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Abstract

Forest-based methods are being used in an increasing variety of statistical tasks,
including causal inference, survival analysis, and quantile regression. Extending forest-
based methods to these new statistical settings requires specifying tree-growing algo-
rithms that are targeted to the task at hand, and the ad-hoc design of such algorithms
can require considerable effort. In this paper, we develop a unified framework for the
design of fast tree-growing procedures for tasks that can be characterized by hetero-
geneous estimating equations. The resulting gradient forest consists of trees grown
by recursively applying a pre-processing step where we label each observation with
gradient-based pseudo-outcomes, followed by a regression step that runs a standard
CART regression split on these pseudo-outcomes. We apply our framework to two
important statistical problems, non-parametric quantile regression and heterogeneous
treatment effect estimation via instrumental variables, and we show that the resulting
procedures considerably outperform baseline forests whose splitting rules do not take
into account the statistical question at hand. Finally, we prove the consistency of gra-
dient forests, and establish a central limit theorem. Our method will be available as an
R-package, gradientForest, which draws from the ranger package for random forests.

1 Introduction

As the amount of data available to us increases, there is a growing interest in personalizing
statistical analyses: In medicine, we seek the most appropriate treatment for each patient,
while in economics we may want to model heterogeneous preferences across different agents.
And, in several application areas, random forests [Breiman, 2001] have shown considerable
promise as a tool for such personalized analyses. For example, forest-based algorithms have
been found to perform well for hetereogeneous treatment effect estimation [Green and Kern,

We are grateful for helpful comments from several colleagues; in particular, we are indebted to Jerry
Friedman for first suggesting we take a closer look at splitting rules for quantile regression forests, and to
Will Fithian for drawing our attention to connections between our early ideas and gradient boosting.
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2012, Hill, 2011, Wager and Athey, 2015, Taddy et al., 2016], person-specific survival analysis
[Ishwaran et al., 2008, Ishwaran and Kogalur, 2010], and personalized treatment allocation
[Kallus, 2016].

At a high level, forest-based methods for personalized statistical analysis operate in two
steps: First, they use an ensemble of recursive partitioning trees [Breiman et al., 1984] to
obtain an adaptive nearest-neighbor function, and then they apply the desired statistical
analysis on these adaptive neighborhoods. For example, in order to estimate the effect of
a medicine on a specific person of interest, forest-based methods would first construct an
ensemble of trees to find people who ought to respond similarly to the treatment as our
person of interest, and then for each tree in the forest, compute an average treatment effect
on this personalized comparison group (that is, within that person’s leaf in the tree).1

The success of any such forest-based analysis hinges on whether the adaptive neigh-
borhood function obtained via partitioning adequately captures the heterogeneity in the
underlying property we want to estimate. Even within the same class of statistical tasks,
different types of questions can require different neighborhood functions. As a concrete ex-
ample, suppose that two scientists are studying the effects of a new medical treatment: One
wants to know how the treatment affects long-term survival, whereas the other is examin-
ing its effect on the length of hospital stays. It is entirely plausible that the neighborhood
functions that are helpful in capturing the treatment heterogeneity in each setting would
be based on completely different covariates, e.g., a patient’s smoking habits for long-term
survival, and the location and size of the hospital for the length of stay.

Thus, each time we apply random forests to a new scientific task, it is important to use
tree-growing rules for recursive partitioning that are able to detect and highlight hetero-
geneity in the signal that researcher is interested in. Until now, such problem-specific rules
have largely been designed by hand, a labor-intensive task. Although the CART rules of
Breiman et al. [1984] have long been popular for classification and regression tasks, there has
been a steady stream of papers proposing new splitting rules for other problems, including
Athey and Imbens [2016] and Su et al. [2009] for treatment effect estimation, Beygelzimer
and Langford [2009] and Kallus [2016] for personalized policy allocation, and Ciampi et al.
[1986], Gordon and Olshen [1985], LeBlanc and Crowley [1992], Molinaro et al. [2004] as
well as several others for survival analysis (see Bou-Hamad et al. [2011] for a review). Zeileis
et al. [2008] proposes a method for constructing a single tree for general maximum likelihood
problems, where the splitting rule is based on model goodness of fit.

Another challenge inherent in taking random forests to new scientific tasks is that the
primary approach used in the literature to date is to estimate a model separtely in each leaf
of the tree. For regression trees, estimating the model is simply estimating the sample mean
outcome within the leaf; in Athey and Imbens [2016], this involves taking the difference of
sample means for treated and control units, possibly weighted by the propensity score for
treatment; in Zeileis et al. [2008], a more complex model might be estimated there. This
approach presents a number of challenges if applied generally. First, the trees may need
to be shallow (i.e., with large leaves) in order to estimate a more complex model reliably.
Second, the subsample in each leaf may need to satisfy additional properties; for example,
we may need to have sufficient numbers of both treated and control units for treatment
effect estimation, and for instrumental variable estimation, more complex conditions must

1The causal forest algorithm of Wager and Athey [2015] proceeds in this way, using the causal trees of
Athey and Imbens [2016] for recursive partitioning. The methods of Green and Kern [2012], Hill [2011],
and Taddy et al. [2016] rely on more elaborate Bayesian heuristics for forest-based estimation, following
Chipman et al. [2010].
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be satisfied for estimation to be reliable and stable. However, both standard statistical
practice following Breiman [2001] and existing results for statistical inference with random
forests [Wager and Athey, 2015] rely on building deep trees with small leaves; forests based
on shallow trees can yield estimates that are bias-dominated.

In this paper, we develop a method for forest-based estimation that deals with both
challenges described here. First, we provide a general method for problem-specific splitting
rules, one that is optimized for the primary objective of analyzing heterogeneity in a key
parameter of interest. In the spirit of gradient boosting [Friedman, 2001], our recursive
partitioning method begins by computing a linear, gradient-based approximation to the
non-linear estimating equation we are trying to solve, and then uses this approximation to
specify the tree-split point. Algorithmically, our procedure reduces to iteratively applying a
labeling step where we generate pseudo-outcomes by computing gradients, and a regression
step where we pass this labeled data to a standard CART regression routine. Thus, our
approach lets us obtain high quality neighborhood functions while only using comparable
computational resources to those required by the original classification or regression forests
of Breiman [2001].

Second, at estimation time, we take a different approach than the majority of the ex-
isting literature on forest-based methods, and do not average parameter estimates obtained
from different trees. Instead, we view the forest as generating weights for local generalized
method of moments (or maximum likelihood) estimation. The forest is used to determine
the relevance of each training sample for estimation at a specific point in features space: a
given sample is weighted in proportion to the fraction of trees in which it is in the same leaf
as the test point of interest. Thus, we can view the forest-based weighting function as an
alternative to kernel-based weighting functions that have been proposed for local maximum
likelihood or similar methods, as discussed in further detail below.

