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Abstract

Time varying volatility causes substantial heteroskedasticity in return predictability
regressions, making OLS estimates less efficient than least squares estimates weighted
by ex-ante return variance (WLS-EV). In small sample simulations, I show that using
WLS-EV instead of OLS results in large efficiency gains, fewer false negatives, and
avoids the bias associated with ex-post weighting schemes. Using WLS-EV changes
several important conclusions based on OLS estimates: traditional predictors such as
the dividend-to-price ratio perform better in- and out-of-sample, whereas WLS-EV
estimates of the predictability afforded by the variance risk premium, politics, the
weather, and the stars are not significant.
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1. Introduction

Most return predictability regressions in financial economics take the form:

rt+1 = Xt · β + εt+1, (1)

β̂ = arg min
β

T∑
t=1

(rt+1 −Xt · β)2 , (2)

where Xt is a vector of predictor(s) that includes a constant. These regressions are typically

estimated using ordinary least squares (OLS, equation (2)) with standard errors adjusted for

any autocorrelation and heteroskedasticity in εt+1. Asymptotically, this approach results in

point estimates and standard errors for β that are unbiased.

Despite their popularity, OLS estimates of return predictability regressions are inefficient,

meaning β is estimated with more error than is necessary. In fact, OLS is only the most

efficient linear unbiased estimator when the εt+1 have no autocorrelation or heteroskedasticity.

If we know the covariance matrix of the εt+1, Σ, then generalized least squares (GLS) is the

most efficient linear unbiased estimator and should be used instead of OLS. However, the

problem in most fields of economics is that Σ is unobservable and difficult to estimate. This

view is summarized well by:

“Many studies . . . do not take advantage of the potential efficiency gains of GLS,

for reasons of convenience and because the efficiency gains may be felt to be

relatively small.” (Cameron and Trivedi, 2005, page 81)

In this paper, I provide and implement a method for applying GLS to return predictability

regressions that is convenient to use, results in large efficiency gains, and yields substantially

different conclusions about frequently-studied return predictors than OLS. The reason GLS is

so effective in return predictability regressions is that, unlike most fields in economics, finance

has excellent estimates for both the conditional variance of returns and the autocorrelation

of returns that inform us about the covariance matrix Σ. Specifically, there is an entire
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subfield of finance devoted to finding good estimates of the conditional variance of returns

σ2
t ≡ Vart(rt+1). There is also strong economic reasoning and empirical evidence that, as

long as the return windows do not overlap, there is little to no autocorrelation in returns. In

this case, the GLS estimator becomes:

β̂WLS-EV = arg min
β

T∑
t=1

(
rt+1 −Xt · β

σt

)2

, (3)

a weighted least squares estimator where the observations are weighted by ex-ante return

variance 1
σ2
t
. I abbreviate this procedure WLS-EV, and implement it using estimates of return

variance σ̂2
t suggested by the literature.

It is important to note WLS-EV downweights volatile observations econometrically and

not economically. It estimates the same linear relation:1

Et(rt+1) = a+ b · xt, (4)

just more efficiently by downweighting volatile observations. This is not to be confused with

economically distinct alternatives, including a regression of rt+1

σt
on xt and a constant (a

linear relation between Sharpe Ratio and xt) or rt+1

σt
on xt

σt
and a constant (a linear relation

between Sharpe Ratio and scaled predictors). The WLS-EV estimator in Equation (3) is

equivalent to an OLS regression of rt+1

σt
on xt

σt
with the constant scaled to 1

σt
, making WLS-EV

easy to implement. However, unlike economically distinct alternatives, volatile observations

have the same linear relation between xt and E(rt+1) given in Equation (4), they are just

downweighted econometrically to produce more efficient estimates of a and b.

To illustrate the efficiency gains from using WLS-EV instead of OLS, I simulate samples

designed to mimick the return predictability settings typically studied in the literature. In

samples mimicking those used for the dividend-to-price ratio and variance risk premium,

WLS-EV estimates are 24% and 28% less volatile, respectively, than OLS estimates.

1To illustrate economically distinct alternatives, I break Xt into a constant and a vector of predictors xt.
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The source of these efficiency gains is downweighting observations that occur in extremely

volatile times. For example, in October 2008 the VIX index peaked at 80%, indicating next-

month returns had a risk-neutral volatility of around 23% – more than four times the median

level. In such extreme instances of volatility, realized returns are particularly noisy proxies

for expected returns, making the signal-to-noise ratio low and the OLS weighting inefficiently

high. Scaling the εt+1 by σt “standardizes” them in units of ex-ante standard deviation and

therefore makes them comparable in terms of information about expected returns.

My simulations also demonstrate that using WLS-EV improves small-sample hypothesis

testing in two ways. First, using WLS-EV produces fewer false negatives than OLS in small

samples because the point estimates are closer to the true (significant) value and standard

errors are lower. Second, using WLS-EV procures fewer false positives than least squares

estimates weighted using ex-post volatility information, for example the“robust least squares”

approach used in Drechsler and Yaron (2011). The reason is that using ex-post volatility

information introduces a bias due to the strong correlation between realized variance and

εt+1. Because negative returns are more volatile than positive returns, negative ε have larger

magnitudes and smaller weights than positive ε. As a result, when a predictor is positively

(negatively) correlated with return variance, the coefficient estimated with RLS or any ex-

post weighting scheme will be biased upwards (downwards).

The idea of weighting return predictability regressions by ex-ante variance is not new to

the literature. Singleton (2006) discusses the econometric basis for this approach in Section

3.6.2. French, Schwert, and Stambaugh (1987) uses this procedure in the context of the

“risk-return tradeoff” regression rt+1 = a + b · σ2
t + εt+1. The GARCH-in-mean framework

estimated in Engle, Lilien, and Robins (1987) and Glosten, Jagannathan, and Runkle (1993),

as well as the MIDAS framework in Ghysels, Santa-Clara, and Valkanov (2005), are structural

approaches to incorporating conditional variance in estimating the risk-return tradeoff. I add

to this literature by documenting the size and benefits of the efficiency gains WLS-EV affords,

comparing it to alternatives, and applying it to predictors other than σ2
t .
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My primary contribution is to show WLS-EV produces three substantially different con-

clusions regarding return predictability than OLS. First, I show that using WLS-EV strength-

ens the in-sample and out-of-sample predictability afforded by the variables studied in Goyal

and Welch (2008), lowering both the asymptotic and small-sample simulated standard errors

without substantially changing the point estimates relative to OLS. For example, after ad-

justing for the Stambaugh (1999) bias, WLS-EV estimates indicate 8 of the 16 predictors I

test significantly predict next-month returns at the 5% level, whereas OLS estimates indicate

only 2 of the 16 are significant predictors.

Using WLS-EV also consistently improves upon the out-of-sample performance of OLS.

Across 16 predictors, the average out-of-sample R2 (OOS R2 hereafter) improves for both

next-month and next-year returns, as does the average out-of-sample R2 achieved by the

Campbell and Thompson (2008) approach and the Pettenuzzo, Timmermann, and Valkanov

(2014) approach. The increase in OOS R2 afforded by WLS-EV is not driven by a few outlier

predictors, with 11 and 12 of the 16 experiencing increased OOS R2 for next-month and

next-year returns, respectively. The increase is also economically substantial, representing

between 50% and 90% of in-sample OLS R2.

Compared to other approaches to improving the out-of-sample performance of return

predictors,2 using WLS-EV has the advantage of being a minimal extension to OLS, making

it easy to understand and implement. This approach also highlights one reason out-of-sample

estimates based on OLS perform poorly: they are inefficient because they give full weight to

extremely volatile observations with low signal-to-noise ratios.

The second contribution I make to the return predictability literature is showing the

predictability afforded by proxies for the variance risk premium, documented in Bollerslev,

Tauchen, and Zhou (2009) and Drechsler and Yaron (2011), is not robust to the WLS-EV

approach. Across many alternate specifications, I find WLS-EV estimates of the relation

2For example, Campbell and Thompson (2008) and Pettenuzzo, Timmermann, and Valkanov (2014)
impose economic restrictions on return forecasts, and Johannes, Korteweg, and Polson (2014) uses Bayesian
estimates that incorporate estimation risk and time-varying volatility.
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between variance risk premia and future market returns are statistically and economically

insignificant. The insignificance of WLS-EV estimates indicate the OLS relation between

the variance risk premium and future returns arises from a few observations with extreme

values of the variance risk premium and high return volatility. As further evidence this is

the case, even OLS estimates often become insignificant when standard errors are based on

heteroskedastic simulations retaining the observed variance risk premia and return variances.

My results indicate that the empirical proxies and small sample we have do not pro-

vide compelling evidence the variance risk premium comoves with the equity premium. It

remains possible that variance risk premia are indeed related to equity risk premia in the

way described by the models in Bollerslev, Tauchen, and Zhou (2009) and Drechsler and

Yaron (2011). We are limited empirically by the 25-year history of volatility indices, a very

short sample for time-series return predictability analysis. Furthermore, even the WLS-EV

estimates are often economically quite significant, especially for US data. For these reasons,

I view the WLS-EV results as indicating we need more data before we can reach a conclusion

about the predictability afforded by proxies for the variance risk premium.

My third contribution to the return predictability literature is showing the surprising

predictability afforded by politics, the weather, and the stars, documented in Novy-Marx

(2014), is insignificant when estimated using WLS-EV. One interpretation of the evidence

in Novy-Marx (2014) is that the standard OLS methodology, when combined with sufficient

data mining, may over-reject the null hypothesis of no predictability. If this is the case, WLS-

EV can be useful as a partially-independent test of the same null hypothesis. Consistent with

the false-positive interpretation, all three of the significant market return predictors in Novy-

Marx (2014) are weakened by using WLS-EV instead of OLS, and WLS-EV indicates the

nine proposed predictors are jointly insignificant.
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2. Weighted least squares with ex-ante return variance

The weighted least squares with ex-ante return variance (WLS-EV) approach estimates

the linear regression:

rt+1 = Xt · β + εt+1. (5)

The returns rt+1 can be raw or log returns, can be overlapping or non-overlapping, and can

be adjusted for the risk-free rate or unadjusted. There can be multiple return predictors

along with an optional constant in the Xt vector.

There are two steps to estimating β in Equation (5) using WLS-EV:

1. Estimate σ2
t , the conditional variance of next-period unexpected returns εt+1.

2. Estimate β̂WLS-EV using:

β̂WLS-EV = arg min
β

T∑
t=1

(
rt+1 −Xt · β

σ̂t

)2

, (6)

where σ̂t is the empirical estimate of σt. This estimator can be implemented using any

OLS package by regressing rt+1

σ̂t
on Xt

σ̂t
. Note that, since the constant is in Xt, this OLS

regression has no constant term.

There are many different potential approaches in the literature for estimating σ2
t , the ex-ante

variance of next-period returns, any of which can be used to estimate WLS-EV.

Standard errors for WLS-EV are the same as OLS standard errors when regressing the

weighted returns rt+1

σ̂t
on the weighted constant 1

σ̂t
and regressors xt

σ̂t
. These standard errors

can be adjusted for remaining heteroskedasticity and autocorrelation using the standard

Newey and West (1987) HAC adjustment or a simulation approach I describe in Section 3.
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2.1. Estimating σ̂2
t

The estimator in Equation (6) is the perfectly-efficient GLS estimator if and only if:

Var(εt+1) = σ̂2
t , and (7)

Cov(εs, εt) = 0 ∀s 6= t. (8)

The latter condition requires that any autocorrelation in returns arises through the Xt vari-

ables, making unexpected returns uncorrelated at any lag. Rational asset pricing models

predict that, given the right Xt variables, non-overlapping returns satisfy this property. I

assume this is the case in this section, and discuss overlapping returns in Section 2.2.

The condition in Equation (7) requires that the σ̂2
t used empirically are the true variances

for future unexpected returns σ2
t . Since the true σ2

t are unobservable, I strive to find ex-

ante proxies that are as accurate as possible. Proxies based on ex-post information about

realized returns could more-accurately reflect the true variance of εt+1, but by using time

t+ 1 information they introduce a substantial bias in β̂ I discuss in Section 2.3.

