upward biased when k > 0. This is also typical in cases of regressor mismeasurement, because

the 2SLS denominator term cov(T, Z) is closer to zero than the corresponding denominator in the

case without measurement error, cov(D, Z). Our MR-LATE estimator performs much better than

the other estimators, with far lower bias and far lower mean squared error.

In Figure 1 we continue to set κ = k, and examine how the MR-LATE estimator performs as k

(and hence also our bounds κa = κ and κb = −κ) increases, and as the sample size increases. As

discussed in the previous section, the larger these bounds are, the less informative are the treatment

measures T a and T b. Equivalently, the larger the bounds need to be to guarantee that pa
0 and pb

1

are near zero, the noisier are the estimates of bλa and bλb, and so the greater is the amount of data

one needs to obtain accurate estimates. This can be seen in Table ??, which examines k equal to

1, 10, and 25. We find that MR-LATE has an upward bias (far smaller than the bias in OLS and

standard 2SLS LATE estimation, as the previous table shows), that increases with k and decreases

with sample size.

Finally, Table 2 sets out the simulation results in the case where ε has unbounded support. In

this case, MR-LATE cannot consistently estimate the LATE (and the standard LATE estimator is also

inconsistent). The variance of ε is also set relatively large here, resulting in T that misclassifies

more than 20% of the observations of the true D. The DGP process is again simulated 10,000 times

using a sample size of 10,000. As before, we compare our estimator to OLS and 2SLS. For the MR-

LATE estimator, we report six different values of the threshold parameter κ: 0, 1, 5, 10, 13, 25. We

again have the tradeoff that the larger κ is, the closer pa
0 and pb

1 are to zero and hence the closer

the limiting value of MR-LATE is to LATE, but also, the larger κ is, the further bλa and bλb are to their

limiting values at any given sample size. In Table 2 we find the best value of κ (in terms of bias and

mean square error) is around 13. In real data, one would not be able to search for optimal bounds

κa and κb in this way. However, these numerical results are reassuring in showing that as long as κ

is not chosen to be far too small, one obtains a good approximation to the true LATE (much better

than the standard 2SLS LATE estimator) over a wide range of possible choices of bounds.

4 Empirical Application: Women’s Intra-household Power and

Family Health

We apply our estimator to study the impact of women’s intra-household empowerment on a variety

of measures of family members health status in India. The outcomes Y that we consider are, for

each adult in the household, body mass index (BMI), an indicator for being underweight, and an

indicator for being anemic. We also consider outcomes for children in the household: height for

age, weight for age, and an indicator for having been vaccinated against one or more diseases.
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We define a household to be treated, having D = 1, if the mother has control of a substantial

fraction of the household’s resources. Formally, we define D = I (R∗ ≥ e) where R∗ is the percentage

of resources spent on adults in the household that the mother controls, and e is a threshold that

could vary across households for unobserved reasons. There exists a number of measures of control

over resources, including self reports of power, and observations of income or purchases by women,

but these measures are quite crude and imprecise. We will therefore employ a structural model that

makes use of both economic theory and detailed household expenditure data to construct R, an

estimate R∗. Then, recognizing that any such structural model can suffer from both specification

and estimation errors, we apply our MR-LATE estimator.

Unlike the structural model for resource control, which is grounded in economic theory, we

do not take a stand on how mother’s power D determines health outcomes Y . One could imagine

many possible mechanisms linking the two. For example, mothers may have different priorites than

fathers regarding expenditures on health related goods, or circumstances that contribute to women

having greater power might also affect the health outcomes of family members. Previous research

discussed earlier provides indirect evidence of linkages between D and Y , by establishing, e.g.,

how variables that we believe affect women’s power correlate with health outcomes of wives and

children. Our goal is therefore to directly quantify treatment effects of D on Y , using a causal rather

than structural model, exploiting plausibly exogenous variation in an instrument that correlates with

D.

4.1 Estimating the Unobserved Treatment and MR-LATE

We apply the model developed by Dunbar et al. (2013) (hereafter DLP) to obtain and estimate R,

the relative resource shares of mothers, which we then use to construct the estimated treatment

indicators T a and T b required for the MR-LATE estimator.

We consider three types of individuals in households: t ∈ { f , m, c} indicating father, mother, and

children. Our data will only include households that consist of one mother, one father, and one to

four children aged 0 to 14. The model assumes mothers, fathers, and children each have their own

utility function over goods, and the household uses some unmodeled bargaining process or social

welfare function to allocate resources to each member in a Pareto efficient way. Let M denote the

total expenditures or resources of the household, i.e., the household’s total budget.

Let ηt denote the resource share of member t, that is, ηt is the fraction of total household

resources M that are spent on goods consumed by member t. Then R∗ = 100 ∗ η f /
�

η f +ηm

�

,

which is an objective measure of the mother’s power, or control over resources, relative to the

father. We will therefore let R be an estimate of 100 ∗η f /
�

η f +ηm

�

.

A key difficulty in observing or calculating each ηt , and hence R, is that most goods in a house-

hold can be shared or consumed jointly to some extent by household members. For example, home

heating is almost completely shared, while cooking fuel is jointly consumed just among household

members who are eating together. Other goods, like food, are consumed individually, but it is dif-
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ficult to track exactly who eats what within the household. To overcome the difficulties raised by

these measurement issues, DLP first considers private, assignable goods, one each for the father,

mother, and children. What makes a good assignable is that it appears in just one (known) person’s

utility function, and what makes each a good private is that it is not shared or consumed jointly.

Let scalars w f , wm, and wc denote the household’s budget shares (fraction of total expenditures

M) of women’s clothes, men’s clothes, and children’s clothes, respectively. These are the private,

assignable goods. We can NOT just use w f and wm as measures of η f and ηm, because men and

women may have very different tastes for clothes. For example, the wife might consume far fewer

household resources than her husband, but still consume more clothes, because she derives far more

utility from clothing consumption than her husband does.

What DLP do instead is to identify and estimate the separate clothing Engel curve for each

household member. Each Engel curve gives that person’s clothing demand wt as a function of the

total resources they control, ηt M . They then invert each Engel curve to reveal what each person’s

total resource share ηt must have been.

Let X = (X1, ..., XK) denote a vector of observable attributes of households and their members.

Household attributes X may affect the preferences of each household member and may also affect

the household’s bargaining process or social welfare function, and as a result may directly affect

resource shares. Let eZ denote a vector of distribution factors. These are defined as variables which

may affect resource shares but which do not affect individual preferences. Resource shares are

generally a function of both X and eZ , so let ηt(X , eZ) denote the resource share function of member

t. Adapting DLP, in an Appendix we derive household demand functions of private assignable goods

of the form

wt = ηt(X , eZ)[δt (X ) + (lnM + lnηt(X , eZ))β (X )] for t ∈ { f , m, c} (9)

for some functions β (X ) and δt (X ) (note that the demand functions for other goods that aren’t

private and assignable are more complicated, but are not required to estimate the resource shares).

DLP prove that the functions β (X ), δt (X ), and ηt(X , eZ) are identified in this model. Some

collective household identification results require the presence of distribution factors eZ . DLP does

not, but the presence of distribution factors can improve the precision of estimates, since they move

resource shares separately from other functions.