Our perspective enables us to immediately extend the set of problems for which we have
forest-based algorithms. In the context of quantile regression, Meinshausen [2006] shows
how to build consistent forest-based estimators, and in fact uses a similar kernel-based idea
as us at estimation time. However, the splitting rule used in these quantile regression forests
is based on a standard CART regression tree routine. For this reason the resulting method
is not sensitive to quantile shifts that do not correspond to changes in the conditional mean
function. Here, we show that the ability of gradient forests to specifically target changes in
the conditional quantile function lets them outperform the baseline forests of Meinshausen
[2006] in examples where the mean and quantile functions behave in divergent ways.

On the topic of heterogeneous treatment effect estimation, Wager and Athey [2015]
studies the application and statistical behavior of random forests. The paper, however,
only considers the case where the treatment assignment is effectively random conditional on
the features, and so the proposed method cannot be used in economic applications where
treatment assignment is endogenous. Gradient forests enable us to extend their results,
making use of instrumental variables to identify causal effects. We emphasize that the
methods advocated here are by no means a direct generalization of those studied by Wager
and Athey [2015], and rather draw heavily from our gradient forest framework.

Finally, the most computationally intensive part of growing a CART-style tree is scanning
over candidate covariates to find a good splitting point. Our algorithm naturally decomposes
into an inexpensive label step, where we capture the structure of the specific statistical
question, and a standard regression step. For this reason, we can make use of pre-existing,
highly-optimized tree software to execute the regression step. In line with this approach, our
package, gradientForest for R and C++, re-uses the regression splitting procedures from
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the ranger implementation of random forests [Wright and Ziegler, 2015].

1.1 Related Work

The idea of local maximum likelihood estimation has a long history in statistics, with no-
table contributions due to Fan et al. [1998], Newey [1994], Staniswalis [1989], Stone [1977],
Tibshirani and Hastie [1987] and others. In the economics literature, a popular application
of these techniques has been to multinomial choice in a panel data setting [e.g., Honoré and
Kyriazidou, 2000]. The basic idea is that when estimating parameters at a particular value
of covariates, a kernel weighting function is used to place more weight on nearby observa-
tions in the covariate space. A challenge facing this approach is that if the covariate space
has more than two or three dimensions, the “curse of dimensionality” implies that plain
kernel-based methods may not perform well [e.g., Robins and Ritov, 1997].

Our paper takes the approach of replacing the kernel weighting with “forest-based”
weights, that is, weights derived from the fraction of trees in which an observation appears
in the same leaf as the target value of the covariate vector. The original random forest
algorithm for non-parametric classification and regression was proposed by [Breiman, 2001],
building on insights from Amit and Geman [1997] and Breiman [1996]. The perspective we
take on random forests as a form of adaptive nearest neighbor estimation, however, most
closely builds on the proposal of Meinshausen [2006] for forest-based quantile regression.
This adaptive nearest neighbors perspective also underlies several statistical analyses of
random forests, including those of Arlot and Genuer [2014], Biau and Devroye [2010], and
Lin and Jeon [2006].

Meanwhile, our gradient-based splitting scheme draws heavily from a long tradition in
the statistics and econometrics literatures of using gradient-based test statistics to detect
change points in likelihood models [Andrews, 1993, Hansen, 1992, Hjort and Koning, 2002,
Nyblom, 1989, Ploberger and Krämer, 1992, Zeileis, 2005, Zeileis and Hornik, 2007]. In
particular, Zeileis et al. [2008] consider the use of such methods for model-based recursive
partitioning. Our problem setting differs from the above in that we are not focused on
running a hypothesis test, but rather seek an adaptive nearest neighbor weighting that is
as sensitive as possible to heterogeneity in our parameter of interest; we then rely on the
random forest resampling mechanism to achieve statistical stability [Mentch and Hooker,
2016, Scornet et al., 2015, Wager and Athey, 2015]. In this sense, our approach is closely
related to the gradient boosting algorithm of Friedman [2001], who uses similar gradient-
based approximations to guide a greedy, heuristic, non-parametric regression procedure.

Our asymptotic theory relates to an extensive recent literature on the statistics of random
forests, most of which focuses on the regression case [Arlot and Genuer, 2014, Biau, 2012,
Biau et al., 2008, Biau and Scornet, 2016, Breiman, 2004, Bühlmann and Yu, 2002, Chipman
et al., 2010, Denil et al., 2014, Efron, 2014, Geurts et al., 2006, Ishwaran and Kogalur, 2010,
Lin and Jeon, 2006, Meinshausen, 2006, Mentch and Hooker, 2016, Samworth, 2012, Scornet
et al., 2015, Sexton and Laake, 2009, Wager et al., 2014, Wager and Athey, 2015, Wager and
Walther, 2015]. Our present paper complements this body work, by showing how methods
developed to study regression forests can also be used understand solutions to heterogeneous
estimating equations obtained via gradient forests.

Finally, we note that the problem we study, namely estimating how a parameter vector
varies with covariates, where this relationship is non-parametric, is distinct from the problem
of estimating a single, low-dimensional parameter—such as an average treatment effect—
while controlling for a non-parametric or high-dimensional set of covariates [e.g., Athey
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et al., 2016, Belloni et al., 2013, Robins et al., 1995, van der Laan and Rubin, 2006].

1.2 Outline

We begin by formalizing the problem settings in the language of heterogeneous estimating
equations, then present an abstract version of our tree-growing scheme that can be used to
solve any such estimating equation. The second part of the paper is devoted to discussing
and evaluating the application of gradient forests to concrete problems of statistical and
economic interest: Section 4 considers quantile regression while Section 5 studies causal
inference with instrumental variables. Finally, in Section 6, we undertake a theoretical
analysis of gradient forests, and prove consistency and asymptotic normality results.

2 Heterogeneous Estimating Equations

In the interest of generality, we frame our presentation in terms of the formalism of (general-
ized) estimating equations. Suppose that we have n independent and identically distributed
subjects, and for each subject i = 1, ..., n. For each sample, we have access to an observable
quantity Oi that encodes the information about the subject we are interested in, along with
a set of auxiliary covariates Xi. In the case of non-parametric regression, this observable
just consists of an outcomes Oi = {Yi} with Yi ∈ R; in general, however, it will contain
richer information. For example, in the case of treatment effect estimation with exogenous
treatment assignment, Oi = {Yi, Wi} also includes the treatment assignment Wi; while
in the case of treatment effect estimation with instrumental variables, Oi = {Yi, Wi, Zi},
where Wi is the (endogeneous) treatment assignment and Zi is an instrument used to iden-
tify causal effects (Zi is correlated with Wi but not with potential outcomes [Imbens and
Angrist, 1994]).

Given this kind of data, our goal is to solve an estimation equation of the form

E
[
ψθ(x), ν(x) (Oi)

∣∣Xi = x
]

= 0 for all x ∈ X , (1)

where θ(x) is the parameter we care about and ν(x) is an optional nuisance parameter.
This setting is very general, and encompasses several important problems in statistics and
econometrics. At the end of this section, we outline how our some important statistical
tasks fit into this framework, while emphasizing that the setting of heterogeneous estimating
equations covers many more cases than we can review here.