I use two simple and effective proxies for conditional variance σ̂2
t , both fitted values from

regressions of realized variance on past variance and the VIX index when it is available

(starting in 1990).3 Specifically, for monthly samples pre-dating 1990, I use fitted values

from a first-stage regression of the form:

RVt+1 = a+ b · RVt + c · RVt−11,t + γt+1, (9)

where RVt is the annualized sum of squared daily log index returns in month t, and RVt−11,t

is the sum of squared daily log index returns in months t− 11 through t. For daily samples

3A Black-Scholes version of VIX, calculated for the S&P 100, is available starting in 1986, but I restrict
my attention to the model-free calculation of the VIX which is available starting in 1990.
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using post-1990 data, I use fitted values from first-stage regressions of the form:

FutRVt+1 = a+ b · FutRVt + c · VIX2
t + γt+1, (10)

where VIXt is the VIX index on day t and FutRVt is the annualized sum of squared five-

minute log S&P 500 futures returns on day t. In estimating both (9) and (10), I restrict the

intercept and coefficients to be positive so the fitted values I use for σ̂t are always positive.

Fitted values from these regressions have the advantage of being simple to compute while

still leveraging four key conclusions from the literature on return variance:

1. Variance is mean-reverting (Merville and Pieptea (1989)). I therefore include a constant

in (9) and (10) instead of assuming future variance is proportional to past variance.

2. Within-period realized variance is a better proxy for realized variance than squared full-

period returns (Merton (1980)). I therefore use within-month and within-day realized

variance as my outcome variables.

3. Past variance is a better predictor of realized variance than structural estimates from

models like GARCH (Ghysels, Santa-Clara, and Valkanov (2005)). I therefore use past

realized variance as my primary predictor.

4. When available, option-implied variance is the best variance predictor, capturing most

economically significant variation in conditional volatility (Christensen and Prabhala

(1998)). I therefore include the VIX, a model-free estimate of S&P 500 option-implied

volatility, as my only predictor other than past realized variance.

Table 1 shows estimates of Equations (9) and (10) along with other potential first-stage

regressions. For both monthly and daily realized variance, these ex-ante variables explain a

significant proportion of realized variance, with R2 between 25% and 50%, indicating WLS-

EV could provide substantial efficiency gains relative to OLS. For next-month variance, the

unconstrained intercepts and coefficients are always strictly positive, resulting in positive σ̂2
t
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without any further adjustment. For next-day variance, Columns (3), (5), and (7) of Panel

B show that when VIX2
t is included, the intercept and some fitted values become negative.

The constrained estimates in Column (4), (6), and (8) have no intercept, positive coefficients,

and suffer very little reduction in R2.

I use Columns (6) in Panel A and (7) in Panel B, which include all potential predictors,

to guide my choice of specification for computing σ̂2
t . In Panel A, only prior month and prior

year realized variance are statistically significant predictors, and as Column (5) illustrates

they combine to provide nearly all the predictability afforded by all four lags of realized

variance. For this reason, I use the more-parsimonious specification given in Equation (9) to

produce fitted values for my main ex-ante variance proxy, which I refer to as RV σ̂2
t hereafter:4

RV σ̂2
t ≡ â+ b̂ · RVt + ĉ · RVt−11,t. (11)

Similarly, only VIX2
t and FutRVt are significant incremental predictors in Column (7) of

Panel B, and so I use the specification given in Equation (10), constrained so that a ≥ 0, to

produce fitted values for VIXF σ̂2
t , my ex-ante variance proxy for post-1990 samples:

VIXF σ̂2
t ≡ â+ b̂ · FutRVt + ĉ · VIX2

t . (12)

While these ex-ante variance proxies are effective empirically, other proxies may predict

realized variance as well or even better. As discussed above, any of these can be used

in WLS-EV as long as they are constructed from ex-ante information. Fortunately, these

proxies are strongly correlated with each other, and in untabulated tests I find my results

are not sensitive to using other predictors in Table 1, MIDAS estimates following Ghysels,

Santa-Clara, and Valkanov (2005), or a variety of other proxies. As a robustness check and to

illustrate the effectiveness of a simple alternative, in some of my tests I supplement VIXF σ̂2
t

4I do not include the incrementally-insignificant RVt−2,t and RVt−5,t in the first stage regression for
parsimony and to improve out-of-sample performance.
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with VIX σ̂2
t , the fitted value from a regression with only VIX2

t as a predictor:

VIX σ̂2
t ≡ â+ b̂ · VIX2

t . (13)

Figure 1 plots RV σ̂2
t for my 1927-2013 sample, and VIXF σ̂2

t for 1990-2013, both dis-

played as annualized standard deviations. Like other conditional volatility estimates, RV σ̂t

is small and steady in normal times but spikes upwards during market downturns, particu-

larly in 1929, 1987, and 2008. These episodes have conditional return volatility higher than

50%, approximately three times the typical values between 15% and 20%. The more-recent

sample shows similar patterns but with even more extreme values during the 2008 crisis.

Together with the R2 in Table 1, the extreme movements in conditional volatility shown in

Figure 1 indicate the first-stage regressions I use to compute σ̂t capture a substantial fraction

of heteroskedasticity in returns, allowing WLS-EV to substantially improve efficiency.

2.2. Overlapping returns

To maximize power from relatively short samples, many return predictability studies use

sampling frequencies greater than their forecast horizon, resulting in overlapping returns.

The standard approach in this case is to estimate β̂ using OLS and adjust the standard

errors using the procedures suggested by Newey and West (1987) or Hodrick (1992).

To apply GLS in this setting, I rely on the insight in Hodrick (1992) that the overlapping

return predictability coefficient is isomorphic to the coefficient in a non-overlapping regression

of returns on a rolling sum of Xt. Writing log returns rt, consider a regression of next h-period

returns on Xt:

rt+1,t+h = Xt · β + εt+1,t+h (14)

⇒ β̂OLS = ET (X ′tXt)
−1ET (X ′trt+1,t+h), (15)
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where ET represents the sample average. Substituting in rt+1,t+h =
∑h

s=1 rt+s, we have:

β̂OLS = ET (X ′tXt)
−1ET

(
h∑
s=1

X ′trt+s

)
= ET (X ′tXt)

−1ET (X
′
tX t)β̂

roll
OLS, (16)

β̂roll
OLS ≡ ET (X

′
tX t)

−1ET (X
′
trt+1), (17)

X t ≡
h−1∑
s=0

Xt−s. (18)

In words, the overlapping OLS β is identical to the OLS β in a non-overlapping regression

of rt+1 on a rolling sum of Xt, scaled by matrix of constants. When Xt includes a constant

and a univariate xt, Equation (17) reduces to:

b̂OLS =
VarT (xt)

VarT (xt)
· b̂rollOLS (19)

b̂rollOLS ≡
CovT (rt+1, xt)

VarT (xt)
. (20)

I use this insight to estimate β̂ in overlapping samples using OLS or WLS-EV as follows:

1. Estimate the non-overlapping regression rt+1 =
(∑h−1

s=0 Xt−s

)
·β+εt+1 using either OLS

or WLS-EV. Use Newey and West (1987) standard errors with lags selected following

Newey and West (1994) to adjust for remaining heteroskedasticity or autocorrelation.

2. Scale the resulting coefficients and standard errors by ET (X ′tXt)
−1ET (X

′
tX t), which

simplifies to VarT (xt)
VarT (xt)

when Xt has a constant and univariate predictor.

Note that while the resulting β̂OLS are identical to the overlapping regression β̂, the standard

errors are different because they adjust for the autocorrelation in εt+1,t+h by specifying its

structure as function of the overlap rather than estimating it using Newey and West (1987).

Simulations in Hodrick (1992) show these standard errors have better small-sample properties

for overlapping return regressions than Newey and West (1987) standard errors.

By transforming an overlapping return regression into a non-overlapping regression, the

modified Hodrick (1992) procedure I use assures the WLS-EV estimates are the most-efficient
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GLS estimates under the assumptions described in Section 2.1. Without this transformation,

GLS would require specifying the full covariance matrix of the errors and to estimate β. For

example, if we estimate the variance of each daily return and assume these returns are

independent, we can compute the full covariance matrix for the overlapping returns and use

that as a proxy for the covariance matrix of the errors. However, this approach requires

using variance information from time t + 1 to weight observations with time t variables on

the right-hand side, creating a potential bias I discuss in Section 2.3.

A possible alternative to transforming the regression using Hodrick (1992) is to use least

squares weighted by conditional next-h period variance to account for heteroskedasticity in

estimating β, and HAC consistent standard errors from Newey and West (1987) or simu-

lations to account for any remaining heteroskedasticity and autocorrelation driven by the

overlap. This approach suffers from at least three problems. The first is the conditional

next-h period variance measures do not predict realized variance as well as conditional next-

period variance measures, reducing the efficiency gains associated with WLS. The second

is the overlapping conditional variances are often inconsistent with eachother in the sense

that no path of per-period conditional variances would justify them, making it impossible

to simulate returns under the null that the conditional variances are correct. The third is

that the same small-sample bias in Newey and West (1987) standard errors for overlapping

return regressions documented in Hodrick (1992) applies here.5

2.3. WLS-EV compared to other weighting functions

Previous papers studying market-level return predictability use “robust least squares”

(RLS) estimates (e.g., Drechsler and Yaron (2011)), which weight observations using some

function of estimated values of |εt+1|. Observations with larger |εt+1| presumably also have

more volatile εt+1 on average, and therefore receive smaller weights. These weights use

information from the time period returns are realized, t+1, rather than the ex-ante variance

5The Hodrick (1992) technique for computing standard errors without transforming to non-overlapping
regressions cannot be directly here because each overlapping observation is weighted by a different σ2

t,h.
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measures available at time t I use in WLS-EV. The advantage of using time t+1 information

is that return volatility changes over time, meaning t + 1 information can provide more

accurate estimates of the true variance of εt+1.

However, there is a critical disadvantage to using time t + 1 information that, to my

knowledge, is not discussed in any previous papers using ex-post weighting schemes: there

is a strong correlation between realized variance and the directional realization of εt+1 that

biases the coefficient estimates. Because negative returns are more volatile than positive

returns, negative ε have larger variance and smaller weights than positive ε. As a result, when

the predictor Xt is positively (negatively) correlated with return variance, the coefficient

estimated with RLS or any ex-post weighting scheme will be biased upwards (downwards).

It is therefore unsurprising, given the variance risk premium is positively correlated with

return variance, that Drechsler and Yaron (2011) finds RLS coefficients are more positive

than OLS coefficients.

By comparison, the WLS-EV approach uses weights based exclusively on ex-ante infor-

mation, avoiding the mechanical connection between weights and the average εt+1. However,

there could potentially still be a correlation between WLS-EV weights and εt+1 if ex-ante

variance predicted future returns. Empirically, weights based on both the RV σ̂t and VIXF

σ̂t have near-zero correlation with next-period market returns, detailed in Appendix A. More

importantly, any such bias can be corrected for by adding the weights 1/σ̂2
t to the right-hand

side of the regression, assuring that the regression residuals are independent of the weights.

Regression weights using time t+1 information, by contrast, cannot be added as independent

variables in predictive regressions.

I formalize this discussion in Appendix A by deriving the the estimation error β̂ − β in

a general weighted least squares setting and showing conditions under which the average

estimation error is zero (i.e., the estimator is consistent). I also provide evidence WLS-EV

weights meet these conditions while RLS weights do not. More practically, the small sample

simulations in Section 3 show that only RLS estimates are biased in realistic settings.
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3. Small sample simulations

I use small sample simulations to illustrate the relative efficiency and bias of three different

linear estimation techniques: ordinary least squares (OLS), robust least squares (RLS), and

weighted least squares using ex-ante variance (WLS-EV). I find that WLS-EV is unbiased

and substantially more efficient than OLS. RLS estimates are also more efficient than OLS

estimates, but are less efficient than WLS-EV estimates and suffer severely from the bias

described in Section 2.3. Furthermore, RLS standard errors are understated in small samples,

resulting in frequent false positives.

The efficiency and bias of each estimation procedure depends critically on variability of

return variance, the asymmetry in the return distribution, the time-series distribution of the

predictor, and the correlations among these variables. Rather than attempting to model

these distributions, I use observed return predictors and conditional variances but re-sample

the realized return innovations. Specifically, given observed excess returns rdatat and ex-ante

return volatilities σ̂data
t , I compute the standardized next-period return for each observation:

ψdata
t+1 ≡

rdatat+1 − µr
σ̂data
t

, (21)

where µr is chosen so that E(ψdata
t+1 ) = 0. I then create 100,000 simulated samples by re-

sampling the ψdata
t (with replacement) and computing the next-month returns as follows:

rsimt+1 = µr + b · xdatat + σ̂data
t ψre-sampled

t+1 , (22)

where xdatat are the observed values of a predictor variable, and I specify the population

prediction coefficient b. These simulated returns inherit the skewness, any heteroskedasticity

not captured by σ̂data
t , and other properties of the observed return distribution while still

having conditional mean µr + b · xdatat and conditional volatility σ̂data
t . For each simulated

return sample, I regress the redrawn excess returns rsimt+1 on xdatat and a constant using each of
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the three regression techniques, and record the resulting coefficients (b̂) and standard errors

(SE b̂). For RLS, I use the bisquare weighting function and HAC consistent standard errors.

I first implement this procedure on a monthly sample from 1927-2013 using the log

dividend-to-price ratio dp as the predictor xt and RV σ̂2
t for the WLS-EV estimates. Panel

A of Table 2 shows summary statistics for these simulations under the no-predictability

null b = 0. Using WLS-EV rather than OLS results in large efficiency gains, reducing the

standard deviation of b̂ from 0.440 to 0.333, a 24% decrease. RLS b̂ have a standard deviation

of 0.369, making them nearly as efficient as WLS-EV regressions. However, while the mean b̂

is zero for OLS and WLS-EV, the mean b̂ from RLS is positive, reflecting the aforementioned

bias that arises because RLS weights are positively correlated with both εt+1 and xt.
6

Given the true b is zero, an effective estimator rejects the b = 0 null (a “false positive”)

as infrequently as possible. There are two potential reasons why an estimator would reject

with a 5% critical value in more than 5% of simulations: downward bias in asymptotic

standard errors and directional bias in the average b̂. In addition to having unbiased b̂,

both OLS and WLS-EV have average standard errors very close to the standard deviation of

b̂, indicating that the asymptotic heteroskedasticity-consistent standard errors are unbiased

and quite accurate for dp in this sample. As a result, OLS and WLS-EV t-tests reject the

null at the 5% level in 5.11% and 5.12% of simulations, respectively. RLS, by contrast, has

significant downward bias in standard errors in addition to an upward bias in b̂, resulting in

false positives in 14.38% of simulations, 7.45% (6.93%) with positive (negative) coefficients.

Given the true b is non-zero, an effective estimator fails to reject the b = 0 (a “false

negative”) as little as possible. To assess the frequency of false negatives, I repeat the

simulation exercise assuming b = 1. Panel B of Table 2 presents the results. Because the

only difference from the simulations in Panel A is the added b · xdatat to Equation (22), the

efficiency and bias of the estimators are identical to those in Panel A.

6There is no Stambaugh (1999) bias here because the re-drawn standardized returns are uncorrelated
with innovations in dp. This allows me to examine the efficiency and bias associated with heteroskedasticity
alone. I correct for the Stambaugh (1999) bias in Section 4.
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The main result in Panel B, however, is the fraction of simulations for which each es-

timator fails to recognize the predictive power of xt. For each simulation, I compute both

the asymptotic t-stat as well as the small-sample p-value based on the distribution of b̂ for

each estimator under the no-predictability null. A “false negative” is a case in which the

asymptotic t-stat is less than 1.96 or the simulated p-value is more than 5%. For OLS and

WLS-EV, because the asymptotic standard errors are almost identical to the simulated ones,

asymptotic and small-sample tests have the same false negative rates. Furthermore, false

negatives occur much less often for WLS-EV (15% of simulations) than OLS (37% of sim-

ulations). For RLS, the asymptotic t-stats are less than 1.96 quite infrequently (9% of the

simulations) because of the upward bias in b̂ and downward bias in the asymptotic stan-

dard errors. However, when using simulation-based p-values, the less-efficient RLS estimator

results in false negative rates around 21%, between OLS and WLS-EV.

To assess efficiency and bias in shorter samples and using a predictor more directly related

to ex-ante variance, I also implement this procedure on an overlapping daily sample from

1990-2013 using the variance risk premium proxy defined in Drechsler and Yaron (2011) as

xt to predict next-month returns.7 The results are in the second column of Table 2. The

conclusions are largely the same as for dividend yields, but the effects are bigger because of

the stronger correlation between xt and ex-ante variance. WLS-EV estimates have a standard

deviation of 0.162, 28% more efficient than the 0.225 standard deviation of OLS estimates and

15% more efficent than the 0.190 standard deviation of RLS estimates. More importantly,

the upward bias in the RLS coefficients is much larger for this xt, almost three times the

asymptotic standard error, while OLS and WLS-EV b̂ remain unbiased. To make matters

worse, the asymptotic RLS standard errors are dramatically understated, 40% smaller than

the cross-simulation standard deviation. The upward bias in b̂ together with the downward

bias in asymptotic standard errors combine make false positives are extremely likely for RLS,

with resulting t-stats are above 1.96 in 71% of simulations under the b = 0 null. In light of

7See Section 5 for detailed description of this proxy.
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this upward bias in t-stats, it is not surprising that Drechsler and Yaron (2011) find RLS

coefficients are both larger and more significant than OLS coefficients.

Finally, I assess the false negative rate of the three estimators in the variance risk premium

setting with b = 0.4. Because of the severe downward bias in asymptotic standard errors, it

is important to do hypothesis tests using simulated p-values rather than asymptotic standard

errors. Mirroring the results in Panel B for dividend yield, WLS-EV has false negatives in

30.2% of simulations, compared to 56.6% for OLS and 44.3% for RLS.

A potential concern about the simulations described in Equation (22) is that the σ̂data
t

I use for WLS-EV are the exact conditional variances of returns, perhaps resulting in an

over-estimate of the efficiency gains. I address this concern by redrawing the ψdata
t+1 , which

reflect any residual heteroskedasticity not corrected by σ̂data
t and therefore produce simulated

samples with as much uncorrected heteroskedasticity as the observed samples. However,

to provide additional reassurance, I redo the simulations with the same return generating

process but using WLS-EV with log-normal noise multiplying the variance estimates:

σ̂WLS-EV
t = σ̂data

t ezt , σ(zt) =
1

2
. (23)

Panel C of Table 2 shows that even when WLS-EV is estimated using a noisy σ̂t, the

efficiency gains are substantial relative to OLS, though smaller than the gains in Panel A.

The cross-simulation standard deviation of WLS-EV estimates is 0.378 for dp simulations

and 0.184 for variance risk premium siumulations, representing efficiency gains of 14% and

18%, respectively. More importantly, the asymptotic HAC standard errors I use for WLS-

EV reflect this decrease in efficiency, averaging 0.374 and 0.183. This indicates the HAC

standard errors detect how much noise is in the WLS-EV weights and correct the standard

errors appropriately. It also suggests my simulation approach is effective in carrying through

any residual heteroskedasticity caused by noise in the σ̂data
t , giving credence to the use of

WLS-EV for efficient hypothesis testing even when ex-ante variance proxies are imperfect.
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4. Traditional predictors

My first application of the WLS-EV methodology is to re-assess the return predictability

afforded by the 16 variables studied in Goyal and Welch (2008). Overall, I find the evidence

for return predictability both in-sample and out-of-sample is substantially stronger with

WLS-EV than the marginal OLS evidence.

The 16 predictors I study are: the log dividend-to-price ratio (dp), the dividend-to-price

ratio (DP), the log earnings-to-price ratio (ep), the log dividend-to-earnings ratio (de), the

conditional variance of returns estimated using rolling estimates of Equation (9) (RV σ̂2
t ),

the treasury bill yield (tbl), the long-term treasury bond yield (lty), the return of long-term

bonds (ltr), the term spread (tms), the default yield spread (dfy), inflation (infl), the log

book-to-market ratio (bm), the cross-sectional beta premium (csp), net equity expansion

(ntis), the log net payout yield (lpy), and the consumption wealth ratio (cay). To improve

the readability of the coefficients, I divide dp, ep, de, bm, and lpy by 100. I compute RV σ̂2
t ,

and retrieve lpy from Michael Roberts’ website, cay from Martin Lettau’s website, and the

remaining 13 predictors from Amit Goyal’s website. Detailed definitions of the predictors

are in Boudoukh et al. (2007) for lpy, Lettau and Ludvigson (2001) for cay, and Goyal and

Welch (2008) for the remaining 13 predictors.

4.1. In-sample predictability

For each of the 16 predictors, I estimate univariate predictability regressions of the form:

rt+1,t+h = a+ b · xt + εt+1,t+h, (24)

where rt+1,t+h is the log excess return of the CRSP value-weighted index in months t + 1

through t+ h. I use both the standard OLS and WLS-EV to estimate the coefficients a and

b. I assess next-month (h = 1) and next-year (h = 12) predictability, and adjust for the

overlap when h = 12 using the procedure in Section 2.2. I also compute simulated standard

errors using simulations identical to the ones described in Section 3.
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To accurately assess the predictability afforded by these candidate variables, I account

for the small-sample bias described in Stambaugh (1999) by simulating both the xt and

subsequent returns rt+1 under the no-predictability null, as suggested in Goyal and Welch

(2008).8 Specifically, I generate rt+1 and xt using the following processes:

rsimt+1 = µr + σsim
t εre-sampled

t+1 (25)

xsimt+1 − µx = ρx(x
sim
t − µx) + δre-sampled

t+1 (26)

log σsim
t+1 − µσ = ρσ(log σsim

t − µσ) + γre-sampled
t+1 , (27)

where µr, µx, µσ, ρx, and ρσ are estimated from the data for the predictor in question, and

x0 and σ0 are chosen from a random date in the sample period. To preserve the correlations

among innovations in r, x, and σ2, I jointly re-sample (with replacement) the innovations

vector

[
εt+1 δt+1 γt+1

]′
from the innovations observed in the data.

The only difference from the approach I use to estimate the Stambaugh (1999) bias and

the Goyal and Welch (2008) approach is the addition of stochastic volatility as modeled by σt.

The reason for this addition is to allow me to use WLS-EV in the simulated samples, which

I do using
(
σsim
t

)2
as the ex-ante variance proxy. For each simulated sample, I estimate the

predictive regression in Equation (24) using both OLS and WLS-EV and record the average

b̂. To the extent the Stambaugh (1999) bias affects each combination of estimator, return

predictor, and covariance matrix of r, x, and σ2, and forecast horizon h, the average simulated

b̂ will be non-zero despite the no-predictability null. For this reason, each predictor’s OLS

and WLS-EV Stambaugh (1999) bias-corrected coefficients are defined as:

OLS Stambaugh b̂adj ≡ OLS b̂− EStambaugh sim

(
OLS b̂

)
(28)

WLS-EV Stambaugh b̂adj ≡WLS-EV b̂− EStambaugh sim

(
WLS-EV b̂

)
(29)

8My simulations in Section 3 only redraw returns and therefore do not reflect the Stambaugh (1999) bias.
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The results of these in-sample tests are in Table 3, beginning with a one-month prediction

horizon (h = 1) in Panel A. As summarized at the bottom of the panel, the WLS-EV

estimates have asymptotic and simulated standard errors an average of 26% smaller than

their OLS counterparts. Furthermore, the WLS-EV point estimates are generally consistent

with the OLS point estimates in most cases, and substantially larger for tbl, lty, ltr and infl.

Combining these features strengthens the overall in-sample evidence of return predictability.

Using 1%, 5%, and 10% critical values, WLS-EV results in statistical significance for nine,

eight, and five of the predictors, compared to only three, two, and one for OLS.

I assess the predictive power of these 16 variables for next-year returns (h = 12) in Panel

B of Table 3. The results are largely consistent with the next-month return results in Panel

A, indicating stronger but not overwhelming in-sample evidence of return predictability. The

WLS-EV approach yields 25% smaller simulated standard errors and largely unchanged point

estimates, making the WLS-EV evidence for return predictability stronger than the OLS

evidence. Using 1%, 5%, and 10% critical values, WLS-EV results in statistical significance

for seven, six, and two predictors compared to five, three, and one for OLS.

4.2. Out-of-sample predictability

There are a few potential concerns with the evidence supporting return predictability

in Table 3. The first is data mining: the predictive variables are not chosen at random,

but instead selected among many potential predictors based on their statistical significance.

The second concern is a bias in the standard errors not captured by the asymptotic HAC

or simulation standard errors I use to test the no-predictability null hypothesis. The third

concern is introduced by my heteroskedastic simulations and WLS-EV approach, namely

that the RV σ̂2
t I use are noisy proxies for the true conditional variance of returns. As

discussed above, this third concern is diminished by the evidence in Table 2 and the use of

re-drawn regression errors that retain any remaining heteroskedasticity. However, without

observing the true σ2
t , in-sample tests cannot completely rule out the possibility that errors

in RV σ̂2
t cause my simulations to understate the WLS-EV standard errors.
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To address these concerns, I examine the out-of-sample predictive power of these regres-

sors using both OLS and WLS-EV. As discussed in Goyal and Welch (2008), out-of-sample

tests provide an additional falsifiable implication of the no-predictablity null that we can

test for the variables that predict future returns in-sample. While there is some debate (e.g.

in Cochrane (2008) or Campbell and Thompson (2008)) about the power of out-of-sample

tests for rejecting the null, making a failure to reject hard to interpret, any significant out-

of-sample return predictability would be strong evidence in favor predictability because it

cannot be explained by the three aforementioned concerns. Data mining cannot explain

out-of-sample predictability because these predictors were not selected for publication based

on out-of-sample performance. Biases or noise in standard errors, point estimates, and the

RV σ̂2
t also cannot explain out-of-sample predictability because it does not use the standard

errors and would be impaired by any bias in the point estimates or RV σ̂2
t .

In addition to providing researchers with an alternative test of the no-predictability null

that avoids the aforementioned biases, out-of-sample predictability provides a simple mea-

sure of the practical value a predictor offers to investors. As discussed in Campbell and

Thompson (2008), Johannes, Korteweg, and Polson (2014), and elsewhere, investors may

use more sophisticated techniques in forming expectations about future market returns and

their portfolios. Nevertheless, out-of-sample R2 provides a good indicator of which predictors

would have benefited investors if used in “real-time” over the past century.

I compute the out-of-sample R2 for each predictor using a procedure very similar to

the one in Goyal and Welch (2008). Specifically, for each date τ in my 1927-2013 sample,9

starting 20 years after the first month the predictor is available, I compute the conditional

expected future return over the next h months, Eτ (rτ+1,τ+h|x) as follows:

9Unlike Goyal and Welch (2008), my sample starts in 1927 because I require daily return data to compute
the RV σ̂2

t , and ends in 2013 rather than 2005. The only exceptions are csp (available 1937-2002), lpy
(available 1927-2010), and caya (the ex-ante version of cay, available 1952-2013).
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1. Estimate coefficients âτ and b̂τ in the regression:

rt+1,t+h = aτ + bτ · xt + εt+1,t+h, (30)

using OLS or WLS-EV, and only data available as of τ , i.e. t ≤ τ − h.10 To maximize

power, I use overlapping monthly regressions instead of the annual regressions used in

Goyal and Welch (2008).

2. Use estimated coefficients and current predictor values to compute:

Eτ (rτ+1,τ+h|x) ≡ âτ + b̂τxτ . (31)

As a benchmark, I also compute the unconditional out-of-sample return prediction based on

a simple average of past returns:

Eτ (rτ+1,τ+h) ≡
1

τ − h

τ−h∑
t=1

rt+1,t+h. (32)

Given time-series of out-of-sample return predictions Eτ (rτ+1,τ+h|x) and Eτ (rτ+1,τ+h), I

compute the out-of-sample R2 and adjusted R2 as in Goyal and Welch (2008):

R2 ≡ 1− MSEA

MSEN

, Adj. R2 ≡ R2 − (1−R2)
K

T −K − 1
, (33)

MSEA ≡
1

T

T∑
τ=1

eA(τ, x)2 MSEN ≡
1

T

T∑
τ=1

eN(τ)2 (34)

eA(τ, x) ≡ rτ+1,τ+h − Eτ (rτ+1,τ+h|x) eN(τ) ≡ rτ+1,τ+h − Eτ (rτ+1,τ+h) (35)

where T is the number of observations in the post-training sample period and K is the

number of regressors (including the constant). Following Goyal and Welch (2008), I focus

my analysis on in- and out-of-sample adjusted R2.

10For WLS-EV, I estimate the first-stage variance prediction regression using only data available as of τ .
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Table 4 presents the adjusted out-of-sample R2 (OOS R2 hereafter) afforded by the 16 tra-

ditional predictors I study. Panel A examines out-of-sample next-month return predictions,

Panel B next-year return predictions. While the longer overlapping sample I use results in

somewhat better out-of-sample performance than documented in Goyal and Welch (2008),

the takeaway remains that these predictors combined with OLS do not produce significant

OOS R2. Only four predictors have positive OOS R2 for next-month returns (DP, tms, infl,

and caya), and only two have positive OOS R2 for next-year returns (ltr and caya).

Table 4 also shows the out-of-sample performance of WLS-EV is substantially better than

OLS. WLS-EV OOS R2 are higher than their OLS counterparts for 11 of the next-month

and 12 of the next-year predictors. Mean OOS R2 is -0.22% and -3.83% for next-month and

next-year returns for WLS-EV, compared to -0.39% and -6.72% for OLS. This increases are

economically large relative to the average in-sample OLS R2 of 0.33% and 3.08%, respectively.

Finally, and most importantly, four predictors offer positive OOS R2 using WLS-EV for both

next-month returns and next-year returns (DP, ltr, tms, and infl). Some of these OOS R2

are also quite substantial, varying from 0.05% to 0.55% for next-month returns and 0.81%

to 2.05% for next-year returns, largely comparable to the average in-sample OLS R2.

To illustrate the source of the out-of-sample performance gains, I examine the dividend-

price ratio predictor (DP) in more detail. In addition to being the most widely-studied

predictor, DP is illustrative because it has substantially negative OOS R2 using OLS but

positive OOS R2 using WLS-EV for next-year returns. Figure 2 shows the evolution of b̂τ

over the post-training period for both OLS and WLS-EV estimates. For next-year returns,

although the full-sample estimates are very similar for OLS and WLS-EV (both around 2.3,

as presented in Panel B of Table 3), the rolling WLS-EV estimates are much closer to the

full-sample estimate early on in the sample, and much more stable over time. The reason

for this improvement is the WLS-EV estimators react more efficiently to extreme return

observations that occur in periods of high ex-ante variance. For example, the OLS estimates

“read too much” into the high returns in the mid 1930s that follow high DP but also high
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σ̂2
t , making WLS-EV downweight them. The fact that WLS-EV rolling b̂τ are closer to

full-sample b̂T than their OLS counterparts results in WLS-EV OOS R2 closer to the IS R2.

Despite the improved OOS performance of WLS-EV relative to OLS, many predictors

that are significant in-sample still have negative OOS R2 when using WLS-EV. Campbell

and Thompson (2008) provides a method for improving the OOS performance of these pre-

dictors. Specifically, Campbell and Thompson (2008) suggests two economically-motivated

restrictions on the b̂τ and Eτ (rτ+1,τ+h|x):

1. For each predictor, economic intuition suggests the correct sign of b. For example, dp

should have a positive b because higher discount rates lead to larger dp. If b̂τ has the

economically incorrect sign, set b̂τ = 0 and Eτ (rτ+1,τ+h|x) = Eτ (rτ+1,τ+h).

2. The expected equity risk premia Eτ (rτ+1,τ+h|x) should always be positive. If it is not,

use Eτ (rτ+1,τ+h|x) = 0.

I apply these restrictions for each of the return predictors using both OLS and WLS-EV,

and compute resulting adjusted OOS R2 as defined in Equation (34).

Table 4 shows the OOS R2 using the Campbell and Thompson (2008) approach (CT OOS

R2) for each predictor. For both OLS and WLS-EV, CT OOS R2 are substantially higher

than OOS R2, with 8 (8) predictors offering positive CT OOS R2 for next-month (next-year)

returns using OLS. However, even with the Campbell and Thompson (2008) restrictions,

WLS-EV outperforms OLS out-of-sample. WLS-EV CT OOS R2 are higher than their OLS

counterparts for 9 (12) of the next-month (next-year) predictors. Similarly, mean CT OOS

R2 is 0.11% for next-month and 0.34% for next-year returns using WLS-EV, compared to

0.01% and -1.30% for OLS.

Another method for improving out-of-sample performance of these predictors is using

the economic restrictions in Pettenuzzo, Timmermann, and Valkanov (2014). Specifically, if

we assume conditional Sharpe Ratios for the market are bounded between 0 and 1, we can
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estimate coefficients âτ and b̂τ using the regression in Equation (30) constrained so that:

0 ≤ âτ + b̂τxt
σ̂t

≤ 1 ∀ t ≤ τ − h. (36)

Note that this is different from the Campbell and Thompson (2008) approach because it

requires that the conditional risk premia is positive for all t ≤ τ − h, rather than just τ , and

also adds an upper bound on the conditional Sharpe Ratio.

Table 4 shows that, as demonstrated in Pettenuzzo, Timmermann, and Valkanov (2014),

their economic restrictions result in out-of-sample R2 (PTV OOS R2) substantially larger

than even the CT OOS R2. Because the Pettenuzzo, Timmermann, and Valkanov (2014)

approach already dampens the influence of extreme observations on OLS point estimates,

the additional improvement afforded by WLS-EV is smaller for PTV OOS R2 than for OOS

R2 or CT OOS R2. Nevertheless, using WLS-EV instead of OLS results in slightly higher

average PTV OOS R2 and more predictors with positive PTV OOS R2.

As an alternative measure of out-of-sample predictive performance, I also compute cer-

tainty equivalents (CEs) for a hypothetical investor optimizing their portfolio using estimated

conditional means and variances, an approach used in Campbell and Thompson (2008) and

Johannes, Korteweg, and Polson (2014). Compared to OOS R2, certainty equivalents have

the advantage of a natural economic interpretation but the disadvantage of begin dependent

of the function form of the investor’s utility functions. Online Appendix A, available at

bit.ly/wlsapp, shows that CEs follow largely the same pattern as OOS R2, with WLS-EV

offering a 20bp-50bp increase in per-year CE over OLS.

5. Variance risk premium as a predictor

5.1. Methodology

As a second application of WLS-EV, I revisit the empirical relation between future returns

and the variance risk premium proxies in Bollerslev, Tauchen, and Zhou (2009) and Drechsler



Weighted Least Squares Estimates of Return Predictability Regressions 26

and Yaron (2011), BTZ and DY hereafter, and show it is not robust to the WLS-EV approach.

BTZ and DY both show that the difference between VIX2 and an estimate of statistical-

measure variance positively predicts equity returns. Both papers motivate this result by

modeling variance and equity risk premia in a setting with stochastic volatility and volatility-

of-volatility, resulting in a positive correlation between equity and variance risk premia.

BTZ and DY use slightly different proxies for the variance risk premium, both of which

I replicate. The BTZ proxy is:

BTZ ˆVRPt ≡ VIX2
t − IndRVt−20,t, (37)

where VIXt is the CBOE VIX index on day t and IndRVt−20,t is the realized variance of S&P

500 index returns over the 21 trading days ending on day t. I follow BTZ and compute IndRV

from realized five-minute log S&P 500 index returns, and scale both VIX2
t and IndRVt−20,t

to monthly percents squared. The DY proxy for the variance risk premium is:

DY ˆVRPt ≡ VIX2
t − Êt(FutRVt+1,t+21), (38)

where FutRVt+1,t+21 is the sum of squared five-minute log S&P 500 futures returns on the 21

trading days following t. I follow DY and use the fitted value from a full-sample time-series

regression of FutRVt+1,t+21 on IndRVt−20,t and VIX2
t as Êt (FutRVt+1).

I use the two ˆVRPt to predict rt+1,t+h, the log excess return of the CRSP value-weighted

index over the h days following the measurement of ˆVRPt. Because the results in BTZ and

DY indicate that these proxies’ predictive power is strongest at one-month and one-quarter

horizons, I consider h = 21 and h = 63. Also following BTZ and DY, I scale log returns to

annualized percentages. I adjust the point estimates for the Stambaugh (1999) bias using the

simulation procedure described in Section 4, and account for the overlap using the modified

Hodrick (1992) approach I describe in Section 2.2. I also compute simulated standard errors

and p-values using the heteroskedastic simulations (Sim) described in Section 3.
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For both the observed and simulated samples, I compute WLS-EV using the VIXF σ̂2
t

and VIX σ̂2
t defined in Section 2. Since the ˆVRPt themselves use VIX, they are only available

from 1990-2013, making them a perfect candidate for the VIX-based σ̂2
t that Section 2 shows

are strong predictors of realized variance.

5.2. Results

Table 5 presents the results for all twelve combinations of variance risk premia proxy,

forecast horizon, and estimator. In all cases, the OLS coefficients are much larger than the

corresponding asymptotic standard errors, resulting in asymptotic p-values of 6.3%, 4.6%,

2.8%, and 0.6%. This indicates that the OLS estimates documented in BTZ and DY are

slightly less significant in the post-publication period (2008-2013) and when using an over-

lapping daily sample. As suggested by the simulations in Table 2, using the Hodrick (1992)

approach to estimating overlapping regressions results in daily OLS asymtotic standard errors

that match the simulated standard errors, meaning the OLS evidence for return predictability

is robust to heteroskedastic simulations of the standard errors.

The WLS-EV results, which account for heteroskedasticity in point estimates as well as

standard errors, are much more more pessimistic than the OLS. In all cases, the WLS-VIXF

and WLS-VIX point estimates are smaller than the OLS ones, and statistically insignificant

using simulated or asymptotic p-values.

To help understand why WLS-EV point estimates are so much smaller than OLS esti-

mates of the predictability afforded by proxies for the variance risk premium, Figure 3 plots

the observed ˆVRPt and next-month returns rt+1, along with the OLS and WLS-VIX regres-

sion lines, for DY in the top panel and BTZ in the bottom panel. The darkness of each point

represents its weight in the WLS-VIX regressions, where the observation with the highest

weight is black and other points are on the grayscale based on what fraction of the maximum

weight the corresponding observation receives.

For both the DY and BTZ proxies, Figure 3 indicates that ˆVRPt is near zero for most ob-

servations but extremely positive or negative for a small subset. These extreme observations
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also have high VIX σ̂2
t , resulting in a low weight in the WLS-VIX regressions, represented by

their light gray color. The observations with extremely negative VRP tend to have negative

future return realizations, and those with extremely positive VRP tend to have positive fu-

ture return realizations, and so when these points receive full weight in OLS the coefficient

is strongly positive. However, WLS-EV downweights these points because the return real-

izations are so volatile, and instead fits mostly on the darker points towards the middle of

the distribution, which do not significantly support return predictability.11

5.3. Robustness

To ensure the failure of ˆVRP to significantly predict returns in Table 5 is not driven by

the extended sample or overlapping daily returns, I repeat my analysis on a monthly sample

from 1990-2007 designed to mimick the original sample used in BTZ and DY. For the BTZ

analysis, I use the proxy as provided on Hao Zhou’s website to assure that my results are

not driven by an error in my calculation of ˆVRP.12 To match BTZ and DY, I use S&P 500

returns rather than the CRSP index returns I use elsewhere, and consider both quarterly

and monthly forecast horizons.

The results of my replication analysis are in Table 6, along with the point estimates and

standard errors from the original DY and BTZ papers for comparison. In both cases, my

replication is quite close the original papers in terms of t-stats and p-values. For BTZ, with

the benefit of the authors’ data, the point estimates are also nearly identical. I extend this

replication by estimating heteroskedastic simulated (Sim) standard errors, as well as WLS-

EV using VIX σ̂2
t , on the original BTZ and DY samples. Both approaches substantially

weaken the evidence of return predictability. Sim standard errors and p-values are much

higher for OLS than their asymptotic counterparts, making the one-month predictability

evidence insignificant and the one-quarter evidence marginal.

11Online Appendix B shows that other approaches to mitigating the influence of these observations, for
example by using deciles of ˆVRPt or winsorizing ˆVRPt below at zero, result in even weaker evidence of return
predictability in both OLS and WLS-EV regressions.

12The proxy I use in Table 5 is identical to the downloadable version but measured daily using a rolling
21 day window rather than calendar months.
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More importantly, even in the original papers’ sample, the WLS-EV estimates are only

about half as large as the OLS estimates, making them statistically insignificant despite

lower simulated standard errors. This failure holds across both VRP proxies and both

prediction horizons, in all cases with simulated p-values above 22.6%. Table 6 also shows

results for simple and log S&P 500 returns, 1990-2007 daily samples, extended monthly

samples, and combinations thereof. In only one of the ten alternative procedures (BTZ

VRP, 1990-2013, monthly sampling interval, log S&P 500 returns) are WLS-EV estimates

statistically significant.

As a final robustness check, in Online Appendix C I revisit the analysis of VRP’s pre-

dictability around the world in Bollerslev et al. (2014) using WLS-EV. While I replicate the

OLS evidence of predictability in many countries for certain forecast horizons, this evidence

disappears when using WLS-EV or small-sample standard errors based on heteroskedas-

tic simulations. With either methodology, none of the 56 country-forecast horizon pairs in

Bollerslev et al. (2014) yield statistically significant evidence of return predictability.

Combined, the results in Tables 5 and 6, as well as Online Appendices B and C, indicate

that in the relatively short post-1990 sample, there is no evidence for a relation between

conditional variance and equity risk premia when using more-efficient WLS-EV regressions.

6. Politics, the weather, and the stars as predictors

Novy-Marx (2014) discusses nine variables that predict future factor returns in OLS re-

gressions: the political party of the President of the United States, the monthly highest

temperature in New York City, the global temperature, the rolling average global temper-

ature, the quadiperiodic Pacific temperature anomaly (El Niño), the rolling average Pacific

Ocean temperature, the angle between Mars and Saturn, the angle between Jupiter and

Saturn, and the observed number of sunspots. Novy-Marx (2014) shows these nine variables

often predict returns for 22 factors or anomalies, forcing readers to either accept implausible

predictive relations or question the standard OLS hypothesis testing methodology.
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As a final application of the WLS-EV methodology, I revisit the surprising predictability

evidence in Novy-Marx (2014) and show it is insignificant when using WLS-EV instead

of OLS. For each of the nine predictors Novy-Marx (2014) considers, I estimate monthly

predictive regressions using data from 1961 through 2012. I find that small-sample p-values

based on the simulation approach in Section 3 indicate OLS estimates are significant for the

same three variables Novy-Marx (2014) finds predict market returns: the political party of

the president, NYC Weather, and the Mars/Saturn Angle. However, WLS-EV estimates

of the predictability afforded by these three variables are all closer to zero and all have

higher p-values than their OLS counterparts, with only Mars/Saturn remaining statistically

significant. Moreover, WLS-EV estimates of the other six variables remain insignificant

despite smaller simulated standard errors.

I also estimate the joint significance of these predictors using the same simulations. For

each simulated sample of returns, I estimate univariate predictability regressions for each

predictors. I then compute the following χ2 statistic for each simulated sample:

χ2 statistic ≡ b̂′Σ̂−1b̂, (39)

where b̂ is a vector of the nine predictability coefficients for the given sample, and Σ̂ is

the covariance matrix of b̂ estimated across simulated samples. Table 7 presents the χ2

statistics for OLS and WLS-EV based on the observed sample, as well as their simulated

p-values based on the distribution of χ2 statistics in the simulated samples. For example, the

OLS p-value is 8.52%, meaning that the χ2 statistic was higher than the observed sample’s

15.22 in 8.52% of simulated samples.

Table 7 shows that while these nine predictors have weak joint significance in OLS es-

timates, they are not jointly significant in WLS-EV estimates. The insignificant WLS-EV

evidence of predictability is consistent with the hypothesis that the Novy-Marx (2014) results

are driven by a tendency of the standard OLS methodology, when combined with sufficient
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data mining, to over-reject the null hypothesis of no predictability. Because WLS-EV was

not used to select the predictors or factors in Novy-Marx (2014) and is not as sensitive to

highly volatile observations, it naturally produces weaker predictability evidence than OLS.

7. Conclusion

I study a WLS approach to estimating return predictability regressions where the weights

are ex-ante estimates of return variance. Relying on insights from the volatility literature,

I implement this approach using ex-ante estimates for the variance of returns based on

first-stage predictive regressions. The WLS-EV approach is convenient, substantially more

efficient than OLS, and does not suffer from the bias introduced by ex-post weighting schemes.

The more-efficient WLS-EV estimates in return predictability regressions have many

benefits to researchers and investors. Because their standard errors are smaller, they have

fewer false negatives. Because their estimates are partially independent of OLS estimates,

they provide an additional test of the no-predictability null that may fail to reject for truly

insignificant predictors. They also result in better out-of-sample return predictions, giving

researchers more power and investors a better indication of average future returns.

Empirically, using WLS-EV strengthens the in- and out-of-sample evidence of return

predictability for traditional predictors such as the dividend-to-price ratio. On the other

hand, using WLS-EV results in no significant evidence the variance risk premium, politics,

the weather, or the stars predict future market returns.
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Appendix A. Consistency of WLS estimator

I show in this appendix that a weighted least squares estimator using arbitrary weights

wt for each observation will converge asymptotically to β̂∞w , which may be different than

the true β generating the data. I also provide conditions under which β̂∞w = β, and show

suggestive evidence that WLS-EV weights meet these conditions while RLS weights do not.

Assume the data are generated by:

rt+1 = Xt · β + εt+1, (40)

where E(X ′tεt+1) = 0. This implies the population (asymptotic) OLS estimate satisfies:

β̂∞OLS ≡ E(X ′tXt)
−1E(X ′trt+1) (41)

= E(X ′tXt)
−1E(X ′t(Xt · β + εt+1)) (42)

= β + E(X ′tXt)
−1E(X ′tεt+1) = β. (43)

Since β̂∞OLS = β, the OLS estimator is consistent.

Consider WLS estimates of β using arbitrary weights wt that may be a function of both

past and future data. The population WLS estimator is:

β̂∞WLS ≡ E(w2
tX
′
tXt)

−1E(w2
tX
′
trt+1) (44)

= E(w2
tX
′
tXt)

−1E(w2
tX
′
t(Xt · β + εt+1)) (45)

= β + E(w2
tX
′
tXt)

−1E(w2
tX
′
tεt+1), (46)

making WLS a consistent estimator if and only if:

E(w2
tX
′
tεt+1) = 0. (47)

One condition under which the WLS consistency condition (47) holds is if:

E (rt+1|Xt, wt) = Xt · β (48)

⇒ E
(
εt+1

∣∣Xt, w
2
t

)
= 0 (49)

⇒ E(w2
tX
′
tεt+1) = 0. (50)

Economically, equation (48) says that expected returns conditional on Xt and wt are in fact a

linear function of Xt. This is plausible for weights wt based on ex-ante return variance since,

empirically, ex-ante return variance is unrelated to future returns. However, it is clearly false
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for wt using time t+ 1 information about realized volatility, which are correlated with future

returns and therefore should be included on the right-hand side of (48).

