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Abstract

We estimate the causal impact of air pollution on the incidence and duration
of sickness leaves taken by a representative sample of employees affiliated to the
social security system in Spain. Identification derives from day-to-day variation
in air pollution concentrations to which the individuals in the sample are exposed
in their place of residence. We compute local measures of air quality by interpo-
lating geo-referenced data from almost 900 air quality monitoring stations in all
of Spain. These monitoring stations measure and record, at least once per hour,
the concentration of various air pollutants that are known to cause harm to human
health. We estimate a linear probability model that relates the event of a worker
staying at home on a given day in 2009 to the air quality experienced at the place
of residence, controlling for confounding factors such as weather, season and in-
dividual effects. Our study contributes new evidence on the impact of pollution
on worker productivity.
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1 Introduction

How does air quality affect human capital? Researchers have gathered a sizable body

of empirical evidence on this question, especially concerning the relationship between

air quality and human health. In recent years, this literature has grown increasingly

sophisticated, relying on ever larger and more detailed datasets, often from adminis-

trative sources, covering outcomes relating to infant health (Chay & Greenstone, 2003;

Currie & Neidell, 2005; Currie et al., 2009b), outpatient admissions in hospitals and

mortality (Moretti & Neidell, 2011; Karlsson et al., 2015; Schlenker & Walker, 2016).

At the same time, some recent studies have extended the scope of the analysis beyond

health impacts to investigate how air quality impacts on an individuals’ productivity

at work or in the classroom. This line of research suggests that bad air quality lowers

productivity both at the intensive margin – i.e., the performance on the job (Zivin &

Neidell, 2012; Lichter et al., 2015) or in the classroom (Ebenstein et al., 2016; Roth,

2016) – and at the extensive margin – i.e., the number of hours worked (Hanna &

Oliva, 2015) or spent in school (Currie et al., 2009a).

A fundamental empirical challenge in the estimation of the short-run impact of

air pollution on labor supply arises from unobserved economic shocks that shift air

pollution and labor demand simultaneously and thus induce bias in the estimated rela-

tionship between air pollution and labor supply (Hanna & Oliva, 2015). In this paper,

we exploit rich, individual-level panel data from the Spanish social security system to

circumvent this problem. Specifically, we investigate the impact of air pollution on

sick leaves taken by workers with full-time employment contracts. Because the terms

of these contracts are shaped by a highly rigid collective bargaining process, they are

unlikely to respond to short-run economic shocks. Furthermore, the daily panel allows

us to purge the estimates of possible sorting bias that would arise e.g. if less polluted

places attract individuals with weaker health, and to control for unobserved shocks to

local labor demand at the municipality-by-month level.

Our econometric approach fits a linear probability model for the event that an in-

dividual “calls in sick” on a given day. The model relates this decision to air quality at

the place of residence, controlling for weather, individual effects, and a range of time-

by-location effects. In addition, we exploit quasi-experimental variation in PM10 that

is due to Sahara dust advection in order to instrument for local PM10 concentrations.
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The results imply that a permanent reduction in PM10 concentrations by one stan-

dard deviation would reduce the sick leave rate by 0.04 percentage points relative to a

mean absence rate of 3.13%. This effect is statistically and economically significant.

Because social security covers more than 95% of employees in Spain, our estimates

are presumably close to the population effect in Spain.1 For the population of full-time

employees, the above percentage effect implies an annual increase in labor supply by

1.9 million worker-days, with an associated productivity gain valued at more than

C191 million.

2 Institutional Background

2.1 Temporary disability benefits in Spain

The vast majority of workers in formal employment relationships are entitled to tem-

porary disability benefit. In particular, all affiliates of the social security system are

entitled to sick leave benefits provided that they see a doctor affiliated with the health

care system for treatment and that they have contributed to social security during a

minimum contribution period of 180 days in the five years immediately preceding the

illness.2 The benefit consists of a daily subsidy the amount of which is calculated using

the contribution base and percentages applicable to it. As a general rule, the regulatory

base is the result of dividing the amount of the contribution base of the worker in the

preceding month by the number of days worked in that month. In case of common

illness, the benefit is paid from the fourth day of the leave. The benefit payment corre-

sponds to 60% of the regulatory base from day four until day 20 of the sickness spell,

and 75% from day 21 onward. During the first three days, no social security benefit is

paid, although many employers have schemes in place that cover sick pay during those

days. The maximum duration of the benefit is 12 months, renewable for another 6.3

Although the payment of benefits is always done by the employer, from the six-

1Previous work has estimated labor supply responses to pollution within the confines of a particular
city (Hansen & Selte, 2000; Hanna & Oliva, 2015).