A popular approach to estimating θ(x) in a heterogeneous estimating equation is to first
define similarity weights αi(x) that measure the relevance of the i-th training example to
fitting θ(·) at x, and then fit the target of interest as the solution to the moment equation

(
θ̂(x), ν̂(x)

)
∈ argminθ, ν

{∣∣∣∣∣
n∑
i=1

αi(x)ψθ, ν (Oi)

∣∣∣∣∣
}
. (2)

When the above expression has a unique root, we can simply say that θ̂(x), ν̂(x) solves∑n
i=1 αi(x)ψθ̂(x), ν̂(x) (Oi) = 0.

The weights αi(x) used to specify the above solution to the heterogeneous estimating
equation are often obtained via a deterministic kernel function, perhaps with an adaptively
chosen bandwith parameter [Fan et al., 1998, Newey, 1994, Staniswalis, 1989, Stone, 1977,
Tibshirani and Hastie, 1987]. Although methods of the above kind often work well in low
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dimensions, they can be very sensitive to the curse of dimensionality. In this paper, our
goal is to use forest-based algorithms to adaptively learn better, problem-specific, weights
αi(x) that can be used in conjunction with (2).

Before presenting our method, we first briefly review how our concrete problems of
interest fit in the setting discussed above.

Least-square regression Classical regression forests, as introduced by Breiman [2001],
can be understood as estimators for the conditional mean response function θ(x) = E

[
Y
∣∣X = x

]
.

This statistical objective can be encoded within the framework of (1) by using the moment
function ψθ(x)(Yi) = Yi − θ(x).

Quantile regression Another ubiquitous statistical task is that of quantile estimation,
whereby we seek to recover quantiles of the conditional distribution of Yi given Xi = x, i.e.,
θ(x) = F−1x (q) for some pre-specified q ∈ (0, 1). This problem can again be cast into the
language of estimating equations, by using the moment function ψθ(x)(Yi) = q1 ({Yi > q})−
(1− q)1 ({Yi ≤ q}); see Koenker [2005] for a review.

Instrumental variables regression Suppose we want to measure the causal effect of a
treatment assignment Wi on an outcome Yi, but cannot exclude the possibility of non-causal
correlations between Wi and Yi. For example, we may want to measure the effect of college
education (Wi) on income (Yi), but recognize that individuals who went to college may
have had higher earning potential than those who didn’t even if they hadn’t gone to college.
As discussed in, e.g., Angrist et al. [1996], a popular strategy in such situations is to rely
on an instrument Zi that is associated with the treatment Wi but is immune to spurious
correlations: In the above example, a randomized incentive to attend college could act as
such an instrument.

Formally, in the language of potential outcomes [Neyman, 1923, Rubin, 1974], let Yi(w)
denote the counterfactual outcome we would have observed for the i-subject had they re-
ceived a treatment w. The instrument Zi then allows for identification of heterogeneous
causal effects whenever the instrument is associated with treatment assignment, and the
following unconfoundedness condition holds [Rosenbaum and Rubin, 1983]:

{Yi(w)}w∈W ⊥⊥ Zi
∣∣Xi. (3)

Given this setup, the causal effect τ(Xi) of Wi on Yi is identified as an estimating equation
(1) using the moment function [e.g., Angrist and Pischke, 2008]

ψτ(x), µ(x) =

(
Zi (Yi −Wiτ(x)− µ(x))
Yi −Wiτ(x)− µ(x)

)
, (4)

where the intercept µ(x) is a nuisance parameter.
As a side, we note that there has been considerable recent interest in using random forests

for heterogeneous treatment effect estimation [Green and Kern, 2012, Hill, 2011, Wager and
Athey, 2015]. However, all of the previous literature has focused on the simpler case where
the treatment assignment is exogneous, i.e., where the unconfoundedness condition (3) still
holds if we replace Zi with Wi, and so we do not need to use an auxiliary instrument to
identify causal effects.
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Figure 1: Illustration of the random forest weighting function. Each tree starts by giving
equal (positive) weight to the training examples in the same leaf as our test point x of
interest, and zero weight to all the other training examples. Then, the forest averages all
these tree-based weightings, and effectively measures how often each training example falls
into the same leaf as x.

3 Solving Estimating Equations with Forests

3.1 Forests as Weighted Neighborhood Estimation

We now return to our main topic of interest, that is, personalized estimation via random
forests in generic statistical problems characterized by estimating equations. Following
Meinshausen [2006], we view random forests a method producing a data-adaptive weighting
function αi(x) that quantifies the importance of the i-th training example for understanding
a test point x; we then estimate θ(x) using (2) with the forest weights.

A random forest produces these weights αi(x) by building an ensemble of B trees indexed
by b = 1, ..., B, and for each such tree defining Lb(x) as the set of training examples falling
in the same “leaf” as x. Then, we define weights αi(x) that capture the frequency with
which the i-th training example falls into the same leaf as x:

αbi(x) =
1 ({Xi ∈ Lb(x)})

|Lb(x)|
, αi(x) =

1

B

B∑
b=1

αbi(x). (5)

These weights sum to 1, and define the forest-based adaptive neighborhood of x; this weight-
ing function is illustrated in Figure 1. Then, following (2), the random forest solves the

heterogeneous estimating equation as
∑n
i=1

1
B

∑B
b=1 αbi(x)ψθ̂(x), ν̂(x) (Oi) = 0.

We note that, in the case of linear regression, this weighting-based definition of ran-
dom forests is equivalent to the standard “average of trees” perspective taken in Breiman
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[2001]. Specifically, suppose we want to estimate the conditional mean function θ(x) =
E
[
Yi
∣∣Xi = x

]
which, as discussed above, is identified in (1) using the moment function

ψθ(x)(Yi) = Yi − θ(x). Then, we can use simple algebra to verify that

n∑
i=1

1

B

B∑
b=1

αbi(x)
(
Yi − θ̂(x)

)
= 0 ⇐⇒ θ̂(x) =

1

B

B∑
b=1

θ̂b(x), (6)

where θ̂b(x) =
∑
{i:Xi∈Lb(x)} Yi

/
|Lb(x)| is the prediction made by a single CART regression

tree.

3.2 Splitting to Maximize Heterogeneity

Given this setup, our goal is to build trees that, when combined into a forest, induce weights
αi(x) that lead to good estimates of θ(x). In our search for good splits, we proceed greedily,
i.e., our goal is that each split immediately improves the quality of the tree fit as much as
possible. Every split starts with a parent node P ∈ X ; this parent node is characterized by
a solution θ̂P to the estimating equation, namely∑

{i:Xi∈P}

ψθ̂P (Oi) = 0, (7)

along with a mean-squared error

err (P ) = E
[(
θ̂P − θ(X)

)2 ∣∣X ∈ P] . (8)

We would like to divide P into two children C1, C2 ∈ X using an axis-aligned cut such as to
improve the accuracy of our θ-estimates as much as possible or, in other words, to minimize
the resulting squared error

err (C1, C2) =
∑
j=1, 2

P
[
X ∈ Cj

∣∣X ∈ P ]E [(θ̂Cj − θ(X)
)2 ∣∣X ∈ Cj] . (9)

In the least-squares regression case, we can simply use the prediction error of the tree over
the two leaves C1 and C2 to get nearly-unbiased estimates of the error criterion (9), up to
a shift parameter that does not depend on the split under consideration. Many standard
regression tree implementations, such as CART, choose their splits by just minimizing the
prediction error of the tree.

