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Abstract

The accuracy of particle filters for nonlinear state-space models crucially depends

on the proposal distribution that mutates time t− 1 particle values into time t values.

In the widely-used bootstrap particle filter, this distribution is generated by the state-

transition equation. While straightforward to implement, the practical performance is

often poor. We develop a self-tuning particle filter in which the proposal distribution is

constructed adaptively through a sequence of Monte Carlo steps. Intuitively, we start

from a measurement error distribution with an inflated variance, and then gradually

reduce the variance to its nominal level in a sequence of tempering steps. We show

that the filter generates an unbiased and consistent approximation of the likelihood

function. Holding the run time fixed, our filter is substantially more accurate in two

DSGE model applications than the bootstrap particle filter.
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1 Introduction

Estimated dynamic stochastic general equilibrium (DSGE) models are now widely used by

academics to conduct empirical research in macroeconomics as well as by central banks to

interpret the current state of the economy, to analyze the impact of changes in monetary or

fiscal policies, and to generate predictions for macroeconomic aggregates. In most applica-

tions, the estimation uses Bayesian techniques, which require the evaluation of the likelihood

function of the DSGE model. If the model is solved with a (log)linear approximation and

driven by Gaussian shocks, then the likelihood evaluation can be efficiently implemented

with the Kalman filter. If, however, the DSGE model is solved nonlinearly, the resulting

state-space representation is nonlinear and the Kalman filter can no longer be used.

Fernández-Villaverde and Rubio-Ramı́rez (2007) proposed using a particle filter to eval-

uate the likelihood function of a nonlinear DSGE model, and many other papers have since

followed this approach. However, configuring the particle filter so that it generates an ac-

curate approximation of the likelihood function remains a key challenge. The contribution

of this paper is to develop a self-tuning tempered particle filter that in our applications is

substantially more accurate than the widely-used bootstrap particle filter.

Our starting point is the state-space representation of a potentially nonlinear DSGE

model given by a measurement equation and a state-transition equation:

yt = Ψ(st; θ) + ut, ut ∼ N
(
0,Σu(θ)

)
(1)

st = Φ(st−1, εt; θ), εt ∼ Fε(·; θ).

The functions Ψ(st; θ) and Φ(st−1, εt; θ) are generated numerically when solving the DSGE

model. Here yt is a ny× 1 vector of observables, ut is a ny× 1 vector of normally distributed

measurement errors, and st is an ns × 1 vector of hidden states.1 To obtain the likelihood

increments p(yt+1|Y1:t, θ), where Y1:t = {y1, . . . , yt}, it is necessary to integrate out the latent

states:

p(yt+1|Y1:t, θ) =

∫ ∫
p(yt+1|st+1, θ)p(st+1|st, θ)p(st|Y1:t, θ)dst+1dst, (2)

which can be done recursively with a filter.

1In principle both Ψ(·) and Φ(·) could depend on the time period t in a deterministic manner. We omit
this dependency in our notation. The ut’s do not literally have to be measurement errors. They could
also be innovations to fundamentals. All we require is a non-degenerate distribution of yt|st with a scalable
covariance matrix.
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Particle filters represent the distribution of the hidden state vector st conditional on time

t information Y1:t = {y1, . . . , yt} through a swarm of particles {sjt ,W j
t }Mj=1 such that, for a

function of interest h(st),

1

M

M∑
j=1

h(sjt)W
j
t ≈

∫
h(st)p(st|Y1:t, θ)dst. (3)

The approximation here is in the sense of a strong law of large numbers (SLLN) or a central

limit theorem (CLT). The approximation error vanishes as the number of particles M tends

to infinity. The filter recursively generates approximations of p(st|Y1:t, θ) for t = 1, . . . , T

and produces approximations of the likelihood increments p(yt|Y1:t, θ) as a by-product. There

exists a large literature on particle filters. Surveys and tutorials are provided, for instance,

by Arulampalam, Maskell, Gordon, and Clapp (2002), Cappé, Godsill, and Moulines (2007),

Doucet and Johansen (2011), Creal (2012), and Herbst and Schorfheide (2015). Textbook

treatments of the statistical theory underlying particle filters can be found in Liu (2001),

Cappé, Moulines, and Ryden (2005), and Del Moral (2013).

The conceptually most straightforward version of the particle filter is the bootstrap par-

ticle filter proposed by Gordon, Salmond, and Smith (1993). This filter uses the state-

transition equation to turn sjt−1 particles into sjt particles, which are then reweighted based

on their success in predicting the time t observation, measured by p(yt|sjt , θ). While the

bootstrap particle filter is easy to implement, it relies on the state-space model’s ability to

accurately predict yt by forward simulation of the state-transition equation. In general, the

lower the average density p(yt|sjt , θ), the more uneven the distribution of the updated particle

weights, and the less accurate the approximation in (3).

Ideally, the proposal distribution for sjt should not just be based on the state-transition

equation p(st|st−1, θ) but also account for the observation yt. In fact, conditional on sjt−1 the

optimal proposal distribution is the posterior2

p(st|yt, sjt−1, θ) ∝ p(yt|st, θ)p(st|sjt−1, θ), (4)

where ∝ denotes proportionality. Unfortunately, in a generic nonlinear state-space model,

it is not possible to directly sample from this distribution. Constructing an approximation

2It is optimal in the sense that it minimizes the variance of the particle weights conditional on
{sjt−1,W

j
t−1}Mj=1. In importance sampling it is approximately true that the smaller the variance of the

importance weights, the smaller is the asymptotic variance of the Monte Carlo approximation.