2No minimum contribution period is required in the case of an accident.
3In the case of an accident or occupational disease, social security pays 75% of the regulatory base

starting on the day following the beginning of the sick leave. The employer pays the first day of the
leave in full.
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teenth day, the employer can claim reimbursement of the benefits paid from the social

security administration.

In addition, some collective agreements complement the temporary disability ben-

efit. Workers receive less than their wage during the sick leave, but if the agreement

complements the amount of the disability payment, the difference to the salary may be

small. Some agreements grant matching funds to achieve 100 % of the salary during

the temporary disability from day one.

Example A worker earns a monthly base salary of C1,340.54 which amounts to

C44.68 per day. He has been sick at home for 22 days and his collective agreement

does not complement the temporary disability benefit. During days 1 to 3 of the sick

leave, the worker earns C0. During days 4 through 15, the company pays a benefit of

60% of the base salary, i.e.

C44.68 ·60% ·12=C321.73

During days 16 through 20, the social security administration pays a benefit of 60%

C44.68 ·60% ·5=C134.05

Finally, the benefit paid by the social security administration rises to 75% during days

21 and 22 (2 days): 75% paid by Social Security

C44.68 ·75

All amounts are before taxes.

2.2 Air quality standards in Europe

In recent years, the European Parliament and the Council have passed a series of direc-

tives aimed at harmonizing air quality standards across EU member states (Council of

the European Union, 1999; Council of the European Union and Parliament of the Euro-

pean Union, 2000, 2002, 2004, 2008). The directives have established legally binding

limits on ambient concentrations for a variety of air pollutants. The most recent one,
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Table 1: Air quality standards for selected air pollutants

Pollutant Concentration Averaging Legal Permitted exceed-
(per m3) Period Nature ances each year

Sulfur dioxide 125 μg 24 hours Limit 3
(SO2) 350 μg 1 hour Limit 24

Nitrogen dioxide 200 μg 1 hour Limit 18
(NO2) 40 μg 1 year Limit -

Particulate Matter 50 μg 24 hours Limit 35
(PM10) 40 μg 1 year Limit -

Carbon Monoxide 10 mg Max. daily Limit -
(CO) 8-hour mean

Ozone (O3) 120 μg Max. daily Target 25 days averaged
8-hour mean over 3 years

Source: Abridged from European Environment Agency, http://ec.europa.eu/environment/

air/quality/standards.htm

Directive 2008/50/EC establishes limit values that apply to pollutant concentrations

during different time intervals, i.e. a daily mean, the maximum daily 8-hour mean or

an hourly mean, and prescribes the maximum number of permitted exceedances during

the course of a year.

Table 1 summarizes the limit values for the pollutants we study in this paper,

namely particulate matter smaller than 10 micrometers (PM10) , nitrogen dioxide (NO2),

sulfur dioxide (SO2), carbon monoxide (CO) and ozone (O3).4 For example, the daily

mean of SO2 shall not surpass 125 μg/m3 more than 3 times a year. In addition, the

1-hour mean may not exceed 350 μg/m3 more than 24 times a year. Similarly, the

24-hour daily mean of PM10 must not exceed 50 μg/m3 more than 35 times and the

1-hour mean concentration of NO2 may not exceed 200 μg/m3 more than 18 times a

year.5 For pollutants such as CO and O3, the limits apply to average concentrations

calculated over the preceding 8 hours. The maximum of these 8-hour means for CO

must not exceed 10mg/m3. The corresponding limit for O3 is 120 μg/m3 and may not

be exceeded on more than 25 days per year (this standard must be met only over a

three-year average).

4The EU directive also regulates particulate matter smaller than 2.5 micrometers (PM2.5). This
pollutant is not considered in the subsequent analysis because of insufficient coverage of PM2.5 mea-
surements in the dataset.

5We also report the annual standards for the three pollutants, though this will not be pursued in the
analysis below.
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3 Data

For the analysis in this paper we have merged four large datasets that we describe in

more detail in this section.

