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Abstract

This paper presents an analysis of higher-order dynamics in asset pricing models

with long-run risk. The numerical errors introduced by the ubiquitous Campbell-Shiller

log-linearization approach are economically significant for many plausible choices of pa-

rameters and exogenous processes. The resulting errors in the model moments can exceed

75% and may lead to qualitatively wrong model predictions. For example, a common

belief about long-run risk models, based on the log-linearization, is that conditional risk

premia for long-run consumption risk are constant. The correct solution reveals that,

on the contrary, risk premia show considerable time variation and are procyclical.
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1 Introduction

Bansal and Yaron (2004) introduced an economic mechanism based on long-run risk to gener-

ate a high equity premium in asset-pricing models and demonstrated that the Campbell–Shiller

log-linearization technique provides a simple method for analyzing such models. This paper

presents an analysis of higher-order effects in long-run risk models, which the log-linearization

approach disregards by construction. We show that the solutions of models that build on the

framework of Bansal and Yaron (2004) are potentially very nonlinear, and that for many plau-

sible choices of parameters and exogenous processes the numerical errors introduced by the

ubiquitous log-linearization approach are economically significant. In fact, for very persistent

processes, as regularly used in the literature, the approximation errors in model moments can

exceed 75%. The linearity assumption can even result in misleading qualitative inferences.

For example, conventional wisdom since Bansal and Yaron (2004) is that long-run risk cannot

generate time-varying risk premia. We show that once nonlinear effects are accounted for,

risk premia can show considerable time variation (and in the wrong direction, compared to

the empirical evidence in Fama and French (1989) and Ju and Miao (2012)).

Asset pricing models have become increasingly complex over the last three decades. The

first generation of such models, developed in the 1980s (Grossman and Shiller (1981), Hansen

and Singleton (1982), Mehra and Prescott (1985)), proved inadequate in explaining key fea-

tures of financial markets, such as the high equity premium and the low risk-free rate. As the

literature on asset pricing evolved and matured over time, researchers added more and more

complex elements to their models such as, among others, incomplete markets in form of unin-

surable income risks, frictions such as borrowing or collateral constraints, time-varying risk

aversion, and heterogeneous expectations. While these additional features had varying degrees

of success, recently the new generation of long-run risks models (e.g. Bansal and Yaron (2004)

or Hansen, Heaton, and Li (2008)) with their interplay of long-run risks, stochastic volatility,

and recursive preferences have had considerably more success in resolving long-standing as-

set pricing puzzles. The key feature in the model is the combination of a preference for the

early resolution of risks, paired with highly persistent state processes that potentially affect

long-run model outcomes.

Complex models generally require numerical solution techniques. Bansal and Yaron (2004)

show that a simple linearized solution method based on the Campbell–Shiller (1988) present-

value relation works well for their original model, because the log price-dividend ratio in the

model is approximately a linear function of the underlying shocks. Additionally, the lineariza-

tion procedure has the attractive property of lending itself to a simple analysis of the economic

impact of different shocks. This property is particularly appealing, as it allows the researcher

to draw conclusions about parameter dependencies and economic mechanisms in the model.
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Therefore, a large group of researchers have followed Bansal and Yaron (2004) and used the

log-linearization technique to solving asset pricing models with recursive preferences (for ex-

ample, Segal, Shaliastovich, and Yaron (2015), Bansal, Kiku, and Yaron (2010), Bansal, Kiku,

and Yaron (2012), Bollerslev, Tauchen, and Zhou (2009), Kaltenbrunner and Lochstoer (2010),

Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010), Drechsler and Yaron (2011), Bansal

and Shaliastovich (2013), Constantinides and Ghosh (2011), Bansal, Kiku, Shaliastovich, and

Yaron (2014) or Beeler and Campbell (2012), among others). Examining this strand of liter-

ature, it is difficult to find studies that do not rely on the Campbell-Shiller approach; it has

become the standard method for solving asset pricing models with long-run risks.

By its very nature, a log-linear approximation will miss higher-order effects. Can we always

safely ignore these higher-order effects? The tendency since the original Bansal and Yaron

(2004) model has been towards both higher persistence and greater complexity. This suggests

it is time to take stock of whether the Campbell-Shiller approximation is still appropriate. To

answer this question, we first determine the drivers that introduce higher-order dynamics to

asset pricing models featuring long-run risks and analyze its implications for financial market

outcomes. Afterwards, we examine the consequences of ignoring nonlinear dynamics in six

recent studies in addition to the Bansal and Yaron (2004) model: the newly calibrated version

of Bansal, Kiku, and Yaron (2012), the extensive calibration study of Schorfheide, Song, and

Yaron (2016), the volatility-of-volatility model of Bollerslev, Xu, and Zhou (2015), and the

works on real and nominal bonds of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010)

and Bansal and Shaliastovich (2013).

We show that the higher-order dynamics not captured by the Campbell-Shiller approxima-

tion can be large and economically significant. For example, Bansal, Kiku, and Yaron (2012)

recalibrate the original Bansal and Yaron (2004) model to have more persistent shocks to

stochastic volatility. We find that for this calibration the log-linearization introduces approx-

imation errors as large as 20% for key quantities such as the equity premium or the volatility

of price-dividend ratio. Schorfheide, Song, and Yaron (2016) perform a Bayesian estimation

of the model using the same approximation, and find evidence for a higher persistence for

long-run risk. In this case, we find approximation errors as large as 75% for some key model

moments. In general, highly persistent processes lead to solutions that are highly nonlinear,

and thus to economically relevant approximation errors. Log-linearization can even introduce

errors in qualitative conclusions. It wrongly predicts constant risk premia for long-run con-

sumption risks and under high persistence, log-linearization can actually invert the slope of

the yield curve in the nominal bond models of Bansal and Shaliastovich (2013) and Koijen,

Lustig, Van Nieuwerburgh, and Verdelhan (2010).

Summarizing, by construction, log-linearizing the model as it is commonly done in the
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asset pricing literature misses higher-order dynamics. If the driving factors of the economy

are of low persistence or the risk aversion of the representative agent is low, these dynamics

will have a negligible influence on equilibrium outcomes. However, the combination of highly

persistent processes, together with recursive preferences and a risk aversion significantly larger

than one—features which are required by the long-run risk model to be consistent with the

financial market data—can introduce strong nonlinear dynamics to the model. We show that

these errors have a strong impact on key financial statistics in some recent asset pricing studies

and introduce a bias to the model parameters when it comes to the estimation or calibration

of the model. Therefore, researchers should not rely on log-linearized solutions in the future

but use more sophisticated methods that can account for higher-order dynamics.

The paper is organized as follows. Section 2 describes the general model framework that

is used throughout the paper. In Section 3, we determine the drivers that introduce higher-

order dynamics to asset pricing models with long-run risks. Subsequently, we show how they

qualitatively and quantitatively influence model outcomes. Section 4 analyzes the implications

of higher-order effects for six recent asset pricing studies. Section 5 concludes.

2 Model Framework

We consider a standard asset pricing model with a representative agent and recursive pref-

erences as in Epstein and Zin (1989) and Weil (1990). Indirect utility at time t, Vt, is given

recursively as

Vt =
[
(1− δ)C

1−γ
θ

t + δ
[
Et
(
V 1−γ
t+1

)] 1
θ

] θ
1−γ

. (1)

In this parametrization, Ct is consumption, δ is the time discount factor, γ determines the level

of relative risk aversion, and θ = 1−γ
1− 1

ψ

, where ψ is the elasticity of intertemporal substitution

(EIS). The parameters γ and ψ are required to satisfy 0 < γ, ψ, and ψ 6= 1. For θ = 1 the

agent has standard CRRA preferences. Values of γ > 1/ψ indicate a preference for the early

resolution of risk and values of γ < 1/ψ indicate a preference for late resolution. The general

asset pricing equation to price any asset i with ex-dividend price Pi,t and dividend Di,t is given

by

Et [Mt+1Ri,t+1] = 1, (2)

where Ri,t+1 =
Pi,t+1+Di,t+1

Pi,t
. For recursive preferences, the stochastic discount factor Mt+1 is

given by

Mt+1 = δ

(
Ct+1

Ct

)− 1
ψ

 Vt+1[
Et
(
V 1−γ
t+1

)] 1
1−γ

 1
ψ
−γ

. (3)
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Epstein and Zin (1989) show that the (unobserved) value of the aggregate wealth, Wt, can be

expressed in terms of the value function,

Wt =
V

1−1/ψ
t

(1− δ)C−1/ψ
t

. (4)

This expression in turn permits expressing Mt+1 in terms of the gross return to the claim on

aggregate consumption Rw,t+1,

Mt+1 = δθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
w,t+1, (5)

where Rw,t+1 = Wt+1

Wt−Ct . As equation (2) has to hold for all assets, it must also hold for the

return of the aggregate consumption claim. Thus, Rw,t+1 is determined by the wealth-Euler

equation

Et

[
δθ
(
Ct+1

Ct

)− θ
ψ

Rθ
w,t+1

]
= 1. (6)

Throughout the paper we consider different setups for the specification of log consumption

growth, ∆ct+1. The original specification in the seminal long-run risk model of Bansal and

Yaron (2004) uses a single volatility process that drives uncertainty in the economy, σt, and a

long-run growth process, xt, affecting both log consumption growth and log dividend growth,

∆dt+1. Specifically, the four processes are given as follows:

∆ct+1 = µc + xt + φcσtηc,t+1

xt+1 = ρxt + φxσtηx,t+1

σ2
t+1 = σ̄2(1− ν) + νσ2

t + φσωt+1

∆dt+1 = µd + Φxt + φdσtηd,t+1 + φd,cσtηc,t+1

ηc,t+1, ηx,t+1, ηd,t+1, ωt+1 ∼ i.i.d. N(0, 1).

(7)

We elaborate in more detail on the properties and key features of the model in the be-

ginning of Section 3. In the remainder of the paper we consider variations of this setup that

include different specifications for the stochastic volatility processes as well as additional state

processes such as volatility of volatility or inflation.

The common approach to solve long-run risk models used in the finance literature is to

log-linearize the model, see Segal, Shaliastovich, and Yaron (2015), Bansal, Kiku, and Yaron

(2010), Bansal, Kiku, and Yaron (2012), Bollerslev, Tauchen, and Zhou (2009), Kaltenbrunner

and Lochstoer (2010), Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010), Drechsler
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and Yaron (2011), Bansal and Shaliastovich (2013), Constantinides and Ghosh (2011), Bansal,

Kiku, Shaliastovich, and Yaron (2014) or Beeler and Campbell (2012), among others. However,

log-linearization misses, by construction, the influence of higher order dynamics — that is,

the approach does not attempt to approximate nonlinear features of the exact solution. But

what if these features matter qualitatively or quantitatively for equilibrium outcomes? Does

log-linearization still deliver sufficiently accurate approximations of the exact solution?

We address these critical issues in this paper. For this task we need an alternate solution

method that accurately accounts for higher-order dynamics and yields robust solutions. In the

body of the paper, we use projection methods (Judd (1992)), which capture these nonlinear

effects, and are known to converge to the true solution (Atkinson (1992)). For a stochastic

growth model with Epstein-Zin utility, Caldara, Fernandez-Villaverde, Rubio-Ramirez, and

Yao (2012, p. 189) note that projection methods “provide a terrific level of accuracy with

reasonable computational burden.” The choice of projection method is not essential, in that

other methods known to converge to the true solution, such as Tauchen and Hussey (1991)

get similar results, though projection methods seem to do so with less computational cost. In

Appendix A, we provide a discussion of the pros and cons of different computational methods

for asset pricing models, as well as a detailed description of the log-linear and projection

solution methods.