3

for p(st|yt, sjt−1, θ) in a generic state-space model typically involves tedious model-specific

calculations that have to be executed by the user of the algorithm prior to its implementa-

tion.3 The innovation in this paper is to generate this approximation in a sequence of Monte

Carlo steps. The basic idea goes back to Godsill and Clapp (2001). Our starting point is

the observation that the larger the measurement error variance, the more accurate the filter

becomes, because holding everything else constant, the variance of the particle weights de-

creases. Building on this insight, in each period t, we generate sjt by forward simulation but

then update the particle weights based on a density p1(yt|st, θ) with an inflated measurement

error variance. In a sequence of tempering iterations we reduce this inflated measurement

error variance to its nominal level. These iterations mimic a sequential Monte Carlo (SMC)

algorithm designed for a static parameter. Such algorithms have been successfully used to

approximate posterior distributions for parameters of econometric models.4

We show that our proposed tempered particle filter produces a valid approximation of the

likelihood function and substantially reduces the Monte Carlo error relative to the bootstrap

particle filter, even after controlling for computational time. Our algorithm can be embedded

into particle Markov chain Monte Carlo (MCMC) algorithms that replace the true likelihood

by a particle-filter approximation; see, for instance, Fernández-Villaverde and Rubio-Ramı́rez

(2007) for DSGE model applications and Andrieu, Doucet, and Holenstein (2010) for the

underlying statistical theory.

The idea of adding tempering steps to the particle filter dates back to Godsill and Clapp

(2001), but it has not been used in the DSGE model literature. Contemporaneously with our

paper, Johansen (2016) developed a particle filter that involves tempering iterations to track

p(st, st−1, . . . , st−L|Y1:t). While his algorithm allows for the mutation of particles representing

blocks of lagged states, no clear guidance is provided on how the algorithm should be tailored

in a specific application and whether the additional computational cost of mutating lagged

states is compensated by improvements in the accuracy of the likelihood approximation.

Moreover, the paper does not contain any theoretical results and the numerical illustration

is restricted to a univariate model rather than DSGE models with multidimensional state

spaces. In addition, in each time period t we are choosing the tempering schedule adaptively,

3Attempts include approximations based on the one-step Kalman filter updating formula applied to a
linearized version of the DSGE model. Alternatively, one could use the updating step of an approximate
filter, e.g., the ones developed by Andreasen (2013) or Kollmann (2015).

4Chopin (2002) first showed how to use sequential Monte Carlo methods to conduct inference on a
parameter that does not evolve over time. Applications to the estimation of DSGE model parameters
have been considered in Creal (2007) and Herbst and Schorfheide (2014). Durham and Geweke (2014) and
Bognanni and Herbst (2015) provide applications to the estimation of other econometric time-series models.
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building on work by Jasra, Stephens, Doucet, and Tsagaris (2011), Del Moral, Doucet,

and Jasra (2012), Schäfer and Chopin (2013), Geweke and Frischknecht (2014), and Zhou,

Johansen, and Aston (2015).

There are essentially two methods of establishing theoretical properties of SMC approx-

imations. On the one hand, Del Moral (2004) and Del Moral (2013) use high-level random

field theory to establish theoretical properties of SMC methods through the lens of the

Feynman-Kac formula and its role in stochastic differential equations. While mathemati-

cally elegant, the approach relies on theory that is unfamiliar to most econometricians. On

the other hand, Chopin (2004) proves a CLT for SMC approximations recursively, using fa-

miliar (to econometricians) CLTs for non-identically and independently distributed random

variables. In a similar fashion, Pitt, Silva, Giordani, and Kohn (2012) show how one can

prove the unbiasedness of particle filter approximation without making use of the Feynman-

Kac formula. We follow this second route and show how the arguments in Chopin (2004)

and Pitt, Silva, Giordani, and Kohn (2012) can be extended to account for the tempering

iterations used in our algorithm. While the theoretical results in our paper are restricted

to a non-adaptive version of the filter, theoretical results for adaptive SMC algorithms have

recently been obtained by Beskos, Jasra, Kantas, and Thiery (2014).

The remainder of the paper is organized as follows. The proposed tempered particle

filter is presented in Section 2. We provide a SLLN for the particle filter approximation of

the likelihood function in Section 3 and show that the approximation is unbiased. Here we

are focusing on a version of the filter that is non-adaptive. The filter is applied to a small-

scale New Keynesian DSGE model and the Smets-Wouters model in Section 4 and Section 5

concludes. Theoretical derivations, computational details, DSGE model descriptions, and

data sources are relegated to the Online Appendix. To simplify the notation, we often drop

θ from the conditioning set of densities p(·|·).

2 The Tempered Particle Filter

A key determinant of the accuracy of a particle filter is the distribution of the normalized

weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

,
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where W j
t−1 is the (normalized) weight associated with the jth particle at time t − 1, w̃jt is

the incremental weight after observing yt, and W̃ j
t is the normalized weight accounting for

this new observation.5 For the bootstrap particle filter, the incremental weight is simply the

likelihood of observing yt given the jth particle, p(yt|sjt). It is approximately true that, all

else equal, the larger the variance of W̃ j
t ’s, the less accurate the Monte Carlo approximations

generated by the particle filter.

One can show that, as the measurement error variance increases, the variance of the

particle weights {W̃t}Mj=1 decreases. Let Σu/φn, 0 < φn ≤ 1 be an inflated measurement

error covariance matrix. Then,

pn(yt|st) ∝ exp

{
−1

2
φn(yt −Ψ(st))

′Σ−1
u (yt −Ψ(st))

}
. (5)

Assuming that a resampling step equalized the particle weights W j
t−1 = 1, it is straightfor-

ward to verify that

lim
φn−→0

W̃ j
t =

pn(yt|sjt)
1
M

∑M
j=1 pn(yt|sjt)

= 1. (6)

Thus, in the limit, the variance of the particle weights is equal to zero. With a bit more

algebra, it can be verified that the variance of the particle weights monotonically decreases as

φn −→ 0 (see the Online Appendix for details). We use this insight to construct a tempered

particle filter in which we generate proposed particle values s̃jt sequentially, by reducing the

measurement error variance from an inflated initial level Σu/φ1 to the nominal level Σu using

a sequence of scale factors 0 < φ1 < φ2 < . . . < φNφ = 1. The reduction of the measurement

error variance is achieved by a sequence of Monte Carlo steps that we borrow from the

literature of SMC approximations for posterior moments of static parameters.