3.1 Employment histories

Our primary data come from the Spanish social security administration (seguridad so-

cial) which administrates both health insurance and pension benefits for more than

95% of the workforce in Spain. Since 2004, the administration maintains a research

dataset, the Muestra Continua de Vidas Laborales (MCVL). The MCVL is a repre-

sentative sample of anonymized individual work histories drawn from the universe of

individuals who were affiliated with the social security at some point during the report-

ing year. An individual record contains information on both current-year and historical

employment relations, dating back to the time when the administration began to keep

computerized records.

3.2 Sick leaves

Information on sickness leaves taken by social security affiliates are first gathered and

processed by the employer’s mutual indemnity association which relegates the infor-

mation back to the social security administration when reimbursements are claimed.

While sickness leaves are not contained in the MCVL, it is possible to link this infor-

mation for the individuals sampled in the MCVL, as demonstrated by Alba (2009) and

Malo et al. (2012). The linking is done by staff members of the social security admin-

istration so as to ensure confidentiality. In this paper, we use information on sickness

leaves during the year 2009 which were matched to social security affiliates in the

MCVL samples between 2004 and 2009. For these individuals, we combine infor-

mation on employment status and contribution bases in 2009 with the corresponding

information on sick leaves for that year.
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3.3 Air quality

Data on air quality come from AirBase, an extensive database of measurements of air

quality in the Member States of the European Union (EU) and other countries working

with the European Environment Agency (EEA). Data are collected annually by the

EEA under a mandate from the Council of the European Union.6

With AirBase the European Topic Centre for Air and Climate Change provides a

unified interface for accessing these data through the EEA website.7 The database is

comprised of time series data on ambient concentrations of a variety of air pollutants

with up to hourly resolution as well as meta-data on monitoring stations. In its current

version 8, AirBase contains data of almost 900 air quality measurement stations across

in Spain between January 1986 and December 2012. Figure 1a shows a map with

the exact location of each air quality monitor in the sample. Apart from location, the

monitors differ in terms of the set of air pollutants they monitor and the time window

of measurement (the vast majority of stations is still active). Information on the GPS-

coordinates of the station allows us to link them to the nearest municipality in order to

construct a dataset of air quality across Spanish towns. When more than one air quality

station is located in a town, the readings are averaged across stations.

3.4 Weather

Meteorological data were downloaded from the website of the European Climate As-

sessment & Dataset project (ECA&D).8 The ECA&D project collects daily data on

twelve essential climate variables provided by national meteorological institutes and

research institutions. For Spain, historical information is available from 1896 onward.

The number of variables and geographical coverage has been increasing steadily until

today. The data are delivered at the level of the weather station (of which there are

117) and include the geographic coordinates of its location and other relevant meta-

6Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information
and data from networks and individual stations measuring ambient air pollution within the Member
States, OJ L 35, 5.2.1997, p. 14–22.

7Available online at http://acm.eionet.europa.eu/databases/airbase/
8The ECA&D project was initiated by the European Climate Support Network of GIE-EUMETNE,

an association of 31 European national meteorological agencies currently coordinated by the Royal
Netherlands Meteorological Institute. The project website is available online at http://eca.knmi.
nl/
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Figure 1: Geographic coverage

(a) Location of air quality monitors

(b) Municipalities in the sample
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Table 2: Descriptive Statistics: Individuals

mean sd min max count
Absence (·104) 312.9 1167.6 0 10,000 261,545
Age 39.0 11.3 16 65 261,545
Female 0.47 0.50 0 1 261,545
Income 1,681.9 935.5 4.4 37,324.8 261,545

data. Based on the geographic coordinates, we assign to each of municipality weather

conditions at the station that is located closest to the municipality’s centroid and has

non-missing data. This means that more the assigned weather station is not neces-

sarily located within the boundaries of the municipality. In this way, we assign daily

measurements for the key meteorological variables to more than 50 Spanish cities.

3.5 Descriptive Statistics

We merge the worker data to daily pollution and weather data on the basis of the

5-digit municipality code of the worker’s primary residence. Because the MCVL pro-

vides the municipality of residence only for individuals living in municipalities with

more than 50,000 inhabitants,9 the matched dataset is representative only of the more

densely populated municipalities in Spain. Figure 1b displays the location of the 49

municipalities contained in the dataset.

The estimation sample comprises 261,545 workers, 47% of which are female (cf.