3 Higher-Order Dynamics in Long-Run Risk Models

We begin our analysis by determining the factors that influence the higher-order dynamics

in long-run risk models. For this, we use the standard long-run risk framework of Bansal

and Yaron (2004) (see the four processes in (7)). Key features of the model are the highly

persistent state processes for the long-run growth rate, xt, and the stochastic volatility σ2
t .

As we demonstrate below, the model requires the persistence parameters ρ and ν to be very

close to 1, as otherwise the model predictions do not match the data. Combining these highly

persistent processes with a preference for the early resolution of risks (γ > 1
ψ

), Bansal and

Yaron (2004) are able to explain many puzzling features on financial markets like the high

equity premium together with a low risk-free rate or the volatility of the market return, the

risk-free rate, and the price-dividend ratio. As pointed out by Beeler and Campbell (2012), the

original calibration of Bansal and Yaron (2004) implies, counterfactually, that consumption

and dividend growth are highly predictable from stock prices. In reply to this criticism, Bansal,

Kiku, and Yaron (2012) recalibrate the model to be more consistent with the data.1 We use

this calibration for a first analysis of the impact of higher-order dynamics on quantitative

1Bansal, Kiku, and Yaron (2012) increase the influence of the stochastic volatility channel relative to the
long-run risk channel in order to reduce the predictability of consumption and dividend growth.
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and qualitative equilibrium outcomes in the long-run risk model, see Sections 3.1 and 3.2.

In Section 4 we analyze the influence of higher-order dynamics on model predictions in five

additional studies.

3.1 Quantitative Model Predictions

In Figure 1 we show the log price-dividend ratio, pt − dt, in the model of Bansal, Kiku, and

Yaron (2012) as a function of the states xt and σ2
t . The dark gray area shows the log-linearized

solution as used in Bansal, Kiku, and Yaron (2012) and the transparent gray area shows the

correct solution obtained by the projection approach.2 We observe that the log-linearization

systematically underestimates the log price-dividend ratio and produces a steeper ratio in

both state dimensions. An underestimation of pt − dt implies an overestimation of the equity

risk premium. Hence, an analysis relying on the log-linearized solution falsely predicts a

larger equity premium than an analysis based on the correctly solved model does. Also, the

larger derivatives of log price-dividend ratio with respect to the two state variables implies a

larger volatility of the price-dividend ratio. As both, the equity premium and the volatility

of the price-dividend ratio, are key quantities that the long-run risk model tries to explain,

the systematical underestimation of the log price-dividend ratio is an unpleasant property of

the solution method. In practice, of course, it is only relevant whether the difference matters

quantitatively and qualitatively for the empirical predictions of the model. We document in

this paper that they do. Moreover, the more persistent the state processes of the economy,

the larger are the errors introduced by missing higher-order effects. As highly persistent state

processes are required by the long-run risk model to produce model outcomes to be consistent

with the data, using log-linearized solutions introduces large errors to the model solution that

in turn lead to incorrect model predictions.

Figure 2 shows errors in the log price-dividend ratio introduced by the log-linearization

for different values for the persistences of long-run risk ρ and stochastic volatility ν. The

left panel shows relative errors in the unconditional mean of the log price-dividend ratio and

the right panel shows the relative errors in the unconditional volatility. We observe that the

errors increase dramatically with the persistence of the state processes ρ and ν and the errors

in the volatility of the log price-dividend ratio become as large as 50% for large values of

ρ and ν. To demonstrate that these are not artificially constructed calibrations to obtain

large errors, we also show the point estimates for ρ and ν used in the studies of Bansal and

2A formal analysis of the accuracy of the projection approach is conducted in Appendix B. To compute ac-
curate solutions with the projection method, we increase the approximation interval and the polynomial
approximation degree until the solutions no longer change and the polynomial coefficients for the highest de-
gree polynomial are close to zero. By this approach we make sure, that we capture the higher-order dynamics
introduced by the tails of the state processes.
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Figure 1: Log Price-Dividend Ratio in the Long-run Risk Model
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The graph shows the log-linearized solution for the log price-dividend ratio (dark grey area) as well
as the correct solution (transparent gray area) as a function of the states xt and σ2

t . Parameters:
δ = 0.9989, µ = 0.0015, σ̄ = 0.0072, φx = 0.038, γ = 10, ψ = 1.5, µd = 0.0015,Φ = 2.5, φd =
5.96, φd,c = 2.6.

Yaron (2004) (BY), Bansal, Kiku, and Yaron (2012) (BKY), and Schorfheide, Song, and

Yaron (2016). For the estimation study of Schorfheide, Song, and Yaron (2016), we show the

median estimates (SSY1) as well as the 95% estimates (SSY2) to demonstrates the range of

parameters and hence errors, that are included within the estimation procedure. We observe

that the parameters used in the study—except for the study of BY—are in the area where

approximation errors are large and significant. For example in the study of Bansal, Kiku,

and Yaron (2012) the volatility of the log price-dividend ratio is overestimated by more than

25%.3

While Figure 2 shows errors in the moments of the monthly log price-dividend ratio,

asset pricing models like the kinds of Bansal and Yaron (2004) or Bansal, Kiku, and Yaron

(2012) usually try to match annualized market outcomes. Therefore, in Figures 3 and 4 we

show the annualized equity premium and the annual volatility of the log price-dividend ratio,

respectively, obtained by the log-linearized solution as well as the correct solution as a function

of the risk aversion, γ, and the intertemporal elasticity of substitution, ψ, in the first row and

the serial correlations in the long-run risk channel, ρ, and the stochastic volatility channel,

3Note that, except for the study of Bansal, Kiku, and Yaron (2012), the values reported for the errors do not
correspond to the errors in the studies, as the authors use different calibrations for the other model parameters.
The exercise rather serves to demonstrate the potential errors introduces when using log-linearization to solve
highly persistent models. A full evaluation of the different studies is conducted in Section 4.
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Figure 2: Errors in the Monthly Log Price-Dividend Ratio in the Long-Run Risk Model
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The graph shows the numerical errors in the monthly log price-dividend ratio introduced by the
log-linearization. The left panel shows the relative errors in the unconditional mean of the log price-
dividend ratio for different values for the persistences of long-run risk ρ and stochastic volatility
ν. The right panel shows the corresponding errors in the unconditional standard deviation of the
log price-dividend ratio. Parameters: δ = 0.9989, µ = 0.0015, σ̄ = 0.0072, φx = 0.038, γ = 10, ψ =
1.5, µd = 0.0015,Φ = 2.5, φd = 5.96, φd,c = 2.6. It also shows the errors for the persistence parameters
used in the studies of Bansal and Yaron (2004) (BY), Bansal, Kiku, and Yaron (2012) (BKY), and
Schorfheide, Song, and Yaron (2016) for their median parameter estimates (SSY1) and their 95%
estimates (SSY2). (See Table 1 for all the parameters used in the studies.)
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ν, in the second row. As mentioned before, a key property of the long-run risk model is the

preference for the early resolution of risks, which is obtained by setting γ > 1
ψ

. Hence, either

increasing γ or ψ implies a stronger preference for the early resolution of risks and hence

amplifies the model predictions.

Figure 3: Sensitivity of the Approximation Errors for the Annualized Equity Premium in the
Long-Run Risks Model
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The figure shows the annual equity premium obtained by the log-linearization (dashed line) as well
as the correct solution (solid line) as a function of the model parameters γ, ψ, ρ and ν, respectively,
assuming that the other parameters are kept constant. In each panel, the dotted vertical line denotes
the estimate used in original calibration. Parameters: δ = 0.9989, µ = 0.0015, σ̄ = 0.0072, φx =
0.038, γ = 10, ψ = 1.5, µd = 0.0015,Φ = 2.5, φd = 5.96, φd,c = 2.6.

We find that, for this particular calibration, for a risk aversion of approximately 5, the log-

linearized solution basically coincides with the solution from the projection approach, which

suggests that a linear solution gives a reasonable approximation to the model. However, for

this calibration also the implied model moments collapse with an equity premium below 1%

and a sharp decrease in the volatility of the log price-dividend ratio. When we increase the

risk aversion, the errors in the equity premium and the volatility of the log price-dividend ratio

increase significantly, with a large overestimation of both quantities. Furthermore, in line with

the previous results, the accuracy depends highly on the persistence of the processes for both,
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Figure 4: Sensitivity of the Approximation Errors for the Annual Volatility of the Price-
Dividend Ratio in the Long-Run Risks Model
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The figure shows the annual volatility of the log price-dividend ratio obtained by the log-linearization
(dashed line) as well as the correct solution (solid line) as a function of the model parameters γ, ψ, ρ
and ν, respectively, assuming that the other parameters are kept constant. In each panel, the
dotted vertical line denotes the estimate used in original calibration. Parameters: δ = 0.9989, µ =
0.0015, σ̄ = 0.0072, φx = 0.038, γ = 10, ψ = 1.5, µd = 0.0015,Φ = 2.5, φd = 5.96, φd,c = 2.6.
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the long-run risk and the stochastic volatility. We observe that even very small changes can

dramatically increase approximation errors. For example, in the original calibration with a

persistence in the long-run risk of ρ = 0.975 the overestimation of the equity premium is about

100 basis points (vertical dotted line). By slightly increasing ρ to 0.98, however, the difference

doubles with an overestimation of 200 basis points. For the persistence in the stochastic

volatility, ν, even a change of 0.0005, from 0.999 to 0.9995, increases the overestimation to

200 basis points. The figures also show that lowering the persistence parameters significantly

decreases approximation errors. For example for ν = 0.99 the approximation error becomes

close to zero. However, for this calibration also the implied model moments collapse. Hence,

as the model requires highly persistent state processes as well as a large degree of risk aversion

and an intertemporal elasticity of substitution exceeding one, nonlinear dynamics in the model

are present and strong. This model feature, in turn, renders the use of log-linearization a poor

solution method for solving the model since it implies large approximation errors and even

tiny changes in the model parameters can strongly affect these errors.

The log-linearization approach is also appealing for its apparent ability to draw qualitative

economic conclusions. For example, in the context of the long-run risk model, the approximate

closed-form solutions serve as a powerful tool to analyze qualitative dependencies of model

inputs and outputs (see Bansal and Yaron (2004)). But, as we demonstrate next, these

clear-cut model predictions can be highly misleading. Bansal and Yaron (2004) write that

“because of our assumption of a constant σ, the conditional risk premium on the market

portfolio is constant, and so is its conditional volatility. Hence, the ratio of the two, namely

the Sharpe ratio, is also constant. In order to address issues that pertain to time-varying

risk premia and predictability of risk premia, we augment our model in the next section and

introduce time-varying economic uncertainty.” This conclusion that risk premia for the long-

run consumption risk channel are constant is a pure artifact of the log-linearized solution. The

correct solution reveals that, on the contrary, risk premia show considerable time variation

and move, compared to the empirical results in Fama and French (1989) and Ju and Miao

(2012), in the wrong direction.