By construction, pNφ(yt|st) = p(yt|st). Based on pn(yt|st), we can define the bridge

distributions

pn(st|yt, st−1) ∝ pn(yt|st)p(st|st−1). (7)

Integrating out st−1 under the distribution p(st−1|Y1:t−1) yields the bridge posterior density

5In the notation developed subsequently, the tilde on W̃ j
t indicates that this is the weight associated with

particle j before any resampling of the particles.
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for st conditional on the observables:

pn(st|Y1:t) =

∫
pn(st|yt, st−1)p(st−1|Y1:t−1)dst−1. (8)

In the remainder of this section, we describe the proposed tempered particle filter. Section 2.1

presents the main algorithm that iterates over periods t = 1, . . . , T to approximate the

likelihood increments p(yt|Y1:t−1) and the filtered states p(st|Y1:t). In Section 2.2, we focus

on the novel component of our algorithm, which in every period t uses Nφ steps to reduce the

measurement error variance from Σu/φ1 to Σu. We provide specific guidance for practitioners

on tuning the tempered particle filter in Section 2.3. Finally, in Section 2.4 we briefly discuss

the relationship between the tempered and the conditionally-optimal particle filter.

2.1 The Main Iterations

The tempered particle filter has the same structure as the bootstrap particle filter. In

every period t, we draw innovations εt and use the state-transition equation to simulate the

state vector forward; we update the particle weights; and we resample the particles. The

key difference is to start out with a fairly large measurement error variance, which is then

iteratively reduced to the nominal level Σu. During this tempering, we adjust the innovations

to the state-transition equation as well as the particle weights.

The tempering sequence and the number of tempering stages may differ for every time

period t. Thus, a concise notation takes the form

φ1,t < φ2,t < . . . < φNφ
t

= 1 instead of φ1 < φ2 < . . . < φNφ = 1.

Starting from the distribution p(st−1|Y1:t−1) and using a sequence of tempering iterations,

our filter tracks the bridge distributions pn(st|Y1:t) defined in (8) for n = 1, . . . , Nφ
t . As our

filter cycles through the tempering iterations and mutates the particle values sj,nt , it keeps

the particle values s
j,Nφ

t−1

t−1 unchanged. The pairs (sj,nt , s
j,Nφ

t−1

t−1 ) with their associated particle

weights approximate the distributions

pn(st, st−1|Y1:t) = pn(st|st−1, Y1:t)p(st−1|Y1:t) for n = 1, . . . , Nφ
t .

Because it is convenient for the implementation of the mutation steps, we will include εt

in the vector of particle values and track the triplet (st, εt, st−1) with the understanding
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that this triplet always satisfies the state-transition equation st = Φ(st−1, εt). Algorithm 1

summarizes the iterations over periods t = 1, . . . , T . For now, it is assumed that the initial

scalings of the measurement error variances φ1,t, t = 1, . . . , T , are given. We use h(st, st−1)

to denote a generic integrable function of interest.

Algorithm 1 (Tempered Particle Filter)

1. Period t = 0 Initialization. Let Nφ
0 = 1. Draw the initial particles from the distri-

bution sj0
iid∼ p(s0), j = 1, . . . ,M . Let s

j,Nφ
0

0 = sj0 and W
j,Nφ

0
0 = 1.

2. Period t Iterations. For t = 1, . . . , T :

(a) Particle Initialization.

i. Starting from {sj,N
φ
t−1

t−1 ,W
j,Nφ

t−1

t−1 }, generate ε̃j,1t ∼ Fε(·) and define

s̃j,1t = Φ(s
j,Nφ

t−1

t−1 , ε̃j,1t ).

ii. Compute the incremental weights:

w̃j,1t = p1(yt|s̃j,1t ) ∝ exp

{
− 1

2
φ1,t

(
yt −Ψ(s̃j,1t )

)′
Σ−1
u

(
yt −Ψ(s̃j,1t )

)}
. (9)

iii. Normalize the incremental weights:

W̃ j,1
t =

w̃j,1t W
j,Nφ

t−1

t−1

1
M

∑M
j=1 w̃

j,1
t W

j,Nφ
t−1

t−1

(10)

to obtain the particle swarm {s̃j,1t , ε̃j,1t , s
j,Nφ

t−1

t−1 , W̃ j,1
t }, which leads to

h̃1
t =

1

M

M∑
j=1

h(s̃j,1t , s
j,Nφ

t−1

t−1 )W̃ j,1
t ≈

∫
h(st, st−1)p1(st, st−1|Y1:t)dstdst−1. (11)

Moreover,

1

M

M∑
j=1

w̃j,1t W
j,Nφ

t−1

t−1 ≈ p1(yt|Y1:t−1). (12)

iv. Resample the particles:

{s̃j,1t , ε̃j,1t , s
j,Nφ

t−1

t−1 , W̃ j,1
t } 7→ {sj,1t , εj,1t , s

j,Nφ
t−1

t−1 ,W j,1
t },
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to obtain the approximation

h̄1
t =

1

M

M∑
j=1

h(sj,1t , s
j,Nφ

t−1

t−1 )W j,1
t ≈

∫
h(st, st−1)p1(st, st−1|Y1:t)dstdst−1. (13)

(b) Tempering Iterations: Execute Algorithm 2 (see next section) to

i. convert the particle swarm

{sj,1t , εj,1t , s
j,Nφ

t−1

t−1 ,W j,1
t } 7→ {sj,N

φ
t

t , ε
j,Nφ

t
t , s

j,Nφ
t−1

t−1 ,W
j,Nφ

t
t }

to approximate

h̄
Nφ
t

t =
1

M

M∑
j=1

h(s
j,Nφ

t
t , s

j,Nφ
t−1

t−1 )W
j,Nφ

t
t (14)

≈
∫
h(st, st−1)p(st, st−1|Y1:t)dstdst−1;

ii. compute the approximation p̂(yt|Y1:t−1) of the likelihood increment.