For our empirical application, we assume the functions β (X ), δt (X ), and ηt(X , eZ) are all linear

in their arguments. In particular, we specify

ηt(X , Z) = θt0 + θt1X1 + ...+ θtK XK + θtZ Z . (10)

Equation (10) shows that, in our data we only have one distribution factor eZ , which equals our

treatment effect instrument Z .9 For each t ∈ { f , m, c} we append an error term to equation (9),

9It should not be surprising that the resource shares ηt contains the instrument Z , since the instrument should correlate with treatment, and
treatment is determined by the resource shares. However, one might be concerned that by including Z as a distribution factor in our estimate
of each ηt , we might be artificially inducing spurious correlation. We therefore also provide estimates that do not include Z in the model for
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yielding a three equation system that we estimate using non-linear Seemingly Unrelated Regressions

(SUR).10 Let bθ denote the estimate of each θ parameter.

We have two different datasets for our empirical analysis. One, the NSS Consumer Expenditure

Survey (NSS), contains detailed consumption data for estimating the above model. The other is

the third round of the National Family Health Survey (NFHS), which reports the health outcomes

we use for our causal treatment effects estimation. Both data sets contain observations of X and

Z . For each family member t of the household containing each individual i that we draw from the

NFHS data, we use the estimates bθ obtained from the NSS data to construct NFHS estimates of each

resource share by

bηt i = bθt0 + bθt1X1i + ...+ bθtK XKi + bθtZ Zi.

Then R for each individual i in the NFHS is given by

Ri = 100 ∗ bη f i/
�

bη f i + bηmi

�

.

Our goal is to estimate a LATE for a range of health outcomes Y . We separately consider health

outcomes for mothers, fathers, and children. So, e.g., when i is a child and Yi is an indicator of

whether the child has been vaccinated, the treatment effect we wish to estimate is the increase in

probability (among compliers) of the child being vaccinated, where treatment Di, empowerment of

the child’s mother, is defined as having R∗i ≥ ei, even though her true relative resource share R∗i is

unobserved.

To apply our MR-LATE estimator to the NFHS data, we let T a
i = I (Ri ≥ κa) and T b

i = I
�

Ri < κ
b
�

,

where (for a few different values of κ) κa = c + κ, κb = c − κ, and c is the median value of the

distribution of R. The MR-LATE estimator then consists of first linearly regressing Yi T
a
i on a constant,

T a
i , and X i, using 2SLS where the instruments are a constant, Zi, and X i. Then do the same using T b

i

in place of T a
i . Letting bλa and bλb be the estimated 2SLS coefficients of T a and T b, respectively, the

MR-LATE estimate is then bλa − bλb. We repeat this procedure using a few different health outcome

measures Yi each for men, women, and children, and a few different values of κ.

In the special case of κ = 0, MR-LATE becomes numerically identical to the standard Imbens

and Angrist (1994) 2SLS LATE estimator, using Ti = I (Ri ≥ c) in place of the unobserved Di =

I
�

R∗i ≥ ei

�

. However, this κ= 0 case will only be consistent if there is no measurement or estimation

error in Ri and if ei exactly equals c. As summarized earlier, for values of κ > 0, we have generally

that larger values of κ are more likely to yield consistent estimates of LATE, but values of κ that are

too large will tend to be uninformative, yielding very imprecise estimates.

each ηt . DLP show that the resource shares remain identified even without distribution factors.
10The non-linear SUR is iterated until the estimated parameters and the covariance matrix settle. The result is asymptotically equivalent to

maximum likelihood with multivariate normal errors.

17



4.2 Data

We implement our empirical analysis using the 2011-2012 India National Sample Survey (NSS)

of Consumer Expenditure (68th round) and the 2005-2006 India National Family Health Survey

(NFHS). Table A2 in the Appendix presents some descriptive statistics.

NSS data. The 2011-2012 NSS Consumer Expenditure Survey contains detailed data on

household expenditure and details about household socio-economic characteristics, and other par-

ticulars of household members.11 We select households consisting of a mother, a father, and one to

four children. Among other items, households are asked to report how much they spent on cloth-

ing, bedding, and footwear. Given the detailed breakdown of clothing expenditure, it is possible to

identify the expenditure on items of clothing that can be assigned to women, men, and children,

thereby allowing us to construct expenditures on private, assignable clothing for each.12 Table A1

in the Appendix contains some descriptive statistics. For clothing items, the survey entry refers to

expenditures that occurred in the past 365 days. For simplicity, we convert annual into monthly fig-

ures. Budget shares w f , wm, and wc are computed and reported as percentages of total household

expenditures M . The vector of characteristics X contains variables that characterize each individual

(age and gender), the household (wealth, religion, caste, number of children), and the environment

of the household (fixed effects and time trends). Specifically, we include dummies for the number

of children, the fraction of female children, women’s age and the gender age gap, the average age

of children, a measure of household health, regional dummies and indicator variables for being

Hindu, Buddhist, Sikh or Jain, for living in rural areas, for female and male higher education, and

for being of schedule caste, scheduled tribe, or other backward classes. When focusing on children,

we also include the child’s age and gender.

NFHS data. The 2005-2006 National Family Health Survey provides a range of health in-

dicators for women (aged 15 to 49), men (aged 15 to 54), and for children born in the 5 years

prior to the date of interview. The survey also contains a range of socio-economic characteristics of

individuals and households X , comparable to those we observe in the the NSS data. We consider

the NHFS women, men and children datasets separately, constructing a few different outcome Y

measures for each. The health measures for each include anthropometrics like BMI and measures

of anemia.13 For children, we also observe vaccination records, which we use to construct an ad-
11We select a sample of households with one woman and one man above age 15, and up to 4 children under 15. Moreover, we exclude

households with no women or no men above 15 years of age, households in the top 1 percent of expenditure, households with a female head
and households with head or head of household wife under 15. Finally, we exclude households reporting to have performed any ceremony
during the month prior to the survey, as unusual purchases of clothing items and non-standard expenditure patterns may occur for festivities
and ceremonies.

12As in Calvi (2016), we define expenditure on women assignable clothing as the sum of expenditures on saree, shawls, chaddar, and kurta-
pajamas suits for females. For men assignable clothing, we combine expenditure on dhoti, lungi, kurta-pajamas suits for males, pajamas, and
salwar. For children, we use expenditure on school uniforms and infant clothing. Tommasi and Wolf (2016) shows that when the data exhibit
relatively flat Engel curves in the consumption of the private assignable goods, the DLP model is weakly identified and induces high variability
and an implausible pattern in least squares estimates of resource shares. However, the advantage of following Calvi (2016) is that households
in her dataset have a large variation in the consumption of private assignable goods, which facilitates identification. Hence the problem of
weak identifiability in this context is very mild and negligible.

13Body Mass Index (BMI) is defined as weight in kilograms divided by height in meters squared. A cut-off point of 18.5 is used to define
thinness or acute undernutrition, and a BMI of 23 or above indicates overweight or obesity for Asian Indians (Shiwaku et al., 2004). Anemia,
instead, is a condition in which the number of red blood cells or their oxygen-carrying capacity is insufficient. Although its primary cause is

18



ditional children’s health outcome Y defined as whether a child has ever received any vaccine to

prevent diseases.14

Hindu Succession Act and its Amendments. We exploit changes in the Indian inheritance

law to construct a plausibly unconfounded instrumental variable Z . A woman’s right to inherit land

and other property is often claimed to play a significant role in determining women’s position within

the household (World Bank, 2014).