3.2 Qualitative Model Predictions

Part of the appeal of log-linearization is that the approximate closed form seemingly lends

itself to tractable analysis of the economic implications of a model. For example, Bansal and

Yaron (2004) show that the time-t expected risk premium Et(r
m
t+1− r

f
t+1) in the long-run risk

model (7) with constant volatility (σt = σ̄ ∀ t) is given by

Et(r
m
t+1 − r

f
t+1) = (βm,eλm,e + βm,νλm,ν)σ̄

2 − 0.5 vart(rm,t), (8)
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with4

βm,e = [κm,1(Φ− 1

ψ
)

φx
1− κm,1ρ

], βm,ν = φd,c, λm,e = (1− θ)(κw,1(1− 1

ψ
)

φx
1− κw,1ρ

)

λm,ν = γ, vart(rm,t) = [β2
m,e + φ2

d + φ2
d,c]σ̄

2.

This expression has a simple economic consequence: the risk premium is constant across the

exogenous states of nature, since all expressions are independent of xt. This fact, in turn,

implies that long-run risk alone cannot generate a time-varying risk premia.

We show that this conclusion arises solely from neglecting nonlinear effects. Figure 5

displays the expected risk premium as a function of the state xt. Results are shown for

three different values of the persistence parameter ρ. The dashed lines show the (constant)

premia predicted by the log-linearization. Solid lines show the correct solutions obtained by

the projection approach. We observe that once nonlinear effects are included, the risk premia

does indeed depend on the state, xt, and the dependence becomes stronger as ρ becomes larger.

Hence, once the nonlinear dynamics of the model are correctly accounted for, risk premia can

be seen to vary over time. The conclusion of a constant premium is thus an artifact of the

log-linearization. Even more surprisingly, we observe that expected risk premia are high for

large values of xt and low for small values of xt, that is, they are procyclical. This result is

exactly the opposite of the empirical results documented by Fama and French (1989)5 Ju and

Miao (2012, Table I.C.) confirm several stylized facts mentioned by Fama and French (1989)

and find a negative correlation between consumption growth and 1-year excess returns.

In sum, the log-linearization not only introduces significant quantitative errors to the

model outcomes, but it even leads to qualitatively wrong model predictions that potentially

mislead researchers. For example, Bansal and Yaron (2004) explain that they introduce time-

varying exogenous uncertainty to circumvent the otherwise zero time variation and perfect

predictability of risk premia. The correct solution reveals that risk premia vary over time

even in a model with only long-run risk.

4 Higher-Order Dynamics in Six Asset Pricing Models

In this section we compare the implications of using log-linearized solutions for the prediction

of economically relevant quantities in asset pricing models. Specifically, we perform this

4Here κm,1 and κw,1 are the linearization coefficients, see Appendix A.1.
5Fama and French (1989) find that expected excess returns are “inversely related to business conditions.” They
offer consumption smoothing as the main reason in favor of their findings. When incomes are high, households
both consume more and save more; and higher savings lead to lower expected returns. When incomes are low,
households reduce both consumption and savings; and lower savings are expected to result in higher returns.
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Figure 5: Expected Risk Premia in the Long-Run Risk Model
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(b) ρ = 0.985
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(c) ρ = 0.99
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The graphs show the conditional expected risk premium Et(r
m
t+1− r

f
t+1) as a function of the state xt

in the model of Bansal and Yaron (2004). The dashed line shows the constant log-linearized solution
and the solid line shows the correct solution. Parameters are from Bansal and Yaron (2004) and
given by δ = 0.998, µ = 0.0015, σt = σ̄ = 0.0078 ∀ t, φx = 0.044, γ = 10, ψ = 1.5, µd = 0.0015,Φ =
3, φd = 4.5, φd,c = 0.
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comparison for six different studies from the recent asset pricing literature on long-run risk.

The six models are the original long-run risk model of Bansal and Yaron (2004), the re-

calibrated version of the model by Bansal, Kiku, and Yaron (2012), the extensive estimation

study of Schorfheide, Song, and Yaron (2016), the volatility-of-volatility model of Bollerslev,

Xu, and Zhou (2015), and the two studies of real and nominal bonds of Koijen, Lustig,

Van Nieuwerburgh, and Verdelhan (2010) and Bansal and Shaliastovich (2013). Common to

all these studies is the methodological attempt to match several key statistics on financial

markets such as the high equity premium, a low risk-free rate, volatile stock prices, real and

nominal bond prices, the volatility premium or patterns in return predictability. Obviously,

in order to determine a reasonable calibration of the model it is essential to solve the model

without significant errors in the approximation of those key statistics since such errors could

potentially bias the calibration or estimation.

In the previous section we have seen that depending on the persistence of the state pro-

cesses, the log-linearization approach produces sizable approximation errors in the long-run

risk model of Bansal and Yaron (2004). Now we demonstrate that using log-linearized solu-

tions has a strong impact on the predictions of these six asset pricing models.

4.1 Six Model Specifications

The six studies share the same basic model setup for log consumption and dividend growth

as the model by Bansal and Yaron (2004).

∆ct+1 = µc + xt + φcσc,tηc,t+1

xt+1 = ρxt + φxσx,tηx,t+1

∆dt+1 = µd + Φxt + φdσd,tηd,t+1 + φd,cσc,tηc,t+1

ηc,t+1, ηx,t+1, ηd,t+1 ∼ i.i.d. N(0, 1).

(9)

In the following, we describe how the models differ in regard to the detailed specifications.

The studies of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012)

Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) assume that there is a single

volatility process that drives uncertainty in the economy, σc,t = σx,t = σd,t = σt with

σ2
t+1 = σ̄2(1− ν) + νσ2

t + φσωt+1 ωt+1 ∼ i.i.d. N(0, 1). (10)

Recall that this is the model setup that we have employed above to examine the approximation

errors of the log-linearized solution, see also (7).
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The estimation study of Schorfheide, Song, and Yaron (2016)

Schorfheide, Song, and Yaron (2016) relax the assumption of a single volatility process and

allow for three separate volatility processes for consumption, dividends, and long-run risks.6

The two volatility processes for consumption growth and the long-run risk factor are required

to account for the weak correlation between the risk-free rate and consumption growth. As

shown in their estimation study, the volatility dynamics of dividends differ significantly from

the other two processes. Therefore, a third process is required to model the stochastic volatility

of dividends. Schorfheide, Song, and Yaron (2016) assume that the logarithm of the volatility

process is normal to ensure that the standard deviation of the shocks remains positive,

σi,t = ϕiσ̄ exp(hi,t)

hi,t+1 = νihi,t + σhi

√
1− ν2

i ωi,t+1, i ∈ {c, x, d}

ωi,t+1 ∼ i.i.d. N(0, 1).

(11)

In order to derive analytical solutions for the log-linearization coefficients that are needed for

their estimation study, Schorfheide, Song, and Yaron (2016) use a linear approximation of the

volatility dynamics that follows Gaussian dynamics,

σ2
i,t ≈ 2(ϕiσ̄)2hi,t + (ϕiσ̄)2 (12)

which in turn yields

σ2
i,t+1 = σ̄2

i (1− νi) + νiσ
2
i,t + φσiωi,t+1

with φσi = 2σ̄2
i σhi

√
1− ν2

i and σ̄i = ϕiσ̄.7

The estimation study of Bollerslev, Xu, and Zhou (2015)

The fourth model stems from the estimation study of Bollerslev, Xu, and Zhou (2015). In a

standard long-run risk model with stochastic volatility, many long-standing puzzling behaviors

on financial markets such as a high equity risk premium together with a low risk-free rate,

volatile price dynamics, or the predictability of stock returns can be explained. However, the

most recent research has gone one step further by showing that the standard model is not able

to generate a time-varying variance risk premium that has predictive power for stock returns.

Fortunately, the literature has also suggested a possible solution for this puzzle by adding

6Schorfheide, Song, and Yaron (2016) also introduce a shock to the time rate of preferences. Since in this study
we are interested in the influence of higher-order effects introduced by the highly persistent state processes,
we omit the preference shock. For this purpose we use the setting ρλ = σλ = 0 in their model specification.

7We proceed in the same way as Schorfheide, Song, and Yaron (2016) by solving the model using the linearized
version of the volatility dynamics to obtain quasi-closed-form solutions for the linearization coefficients; for the
inference of moments we use the original specification to ensure that the volatility of the model stays positive.
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time-varying volatility of volatility (vol-of-vol) to the model, see, for example, Bollerslev,

Tauchen, and Zhou (2009), Tauchen (2011), Drechsler and Yaron (2011), Bollerslev, Xu, and

Zhou (2015) or Dew-Becker, Giglio, Le, and Rodriguez (2015). Bollerslev, Xu, and Zhou

(2015) consider a slight variation of the long-run risk factor compared to the baseline model

(7) where the vol-of-vol factor qt drives the volatility,8

σ2
t+1 = σ̄2(1− ν) + νσ2

t + φσ
√
qtωσ,t+1

qt+1 = µq(1− ρq) + ρqqt + φq
√
qtωq,t+1

xt+1 = ρxt + φx
√
qtηx,t+1

ηx,t+1, ωσ,t+1, ωq,t+1 ∼ i.i.d. N(0, 1).

(13)

The vol-of-vol factor qt follows a square root process. This process specification has also been

used, for example, in Tauchen (2011) or the seminal work on volatility of volatility in this

model class by Bollerslev, Tauchen, and Zhou (2009). However, a square root process poses

a new challenge to the model, as the process can become complex-valued when qt becomes

negative. This problem is usually circumvented by either assuming a reflecting boundary

at zero or by truncation to ensure positivity. However, for a simple computation of model

solutions, the assumption of a non-truncated distribution for the log-linearization is commonly

used. (For example Bansal and Yaron (2004) use the non-truncated distribution to compute

the log-linearized solutions but simply replace negative realizations in the simulations of the

stochastic volatility process with small positive numbers. This approach has been used by

many subsequent papers in the long-run risk literature.) In Appendix C we analyze in more

detail how the square-root process specification and the issue of complexity affects the log-

linearized solution. In particular we find that for the calibration in Bollerslev, Tauchen,

and Zhou (2009) equilibrium model solutions are not real numbers but instead are complex

numbers. For the parameters in Bollerslev, Xu, and Zhou (2015) the process is centered well

above zero and the standard log-linearization technique yields a real solution. Therefore, we

concentrate on this calibration in the main text.

The model of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010)

The fifth study under consideration is the study of real and nominal bonds and the size of the

martingale component in the stochastic discount factor, by Koijen, Lustig, Van Nieuwerburgh,

and Verdelhan (2010). They add inflation, πt, with a stochastic growth rate, xπ,t, to the

8Drechsler and Yaron (2011) use a similar model where the volatility of xt is driven by σt instead of qt; see their
2007 working paper version. However, Bollerslev, Xu, and Zhou (2015) provide evidence for a better empirical
match for their model specification. The estimation study of Bollerslev, Xu, and Zhou (2015) also models
cross-correlations between the shocks of the state processes. For the analysis of the nonlinear dynamics of the
model, we keep the model as parsimonious as possible and drop the cross-correlations.
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standard model (7) and price nominal bonds.9

πt+1 = µπ + xπ,t + φπ,cσc,tηc,t+1 + φπ,xσx,tηx,t+1 + σπηπ,t+1

xπ,t+1 = µxπ(1− ρπ) + ρπxπ,t + ρπ,xxt

+ φxπ ,cσc,tηc,t+1 + φxπ ,xσx,tηx,t+1 + σxπηπ,t+1

ηπ,t+1 ∼ i.i.d. N(0, 1).