3. Likelihood Approximation

p̂(Y1:T ) =
T∏
t=1

p̂(yt|Y1:t−1). � (15)

If one sets φ1,t = 1, Nφ
t = 1, and omits Step 2.(b) for all t, then Algorithm 1 is exactly

identical to the bootstrap particle filter: the sjt−1 particle values are simulated forward using

the state-transition equation; the weights are then updated based on how well the new state

s̃jt predicts the time t observations, measured by the predictive density p(yt|s̃jt); and finally

the particles are resampled using a standard resampling algorithm, such as multinominal

resampling, or systematic resampling.6 Once the resampling step has been executed, the

particle weights are equalized: W j,1
t = 1 for j = 1, . . . ,M .

The drawback of the bootstrap particle filter is that the proposal distribution for the

innovation ε̃jt ∼ Fε(·) is not adapted to the period t observation yt. This typically leads

to a large variance of w̃jt , which translates into inaccurate Monte Carlo approximations.

Taking the states {sjt−1}Mj=1 as given and assuming that a t−1 resampling step has equalized

6Detailed textbook treatments of resampling algorithms can be found in Liu (2001) and Cappé, Moulines,
and Ryden (2005).
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the particle weights, that is, W j
t−1 = 1, the conditionally optimal choice for the proposal

distribution is p(ε̃jt |sjt−1, yt). However, because of the nonlinearity in state-transition and

measurement equation, it is not possible to directly generate draws from this distribution.

Our algorithm sequentially adapts the proposal distribution for the innovations to the current

observation yt by raising φn from a small initial value to φNφ = 1. This is done in Step 2(b),

which is described in detail in Algorithm 2 in the next section.

2.2 Tempering the Measurement Error Variance

The idea of including tempering iterations into a particle filter dates back to Godsill and

Clapp (2001). These iterations build on Neal’s (1998) annealed importance sampling and

mimic the steps of SMC algorithms that have been developed for static parameters (e.g.,

Chopin (2002), Del Moral, Doucet, and Jasra (2006), Durham and Geweke (2014), and

Herbst and Schorfheide (2014, 2015)). SMC algorithms for static parameters generate draws

from a sequence of bridge posteriors pn(θ|Y ). These bridge posteriors can be generated

by tempering the likelihood function, i.e., pn(θ|Y ) ∝
[
p(Y |θ)

]φn
p(θ), n = 1, . . . , Nφ with

φNφ = 1. At each iteration, the algorithm cycles through three stages: the particle weights

are updated in the correction step; the particles are being resampled and the particle weights

are equalized in the selection step; and the particle values are changed in the mutation step.

The analogue of
[
p(Y |θ)

]φn
in our algorithm is pn(yt|st) given in (5), which reduces to p(yt|st)

for φn = 1. Algorithm 2 comprises of the correction, selection, and mutation steps. Note

that the sequence φn,t, n = 1, . . . , Nφ
t , and the number of stages, Nφ

t , is an output of the

algorithm that is determined in Step 1(a)iii. in conjunction with the termination condition

φn,t = 1 of the do-loop. Thus, the filter is adaptive with respect to the tempering schedule.

Algorithm 2 (Tempering Iterations) This algorithm receives as input the particle swarm

{sj,1t , εj,1t , s
j,Nφ

t−1

t−1 ,W j,1
t } and returns as output the particle swarm {sj,N

φ
t

t , ε
j,Nφ

t
t , s

j,Nφ
t−1

t−1 ,W
j,Nφ

t
t }

and the likelihood increment p̂Nφ
t
(yt|Y1:t−1). Set n = 1 and Nφ

t = 1.

1. Do until φn,t = 1:

(a) Correction: Let n = n+ 1. Then,
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i. for j = 1, . . . ,M and given φn−1,t define the incremental weight function

w̃j,nt (φn) =
pn(yt|sj,n−1

t )

pn−1(yt|sj,n−1
t )

(16)

=

(
φn

φn−1,t

)ny/2
exp

{
− 1

2

[
yt −Ψ(sj,n−1

t )
]′

×(φn − φn−1,t)Σ
−1
u

[
yt −Ψ(sj,n−1

t )
]}
.

ii. Define the normalized weights

W̃ j,n
t (φn) =

w̃j,nt (φn)W j,n−1
t

1
M

∑M
j=1 w̃

j,n
t (φn)W j,n−1

t

, (17)

(W j,n−1
t = 1 because the resampling step was executed in iteration n−1), and

the inefficiency ratio

InEff(φn) =
1

M

M∑
j=1

(
W̃ j,n
t (φn)

)2
. (18)

iii. If InEff(1) ≤ r∗

let φn,t = 1, Nφ
t = n, and W̃ j,n

t = W̃ j,n
t (1) (terminate do-loop after

iteration n);

else

let φn,t be the solution to InEff(φn,t) = r∗, W̃ j,n
t = W̃ j,n

t (φn,t).

iv. The particle swarm {sj,n−1
t , εj,n−1

t , s
j,Nφ

t−1

t−1 , W̃ j,n
t } approximates

h̃nt =
1

M

M∑
j=1

h(sj,n−1
t , s

j,Nφ
t−1

t−1 )W̃ j,n
t (19)

≈
∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1.