Inheritance rights in India differ by religion and, for most of the population, are governed by

the Hindu Succession Act (HSA). The HSA was first introduced in 1956 and applied to all states

other than Jammu and Kashmir and only to Hindus, Buddhists, Sikhs, and Jains. Thus, it did not

apply to individuals of other religions, such as Muslims, Christians, Parsis, Jews, and other mi-

nority communities.15 It aimed at unifying the traditional Mitakhshara and Dayabhaga systems,

which were completely biased in favor of sons (Agarwal, 1995), and established a law of succes-

sion whereby sons and daughters would enjoy (almost) equal inheritance rights. Gender inequal-

ities, however, remained even after the introduction of the HSA. On one hand, in case of a Hindu

male dying intestate, i.e., without leaving a will, all his separate or self-acquired property, devolved

equally upon sons, daughters, widow, and mother. On the other hand, the deceased’s daughters

had no direct inheritance rights to joint family property, whereas sons were given direct right by

birth to belong to the coparcenary.16 In the decades following the introduction of the HSA, state

governments passed amendments that equalized inheritance rights for daughters and sons (Kerala

in 1976, Andhra Pradesh in 1986, Tamil Nadu in 1989, and Maharashtra and Karnataka in 1994).

A national-level ratification of the amendments occurred in 2005. These amendments only applied

to Hindu, Buddhist, Sikh or Jain women, who were not yet married at the time of the amendment.

Both the NSS and the NFHS datasets contain information about women’s year of birth, state of

residence, and religion. We use this information to construct the variable Z defined as the women’s

likely eligibility to the HSA amendments. Specifically, Z is defined as the interaction between an

indicator variable for being Hindu, Buddhist, Sikh or Jain, and an indicator variable equal to one

if a woman was 14 or younger at the time of the amendment in her state and to zero if she was 23

or older. We use 14 and 23 as they are the 10th and 90th percentiles of women’s age at marriage

in the NFHS sample.17 As shown in Table A1, in both samples about 80 percent of the sample is

iron deficiency, it coexists frequently with a number of other causes, such as malaria, parasitic infection, and nutritional deficiencies; 90 percent
of anaemia sufferers live in developing countries. Prevalence of anaemia in South Asian countries is among the highest in the world (Kaur
(2014)).

14We specifically observe whether a child received a BCG vaccine (against tuberculosis), one to three DPT vaccines (against diphtheria,
pertussis, and tetanus), and one to four polio vaccines (at birth and one to three years after).

15While most laws for Christians formally grant equal rights from 1986, gender equality is not the practice, as the Synod of Christian Churches
has being arranging legal counsel to help draft wills to disinherit female heirs. The inheritance rights of Muslim women in India are governed
by the Muslim Personal Law (Shariat) Application Act of 1937, under which daughters inherit only a portion of what the sons do (Agarwal,
1995).

16All persons who acquired interest in the joint family property by birth are said to belong to the coparcenary. The Hindu Women’s Right to
Property Act of 1937 enabled the widow to succeed along with the son and to take a share equal to that of the son. The widow was entitled
only to a limited estate in the property of the deceased with a right to claim partition. A daughter, however, had virtually no inheritance rights.

17This variable is therefore fully determined by each woman’s religion, year of birth and state. Our choice to focus on women’s eligibility
(rather than their actual exposure) to the inheritance rights amendments has a double motivation. First, while the NFHS data include infor-
mation about each woman’s year at marriage and is therefore suitable for the identification of women who are Hindu, Buddhist, Sikh or Jain
women and who were not yet married at the time of the amendment, the NSS does not. Second, as exposure to the HSA amendments is
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Hindu, Buddhist, Jain, or Sikh. However, the percentage of households where the woman is eligible

to the HSA amendments is much higher in the NSS. This is mainly due to the timing of the surveys,

2011-2012 for the NSS and 2005-2006 for the NFHS, as the former includes a larger number of

women who were unmarried at the time of the national amendment in 2005.

5 Empirical Results

In this section, we present summary statistics of the estimated resource shares and treatment, to-

gether with our estimates of LATE. A more detailed discussion of the structural estimates can be

found in Appendix A.4.

Table 3 contains descriptive statistics for the predicted resource shares obtained in the two sam-

ples and for the implied recovered treatment, T . These statistics take into account the empirical

distributions of the covariates (Z , X1, ..., XK), as they average over all the values of demographic

factors observed in the population. That the minima and maxima of estimated resource shares

do not fall outside the zero to one range for any person in any household in the two samples is

reassuring. We find that the standard deviations of resource shares are larger for men than for

women, suggesting that the covariates induce more variation for fathers than for mothers. In both

samples, the resource share for mothers is lower than that for fathers. On average, mothers receive

about 30 percent of household resources, fathers about 45 percent, and children about 14 percent

per child. As the number of children increases, the total allocation to children increases, but the

amount allocated per child decreases.18

The mean and median of R, i.e. the percentage of parents’ resources devoted to the mother,

are equal to approximately 40 percent in both data sets (note that we report R as a percentage).

We define the threshold c to be the median of R, but our results remain robust to using the mean

instead. Mother’s are allocated more resources than fathers, meaning R > 50, in less than 20

percent of families, almost all of which (95 percent) resides in North-East States.19 In the NFHS

data, women who have T = 1 (and hence R ≥ c) have an average R of 50, while those having

T = 0 have an average R of 29. So while we can’t know these statistics for the truly treated and

untreated groups, in our estimated groups the treated women have considerably higher relative

resources than the untreated.

Table A3 in the Appendix contains the estimation results of the first stage of the MR-LATE 2SLS

estimates. The first stage of the 2SLS is reported separately for women, men, and children. House-

hold level and individual level covariates are included in all specifications. Even conditioning on

these several sources of unobserved heterogeneity, the instrument Z is positively and significantly

correlated with T a and T b (and with T , corresponding to the κ= 0 case). To check that this is not

just due to including Z as a distribution factor in the estimation of R, we re-estimated the NSS data

determined by each woman’s year of marriage, we focus on an intent-to-treat effect and thereby mitigate concerns about potential endogeneity
of treatment (see for instance Heath and Tan (2014)).

18These numbers are in line with the results obtained in Dunbar et al. (2013) using data from the Malawi Integrated Household Survey
(IHS2).

19This is consistent with the presence of a number of matrilineal societies and cultures in these regions (Khasi and Garo societies, for example).
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Table 3: Estimated Resource Shares and Woman’s Power

Obs. Mean St. Dev. Median Min. Max.