In our setting, however, this kind of direct loss minimization is not an option: If θ(x)
is only identified through a moment condition, then we do not in general have access to
unbiased, model-free estimates of the criterion (9). To side-step this issue, we rely on the
following more abstract characterization of our target criterion.

Proposition 1. Suppose that basic assumptions detailed in Section 6 hold, and that the par-
ent node P has a radius smaller than r for some value r > 0. We write nP = |{i : Xi ∈ P}|
for the number of observations in the parent, and suppose that nP � r−2. Define

∆(C1, C2) := nC1
nC2

/
n2P

(
θ̂C1
− θ̂C2

)2
, (10)
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where θ̂C1 and θ̂C2 are solutions to the estimating equation computed in the children, fol-
lowing (7). Then, for any split of the parent node P into two children C1 and C2, we
have

err (C1, C2) = K(P )−∆(C1, C2) + oP
(
r2
)
, (11)

where K(P ) is a deterministic term that measures the purity of the parent node that does
not depend on how the parent is split.

Motivated by this observation, we consider splits that make the above ∆-criterion (10)
large. A special case of the above idea also underlies the splitting rule for treatment effect
estimation proposed by Athey and Imbens [2016]. At a heuristic level, we can think of this
∆-criterion as favoring splits that increase the heterogeneity of the in-sample θ-estimates as
fast as possible.

Finally, we note that the dominant error term in (11) is due to the sampling variance
of regression trees, and is the same term that appears in the analysis of Athey and Imbens
[2016]. Including this error term in the splitting criterion may stabilize the construction of
the tree, and further it can prevent the splitting criterion from favoring splits that make the
model difficult to estimate, for example, splits where there is not sufficient variation in the
data to estimate the model parameters within the resulting child leaves.

3.3 The Gradient Tree Algorithm

The above discussion provides some helpful conceptual guidance on how to pick good splits.
However, from a computational perspective, actually optimizing the criterion ∆(C1, C2)

over all possible axis-aligned splits while explicitly solving for θ̂C1
and θ̂C2

in each candidate
child using an analogue to (7) may be quite expensive.

To avoid this issue, we instead optimize an approximate criterion ∆̃(C1, C2) built using
gradient-based approximations for θ̂C1 and θ̂C2

: For each child C, we use θ̃C ≈ θ̂C with

θ̃C = θ̂P −
1

|{i : Xi ∈ C}|
∑

{i:Xi∈C}

ξ>A−1P ψθ̂P , ν̂p (Oi) , (12)

AP =
1

|{i : Xi ∈ P}|
∑

{i:Xi∈P}

∇ψθ̂P , ν̂P (Oi) , (13)

where θ̂P and ν̂P are obtained by solving (7) once in the parent node, and ξ is a vector that
picks out the θ-coordinate from the (θ, ν) vector. Similar gradient-based approximations
also underlie other popular statistical algorithms, including gradient boosting [Friedman,
2001] and the tree-building algorithm of Zeileis et al. [2008].

Algorithmically, our recursive partitioning scheme reduces to alternatively applying the
following two steps. First, in a labeling step, we compute θ̂P , ν̂P , and the derivative
matrix A−1P on the parent data as in (7), and use them to get pseudo-outcomes

Ỹi = −ξ>A−1P ψθ̂P , ν̂P (Oi) ∈ R. (14)

Next, in a regression step, we run a standard CART regression split on the pseudo-
outcomes Ỹi. Specifically, we split P into two axis-aligned children C1 and C2 such as to

9



Algorithm 1 Gradient forests with honesty and subsampling

Note: All tuning parameters, such as the total number of trees B and the sub-sampling rate
used in Subsample, are taken as pre-specified.

1: procedure GradientForest(set of examples S, test point x)
2: weight vector α← 0
3: for b = 1 to total number of trees B do
4: set of examples I ← Subsample(S)
5: sets of examples J1, J2 ← SplitSample(I)
6: tree T ← GradientTree(J1) . Grows a tree by recursive partitioning,

alternating the steps (14) and (15).
7: N ←Neighbors(x, T , J2) . Returns those elements of J2 that fall

into the same leaf as x in the tree T .
8: for all example e ∈ N do
9: α[SampleIndex(e)] += 1/ |N |

10: output θ̂(x), the solution to (2) with weights α/B

maximize the criterion

∆̃(C1, C2) =

2∑
j=1

−1

|{i : Xi ∈ Cj}|

 ∑
{i:Xi∈Cj}

Ỹi

2

. (15)

As discussed earlier, the most computationally intensive step in this algorithm is the regres-
sion step; and, thanks to our two-step structuring of our method, this step can be executed
using standard optimized software for CART regression trees. Finally, once we have exe-
cuted the regression step, we solve the estimating equation exactly in each child separately
and then proceed to relabel the observations, etc.

As theoretical justification for our gradient-based approximation, we can verify that the
error from using the approximate criterion (15) instead of the exact ∆-criterion (10) is
within the tolerance used to motivate the ∆-criterion in Proposition 1.

Proposition 2. Under the conditions of Proposition 1,

∆̃(C1, C2) = ∆(C1, C2) + oP

(
r2,

1

nC1

,
1

nC2

)
. (16)

As a final sanity check on our procedure, we note that in the case of least-squares
regression, i.e., with ψθ(x)(Y ) = Y − θ(x), the labeling step (14) does not change the

problem away from standard CART : Ỹi = Yi − Y p, where Y p is the mean outcome in
the parent. Thus, in the case of regression, our gradient trees are equivalent to growing a
standard CART regression tree.

Remark: Non-differentiable estimating equations. In some cases of interest, such
a quantile regression, the derivative matrix AP in (13) may not be well-defined. In such

cases, we can replace Ap in the definition of the pseudo-outcomes (14) with Âp, a consistent
estimate for the gradient of the expectation of the ψ-function, i.e., ∇E[ψθ̂P , ν̂P (O)

∣∣X = x].
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3.4 Building a Forest: Consistency, Honesty, and Subsampling

Now, given a practical splitting scheme for growing individual trees, our goal is to grow a
forest that allows for consistent estimation of θ(x) using (2) paired with the forest weights
(5). At a high level, we expect each tree to provide small, relevant neighborhoods for x
that give us noisy estimates of θ(x). However, if every tree has different small, relevant
neighborhoods for x, we may hope that forest-based aggregation will provide a single larger
but still relevant neighborhood for x that yields stable estimates θ̂(x).

To ensure that forest-based aggregation succeeds in providing the kind of stability dis-
cussed above, we rely on two conceptual ideas that have proven to be successful in the liter-
ature on forest-based least-squares regression: Training trees on subsamples of the training
data [Mentch and Hooker, 2016, Scornet et al., 2015, Wager and Athey, 2015], and a sub-
sample splitting technique that we call honesty [Biau, 2012, Denil et al., 2014, Wager and
Athey, 2015]. Our final algorithm for forest-based solutions to heterogeneous estimating
equations is given as Algorithm 1; we refer to Wager and Athey [2015] for a more in-depth
discussion of subsampling and honesty in the context of forests.