(b) Selection: Resample the particles:

{sj,n−1
t , εj,n−1

t , s
j,Nφ

t−1

t−1 , W̃ j,n
t } 7→ {ŝj,nt , ε̂j,nt , s

j,Nφ
t−1

t−1 ,W j,n
t },

which leads to W j,n
t = 1 for j = 1, . . . ,M . Keep track of the correct ancestry infor-

mation such that ŝj,nt = Φ(s
j,Nφ

t−1

t−1 , ε̂j,nt ) for each j. This leads to the approximation
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ĥnt =
1

M

M∑
j=1

h(ŝj,nt , s
j,Nφ

t−1

t−1 )W j,n
t ≈

∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1. (20)

(c) Mutation: Use a Markov transition kernel Kn(st|ŝt; st−1) with the invariance

property

pn(st|yt, st−1) =

∫
Kn(st|ŝt; st−1)pn(ŝt|yt, st−1)dŝt (21)

to mutate the particle values (see Algorithm 3 for an implementation). This leads

to the particle swarm {sj,nt , εj,nt , s
j,Nφ

t−1

t−1 ,W j,n
t }, which approximates

h̄nt =
1

M

M∑
j=1

h(sj,nt , s
j,Nφ

t−1

t−1 )W j,n
t ≈

∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1. (22)

2. Approximate the likelihood increment:

p̂(yt|Y1:t−1) = p̂Nφ
t
(yt|Y1:t−1) =

Nφ
t∏

n=1

(
1

M

M∑
j=1

w̃j,nt W j,n−1
t

)
(23)

with the understanding that W j,0
t = W

j,Nφ
t−1

t−1 . �

Correction. The correction step adapts the stage n − 1 particle swarm to the reduced

measurement error variance in stage n by reweighting the particles. The incremental weights

in (16) capture the change in the measurement error variance from Σu/φn−1,t to Σu/φn and

yield an importance sampling approximation of pn(st|Y1:t) based on the stage n− 1 particle

values. We choose φn,t to achieve a targeted inefficiency ratio r∗ > 1. This approach of

adaptively choosing the tempering schedule has been used in the SMC literature by Jasra,

Stephens, Doucet, and Tsagaris (2011), Del Moral, Doucet, and Jasra (2012), Schäfer and

Chopin (2013), and Zhou, Johansen, and Aston (2015). It also has proven useful in the

context of global optimization of nonlinear functions; see Geweke and Frischknecht (2014).

To relate the inefficiency ratio to φn, we begin by defining

ej,t =
1

2
(yt −Ψ(sj,n−1

t ))′Σ−1
u (yt −Ψ(sj,n−1

t )).
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Assuming that the particles were resampled in iteration n− 1 and W j,n−1
t = 1, we can then

express the inefficiency ratio as

InEff(φn) =
1

M

M∑
j=1

(
W̃ j,n
t (φn)

)2
=

1
M

∑M
j=1 exp[−2(φn − φn−1,t)ej,t](

1
M

∑M
j=1 exp[−(φn − φn−1,t)ej,t]

)2 . (24)

For φn = φn−1,t the inefficiency ratio is InEff(φn) = 1 < r∗. We show in the Online Ap-

pendix that the function is monotonically increasing on the interval [φn−1,t, 1], which is the

justification for Step 1(a)iii of Algorithm 3. Thus, we are raising φn as closely to one as we

can without exceeding a user-defined bound on the variance of the particle weights. We use

the same approach to set the initial scaling factor φ1 in Algorithm 1.

Selection. The selection step is executed in every iteration n to ensure that we can find a

unique φn,t based on the function InEff(φn) in (24) in the correction step. Thus, W j,n
t = 1

and in principle we could drop the weights from the formulas.

Mutation. In the mutation step, we are using a Markov transition kernel to change the

particle values from (ŝj,nt , ε̂j,nt ) to (sj,nt , εj,nt ), maintaining an approximation of pn(st, st−1|Y1:t).

It can be implemented with a random walk Metropolis-Hastings (RWMH) algorithm; see

Algorithm 3 below. In the absence of the mutation step, the initial particle values (sj,1t , ε
j,1
t )

would never change and we would essentially reproduce the bootstrap particle filter by

computing p(yt|s̃jt) as the limit of a sequence of measurement error covariance matrices that

converges to Σu. Unlike in the algorithm proposed by Johansen (2016), we do not mutate

the particle values s
j,Nφ

t−l
t−l , l = 1, . . . , L. The advantage is that the state vector that we are

mutating has a smaller dimension, which tends to increase the probability that a particle

value changes during the mutation step. Thus, our algorithm should be able to attain a

desired probability of mutating the particle values with fewer steps of the RWMH algorithm

and therefore be faster. A potential disadvantage is that we are not adapting as well to the

joint distribution pn(st, st−1, . . . , st−L|Y1:t).

Algorithm 3 (RWMH Mutation Step) This algorithm receives as input the particle swarm

{ŝj,nt , ε̂j,nt , s
j,Nφ

t−1

t−1 ,W j,n
t } and returns as output the particle swarm {sj,nt , εj,nt , s

j,Nφ
t−1

t−1 ,W j,n
t }.

1. Execute NMH Metropolis-Hastings Steps for Each Particle: For j = 1, . . .M :

(a) Set ε̂j,n,0t = ε̂j,nt . Then, for l = 1, . . . , NMH :

i. Generate a proposed innovation: ejt ∼ N
(
ε̂j,n,l−1
t , c2

nInε
)
.



13

ii. Compute the acceptance rate:

α(ejt |ε̂j,n,l−1
t ) = min

1,
pn(yt|ejt , s

j,Nφ
t−1

t−1 )pε(e
j
t)

pn(yt|ε̂j,n,l−1
t , s

j,Nφ
t−1

t−1 )pε(ε̂
j,n,l−1
t )

 .

iii. Update particle values:

ε̂j,n,lt =

{
ejt with prob. α(ejt |ε̂j,n,l−1

t )

ε̂j,n,l−1
t with prob. 1− α(ejt |ε̂j,n,l−1

t )

(b) Define εj,nt = ε̂j,n,N
MH

t and sj,nt = Φ(s
j,Nφ

t−1

t−1 , εj,nt ). �

As the covariance matrix for the proposal distribution in the RWMH algorithm we use

the identity matrix Inε scaled by cn.7 We set cn adaptively to achieve a desired acceptance

rate. We compute the average empirical rejection rate R̂n−1(cn−1) across the NMH RWMH

steps of the mutation phase in iteration n− 1. We set c1 = c∗ and let

cn = cn−1f
(
1− R̂n−1(cn−1)

)
, f(x) = 0.95 + 0.10

e20(x−0.40)

1 + e20(x−0.40)
, n ≥ 2. (25)

Thus, we increase (decrease )the scaling factor by 5 percent if the acceptance rate is well above

(below) 0.40. For acceptance rates near 0.40, the increase (or decrease) of cn is attenuated

by the logistic component of f(x). In our empirical applications, the performance of the

filter was robust to variations of the rule.