Table 2). Worker age ranges from 16 to 65 years and averages at 39 years. The average

propensity to take a sick leave on a given day 3.13% (in Table 2 and in the regressions

reported below, we have scaled the frequency of sick leaves by a factor of 104). Figure

2 plots the duration of these sick leaves, and Figure 3 lists the main diagnosis codes

reported.

Table 3 summarizes the covariates in the merged dataset which is organized as a

worker-by-day structure. Panel A reports daily mean values for PM10, NO2, SO2 and

maximum daily 8-hour means for CO and O3. These measures closely correspond to

the legally binding limits on short-term concentrations summarized in Table 1, and are

reported in the corresponding units of measurement.

9For individuals living in smaller municipalities, only the province of residence is provided in the
MCVL.
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Figure 2: Duration of sick leaves

Figure 3: Most frequent diagnosis codes
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Table 3: Descriptive statistics: Pollution and weather

Variable mean sd min max count

A. Pollution: Mean concentrations

PM10 daily mean 25.14 14.85 0 151.66 16060
PM10 discount (Sahara dust) 2.24 6.97 0 220 16060
SO2 daily mean 5.41 3.85 0 62.28 16060
CO maximum 8-hour mean .52 .35 0 4.30 16060
O3 maximum 8-hour mean 71.46 25.71 2 162.25 16060
NO2 daily mean 29.52 17.63 .58 121.17 16060

B. Pollution: Intervals relative to EU standard

PM10 ≥ 25% of limit .83 .38 0 1 16060
PM10 ≥ 50% of limit .46 .50 0 1 16060
PM10 ≥ 75% of limit .18 .38 0 1 16060
PM10 ≥ 100% of limit .06 .23 0 1 16060
SO2 ≥ 25% of limit .002 .043 0 1 16060
SO2 ≥ 50% of limit 0 0 0 0 16060
SO2 ≥ 75% of limit 0 0 0 0 16060
SO2 ≥ 100% of limit 0 0 0 0 16060
CO ≥ 25% of limit .004 .060 0 1 16060
CO ≥ 50% of limit 0 0 0 0 16060
CO ≥ 75% of limit 0 0 0 0 16060
CO ≥ 100% of limit 0 0 0 0 16060
O3 ≥ 25% of limit .94 .25 0 1 16060
O3 ≥ 50% of limit .67 .47 0 1 16060
O3 ≥ 75% of limit .25 .43 0 1 16060
O3 ≥ 100% of limit .02 .15 0 1 16060
NO2 ≥ 25% of limit .13 .33 0 1 16060
NO2 ≥ 50% of limit .00 .03 0 1 16060
NO2 ≥ 75% of limit 0 0 0 0 16060
NO2 ≥ 100% of limit 0 0 0 0 16060

C. Weather

Mean temperature 16.1 6.9 -6.0 32.1 15847
Wind speed 30.0 20.4 0 153 16060
Precipitation 13.4 46.1 0 1327 16060
Cloud cover 3.7 2.5 0 8 16060
Sunshine 74.6 41.5 0 149 16060
Humidity 65.2 15.7 17 100 16060
Pressure 1015.6 6.4 972.2 1067.3 16060
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Table 4: Correlation of pollution measures

PM10 SO2 CO O3 NO2
PM10 1
SO2 0.09 1
CO 0.25 0.42 1
O3 -0.01 -0.25 -0.33 1
NO2 0.35 0.48 0.48 -0.40 1

In some of the regressions below, we examine a possible nonlinear relationship

between health and air quality. Following Currie et al. (e.g. 2009b), we partition the

support of the distribution of pollution measurements using quartiles of the EU limit

value (between 0% and 25% of the limit, between 25% and 50% of the limit, between

50% and 75% of the limit, between 75% and 100% of the limit, and above the limit).

Panel B of Table 3 reports descriptive statistics of dummy variables that we define for

each partition. This exercise shows that EU air quality standards were exceeded only

for particulate matter (with a frequency of 6%) and ozone (with a frequency of 2%). In

contrast, mean concentrations for carbon monoxide, sulfur dioxide and nitrogen oxide

were much lower than their annual standards. 10

Panel C summarizes the weather variables. Daily average temperature is measured

in degrees Celsius, wind speed in 0.1 meters per second, precipitation in 0.1 millime-

ters and cloud cover in integer-valued oktas ranging from 0 (sky completely clear) to

8 (sky completely cloudy). Sunshine is measured in 0.1 hours per day, humidity in per

cent and pressure in hectopascals.