As we will show in the theoretical analysis in Section 6, assuming regularity conditions,
the estimates θ̂(x) obtained using a gradient forest as described in Algorithm 1 are consistent
for θ(x). Moreover, given appropriate subsampling rates, we can extend the analysis of
Wager and Athey [2015] to show asymptotic normality of the resulting forest estimates

θ̂(x). Before discussing theory, however, we first review some concrete instantiations of our
gradient forests.

4 Application: Quantile Regression Forests

As a first application gradient forests, we consider the problem of quantile regression with
random forests. This problem has also been considered in detail by Meinshausen [2006], who
proposed a consistent forest-based quantile regression algorithm; his method also fits into
the paradigm of solving estimating equations (2) using random forest weights (5). However,
unlike us, Meinshausen [2006] does not propose a splitting rule that is tailored to the quantile
regression context, and instead builds his forests using plain CART regression splits. Thus,
a comparison of our method with that of Meinshausen [2006] provides a perfect opportunity
for evaluating the value of our splitting scheme.

Recall that, in the language of estimating equations, the q-th quantile θq(x) of the
distribution of Y conditionally on X = x is identified via (1), using the moment function

ψθ(x)(Yi) = q1 ({Yi > q})− (1− q)1 ({Yi ≤ q}) . (17)

Plugging this moment function into our splitting scheme, (14) gives us pseudo-outcomes

Ỹi = 1
({
Yi > θ̂q, P

})
where θ̂q, P is the q-th quantile of the parent P , (18)

up to a scaling and re-centering that do not affect the subsequent regression split on these
pseudo-outcomes. In other words, gradient-based quantile regression trees simply try to
separate observations that fall above the q-th quantile of the parent from those below it.

We compare our method to that of Meinshausen [2006] in Figure 2. In the left panel,
we have a mean shift in the distribution of Yi conditional on Xi at (Xi)1 = 0, and both
methods are able to pick it up as expected. However, in the right panel, the mean of Y

11
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Figure 2: Comparison of quantile regression using our gradient forests and the
quantregForest package of Meinshausen [2006]. In both cases, we have n = 20, 000 inde-
pendent and identically distributed examples where Xi is uniformly distributed over [−1, 1]p

with p = 40, and Yi is Gaussian conditionally on (Xi)1. The other 39 covariates are noise.
We estimate the quantiles at q = 0.1, 0.5, 0.9.

given X is constant, but there is a scale shift at (Xi)1 = 0. Here, our method still performs
well, as our splitting rule targets changes in the quantiles of the Y -distribution. However,
the method of Meinshausen [2006] breaks down completely, as it relies on CART regression
splits that are only sensitive to changes in the conditional mean of Y given X.

Remark: Estimating many quantiles. In many cases, we want to estimate multiple
quantiles at the same time; for example, in Figure 2, we sought to get q = 0.1, 0.5, 0.9 at the
same time. Estimating different forests for each quantile separately would be undesirable
for many reasons: It would be computationally expensive and, moreover, there is a risk that
quantile estimates might cross in finite samples due to statistical noise. Thus, we need to
build a forest using a splitting scheme that is sensitive to changes at any of our quantiles
of interests. Here, we use a simple heuristic inspired by the relabling transformation (18).
Given a set of quantiles of interest q1 < ... < qk, we first evaluate all these quantiles
θ̂q1, P ≤ ... ≤ θ̂qk, P in the parent node, and label i-th point by the interval [θ̂qj−1, P , θ̂qj , P ) it
falls into. Then, we choose the split point using a multiclass classification rule that classifies
each observation into one of the intervals.

5 Application: Heterogeneous Treatment Effect Esti-
mation via Instrumental Variables

In many economics applications, we want to measure the causal effect of an intervention
on some outcome, all while recognizing that the intervention and the outcome may also be
tied together through non-causal pathways. A popular approach in this situation is to rely
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on instrumental variables (IV) regression, where we find an auxiliary source of randomness
that can be used to identify causal effects.

As a concrete example, suppose we want to measure the causal effect of child rearing on
a mother’s labor-force participation. It is well known that, in the United States, mothers
with more children are less likely to work. But how much of this link causal, i.e., some
mothers work less because they are busy raising children, and how much of it is merely due
to confounding factors, e.g. some mothers have preferences that both lead them to raise
more children and be less likely to participate in the labor force? Understanding effects like
this may be helpful in predicting the value of programs like subsidized daycare that assist
mothers’ labor force participation while they have young children.

To study this question, Angrist and Evans [1998] found a source of auxiliary randomness
that can be used to distinguish causal versus correlational effects: They found that, in the
United States, parents who already have two children of mixed sexes, i.e., one boy and one
girl, will have fewer kids in the future than parents whose first two children were of the same
sex. Assuming that the sexes of the first two children in a family are effectively random,
this observed preference for having children of both sexes provides an exogenous source of
variation in family size that can be used to identify causal effects: if the mixed sex indicator
is unrelated to the mother’s propensity to work for a fixed number of children, then the
effect of the mixed sex indicator on the observed propensity to work can be attributed to
its effect on family size. The instrumental variable estimator normalizes this effect by the
effect of mixed sex on family size, so that the normalized estimate is a consistent estimate
of the treatment effect of family size on work. Other classical uses of instrumental variables
regression include measuring the impact of military service on lifetime income by using
the Vietnam draft lottery as an instrument [Angrist, 1990], and measuring the extent to
which 401(k) savings programs crowd out other savings, using eligibility for 401(k) savings
programs as an instrument [Abadie, 2003, Poterba et al., 1996].

5.1 A Forest for Instrumental Variables Regression

Classical approaches to instrumental variables regression only seek a global understanding
of the treatment effect: for example, on average over the whole US population, does having
more children reduce the labor force participation of women? Here, we seek to use forests
to answer a more ambitious question, and estimate a heterogeneous treatment effect: we
might ask how the causal effect of child rearing varies with a mother’s age and socioeconomic
status.

Suppose that we observe i = 1, ..., n independent and identically distributed subjects,
each of whom has features Xi ∈ X , an outcome Yi ∈ R, a treatment assignment Wi ∈ R,
and an instrument Zi ∈ R. We believe that the outcomes Yi and treatment assignment Wi

are related via a structural model2

Yi = µ (Xi) + τ (Xi)Wi + εi, (19)

where τ(Xi) is understood to be the causal effect of Wi on Yi, and εi is a noise term that
may be positively correlated with Wi. Because εi is correlated with Wi, standard regression
analyses will not in general be consistent for τ(Xi). This is where we need to use the

2If we are not willing to assume that every individual i with features Xi = x has the same treatment
effect τ(x), then heterogeneous instrumental variables regression allows us to estimate a (conditional) local
average treatment effect [Imbens and Angrist, 1994]; see, e.g., Abadie [2003]. Here, however, we use the
additive structure (19) for simplicity of exposition.
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instrument Zi. Suppose we know that Zi is independent of εi conditionally on Xi. Then,
provided that Zi has an influence on the treatment assignment Wi, i.e., that the covariance
of Zi and Wi conditionally on Xi = x is non-zero, we can verify that the treatment effect
τ(x) is identified via

τ(x) = Cov
[
Yi, Zi

∣∣Xi = x
] /

Cov
[
Wi, Zi

∣∣Xi = x
]
. (20)

We can use the above moment-based identification to estimate τ(x) in practice by solving
an estimating equation (1) with a moment function (4) [e.g., Angrist and Pischke, 2008].