2.3 Tuning of the Algorithm

In order to run Algorithm 3, the user has to specify the number of particles M , the initial

measurement error precision scalings φ1,t in Algorithm 1, the targeted inefficiency ratio

r∗, the initial scaling of the proposal covariance matrix c∗, and the number of Metropolis-

Hastings steps NMH . In principle, the user can also adjust the target acceptance rate (and

potentially the speed of adjustment) in (25). Each of these tuning parameters affects the

statistical properties of the filter, and can potentially affect the computational cost associated

with the filter. We now discuss some issues in selecting each of these parameters.

7Herbst and Schorfheide (2014) use the particle approximation of the posterior covariance matrix from
the selection step to specify the stage-n proposal covariance matrix. In the tempered particle filter, the cost
of computing this object tends to outweigh the gains from adapation, so we instead use the identity matrix.
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The selection of M is an issue for any particle filter. A higher M is associated with

a more precise approximation at the cost of a longer run time of the filter. In practice,

this is usually done through experimentation. If the particle filter is embedded in a MCMC

algorithm, a heuristic suggested by Pitt, Silva, Giordani, and Kohn (2012), is to increase M

until the standard deviation of the filter’s log likelihood estimate at some parameter value is

less than one. Particle filter approximations typically satisfy a CLT according to which the

variance is proportional to 1/M .

The initial measurement error precisions φ1,t can either be user-specified or determined

adaptively by targeting a desired variance of particle weights as in Step 1(a)iii of Algorithm 2.

The targeted inefficiency ratio, r∗ ∈ (1,∞) controls the targeted degree of “unevenness” of

the distribution of particle weights that pins down the particular φn,t sequences. If r∗ is close

to 1, loosely speaking, φn,t will be “close” to φn−1,t and generally there will be many stages

(Nφ
t will be large.) In contrast, if r∗ is very large, bridge distributions can be very different,

and in general Nφ
t will be small. In the limit, as r∗ −→ ∞, the algorithm converges to the

resample-move variant of the bootstrap particle filter, where Nφ
t = 1 for all t. The particles

are mutated at each time t, but there are no intermediate bridge distributions.

A low r∗ delivers weighted particles with low variance, which all else equal are associated

with more precise Monte Carlo estimates. Of course, a low r∗ is also associated with many

bridge distributions, which increases the run time of the filter. At some point increasing

the number of tempering iterations further could in principle result in less precise estimates

because of the variability induced by the additional resampling and mutation steps. In

practice, we don’t find this to be an issue, and so r∗ works as a complement to M , with

both having a trade-off between statistical precision and computational cost. In Section 4

we examine the effects of different choices of M and r∗ in two DSGE models.

The other two tuning parameters, namely, the initial scaling of the proposal covariance

matrix c∗ and the number of RWMH steps NMH , are less important. If there are many

bridge distributions, the influence of the initial scaling factor c∗ is diminished because it is

adjusted in each subsequent iteration. While many intermediate RWMH steps help to ensure

that the particles are both diverse and well-adapted to any given bridge distribution, often

this effect can be achieved by choosing a lower r∗. Of course, this is not to say that c∗ and

NMH do not affect the variance of the Monte Carlo estimates. In any particular application,

experimentation with these parameters may enhance the performance of the algorithm.

Finally, we could replace the draws of ε̃j,1t from the innovation distribution Fε(·) in



15

Step 2(a)i of Algorithm 1 with draws from a tailored distribution with density g1
t (ε̃

j,1
t |s

j,Nφ
t−1

t−1 )

and then adjust the incremental weight ω̃j,1t by the ratio pε(ε̃
j,1
t )/g1

t (ε̃
j,1
t |s

j,Nφ
t−1

t−1 ), as it is done

in the generalized version of the particle filter. Here the gt(·) density might be constructed

based on a linearized version of the DSGE model or be obtained through the updating steps

of a conventional nonlinear filter, such as an extended Kalman filter, unscented Kalman fil-

ter, or a Gaussian quadrature filter; see Herbst and Schorfheide (2015). Thus, the proposed

tempering steps can be used either to relieve the user from the burden of having to construct

a g1
t (ε̃

j,1
t |s

j,Nφ
t−1

t−1 ) in the first place, or it could be used to improve upon the accuracy obtained

with a readily available g1
t (ε̃

j,1
t |s

j,Nφ
t−1

t−1 ).

2.4 Relationship to Conditionally-Optimal Particle Filter

We mentioned in the introduction that conditional on the sjt−1 particles it is optimal to

generate draws from the proposal distribution p(st|yt, st−1) given in (4). The tempered

particle filter generates a sequence of approximations pn(st, st−1|yt, Y1:t−1) that converge to

p(st, st−1|yt, Y1:t−1) as n −→ Nφ. This raises the question to what extent this filter can

achieve conditional optimality. Because p(st|yt, st−1) and pn(st, st−1|yt, Y1:t−1) are not the

same objects, we provide a comparison of the two approaches by embedding the conditionally-

optimal proposal distribution into Algorithm 1.