(14)

Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) assume that there are two stochastic

volatility processes for consumption growth and the long-run risk component (σd,t = σc,t),

σ2
i,t+1 = σ̄2

i (1− νi) + νiσ
2
i,t + φσiωi,t+1, i ∈ {c, x},

and that inflation, the stochastic growth rate of inflation, and dividends have loadings on

these two volatility channels.

The model of Bansal and Shaliastovich (2013)

The sixth and last study under consideration is the subsequent work on nominal and real bonds

of Bansal and Shaliastovich (2013). The setup is very similar to Koijen, Lustig, Van Nieuwer-

burgh, and Verdelhan (2010), but they assume that xπ,t enters the real stochastic growth rate

of consumption, xt, to model the non-neutral effect of expected inflation on future expected

growth,

πt+1 = µπ + xπ,t + σπηπ,t+1

xπ,t+1 = ρπxπ,t + σπ,teπ,t+1

xt+1 = ρxt + ρxπxπ,t + σxt ex,t+1

ηπ,t+1, eπ,t+1, ex,t+1 ∼ i.i.d. N(0, 1).

(15)

Also, they assume that there is a separate AR(1) process for the volatility of the stochastic

growth rate of inflation, σπ,t, and that the volatility of consumption growth is constant (σc,t =

σ̄c). The process for σ2
i,t+1 is

σ2
i,t+1 = σ̄2

i (1− νi) + νiσ
2
i,t + φσiωi,t+1, i ∈ {x, π}.

As the focus of Bansal and Shaliastovich (2013) is the bond market, they do not include a

process for dividends.

Table 1 lists the parameter values of the six studies.10 While the parameters in Bansal

9The model setup is the same as in the 2008 version of Bansal and Shaliastovich (2013). In the paper they
write π̄t for xπ,t.

10For the model of Bollerslev, Xu, and Zhou (2015), we use the parameter estimates in the study for ρ, ν and
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Table 1: Model Parameters

BY (2004) BKY (2012) SSY (2014) BS (2013) KLVV (2010) BXZ (2015)

Preferences
γ 10 10 8.598 20.90 8 10
ψ 1.5 1.5 1.935 1.81 1.5 1.5
δ 0.998 0.9989 0.999 0.994 0.9987 0.999

Consumption

µc 0.0015 0.0015 0.0016 0.0049 0.0016 0.0015
φc 1 1 1 1 1 0.00546
ρ 0.979 0.975 0.9872 (0.9995) 0.81 0.991 0.988
φx 0.044 0.038 1 1 1 3.12e–4
ρxπ – – – –0.047 0 –

Volatility

νc 0.987 0.999 0.9914 (0.9958) 0 0.85 0.64
νx – – 0.9943 (0.9988) 0.994 0.996 –
νd – – 0.9665 (0.9841) – - –
νπ – – – 0.979 - –
φσc 2.3e–6 2.8e–6 1.9e–6 0 1.15e–6 1
φσx – – 6.9e–11 1.85e–7 4.19e–9 –
φσd – – 1.0e–4 – - –
φσπ – – – 1.81e–7 - –
σ̄c 0.0078 0.0072 0.0032 4.6e–3 0.004 1
σ̄x – – 2.34e–5 1.09e–3 1.60e–5 –
σ̄d – – 0.0161 – - –
σ̄π – – – 1.11e–3 - –

Dividends

µd 0.0015 0.0015 0.001 – 0.0015 0.0015
Φ 3.0 2.5 4.147 – 1.5 3.0
φd 4.5 5.96 1 – 6 0.0246
φd,c 0 2.6 1.544 – 0.6 0

Inflation
µπ – – – 0.0090 0 –
µxπ – – – 0 0.0032 –
σπ – – – 0.0055 0.0035 –
σxπ – – – 0 4e–6 –
φπ,c – – – 0 0 –
φπ,x – – – 0 -2 –
φxπ,c – – – 0 0 –
φxπ,x – – – 0 -1 –
ρπ – – – 0.988 0.83 –
ρπ,x – – – 0 -0.35 –

Vol–of–Vol
µq – – – – 0.211
φq – – – – 0.632
ρq – – – – 0.46

The table reports parameter values for the studies of Bansal and Yaron (2004) (values taken from
Table 4 on page 1495), Bansal, Kiku, and Yaron (2012) (values taken from Table 1 on page 193),
Schorfheide, Song, and Yaron (2016) (the median estimates from Table 5 on page 25 are shown
as well as the 95% for the persistence parameters in parenthesis), Bansal and Shaliastovich (2013)
(values taken from Table 4 on page 22), Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010)
(values taken from Table 1 on page 19 in the online appendix), and Bollerslev, Xu, and Zhou (2015)
(values are provided in Section 3.3 starting on page 464).
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and Yaron (2004) and Bansal, Kiku, and Yaron (2012) are calibrated, Schorfheide, Song,

and Yaron (2016), Bollerslev, Xu, and Zhou (2015) and Bansal and Shaliastovich (2013)

estimate the model parameters to match annual financial market characteristics. In the first

five models the investor has a monthly decision interval, while Bansal and Shaliastovich (2013)

use quarterly intervals. This distinction explains, for example, the considerable difference in

the level parameters. The main difference between the sets of parameters in the original Bansal

and Yaron (2004) calibration and the new calibration of Bansal, Kiku, and Yaron (2012) is

that in the new calibration the persistence of the volatility shock, νc, is higher and that shocks

to dividends are correlated with short-run shocks to consumption growth (φd,c = 2.6 in the

new calibration compared to φd,c = 0 in the original calibration). These changes increase

the influence of the volatility channel compared to the long-run risks channel of the model.

The adjustment is needed to get rid of some implications of the original calibration that are

inconsistent with the data. In particular, as, for example, Zhou and Zhu (2015) or Beeler and

Campbell (2012) point out for the original 2004 calibration, the log price-dividend ratio has

predictive power for future consumption growth, while this relationship is not present in the

data. By increasing the influence of the volatility channel, this predictability vanishes.

The extensive estimation study of Schorfheide, Song, and Yaron (2016) provides further

evidence for highly persistent state processes and hence, potentially, large nonlinear dynamics.

It reports median estimates for the persistence of long-run risks and for stochastic volatility

of consumption, long-run risks, and dividends of 0.9872 and of 0.9914, 0.9943, and 0.9665,

respectively. These are the median estimates from the Bayesian estimation study. For the 95%

estimates they report values as large as 0.9995, 0.9958, 0.9988, and 0.9841 (values are provided

in parentheses in Table 1). As equilibrium outcomes for those parameters are evaluated

within the estimation procedure, we also provide the results for the 95% quantile estimates of

the persistence parameters. Unfortunately, we were not able to compute results for the full

set of 95% quantile parameters using also the higher estimates for the other cash flow and

preference parameters. For extreme model parameters it can be the case that there exists

no solution for the asset pricing model (see Pohl, Schmedders, and Wilms (2015)). More

surprisingly, in those cases the log-linearized solution may still deliver a well-behaved, though

apparently nonsensical, solution due to its systematic underestimation of the price-dividend

ratio, see Section 3.1. Hence, the existence of solutions for the full range of parameters used in

Schorfheide, Song, and Yaron (2016) is not necessarily satisfied. Since in the present study we

are rather interested in the influence of higher-order dynamics than the existence of solutions,

we focus on the parameter range where the model solutions are still well behaved. This is a

rather conservative approach, as approximation errors increase the more extreme the values

ρq. As they do not report values for the remaining parameters, we use the calibration as reported in the 2007
working paper version of Drechsler and Yaron (2011).
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in the calibration, recall Figures 3 and 4.

4.2 Moments and Errors

Table 2 reports annualized summary statistics and numerical errors for the five models that

include a dividend process. The reported financial statistics are the mean and standard

deviation of the price-dividend ratio, the averages of the market excess return and the risk-

free return, and the volatilities of the excess return and the risk-free rate.11 The table reports

these statistics for the log-linearization solutions and the correct solutions obtained by the

projection approach; in addition, it states the relative errors induced by the linearization.

We observe that the log-linearization does a reasonably good job for the parameters in

Bansal and Yaron (2004) with a maximal error of 1.83% for the equity premium. For the

parameter set of Bansal, Kiku, and Yaron (2012) the results are considerably worse. The log-

linearization overstates the equity premium by more than 100 basis points. Also, it predicts

a volatility of the log price-dividend ratio of 0.2931 instead of 0.2402; these values correspond

to relative errors of about 22%. Simply put, the log-linearization produces a large equity

premium and volatile log price-dividend ratio even though the true model predictions seem

to be significantly smaller.

For the model of Schorfheide, Song, and Yaron (2016), we find that approximation errors

are in a reasonable range for the median parameter estimates (results (1)). However, using

the 95% estimates for the persistence parameters (results (2)), approximation errors increase

dramatically with an overestimation of the equity premium of more than 75%. As we have

shown in Section 3.1, it is the interplay of the highly persistent state processes that introduces

the substantial nonlinearities to the model solutions; as a result, even a slight increase in the

persistence parameter of the long-run risk channel can dramatically increase the approximation

errors of the log-linearized solution. Hence, using the log-linearized solution to estimate models

featuring highly persistent state processes can potentially introduce a large bias to the implied

model moments, which may bias estimation results for the model parameters.

In contrast, the model of Bollerslev, Xu, and Zhou (2015) only features a persistent long-

run risk process ρ = 0.988 while the persistence parameters of the stochastic volatility and

11We solve the model for the return of the wealth portfolio, zw, the market portfolio, zm, and the risk-free rate,
zrf . To compute the annualized moments, we simulate 1,000,000 years of artificial data. Beeler and Campbell
(2012) provide a detailed description of how to compute the annual moments from the monthly observations.
A significant issue in the model is that the variance process σ2

t can, in fact, become negative. To overcome
this problem, Bansal and Yaron (2004) replace all negative realizations with very small but positive values.
We proceed in the same way for both methods to achieve consistent results. For the approximation interval
of the projection methods, we choose the interval to be slightly larger than the maximum observation range
of the long simulations. As in the previous section, we increase the polynomial degree until the coefficients
of the highest-order polynomial are close to zero. We double-check the accuracy of the solution by increasing
the approximation interval until the solutions do not change.
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Table 2: Annualized Moments and Errors

E (pt − dt) σ (pt − dt) E
(
rmt − r

f
t

)
E
(
rft

)
σ (rmt ) σ

(
rft

)
Bansal and Yaron (2004)

Log-Lin 3.0105 0.1969 4.16 2.58 16.85 1.31
Correct 3.0379 0.1946 4.09 2.58 16.76 1.31
Error 0.90 % 1.17% 1.83% 0.06% 0.54% 0.08%

Bansal, Kiku, and Yaron (2012)

Log-Lin 3.0414 0.2931 5.56 0.98 21.45 1.29
Projection 3.2370 0.2402 4.71 1.09 21.17 1.27
Error 6.04% 22.02% 18.00% 10.39% 1.32% 1.46%

Schorfheide, Song, and Yaron (2016) (1)

Log-Lin 3.2853 0.2704 3.21 1.73 15.06 0.56
Correct 3.3580 0.2557 3.06 1.73 14.50 0.56
Error 2.17% 5.78 % 5.05% 0.12% 3.86% 0.17%

Schorfheide, Song, and Yaron (2016) (2)

Log-Lin 2.5943 0.8748 8.56 -0.00 14.42 0.91
Correct 3.3365 0.7841 4.85 0.92 12.98 0.54
Error 22.25% 11.57 % 76.47% 102.95% 11.09% 69.04%

Bollerslev, Xu, and Zhou (2015)

Log-Lin 2.7479 0.2737 7.07 1.16 16.41 1.54
Correct 2.8222 0.2835 6.78 1.17 16.05 1.54
Error 2.63% 3.56% 4.36% 0.72% 2.28% 0.37%

Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010)

Log-Lin 3.1137 0.1808 4.94 1.38 11.61 1.17
Correct 3.3514 0.1479 3.64 1.38 10.63 1.14
Error 7.09% 22.31% 35.62% 18.73% 9.19% 2.64%

The table shows the mean and the standard deviation of the annualized log price-dividend ratio, the
annualized market over the risk-free return and the risk-free return. Results obtained by the log-
linearization and the correct solution as well as the relative error of the log-linearization are shown
for the models of Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012), Schorfheide, Song, and
Yaron (2016) (Set (1) reports the results for the median parameter estimates reported and set (2)
shows the results for the 95% estimates for the persistences of the state processes), Bollerslev, Xu,
and Zhou (2015), and Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010). All returns and
volatilities are shown in percent, so a value of 1.5 is a 1.5% annualized figure.
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vol-of-vol factors are considerably lower (ν = 0.64 and ρq = 0.46). Consequently, the approx-

imation errors are rather small with a maximum error of 4.36% for the equity premium. This

result is not surprising as the authors mention in their estimation that the stochastic volatility

and the vol-of-vol factors only influence the variance premium and have a negligible influence

on the price and return dynamics. And so, as expected, we obtain almost the same results

when setting the volatility of the two factors to zero (φσ = φq = 0).