Table 4 shows that various pollution measures are strongly correlated with one

another.

4 Empirical model

We aim to model the propensity to take a sick leave in response to poor air quality. Our

econometric approach is a close analogue to the one taken in the literature on the im-

pact of pollution on health outcomes, in that it relates ambient pollution concentrations

10This is not to say that the ambient concentrations of carbon monoxide, sulfur dioxide and nitrogen
oxide are innocuous. In fact, the World Health Organization has recommended much stricter air quality
standards than the EU to avoid health problems (WHO, 2006).
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to a binary health outcome.11

4.1 Baseline specification

Our baseline specification is a linear probability model (LPM) for the event that indi-

vidual i living in municipality m takes a sick leave on day t as

SICKimt = x′mtα +w′mtβ + γi +µmk + τmt + εimt (1)

where xmt is a vector of ambient pollution concentrations in municipality m, vector wmt

contains second-order polynomials of the weather variables, γi is an individual effect,

and µmk is a municipality-by-month fixed effect. In addition, we include a vector τmt

which includes fixed effects for day of week, bank holidays, school vacation.

For computational ease, we implement this regression at the municipality level

using a two-stage approach similar to the one used in Currie et al. (2015). In the first

stage, we estimate the absence rate Λmt on day t in municipality m as the prediction of

the following linear regression with worker fixed-effects

SICKimt = Λmt + γi +νimt (2)

In the second stage, we regress the daily absence rate Λ̂mt on all the municipality level

covariates as in eq. (1) above,

Λ̂mt = x′mtα̃ +w′mt β̃ + µ̃mk + τ̃mt +ν imt (3)

4.2 Instrumental variable estimation

The literature is concerned about the possible endogeneity of air pollution for a num-

ber of reasons. First, economic fluctuations that affect both employment and pollution

might confound the estimates. For example, an unobserved shock to labor demand

might induce both an increase in local pollution while also increasing labor supply.

Second, traffic induced air pollution might be endogenous to sick leaves, simply be-

cause sick people do not drive to work. Third, individuals that are more susceptible
11In this draft we do not exploit information on the length of a sickness spell, conditional on having

taken a leave.
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to adverse health impacts of air pollution might choose to live in less polluted areas.

The direction of the bias depends upon which of these possible sources of endogeneity

prevails. Our research design limits the possible consequences of such endogeneity

in various ways. For instance, by restricting the sample to full-time employees, we

consider a sub-population with limited possibilities of intensive-margin adjustments

labor supply in response to a supply shock. In addition, our focus on sick leaves

discards variation from extensive-margin adjustments to labor supply which are not

related to a temporary disability. What is more, the various time effects in the esti-

mation, in particular the month-by-municipality effects control for unobserved shocks

to labor demand, but also for shocks to the absence rate induced by, for example, a

flue epidemic. Finally, the within-municipality-and-month estimation purges the esti-

mates from the effects of locational sorting by individuals or firms. Nonetheless, to

investigate if there are remaining sources of endogeneity, we estimate equation (1) by

two-stage least squares (2SLS) using quasi-experimental variation in the part of PM10

that is due to Sahara dust advection.

4.2.1 Sahara dust

Under certain meteorological conditions, storms in the Sahara desert stir up dust into

high altitudes. These dust clouds can travel very long distances and they reach Euro-

pean territory several times a year. In Spain, the arrival of Sahara dust is popularly

known as a “Calima” episode. These episodes are more frequent in Southern Spain

and on the islands than in the North of the country. They typically last a few days and

are accompanied by specific weather patterns.