Suppose in Step 2(a)i we draw s̃j,1t,∗ (we are using the ∗ subscript to indicate draws and

weights associated with the conditionally-optimal proposal) from

p1(st|yt, s
j,Nφ

t−1

t−1 ) ∝ p1(yt|st)p(st|s
j,Nφ

t−1

t−1 ), (26)

where p1(yt|st) is based on scaling the precision of the measurement errors by φ1,t.
8 The

incremental weights for s̃j,1t,∗ are given by

w̃j,1t,∗ = p1(yt|s̃j,1t,∗)
p(s̃j,1t,∗|s

j,Nφ
t−1

t−1 )

p1(s̃j,1t,∗|yt, s
j,Nφ

t−1

t−1 )
= p1(yt|s

j,Nφ
t−1

t−1 ). (27)

For every choice φ̃1 of the measurement error precision, the variance of the w̃j,1t,∗ weights is

smaller than the variance of the weights w̃j,1t obtained under the bootstrap proposal, because

8If one can sample from the conditionally-optimal proposal for φn,t = 1, then it is reasonable to assume
that one can sample from this density for 0 < φn,t ≤ 1. This is certainly true for normally distributed
measurement errors.
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the conditionally-optimal proposal is designed to minimize the variance of the particle weights

conditional on the swarm {sj,N
φ
t−1

t−1 ,W
j,Nφ

t−1

t−1 }. Moreover, we know from (24) that the variance

of the particle weights is an increasing function of φ1,t. Thus, if we choose φ1,t adaptively

according to Step 1(a)iii of Algorithm 2 by targeting a specific variance of the particle weights

(or a particular inefficiency ratio), then it has to be the case that the precision chosen under

the conditionally-optimal proposal, say φ∗1,t, is larger (and closer to one) than the precision

φ1,t chosen under the bootstrap proposal.

This leads to the following conclusions: (i) if the variance of the w̃j,1t,∗ is sufficiently small,

then φ∗1,t = 1 and the tempering iterations become obsolete. (ii) If the variance of the w̃j,1t,∗ is

large enough such that φ∗1,t < 1, then, because φ∗1,t ≥ φ1,t, the tempered particle filter with

the conditionally-optimal proposal distribution will be more accurate than the tempered

particle filter based on the bootstrap proposal. The former will either use fewer iterations

to bridge the discrepancy between p1(st, st−1|Y1:t) and p(st, st−1|Y1:t) or it will use the same

number of iterations with smaller gaps between pn−1(st, st−1|Y1:t) and pn(st, st−1|Y1:t).

The implementation of the conditionally-optimal particle filter is typically infeasible in

practice. Thus, the tempered particle filter is meant to be a feasible alternative that domi-

nates the widely-used bootstrap particle filter. However, the discussion emphasizes an impor-

tant point made at the end of Section 2.3: if a better proposal than p(st|s
j,Nφ

t−1

t−1 ) is available,

then it should be used along with the tempering iterations.

3 Theoretical Properties of the Filter

We will now examine the asymptotic (with respect to the number of particles M) and finite

sample properties of the particle filter approximation of the likelihood function. Section 3.1

provides a SLLN, and Section 3.2 shows that the likelihood approximation is unbiased.

Detailed proofs are provided in the Online Appendix. Throughout this section, we will focus

on a version of the filter that is non-adaptive9, replacing Algorithm 2 by Algorithm 4 and

Algorithm 3 by Algorithm 5:

Algorithm 4 (Tempering Iterations – Non-Adaptive) This algorithm is identical to

Algorithm 2, with the exception that the tempering schedule {φn}Nφ

n=1 is pre-determined. The

9To simplify notation, we also assume that the tempering schedule is the same for all t. This assumption
can be easily relaxed as long as the tempering schedule remains predetermined. Asymptotic results for
adaptive SMC algorithms are available in the literature, e.g., Herbst and Schorfheide (2014) and Beskos,
Jasra, Kantas, and Thiery (2014).
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Do until φn,t = 1-loop is replaced by a For n = 1 to Nφ-loop and Step 1(a)iii is eliminated.

�

Algorithm 5 (RWMH Mutation Step – Non-Adaptive) This algorithm is identical

to Algorithm 3 with the exception that the sequence {cn}Nφ

n=1 is pre-determined. �

3.1 Asymptotic Properties

Under suitable regularity conditions, the Monte Carlo approximations generated by a particle

filter satisfy a SLLN and a CLT. Proofs for a generic particle filter are provided in Chopin

(2004). We will subsequently establish a SLLN for the tempered particle filter by modifying

the recursive proof developed by Chopin (2004) to account for the tempering iterations of

Algorithm 4. In this paper, we are primarily interested in establishing an almost-sure limit

for the Monte Carlo approximation of the likelihood function:

p̂(Y1:T ) =
T∏
t=1

p̂(yt|Y1:t−1)
a.s.−→

T∏
t=1

p1(yt|Y1:t−1)
Nφ∏
n=2

pn(yt|Y1:t−1)

pn−1(yt|Y1:t−1)

 = p(Y1:T ). (28)

Here we used pNφ(yt|Y1:t−1) = p(yt|Y1:t−1). The limit is obtained by letting the number of

particles M −→∞. We assume that the length of the sample T is fixed. We use C <∞ to

denote a generic finite constant.

As a by-product, we also derive an almost-sure limit for Monte Carlo approximations of

moments of the filtered states:

h̄nt =
1

M

M∑
j=1

h(sj,nt , sj,N
φ

t−1 )W j,n
t

a.s.−→
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1, (29)

where

pn(st, st−1|Y1:t) =
pn(yt|st)p(st|st−1)p(st−1|Y1:t−1)∫ ∫

pn(yt|st)p(st|st−1)p(st−1|Y1:t−1)dst−1dstdst−1

.

By integrating over st−1 we recover∫
pn(st, st−1|Y1:t)dst−1 = pn(st|Y1:t),

where pn(st|Y1:t) was previously introduced in (8). For technical reasons that will be ex-

plained below, we consider expectations of generic functions h(st, st−1) that may vary with
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both st and st−1.10 A special case is a function that is constant with respect to st−1. We

simply denote such a function by h(st).