For the study of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) we also find

large errors with a maximum error in the equity premium of 35.62% and an overestimation of

the premium by about 130 basis points. Their calibration features a highly persistent long-run

risk process, ρ = 0.991, and highly persistent stochastic volatility of long-run risk, νx = 0.996,

which introduce the large nonlinearities to the model. Koijen, Lustig, Van Nieuwerburgh, and

Verdelhan (2010) not only analyze equity markets but also price real and nominal bonds to

analyze the martingale component in the stochastic discount factor. In Figure 6 we show the

real and nominal yield curve for their model.

Figure 6: Real and Nominal Yield Curve in the Model of Koijen, Lustig, Van Nieuwerburgh,
and Verdelhan (2010)
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(b) Nominal YC
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(c) Nominal YC (1-20)
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The graph shows the yield curves for real and nominal bonds in the model of Koijen, Lustig,
Van Nieuwerburgh, and Verdelhan (2010). Panel (c) shows the nominal yield curve only for 1-20
months bonds (extract of Panel (b)).

We find that the differences between the yield curve obtained by linearizing the model and

solving it accurately using the projection approach are small in absolute values. However, the

nominal yield curve from the linearized model differs in its shape. While the true nominal

yield curve is downwards sloping in the short run and upwards sloping in the long run (see

Panel (c)), this pattern does not occur when using log-linearization. So linearizing the model

potentially affects the shape of the real curve. The work of Bansal and Shaliastovich (2013)

provides further insights to this finding. In Figure 7 we show the nominal yield curve in their

model.

Panel (a) shows the yield curve for the parameters in the original study. We observe that
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Figure 7: Nominal Yield Curve in the Model of Bansal and Shaliastovich (2013)
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(c) ρ = 0.975
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The graph shows the yield curve for nominal bonds in the model of Bansal and Shaliastovich (2013).

the difference between the log-linearized solution and the projection solution is negligible with

very small errors and also the shape of the yield curve is correct. As Bansal and Shaliastovich

(2013) use bond data to estimate the model, they find a very low persistence in the long-run

risk component with ρ = 0.81. This comparably low amount of persistence makes it difficult

to match key moments for equity markets. For example, the annualized equity premium for

their parameter estimates is only 1.85%.12 Therefore we increase ρ in panels (b) and (c) to 0.9

and 0.975 correspondingly to increase the premium paid for long-run consumption risk.13 We

find that the errors in the yield curve grow significantly as ρ approaches the value 1. In fact,

for ρ = 0.975 the log-linearization predicts a downward sloping nominal yield curve (dashed

line) even though the model actually produces an upward sloping curve (solid line). Hence,

relying on the log-linearization to solve the model can lead to incorrect conclusions not only

about the magnitude of bond yields but even about the shape of the yield curve.

In sum, we observe that while the log-linearization approach produces satisfactory solu-

tions for an analysis of the models in Bansal and Yaron (2004) and Bollerslev, Xu, and Zhou

(2015), the method performs rather poorly for the models in Bansal, Kiku, and Yaron (2012),

Schorfheide, Song, and Yaron (2016), and Koijen, Lustig, Van Nieuwerburgh, and Verdel-

han (2010). For these latter models, the poor approximations have a strong effect on the

model predictions for key financial statistics. Our observations motivate the next step in our

analysis. We want to understand which model characteristics affect the performance of the

log-linearization approach; simply put, when can we trust the results of such an approach and

12The published version of Bansal and Shaliastovich (2013) does not provide a process for dividend growth. For
the purposes of comparison, we consider the specification that appears in the 2007 working paper of their
paper. The process for ∆dt+1 is the same as in Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010)
(see equation 14). As the 2007 working paper assumes a monthly decision interval and the published version
from 2013 has a quarterly interval, we adjust the volatility of dividends φd to match the volatility of dividend
growth in the data of approximately 11% annualized.

13For ρ = 0.9 we obtain an equity premium of 4.72% and for ρ = 0.975 a premium of 11.14%.
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when can we not? And related to this question, we also want to understand which properties

of the exact solution lead to a poor performance of a linear method; that is, what exactly goes

wrong with the linearized solution?

4.3 The Interplay of the State Processes

The log-linearization approach assumes that over the state space of the model the first deriva-

tives of the solution are approximately constant and the second derivatives are approximately

zero. We now show numerically that this assumption fails to hold for models with more than

one highly persistent state process. We demonstrate that for solutions of such models the

second derivatives can be very large and so the interplay of the state processes leads to highly

nonlinear solutions; therefore, higher-order effects matter for the predictions of such models.

The sizable deviations from linearity in the models’ solutions is the key reason for the failure

of the log-linearization approach.

For the purpose of making these points, we concentrate on the two fundamental fac-

tors of long-run risk and stochastic volatility (see equation (7)). We use the calibration of

Bansal, Kiku, and Yaron (2012). Figure 8 shows isolines for the absolute errors in the log

wealth-consumption ratio (left panel) and the log price-dividend ratio (right panel) of the

log-linearization as a function of the states x and σ2 (black solid lines). For example along a

line marked with ‘0.1’, the absolute error of the log-linearization is 0.1. The figure also shows

the regions into which 50%, 90%, and 100% of the observations fall. These regions show the

subsets of the state space that the model actually visits and in which regions it “spends most

of its time” during long simulations. Corresponding errors for the first derivatives with respect

to the state variables are shown in Figure 9 and for the second derivative in Figure 10.

We find that the errors in the log wealth-consumption are rather small, with maximum

values of about 0.16 within the observation range. For the log price-dividend ratio, the errors

are also small in the area close to the long-run mean of the processes, but they increase

significantly with σ2 and reach values of up to 0.3 in the 90% observation range, see Figure 8.

In other words, the price-dividend ratio obtained by the log-linearization is off by a factor of

e0.3 ≈ 1.35 for almost 10% of the time and can be off by a factor larger than 2 for extreme

values reached in the simulations.

The errors in the first derivatives show similar patterns. Again the errors in the derivatives

of the price-dividend ratio are significantly larger than the errors in the derivatives of the

wealth-consumption ratio and the errors increase monotonically with σ2 for the BKY (2012)

calibration. We observe in Figure 9 that the errors in the derivatives with respect to σ2 are

especially large, with errors as large as 3000 for the second derivative of the price-dividend

ratio. As mentioned above, the main purpose of the BKY (2012) calibration is to amplify the
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Figure 8: Approximation Errors in the log Wealth-Consumption and log Price-Dividend Ratio
of the Log-Linearization
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The graph shows isolines for the absolute errors in the log wealth-consumption ratio (left panel) and
the log price-dividend ratio (right panel) of the log-linearization as a function of the states x and σ2

(black solid lines). The (grey) dotted, dashed and solid lines mark the respective areas into which
100%, 90% and 50% of the observations from 106 simulated data points fall. The parameter values
are from the calibration of Bansal, Kiku, and Yaron (2012), see Table 1.
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Figure 9: Approximation Errors in the First Derivatives of the log Wealth-Consumption and
log Price-Dividend Ratio of the Log-Linearization
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The graph shows isolines for the absolute errors in the first derivative of the log wealth-consumption
ratio (left panel) and the log price-dividend ratio (right panel) with respect to the states x and σ2 of
the log-linearization (black solid lines). The (grey) dotted, dashed and solid lines mark the respective
areas into which 100%, 90% and 50% of the observations from 106 simulated data points fall. The
parameter values are from the calibration of Bansal, Kiku, and Yaron (2012), see Table 1.
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role of the stochastic volatility channel by increasing its persistence. But as demonstrated in

the figures, this effect introduces large nonlinearities to the model that cannot be captured

by the log-linearization and hence causes large approximation errors. Figure 10 shows that

the second derivatives in the model are substantially different from zero (which is the value

assumed by the log-linearization) and they are especially large (more than 105!) for the

second derivative with respect to σ2, which is another reason for the large approximation

errors reported in Table 2.

In general, the figures show that the stochastic volatility channel highly influences the

nonlinear aspects of the model. But is it only the stochastic volatility that matters? Caldara,

Fernandez-Villaverde, Rubio-Ramirez, and Yao (2012) analyze the accuracy of several solution

methods in a neoclassical growth model with Epstein-Zin preferences and stochastic volatility.

They report that higher-order approximations are needed to capture the nonlinearities of the

model. Bansal, Kiku, and Yaron (2016) report approximation errors for the long-run risks

model in their estimation study by comparing the results of the log-linearization to the results

obtained by the discretization method of Tauchen and Hussey (1991) (see Table A.1 of their

paper). In their original paper, they use a simplified version of their model that only features

long-run risks (and no stochastic volatility). They find rather small approximation errors. But

in the long-run risk model, there are two sources of nonlinearities: the stochastic volatility

channel and the long-run risk channel. Hence, when solving the model, it is essential to

understand whether and how the interplay of the two components drives the nonlinearities.

To obtain such an understanding, we analyze the approximation errors implied by the

log-linearization for each of the two state variables of the model separately. In particular we

first fix the stochastic volatility to its long-run mean, σt = σ̄2 ∀ t, and secondly, we solve

the model without long-run risk, xt = 0 ∀ t. Table 3 shows the corresponding errors14 in

Table 3: Approximation Errors for Each State of the Long-Run Risks Model Separately

E (wt − ct) σ (wt − ct) E (pt − dt) σ (pt − dt)

State: xt 0.003% 0.024% 0.084% 0.21%
State: σ2

t 0.14% 4.49% 2.62% 7.05%
Both States: 1.05% 12.25% 3.15% 26.90%

The table shows approximation errors in the unconditional mean and standard deviation of the
(monthly) log wealth-consumption and log price-dividend ratio induced by the log-linearization in
the long-run risk model for each of the two state variables xt and σt separately. For the case with
only xt, the state σt is simply set constant at its long-run mean σ̄2 (or equivalently ν = σw = 0).
For the case with only σt, xt is set to 0 (or equivalently ρ = φx = Φ = 0). The parameter values are
from the calibration of Bansal, Kiku, and Yaron (2012), see Table 1.
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Figure 10: Approximation Errors in the Second Derivatives of the log Wealth-Consumption
and Price-Dividend Ratio
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The graph shows isolines for the absolute errors in the second derivative of the log wealth-consumption
ratio (left panel) and the log price-dividend ratio (right panel) with respect to the states x and σ2 of
the log-linearization (black solid lines). The (grey) dotted, dashed and solid lines mark the respective
areas into which 100%, 90% and 50% of the observations from 106 simulated data points fall. The
parameter values are from the calibration of Bansal, Kiku, and Yaron (2012), see Table 1.
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the unconditional mean and standard deviation of the log wealth-consumption and log price-

dividend ratio for the two cases. We find that, in line with the test results from Bansal, Kiku,

and Yaron (2016), for the one-dimensional model with only long-run risks, the approximation

errors are very small with a maximum error of 0.21%. For the second case, without long-run

risks and only stochastic volatility, the errors are slightly larger but still remain below 7.1%.