We can again use our gradient-based formalism to derive a forest that is targeted towards
estimating causal effects identified via (20). When growing the forest, the gradient-based
labeling (14) gives us pseudo-outcomes

Ỹi =
(
Zi − ZP

) ((
Yi − Y P

)
−
(
Wi −WP

)
τ̂P
)
, (21)

where Y P , WP , ZP are moments in the parent node, and τ̂P is a solution to the estimating
equation with moments (4) in the parent. Then, given these pseudo-outcomes, the tree exe-

cutes a CART regression split on the Ỹi as usual. Finally, we obtain personalized treatment
effect estimates τ̂(x) by solving the estimation equation (2) with forest weights (5).

Remark: Causal forests with exogenous treatment There has been considerable
recent interest in estimating heterogeneous treatment effects with forests with the treatment
assignment Wi is exogenous or unconfounded, i.e., Wi is independent of εi conditionally on
Xi in (19) [Green and Kern, 2012, Hill, 2011, Wager and Athey, 2015]. Formally, this is
a special case of our instrumental variables setup where we use the treatment itself as an
instrument, i.e., we set Zi := Wi. In this case, our forest makes splits using pseudo-outcomes

Ỹi =
(
Wi −WP

) ((
Yi − Y P

)
−
(
Wi −WP

)
τ̂P
)

; (22)

and we can verify that running CART regression splits using the the above Ỹi is closely
related to the causal splitting rule advocated by Athey and Imbens [2016]. We find it
reassuring that, in simple cases, our gradient trees use splitting rules that resemble those
that were motivated with more direct arguments.

5.2 Simulation Study

We illustrate the behavior of IV forests in Figure 3 using two simple simulation designs. In
both examples, X is uniformly spread over a cube, Xi ∼ [−1, 1]p, but the causal effect τ(Xi)
only depends on the first coordinate (Xi)1. In both panels of Figure 3, we show estimates
of τ(x) produced by different methods, where we vary x1 and set all other coordinates to 0.

In the first panel, we illustrate the importance of using an IV forests when the treatment
assignment may be endogenous. We consider a case where the true causal effect of has a
single jump, τ(Xi) = 2×1 ({(Xi)1 > −1/3}). Meanwhile, at (Xi)1 = +1/3, there is a change
in the correlation structure between Wi and εi that leads to a spurious (i.e., non-causal)
jump in the correlation between Wi and Yi. As expected, our IV forest correctly picks out
the first jump while ignoring the second one. Conversely, a plain causal forest following
Wager and Athey [2015] that assumes that the treatment assignment Wi is exogenous will
mistakenly also pick out the second spurious jump in the correlation structure of Wi and
Yi.
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Figure 3: In both panels, we generate data as Xi ∼ [−1, 1]p, with n = 10, 000 and p = 20.

Meanwhile, in the second panel, we test our splitting rule. We have a simulation design
where there is a jump in the true causal effect, τ(Xi) = 1 ({(Xi)1 > 0}). However this causal
effect is masked by a change in the correlation of Wi and εi, such that the joint distribution
of Wi and Yi does not depend on Xi. Here, the IV forest described in the previous section
again performs well. However, if we try to use the simpler causal tree splitting rule of Athey
and Imbens [2016] that was not designed for IV regression instead of our proposed splitting
rule with pseudo-outcomes (21), then the forest fails to detect any signal.

6 Theoretical Analysis

6.1 Basic Assumptions

We begin by listing the basic assumptions underlying all of our theoretical results. First, we
assume that the covariate space and the parameter space are both subsets of Euclidean space;
specifically, we assume that X = [0, 1]p and (θ, ν) ∈ Rk for some p, k > 0. Moreover, we
assume that the features X have a density that is bounded away from 0 and∞; as argued in,
e.g., Wager and Walther [2015], this is equivalent to imposing a weak dependence condition
on the individual features (Xi)j because trees and forests are invariant to monotone rescaling
of the features.

Regularity of moments We make assumptions about how the expected moment func-
tions change both when we vary x with (θ, ν) fixed and when we vary (θ, ν) with x fixed.
Throughout, we will write

Mθ, ν(x) := E
[
ψθ, ν(O)

∣∣X = x
]

(23)

for the expectation of the ψ-function. When we hold (θ, ν) fixed, we assume that Mθ, ν(x)
is Lipschitz continuous in x. Meanwhile, when x is fixed, we assume that this M -function
is continuously differentiable in (θ, ν), and that its derivative V (x) at the true parameter
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value (θ(x), ν(x)),

V (x) =
∂

∂(θ, ν)
Mθ, ν(x)

∣∣
θ(x), ν(x), (24)

is invertible. Finally, we assume that for any fixed parameter value (θ, ν), the second
moments E[ψ⊗2θ, ν(O)

∣∣X = x] are uniformly bounded over all x ∈ X .

Smoothness of the estimating equation In addition to assuming that the moment
function defined above is regular, we also require that the ψ-functions used to define the es-
timating equation themselves be smooth. Specifically, we assume that ψθ, ν(O) is twice con-
tinuously differentiable in θ, ν for any fixed O, and that Var

[
∇ψθ, ν(O)

∣∣X = x
]

is bounded.
We also assume that, with probability tending to 1, the estimating equation (2) has a unique
solution

∑n
i=1 αi(x)ψθ̂(x), ν̂(x) (Oi) = 0. In its current form, this set of assumptions is rather

restrictive, and in particular does not apply to quantile regression. However, we believe that
these assumptions can be considerably weakened while still preserving the validity of our
results, and intend to pursue this line of work.

Assumptions about the forest Our consistency and Gaussianty results also require
some control on the behavior of the trees comprising the forest. To do so, we follow Wager
and Athey [2015]. We assume that our trees are symmetric, in that their output is invariant
to permuting the indices of the training examples. We also assume that the tree makes
balanced splits, in the sense that every split puts at least a fraction ω of the observations in
the parent node into each child, for some ω > 0. Finally, we take the tree to be randomized
in such a way that, at every split, the probability that the tree splits on the j-th feature is
bounded from below by some π > 0.

6.2 Approximating Gradient Forests with Regression Forests

Our proof strategy is built using the method of influence functions [Hampel, 1974]. In
our context, similar technical ideas also underlie the analysis of Newey [1994]. Here, the
influence function heuristic motivates a way to approximate gradient forests with a class of
regression forests. The upshot is that we can analyze the approximating regression forests
using tools developed in Wager and Athey [2015], and then a use coupling result to derive
conclusions about gradient forests.