To guarantee the almost-sure convergence, we need to impose some regularity conditions

on the functions h(st, st−1). We define the following classes of functions:

H1
t =

{
h(st, st−1)

∣∣∣∣ ∫ Ep(st|st−1)[|h(st, st−1)|]p(st−1|Y1:t−1)dst−1 <∞, (30)

∃δ > 0 s.t. fδ(st−1) = Ep(st|st−1)

[∣∣h(st, st−1)− Ep(st|st−1)[h(st, st−1)]
∣∣1+δ

]
< C,

g(st−1) = Ep(st|st−1)[h(st, st−1)] ∈ HNφ

t−1

}
and for n = 2, . . . , Nφ:

Hn
t =

{
h(st, st−1)

∣∣∣∣h(st, st−1) ∈ Hn−1
t , ∃δ > 0 s.t. (31)

fδ(ŝt, st−1) = EKn(st|ŝt;st−1)

[∣∣h(st, st−1)− EKn(st|ŝt,st−1)[h(st, st−1)]
∣∣1+δ

]
< C,

g(ŝt, st−1) = EKn(st|ŝt;st−1)[h(st, st−1)] ∈ Hn−1
t

}
.

Here Ep(st|st−1)[·] and EKn(st|ŝt,st−1)[·] are conditional expectations under the density p(st|st−1)

and the Markov transition kernel Kn(st|ŝt; st−1). By definition, Hñ
t ⊆ Hn

t for ñ > n. The

classes Hn
t are chosen such that the moment bounds that guarantee the almost sure con-

vergence of Monte Carlo averages of h(sj,nt , sj,N
φ

t−1 ) are satisfied. The key assumption here is

that there exists a uniform bound for the centered 1 + δ conditional moment of the function

h(st, st−1) under the state-transition density p(st|st−1) and the transition kernel of the muta-

tion step of Algorithm 5, Kn(st|ŝt; st−1). This will allow us to apply a SLLN to the particles

generated by the forward simulation of the model and the mutation step in the tempering

iterations.

For the class H1
1 to be properly defined according to (30), we need to define HNφ

0 . Let

H0 = HNφ

0 and note that Ep(s1|s0)[h(s1, s0)] is a function of s0 only. Thus, we define

H0 =

{
h(s0)

∣∣∣∣ ∫ |h(s0)|p(s0)ds0 <∞
}
. (32)

10Spoiler alert: we need the st−1 because the Markov transition kernel generated by Algorithm 4 (or
Algorithm 2) is invariant under the distribution pn(st|yt, st−1), which is conditioned on st−1, instead of the
distribution pn(st|Y1:t).
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Under the assumption that the initial particles are generated by i.i.d. sampling from p(s0),

the integrability conditions ensure that we can apply Kolmogorov’s SLLN. Notice that any

bounded function |h(·)| < C is an element of Hn
t for all t and n. Under the assumption that

the measurement errors have a multivariate normal distribution, the densities pn(yt|st) and

the density ratios pn(yt|st)/pn−1(yt|st) are bounded uniformly in st, which means that these

functions are elements of all Hn
t .

By changing the definition of the classesHn
t and requiring moments of order 2+δ to exist,

the subsequent theoretical results can be extended to a CLT following arguments in Chopin

(2004) and Herbst and Schorfheide (2014). The CLT provides a justification for computing

numerical standard errors from the variation of Monte Carlo approximations across multiple

independent runs of the filter.

3.1.1 Algorithm 1

To prove the convergence of the Monte Carlo approximations generated in Step 2(a) of

Algorithm 1, we can use well established arguments for the bootstrap particle filter, which we

adapt from the presentation in Herbst and Schorfheide (2015). We use
a.s.−→ to denote almost-

sure convergence as M −→∞. The starting point is the following recursive assumption:

Assumption 1 The particle swarm {sj,Nφ

t−1 ,W
j,Nφ

t−1 } generated by the period t−1 iteration of

Algorithm 1 approximates:

h̄N
φ

t−1 =
1

M

M∑
j=1

h(sj,N
φ

t−1 )W j,Nφ

t−1
a.s.−→

∫
h(st−1)p(st−1|Y1:t−1)dst−1 (33)

for functions h(st−1) ∈ HNφ

t−1.

In our statement of the recursive assumption, we only consider functions that vary with

st−1, which is why we write h(st−1) (instead of h(st−1, st−2)). As discussed previously, if the

filter is initialized by direct sampling from p(s0), then the recursive assumption is satisfied

for t = 1. We obtain the following convergence results:



20

Lemma 1 Suppose that Assumption 1 is satisfied. Then for h ∈ H1
t :

h̃1
t|t−1 =

1

M

M∑
j=1

h(s̃j,1t , s
j,Nφ

t−1 )W j,Nφ

t−1
a.s.−→

∫ ∫
h(st, st−1)p1(st, st−1|Y1:t−1)dstdst−1(34)

h̃1
t =

1
M

∑M
j=1 h(s̃j,1t , s

j,Nφ

t−1 )w̃j,1t W
j,Nφ

t−1

1
M

∑M
j=1 w̃

j,1
t W

j,Nφ

t−1

a.s.−→
∫ ∫

h(st, st−1)p1(st, st−1|Y1:t)dstdst−1 (35)

h̄1
t =

1

M

M∑
j=1

h(sj,1t , s
j,Nφ

t−1 )W j,1
t

a.s.−→
∫ ∫

h(st, st−1)p1(st, st−1|Y1:t)dstdst−1. (36)

Moreover,

p̂1(yt|Y1:t−1) =
1

M

M∑
j=1

w̃j,1t W
j,Nφ

t−1
a.s.−→

∫
p1(yt|st)p1(st|Y1:t−1)dst. (37)

3.1.2 Algorithm 4

The convergence results for the tempering iterations rely on the following recursive assump-

tion, which according to Lemma 1 is satisfied for n = 2.

Assumption 2 For n ≥ 2, the particle swarm {sj,n−1
t , sj,N

φ

t−1 ,W
j,n−1
t } generated by iteration

n− 1 of Algorithm 4 approximates:

h̄n−1
t =

1

M

M∑
j=1

h(sj,n−1
t , sj,N

φ

t−1 )W j,n−1
t

a.s.−→
∫ ∫

h(st, st−1)pn−1(st, st−1|Y1:t)dstdst−1 (38)

for functions h ∈ Hn−1
t .

The convergence results are stated in the following lemma:

Lemma 2 Suppose that Assumption 2 is satisfied. