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1 Introduction

Do economic agents form expectations according to Bayes Rule? This question is fun-

damental for the analysis of economic decisions under uncertainty. Evidence from con-

trolled laboratory experiments show that subjects do not engage in Bayesian reasoning

(e.g., Kahneman, Slovic and Tversky, 1982; Grether, 1980) . However, because conditions

in laboratory experiments differ from those in real-life in important ways, to further our

understanding on the applicability of Bayes Rule, it is vital to also test Bayesian reas-

oning in the “field” (Harrison and List, 2004). We take a step in this direction, utilizing

feature of professional tennis matches to test an aspect of Bayes Rule using subjective

probabilities inferred from betting data.

Bayes Rule requires that agents correctly asses the “process variance” of each signal

that affects the likelihood of interest, and attach a larger weight on those signals that

are more informative with lower process variance. We examine whether economic agents

adjust their expectations in this way, by analyzing subjective probabilities inferred from

odds offered by bookmakers on the outcomes of tennis matches, exploiting exogenous

variation in process variance that is related to the format with which tennis matches are

played.

Men’s singles tennis matches are played in two formats: A best- out-of-three format

(BO3), where a player must win two out of possible three sets to win a match, and a

best-out-of-five format (BO5), where a player must win three out of possible five sets to

win a match.1 In our sample, the BO5 matches are called “Grand Slams” (GS), and the

BO3 matches are called “ATP World Tour Masters 1000” (MS). In each of these match

types bookmakers observe signals that capture a player’s skill on the day, calculate the

subjective probability that this player will win the match, and set their odds accordingly.
1Each set is comprised by individual games. To win one game a player must win at least four points.

To win a set a player must win at least 6 games. For more information on the rules of tennis see
http://www.atpworldtour.com.
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One such important signal that relates to a player’s skill on the day is their official

ranking, which is based on their cumulative performance during the previous 52 weeks.2

Higher ranked players are generally more skilful than lower ranked players, and therefore

more likely to win a match. If ranking is a perfect indicator of skill on the day, then process

variance is zero and the probability that the high-ranked player wins is one. However,

because skill on the day is affected by random components, ranking is an imperfect

indicator of skill on the day, therefore the probability that the high-ranked player wins

is less than one. How much less depends on the variance of the process, i.e., how likely

it is that the low-ranked player produces a surprise and wins the match. If a surprise

is less likely, then the probability that the high-ranked player wins the match should be

adjusted upward.

A surprise is less likely in the GS format because the low-ranked player must win

more sets to win the match.3 To illustrate this idea with an analogue from coin spins,

assume that we have a biased coin with probability of heads in a single toss equal to 60%.

The probability that we receive two heads out of a possible three spins is 64.8%, and the

probability that we receive three heads out of a possible five spins is 68.3%. The increase

in the probability in each case reflects a reduction in process variance in the sense that

it becomes more difficult for the low probability event (i.e., tails in this example or the

low-ranked player winning in our framework) to “win” when more successes are required.

Indeed, in line with this logic, we find that high-ranked players are roughly 7% more likely

to win a GS match, as opposed to an MS match. Therefore, Bayes Rule dictates that
2Throughout the paper we refer to the player with the highest ranking (i.e., a smaller ranking

number), as the high-ranked player. Players’ rankings are based on their immediate past 52 weeks
performance from a total of 18 tournaments (or 19, if a player participates in the Barclays ATP
World Tour Finals). A player’s total ranking points are calculated from the four Grand Slams,
eight compulsory Masters 1000 tournaments (out of nine), and his best six results (in terms of
points) from all other ATP and Futures tournaments that he participates. For more information see
http://www.atpworldtour.com/en/corporate/rulebook.

3Klaassen and Magnus (2014) also make this point. They develop a model to estimate the probability
of a player winning a specific point, and show that the higher skill player is more likely to win a longer,
as opposed to a shorter, match.
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assigned probabilities to the high-ranked player winning must also be adjusted upward

for GS matches to reflect this reduction in process variance. Our objective is to test

whether such an adjustment takes place.

For our main analysis we use subjective probabilities inferred from fixed decimal

odds offered by several major betting houses on professional men’s tennis matches for

the period 2005 to 2014. For each match we infer the subjective probability that the

high-ranked player wins the match from bookmaker odds, π, estimate the “objective”

probability as the fitted value from a logit model, p̂, and define bias as π − p̂. We

test our hypothesis based on the difference in the average bias between MS and GS.4 If

bookmakers upwardly adjust π for GS to reflect the increase in p̂ due to the longer match

format (BO5), then this difference should be 0. Our results indicate that bookmakers

adjust π upwards for GS, but by an insufficient margin, with bias being lower in GS

by 3.3%. This finding is consistent with “process variance neglect”, i.e., the notion that

bookmakers subjective probabilities do not properly reflect changes in process variance

in GS, and thus violate Bayes Rule.

Could these results reflect strategic behavior by rational bookmakers to exploit

punters? For example, Levitt (2004) finds that, in spread-betting markets, bookmakers

sometimes offer actuarially biased prices to exploit the preference of punters to bet on the

favorite. We do various calculations to illustrate that the bias we document is suboptimal,

but the most direct test we do to address strategic behavior is to re-do our analysis using

a different data set where odds are determined in a person-to-person betting exchange

market, called Betfair. In this setting strategic incentives do not exist because the odds

on the two competing players are set by via the interactions of different agents on a

competitive basis. An additional interesting feature of this dataset, is that it allows us
4By testing the hypothesis based on the difference in bias across MS and GS our conclusions are not

affected by any systematic errors in the estimation of π or p̂ that are constant across the two match
formats. We discuss our methods in detail in Section 2.
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to examine the “wisdom of crowds”, since Betfair prices aggregate the information sets

of many different individuals.5

Analyzing tennis matches for the period 2009-2014, we find results that are consist-

ent with our baseline analysis using bookmaker data. Specifically, bias is lower for GS by

2.6%, and this difference is highly statistically significant and comparable in magnitude

to that found with bookmaker data. This finding suggests that strategic behavior is an

unlikely explanation for our findings with bookmaker odds. In additional analysis we ex-

amine whether high-volume matches, which aggregate information from a larger number

of punters, price the change in process variance in GS more accurately. We find that

they do, with the difference in bias between MS and GS for those matches being closer

to 0. However, high-volume markets still entail a significant bias due to process variance

neglect.

Errors in expectations should be costly to decision makers. To put this notion

in context, our findings show that bias is significantly more negative in GS relative to

MS, indicating that for GS matches bookmakers are offering excessively high odds for

the high-ranked player. Therefore, bookmakers should be earning less in GS matches.

Using different indicators of actual profitability we indeed confirm this assertion. We also

analyze bookmakers expected profits, and again find that a lower bias in GS is suboptimal

for a rational bookmaker. Overall, the analysis of profits suggests that the biases we

document due to process variance neglect are costly.

Despite our effort to create a sample where the BO3 matches are as similar as

possible to the BO5 matches, some differences remain between the two match formats;

for example GS matches are more prestigious, offering higher prize money to players and

attracting more attention from punters. Could these differences drive (or contribute to)

the results we document? For our final test we conduct a placebo test to address such
5For an early examination of the wisdom of crowds using laboratory generated data see Camerer

(1987).

5



concerns, using data for professional women’s tennis matches. For women, the differences

across GS and MS matches are generally the same as for the men, but for women GS

matches are played in a BO3 format, exactly like the MS tournaments. Hence, women’s

matches preserve the differences across the two match formats except for the change

process variance. If the biases we document are driven by factors other than process

variance neglect, we should still observe them in the women’s data.

Logistic analysis shows that the type of match (MS vs GS) does not affect the

probability that the high-ranked player wins for women’s matches, consistent with no

difference in process variance across match formats. Therefore, bookmakers should not

adjust π upward for GS. When we compare bias calculated from bookmaker odds for

MS and GS we find that the difference is insignificant. When we do the same for bias

calculated from betting exchange odds, we find that bias is higher in GS by 1.6%. This

is a form of process variance neglect that is opposite to that found in the men data,

i.e., punters are increasing π for GS matches, even though these matches do not entail

reductions in process variance.

Overall, results from women’s matches are in stark contrast from those obtained

from men’s matches, which provides support to the claim that the patterns we observe

in our baseline analysis reflect process variance neglect.

We conduct various robustness checks. Firstly, we show that our results are not

sensitive to different sample specifications or econometric models. Secondly, we consider

various alternative explanations for our findings, such as noise trading or bookmaker pref-

erence differentials across match formats and competition between rational bookmakers,

and conclude that such alternative explanations cannot offer a parsimonious interpreta-

tion for all our results across bookmaker and betting exchange markets, for both men’s

and women’s matches.