NSS Sample :
bηm 15,166 0.2934 0.0743 0.3088 0.0582 0.5149
bη f 15,166 0.4425 0.1041 0.4471 0.1107 0.7457
bηm + bη f 15,166 0.7359 0.0795 0.7390 0.4721 1.0000
bηc 15,166 0.2641 0.0795 0.2610 0.0000 0.5279
bηc/c 15,166 0.1438 0.0667 0.1285 0.0000 0.4474
bηm

bηm+bη f
(%, R) 15,166 40.3358 11.3217 41.4200 8.7477 82.3064

NFHS Sample:
bηm 21,111 0.2785 0.0748 0.2897 0.0784 0.4866
bη f 21,111 0.4439 0.1247 0.4621 0.0975 0.7359
bηm + bη f 21,111 0.7224 0.0878 0.7235 0.4647 0.9450
bηc 21,111 0.2776 0.0878 0.2765 0.0550 0.5353
bηc/c 21,111 0.1406 0.0739 0.1182 0.0389 0.4906
bηm

bηm+bη f
(%, R) 21,111 39.4617 13.0189 38.9682 10.6291 80.8655

Note: Household level data.

Table 4: Women’s Health (MR-LATE Estimates)

Body Mass Index Pr(Underweight) Pr(Anemic)

MR-LATE (κ= 0) 8.8732 -0.7053 -0.6545
(3.6625) (0.3687) (0.3380)

MR-LATE (κ= 1) 9.6218 -0.5360 -0.8026
(13.0836) (0.4972) (0.4413)

MR-LATE (κ= 2) 3.1229 -0.4236 -0.6407
(12.1546) (0.3951) (0.3532)

MR-LATE (κ= 3) -1.2389 -0.1798 -0.4294
(13.6987) (0.3799) (0.3238)

MR-LATE (κ= 4) -1.2235 -0.2971 -0.7134
(22.9874) (0.5245) (0.4600)

MR-LATE (κ= 5) 0.4192 -0.3743 -0.6876
(17.3918) (0.4342) (0.3726)

Observations 15,377 15,377 14,286
Mean Dependent Variable 20.96 0.2914 0.1547

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include individuals
and household controls, state, cohort, state-religion fixed effects and state specific linear time
trends.

21



Table 5: Men’s Health (MR-LATE Estimates)

Body Mass Index Pr(Underweight) Pr(Anemic)

MR-LATE (κ= 0) 2.5079 -0.1101 -0.0866
(3.5123) (0.4039) (0.2931)

MR-LATE (κ= 1) -1.4072 0.1819 0.0712
(9.5555) (0.3804) (0.3009)

MR-LATE (κ= 2) 2.0069 0.0299 0.4204
(19.8799) (0.5787) (0.4730)

MR-LATE (κ= 3) 1.3038 0.0064 0.2789
(17.2462) (0.4959) (0.3957)

MR-LATE (κ= 4) -14.9379 0.2367 0.2939
(24.2349) (0.6336) (0.5134)

MR-LATE (κ= 5) -3.5089 -0.0216 1.5520
(86.5589) (2.0748) (1.9992)

Observations 7,659 7,659 6,839
Mean Dependent Variable 21.18 0.2341 0.1040

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include individuals
and household controls, state, cohort, state-religion fixed effects and state specific linear time
trends.

Table 6: Children’s Health (MR-LATE Estimates)

Height-for-age Weight-for-age Pr(Any
(z-score) (z-score) Vaccination)

MR-LATE (κ= 0) -2.8202 -0.5039 0.7435
(2.9568) (2.3122) (0.3131)

MR-LATE (κ= 1) 0.2533 2.8110 0.5429
(4.5152) (3.6549) (0.8840)

MR-LATE (κ= 2) -5.1043 -1.5836 1.2409
(7.2577) (6.3758) (1.8334)

MR-LATE (κ= 3) -28.0820 -31.0721 2.7979
(14.9145) (12.2598) (4.1717)

MR-LATE (κ= 4) -49.4842 -63.0806 12.9107
(41.3689) (35.8424) (11.9549)

MR-LATE (κ= 5) 4.1816 2.8315 -0.5882
(4.4997) (4.0924) (1.5719)

Observations 10,452 10,452 12,109
Mean Dependent Variable -1.668 -1.782 0.9039

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include in-
dividuals and household controls, state, cohort, state-religion fixed effects and state specific
linear time trends.
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model omitting Z (that is, setting the coefficient θtZ to zero) and reran the first stage of the MR-

LATE 2SLS estimates, to confirm that Z remains highly correlated with T a, T b, and T . We thereby

confirm that we do not suffer from a weak instrument problem.20

Our MR-LATE estimates are reported in Tables 4, 5 and 6. We provide estimates taking κ = 0,

which corresponds to no measurement error, and κ= 1,2, 3,4, and 5, which can be consistent given

a maximum of 2, 4, 6, 8, and 10 percent measurement error, respectively. As expected, increasing

κ generally reduces the precision of the estimates. The MR-LATE estimates show positive and sig-

nificant effects of a women’s intra-household power on her own health. Being highly empowered

greatly increases her expected body mass index and reduces her likelihood to be underweight or

anemic.21 We do not find a significant of a women’s intra-household power on her children’s height-

for-age or weight-for-height, but we do find that children with highly empowered mothers are more

likely to be vaccinated.22 We also find no significant or systematic effect of a wife’s intra-household

power on her husband’s health outcomes.

These results suggest that policies aimed at empowering women’s bargaining position within

households leads to improvements in overall family health. In particular, exogenously increasing her

control of resources appears to substantially improve her own health, and increases the vaccination

rates of her children, without damaging her husband’s health.

5.1 Additional Results: Alternative Treatment Proxies

In the Appendix, we describe the model of household behavior that gives rise to R, our estimate of

the relative resource share percentage R∗. In this model, R∗ is a measure of the wife’s bargaining

power relative to her husband. Here, we empirically compare our structurally-motivated measure of

bargaining power with some more typical proxies of power, namely, women’s self-report of control

over various household decisions.

Our NFHS data contains questions of the form, “Who makes decisions about [X] in your house-

hold?" Specifically, we focus on decisions about the woman’s own health care, large household

purchases, visits to family or relatives, and purchases for daily needs. Figure 2 displays the clear

positive relationships between women’s reported participation in household decisions and our esti-

mates of R. More details are given in Tables A7 and A8 in the Appendix. These findings empirically

corroborate the theory underlying our structural model of treatment: the larger is R, the higher is

her decision making and bargaining powers within the household.

An alternative to our estimation of LATE would be to use R∗ or R itself as a continuous treatment

measure. One might then try to estimate the effect of a marginal increase in R∗ or R, instead of

focusing on the binary treatment effects of D. One advantage of discretizing the way we do is to

reduce the impact of measurement, estimation, and specification errors. Even without the use of
20This is also confirmed by the Wald tests for joint significance of the instruments, both included and excluded.
21As a rough guide to magnitudes, using the above estimates of the mean of R for the treated and untreated groups, and assuming the effect

is linear, these estimates would imply that if a women’s relative resource share increased by 1 (out of 100), then her body mass index would
increase by an average of 0.44, and her probability of being underweight or anemic would decreases by 3.5 and 3.2 percent, respectively.

22While we do not present the detailed breakdown by vaccinations here, this effect is primarily driven by children’s likelihood to be vaccinated
against polio, and not by BCG or DPT vaccinations.
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(A) Woman’s Health (B) Visits to Family and Relatives

(C) Small Household Purchases (D) Large Household Purchases

Figure 2: Structurally Recovered Bargaining Power and Household Decision Making

24



our MR-LATE estimator, the estimated binary treatment indicator T will frequently equal the true

D, even when the underlying continuous variable R is always mismeasured, never equalling the true

R∗. Taking advantage of separate T a and T b treatment estimates, our MR-LATE can further reduce

and sometimes eliminate the impact of mismeasurement.