Empirically, I test (48) using a regression of next-month returns on a constant, a test xt,

and w2
t for either RLS or WLS-EV. For xt, I use the log dividend-to-price ratio dp and the

Drechsler and Yaron (2011) ˆVRP. The results, tabulated below, indicate that because the

RLS w2
t use information from t+1, and returns are negatively correlated with volatility (and

thus positively related to RLS weights), they are statistically significant predictors of rt+1.

By contrast, the WLS-EV w2
t are unrelated to future returns, having near-zero predictive

coefficients and zero or negative adjusted R2. Together, these results indicate that RLS

estimates are likely to be biased while WLS-EV estimates are likely to be unbiased.

Dep. Variable: ε̂t+1 using xt = dpt ε̂t+1 using xt = VRPt

(2) (3) (2) (3)
Constant -5.789*** -0.190* -40.623*** -3.880

(1.760) (0.568) (10.207) (3.640)
RLS w2

t 0.217*** - 2.453*** -
(0.061) - (0.542) -

WLS-EV w2
t - 0.014 - 0.363

- (0.033) - (0.242)

Adj. R2 8.30% -0.10% 1.40% 0.00%
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Figure 1: Conditional Volatility Measures

The first panel of this figure presents RV σ̂t, the volatility of next-month equity market returns
conditional on past realized variance, estimated using regressions described in Section 2. The second
panel presents VIXF σ̂t, the volatility of next-day equity market returns conditional on the VIX
and past intraday futures variance. Both volatilities are displayed as an annualized percentage.
The monthly sample consists of 1040 observations from 1927 through 2013, the daily sample 6049
observations from 1990 through 2013.
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Figure 2: Rolling Estimates of Predictability Coefficient for DP

This figure presents coefficients from rolling regressions of next-year returns on the dividend-to-
price ratio, DP. Specifically, for each date τ in my sample following a 20-year training period, using
only data available at time τ , i.e. t ≤ τ − 12, I estimate the regression:

rt+1,t+12 = a+ b ·DPt + εt+1,t+h, (51)

where rt+1,t+12 is the log cumulative dividend-inclusive excess return of the CRSP value-weighted
index over the 12 months starting in t + 1 and DPt is the dividend-to-price ratio at time t. For
each τ , I compute point estimates âτ and b̂τ using OLS and weighted least squares with ex-ante
return variance (WLS-EV), detailed in Section 2. I plot the resulting OLS and WLS-EV estimates
b̂τ for each month in my post-training sample period, 1947-2013.
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Figure 3: Predicting Returns using the Variance Risk Premia

This figure presents estimates of return predictability regressions of the form:

rt+1,t+21 = a+ b · ˆVRPt + εt+h,

where rt+1,t+21 is the log dividend-inclusive excess return of the CRSP value-weighted index over
the 21 days starting with t + 1, annualized and in percent. ˆVRPt is one of two proxies for the
variance risk premium, both expressed as monthly percents squared. The first, DY ˆVRPt, is from
Drechsler and Yaron (2011). The second, BTZ ˆVRPt, is from Bollerslev, Tauchen, and Zhou (2009).
For each ˆVRPt, I compute point estimates of a and b using OLS and weighted least squares with
ex-ante return variance (WLS-EV), detailed in Section 2, using VIXF σ̂2t . The lines represent the
predicted values from the two regressions. The points represent the 6028 daily observations from
1990-2013, with only every fifth observation plotted to improve readability. The darkness of each
point represents its weight in the WLS-EV regressions, where the observation with the highest
weight is black and other points are on the grayscale based on what fraction of the maximum
weight the corresponding observation receives.
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Figure 3: Predicting Returns using the Variance Risk Premia (cont’d)
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Table 1: Effectiveness of Ex-ante Variance Proxies

This table presents regressions of realized return variance on potential ex-ante variance predictors.
For each month t in Panel A, the left-hand side is RVt+1, the annualized realized variance in month
t + 1, where RVm = 12 ·

∑
d∈m r

2
d and rd is the log dividend-inclusive excess return of the CRSP

value-weighted index on day d. Predictors in Panel A are RVt−a,t = 1
a

∑a
s=0 RVt−s. For each day

t in Panel B, the left-hand side is FutRVt+1, the annualized realized variance on day t + 1, where
FutRVd = 252·

∑
i∈d r

2
i,fut. and ri,fut. is the log return of the front-maturity S&P 500 futures contract

in five-minute interval i. Predictors in Panel B are FutRVt−a,t = 1
a

∑a
s=0 FutRVt−s. VIX2

t is the
square of the VIX index on day t. The sample is 1039 monthly observations from 1927-2013 in
Panel A and 6048 daily observations from 1990-2013 in Panel B. Standard errors are in parenthesis
and are computed using Newey-West with Newey and West (1994) lag selection. ***, **, and *
indicate significance at the 1%, 5% and 10% level, respectively.

Panel A. Predicting next-month variance RVt+1

(1) (2) (3) (4) (5) (6)

Const 0.015*** 0.011*** 0.009*** 0.007** 0.006** 0.006**
(0.004) (0.003) (0.003) (0.003) (0.002) (0.002)

RVt 0.527*** - - - 0.373*** 0.328***
(0.129) - - - (0.114) (0.118)

RVt−2,t - 0.704*** - - - 0.101
- (0.102) - - - (0.090)

RVt−5,t - - 0.766*** - - 0.035
- - (0.115) - - (0.131)

RVt−11,t - - - 0.845*** 0.497*** 0.407**
- - - (0.140) (0.125) (0.186)

Adj. R2 29.1% 28.8% 26.3% 24.9% 35.2% 35.3%

↓
RV σ̂2t

Panel B. Predicting next-day variance FutRVt+1

(1) (2) (3) (4) (5) (6) (7) (8)

Const 0.013*** 0.005 -0.016*** - -0.012*** - -0.012*** -
(0.002) (0.003) (0.004) - (0.004) - (0.004) -

FutRVt 0.600*** - - - 0.210*** 0.251*** 0.211*** 0.244***
(0.052) - - - (0.050) (0.046) (0.050) (0.045)

FutRVt−20,t - 0.883*** - - - - -0.021 0.100
- (0.126) - - - - (0.096) (0.102)

VIX2
t - - 1.049*** 0.883*** 0.819*** 0.657*** 0.839*** 0.580***

- - (0.108) (0.073) (0.121) (0.076) (0.147) (0.088)

Adj. R2 36.0% 38.8% 47.9% 45.5% 50.1% 48.7% 50.0% 48.8%

↓ ↓
VIX σ̂2t VIXF σ̂2t
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Table 2: Efficiency and Bias of OLS, RLS, and WLS-EV in Simulations

This table presents results of simulations designed to quantify the efficiency and potential bias in
OLS, WLS-EV, and RLS regressions. I generate returns according to the null:

rsimt+1 = µr + b · xdatat + σ̂datat ψre-sampled
t+1 ,

where rsimt is the return of the CRSP value-weighted index; µr is the in-sample mean of rt; x
data
t

is a return predictor from the data; σ̂datat is the conditional volatility of returns from the data;
and ψre-sampled

t+1 is randomly redrawn in each simulation. In the first panel, I simulate under the
no-predictability null that b = 0. In the second, I set b = 1 or b = 0.3. For dividend yield
simulations, I express returns in percentages and use 1039 monthly observations from 1927-2013 of
xt = dt− pt, the log dividend yield of the market portfolio, along with RV σ̂2t . For the variance risk
premia simulations, I express returns in annualized percentages and use 6028 daily observations
from 1990-2013 of the Drechsler and Yaron (2011) variance risk premium xt, detailed in Section 5,
along with VIXF σ̂2t . Using each simulated return series, I compute point estimates and Hodrick
(1992) standard errors of b using OLS, robust least squares (RLS), and weighted least squares
with ex-ante return variance (WLS-EV), detailed in Section 2. I report summary statistics for the
distribution across simulations of b̂, and the accompanying asymptotic standard errors and t-stats.
In Panel B, I also compute the fraction of simulations for which the estimated coefficient is above
a 5% critical value from small-sample simulations under the b = 0 null.

Panel A: No predictability null (b = 0)

Dividend yield sim. Variance risk premium sim.

OLS RLS WLS-EV OLS RLS WLS-EV

Mean b̂ 0.000 0.009 0.000 0.000 0.329 0.000

Standard dev b̂ 0.440 0.362 0.333 0.225 0.190 0.162

1st percentile b̂ -1.027 -0.829 -0.771 -0.528 -0.116 -0.378

10th percentile b̂ -0.564 -0.455 -0.426 -0.289 0.085 -0.207

25th percentile b̂ -0.295 -0.235 -0.224 -0.151 0.201 -0.109

Median b̂ 0.000 0.008 0.000 0.000 0.330 0.000

75th percentile b̂ 0.297 0.252 0.224 0.152 0.457 0.108

90th percentile b̂ 0.565 0.473 0.426 0.287 0.572 0.207

99th percentile b̂ 1.022 0.850 0.775 0.520 0.772 0.377

Mean Asy SE b̂ 0.436 0.270 0.332 0.223 0.113 0.162
Prob(Asy t-stat > 1.96) 2.69% 7.45% 2.54% 2.79% 71.37% 2.57%
Prob(Asy t-stat < −1.96) 2.42% 6.93% 2.58% 2.42% 0.20% 2.46%
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Table 2: Efficiency and Bias of OLS, WLS-EV, and RLS in Simulations (cont’d)

Panel B: Predictability null (b > 0)

Dividend yield sim. Variance risk premium sim.

OLS RLS WLS-EV OLS RLS WLS-EV

Mean b̂ 1.000 1.007 1.000 0.400 0.729 0.400

Standard dev b̂ 0.440 0.362 0.333 0.225 0.190 0.162

1st percentile b̂ -0.030 0.167 0.225 -0.129 0.284 0.023

10th percentile b̂ 0.437 0.543 0.574 0.111 0.486 0.192

25th percentile b̂ 0.704 0.763 0.775 0.249 0.602 0.291

Median b̂ 1.001 1.007 0.999 0.401 0.730 0.401

75th percentile b̂ 1.296 1.252 1.224 0.552 0.858 0.510

90th percentile b̂ 1.564 1.471 1.428 0.687 0.973 0.608

99th percentile b̂ 2.020 1.851 1.780 0.918 1.171 0.775

Mean Asy SE b̂ 0.436 0.270 0.332 0.223 0.113 0.162
Prob(Asy t-stat < 1.96) 36.67% 9.39% 14.71% 55.97% 0.42% 30.34%

Prob(Sim p-value > 5%) 37.24% 21.34% 14.93% 56.55% 44.30% 30.20%

Panel C: No predictability null (b = 0), Noisy σ̂2
t

Dividend yield sim. Variance risk premium sim.