Tests of Bayes Rule have been mainly conducted in controlled laboratory experi-
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ments (Grether, 1980, 1992; Camerer, 1987; Griffin and Tversky, 1992; Holt and Smith,

2009; Antoniou, Harrison, Lu and Read, 2015). The findings from these experiments

generally show that subjects in experimental conditions are unable to engage in Bayesian

reasoning. However, because the extent to which laboratory findings carry over into the

field is unclear, it is important to analyze both laboratory and field generated data to

properly understand the process of belief formation.6

Along these lines, DeBondt and Thaler (1990) present evidence that the earn-

ings forecasts of professional security analysts are affected by representativeness. Chen,

Moskowitz and Shue (2016) show that the decisions of asylum judges, loan officers and

baseball umpires are affected by the gambler’s fallacy. Various empirical studies in be-

havioral finance can also be seen as indirect field tests of Bayes Rule, although their

conclusions hinge on relatively strong assumptions.7 We contribute to this literature con-

ducting a field test of Bayesian reasoning with three attractive features: Firstly, subjective

probabilities are inferred from the decisions of expert agents who are pricing securities

in their natural habitat with significant monetary consequences. Secondly, uncertainty is

fully resolved when the match is finished, which allows us to test for a bias in subjective

probabilities with relatively weak assumptions. Thirdly, and most importantly, in the

tennis data the variation in process variance that allows us to test for Bayesian reasoning
6As discussed in Harrison and List (2004) the field differs from the laboratory in at least two funda-

mental ways: Firstly, the field can help create heuristics that affect decision making, which are probably
not present in the “sterile” environment of the laboratory where subjects encounter artificial tasks for
the first time (e.g., List, 2004 and Haigh and List, 2005). And secondly, incentives in the laboratory
tend to be weak, therefore behavior inferred from this domain may not be directly applicable to real-life
economic decisions where the stakes are significantly higher (e.g., Andersen, Ertac, Gneezy, Hoffman and
List, 2011). Other studies that point to differences between lab and field behavior include Levitt and
List (2007a,b) and Levitt, List and Reiley (2010).

7For example, DeBondt and Thaler (1985) present evidence consistent with investors forming expect-
ations according to representativeness. Other studies that draw similar conclusions include Lakonishok,
Shleifer and Vishny, (1994), Daniel and Titman (2006), Li and Yu (2012), and Antoniou, Doukas, and
Subrahmanyam (2016). However, such tests rely on assumptions regarding the process that links risk
with expected stock returns, which make identification of errors in expectations difficult (Fama, 1998).
An interesting exception in this literature is Moskowitz (2015), who tests for the existence of asset pri-
cing anomalies in sports betting markets where risks are completely idiosyncratic, and therefore Fama’s
(1998) critique does not apply.
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is completely exogenous, in the sense that it is governed solely by the rules of the game.

Our findings suggest that decision makers do not combine cues optimally when forming

expectations and support the claim that violations of Bayes Rule affect real-life economic

decisions.

2 Data and Methods

2.1 Data

For our baseline analysis we obtain data from www.tennis-data.co.uk.8 For every match

this database contains data the name of the tournament, the date of the match, the

names of the two competing players, their official ATP rankings prior to the tournament,

the winner of the match, as well as fixed decimal odds from various international betting

houses on both players.9 In our analysis, we average the odds offered by the various

bookmakers on the two players to infer subjective probabilities.

We include in our sample Grand Slam (GS) matches, which are played in a BO5

format, and ATP World Tour Masters 1000 matches (MS), which are played in a BO3

format. GS tournaments are the most prestigious, with the winner receiving 2,000 ranking

points, and on average collecting 2.25 million dollars (in 2015). For comparison, the

winner of an MS tournament earns 1,000 ranking points and, on average, 0.7 million

dollars (in 2015). There are other tournaments that are played in a BO3 format, which

yield, for example, 500 or 250 ranking points to the winner of the tournament, and

offer less prize money. Such tournaments are significantly less prestigious, involving on

average lower-ranked players, and attracting less attention from punters. In our analysis,

to ensure that the BO3 matches are as similar as possible to the BO5 GS matches, we
8Data from this database has been used previously by academic work on tennis matches (e.g., Forrest

and McHale, 2007; Del Corral and Prieto-Rodriguez, 2010).
9This dataset contains odds from eight different bookmakers; Bet365, Centrebet, Expekt, Ladbrokes,

Interwetten, Pinnacles Sports, Stan & James, and Unibet.
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focus on the more prestigious tournaments from the BO3 class.

We apply the following criteria to the initial dataset (n=10,790) to create our final

sample: (i) we retain only completed matches (n=10,334), (ii) drop matches with missing

rankings information (n=10,327), (iii) matches with no odds for either player (n=10,295),

and (iv) matches that entail a negative Vig,10 (n=10,266). Moreover, (v) we drop matches

were both players are ranked outside the top 100 players in the world, as indicated by their

ranking prior at the start of the tournament (n=10,013). Because skill in tennis has a

pyramid structure, as noted by Klaassen and Magnus (2014), rankings are less informative

among lower-ranked players. Lastly, (vi) we drop matches where the high-ranked player

is indicated as an outsider by bookmakers even though he is ranked by at least 15 places

higher than his opponent at the beggining of the tournament (n=9,046). Such cases are

likely to reflect recent developments like injuries, which are not yet incorporated in the

rankings thus making them less informative.11 Our final sample consists of 9,046 tennis

matches, covering the period 2005-2014. Table 1 shows a breakdown of the observations

by year and tournament. We have data for 4 GS tournaments, and for 12 MS tournaments.

Some MS tournaments are discontinued and others are introduced at various point in

time.

[Insert Table 1 here]

2.2 Methods

Assume a tennis match between players X and Y . The bookmaker offers fixed decimals

odds for player X to win equal to dX , and for player Y equal to dY , where dX and dY

10Vig stands for “vigorish” or housetake, reflecting a type of commission collected by the bookie.
Matches with negative vig are likely data errors.

11Because our analysis aims to examine how skill-related signals (i.e., rankings) are priced across MS
and GS, filters (v) and (vi) are aimed to remove cases where these signals are unreliable indicators of
skill. In Section 3.4 we test the robustness of our results in a different sample that does not incorporate
these fllters and find that our conclusions remain the same.
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are greater than 1. To obtain subjective probabilities, we first invert the quoted odds for

X, OX = 1
dX

, and for Y , OY = 1
dY

. In a perfectly competitive and frictionless market

with a risk-neutral bookmaker OX and OY correspond to true subjective beliefs. However,

typically OX +OY > 1, which reflects the vigorish or “vig”, a form of commission collected

by the bookie. To obtain subjective probabilities we normalize OX and OY to sum to 1,

using πX = OX

OX+OY
and πY = OY

OX+OY
. The vig is thus split proportionally between the

two players, depending on their relative odds.12 Throught the analysis we refer to πi as

the subjective probability that the high-ranked player wins match i.

To examine whether process variance changes across match format (MS vs. GS) we

use the logistic model, shown below:

Pr(Yi = 1|GSi, Rskilli) = F (α + β1GSi + β2Rskilli) (1)

The dependent variable, Yi is a binary indicator taking the value of 1 if the high-ranked

player wins match i, and 0 otherwise. GSi is a dummy variable that equals 1 if match i is

Grand Slam, and 0 otherwise. RSkilli captures differences in player rankings for match i

and is calculated as log(low-ranked player ranking) - log (high-ranked player), following

the specification in Klaasen and Magnus (2001).13F is the logistic distribution.

As we discuss in more detail in the next section, GS matches entail more players in

the draw, and therefore entail higher average ranking differences between the two players.

The model in Equation (1) captures the effect of the change in process variance across

MS and GS, whilst controlling for these ranking differences. That is, the coefficient on

GS should be positive and significant, reflecting the increase in the probability that the
12This assumption is typical in the literature (e.g., Croxson and Reade, 2014; Smith, Paton and

Williams, 2009).
13Note that the ranking of the low-ranked player is a larger number than the ranking of the high-ranked

player. As discussed in Klaasen and Magnus (2001) player skill in tennis resembles a pyramid (i.e., the
difference in skill between players ranked #1 and #10 is higher than the skill difference between players
ranked #80 and #90), therefore a logarithmic transformation is appropriate.
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high-ranked player wins a GS match due to the longer match format (BO5). To estimate

the objective probability that the high-ranked player wins we use the fitted value from

this model, p̂i.

Having estimates for both objective and subjective probabilities, we estimate the

bias in expectations for match i as biasi = πi− p̂i. A strict version of the null hypothesis

under Bayes Rule is that biasi = 0, for both MS and GS. This formulation, however,

requires the strong assumption that subjective and objective probabilities have been

recovered without any systematic error.14 To avoid making this assumption, we test

our hypothesis based on the difference in average bias between the two match formats

∆bias = biasGS − biasMS. With this formulation our conclusions are not affected by any

systematic errors in πi or p̂i that are symmetric across the two match formats.15

Under the null hypothesis of Bayesian reasoning, where subjective probabilities

are properly adjusted to changes in process variance between MS and GS, ∆bias = 0.

The alternative hypothesis, under “process variance neglect”, where bookmakers do not

properly adjust their subjective probabilities, is ∆bias < 0. We test these hypotheses by

examining the sign and significance of β1 in the ordinary least square regression shown

below:16

biasi = α + β1GSi + β2RSkilli + εi (2)

What cognitive mechanism can lead to process variance neglect? In a seminal pa-
14Various factors could lead to a systematic error in biasi, for example, the effect of bookmaker’s

preferences toward risk on subjective probabilities (i.e., Savage, 1971), and/or the effect of variables
besides GSi and RSkilli on objective probabilities.

15In Sections 3.4 and 3.7 we discuss sources of potential assymetric recovery errors, and when possible
address them econometrically.

16An alternative way to test our hypotesis is to estimate Equation (1) as p̂i = Pr(Yi =
1|Rskilli, RSkilli × GSi) = F (α + β1Rskilli + β2RSkilli × GSi) and then test the hypothesis using
biasi = α+ β1RSkilli + β2RSkilli ×GSi + εi, expecting that β2 is negative and significant. In untabu-
lated analysis, which is availiable from the authors upon request, we have tried this specification and our
conclusions in relation to process variance neglect remain very similar.
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per in Bayesian Updating, Edwards (1968) shows that people underweight new evidence,

forming posteriors that are significantly below the correct Bayesian probability. In con-

trast to Edwards (1968), Kahneman and Tversky (1972) show that subjects overweight

the importance of new evidence, resulting in posteriors that overshoot the Bayesian prob-

ability. Griffin and Tversky (1992) explain these contradictory findings, suggesting that

people form expectations by under weighting the statistical validity of available evid-

ence, or “weight” (i.e., process variance in our context), and overweighting its “strength”,

or how saliently it supports a specific hypothesis.17 Griffin and Tversky (1992) argue

that the Kahneman and Tversky (1972) experiments entail signals of low weight (a small

sample) whereas the Edwards (1968) experiments entail signals of high weight (a large

sample). In our case the signal (i.e., player ranking) is more predictive of outcomes in GS

matches (BO5), therefore, in the language of Griffin and Tversky (1992), it is of higher

weight and will thus elicit more underreaction.18

[Insert Table 4 here]
17To illustrate consider the example discussed in Griffin and Tversky (1992). A graduate student has

two reference letters, one from a young assistant professor (AP) and one from a seasoned full professor
(P). The AP describes the student’s potential as “outstanding”, whereas P as “satisfactory”. The letter
from AP is high in strength (salient tone) but low in weight (AP has limited experience in assesing
student quality). The opposite is true for P. Griffin and Tversky (1992) suggest that those who read the
letters are likely to overreact to AP’s letter and underreact to P’s letter. Such a strength-weight bias
may arise because strength is easily observed by the decision maker (i.e., the tone of the letter is directly
visible), whereas weight (the experience of the referee) requires more effort to be processed.

18Such a bias can be illustrated as follows: Assume an agent who is updating his expectation after
observing a signal, S, with variance equal to σ2

S . This agent has priors with variance σ2
P . Assuming

normal distributions, the weight put on the signal according to Bayes Rule is equal to σ2
P

σ2
P

+σ2
S

. Because

the agent exhibits process variance neglect he will instead use a weight on S equal to σ2
P

σ2
P

+λ×σ2
S

. In this
expression, λ = f(σ2

S) > 1 captures the bias due to process variance neglect, with ∂λ
∂σ2

S

< 0. All else
equal, this agent underreacts to S, thus his posterior is below the Bayesian probability. If the variance
of the signal is lower ( as in GS) λ is higher, which leads to stronger underreaction.
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2.3 Descriptive Statistics

Table 2 presents descriptive statistics for our main sample, separately for GS (Panel A)

and MS (Panel B) matches. The average posted odds offered by bookmakers that the

high-ranked player wins the match (HROdds) are much higher than those for the low-

ranked player (LROdds) to win the match (1.34 vs. 6.17 for GS and 1.48 vs. 4.11 for

MS), which shows that player ranking is indeed a metric for the relative skill of the two

players on the day that is used by bookmakers. The vig is roughly equal in the two

match formats (0.05 in GS and 0.06 in MS) and has low volatility, as noted by other

authors (Forrest and McHale, 2007). For GS the average ranking between the high- and

low-ranked players (HRRank and LRRank) is 24.9 and 95.42 respectively, for an average

difference in rankings (diffRank) equal to 70.5 positions. For MS the corresponding

rankings are 20.56 and 65.56, for an average difference of 45 positions. This difference

occurs because GS tournaments have more players in the draw and is important because

it contributes to the probability that the high-ranked wins a GS match without being

related to changes in process variance. Therefore, our models test the hypothesis whilst

controlling for RSkill.

The next two rows show the average estimate of the objective probability obtained

as the fitted value from the model in Equation (1), (p̂), as well as the average of a dummy

variable that equals 1 if the high-ranked player has won, and 0 otherwise (DHR). As it

can be seen, p̂ is higher for GS than MS (0.79 vs 0.69), consistent with view that ranking

is a signal with lower process variance in GS. The penultimate row in the table shows

the average subjective probability that the high-ranked player wins the match (π), which

is higher for GS compared to MS (0.75 vs. 0.68). This means that bookmakers are

adjusting their subjective probabilities for GS matches relative to MS matches in the

direction predicted by Bayes Rule. However, as shown in Figure 1, this adjustment seems

insufficient, i.e., it does not completely reflect the increase p̂ for GS. The last row in Table
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2 shows the average prize money (in dollars) received by the winner of an MS and a GS

tournament, using 2015 prize money. GS tournaments offer almost three times higher

prizes than MS tournaments.

[Insert Table 2 and Figure 1 here]

3 Analysis

3.1 Changes in Process Variance

We start our analysis by showing more formally that the high-ranked player is more likely

to win a GS match due to the longer format (BO3 vs BO5) using the model shown in

Equation (1). The marginal effect associated with the dummy variable GS quantifies the

effect of this change in process variance from MS to GS.

The results are shown in Table 3. We run specifications with and without RSkill,

and a specification that additionally includes fixed effects related to the surface that the

match is played on (clay vs. hard),19 the round of the match (1 to 7), and the year that

it takes place.20

From Column (1) we observe that the marginal effect associated with GS is 10.1%

and highly statistically significant, indicating that high-ranked players are more likely to

win a GS match. Once we control for RSkill in Column (2) the marginal effect associated

with GS reduces to 7.4%, but remains statistically significant. RSkill is positive and also

highly significant. From Column (3), we observe that the additional fixed effects do not
19Matches are played in either hard, clay, grass or carpet surfaces. The surface relates to the speed

that the ball loses after it bounces, and some players prefer faster surfaces (i.e., grass), whereas others
prefer slower surfaces (i.e., clay). In our sample, the only tournament played on grass is the Wimbledon
(GS), and the only tournament played on carpet is Paris (MS) between 2005 and 2008. Because in terms
of speed, grass and carpet surfaces are more similar to hard than clay surfaces, we include them in the
hard category.

20The year fixed effect is aimed to capture the influence of year to year variations in variables that are
ommited from our model, such as betting activity or the number of bookmakers.
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materially change the findings.

Overall, this analysis shows that the reduction in process variance in GS due to to

longer match format exerts a significant and positive effect on the probability that the

high-ranked player wins a GS match, thus should be considered by Bayesian bookmakers.

[Insert Table 3 here]

3.2 Biases in Subjective Probabilities

Table 4 shows our main results. In a univariate setting in Panel A, we find that biasGS

is equal to -3.8% and biasMS is equal to -0.4%, making ∆bias equal to -3.5%, and highly

statistically significant.

In Panel B, we more formally test the hypothesis in a multivariate setting. We find

that the coefficient on GS is -3.3% and highly statistically significant. This is marginally

lower than in the univariate setting, reflecting that a small portion of the bias docu-

mented in Panel A is driven by RSkill, which is also negative and statistically significant.

Adding surface, round and year fixed effects in Column (2) does not materially change

our findings.

Overall, the results in Table 4 are consistent with the alternative hypothesis of pro-

cess variance neglect. Even though bookmakers upwardly adjust their subjective prob-

abilities that the high-ranked player wins a GS match relative to an MS match (68.2%

vs. 74.8%), their adjustment is not sufficient.

[Insert Table 4 here]
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3.3 Betting Exchange Data

In this section, we test our hypothesis using subjective probabilities inferred from odds

achieved on a person-to-person betting exchange called Betfair.21 Analysis of this dataset

allows us to test the hypothesis in an environment where odds are unaffected by any

strategic incentives of bookmakers to exploit punters, and also examine whether markets

are less biased than individual experts.22 This data set also contains information on the

volume bet ($) on each player, which allows us to provide an estimate for bookmaker’s

actual profits. Our sample contains 4,802 observations for the period 2009-2014.

In Panels A and B of Table 5 we present descriptive statistics for this alternative

sample. The majority of the variables are very similar as those in Table 2. One noteworthy

difference is that the vig in the Betfair data is much lower than in the bookmaker data,

which occurs because Betfair odds on the two players are competitively determined by

many different agents, as opposed to being set by a single bookmaker who seeks to earn

the vig regardless of the outcome.

Table 5 contains descriptive statistics on the total volume bet on each match TotV ol

and also the proportion of TotV ol that backs the high-ranked player, RV ol for the two

match formats (MS vs. GS). As shown by TotV ol, GS matches attract higher betting

activity (roughly by 40% on average), which reflects the fact that they are higher profile

events. Moreover, as shown by RV ol, punters show a very strong preference to bet on

the high-ranked player (i.e., the favorite) for both MS and GS matches, consistent with

the results in Levitt (2004).23

21Betfair is by far the largest person-to-person betting exchange, with almost one million active
users (Croxson and Reade, 2014). The Betfair data set was purchased from Fracsoft, available at
http://www.fracsoft.com/. The dataset has incomplete coverage of the Australian Open (GS tour-
nament), with no observations for 2009 and 2010. Moreover, it does not include data for matches that
were completed in more than one day (for example due to rain delays). We use “back” odds on the
two players to calculate subjective probabilities (i.e., odds available to punters who want to bet that a
specific player wins).

22Prediction markets, such as the betting exchange, have been shown to forecast uncertain future
events better than individual experts (Wolfers and Zitzewitz, 2004).

23This tendency of punters to prefer the favorite is in contrast to the well known favorite-longshot
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[Insert Table 5 here]

The results are shown in Table 6. In Panel A the univariate analysis shows that in

MS tournaments π is equal to 70.2% and p is equal to 69.7%. The corresponding figures

for GS are 77% and 78.9% respectively, for a significant ∆bias of -2.4%.

In Panel B, we test the hypothesis using multivariate analysis. Similar to the

analysis in Table 4 we observe that controlling for Rskill does not change our findings, as

the coefficient on the GS dummy is equal to -2.4% and statistically significant. Adding

surface, year and round fixed effects does not influence the result either.

When the trading volume in prediction markets like Betfair is higher, resulting

prices may be more efficient, as they are likely to incorporate information from a larger

number of traders. Thus, the odds achieved in high-volume matches may reflect changes

in process variance in GS more accurately. We use data on the volume that backs the

high-ranked player (V olHR) to test this hypothesis. Specifically, for each match type (MS

vs. GS) and round of match (1 to 7), we rank according to V olHR, noting the median of

the distribution. If, for a specific match, V olHR is higher than the corresponding median

then V olD equals 1, otherwise it is 0.24 We re-estimate the model in Equation (2), by

including V olD and the interaction between V olD × GS as additional regressors. The

coefficient on V olD × GS tests whether the bias related to process variance neglect is

different for high-volume matches.

The results are shown in Table 6, Panel B, Column (3). We find that the coefficient

on GS for low-volume matches is equal to -2.9% and highly significant. The coefficient

on the interaction V olD×GS is positive and significant at 1.3%, indicating that the bias

related to process variance neglect for high-volume matches is reduced by roughly 45%
bias, which implies that the long-shot event is overbet (e.g., Griffith, 1949; Snowberg and Wolfers, 2010).
In the tennis data it is the short event that is overbet, i.e., the proportion of volume that backs the
high-ranked player is higher than the corresponding probability.

24We note the median after we sort on the basis of match type and round of match because GS matches
attract higher volume, as do later rounds in a tournament. In this way, the dummy V olD is not capturing
mechanically such cases.
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(-2.9% vs -1.6%). However, even though high-volume markets are more efficient, they

still entail a significant bias due to process variance neglect.25

Overall, this analysis shows that a bias reflecting process variance neglect exists in

the betting exchange data, where strategic incentives do not exist. Moreover, the bias is

smaller in matches that attract higher betting volume.

[Insert Table 6 here]

3.4 Robustness Checks

In this section, we conduct various tests of robustness, presenting the results in Table 7.

In Panel A, we define biasi using subjective probabilities inferred from bookmaker odds

and in Panel B using betting exchange odds.

In Column (1), we estimate the model in Equation (2) by defining bias as π−DHR,

where DHR is a dummy that equals 1 if the high-ranked player won the match, and 0

otherwise. This specification is unaffected by any measurement error in p̂, and transfers

all the uncertainty associated with its estimation to the residual. Column (1) of Panels A

and B shows that, even though standard errors are higher, the coefficient of GS remains

highly statistically significant.

In Column (2), we estimate a quantile regression model to control for the confound-

ing effect of any outliers. In Panel A the coefficient on GS equals -2.3% and in Panel B

-1.1%, both highly statistically significant.

In Column (3), we re-estimate the model in Equation (2) using a sample that does

not include filters (v) and (vi), discussed in Section 2.1.26 In Panel A, the coefficient on

GS is equal to -2.5% and in Panel B -2.0%, both statistically significant. The magnitude
25Note that the bias of -1.6% in high-volume markets is significant at the 1% level (unreported result).
26For this model we estimate p̂ using the logit in (1) applied to the sample that does not include filters

(v) and (vi).
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of the effect is somewhat reduced in this case, but this is expected since we are adding

in our sample matches where rankings are more noisy indicators of skill differentials.

Because GS matches offer more prize money it is possible that high-ranked players

“time” their form to peak at GS matches, and therefore our findings reflect such timing

effects and not changes in process variance. In Column (4) we address this issue, by

adding an additional regressor in the model in Column (3), RStreak, calculated as the

difference in the proportion of games won by the high- and low-ranked player in the two

previous tournaments. The results in Column (4) of Table 7, show that the coefficient

on GS remains negative and significant in this specification, equalling -2.8% in Panel A

and -2.9% in Panel B.27

Overall, the results in this section show that our findings our robust to different

model and sample specifications.

[Insert Table 7 here]

3.5 Profits

In this section, we analyze profits of bookmakers to examine the economic implications

of the biases documented in Section 3.2. Our first measure of profitability is the return

earned by the bookmaker for each unit of currency bet on on the high-ranked player,

rHR. Recall that DHR is an indicator variable, equal to 1 if the high-ranked player has

won the match, and 0 otherwise. The return earned by the bookmaker in match i for the

high-ranked player, rHR, is thus:
27For the model in Column (4), we estimate p̂ using a logit model that includes RStreak as an

additional independent variable. The results from this model show that the marginal effect associated
with RStreak is positive and significant. In addition, RStreak is higher for GS by roughly 2%. The
results in Column (4) show that agents are not properly pricing the effects of RStreak on the probability
that the high-ranked player wins, as its coefficient is negative and significant. Note that this model
entails a smaller number of observations due to missing values in RStreak, which occur when a player
did not compete in the two previous tournaments.
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rHR =

1 if DHR = 0
−(OHR − 1) if DHR = 1

(3)

Our second measure of profitability provides an estimate for the bookmaker’s actual

profits, as a proportion of the total volume staked for match i, RΠi, using the volume

information from the betting exchange as below:

RΠi = 1−RV olW ×OW (4)

where RV olwis the proportion of the total volume staked that backs the winning player,

and OW are the fixed decimal odds offered by the bookmaker on the winning player. An

implicit assumption in the analysis of RΠi is that RV olw is similar in the two different

betting platforms (bookmakers vs. betting exchange). We estimate rHR and RΠi using

both bookmaker and betting exchange odds.28

To examine whether profitability varies across MS and GS we use the model in

Equation (2) with the profitability indicators as the independent variable. Since book-

makers offer excessively high odds for the high-ranked player to win a GS match (as

shown by the more negative bias in GS in Table 4) we expect that both rHR and RΠi

are lower for GS.

As seen from Panel A1 in Table 8 (bookmaker odds), rHR is lower in GS by a

significant -4.1%, showing that bookmakers are earning proportionately less on bets on

the high-ranked player for GS. From Panel B1 (betting exchange odds) we observe that

the coefficient on GS is negative (-2.5%), but statistically insignificant.

The analysis of rHR is only indicative since it does not incorporate returns earned by

bookmakers on bets on the low-ranked player. Since bookmakers are offering excessively

high odds on the high-ranked player for GS, by analogy, they must be offering excess-

ively low odds on the low-ranked player increasing their returns on those bets. So it is
28However, RΠi does not capture the profits of punters who offer odds on the betting exchange.

The calculation of RΠi with betting exchange odds corresponds to the profits earned by a hypothetical
bookmaker who offers odds on both players, equal to those achieved on the exchange.
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possible that their overall profitability increases (although this seems unlikely since the

overwhelming majority of bets backs the high-ranked player, as shown by Table 5).

In Column (2), in Panels A and B, we present results for RΠi, which gives a more

complete picture of profits. The results show that the coefficient on GS is negative and

significant in both cases (bookmaker and betting exchange), equal to -2.5% in Panel A2

and -2.1% in Panel B2. This shows that bookmakers are earning a smaller proportion of

the volume staked in GS relative to MS, consistent with the notion that biases due to

process variance neglect are costly.

The Appendix further illustrates that the biases we document are suboptimal by

deriving an expression for the expected profits earned by a Bayesian and risk-neutral

bookmaker in GS, with and without a bias due to process variance neglect. This analysis

shows that a rational bookmaker would be better off in the absence of bias, which further

suggests that the biases we document are costly.

[Insert Table 8 here]

3.6 A Placebo Test

Our tests implicitly assume that the only difference across MS and GS matches is match

format, i.e., BO3 vs. BO5. However, as mentioned, GS matches are more prestigious than

MS tournaments, offering more prize money and attracting higher betting volumes. Such

differences may affect our findings. For example, one could argue that in GS matches

players are more motivated to win due to the higher prize money, thus high-ranked players

(who possess more skill) win more often. And perhaps bookmakers are not properly

adjusting their subjective probabilities to such variations in incentives across MS and

GS.

To examine whether our conclusions are affected by any unobserved heterogeneity

across MS and GS that is unrelated to process variance we conduct a placebo test using

data for women’s tennis matches. This data provide an ideal setting for such a test as

they preserve the key differences across MS and GS that are observed in the men’s sample
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(i.e., GS are more prestigious, offer more prize money, and attract more betting volume),

but for women there is no change in process variance because both MS and GS are played

in a BO3 format. Therefore, if our results are driven by other factors and not changes in

process variance, ∆bias should also be negative and significant in the women data.

We construct the women’s sample using an approach similar to that used in our

baseline analysis with the men’s data. GS tournaments are the same for women as for

the men, and for MS tournaments we again focus on the more prestigious tournaments.29

After applying the same filters to the initial sample as those for the men we end up with

2,491 MS matches and 3,532 GS matches from 2007-2014 for the bookmaker sample,

and 1,408 MS matches and 2,210 GS matches from 2009-2014 for the betting exchange

sample.

Table 9 shows descriptive statistics for the women bookmaker sample. The vig for

women is similar to that for men. The difference in player rankings (diff ) is very similar

in the women data set, equal to 46.9 for MS and 66.06 for GS. The latter tournaments

offer the same prize money to women as they do to men. As in the ATP, GS matches for

women always offered more prize money than MS matches. Similar results are shown in

Table 10 for the betting exchange women’s sample. Overall, the data from Tables 9 and

10 show that the women samples are broadly similar as the men’s.

[Insert Tables 9 and 10 here]

In Table 11, we present analysis from the logistic regressions shown in Equation (1)

using the women data (Panel A bookmaker, Panel B betting exchange). As shown from

Column (1), when the only regressor is the GS dummy, the marginal effect associated GS

is positive and significant. However, from Column (2), we observe that this significance is

only capturing Rskill differentials; once we control for Rskill the marginal effect associated
29Pre-2009, the top tier masters tournaments were called Tier-I and post-2009 they are called Premier

Mandatory. For the bookmaker sample we have 12 MS tournaments prior to 2009 (Berlin, Charleston,
Doha, Indian Wells, Miami, Montreal, Moscow, Rome, San Diego, Tokyo, Toronto, and Zurich) and
the 4 Premier Mandatory tournaments after 2009 (Beijing, Indian Wells, Madrid, Miami). The Betting
exchange sample starts in 2009 so we have data on the 4 Premier Mandatory tournaments. The GS
matches for women are the same as for the men (Australian Open, French Open, Wimbledon, and US
Open).
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with GS is insignificant, so the probability of the high-ranked player winning an MS or a

GS match is the same. Therefore, since process variance does not change across MS and

GS matches for women, agents should not upwardly adjust their subjective probabilities

of the high-ranked player winning a GS match.

We continue by testing for biases in subjective probabilities, using the model in

Equation (2). The results are shown in Table 12 (Panel A bookmaker, Panel B betting

exchange). From Panel A, Column (1), we observe that, in contrast to the men’s sample,

the coefficient on GS is positive but insignificant, equal to 0.3%. After we control for

fixed effects, it becomes significant at the 10% level. We obtain similar results in Panel

B, where the coefficient on GS is positive and significant, equal to 1.7%.30

The results in this section are in stark contrast to those obtained in the men’s data.

For women’s matches, especially for the betting exchange sample, agents are adjusting

their subjective probabilities for the high-ranked player winning a GS match upward, as

they do for men’s matches, even though in this case this adjustment is unwarranted, as

shown in Table 11. This creates a bias due to process variance neglect, but in the opposite

direction from that found in men’s data, i.e., ∆bias > 0.

Overall, the placebo test with the women’s data provides support to the claim that

our baseline results in Tables 4 and 6 reflect biases due to process variance neglect and

not other differences between MS and GS.

[Insert Table 11 here]

3.7 Alternative Explanations

In this section, we discuss whether our findings may be related to alternative explanations

other than process variance neglect.

Our baseline findings show that because bookmakers are offering overly attractive

odds to the high-ranked player winning a GS match, they earn proportionately less.
30In untabulated analysis, available from the authors upon request, we examine whether bookmaker’s

profits differ across MS and GS for women’s matches. We find that, in the case where bookmakers actual
profits (RΠ) are calculated using betting exchange odds, RΠ is higher for GS (significant on the 10%
level), consistent with ∆bias being more positive in those cases (Table 12, Panel B).
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However, their average profitability for GS matches remains positive (unreported result).

Could competition between rational bookmakers to attract punters drive them to this

equilibrium where they offer overly attractive odds to the high-ranked player for GS?

Assuming that these competitive forces differ across MS and GS, this explanation could

explain the findings using the bookmaker data.31 However, it cannot explain the findings

in the betting exchange data, where the odds on the two players are set through the trades

of many different punters, who would only accept bets at favorable odds.32 Moreover, this

explanation requires that these competitive forces are absent in the women’s bookmaker

sample, where ∆bias = 0.

GS matches are more prestigious events, thus more highly publicized than MS

matches. Could biases in GS matches be larger (∆bias < 0) because these matches

attract relatively more unsophisticated bettors who hold more biased expectations? This

“noise-trader” explanation could explain the findings with the betting exchange data for

men, but it cannot explain the findings with the bookmaker data where the same agents

are setting odds for both MS and GS matches.33 In addition, the biases found in the

women’s betting exchange data, where GS matches are also more prestigious and more

publisized, are opposite to those found in the men data (∆bias > 0).

Another alternative explanation is that there is a systematic error in π that is

related to agent’s preferences, which is asymmetric across MS and GS. For example,

if bookmaker’s risk attitude changes for GS matches due to, for example, the higher

betting volumes, they will distort the odds offered for these matches further from risk-

neutral probabilities. Thus, it may be the case that the differentials in bias across the two

match formats reflect such distortions due to shifts in preferences for GS matches. This

explanation could explain our findings for the men’s bookmaker data, however it cannot
31Because bookmakers set the odds for both players and charge a vig, they have some room to stra-

tegically manoeuvre the odds to attract more volume.
32For example, a punter who has a subjective probability that the high-ranked player wins equal to π

would only accept a bet if the odds up to that point in the market imply a probability that is less than
π. Otherwise, this punter will choose to stay out of the market and will not trade.

33Moreover, as shown by the analysis in the Appendix, if bettors were more unsophisticated in GS
matches, then rational bookmakers would have a stronger incentive to do the opposite from what we
observe in the data, i.e., offer excessively low odds on the high-ranked player to win a GS match.
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explain the findings with the betting exchange data, where odds are set competitively in

a market setting.34 Moreover, for bookmaker data, this explanation requires that these

shifts in preferences do not occur for women’s GS matches (∆bias = 0 in this sample),

which also entail higher betting volumes.

Overall, these alternative explanations can explain some of our findings, but require

additional assumptions to explain all of them. Although we cannot conclusively rule

them out with our data, we believe it is unlikely that our findings are driven by these

explanations.

4 Concluding Remarks

We conduct a field test of Bayesian reasoning by examining whether agents form expect-

ations by placing a larger weight on cues that are more informative with lower process

variance. We use subjective probabilities inferred from odds on the outcomes of tennis

matches, exploiting exogenous variation in process variance related to the format with

which tennis matches are played.

Our findings are consistent with “process variance neglect,” i.e., bookmakers are not

adjusting their subjective probabilities sufficiently to reflect changes in process variance.

This result is robust to inferring subjective probabilities from odds offered by professional

bookmakers or odds achieved on a person-to-person betting exchange. Moreover, the bias

is costly, i.e., the tendency of bookmakers to insufficinely adjust their probabilities lowers

their profitability.

In the tennis data the change in process variance between MS and GS matches is

relatively intuitive, and easy to observe from historical data. Moreover, clear feedback

on the quality of the decicisions is availiable after the match is finished and uncertainty

is resolved. Our findings show that agents are unable to engage in Bayesian reasoning

even in these simple conditions.
34The risks faced by individual punters on the betting exchange are the same across MS and GS, so

there is no reason to expect that risk preferences change for GS matches.
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How wide-spread are biases related to process variance neglect in other domains

of decisions under uncertainty like, for example, when agents calculate the expected

returns of different investments? In such cases, the relevant cues - and therefore the

process variance considerations - are largely case-specific, making them more difficult

to process. Moreover, feedback on the quality of the decisions is extremely noisy. We

suspect that biases in expectations related to process variance neglect are more severe in

such situations.
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Appendix

Expected Profits in GS

In this section, we calculate the expected profit to a rational and risk-neutral bookmaker

in GS with and without bias. This bookmaker understands the correct probability that

each player wins the match, but chooses to “salt” this probability with a bias. This is

analysis is useful in order to illustrate the conditions under which a bias is suboptimal.