A second reason for focusing on a binary treatment is that this is sometimes a more appropriate

model of behavior. For making discrete decisions (e.g., whether to vaccinate a child or not), what

matters might be simply who has the most power, rather than the amount by which one’s power

exceeds the other. This is analogous to voter models, where what determines the outcome is who

has the majority, not how big the majority is or how strongly each voter feels.

We do not know if health decisions are more appropriately modeled as functions of D or as

smooth functions of R∗. So for comparison to our MR-LATE estimates, we also consider linearly

regressing Yi on a constant, on Ri, and on X i, using 2SLS where Zi is the instrument for Ri. We have

no reason to expect that the true relationship of Y to R∗ and X is linear, or that estimation errors

in R relative to R∗ satisfy the assumptions of classical measurement error. But if these assumptions

do hold, then the estimated coefficient of R in this regression will consistently estimate the average

marginal effect of R∗ on Y .

As before, Yi is a measure of the health status of individual i, X i is a vector of covariates that

include variables that characterize the individual and the household, and the instrument Zi is again

the mother’s eligibility for the HSA amendments. Tables A4, A5 and A6 in the Appendix contain the

estimation results. These results generally agree with our MR-LATE estimates. We again find posi-

tive and significant effects of marginal increases in women’s relative power on her body mass index,

her likelihood to be underweight or anemic, and on her children’s likelihood of being vaccinated,

and has no systematic effect on health outcomes for her husband or for other (anthropometric)

measures of the health of her children.

6 Conclusion

We apply a novel two-step approach to study the effect of intra-household women’s empowerment

on the health status of family members in India. Our model looks at the effect on family member

health outcomes Y of a treatment D, defined as a wife having relatively high intra-household bar-

gaining power, as measured by an unobservable relative resource share measure R∗. In a first step,

we rely on a structural model to recover R, an estimate of R∗. We use this continuous measure R to

construct estimated treatment indicators T a and T b. Due to measurement, estimation, or specifi-

cation errors in the structural model for R, neither T a nor T b will equal (or consistently estimate)

the true treatment indicator D.

We propose a new mismeasurement robust LATE estimator, called MR-LATE, that uses both T a

and T b to obtain consistent estimates of LATE given an outcome Y and an instrument Z , despite

the fact that the true treatment indicator D is unobserved and cannot be consistently estimated.

Assuming the instrument Z satisfies the usual properties for LATE estimation, we apply MR-LATE
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to study the causal effect of the unobserved D on Y . In our application, we construct our estimated

treatment indicators T a and T b from an underlying estimated continuous measure R. But this

is not necessary to apply our estimator. What we mainly need to have MR-LATE equal the true

LATE is just that D − T a never equals one and D − T b never equals zero. Having MR-LATE be a

good approximation to LATE mainly requires that D − T a and D − T b rarely equal one and zero,

respectively.

Overall, we find that policies aimed at increasing women’s bargaining power within households

(such as strengthening their rights to inherit property) should lead to improvements in overall

family health. In particular, exogenously increasing a wife’s control of resources within a household

appears to substantially improve her own health, and increases the vaccination rates of her children,

without damaging her husband’s health, despite his corresponding descreased share of household

resources.

More generally, our analysis highlights the advantages of combining structural and causal fea-

tures in conducting empirical analysis. Our MR-LATE estimator specifically accounts for the fact

that structural estimation generally suffers from multiple errors, including specification errors. An

advantage of our procedure is that it allows us to focus on causal effect of direct economic interest

and relevance, even if those treatments cannot be directly observed. This may be particularly useful

for constructing causal tests and benchmarks of economic theories, since we can directly focus on

treatments that are motivated by theory, instead of calculating the treatment effects of less relevant

proxies that happen to be directly reported.
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A Appendix

A.1 Proof of Theorem 1

Substituting equation (1) into equation (4) gives

T = T0 + (T1 − T0)D = T0 + (T1 − T0) [(1− Z)D0 + Z D1] (A1)

Multiplying equation (2) by equation (A1) gives

Y T = [Y0 + (Y1 − Y0) [(1− Z)D0 + Z D1]] [T0 + (T1 − T0) [(1− Z)D0 + Z D1]]

Using assumption 2-i, this makes

E (Y T | Z = 1) = E [[Y0 + (Y1 − Y0)D1] [T0 + (T1 − T0)D1]]

= E [T0Y0 + (Y1T1 − Y0T0)D1]

where the last equality uses D2
1 = D1. Similarly,

E (Y T | Z = 0) = E [T0Y0 + (Y1T1 − Y0T0)D0]

So

E (Y T | Z = 1)− E (Y T | Z = 0) = E [(Y1T1 − Y0T0) (D1 − D0)]

Given the no defiers assumption, either D1−D0 = 0 or D1−D0 = 1, and someone is a complier if and

only if they have D1−D0 = 1. The probability of being a complier is Pr (D1 − D0 = 1) = E [D1 − D0].

We therefore apply the standard LATE logic:

E (Y T | Z = 1)− E (Y T | Z = 0) = E [(Y1T1 − Y0T0) (D1 − D0)]

= E [Y1T1 − Y0T0 | D1 − D0 = 1]Pr (D1 − D0 = 1)

= E (Y1T1 − Y0T0 | C) E (D1 − D0) .

Let td = E (Td | C). Then, using Assumption 2-ii, the above further simplifies to

E (Y T | Z = 1)− E (Y T | Z = 0) = E (t1Y1 − t0Y0 | C) E (D1 − D0) .

Replacing Y with one gives

E (T | Z = 1)− E (T | Z = 0) = E (t1 − t0 | C) E (D1 − D0)

= (t1 − t0) E (D1 − D0) .
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And therefore
E (Y T | Z = 1)− E (Y T | Z = 0)

E (T | Z = 1)− E (T | Z = 0)
=

E (Y1t1 − Y0t0 | C)
t1 − t0

which equals equation (7), thereby proving the Theorem.

A.2 Treatment indicators when the error term ε is bounded: A graphical

illustration

Assume that supp (ε) ⊂ (−κ,κ) ⊂ supp (R∗ − c). Then it follows that for T = T a we have pa
1 = 1 with

pa
0 = 0, and for T = T b we have pb

1 = 0 and pb
0 = 1, and so λa−λb = E [Y1 − Y0 | C]. Given corollary

2, LATE can be point identified. Figure A1 provides a graphical representation of this. If there was

no measurement error, the true treatment and control groups would coincide with the respective

observed groups. Hence, all individuals on the green line on the right hand side of c, would have a

R larger than the threshold value; otherwise they would be on the green line on the left hand side

of c. In case of bounded measurement error, we would need to define two treatment indicators, T a

and T b, that guarantee the conditions qa = 1 and qb = 0 that we have just pointed out. As we can

see, by knowing the bound κ, we are able to define a T a such that for all individuals on the blue

line on the right hand side of c + κ, pa
1 = 1 for sure. That is, with probability 1, these individuals,

who are observed in the treatment group, belong to the true treatment group. Following the same

reasoning, we are able to define also a T b such that for all individuals on the red line on the left

hand side of c −κ, pb
0 = 0 for sure. That is, with probability 0, these individuals, who are observed

in the control group, belong to the true control group.