OLS RLS WLS-EV OLS RLS WLS-EV

Mean b̂ 0.000 0.009 0.000 0.000 0.329 0.000

Standard dev b̂ 0.440 0.362 0.378 0.225 0.190 0.184

1st percentile b̂ -1.027 -0.829 -0.877 -0.528 -0.116 -0.431

10th percentile b̂ -0.564 -0.455 -0.483 -0.289 0.085 -0.238

25th percentile b̂ -0.295 -0.235 -0.257 -0.151 0.201 -0.125

Median b̂ 0.000 0.008 -0.004 0.000 0.330 0.000

75th percentile b̂ 0.297 0.252 0.253 0.152 0.457 0.124

90th percentile b̂ 0.565 0.473 0.486 0.287 0.572 0.235

99th percentile b̂ 1.022 0.850 0.885 0.520 0.772 0.427

Mean Asy SE b̂ 0.436 0.270 0.374 0.223 0.113 0.183
Prob(Asy t-stat > 1.96) 2.69% 7.45% 2.58% 2.79% 71.37% 2.63%
Prob(Asy t-stat < −1.96) 2.42% 6.93% 2.69% 2.42% 0.20% 2.55%
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Table 3: In-Sample Return Predictability

This table presents estimates of in-sample return predictability regressions of the form:

rt+1,t+h = a+ b · xt + εt+h,

where rt+1,t+h is the log cumulative dividend-inclusive excess return of the CRSP value-weighted
index from months t + 1 through t + h; and xt is a candidate return predictor. The forecast
horizons I use are h = 1 month in Panel A and h = 12 months in Panel B. The xt I use are the
log dividend-to-price ratio (dp), dividend-to-price ratio (DP), the log earnings-to-price ratio (ep),
the log dividend-to-earnings ratio (de), the conditional variance of returns RV σ̂2t , the treasury bill
yield (tbl), the long-term treasury bond yield (lty), the return of long-term bonds (ltr), the term
spread (tms), the default yield spread (dfy), inflation (infl), the log book-to-market ratio (bm), the
cross-sectional beta premium (csp), net equity expansion (ntis), the log net payout yield (lpy), and
the consumption wealth ratio (cay). To improve the readability of the coefficients, I divide dp, ep,
de, bm, and lpy by 100. For each predictor, I compute point estimates and standard errors of b
using OLS and weighted least squares with expected variance (WLS-EV), detailed in Section 2. I
also compute b̂ adjusted for the Stambaugh bias using a simulation procedure. I compute errors
and p-values for the bias-adjusted coefficients using Hodrick (1992) (Asy) and the heteroskedastic
simulation procedure (Sim) described in Section 3. The sample is 1039 monthly observations from
1927-2013. ***, **, and * indicate simulated p-values below 1%, 5% and 10% level, respectively.
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Table 3: In-Sample Return Predictability (cont’d)

Panel A: Predicting Next-Month Returns

Predictor: dp DP ep de
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj 0.145 0.159 0.115 0.105 0.547 0.504 -0.268 -0.148

Unadjusted b̂ 0.547 0.580 0.169 0.165 0.793 0.763 -0.227 -0.102
SE (Asy) 0.536 0.323 0.201 0.094 0.455 0.370 0.866 0.544
p-value (Asy) 78.62% 62.34% 56.63% 26.34% 22.92% 17.34% 75.70% 78.56%
SE (Sim) 0.445 0.336 0.135 0.090 0.524 0.371 0.818 0.558
p-value (Sim) 74.57% 63.87% 39.04% 23.59% 29.69% 17.54% 74.22% 78.31%

Predictor: σ̂2t tbl lty ltr
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj -0.361 -0.732 -0.097* -0.127*** -0.078 -0.105** 0.106 0.171***

Unadjusted b̂ -0.339 -0.702 -0.092 -0.122 -0.067 -0.094 0.106 0.171
SE (Asy) 1.288 1.089 0.057 0.051 0.060 0.053 0.067 0.061
p-value (Asy) 77.92% 50.17% 9.17% 1.20% 18.95% 4.92% 11.34% 0.49%
SE (Sim) 1.411 1.051 0.056 0.047 0.057 0.049 0.085 0.061
p-value (Sim) 79.57% 48.32% 8.72% 0.78% 17.05% 3.12% 20.99% 0.52%

Predictor: tms dfy infl bm
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj 0.206 0.199* 0.129 -0.023 -0.353 -0.996*** 1.056 0.203

Unadjusted b̂ 0.204 0.197 0.169 0.019 -0.358 -1.003 1.441 0.610
SE (Asy) 0.133 0.110 0.647 0.361 0.462 0.315 1.210 0.624
p-value (Asy) 12.22% 6.98% 84.15% 95.03% 44.51% 0.16% 38.30% 74.48%
SE (Sim) 0.136 0.106 0.418 0.286 0.453 0.308 0.872 0.581
p-value (Sim) 13.05% 6.17% 75.21% 93.91% 42.81% 0.14% 22.25% 73.06%

Predictor: csp ntis lpy cay
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj 2.106*** 1.883*** -0.164 -0.135** 1.643 1.601** 0.190** 0.226***

Unadjusted b̂ 2.135 1.915 -0.163 -0.134 1.777 1.748 0.197 0.232
SE (Asy) 0.758 0.668 0.107 0.081 1.088 0.795 0.089 0.081
p-value (Asy) 0.54% 0.48% 12.81% 9.65% 13.11% 4.39% 3.26% 0.55%
SE (Sim) 0.787 0.644 0.106 0.066 1.008 0.759 0.094 0.082
p-value (Sim) 0.68% 0.35% 12.30% 4.50% 10.01% 3.39% 4.32% 0.55%

Summary Statistics

# Statistically Significant (Sim.)

10% level 5% level 1% level Mean
(
WLS Asy SE
OLS Asy SE

)
Mean

(
WLS Sim SE
OLS Sim SE

)
OLS 3 2 1 - -
WLS 9 8 5 0.74 0.74
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Table 3: In-Sample Return Predictability (cont’d)

Panel B: Predicting Next-Year Returns

Predictor: dp DP ep de
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj 3.497 3.297 1.863 1.655 6.519 6.649 -0.338 -1.534

Unadjusted b̂ 7.967 7.972 2.454 2.284 9.362 9.593 0.168 -1.031
SE (Asy) 6.036 3.757 2.069 1.026 4.403 4.030 9.499 5.855
p-value (Asy) 56.24% 38.01% 36.78% 10.66% 13.87% 9.90% 97.16% 79.33%
SE (Sim) 5.321 3.956 1.554 1.011 5.351 4.138 8.571 6.112
p-value (Sim) 50.73% 40.03% 23.45% 10.22% 21.86% 10.97% 96.88% 80.51%

Predictor: σ̂2t tbl lty ltr
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj 0.200 -7.808 -0.912 -1.147** -0.474 -0.764 0.691*** 0.644***

Unadjusted b̂ 0.512 -7.556 -0.844 -1.075 -0.365 -0.659 0.690 0.643
SE (Asy) 11.048 7.866 0.678 0.603 0.694 0.622 0.210 0.187
p-value (Asy) 98.55% 32.09% 17.88% 5.71% 49.46% 21.89% 0.10% 0.06%
SE (Sim) 10.324 8.152 0.646 0.548 0.670 0.575 0.228 0.191
p-value (Sim) 98.51% 33.56% 15.61% 3.65% 48.32% 18.50% 0.26% 0.09%

Predictor: tms dfy infl bm
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj 3.002* 2.503** 2.033 -0.102 -1.823 -5.037* 16.558 7.284

Unadjusted b̂ 3.015 2.522 2.414 0.296 -1.820 -5.027 21.078 11.954
SE (Asy) 1.499 1.218 6.350 3.564 5.370 3.224 11.843 7.059
p-value (Asy) 4.53% 4.00% 74.89% 97.72% 73.42% 11.82% 16.20% 30.21%
SE (Sim) 1.564 1.192 4.748 3.118 3.870 2.679 10.174 6.905
p-value (Sim) 5.53% 3.39% 66.84% 97.36% 63.97% 5.73% 10.27% 28.92%

Predictor: csp ntis lpy cay
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Stambaugh b̂adj 5.873 4.130 -2.565** -1.901** 28.260** 23.954*** 1.888* 2.111**

Unadjusted b̂ 5.975 4.235 -2.535 -1.874 29.625 25.326 1.958 2.180
SE (Asy) 8.238 7.655 1.171 0.975 11.289 8.595 1.079 0.959
p-value (Asy) 47.59% 58.95% 2.85% 5.12% 1.23% 0.53% 8.01% 2.77%
SE (Sim) 8.680 7.351 1.135 0.802 11.301 8.737 1.104 0.960
p-value (Sim) 49.61% 56.34% 2.14% 1.56% 1.33% 0.63% 8.90% 2.77%

Summary Statistics

# Statistically Significant (Sim.)

10% level 5% level 1% level Mean
(
WLS Asy SE
OLS Asy SE

)
Mean

(
WLS Sim SE
OLS Sim SE

)
OLS 5 3 1 - -
WLS 7 6 2 0.75 0.76
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Table 4: Out-of-Sample Return Predictability

This table presents statistics on the out-of-sample predictability afforded by 16 candidate predictors
xt. In Panel A, I predict next-month log dividend-inclusive excess returns of the CRSP value-
weighted index. In Panel B, the forecast horizon is one year. The predictors are identical to those
in Table 3 with two exceptions: since cay and RV σ̂2t require the full-sample of data to construct, I
replace them with a rolling estimate of the cay variable, caya, and past realized variance RVt−251,t.
For each predictor, I compute out-of-sample return forecasts starting 20 years after the sample
begins, using both OLS and weighted least squares with ex-ante return variance (WLS-EV), detailed
in Section 2. Given these out-of-sample forecasts, I compute the out-of-sample R2 (OOS R2) using
the procedure described in Section 4. I also compute the out-of-sample R2 using the Campbell
and Thompson (2008) approach (CT OOS R2) and the Pettenuzzo, Timmermann, and Valkanov
(2014) (PTV OOS R2), described in Section 4. In both panels, I use 1039 monthly observations
from 1927-2013.

Panel A: Predicting Next-Month Returns

Predictor: dp DP ep de
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 -0.01% -0.13% 0.14% 0.05% -0.89% -0.09% -1.02% -0.65%
CT OOS R2 0.16% 0.14% 0.17% 0.12% -0.10% 0.34% 0.00% -0.19%
PTV OOS R2 0.26% 0.11% 0.30% 0.16% 0.51% 0.41% -0.21% -0.11%

Predictor: RVt−252,t tbl lty ltr
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 -0.10% -0.60% -0.04% -0.76% -0.85% -1.90% -0.57% 0.18%
CT OOS R2 -0.02% 0.00% 0.23% 0.15% 0.22% 0.06% 0.20% 0.11%
PTV OOS R2 -0.07% -0.05% 0.60% 0.53% 0.48% 0.35% 0.12% 0.59%

Predictor: tms dfy infl bm
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 0.23% 0.55% -0.19% 0.05% 0.15% 0.49% -1.37% -0.20%
CT OOS R2 0.22% 0.46% -0.17% -0.03% 0.17% 0.66% -0.80% -0.20%
PTV OOS R2 0.42% 0.56% -0.17% 0.06% 0.10% 0.10% 0.03% 0.08%

Predictor: csp ntis lpy caya
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 -0.49% -0.01% -0.68% -0.34% -0.66% -0.43% 0.15% 0.18%
CT OOS R2 0.54% 0.51% -0.67% -0.34% -0.01% 0.00% -0.06% 0.03%
PTV OOS R2 0.57% 0.57% 0.03% 0.03% 0.24% 0.24% 0.50% 0.50%

Summary Statistics

IS R2 OOS R2 CT OOS R2 PTV OOS R2

Mean Mean #>0 #>OLS Mean #>0 #>OLS Mean #>0 #>OLS

OLS 0.33% -0.39% 4 - 0.01% 8 - 0.23% 13 -
WLS 0.22% -0.22% 6 11 0.11% 11 9 0.26% 14 8
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Table 4: Out-of-Sample Return Predictability (cont’d)

Panel B: Predicting Next-Year Returns

Predictor: dp DP ep de
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 -4.08% -1.92% -1.22% 0.86% -8.51% -0.33% -3.80% -2.47%
CT OOS R2 3.33% 3.22% 2.31% 2.64% 0.66% 4.88% -0.29% -0.71%
PTV OOS R2 3.37% 2.32% 2.64% 2.08% 4.59% 4.55% -2.77% -1.25%

Predictor: RVt−252,t tbl lty ltr
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 -0.94% -5.59% -10.18% -13.94% -12.81% -20.12% 0.98% 0.81%
CT OOS R2 -0.09% 0.00% -1.19% 0.26% 0.35% -0.36% 1.30% 1.19%
PTV OOS R2 -0.93% -0.55% 2.91% 1.86% 0.32% -0.62% 1.04% 1.22%