Assume that the correct probability that the high-ranked player wins the match is

pHR, and correspondingly for the low ranked player is pLR = 1 − pHR. The bookmaker

starts from this probability, and adjusts it to reflect a vigorish, v, and a bias, b, arriving

at p∗
HR using the expression below:

p∗
HR = (pHR + b)× (1 + v)

Correspondingly, the adjusted probability for the low ranked player is:

p∗
LR = ((1− pHR)− b)× (1 + v)

The odds offered for the high- and low-ranked player are thus OHR = 1
p∗

HR
and

OLR = 1
p∗

LR
, respectively. Furthermore, V olHR and V olHR are the volumes that back

the high- and low-ranked player respectively, and TotV ol = V olHR + V olLR is the total

volume staked. The expected profit for the rational bookmaker is therefore:

E(Π) = TotV ol − pHR × V olHR×OHR − (1− pHR)× (V olHR)×OLR

Dividing through by TotV ol to get expected profits as a proportion of the volume

staked:

E(RΠ) = 1− pHR×RV olHR

(pHR+b)×(1+v) −
(1−pHR)×(1−RV olHR)

((1−pHR)−b)×(1+v)

where RV olHR = V olHR

T otV ol
, and RV olLR = 1−RV olHR.

We conduct a simple calibration to show how E(RΠ) varies with b setting pHR =

0.79 and v = 0.05 (Table 2, GS), and plotting E(RΠ) for different values of b and

RV olHR.
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The results are shown in Figure 2. Starting with the black solid line whereRV olHR =

pHR, we observe that E(RΠ) is inverse U-shaped with a unique maximum at b = 0.35

When RV olHR < pHR E(RΠ) increases as b becomes smaller, and this relationship is

steeper as RV olHR decreases. Conversely, when RV olHR > pHR E(Π) decreases as b

becomes smaller, and this relationship is steeper as RV olHR increases.

Are bookmakers acting optimally by setting odds at a negative b, as we show in

Table 4? From the betting exchange data in Table 5, we see that punters show a strong

preference for the high-ranked player with RV olHR = 0.87 > pHR = 0.79. Under this

scenario (as shown by Figure 1), it is suboptimal for a rational bookmaker to move away

from fair odds and offer “salted” odds at a lower b. A strategic bookmaker should do

exactly the opposite, i.e., offer salted odds at a higher b.

The analysis in Figure 2 assumes that RV olHR does not change in response to

variations in b. However, since b influences offered odds it influences RV olHR. Our last

calculation in this section estimates changes in expected profits in GS matches when the

rational bookmaker moves from fair odds to biased odds with a negative b, by taking into

account changes in RV olHR. Setting b = −3.5%, pHR = 0.79 (Table 4) and RV olHR =

0.87 (Table 5) we find that E(RΠ) = 3.06%. Now, suppose a hypothetical scenario where

the bookmaker sets b = 0. This would affect the stated odds and would thus influence

RV olHR. To get an estimate of RV olHR in this hypothetical scenario we can use the

model below, estimated using the betting exchange data for GS matches:

RV olHR,i = α + β ×OHR,i + εi

We find that α is equal to 1.36 and β is equal to -0.35, both highly statistically

significant. This shows that when the odds on the high-ranked player increase (i.e., when

he becomes less favorite), RV olHR decrases, i.e., volume is bet on the two players more

equally. This result is sensibe, given the strong preference of punters to bet on the

favorite. Using the model above we find that when b is set to 0 and the odds oferred
35Moreover, this is the only point at which the bookmaker faces no risk, i.e., the standard deviation

of relative profits is 0. Of course this is insignificant for the risk-neutral bookmaker.
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to the high-ranked player decrease (i.e., he becomes more favorite), RV olHR increases to

93.2%. Expected profits in this hypothetical scenario (with pHR = 0.79) equal 5.12%, up

by 2.06% from the scenario with a b of -3.5%.

[Insert Figure 2 here]
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Figure 1: Probabilities in MS vs GS

This figure depicts average objective probabilities (blue bars) and average subjective probabil-

ities (red bars) for MS and GS matches.
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Figure 2: Expected Profits and Bias

This figure depicts Expected Profits (Y-axis) for different levels of bias (X-axis), following the

procedure explained in Appendix 1.
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Table 1: Observations by Tournament and Year

This table shows a breakdown of the data used in the analysis sorted by tournament and year.
The data are retrieved from www.tennis-data.co.uk. Panel A contains data for Grand Slam
(GS) matches which are played in a best-out-of-five format, and Panel B for ATP World Tour
Masters 1000 (MS) matches, which are played in a best-out-of-three format. We apply the
following filters to create our final sample: (i) we retain only completed matches, and drop
matches with (ii) missing rankings information, (iii) missing odds for either player, or (iv)
matches that entail a negative vig. We also drop matches if (iv) both players ranked outside
the top 100 players in the world at the start of the tournament, and (vi) matches where the
high-ranked player is indicated as an outsider by the bookmakers even though he is ranked by
at least 15 places higher than the low-ranked player. Our final sample contains 9,046 matches
from 2005-2014.

Year
Tournament 05 06 07 08 09 10 11 12 13 14 Total

Panel A: GS

Australian Open 106 106 107 112 109 108 107 104 113 95 1,067
French Open 100 99 98 107 108 110 111 110 105 112 1,060
US Open 107 106 106 111 104 105 102 110 105 106 1,062
Wimbledon 102 102 95 97 99 105 105 104 100 105 1,014

Other 6 6 2 0 0 0 0 0 0 0 14
Total 421 419 408 427 420 428 425 428 423 418 4,217

Panel B: MS

Cincinatti 57 59 47 42 46 44 47 51 46 51 490
Hamburg 53 53 48 47 0 0 0 0 0 0 201

Indian Wells 79 75 81 77 78 76 70 79 74 81 770
Madrid 40 36 43 41 43 45 49 49 53 50 449
Miami 74 68 76 79 79 78 77 80 73 74 758

Monte Carlo 50 59 46 45 50 48 48 50 47 48 491
Montreal 55 0 48 0 49 0 50 0 48 0 250
Paris 37 38 43 38 41 43 41 42 43 40 406
Rome 54 46 46 42 51 49 45 49 51 47 480

Shanghai 0 0 0 0 44 47 48 52 49 50 290
Toronto 0 51 0 51 0 47 0 44 0 51 244
Total 499 485 478 462 481 477 475 496 484 492 4,829
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Table 2: Descriptive Statistics

This table shows descriptive statistics for the main variables used in our analysis. HROdds and
LROdds are the average decimal odds offered by the betting houses that the high-ranked (low-
ranked) player win a match. Vig is the housetake, which is obtained by summing the inverse
of the odds for the high and low ranked players and subtracting one. HRRank and LRRank are
the rankings for the high and low ranked player, respectively, and diffRank is the difference in
the ranking between the two players. p̂ is the estimated "objective" probability, obtained from
averaging the predicted values from the logit model shown in Equation (1) for MS and GS.
DHR is a dummy that equals 1 if the high-ranked player has won the match, and 0 otherwise.
πHR is the subjective probability that the high-ranked player wins the match, as derived from
the bookmaker odds. The sample consists of 9,046 matches that satisfy the criteria outlined in
Table 1. The last row in the table shows the average prize money collected by the winner of an
MS and a GS tournament using 2015 prize money.

Variable Mean σ Min Q1 Median Q3 Max
Panel A: GS

HROdds 1.34 0.41 1.00 1.09 1.23 1.45 6.79
LROdds 6.17 5.79 1.09 2.70 4.12 7.33 60.00
V ig 0.05 0.01 0.00 0.05 0.05 0.06 0.08

HRRank 24.9 23.12 1 7 18 35 100
LRRank 95.42 93.11 2 47 78 113 1,370
diffRank 70.52 89.41 1 22 49 87 1,369

p̂ 0.79 0.10 0.60 0.70 0.79 0.87 0.99
DHR 0.79 0.41
πHR 0.75 0.15 0.14 0.65 0.77 0.87 0.98

Prize Money ($) 2,525,000
Panel B: MS

HROdds 1.48 0.46 1.01 1.19 1.38 1.61 7.45
LROdds 4.11 3.26 1.09 2.28 3.02 4.59 32.80
V ig 0.06 0.01 0.01 0.05 0.06 0.06 0.09

HRRank 20.56 19.01 1 6 15 30 100
HRRank 65.56 78.05 2 29 49 77 1,517
diffRank 45.00 73.85 1 12 27 53 1,460

p̂ 0.69 0.12 0.50 0.58 0.67 0.78 0.98
DHR 0.69 0.46
πHR 0.68 0.15 0.13 0.59 0.69 0.79 0.97

Prize Money ($) 790,000
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Table 3: Likelihood that high-ranked player wins an MS and a GS Match

This table presents results from logit models, where the dependent variable is takes the value of
1 if the high-ranked player has won the match, and 0 otherwise. GS is a dummy variable that
equals 1 if the match is GS, and 0 otherwise. Rskill is calculated as the log (low-ranked player
ranking) - log (high-ranked player ranking) for MS (GS) matches. The table reports marginal
effects associated with each of the independent variables. The sample consists of 9,046 matches
that satisfy the criteria outlined in Table 1. The robust standard errors shown in brackets are
calculated using the Huber-White estimator. *,**,*** indicate statistical significance at the
10%, 5% and 1% levels, respectively.