Figure A1: Illustrative Example
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A.3 Derivation of household demand equations of private assignable goods

Here we summarize the derivation of our model, based on Browning et al. (2013) and Dunbar

et al. (2013), for estimating resource shares from the demand equations for private assignable

goods. Let the household be comprised of T types of individuals indexed t = 1, ..., T . Recall M is

the total expenditures of the household, i.e., the household’s total budget, X denotes a vector of

observable attributes of households and their members, eZ denotes a vector of distribution factors,

and Q1,...,QT are quantities of each assignable good consumed by household member t.

Let P denote the vector of market prices for all of the commodities (goods and services) that the

household buys. t There is also a vector S of quantities of other goods the household purchases.

Unlike Q1,...,QT , the goods S can be shared and hence jointly consumed to some extent.

Start by assuming the household chooses what to consume using the program

max
Q1,...,QT ,S1,...,ST

eV
�

V1 (Q1, S1, X ) , ..., VT (QT , ST , X ) | eZ , X , P/M
�

(A2)

such that S =
T
∑

t=1

St and M = P ′SA(X )S +
T
∑

t=1

PtQ t

where Vt (Q t , St , X ) for t = 1, ..., T is the utility function of household member t, and the function eV

describes the social welfare function or bargaining process of the household, which exists because

the household is pareto efficient.

Household attributes X may affect preferences, and so appear inside the utility functions Vt .

These X variables may also affect the bargaining process or social welfare function given by eV (by,

e.g., affecting the relative bargaining power of members), and as a result may affect resource shares.

We have scalars Q1,...,QT that are the quantities of private, assignable goods, where member t

has quantity Q t in his or her utility function, and does not have Q` for all ` 6= t in his or her utility

function. Each member’s utility function also depends on a quantity vector of other goods St . The

market prices of these goods are given by the vector PS. The square matrix A(X ) is what is called

by BCL a linear consumption technology function over goods. Having A(X ) differ from the identity

matrix is what allows goods in S to be partly shared and/or consumed jointly. In particular, A(X )S

equals the quantity vector of these goods that the household actually purchases, while S =
∑T

t=1 St

is total quantity vector of these goods that the household consumes. These quantities are not the

same due to sharing and joint consumption. The smaller an element of A(X )S is relative to the

corresponding element of S, the more that good is shared or jointly consumed. See BCL for details.

The vector of all prices P includes, PS, the vector of prices of the elements of S, and P1,...,PT , the

prices of the private assignable goods Q1,...,QT .

What makes the vector eZ be distribution factors (observed and unobserved, respectively) in the

model is that they appear only as arguments of eV , and so only affect the allocation of resources

within the household, but not the tastes of the individual household members.

Applying duality theory and decentralization welfare theorems, it follows from Browning et al.
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(2013) that the household’s program above is equivalent to a program where each household mem-

ber t chooses what to consume using the program

max
Q t ,St

Vt (Q t , St , X ) such that ηt(P, M , X , eZ)M = P ′SA(X )St + PtQ t (A3)

where ηt = ηt(P, M , X , eZ) is the resource share of member t, that is, ηt is the fraction of total

household resources M that are allocated to member t. This member then chooses quantities Q t

and the vector St subject to a linear budget constraint. The vector PSA(X ) equals the vector of

shadow prices of goods S. These shadow prices for the household are lower than market prices,

due to sharing. Being private and assignable, the shadow price of each Q t equals its market price

Pt . The shadow budget for member t is eMt = ηt M . As shown in BCL, the resource share functions

ηt(P, M , X , eZ) for each member t in general depend on the function eV and on the utility functions

V1...,VT .

BCL show that the more bargaining power a household member has (i.e., the greater is the

weight of his or her utility function in eV ), the larger is their resource share ηt . Resource shares ηt

all lie between zero and one, and resource shares sum to one, that is,
∑T

t=1ηt = 1.

As in DLP, we will not work with the household demand functions of all goods (which, as shown

in BCL, can be rather complicated). Instead, we only make use of the demand functions of the

private assignable goods Q t , which are simpler. Since equation (A3) is an ordinary utility function

maximized under a linear budget constraint (linear in shadow prices and a shadow budget), the

solution to equation (A3) is a set of Marshallian demand equations for Q t and St .

Let ht

�

eMt , P, X
�

be the Marshallian demand function of person t ’ for their private assignable

good, that is, ht

�

eMt , P, X
�

is the quantity person t in a household with member attributes X would

demand of their assignable good if they had a budget equal to their shadow budget eMt and faced the

within-household shadow price vector that corresponds to the market price vector P. Since each Q t

is private and assignable, the quantity Q t that member t chooses to consume equals the quantity of

this good that the household buys. It therefore follows from the above that the household’s quantity

demand of each private assignable good Q t is given by

Q t = ht

�

ηt(P, M , X , eZ)M , P, X
�

for t = 1, ..., T. (A4)

The interpretation of this equation is that the total resources allocated to member t are ηt M (the

share ηt of total household budget M) and the function ht is that member’s Marshallian demand

function for this good. Since the good is private and assignable, the household’s demand for the

good just equals that member’s own demand for the good. It is important to note that only private

assignable goods have the simple form given by equation (A4). The demand functions for other

goods are much more complicated, as in BCL.

Leteht

�

eMt , P, X
�

= Ptht

�

eMt , P, X
�

/ eMt denote the Marshallian demand function written in budget

share form. That is, eht

�

eMt , P, X
�

is the fraction of the total budget eMt that is spent on the good t.
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DLP assume data are single price regime (that is, Engel curve data), so P is a fixed constant that

can be dropped from the model. They provide empirical and theoretical evidence that ηt does not

depend on M .23 This allows them to rewrite equation (A4) as wt = ηt(X , eZ)eht

�

ηt(X , eZ)M , X
�

for

t = 1, ..., T , where wt = PtQ t/M is the household’s budget share of good t, that is, the fraction of the

household’s total budget M that is spend on buying Q t . DLP provide a class of functional forms for

the utility functions eV that make eht linear in the log of its first argument, so wt = ηt(X , eZ)[δt (X )+

(lnM + lnηt(X , eZ))β (X )] for some functions δt (X ) and β (X ). The assumption that β (X ) does not

depend on t is what DLP call the SAP (similar across people) assumption.

A.4 Structural Estimation Details

Table A9 reports the estimated coefficients of the covariates (X1, ...Xn, Z) for mother’s and father’s

resource shares.24 The model is estimated using the NSS sample. The most important results in this

Table are threefold.

First, the higher the number of children, the lower is a mother’s resource share. This is holds

true for fathers as well, but at a much lesser extent. The fraction of female children is positively

related to η f : if all children are girls, women’s resource shares are 1.1 percentage points larger.

This result is in line with the findings in Dunbar et al. (2013) and can be attributed to the fact

that adult women may be willing (or expected) to forgo a higher fraction of household resources

in presence of male children, due to son preference. Although the coefficients are not statistically

significant, the higher is women’s age the lower is the fraction of household’s total expenditure

devoted to women.