Figure 4 shows, based on data from the Barcelona Supercomputing Centre, how

Sahara dust affected different regions in Spain during the month of June 2009. At the

onset of the Calima episode, on June 9, the dust plume was located over North Africa

only (Figure 4a). Three days later, on June 12, the plume had extended to cover the

Canary islands and Southern Spain, but not the Balearic islands (Figure 4b). On June

14, all of Spain was exposed to Sahara dust, though the intensity varied across regions

(Figure 4c). Figures 4d and 4e show how the effect levels off over the next two weeks.
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Figure 4: Calima episode in June 2009

(a) June 9, 10pm (b) June 12, 4pm

(c) June 14, 9am (d) June 21, 10am

(e) June 29, 1pm
Source: Based on data from the BSC Dreams model, Barcelona Supercomputing Centre.
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4.2.2 Sahara dust as an instrumental variable for local PM10

The concentration of PM10 from Sahara dust is not measured at regular air quality mon-

itors. Rather, for each Calima day, Sahara dust concentrations are attributed ex post

following a standardized procedure approved by the European Commission, which is

described in detail by Escudero et al. (2007) and Querol et al. (2013). A standard-

ized procedure was designed in order to ensure a level playing field when determining

whether municipalities are in compliance with the EU standard for PM10 concentra-

tions. Because Calima events substantially increase non-anthropogenic PM10 concen-

trations, the affected municipalities are allowed to discount the measured PM10 con-

centration by an estimate of the Calima induced increase in PM10 concentrations. This

PM10 discount varies by day and across space. We use the discount as an instrumental

variable for PM10 concentrations because (i) it shifts local PM10 concentrations and

(ii) it depends only on meteorological circumstances and is thus orthogonal to local

labor market conditions, conditional on weather.

If PM10 blown in from the Sahara has a substantially different effect on human

health than PM10 from local sources, then the IV estimate would be biased. The epi-

demiological literature has studied the chemical composition and human-health conse-

quences of PM10 from the Sahara vs. that of non-desert PM10 in European cities. With

regard to the former, Perez et al. (2008, Fig. 3) compare mass-adjusted concentrations

of the four group elements in PM10 and find that crustal elements are more frequent

during Saharan dust days whereas carbon, secondary aerosols and marine aerosols

show no difference. In regards to the latter, a recent study concludes that “the health

effects of dust-derived PM10 are of the same (or similar) magnitude as those reported

for anthropogenic sources of air pollution” (Stafoggia et al., 2016, p. 418). We there-

fore assume that the instrumental variable has no direct effect on human health except

through raising overall PM10 concentrations.

4.2.3 Data

Data on PM10 discounts were downloaded from the website of the Spanish Ministry

of the Environment and Agriculture (www.mapama.gob.es). The data provided daily

discounts for 29 locations in Spain. To each municipality, we link the closest station

with available data. Summary statistics for the instrumental variable are reported in
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Table 5: Particulate Matter: Daily mean effects

(1) (2) (3) (4)
Dep. var.: Absence rate in municipality

PM10 0.341∗∗∗ 0.280∗∗∗ 0.285∗∗∗ 0.260∗∗∗

(0.0994) (0.0532) (0.0581) (0.0439)

Observations 16,060 15,847 15,847 15,847

Weather controls X X X
Day-type FE X X X
Bank-holiday FE X X X
School-holiday FE X X X
Month FE X X -
Municipality FE X -
Municipality-by-month FE X

Notes: All coefficients are scaled by a factor of 10,000 for better readability. Weather controls are
second-order polynominals of weather variables. Fixed effects for day type include three groups: week-
days non-adjacent to weekend, weekdays adjacent to weekend , and weekend days. Robust standard
errors in parentheses are clustered by municipality and by day. *** p < 0.01, ** p < 0.05, * p < 0.1

the second row of Panel A of Table 3 above.

5 Results

5.1 OLS estimates

Estimation of the baseline specification (1) at the individual level based on 68 million

worker-day observations proved to be computationally expensive. To avoid this, and

because the identifying variation in pollution is not measured at the individual level,

we implement all regressions using the two-step specification described above. In what

follows, we report the results of the second-stage equation (3). Standard errors are

clustered both at the municipality level to control for arbitrary serial correlation within

municipalities and at the day level to account for common shocks across municipalities

on a given day.