However, for the full model with long-run risk and stochastic volatility approximation errors

increase dramatically with a maximum error of 26.9% for the volatility of the log price-dividend

ratio. This finding suggests that neither the stochastic volatility alone nor the long-run risks

component alone introduces the nonlinearities in the model; instead it is the simultaneous

presence and interplay of the two features which makes the model so difficult to solve.

5 Conclusion

In this paper we have presented an analysis of higher-order effects in asset pricing models with

long-run risk. We have shown that solutions of models that build on the framework of Bansal

and Yaron (2004) are potentially very nonlinear and that for very persistent exogenous pro-

cesses the approximation errors introduced by the Campbell-Shiller log-linearization method

can be large and economically significant. For example, in the most recent calibration of the

Bansal-Yaron long-run risk model, see Bansal, Kiku, and Yaron (2012), the approximation

errors in the annual volatility of the log price-dividend ratio exceed 22%; similarly, the errors

in the equity premium exceed 75% in the estimation study of Schorfheide, Song, and Yaron

(2016). Models with lower persistence, such as the original Bansal and Yaron (2004) model

or the volatility-of-volatility model of Bollerslev, Xu, and Zhou (2015), have much smaller

approximation errors. The results for nominal bonds in Bansal and Shaliastovich (2013) and

Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) are particularly interesting; for the

high level of persistence necessary to explain the equity premium, the log-linear approximation

can actually produce a downward sloping yield curve, when, on the contrary, the true yield

curve is upward sloping.

In addition to numerical errors, the Campbell-Shiller approach can lead to misleading

economic conclusions. For example, conventional wisdom is that long-run risk cannot generate

time-varying risk premia, and that an additional mechanism such as stochastic volatility is

required. We show that once nonlinear effects are accounted for, long-run risk can generate

sizable time-varying risk premia. Interestingly, the time variation generated by long-run risk

is procyclical—the risk premium is higher when growth is high, and lower when growth is low.

In light of the tremendous impact of long-run risk models on the literature of asset pricing,

14Note that the reported errors in Table 3 are for monthly statistics while the numerical errors in Table 2 are
provided for annualized statistics.
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our results strongly suggest that more sophisticated solution methods, such as projection

methods, should be used for the analysis of asset pricing models with highly persistent state

processes. The solution methods applied to the analysis of these models should be able

to account for the potentially very nonlinear relationships between the endogenous model

quantities and the exogenous state variables.

Appendix

A Computational Methods for Asset Pricing Models

with Recursive Preferences

One of the common approaches to solve asset pricing models is to log-linearize the model

around its steady state. A discussion of log-linearization methods requires careful attention to

several important differences among some well-known approaches. Standard log-linearization

methods as in Judd (1996) or Collard and Juillard (2001) linearize around the deterministic

steady state of the model. In a deterministic model, recursive preferences collapse to the

case of CRRA preferences and hence the risk aversion has no influence (as there is no risk).

But if the risk aversion has significant influence in the stochastic model, linearizing around

the deterministic steady state might not be the best choice. Therefore new techniques have

been developed that linearize around the risky steady state of the model (see, for example,

Juillard (2011), de Groot (2013) or Meyer-Gohde (2014)).15 Another drawback of the stan-

dard log-linearization is that the policies are independent of the volatility of the model (see

Caldara, Fernandez-Villaverde, Rubio-Ramirez, and Yao (2012)). But as Bansal and Yaron

(2004) point out, stochastic volatility is one of the key features of the long-run risk model

and essential for asset pricing dynamics. Hence a log-linear approximation for asset pricing

models with recursive preferences and stochastic volatility must account for both features,

the risk-adjustment of the steady state and the effects of volatility. Bansal and Yaron (2004)

use a linearization technique based on the Campbell and Shiller (1988) return approximation

that meets these requirements which, therefore, has been used extensively for solving asset

pricing models with recursive preferences (Segal, Shaliastovich, and Yaron (2015), Bansal,

Kiku, and Yaron (2010), Bansal, Kiku, and Yaron (2012), Bollerslev, Tauchen, and Zhou

(2009), Kaltenbrunner and Lochstoer (2010), Koijen, Lustig, Van Nieuwerburgh, and Verdel-

han (2010), Drechsler and Yaron (2011), Bansal and Shaliastovich (2013), Constantinides and

15These authors define the risky steady state as the state where, in absence of shocks in the current period, the
agent decides to stay at the current state while expecting shocks in the future and knowing their probability
distribution.
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Ghosh (2011), Bansal, Kiku, Shaliastovich, and Yaron (2014) or Beeler and Campbell (2012),

among others).16 One reason for its popularity is, that it allows for approximate closed-form

solutions for many different model specifications, for example when shocks to the economy

are normal. The log-linearization technique to solve asset pricing models with recursive pref-

erences is described in Section A.1.

This study analyzes the log-linearized model solution with regard to the influence of higher

order dynamics on equilibrium outcomes that can, by construction, not be captured by the

log-linear approximation described below. For CRRA preferences, closed-form solutions for

various model specifications can be computed. Unfortunately, for the general case of recursive

preferences, there are to the best of our knowledge no such solutions. Therefore, we need a

highly accurate solution method which is capable to correctly capture higher-order features

of the asset returns. A convenient choice is projection methods that allow to choose the

approximation degree as well as the size of the approximation interval in order to be able to

capture higher-order dynamics that are driven by the tails of the distribution.17 Projection

methods are a general-purpose tool for solving functional equations. They were first introduced

by physicists and engineers to solve partial differential equations, but they can be used to solve

the types of fixed-point equations that arise in economics. (See Judd (1992) for an introduction

or Chen, Cosimano, and Himonas (2014) for a brief overview how to apply projection methods

to asset pricing models.) A detailed description of projection methods and how they can

applied to solve the equilibrium conditions (2) and (6) is given in Appendix A.2.

A.1 Log-Linearization Applied to Asset Pricing Models with Re-

cursive Preferences

Here, we provide a short sketch of the linearization method, as in Bansal and Yaron (2004).

For a detailed description of the method see Eraker (2008) and Eraker and Shaliastovich

(2008). Assume that the log price-dividend ratio of asset i, zi,t is a linear function of the state

variables

zi,t = A0,i + Aiyt (16)

where yt ∈ Rl is the state vector describing the economy and A0,i ∈ R1 and Ai ∈ Rl are

16Another approach, proposed by Kogan and Uppal (2001) and used for example in Hansen, Heaton, Lee, and
Roussanov (2007) and Hansen, Heaton, and Li (2008) is to linearize around the special case of unit elasticity
of substitution ψ = 1 where the wealth-consumption ratio is constant. However most of the follow-up work
in the long-run risk literature has focused on the log-linearization used in Bansal and Yaron (2004), so we
concentrate on this particular approximation.

17Similar results could potentially be obtained by using a perturbation method with a sufficiently high order.
But as we do not strive to find the best, or most efficient solution method, but rather to analyze higher-order
dynamics, we choose to use the projection approach.
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the unknown linearization coefficients. The log return of the asset i, ri,t+1 is then defined as

ri,t+1 = log (ezi,t+1 + 1)− zi,t + ∆di,t+1 (17)

where ∆di,t+1 is the log growth rate of dividends. Making use of the Campbell and Shiller

(1988) return approximation one gets

ri,t+1 ≈ κi,0 + κi,1zi,t+1 − zi,t + ∆di,t+1 (18)

with the linearizing constants

κi,1 =
ez̄i

1 + ez̄i
(19)

κi,0 = − log
(
(1− κi,1)1−κi,1κ

κi,1
i,1

)
(20)

that only depend on the model implied mean price-dividend ratio z̄i = A0,i+AiE(yt). Plugging

the return approximation for the return on wealth (18) into the equilibrium condition (6) yields

Et

[
eθ log δ+(θ− θ

ψ
)∆ct+1+θ(κw,0+κw,1zw,t+1−zw,t)

]
= 1. (21)

The equilibrium condition now only depends on the state of the economy and the lineariza-

tion coefficients A0,i and Ai. As the equilibrium equation has to hold for any realization of the

state of the economy, one can collect the terms for each state to obtain a square system of l+1

equations. Once we have solved for the return on wealth, one can apply the linearization ap-

proach to the general pricing equation (2) to solve for the log price-dividend ratio of any asset

i. For certain state processes the expectation can be evaluated analytically, as for example for

processes with normal innovations as in Bansal and Yaron (2004) or Bollerslev, Tauchen, and

Zhou (2009). This allows for approximate closed-form solutions for the linearization coeffi-

cients that only depend on the linearization constants κi,0 and κi,1. Eraker (2008), Eraker and

Shaliastovich (2008) and Drechsler and Yaron (2011) show how to generalize the approach to

include general affine processes and jumps.

A.2 Projection Methods for Functional Equations

Projection methods (see Judd (1992) for an introduction or Chen, Cosimano, and Himonas

(2014) for a brief overview) are a general tool to solve functional equations of the form

(Gz)(x) = 0, (22)
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where the variable x resides in a (state) space X ⊂ Rl, l ≥ 1, and z is an unknown solution

function with domain X, so z : X → Rm. The given operator G is a continuous mapping

between two function spaces. Note that solving equation (22) requires finding an element z

in a function space–that is, in an infinite-dimensional vector space.

The first central step of a projection method is to approximate the unknown function

z on its domain X by a linear combination of basis functions. For the applications in this

paper, it suffices to assume that the domain X is bounded and that the basis functions are

polynomials.18 For a set {Λk}k∈{0,1,...,n} of chosen basis functions the approximation ẑ of z is

ẑ(x;α) =
n∑
k=0

αkΛk(x), (23)

where α = [α0, α1, . . . , αn] are unknown coefficients. Replacing the function z in equation (22)

by its approximation ẑ, we can define the residual function F̂ (x;α) as the error in the original

equation,

F̂ (x;α) = (Gẑ)(x;α). (24)

Instead of solving equation (22) for the unknown function z, we now attempt to choose

coefficients α to make the residual F̂ (x;α) zero. Note that instead of finding an element in

an infinite-dimensional vector space we are now looking for a vector in Rn+1. Obviously, this

approximation step greatly simplifies the mathematical problem.

This problem is unlikely to have an exact solution, so the second central step of a projection

method is to impose certain conditions on the residual function, the so-called “projection”

conditions, to make the problem solvable. In other words, the purpose of the projection

conditions is to establish a set of requirements that the coefficients α must satisfy. For a

formulation of the projection conditions, define a “weight function” (term) w(x) and a set

of “test” functions {gk(x)}nk=0. We can then define an inner product between the residual

function F̂ and the test function gk,∫
X

F̂ (x;α)gk(x)w(x)dx.