Predictor: tms dfy infl bm
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 -0.73% 2.05% -3.05% 0.45% -0.55% 1.51% -21.75% -6.86%
CT OOS R2 -0.08% 1.69% -2.42% -0.13% 0.02% 1.78% -8.68% -3.79%
PTV OOS R2 3.77% 3.78% -2.20% 0.52% -0.43% 1.22% 0.05% 0.64%

Predictor: csp ntis lpy caya
OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

OOS R2 -4.49% -4.39% -16.14% -7.47% -20.97% -5.65% 0.77% 1.81%
CT OOS R2 -2.37% -1.99% -16.17% -7.50% 1.62% 2.67% 0.83% 1.62%
PTV OOS R2 -4.48% -4.40% -0.05% -0.02% 4.53% 4.65% 6.33% 6.28%

Summary Statistics

IS R2 OOS R2 CT OOS R2 PTV OOS R2

Mean Mean #>0 #>OLS Mean #>0 #>OLS Mean #>0 #>OLS

OLS 3.08% -6.72% 2 - -1.30% 8 - 1.17% 9 -
WLS 1.98% -3.83% 6 12 0.34% 9 12 1.39% 11 10
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Table 5: Predicting Returns Using the Variance Risk Premium

This table presents estimates of return predictability regressions of the form:

rt+1,t+21 = a+ b · ˆVRPt + εt+h,

where rt+1,t+21 is the log dividend-inclusive excess return of the CRSP value-weighted index over
the 21 days starting with t + 1, annualized and in percent. ˆVRPt is one of two proxies for the
variance risk premium, both expressed as monthly percents squared. The first, from Drechsler
and Yaron (2011), is the difference between the squared VIX and an annualized estimate of next-
month realized variance FutRV2

t+1,t+21, computed from intraday S&P 500 futures returns. The
second, from Bollerslev, Tauchen, and Zhou (2009), is the difference between the squared VIX
and annualized past realized variance FutRV2

t−20,t. For each predictor, I compute point estimates
of b using OLS and weighted least squares with ex-ante return variance (WLS-EV), detailed in
Section 2, using both VIXF and VIX σ̂2t . I also compute b̂ adjusted for the Stambaugh bias using
a simulation procedure. I compute standard errors and p-values for the bias-adjusted coefficients
using Hodrick (1992) (Asy) and the heteroskedastic simulation procedure (Sim) described in Section
3. The sample is 6028 daily observations from 1990-2013. ***, **, and * indicate Sim p-values
below 1%, 5% and 10% level, respectively.

Panel A: Drechsler and Yaron (2011) Approach
ˆVRPt = VIX2

t − Êt(FutRV2
t+1,t+21)

Forecast horizon: One month Three months
OLS WLS-VIXF WLS-VIX OLS WLS-VIXF WLS-VIX

Stambaugh b̂adj 0.426* 0.154 0.133 0.344** 0.143 0.131

Unadjusted b̂ 0.433 0.166 0.150 0.349 0.153 0.143
SE (Asy) (0.229) (0.163) (0.163) (0.173) (0.128) (0.128)
p-value (Asy) 6.3% 34.3% 41.4% 4.6% 26.1% 30.3%
SE (Sim) (0.219) (0.162) (0.163) (0.172) (0.131) (0.133)
p-value (Sim) 5.5% 34.2% 41.3% 4.7% 27.5% 31.8%

Panel B: Bollerslev, Tauchen, and Zhou (2009) Approach
ˆVRPt = VIX2

t − IndRV2
t−20,t

Forecast horizon: One month Three months
OLS WLS-VIXF WLS-VIX OLS WLS-VIXF WLS-VIX

Stambaugh b̂adj 0.520** 0.205 0.191 0.416*** 0.175 0.170

Unadjusted b̂ 0.526 0.217 0.206 0.419 0.185 0.181
SE (Asy) (0.237) (0.160) (0.160) (0.151) (0.114) (0.114)
p-value (Asy) 2.8% 19.8% 23.3% 0.6% 12.5% 13.7%
SE (Sim) (0.221) (0.159) (0.163) (0.153) (0.120) (0.120)
p-value (Sim) 1.8% 19.8% 24.1% 0.7% 14.1% 15.7%
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Table 6: Predicting Returns Using the Variance Risk Premium: Alternative Procedures

This table presents variations of the regressions in Table 5 but with different data, sample periods, sample frequencies, and return indices.
The columns with “Original” data are point estimates from the original papers or using data uploaded by the authors. The remaining
columns use variance risk premia proxies I compute with the goal of replicating the original measures. The two potential indices are
the CRSP value-weighted index and the S&P 500 index, both inclusive of dividends and net of the risk-free rate. For each variation, I
compute point estimates of b using OLS and weighted least squares with ex-ante return variance (WLS-EV), detailed in Section 2, using
VIX σ̂2t . I also compute b̂ adjusted for the Stambaugh (1999) bias using a simulation procedure. I compute standard errors and p-values
for the bias-adjusted coefficients using Hodrick (1992) (Asy) and a heteroskedastic simulation procedure (Sim). Monthly sampling results
in 215 monthly observations from 1990-2007 and 287 from 1990-2013, while daily sampling results in 6028 observations from 1990-2013.
***, **, and * indicate Sim p-values below 1%, 5% and 10% level, respectively.

Panel A: Drechsler and Yaron (2011) Approach
ˆVRPt = VIX2

t − Êt(Fut. RV2
t+1,t+21)

Data: Original Replicated Replicated Replicated Replicated Replicated
Sample period: 1990-2007 1990-2007 1990-2007 1990-2007 1990-2013 1990-2013
Sample interval: Monthly Monthly Monthly Daily Monthly Daily
Index: S&P S&P Log S&P Log S&P Log S&P Log S&P

Forecast horizon: one month
OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS

Stambaugh b̂adj - - 0.378 0.196 0.349 0.157 0.446 0.156 0.498* 0.263 0.427* 0.130

Unadjusted b̂ 0.760*** - 0.403 0.226 0.371 0.184 0.463 0.195 0.507 0.274 0.432 0.144
SE (Asy) (0.350) - (0.179) (0.222) (0.195) (0.230) (0.298) (0.238) (0.191) (0.188) (0.228) (0.162)
p-value (Asy) 2.9% - 3.4% 37.7% 7.4% 49.6% 13.5% 51.4% 0.9% 16.1% 6.2% 42.4%
SE (Sim) - - (0.316) (0.252) (0.320) (0.255) (0.285) (0.235) (0.279) (0.207) (0.222) (0.164)
p-value (Sim) - - 24.5% 44.9% 28.0% 54.3% 11.9% 50.9% 7.4% 20.5% 5.7% 42.8%

Forecast horizon: three months
OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS

Stambaugh b̂adj - - 0.436* 0.214 0.403* 0.170 0.405* 0.142 0.473*** 0.239 0.331* 0.114

Unadjusted b̂ 0.860*** - 0.456 0.239 0.422 0.191 0.418 0.169 0.479 0.245 0.335 0.127
SE (Asy) (0.270) - (0.122) (0.154) (0.153) (0.166) (0.220) (0.190) (0.121) (0.118) (0.172) (0.127)
p-value (Asy) 0.1% - 0.0% 16.4% 0.8% 30.4% 6.6% 45.5% 0.0% 4.3% 5.4% 37.1%
SE (Sim) - - (0.225) (0.226) (0.230) (0.190) (0.227) (0.197) (0.185) (0.143) (0.173) (0.132)
p-value (Sim) - - 5.5% 34.2% 7.8% 36.9% 7.9% 47.7% 0.9% 10.1% 5.8% 38.6%
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Table 6: Predicting Returns Using the Variance Risk Premia: Alternative Procedures (cont’d)

Panel B: Bollerslev, Tauchen, and Zhou (2009) Approach
ˆVRPt = VIX2

t − Fut. RV2
t−20,t

Data: Original Original Replicated Replicated Replicated Replicated
Sample period: 1990-2007 1990-2007 1990-2007 1990-2007 1990-2013 1990-2013
Sample interval: Monthly Monthly Monthly Daily Monthly Daily
Index: Log S&P Log S&P Log S&P Log S&P Log S&P Log S&P

Forecast horizon: one month
OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS

Stambaugh b̂adj - - 0.358 0.179 0.386 0.224 0.468 0.161 0.595* 0.405* 0.518** 0.185

Unadjusted b̂ 0.390* - 0.372 0.196 0.400 0.235 0.478 0.191 0.598 0.408 0.524 0.200
SE (Asy) (0.222) - (0.212) (0.247) (0.211) (0.247) (0.300) (0.241) (0.142) (0.188) (0.236) (0.160)
p-value (Asy) 7.8% - 9.1% 46.9% 6.7% 36.4% 11.9% 50.6% 0.0% 3.1% 2.8% 24.6%
SE (Sim) - - (0.337) (0.271) (0.343) (0.276) (0.293) (0.241) (0.308) (0.222) (0.221) (0.162)
p-value (Sim) - - 29.0% 51.1% 26.0% 42.0% 11.5% 50.0% 5.3% 6.7% 1.9% 25.1%

Forecast horizon: three months
OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS OLS WLS

Stambaugh b̂adj - - 0.463** 0.231 0.477** 0.248 0.441* 0.171 0.527*** 0.321** 0.405* 0.157

Unadjusted b̂ 0.470*** - 0.479 0.248 0.491 0.263 0.451 0.192 0.529 0.323 0.409 0.169
SE (Asy) (0.164) - (0.149) (0.163) (0.148) (0.163) (0.218) (0.189) (0.086) (0.103) (0.150) (0.114)
p-value (Asy) 0.4% - 0.2% 15.5% 0.1% 12.7% 4.3% 36.5% 0.0% 0.2% 0.7% 17.0%
SE (Sim) - - (0.231) (0.191) (0.230) (0.191) (0.227) (0.196) (0.187) (0.135) (0.151) (0.121)
p-value (Sim) - - 4.5% 22.6% 4.0% 19.5% 5.2% 38.2% 0.5% 1.7% 0.7% 19.5%
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Table 7: Predicting Returns Using Politics, the Weather, and the Stars

This figure presents estimates of return predictability regressions of the form:

rt+1 = a+ b ·Xt + εt+1,

where rt+1 is the log dividend-inclusive excess return of the CRSP value-weighted index in month
t+1, in percent. Xt is one of nine predictors from Novy-Marx (2014): is an indicator for whether the
President of the United States in month t is a Democrat (Dem), the monthly highest temperature
in New York City (NYC Weather), the global temperature anomaly (Global Temp.), the rolling
average global temperature (Roll. Global Temp.), the quadiperiodic Pacific temperature anomaly
(El Niño), the rolling average Pacific Ocean temperature (Roll. El Niño), the observed number
of sunspots (Sunspots), the angle between Mars and Saturn (Mars/Saturn Angle), and the angle
between Jupiter and Saturn (Jupiter/Saturn Angle). For each predictor, I compute point estimates
of b using OLS and weighted least squares with ex-ante return variance (WLS-EV), detailed in
Section 2. I compute p-values for the coefficients using the heteroskedastic simulation procedure
(Sim) described in Section 3. The sample is 624 monthly observations from 1961-2012. ***, **,
and * indicate Sim p-values below 1%, 5% and 10% level, respectively.

Predicting Next-Month Returns

OLS WLS-EV OLS WLS-EV OLS WLS-EV

Predictor: Dem NYC Weather Global Temp.

b̂ 0.767** 0.521 -0.026** -0.018 0.100 0.215
p-value (Sim) 4.07% 10.53% 4.22% 10.66% 85.25% 64.14%

Predictor: Roll. Global Temp. El Niño Roll. El Niño

b̂ 0.099 0.267 0.000 0.017 -0.303 -0.058
p-value (Sim) 86.32% 59.66% 99.81% 91.92% 56.44% 89.89%

Predictor: Sunspots Mars/Saturn Angle Jupiter/Saturn Angle

b̂ -0.003 -0.004 0.513*** 0.414** -0.009 -0.079
p-value (Sim) 44.56% 28.83% 0.69% 1.39% 96.55% 66.64%

Joint significance: OLS WLS-EV

χ2 statistic 15.22* 13.41
p-value (Sim) 8.52% 14.58%