Table 5 shows how the estimated impact of particulate matter on the absence rate

in a municipality changes as more controls are included in the regression. The point
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Table 6: Particulate matter: Intervals

(1) (2) (3) (4)
Dep. Var.: Absence rate in municipality

PM10 ≥ 25% of limit 5.081 4.640∗∗ 4.699∗∗ 4.139∗∗

(3.286) (1.797) (2.068) (1.569)
PM10 ≥ 50% of limit -1.943 1.918∗ 1.890∗ 2.884∗∗∗

(1.680) (1.083) (1.077) (0.597)
PM10 ≥ 75% of limit 9.564∗∗∗ 4.889∗∗∗ 4.667∗∗∗ 3.434∗∗∗

(2.522) (1.224) (1.244) (0.635)
PM10 ≥ 100% of limit 9.714∗∗∗ 3.693∗∗∗ 3.790∗∗∗ 2.656∗∗∗

(2.859) (1.050) (1.142) (0.785)

Observations 16,060 15,847 15,847 15,847

Weather controls X X X
Day-type FE X X X
Bank-holiday FE X X X
School-holiday FE X X X
Month FE X X -
Municipality FE X -
Municipality-by-month FE X

Notes: All coefficients are scaled by a factor of 10,000 for better readability. Weather controls are
second-order polynominals of weather variables. Fixed effects for day type include three groups: week-
days non-adjacent to weekend, weekdays adjacent to weekend, and weekend days. Robust standard
errors in parentheses are clustered by municipality and by day. *** p < 0.01, ** p < 0.05, * p < 0.1

estimate is always positive and statistically significant throughout, but its magnitude

shrinks by roughly one third as controls for weather, location and time are included.

According to the most conservative estimate of 0.000026, a reduction of the daily

average concentration by one standard deviation (14.85μg) would reduce the absence

rate by 0.04 percentage points from the mean of 3.13%.

Table 6 shows the results from the alternative estimation with dummies for five

intervals of PM10 concentrations. These results confirm that PM10 has a positive and

significant impact on the propensity to take a sick leave. The effect monotonically

increases with concentrations. Although the increase is not exactly linear, the linear

specification seems to provide a reasonably good approximation of the effect of in-

crease PM10 concentrations on the absence rate. In what follows, we focus on the
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Table 7: All pollutants: Daily mean effects

(1) (2) (3) (4) (5) (6)
Dependent variable: Absence rate in municipality

PM10 0.260∗∗∗ 0.128∗∗∗

(0.0439) (0.0444)
SO2 0.574∗∗∗ -0.394

(0.157) (0.241)
CO 10.64∗∗∗ -1.624

(3.214) (1.855)
O3 -0.299∗∗∗ -0.131∗∗∗

(0.0444) (0.0310)
NO2 -0.197∗∗∗ 0.310∗∗∗

(0.0357) (0.0463)

Observations 15,847 15,847 15,847 15,847 15,847 15,847

Weather controls X X X X X X
Day-type FE X X X X X X
Bank-holiday FE X X X X X X
School-holiday FE X X X X X X
Municipality-month FE X X X X X X

Notes: All coefficients are scaled by a factor of 10,000 for better readability. Weather controls are
second-order polynominals of weather variables. Fixed effects for day type include three groups: week-
days non-adjacent to weekend, weekdays adjacent to weekend , and weekend days. Robust standard
errors in parentheses are clustered by municipality and by day. *** p < 0.01, ** p < 0.05, * p < 0.1

linear specification which is easier to interpret.

Table 7 investigates the sensitivity of the results from the specification with municipality-

by-month to including pollutants other than PM10. When estimating the model for in-

dividual pollutants, a statistically significant association with the absence rate is found

for each of them. However, when all pollutants are included in the regression, the

coefficients on CO and SO2 become statistically insignificant, and the sign of the co-

efficient on NO2 flips. The coefficient on PM10 halves in magnitude. This illustrates

the problem of collinear pollutants documented in Table 4 and emphasizes the need

for variation in PM10 that is uncorrelated with concurrent variation in other pollutants.

A number of empirical studies on air quality and health have emphasized the impor-

tance of lagged pollution concentrations on health outcomes Currie et al. (e.g. 2009a).
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Table 8: All pollutants: Daily mean effects and first lags

(1) (2) (3) (4) (5) (6)
Dependent variable: Absence rate in municipality

PM10 0.260∗∗∗ 0.232∗∗∗ 0.128∗∗∗ 0.116∗∗∗

(0.0439) (0.0309) (0.0444) (0.0289)
SO2 -0.394 -0.348∗

(0.241) (0.205)
CO -1.624 -1.834

(1.855) (1.610)
O3 -0.131∗∗∗ -0.0941∗∗∗

(0.0310) (0.0269)
NO2 0.310∗∗∗ 0.320∗∗∗

(0.0463) (0.0422)
PM10(t−1) 0.170∗∗∗ 0.0676 0.108 0.0566

(0.0536) (0.0492) (0.0764) (0.0521)
SO2(t−1) -0.239 -0.0930

(0.185) (0.136)
CO(t−1) -1.547 -0.189

(2.018) (1.656)
O3(t−1) -0.105∗∗∗ -0.0687∗∗

(0.0305) (0.0263)
NO2(t−1) 0.117∗ -0.0317

(0.0598) (0.0487)