This inner product induces a norm on the function space X. Natural restrictions for the

coefficient vector α are now the projection conditions,∫
X

F̂ (x;α)gk(x)w(x)dx = 0, k = 0, 1, . . . , n. (25)

18For the ease of notation, we demonstrate the projection approach using polynomials for the basis functions.
Alternative specifications are for example rational basis functions, or piecewise polynomial approximations.
For example to solve the studies with high-dimensional state spaces like the model of Schorfheide, Song, and
Yaron (2016), we use cubic splines as there is an efficient and fast implementation in Matlab.
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Observe that this system of equations imposes n + 1 conditions on the (n + 1)-dimensional

vector α. Different projection methods vary in the choice of the weight function and the set

of test functions. In this paper we describe two different projections, the collocation and the

Galerkin method.

A collocation method chooses n+ 1 distinct nodes in the domain, {xk}nk=0, and defines the

test functions gk by

gk(x) =

{
0 if x 6= xk

1 if x = xk.

With a weight term w(x) ≡ 1, the projection conditions (25) simplify to

F̂ (xk;α) = 0, k = 0, 1, . . . , n. (26)

Simply put, the collocation method determines the coefficients in the approximation (23) by

solving the square system (26) of nonlinear equations.

The Galerkin method uses the fact that Chebyshev polynomials are orthogonal on [−1, 1]

with respect to the inner product using the weight function w(x) ≡ 1√
1−x2 . Hence the Galerkin

method uses the basis functions as the test functions, gk(x) = Λk(x) and the projection

conditions (25) become∫
X

F̂ (x;α)Λk(x)
1√

1− x2
dx = 0, k = 0, 1, . . . , n. (27)

Next we show how to apply the general projection approach to solve the equilibrium pricing

equations (6) and (2).

A.2.1 Projection Methods Applied to Asset Pricing Models

To apply a projection method to the asset pricing model, we express the equilibrium conditions

as a functional equation of the type (22). For this purpose, we need to choose an appropriate

state space and perform the usual transformation from an equilibrium described by infinite

sequences (with a time index t) to the equilibrium being described by functions of some state

variable(s) x on a state space X. We denote the current state of the economy by x and the

subsequent state in the next period by x′. (For example in the original model by Mehra and

Prescott (1985), the state x is log consumption growth and X ⊂ R1; in the model of Bansal

and Yaron (2004), the state x consists of the long-run mean of consumption growth (denoted

by xt in that paper) and the variance of consumption growth (denoted by σ2
t ), so X ⊂ R2.) We

assume that the probability distribution of next period’s state x′ conditional on the current

state x is defined by a density fx.

First note that we solve the model in two steps. In the first step, we use the projection
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method to solve the wealth-Euler equation (6) to obtain the return on wealth. Once the return

on wealth is known, then, in a second step, we can solve for any asset return by applying the

projection approach to equation (2). For the first step, write equation (6) in state-space

representation

E

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + θrw(x′|x)

) ∣∣∣∣x] = 1, ∀x, (28)

where lower case letters denote logs of variables and ∆c(x′|x) = c(x′) − c(x). We write

the model in logs, because the function we solve for is the log wealth-consumption ratio

zw(x) = log
(
W (x)
C(x)

)
. Next, write the state-dependent log return of the aggregate consumption

claim as

rw(x′|x) = log

(
W (x′)

W (x)− C(x)

)
= log

( W (x′)
C(x′)

W (x)
C(x)
− 1
× C(x′)

C(x)

)
= zw(x′)− log

(
ezw(x) − 1

)
+ ∆c(x′|x). (29)

Inserting the last term in equation (28) yields

E

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + zw(x′)− log

(
ezw(x) − 1

)))
− 1

∣∣∣∣x] = 0, ∀x. (30)

Equivalently,

0 =

∫
X

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + zw(x′)− log

(
ezw(x) − 1

)))
− 1

]
dfx (31)

which is a functional equation of the form (22) and allows us to apply the projection approach.

The unknown solution function to this equilibrium condition, zw, is an element of a function

space which is an infinite-dimensional vector space. A key feature of every projection method

is to approximate the solution function zw by an element from a finite-dimensional space.

Specifically, we use the approximation ẑw(x;αw) =
∑n

k=0 αw,kΛk(x), where {Λk}k∈{0,1,...,n} is a

set of chosen (known) basis functions and αw = [αw,0, αw,1, . . . , αw,n] are unknown coefficients.

Replacing the exact solution zw(x) by the approximation ẑw(x;αw) leads us to the residual

function F̂w for the rearranged wealth-Euler equation (31), which is defined by

F̂w(x;αw) =

∫
X

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + ẑw(x′)− log

(
eẑw(x) − 1

)))
− 1

]
dfx.

(32)

We can determine values for the unknown solution coefficients αw by imposing a projection

condition on the residual term F̂w(x;αw). In this paper we employ two different such pro-
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jection conditions, the collocation and the Galerkin method, see Appendix A.2. The values

for the coefficients αw determine the state-dependent wealth-consumption ratio ẑw(x;αw)

which in turn leads to the (approximate) return function of the aggregate consumption claim,

r̂w(x′|x;αw) = ẑw(x′;αw)− log
(
eẑw(x;αw) − 1

)
+ ∆c(x′|x).

With r̂w(x′|x;αw) at hand, we can now develop an approach to compute the return of

any asset i using equation (2). Analogous to the first step, we solve for the log price-dividend

ratio zi(x) = log
(
P (x)
D(x)

)
and rewrite the state-dependent log return of asset i as

ri(x
′|x) = log

(
Pi(x

′) +Di(x
′)

Pi(x)

)
= log

( Pi(x
′)

Di(x′)
+ 1

Pi(x)
Di(x)

× Di(x
′)

Di(x)

)
= log

(
ezi(x

′) + 1
)
− zi(x) + ∆di(x

′|x). (33)

Writing the Euler equation (2) in state-space representation and formulating it in logs yields

E

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + (θ − 1)rw(x′|x) + ri(x

′|x)

) ∣∣∣∣x] = 1. (34)

Substituting the return expressions (29) and (33) into this equations and replacing the log

price-dividend ratio zi(x) = pi(x) − di(x) by its approximation ẑi(x;αi) =
∑n

k=0 αi,kΛk(x)

leads to the residual function

F̂i(x;αi) =

∫
X

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + (θ − 1)r̂w(x′|x;αw)

+ log
(
eẑi(x

′;αi) + 1
)
− ẑi(x;αi) + ∆di(x

′|x)

)
− 1

]
dfx (35)

Recall that the coefficients αw and thus the function r̂w(x′|x;αw) have been computed previ-

ously. Therefore, we can now apply one of the projection conditions to solve for the unknown

vector αi.

In sum, we apply the projection method twice. In the first step, we approximate the

log wealth-consumption ratio ẑw(x;αw) by applying the projections on the residual function

of the wealth-Euler equation (32). Once αw is known, the projections can be applied to

equation (35) to solve for the price-dividend ratio ẑi(x;αi) of any asset i. Formally, the

algorithm can be described as follows.

Algorithm Solving Asset Pricing Models with Recursive Preferences.

Initialization. Define the state space X ⊂ Rl; choose the functional forms for ẑw(x;αw)
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and ẑi(x;αi) as well as the projection method.

Step 1. Use the wealth-Euler equation (6) together with the approximated log wealth-

consumption ratio ẑw(x;αw) and the definition of the return equation (29) to derive the

residual function for the return on wealth

F̂w(x;αw) =

∫
X

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + ẑw(x′)− log

(
eẑw(x) − 1

)))
− 1

]
dfx.

Compute the unknown solution coefficients αw by imposing the projections on F̂w(x;αw).

Step 2. Use the solution for the wealth-consumption ratio ẑw(x;αw) and the Euler equa-

tion (2) for asset i together with the approximated log price-dividend ratio ẑi(x;αi) and

the definition of the return equation (33) to derive the residual function for asset i,

F̂i(x;αi) =

∫
X

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + (θ − 1)r̂w(x′|x;αw)

+ log
(
eẑi(x

′;αi) + 1
)
− ẑi(x;αi) + ∆di(x

′|x)

)
− 1

]
dfx

Compute the unknown solution coefficients αi by imposing the projections on F̂i(x;αi).

Evaluation. Choose a set of evaluation nodes Xe = {xej : 1 ≤ j ≤ me} ⊂ X and com-

pute approximation errors in the residual function of the wealth portfolio and the residual

function of asset i. If the errors do not satisfy a predefined error bound, start over at

Initialization and change the number of approximation nodes or the degree of the basis

functions.

To actually implement the algorithm, we need to specify additional algorithmic details

such as the choices for basis functions and the integration technique.

A.2.2 Algorithmic Ingredients

In the Initialization step, we need to choose a set of basis functions for the polynomial

approximation, a projection method and a set of nodes. To simplify the presentation, we

describe the necessary choices for a one-dimensional state space approximated over an interval

X = [xmin, xmax]. We approximate the solution functions zw and zi by Chebyshev polynomials

(of the first kind), see Judd (1998). We obtain the Chebyshev polynomials via the recursive
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relationship

T0(ξ) = 1, T1(ξ) = ξ, Tk+1(ξ) = 2ξTk(ξ)− Tk−1(ξ),

with Tk : [−1, 1] → R. Since we need to approximate functions on the domain X and the

Chebyshev polynomials are defined on the interval [−1, 1], we need to transform the argument

for the polynomials. The basis functions for the approximate solutions ẑw(x;αw) and ẑi(x;αi)

are given by

Λk(x) = Tk

(
2

(
x− xmin

xmax − xmin

)
− 1

)
(36)

for k = 0, 1, . . . , n.

In this paper we only show the results using the collocation method but we verified the

solutions using the Galerkin approach. The application of a projection method requires a set

of nodes, X = {xj : 0 ≤ j ≤ m} ⊂ X; we choose the m+ 1 zeros of the Chebyshev polynomial

Tm+1. These points are called Chebyshev nodes,

ξj = cos

(
2j + 1

2m+ 2
π

)
, j = 0, 1, . . . ,m.

Since all Chebyshev nodes are in the interval [−1, 1], we need to transform them to obtain

nodes in the state space X. This transformation is

xj = xmin +
xmax − xmin

2
(1 + ξj), j = 0, 1, . . . ,m.

For the collocation method, the number of basis functions, n + 1, must be identical to the

number of approximation nodes, m+1, and so m = n. In Step 1 (and Step 2, if applicable),

we must solve the projection conditions involving the residual function. The residual functions

defined in equations (32) and (35) contain a conditional expectations operator, which also

requires numerical calculations. The underlying exogenous processes in the models we consider

are normally distributed, and so we apply Gauss-Hermite quadrature to calculate expectations.

The collocation approach leads to a square system of nonlinear equations, see Appendix A.2,

which can be solved with a standard nonlinear equation solver. The Galerkin projection is

slightly more complex, and uses integral operators as projection conditions; these in turn can

be accurately approximated by Gauss-Chebyshev quadrature.