To construct such an approximating forest, let Ỹ ∗i (x) denote the influence function of
the i-th observation with respect to the true parameter value θ(x):

Ỹ ∗i (x) = −ξ>V (x)−1ψθ(x), ν(x)(Oi). (25)

These quantities are closely related to the pseudo-outcomes (14) used in our gradient tree

splitting rule; the main difference is that, here, the quantities Ỹ ∗i (x) depend on the unknown
true parameter values at x and are thus inaccessible in practice. We use the ∗-superscript
to remind ourselves of this fact.

Now, given any set of forest weights αi(x) used to define the gradient forest estimate

θ̂(x) by solving (2), we can also define a pseudo-forest as follows:

θ̃∗(x) = θ(x) +
n∑
i=1

αiỸ
∗
i (x). (26)
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Formally, this pseudo-forest estimate θ̃∗(x) is equivalent to the output of a regression forest

with weights αi(x) and outcomes θ(x) + Ỹ ∗i (x). The following result establishes a coupling

between the gradient forest output we want to study, θ̂(x), and our pseudo-forest approxi-
mation θ̃∗(x).

Lemma 3. Given our basic assumptions, suppose that the gradient forest estimator θ̂(x) is

consistent for θ(x). Then θ̂(x) and θ̃∗(x) are coupled,

θ̃∗(x)− θ̂(x) = oP

(∥∥∥∥∥
n∑
i=1

αi(x)ψθ(x), ν(x) (Oi)

∥∥∥∥∥
2

)
. (27)

6.3 Asymptotic Theory for Gradient Forests

We can now build on the results of Wager and Athey [2015] to provide a Gaussian asymptotic

characterization of θ̂∗(x). Our first task is to establish consistency of θ̂(x), to activate the
guarantees from Lemma 3.

Lemma 4. Maintain the basic assumptions detailed above, and in addition, assume that
we obtain (θ̂(x), ν̂(x)) by solving (2) with forest weights (5), where our forest is an honest,

subsampled forest with subsample size s satisfying s/n→ 0 and s→∞. Then, (θ̂(x), ν̂(x))
converges in probability to (θ(x), ν(x)) as n→∞.

Given the above results, it now remains to study the asymptotic behavior of the pseudo-
forest θ̃∗(x). The key idea is that, because θ̃∗(x) is a linear function of the pseudo-outcomes

Ỹ ∗i (x), we can write it as an average of tree predictions

θ̃∗(x) =
1

B

B∑
b=1

θ̃∗b (x), θ̃∗b (x) =

n∑
i=1

αib

(
θ(x) + Ỹ ∗i (x)

)
. (28)

Given this representation, we see that θ̃∗(x) is a U -statistic, and so can be decomposed
via the machinery of Efron and Stein [1981], as in the analysis of Wager and Athey [2015].
Pursuing this approach, we can show that whenever trees are grown on subsamples of size
s scaling as s = nβ for some βmin < β < 1, θ̃∗(x) is asymptotically normal.

Theorem 5. Under the conditions of Lemma 4, suppose moreover that trees are grown on
subsamples of size s with

s = nβ for some βmin := 1−

1 +
1

π

log
(
ω−1

)
log
(

(1− ω)
−1
)
−1 < β < 1, (29)

where π and ω are constants defined when stating basic assumptions about the forest. Finally,
suppose that Var[Ỹ ∗i (x)

∣∣Xi = x] > 0. Then, there is a sequence σn(x) for which(
θ̂(x)− θ(x)

) /
σn(x)⇒ N (0, 1) , lim

n→∞
σn(x) = 0. (30)

17



7 Appendix: Proofs

The proofs are presented in order of logical dependence. Many of our results use the short-
hand

Ψα(x) (θ, ν) :=

n∑
i=1

αi(x)ψθ, ν(Oi). (31)

where the αi(x) are our forest weights (5).

Proof of Lemma 3

By taking a Taylor expansion of ψ around (θ(x), ν(x)) we see that

0 = Ψα(x)

(
θ̂(x), ν̂(x)

)
= Ψα(x) (θ(x), ν(x))

+∇Ψα(x) (θ(x), ν(x))

(
θ̂(x)− θ(x)
ν̂(x)− ν(x)

)
+H

(
θ̂(x)− θ(x)
ν̂(x)− ν(x)

)
,

(32)

for some matrix H(x), where ‖H‖2 →p 0 by consistency of θ̂(x). Now, because ∇ψ has a
bounded variance, we can use the same argument as in the proof of Lemma 4 to verify that
∇Ψα(x)(θ(x), ν(x))→p V (x), where V (x) is the expected derivative matrix (24). Thus, we
can re-arrange the above expression as(

θ̂(x)− θ(x)
ν̂(x)− ν(x)

)
= (V (x) + oP (1))

−1
Ψα(x)(θ(x), ν(x))

= V (x)−1Ψα(x)(θ(x), ν(x)) + oP
(∥∥Ψα(x)(θ(x), ν(x))

∥∥
2

)
.

(33)

When restricted to only the first coordinate θ, this in turn becomes

θ̂(x) = θ̃∗(x) + oP
(∥∥Ψα(x)(θ(x), ν(x))

∥∥
2

)
. (34)

Lemma 6. Under the conditions of Lemma 4, the quantity Ψα(x) (θ(x), ν(x)) defined as in
(31) above satisfies the following moment bounds

E
[
Ψα(x) (θ(x), ν(x))

]
= O

(
s
−π2

log((1−ω)−1)
log(ω−1)

)
(35)

Var
[
Ψα(x) (θ(x), ν(x))

]
= O (s/n) . (36)

Proof. We start by expanding Ψ as

Ψα(x) (θ, ν) =
1

B

B∑
b=1

n∑
i=1

αbi(x)ψθ, ν (Oi) , (37)

where the αbi are the individual tree weights used to build the forest weights in (5). Now,
Ψα(x) (θ, ν) is nothing but the output of a regression forest with response ψθ, ν (Oi). Thus,
given our assumptions about the moments of ψθ, ν(Oi) and the fact that our trees are built
via honest subsampling, (35) follows immediately from Theorem 3 of Wager and Athey
[2015]. Meanwhile, because individual trees are grown on subsamples, we can verify that

n

s
Var

[
Ψα(x) (θ(x), ν(x))

]
≤ Var

[
n∑
i=1

αbi(x)ψθ, ν (Oi)

]
= O (1) , (38)
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where the first inequality results from classical results about U -statistics going back to
Hoeffding [1948], while the second inequality follows from second-moment bounds on ψ
along with the fact that our trees are grown on honest subsamples.