Observations 15,847 15,468 15,468 15,847 15,468 15,468

Weather Controls X X X X X X
Day-type FE X X X X X X
Bank-holiday FE X X X X X X
School-holiday FE X X X X X X
Municipality-by-month FE X X X X X X

Notes: All coefficients are scaled by a factor of 10,000 for better readability. Weather controls are
second-order polynominals of weather variables. Fixed effects for day type include three groups: week-
days non-adjacent to weekend, weekdays adjacent to weekend, and weekend days. Robust standard
errors in parentheses are clustered by municipality and by day. *** p < 0.01, ** p < 0.05, * p < 0.1
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In Table 8 we report the results of specifications including only contemporaneous pol-

lution, only lagged pollution, and both contemporaneous and lagged ambient pollu-

tion concentrations. The results in columns 1-3 indicate that lagged concentrations of

PM10 have no significant impact on the absence rate. The results in columns 4-6 lend

further support to this while also showing that, conditional on contemporaneous pol-

lution, the only statistically significant coefficient on lagged pollution is obtained for

ozone. In view of this, we maintain a baseline specification without lagged pollution.

5.2 IV estimates

The IV estimation is implemented as a 2-stage-least-squares (2SLS) estimator where

presumably endogenous local PM10 is first regressed on the PM10 discount variable

and controls. In the second stage, the absence rate is regressed on predicted PM10 and

controls. The results are reported in Table 9.12 The first-stage regression with an R2 =

.47 shows that the PM10 discount is a strong predictor of ambient PM10 concentrations.

The point estimates, however, hardly differ between the OLS and 2SLS estimations.

This suggests that we do not need to worry about a possible endogeneity of PM10

to sick leaves in our research design, where day-to-day variation in the variables of

interest allows us to control for unobserved local shocks using municipality-by-month

fixed effects and other time dummies.

5.3 Calculating the benefits of air quality improvements

The estimation results are suitable for calculating the monetary benefit of air quality

improvements in Spain. Consider a permanent reduction in PM10 concentrations by

one standard deviation, or 14.85µg. Among the total of 13,805,950 full-time employ-

ees in 2009, we calculate the number of additional worker days induced by this air

quality improvement as

0.257 ·10−4 · days
µg
·14.85µg ·13,805,950 = 5,269days

12We do not have suitable instrumental variables for concentrations of pollutants other than PM10 and
hence exclude those from the regression. This omission does not bias the results as long as the PM10
discount is exogenous to the other pollutants.
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Table 9: IV estimation: PM10 only

(1) (2) (3) (4)
OLS Reduced form First stage 2SLS

Dep. var.: Absence rate in municipality

PM10 0.260∗∗∗ 0.257∗∗

(0.0439) (0.102)
PM10 discount 0.172∗∗ 0.668∗∗∗

(0.0741) (0.0854)

Observations 15,847 15,847 15,847 15,847

R2 0.807 0.802 0.468 0.807
Adjusted R2 0.799 0.794 0.446 0.799

Weather Controls X X X X
Day-type FE X X X X
Bank Holiday FE X X X X
School Holiday FE X X X X
Municipality-by-month FE X X X X

Notes: All coefficients are scaled by a factor of 10,000 for better readability. Weather controls are
second-order polynominals of weather variables. Fixed effects for day type include three groups: week-
days non-adjacent to weekend, weekdays adjacent to weekend, and weekend days. Robust standard
errors in parentheses are clustered by municipality and by day. *** p < 0.01, ** p < 0.05, * p < 0.1
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where we have used the IV point estimate. We value the aggregate daily productivity

gain using the average daily wage of 99.49C13

5,269days ·99.49
C

day
= C524,252

Scaled up to the annual level, this air quality improvement would result in a substantial

gain of more than C191 million.

6 Conclusions

TO BE COMPLETED

13This is net of employer contributions to social security. Using producer wages would result in a
higher benefit estimate.
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