Variable (1) (2) (3)
GS 0.101*** 0.074*** 0.072***

[0.009] [0.009] [0.009]
Rskill 0.121*** 0.123***

[0.005] [0.005]
Surface F.E. NO NO YES
Year F.E. NO NO YES
Round F.E. NO NO YES

N 9,046 9,046 9,046
pseudo-R2 0.011 0.071 0.073
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Table 4: Biases in Subjective Probabilities in MS vs. GS

This table reports biases in subjective probabilities for GS and MS tennis matches. In Panel A
we present univariate analysis and in Panel B multivariate analysis. In Panel A π and p̂ denote
the average subjective and the average (estimated) objective probabilities that the high-ranked
player wins an MS or a GS match. p̂ is obtained by averaging the predicted values from the
logit model shown in Equation (1) for MS and GS, and π is derived from the average odds
on the high-ranked player to win the match offered by the bookmakers. Bias is the average
difference between π and p̂ for MS and GS. In Panel B we present results from OLS regressions
with an intercept. The dependent variable is Bias and the independent variables are GS and
Rskill, defined as in Table 3. The sample consists of 9,046 matches from 2005 to 2014 that
satisfy the criteria outlined in Table 1. In Panel B the robust standard errors shown in brackets
are calculated using the Huber-White estimator. *,**,*** indicate statistical significance at the
10%, 5% and 1% levels, respectively.

Panel A: Univariate
MS GS GS - MS

π 0.682 0.748
p̂ 0.686 0.786

Bias -0.004 -0.038 -0.034***
[0.002]

N 4,829 4,217
Panel B: Multivariate

Variable (1) (2)
GS -0.033*** -0.035***

[0.002] [0.002]
Rskill -0.007*** -0.005***

[0.001] [0.001]
N 9,046 9,046
R2 0.029 0.054

Surface F.E. NO YES
Year F.E. NO YES
Round F.E. NO YES
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Table 5: Descriptive Statistics: Betting Exchange

This table shows descriptive statistics for the main variables used in the analysis with the
Betting Exchange data. HROdds and LROdds are the average decimal odds offered by the
betting houses that the high-ranked (low-ranked) player win a match. Vig is the housetake,
which is obtained by summing the inverse of the odds for the high and low ranked players
and subtracting one. HRRank and LRRank are the rankings for the high and low ranked player,
respectively, and diffRank is the difference in the ranking between the two players. Totvol is the
total volume that backs the high-ranked player ($000’s), and Rvol is the proportion of the total
volume bet in the match on both players that backs the high-ranked player. p̂ is the estimated
"objective" probability, obtained from averaging the predicted values from the logit model shown
in Equation (1) for MS and GS. DHR is a dummy that equals 1 if the high rank player has won
the match, and 0 otherwise.πHR is the subjective probability that the high-ranked player wins
the match, as derived from the bookmaker odds. The sample consists of 2,728 MS matches and
2,074 GS matches that satisfy the criteria outlined in Table 1 except criterion (iv), since in this
sample there are no matches with a negative vig. For this sample we drop matches where the
vig is greater than 0.05.

Variable Mean σ Min Q1 Median Q3 Max
Panel A: GS

HROdds 1.38 0.47 1.01 1.09 1.24 1.50 8.60
LROdds 10.30 14.42 1.12 2.94 4.90 11.00 100.00
V ig 0.01 0.01 0.00 0.00 0.01 0.01 0.05

HRRank 24.01 22.72 1 6 17 34 100
LRRank 92.43 88.5 2 44 76 112 1,120
diffRank 68.42 83.97 1 21 48 86 1,063
TotV ol 240 460 4 47 88 220 6,200
RV ol 0.87 0.19 0.02 0.86 0.94 0.97 1
p̂ 0.79 0.10 0.59 0.71 0.80 0.87 0.99

DHR 0.79 0.41
πHR 0.77 0.16 0.12 0.66 0.80 0.91 0.99

Panel B: MS

HROdds 1.52 0.54 1.01 1.20 1.40 1.66 9.00
LROdds 5.72 7.40 1.12 2.46 3.45 5.60 90.00
V ig 0.01 0.01 0.01 0.00 0.01 0.01 0.05

HRRank 19.82 18.89 1 5 14 29 99
LRRank 62.58 68.37 2 27 46 76 1,147
diffRank 42.76 64.22 1 11 25 51 1,074
TotV ol 170 220 2.3 40 86 210 2,200
RV ol 0.82 0.23 0.02 0.81 0.91 0.96 1
p̂ 0.70 0.12 0.50 0.59 0.69 0.80 0.99

DHR 0.70 0.46
πHR 0.70 0.16 0.11 0.60 0.71 0.82 0.99
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Table 6: Biases in Subjective Probabilities in MS vs. GS: Betting Exchange
Data

This table reports biases in subjective probabilities for GS and MS tennis matches. In Panel A
we present univariate analysis and in Panel B multivariate analysis. In Panel A π and p̂ denote
the average subjective and the average (estimated) objective probabilities that the high-ranked
player wins an MS or a GS match. p̂ is obtained by averaging the predicted values from the
logit model shown in Equation (1) for MS and GS, and π is derived from the odds on the high-
ranked player to win the match as obtained from the betting exchange. Bias is the average
difference between π and p̂ for MS and GS. In Panel B we present results from OLS regressions
that include an intercept. The dependent variable is Bias and the independent variables are
GS and Rskill,defined as in Table 3. In Column (3) of Panel B V olD is a dummy calculated as
follows: We first rank all matches according to type of match (MS vs. GS) and match round (1
to 7). Within each of these 14 groups we sort all matches according to the volume that backs
the high ranked player, noting the median of the distribution. V olD equals to one if the specific
match is above this median, and 0 otherwise. The sample consists of 4,802 matches from 2009
to 2014 that satisfy the criteria outlined in Table 5. In Panel B the robust standard errors
shown in brackets are calculated using the Huber-White estimator. *,**,*** indicate statistical
significance at the 10%, 5% and 1% levels, respectively.

Panel A: Univariate
MS GS GS - MS

π 0.702 0.770
p̂ 0.697 0.789

Bias 0.005 -0.019 -0.024***
[0.003]

N 2,728 2,074
Panel B: Multivariate

Variable (1) (2) (3)
GS -0.024*** -0.027*** -0.029***

[0.003] [0.003] [0.005]
Rskill -0.001 0.002 -0.014***

[0.001] [0.002] [0.002]
V olD 0.067***

[0.004]
V olD ×GS 0.013**

[0.006]
N 4,802 4,802 4,802
R2 0.011 0.024 0.107

Surface F.E. NO YES YES
Year F.E. NO YES YES
Round F.E. NO YES YES
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Table 7: Robustness Checks

In this table we conduct various robustness checks. In Column (1) the dependent variable is
Bias = πHR −DHR, where DHR is a dummy that equals 1 if the high ranked player has won
the match, and 0 otherwise. In Column (2) we estimate a quantile regression model, expressing
the median of the conditional distribution as a linear function of the indepedent variables. In
Column (3) we use OLS regressions as in Panel B of Table 4 but without dropping observations
where both players are ranked outside top 100 players of the world, or where the difference
in rankings is greater than 15 positions but the high-ranked player is indicated as an outsider
by the odds. In Column (4) we add an additional regressor in the model, RStreak, calculated
as the difference in the proportion of games won by the high and low ranked player for the
two previous tournaments. For this test we estimate p̂ using an expanded version of the logit
model in (1) that includes RStreak as an additional independent variable. In all columns the
independent variables GS and Rskill are defined as in Table 3. All models include an intercept
term. In Panel A (B) we derive subjective probabilities using bookmaker (betting exchange)
odds. The robust standard errors shown in brackets are calculated using the Huber-White
estimator. *,**,*** indicate statistical significance at the 10%, 5% and 1% levels, respectively.

Panel A: Bookmaker
Variable (1) (2) (3) (4)
GS -0.033*** -0.023*** -0.025*** -0.028***

[0.009] [0.003] [0.003] [0.003]
Rskill -0.007** -0.003** -0.010*** -0.007***

[0.003] [0.001] [0.001] [0.001]
RStreak -0.018***

[0.003]
N 9,046 9,046 10,266 6,243
R2 0.002 0.007 0.015 0.025

Panel B: Betting Exchange
Variable (1) (2) (3) (4)
GS -0.024** -0.011*** -0.020*** -0.029***

[0.012] [0.004] [0.004] [0.004]
Rskill -0.001 0.001 0.001 0.004**

[0.005] [0.001] [0.002] [0.002]
RStreak -0.026***

[0.006]
N 4,802 4,802 5,405 3,199
R2 0.001 0.002 0.005 0.019
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Table 8: Bookmaker Profits in MS vs GS

This table reports analysis of the profits earned by bookmakers, presenting results from OLS
regressions that include an intercept (not reported). In Panel A we present results using book-
maker odds and in Panel B betting exchange odds. On the top row we show the depedent
variable in each regression. rHR is the return made by the bookmaker for each uit of currency
bet on the high ranked player, and is calculated according to Equation (3). RΠ is an estim-
ate of the actual profit earned by the bookmakers, using volume information from the betting
exchange, and is calculated according to Equation (5). The independent variables are GS and
Rskill, defined as in Table 3. The robust standard errors shown in brackets are calculated using
the Huber-White estimator. *,**,*** indicate statistical significance at the 10%, 5% and 1%
levels, respectively.