Second, household socio-economic characteristics play an important role, too. In particular, be-

ing part of Scheduled Caste, Scheduled Tribes, and other disadvantaged social classes is associated

with higher women’s bargaining power. The same holds true for residing in the North-East states,

which is consistent with the presence of a number of matrilineal societies and cultures in these re-

gions (Khasi and Garo societies, for example). In contrast, North Indian women and women living

in rural areas seem to have a much lower bargaining power. Finally, mothers’ resource shares are

higher in households belonging to Scheduled Castes, Scheduled Tribes and other backward classes,

while fathers’ resource shares are larger in families of Hindu, Jain, Sikh and Buddhist religions.

Finally, the estimated model confirms the importance of the HSA amendments (HSAAs) in shap-

ing women’s bargaining position within the household. In households where mothers are eligible

to these reforms, their resource shares are larger.25

23Lise and Seitz (2007), Lewbel and Pendakur (2008), Bargain and Donni (2009, 2012) and DLP all use this restriction in their identification
results, and supply some theoretical arguments for it. De Rock et al (2013) and Menon, Perali and Pendakur (2013) provide empirical support
for this restriction.

24The estimated coefficients of the covariates for the preference parameters α̃ f ood , αt , t = f , m, c, β̃ f ood , and β are available upon request.
25These results align with the findings in Roy (2008) and Heath and Tan (2014) on the effects of HSAA on self-reported measures of women’s

autonomy and bargaining power. Specifically, Heath and Tan (2014) find that exposure to HSAA decreases the probability that a woman has
no say in household decisions (by 6.6 percentage point) and increases the probability that a woman can go alone to the market (by 8.2 p.p.),
to a health facility (by 6.9 p.p.) and to places outside of the village (by 8.3 p.p.).
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A.5 Additional Tables

Table A1: NSS Consumer Expenditure Data and NFHS Household Data

NSS Sample NFHS Sample

Obs. Mean Median St. Dev. Obs. Mean Median St. Dev.

Total Expenditure (Rupees) 15,175 7,332.6730 6,002.0000 5,927.5110
Woman’s Assignable Clothing Budget Share 15,166 1.2225 1.0617 0.9891
Man’s Assignable Clothing Budget Share 15,166 1.4191 1.1826 1.2636
Children’s Assignable Clothing Budget Share 15,166 0.7466 0.5882 0.8257

I(1 child) 15,175 0.2655 0.0000 0.4416 24,746 0.2485 0.0000 0.4322
I(2 children) 15,175 0.4397 0.0000 0.4964 24,746 0.3761 0.0000 0.4844
I(3 children) 15,175 0.2129 0.0000 0.4094 24,746 0.2265 0.0000 0.4186
I(4 children) 15,175 0.0818 0.0000 0.2741 24,746 0.1489 0.0000 0.3560
Fraction of Female Children 15,175 0.4388 0.5000 0.3660 24,746 0.4725 0.5000 0.3619
I(Hindu, Buddhist, Jain, Sikh) 15,175 0.7860 1.0000 0.4102 24,742 0.7614 1.0000 0.4263
Woman’s Age 15,175 32.8019 32.0000 6.5469 24,743 30.2858 30.0000 7.2378
Gender Age Gap 15,175 4.5094 5.0000 5.9424 24,708 5.8047 5.0000 4.9976
Children’s Avg. Age 15,175 7.6991 8.0000 3.4585 24,746 6.4912 6.5000 3.5270
Wealth Index 15,175 0.3827 0.3695 0.1729 24,746 0.3808 0.3478 0.2327
I(SC, ST, OBC) 15,175 0.7242 1.0000 0.4470 23,714 0.6834 1.0000 0.4652
I(Woman’s Higher Education) 15,175 0.1897 0.0000 0.3921 24,746 0.0820 0.0000 0.2744
I(Man’s Higher Education) 15,175 0.2789 0.0000 0.4485 24,746 0.1282 0.0000 0.3343
I(Rural) 15,175 0.5934 1.0000 0.4912 24,746 0.5451 1.0000 0.4980
I(North India) 15,175 0.2659 0.0000 0.4418 24,746 0.3082 0.0000 0.4617
I(East India) 15,175 0.1842 0.0000 0.3876 24,746 0.1616 0.0000 0.3681
I(North-East India) 15,175 0.1593 0.0000 0.3659 24,746 0.2016 0.0000 0.4012
I(South India) 15,175 0.2799 0.0000 0.4489 24,746 0.2017 0.0000 0.4013
I(West India) 15,175 0.1108 0.0000 0.3139 24,746 0.1269 0.0000 0.3329
I(HSA Eligible) 15,175 0.2946 0.0000 0.4559 22,122 0.0566 0.0000 0.2312

Notes: Budget shares are multiplied by 100. Woman’s assignable clothing includes expenditures on saree, shawls, chaddar, and kurta-pajamas suits for females;
man’s assignable clothing includes expenditures on dhoti, lungi, kurta-pajamas suits for males, pajamas, salwar, and cloth for coats, trousers, and suit and for shirt,
pajama, kurta, and salwar; children’s assignable clothing includes expenditures on expenditure on school uniforms and infant clothing. The household wealth index
is obtained using principle component analysis. I(Higher Education Women) and I(Higher Education Men) are indicator variable for higher education (diploma or
college) completed by at least one woman or man in the household. North India includes Jammu & Kashmir, Himachal Pradesh, Punjab, Chandigarh, Uttaranchal,
Haryana, Delhi, Rajasthan, Uttar Pradesh, and Madhya Pradesh. East India includes West Bengal, Bihar, Jharkhand, Orissa, A & N Islands, and Chattisgarh. North-East
India includes Sikkim, Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, and Tripura. South India includes Karnataka, Tamil Nadu, Andhra Pradesh,
Kerala, Lakshadweep, and Pondicherry. West India includes Gujarat, Goa, Maharashtra, Daman & Diu, and D & N Haveli.
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Table A2: NFHS Individual Data

Women (age 15 to 49) Men (age 15 to 54) Children (age 0 to 5)

Obs. Mean St. Dev. Obs. Mean St. Dev. Obs. Mean St. Dev.