For the Evaluation step we useme >> m equally spaced evaluation nodes inX to evaluate

the errors in the residual function. In particular, for asset i we compute the root mean squared

errors (RMSE) and maximum absolute errors (MAE) in the residual function (35); these errors
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are

RMSEi =

√√√√ 1

me

me∑
j=1

F̂i(xej |αi)2, (37)

MAEi = max
j=1,2,...,me

|F̂i(xej |αi)|, (38)

respectively, with

xej = xmin +
xmax − xmin
me − 1

(j − 1), j = 1, . . . ,me. (39)

B Computational Details and Accuracy of the Projec-

tion Method

All the results in the paper are computed using Matlab. We use the solver ‘fmincon’ with

the SQP algorithm. As we have to solve a system of nonlinear equations for the projection

approach and not an optimization problem, this is implemented by minimizing a constant

subject to the nonlinear constraints from the system of equations. This procedure has proven

to be far more efficient and robust than the simple use of fsolve. For the high dimensional

models of Schorfheide, Song, and Yaron (2016) and Koijen, Lustig, Van Nieuwerburgh, and

Verdelhan (2010), we use cubic splines with not-a-knot end conditions instead of Chebyshev

polynomials due to the faster implementation in Matlab.

Table 4 demonstrates the accuracy of the projection approach. We consider the long-run

risk model of Bansal and Yaron (2004) with constant volatility where there exist closed-form

solutions for the case of CRRA preferences (see de Groot (2015)). In the case of recursive

preferences, we determine the correct solution using the projection approach with a very large

degree and state space. (We use nσ = 50 and increase the degree until the highest order

coefficient is close to zero. We double check the solution by using the discretization method

of Tauchen and Hussey (1991) with a very large number of discretization nodes). We report

errors in the mean and volatility of the wealth-consumption ratio for the log-linearization, the

collocation projection as well as the discretization method of Tauchen and Hussey (1991) with

different numbers of discretization nodes.19 Another method, popular in macroeconomics,

is perturbation methods (see, for example, Caldara, Fernandez-Villaverde, Rubio-Ramirez,

and Yao (2012)). de Groot (2015) compared these methods to the analytical solutions, and

finds they perform worse than even the log-linearization for long-run risk models, so we do

19We report the results when solving the Euler equation for wealth. Alternatively we could solve the fixed-point
equation for utility. The results this way are almost identical—the coefficients differ by less than 10−12.
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not consider them further. We find that for the calibration with ρ = 0.95 already a first

order approximation with an approximation interval of nσ = 1 standard deviation around the

unconditional mean of xt provides a very accurate solution with an approximation error of

1.51e-5 for E(W
C

) and 2.37e-6 for std(W
C

) for the case with recursive utility and γ = 10. For the

high persistence case with ρ = 0.99 a larger degree is required and the degree four polynomial

is sufficient to compute a highly accurate solution. Overall we observe, that the projection

method provides highly accurate solutions for all specifications considered in this example.

Although not reported, we have performed similar exercises for the six asset pricing models

used in this study to ensure highly accurate solutions.

C The Volatility of Volatility Factor

This section analyzes how log-linearization affects model outcomes when the model dynamics

are described by a square-root process as for example in Bollerslev, Tauchen, and Zhou (2009),

Tauchen (2011) or Bollerslev, Xu, and Zhou (2015). For this purpose we use the parsimonious

model formulation as in Bollerslev, Tauchen, and Zhou (2009) who take the basic model

setup (9) without the long-run risk factor, so φx = 0, and add vol-of-vol modeled by a square

root process qt:

σ2
t+1 = σ̄2(1− ν) + νσ2

t +
√
qtησ,t+1

qt+1 = µq(1− ρq) + ρqqt + φq
√
qtηq,t+1

ησ,t+1, ηq,t+1 ∼ i.i.d. N(0, 1). (40)

As Tauchen (2011) notes, care is needed because qt can become negative in simulations if

the volatility is too large compared to the mean of the process. The common approach in

the literature is to assume a reflecting barrier at zero by replacing negative values with very

small positive values to ensure positivity of the process (this approach has also been used

for the stochastic volatility process in the original Bansal and Yaron (2004) study and many

subsequent papers). However, to compute model solutions, the assumption of a non-truncated

distribution for the log-linearization is commonly used.

Take, for example, the calibration of Bollerslev, Tauchen, and Zhou (2009) given by δ =

0.997, γ = 10, ψ = 1.5, µc = 0.0015, ν = 0.978, σ̄2 = 0.00782 and µq = 1e-6. Figure 11 shows

model outcomes for CRRA preferences with ψ = 1.5 (Panel (a)) and the corresponding EZ

case with γ = 10 (Panel (b)) for various persistence and volatility parameters of the vol-

of-vol process ρq and φq. The black numbers show the true mean wealth-consumption ratio

under the assumption of a reflecting boundary for qt at zero. Blue values are the results
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Table 4: Accuracy of the Projection Method

Closed-F. Log-Lin Projection Discretization

n = 1 n = 4 n = 16 nD = 5 nD = 10 nD = 50
nσ = 1 nσ = 4 nσ = 32

ψ = 1.5, γ = 1/ψ

ρ = 0.95

E(W
C

) 1681.20 1681.16 1681.18 1681.20 1681.20 1669.99 1670.75 1671.00
Error 0 2.11e-5 1.19e-5 2.61e-8 2.60e-8 0.0067 0.0062 0.0060

std(W
C

) 12.1815 12.1812 12.1813 12.1815 12.1815 11.2206 11.2384 11.5015
Error 0 2.20e-5 1.27e-5 2.65e-8 2.64e-8 0.0789 0.0774 0.0558

ρ = 0.99

E(W
C

) 1868.36 1862.93 1865.54 1868.36 1868.36 3404.73 2121.64 1852.27
Error 0 0.0029 0.0015 1.21e-7 7.65e-11 0.8223 0.1356 0.0086

std(W
C

) 144.14 143.65 143.86 144.14 144.14 1966.49 381.82 141.39
Error 0 0.0034 0.0020 1.17e-7 8.17e-11 12.6427 1.6489 0.0191

ψ = 1.5, γ = 10

ρ = 0.95

E(W
C

) - 1314.39 1314.59 1314.61 1314.61 1532.25 1514.25 1508.08
Error - 1.66e-4 1.51e-5 4.37e-11 2.12e-12 0.1655 0.1518 0.1472

std(W
C

) - 9.4941 9.4956 9.4956 9.4956 10.2019 10.1502 10.3674
Error 0 1.49e-4 2.37e-6 3.10e-11 2.58e-12 10.0744 0.0689 0.0918

ρ = 0.99

E(W
C

) - 517.13 518.97 529.39 529.39 869.23 653.99 570.65
Error - 0.0231 0.0196 1.43e-9 4.91e-11 0.6419 0.2353 0.0779

std(W
C

) - 35.2376 35.3660 35.5695 35.5695 117.2323 59.5289 37.6206
Error 0 0.0093 0.0057 3.49e-10 1.56e-12 2.2959 0.6736 0.0577

The table shows the mean wealth-consumption ratio for the long-run risk model of Bansal and
Yaron (2004) with constant volatility (Equations (7) with σc,t = σx,t = σ̄ and ηc,t+1, ηx,t+1 i.i.d.
normal.). Results are shown for the log-linearization, the projection as well as the discretization
by Tauchen and Hussey (1991) with the extension of Floden (2007) that performs better for highly
persistent processes. For the projection method solutions with three different degrees n where the
approximation interval is set up nσ standard deviations around the unconditional mean of the long-
run risk process xt are provided. For the discretization results are shown for three different numbers
of approximation nodes nD. The table also shows the relative error of the solutions, where in the
case of γ = 1/ψ the closed-form solution is taken from de Groot (2015) and in the case of γ 6= 1/ψ
we compute the accurate solution by solving the model using the discretization method with a very
large number of discretization nodes or equivalently the projection with a very large degree and
state space. We use the same calibration of Bansal and Yaron (2004) with δ = 0.9989, µc = 0.0015,
σ̄ = 0.0078 and φx = 0.044.
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from log-linearization under the assumption of a standard non-truncated normal distribution.

Green circles denote convergence of both, the projection and the log-linearization approach.

Red diamonds denote cases in which the log-linearization yields a complex solution, while the

model solution using a truncated normal distribution is real. We find that, depending on the

risk aversion, using the standard log-linearization technique can lead to complex solutions.

This is for example the case for the calibration in Bollerslev, Tauchen, and Zhou (2009) with

ρq = 0.8 and φq = 1e-3.20

Figure 11: Sensitivity Analysis and Existence Results in the Vol-of-Vol Model
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(b) ψ = 1.5, γ = 10
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The graph shows the convergence properties as well as the mean wealth-consumption ratio for the
vol-of-vol model of Bollerslev, Tauchen, and Zhou (2009). The results are reported for a range of
persistence parameters ρq and volatility parameters φq. Panel (a) depicts the case of CRRA utility
with ψ = 1.5, while panel (b) depicts the corresponding cases with recursive utility and γ = 10.
Black numbers show the mean wealth-consumption ratio obtained by the projection approach using a
reflecting barrier at zero and blue numbers show the values obtained by the standard log-linearization
with normal shocks. Green circles denote convergence of both, the projection and the log-linearization
approach. Red diamonds denote cases in which the log-linearization yields a complex solution, while
the model solution using a truncated normal distribution is real. The model parameters are given
by δ = 0.997, µc = 0.0015, ν = 0.978, σ̄2 = 0.00782 and µq = 1e-6.

So what are the determinants of the complexity of the linearized solution? The square-

root specification of qt implies that the coefficient for qt is determined by a quadratic equation

and hence may have more than one solution. The log-linear approximation of the log wealth-

20Bollerslev, Tauchen, and Zhou (2009) provide a real solution by assuming a fixed value for the linearization
constant κ = 0.9. However this approach doesn’t give a solution to the model but ex ante fixes the mean value
of the price-dividend ratio and hence significantly biases the model outcome.
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consumption ratio zw,t has the following form

zw,t = A0 + Aσσ
2
t + Aqqt (41)

with the linearization coefficients (see Appendix A.1 for the derivation) given by

Aσ =
(1− γ)2

2θ(1− k1ν)

A0 =
log δ + (1− 1

ψ
)µc + k0 + k1

[
Aσσ̄

2(1− ν) + Aqµq(1− ρq)
]

(1− k1)

Aq =
1− k1ρq±

√
(1− k1ρq)2 − θ2k4

1φ
2
qA

2
σ

θk2
1φ

2
q

(42)

We find that the coefficient for the vol-of-vol factor Aq has indeed two solutions. As Bollerslev,

Tauchen, and Zhou (2009) show in their paper by the no arbitrage argument, the minus term

is the economically meaningful root and the positive solution can be neglected. Complexity

of the solution is determined by the term inside the square root in equation (42) given by

(1− k1ρq)
2 − θ2k4

1φ
2
qA

2
σ. So how does this term depend on the model parameters? Figure 12

shows the values of the square root term as a function of the risk aversion γ. In line with

the results above, we find that for small γ the solution is well behaved with only a real and

no imaginary part. However if we increase γ, θ becomes significantly larger (it goes from -3

for γ = 2 to -27 for γ = 10) and hence the real part of the term decreases. For a certain

threshold (about 4.4 in this example) the term hits zero and the solution thereafter consists of

a significant imaginary part. Also Panel (b) in Figure 11 shows, that the larger the persistence

or the larger the volatility of the vol-of-vol process solutions become complex. Summarizing,

using standard log-linearization with normal shocks to solve models with a large risk aversion

and a persistent square-root process can yield complex solutions, even if real solutions under

the assumption of a reflecting barrier exist. Hence when solving such models, either log-

linearization with the assumption of a truncated normal distribution or more sophisticated

methods like the projection approach described in this paper should be used.
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