Proof of Lemma 4

Lemma 6 in particular implies that Ψα(x) (θ(x), ν(x))→p 0. Thus, thanks to our smoothness
assumptions on the estimating equation, we can use a version the inverse function theorem
as stated in, e.g., Theorem 4.2 of Wang [1999] to conclude that there exists a sequence

(θ̂(x), ν̂(x)) with

lim
n→∞

P
[
Ψα(x)

(
θ̂(x), ν̂(x)

)
= 0
]

= 1 such that
(
θ̂(x), ν̂(x)

)
→p (θ(x), ν(x)) . (39)

Moreover, because the estimating equation has a unique root with high probability, we con-
clude that the forest estimates (θ̂(x), ν̂(x)) must match the consistent estimators produced
above.

Proof of Theorem 5

As argued in Section 6.3, Theorem 5 of Wager and Athey [2015] immediately implies that,
given the assumptions made by hypothesis,(

θ̃∗(x)− θ(x)
) /

σn(x)⇒ N (0, 1) , σ2
n(x) = Θ̃

( s
n

)
. (40)

Combining this result with Lemmas 3, 4 to establish a coupling between θ̂(x) and θ̃∗(x),
and Lemma 6 to control the tightness of the coupling, we obtain the desired result.

Proof of Proposition 2

Our goal is to couple the actual solution θ̂Cj of the estimating equation over the leaf Cj with

the gradient-based approximation θ̃Cj obtained by taking a single gradient step from the
parent. Here, instead of directly establishing a relationship between these two quantities,
we couple the both to the average of the influence functions Ỹ ∗i (x) averaged over Cj , namely

θ̃∗Cj (x) = θ(x) +
1

|Cj |
∑
i∈Cj

Ỹ ∗i (x). (41)

Because the leaf Cj is considered fixed, we can use second-moment bounds on ψ to verify

that Var[θ̃∗Cj (x)] = O
(
1/nCj

)
; meanwhile, by Lipschitz-continuity of the M -function (23),

we see that E[θ̃∗Cj (x) − θ(x)] = O (r), where r is the radius of the leaf. Finally, given
assumptions made so far about the estimating equation, it is straight-forward to show that
θ̂Cj is consistent for θ(x) is a limit where r → 0 and nCj →∞. Thus, a direct analogue to
our result, Lemma 3, implies that

θ̃∗Cj (x)− θ̂Cj = oP
(
r, 1/

√
nCj

)
. (42)
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Next, in order to couple θ̃Cj (x) and θ̃∗Cj (x), we note that

θ̃Cj−θ̃∗Cj (x) = θ̂P − θ(x)

+ ξ>A−1P
∑
i∈Cj

(
ψθ̂P , ν̂P (Oi)− ψθ(x), ν(x) (Oi)

)
+ ξ>

(
A−1P − V (x)−1

) ∑
i∈Cj

ψθ(x), ν(x) (Oi) ;

(43)

our goal is then to bound all three summands at the desired rate. The first term is al-
ready bounded by the same argument as θ̃∗Cj (x)− θ̂Cj (x). The middle summand is bounded

by O(r2) by smoothness of the ψ-function as we change θ and ν. Finally, the last sum-
mand can be bounded by showing that A−1P →p V (x)−1, and that

∑
i∈Cj ψθ(x), ν(x) (Oi) =

OP
(
1/
√
nCj

)
. Everything we have showed so far implies that

θ̃Cj − θ̂Cj = oP
(
r, 1/

√
nCj

)
, for j = 1, 2. (44)

Finally, it is straight-forward to check that

θ̃C2 − θ̃C1 = OP
(
r, 1/

√
nC1 , 1/

√
nC2

)
, (45)

which implies the desired for the coupling of ∆(C1, C2) and ∆̃(C1, C2).

Proof of Proposition 1

First, we show that we can replace θ̂Cj with the influence-based approximation θ̃∗Cj (x) when

computing the error function err(Cj), as follows

err(Cj) = E
[(
θ̂Cj − θ(X)

)2 ∣∣X ∈ Cj] = E
[(
θ̃∗Cj (x)− θ(X)

)2 ∣∣X ∈ Cj]
+
(
θ̂Cj − θ̃∗Cj (x)

)2
︸ ︷︷ ︸
oP (r2, 1/nCj )

+2
(
θ̂Cj − θ̃∗Cj (x)

)
︸ ︷︷ ︸
oP

(
r, 1/
√
nCj

)
E
[
θ̃∗Cj (x)− θ(X)

∣∣X ∈ Cj]︸ ︷︷ ︸
O(r2)

. (46)

Using the above expansion, we find that

err (C1, C2) =

2∑
j=1

nCj
nP

E
[(
θ̃∗Cj (x)− θ(X)

)2 ∣∣X ∈ Cj]+ oP

(
r2,

1

nC1

,
1

nC2

)
(47)

Next, as in all our results, we can invoke the fact that θ̃∗Cj (x) behaves like a regression tree;

in this case, we can now follow the argument of Athey and Imbens [2016]. We see that

E
[(
θ̃∗Cj (x)− θ(X)

)2 ∣∣X ∈ Cj] = Var
[
θ(X)

∣∣X ∈ Cj]+ Var
[
θ̃∗Cj (x)

]
+O

(
r4
)
, (48)
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and so

err (C1, C2) =

2∑
j=1

nCj
nP

(
Var

[
θ(X)

∣∣X ∈ Cj]+ Var
[
θ̃∗Cj (x)

])
+ oP

(
r2,

1

nC1

,
1

nC2

)

= Var
[
θ(X)

∣∣X ∈ P ]+

2∑
j=1

nCj
nP

Var
[
θ̃∗Cj (x)

]
+ oP

(
r2,

1

nC1

,
1

nC2

)
− nC1

nC2

nP

(
E
[
θ(X)

∣∣X ∈ C2

]
− E

[
θ(X)

∣∣X ∈ C1

])2
= Var

[
θ(X)

∣∣X ∈ P ]− nC1nC2

nP

(
θ̃∗C2

(x)− θ̃∗C1
(x)
)2

+
nC1

nC2

nP

((
θ̃∗C2

(x)− θ̃∗C1
(x)
)2
− E

[
θ̃∗C2

(x)− θ̃∗C1
(x)
]2)

+

2∑
j=1

nCj
nP

Var
[
θ̃∗Cj (x)

]
+ oP

(
r2,

1

nC1

,
1

nC2

)
.

Now, to parse this expression, note that, by the proof of Proposition 2,

∆ (C1, C2) =
nC1

nC2

nP

(
θ̃∗C2

(x)− θ̃∗C1
(x)
)2

+ oP

(
r2,

1

nC1

,
1

nC2

)
. (49)

Thus, writing
K(P ) := Var

[
θ(X)

∣∣X ∈ P ] (50)

as the split-independent error term, all that remains is a term

E :=

2∑
j=1

nCj
nP

Var
[
θ̃∗Cj (x)

]
+
nC1

nC2

nP

((
θ̃∗C2

(x)− θ̃∗C1
(x)
)2
− E

[
θ̃∗C2

(x)− θ̃∗C1
(x)
]2) (51)

that captures the effect of sampling noise in estimating θ̃∗Cj (x). This last term scales as

E = OP
(

r
√
nC1

,
r
√
nC2

,
1

nC1

,
1

nC2

)
,

and so can be ignored since we assume that nP � r−2.
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