BMI (kg/m2) 18,149 20.8923 3.9301 9,366 21.1331 3.4932
I(BMI ≤18.5) 18,149 0.2980 0.4574 9,366 0.2431 0.4290
I(Anemic) 16,941 0.1599 0.3665 8,607 0.1565 0.3634
Avg. Birth Gap (months) 15,503 34.6275 17.4954
Weight (kg) 11,789 10.6885 3.2873
Height (cm) 11,761 84.0554 13.927
I(BCG) 12,814 0.7666 0.4230
I(DPT) 12,749 0.7375 0.4400
I(Polio) 12,860 0.9002 0.2997
I(Any Vaccination) 12,875 0.9095 0.2869

Fraction of Female Children 18,865 0.4711 0.3551 9,895 0.7564 0.4293 48,683 0.4794 0.3240
I(Hindu, Buddhist, Jain, Sikh) 18,865 0.7782 0.4155 9,895 29.8708 5.8405 48,683 0.7615 0.4262
Woman’s Age 18,865 29.9274 5.8851 9,895 5.6242 3.7887 48,683 30.5198 5.7048
Gender Age Gap 18,865 5.8685 4.4122 9,895 6.4730 3.5123 48,683 5.8044 4.3917
Children’s Avg. Age 18,865 6.4880 3.4559 9,895 0.3792 0.2273 48,683 6.8046 3.1937
Wealth Index 18,865 0.3771 0.2328 9,895 0.7092 0.4541 48,683 0.3440 0.2242
I(SC, ST, OBC) 18,865 0.6774 0.4675 9,895 0.0820 0.2743 48,683 0.7091 0.4542
I(Woman’s Higher Education) 18,865 0.0804 0.2719 9,895 0.1307 0.3371 48,683 0.0539 0.2257
I(Man’s Higher Education) 18,865 0.1287 0.3348 9,895 0.5325 0.4990 48,683 0.0985 0.2980
I(Rural) 18,865 0.5525 0.4972 9,895 0.3075 0.4615 48,683 0.5960 0.4907
I(North) 18,865 0.3362 0.4724 9,895 0.1187 0.3235 48,683 0.3630 0.4809
I(East) 18,865 0.1807 0.3847 9,895 0.2281 0.4196 48,683 0.1837 0.3873
I(North-East) 18,865 0.2230 0.4162 9,895 0.2226 0.4160 48,683 0.2190 0.4136
I(South) 18,865 0.1446 0.3517 9,895 0.1230 0.3284 48,683 0.1253 0.3310
I(West) 18,865 0.1157 0.3198 9,894 0.4359 0.4959 48,683 0.1089 0.3116
I(HSA Eligible) 15,966 0.0847 0.2785 8,078 0.1378 0.3447 42,495 0.0635 0.2438

Child’s Age 43,910 7.5695 4.8679
I(Child is Female) 48,683 0.4845 0.4998

Notes: Age is defined in years for men and women, and in months for children.
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Table A3: First Stage Estimates (MR-LATE 2SLS, κ= 0)

1( bηm
bη f +bηm

≥ c)

Women (15-59) Men (15-54) Children (0-5)

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

1(HSAA Eligible) (Z) 0.0684 0.142 0.0676 0.141 0.0236 0.0937
(0.0152) (0.0213) (0.0178) (0.0249) (0.0169) (0.0400)

Observations 15,966 15,966 8,078 8,078 12,815 12,815
Mean Dependent Variable 0.4891 0.4891 0.5276 0.5276 0.5341 0.5341

Note: NFHS data. Bootstrap standard errors in parentheses. Median of the distribution of R used as threshold. All
specifications include individuals and household controls. Specifications in columns (2), (4) and (6) include state,
cohort, state-religion fixed effects and state specific linear time trends.

Table A4: Women’s Health (continuous R)

Body Mass Index Pr(Underweight) Pr(Anemic)

2SLS 2SLS 2SLS

Woman’s Relative Power (R) 1.347 -0.107 -0.0993
(0.552) (0.0546) (0.0513)

Observations 15,377 15,377 14,286
Mean Dependent Variable 20.96 0.2914 0.1547

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include individuals
and household controls, state, cohort, state-religion fixed effects and state specific linear time trends.

Table A5: Men’s Health (continuous R)

Body Mass Index Pr(Underweight) Pr(Anemic)

2SLS 2SLS 2SLS

Woman’s Relative Power (R) 0.376 -0.0165 -0.0130
(0.547) (0.0598) (0.0443)

Observations 7,659 7,659 6,839
Mean Dependent Variable 21.18 0.2341 0.1040

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include individuals
and household controls, state, cohort, state-religion fixed effects and state specific linear time trends.

Table A6: Children’s Health (continuous R)

Height-for-age Weight-for-age Pr(Any Vaccination)
(z-score) (z-score)

2SLS 2SLS 2SLS

Woman’s Relative Power (R) -0.739 -0.132 0.195
(0.761) (0.597) (0.0873)

Observations 10,452 10,452 12,109
Mean Dependent Variable -1.668 -1.782 0.9039

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include individuals and
household controls, state, cohort, state-religion fixed effects and state specific linear time trends.
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Table A7: Structural and Self-reported Bargaining Power

I(Woman Participate in Final Decisions on)

Her Health Large Household Small Household Visits to Family
Purchases Purchases and Relatives

Women’s Power R 0.00793 0.0152 0.0110 0.0137
(0.00212) (0.00220) (0.00210) (0.00203)

Observations 18,850 18,848 18,849 18,865

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include individuals and house-
hold controls, state, cohort, state-religion fixed effects and state specific linear time trends.

Table A8: Structural and Self-reported Bargaining Power

I(Woman Participate in Final Decisions on)

Her Health Large Household Small Household Visits to Family
Purchases Purchases and Relatives

Highly Empowered Woman (T) 0.00793 0.0152 0.0110 0.0137
(0.00212) (0.00220) (0.00210) (0.00203)

Observations 18,850 18,848 18,849 18,865

Note: NFHS data. Bootstrap standard errors in parentheses. All specifications include individuals and household controls,
state, cohort, state-religion fixed effects and state specific linear time trends.
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Table A9: Determinants of Mother’s and the Father’s Resource Share (bθm and bθ f )

Mother’s Resource Share Father’s Resource Share
(bηm) (bη f )

1(# Kids=1) 0.0444 0.0226
(0.0250) (0.0387)

1(# Kids=2) 0.0155 0.00845
(0.0217) (0.0359)

1(# Kids=3) 0.0206 0.00618
(0.0221) (0.0367)

Fraction of Female Children 0.0353 -0.0155
(0.0172) (0.0206)

Age Gap 0.0391 -0.0861
(0.137) (0.215)

Woman’s Age -0.490 -0.0896
(1.944) (2.276)

Age Gap2 -0.288 -0.0888
(0.419) (0.619)

Woman’s Age2 1.039 -0.758
(4.788) (5.557)

Age Gap3 0.836 -0.285
(1.506) (2.344)

Woman’s Age3 -0.565 1.094
(3.792) (4.321)

Children’s Avg. Age -0.278 0.429
(0.210) (0.274)

1(Hindu, Buddhist, Jain, Sikh) -0.0226 0.0482
(0.0177) (0.0227)

1(Sch, Caste, Sch. Tribe, OBC) 0.0536 -0.0568
(0.0184) (0.0206)

Wealth Index -0.0505 0.154
(0.0448) (0.0624)

1(Highly Educated Woman) 0.0210 -0.00688
(0.0179) (0.0241)

1(Highly Educated Man) 0.0148 0.00823
(0.0146) (0.0222)

1(Rural) -0.0389 -0.0177
(0.0160) (0.0229)

1(North) -0.0939 0.0671
(0.0333) (0.0384)

1(East) 0.00953 -0.0115
(0.0384) (0.0420)

1(North-East) 0.0461 -0.194
(0.0453) (0.0451)

1(South) 0.00990 -0.0390
(0.0336) (0.0367)

1HSAA Eligible 0.0314 -0.0101
(0.0105) (0.0133)

Constant 0.360 0.463
(0.260) (0.303)

N 15,166 15,166

Note: NSS data. Robust standard errors in parenthesis.
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