A:Bookmaker B: Betting Exchange
Variable 1:rHR 2:RΠ 1:rHR 2:RΠ
GS -0.041*** -0.025** -0.025 -0.021**

[0.014] [0.011] [0.020] [0.011]
Rskill -0.010* -0.005 0.006 0.002

[0.006] [0.005] [0.009] [0.004]
Surface F.E. YES YES YES YES
Year F.E. YES YES YES YES
Round F.E. YES YES YES YES

N 9,046 9,046 4,802 4,802
R2 0.004 0.005 0.005 0.004
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Table 9: Descriptive Statistics: Women’s Bookmaker Data

This table shows descriptive statistics for the main variables used in the analysis of the women
bookmaker data. HROdds (LROdds) are the average decimal odds offered by the betting houses
that the high-ranked (low-ranked) player win a match. Vig is for the over-run, which is obtained
by summing the inverse of the odds for the high- and low-ranked player and subtracting one.
RankH and RankL are the rankings for the high- and low-ranked player, respectively, and diff is
the difference in the ranking between the two players. p̂ is the estimated "objective" probability,
obtained from averaging the predicted values from the logit model shown in Equation (1) for
MS and GS. DHR is a dummy that equals 1 if the high rank player has won the match, and
0 otherwise. πHR is the subjective probability that the high-ranked player wins the match, as
derived from the bookmaker odds. The sample consists of 2,491 MS matches and 3,532 GS
matches from 2007 to 2014 that satisfy the criteria outlined in Table 1. The last row in the
table shows the average prize money collected by the winner of an MS and a GS tournament
using 2015 prize money.

Variable Mean σ Min Q1 Median Q3 Max
Panel A: GS

HROdds 1.37 0.44 1.01 1.11 1.26 1.49 9.40
LROdds 5.24 4.08 1.06 2.58 3.78 6.42 35.40
V ig 0.06 0.01 0.00 0.05 0.06 0.06 0.08

RankH 25.38 23.02 1 8 18 35 100
RankL 91.44 82.63 2 48 78 110 1,208
diff 66.06 80.09 1 22 49 85 1,195
p̂ 0.75 0.11 0.55 0.66 0.75 0.83 0.98

DHR 0.75
πHR 0.73 0.15 0.10 0.63 0.75 0.85 0.97

Prize Money ($) 2,525,000
Panel B: MS

HROdds 1.46 0.42 1.01 1.19 1.35 1.59 5.47
LROdds 3.93 2.53 1.14 2.32 3.14 4.54 22.00
V ig 0.06 0.01 0.02 0.05 0.06 0.06 0.09

RankH 22.88 20.80 1 7 16 34 100
RankL 69.78 73.94 2 31 53 84 1,063
diff 46.90 68.84 1 13 29 56 988
p̂ 0.70 0.11 0.53 0.61 0.70 0.79 0.98

DHR 0.70
πHR 0.69 0.14 0.17 0.59 0.70 0.79 0.96

Prize Money ($) 665,000
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Table 10: Descriptive Statistics: Women’s Betting Exchange Data

This table shows descriptive statistics for the main variables used in the analysis of the women
betting exchange data. HROdds (LROdds) are the odds obtained in the betting exchange that
the high-ranked (low-ranked) player win the match. Vig is for the over-run, which is obtained
by summing the inverse of the odds for the high and low ranked player and subtracting one.
RankH and RankL are the rankings for the high and low ranked player, respectively, and diff is
the difference in the ranking between the two players. Totvol is the total volume that backs the
high-ranked player ($000’s), and Rvol is the proportion of the total volume bet in the match
on both players that backs the high-ranked player. p̂ is the estimated "objective" probability,
obtained from averaging the predicted values from the logit model shown in Equation (1) for
MS and GS.DHR is a dummy that equals 1 if the high rank player has won the match, and
0 otherwise. πHR is the subjective probability that the high-ranked player wins the match, as
derived from the bookmaker odds. The sample consists of 1,408 MS matches and 2,210 GS
matches that satisfy the criteria outlined in Table 5.

Variable Mean σ Min Q1 Median Q3 Max
Panel A: GS

HROdds 1.43 0.53 1.01 1.15 1.32 1.55 11.50
LROdds 6.98 8.68 1.09 2.74 4 7.20 100
V ig 0.01 0.01 0.00 0.01 0.01 0.01 0.05

RankH 25.30 22.98 1 8 18 35 100
RankL 90.61 81.05 2 48 77 110 1,208
diff 65.30 78.04 1 22 49 85 1,195
TotV ol 130 250 0.36 20.06 44.40 120 2,900
RV ol 0.86 0.20 0.01 0.85 0.93 0.97 1
p̂ 0.74 0.11 0.55 0.65 0.74 0.82 0.97

DHR 0.74 0.44
πHR 0.74 0.16 0.09 0.64 0.75 0.86 0.99

Panel B: MS

HROdds 1.52 0.47 1.02 1.24 1.41 1.67 6.20
LROdds 4.57 4.20 1.17 2.44 3.30 4.85 46.00
V ig 0.01 0.01 0.00 0.01 0.01 0.01 0.05

RankH 22.28 20.48 1 6 15 34 100
RankL 68.41 71.09 2 32 52 80 821
diff 46.13 65.70 1 13 29 54 748
TotV ol 56.03 82.84 0.41 12.83 26.06 59.19 690
RV ol 0.82 0.23 0.02 0.79 0.91 0.96 1
p̂ 0.71 0.11 0.54 0.62 0.70 0.79 0.97

DHR 0.71 0.45
πHR 0.69 0.15 0.16 0.60 0.70 0.80 0.98
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Table 11: Likelihood that high-ranked player wins an MS and a GS Match:
Women’s Data

This table presents results from logit models, where the dependent variable is takes the value of
1 if the high-ranked player has won the match, and 0 otherwise. GS is a dummy variable that
equals 1 if the match is GS, and 0 otherwise. Rskill is calculated as the log (low-ranked player
ranking) - log (high-ranked player ranking) for MS (GS) matches. The table reports marginal
effects associated with each of the independent variables. In Panel A we present results for the
bookmaker sample that consists of matches that satisfy the criteria in Table 1, and in Panel
B for the betting exchange sample that consists of matches that satisfy the criteria in Table 5.
The robust standard errors shown in brackets are calculated using the Huber-White estimator.
*,**,*** indicate statistical significance at the 10%, 5% and 1% levels, respectively.

Variable (1) (2) (3)
Panel A: Bookmaker

GS 0.043*** 0.018 0.016
[0.012] [0.011] [0.011]

Rskill 0.121*** 0.126***
[0.006] [0.006]

Surface F.E. NO NO YES
Year F.E. NO NO YES
Round F.E. NO NO YES

N 6,023 6,023 6,023
pseudo-R2 0.002 0.060 0.064

Panel B: Betting Exchange

GS 0.030** 0.009 0.004
[0.015] [0.015] [0.015]

Rskill 0.117*** 0.121***
[0.008] [0.008]

Surface F.E. NO NO YES
Year F.E. NO NO YES
Round F.E. NO NO YES

N 3,618 3,618 3,618
pseudo-R2 0.001 0.055 0.059
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Table 12: Biases in Subjective Probabilities in MS vs. GS: Women’s data

This table reports biases in subjective probabilities for GS and MS women’s tennis matches,
presenting results from OLS regressions that include an intercept. The dependent variable is
Bias and the independent variables are GS and Rskill, defined as in Table 3. In columns (1)
and (2) we present results when subjective probabiities are derived from bookmaker odds, and
in columns (3) and (4) Panel B when subjective probabiities are derived from odds achieved
on the betting exchange. The sample consists of matches that satisfy the criteria outlined in
Table 1. The robust standard errors shown in brackets are calculated using the Huber-White
estimator. *,**,*** indicate statistical significance at the 10%, 5% and 1% levels, respectively.

A:Bookmaker B: Betting Exchange
Variable (1) (2) (3) (4)
GS 0.003 0.005* 0.017*** 0.017***

[0.003] [0.003] [0.004] [0.004]
Rskill -0.008*** -0.008*** -0.000 -0.001

[0.001] [0.001] [0.002] [0.002]
N 6,023 6,023 3,618 3,618
R2 0.007 0.007 0.006 0.009

Surface F.E. NO YES NO YES
Year F.E. NO YES NO YES
Round F.E. NO YES NO YES
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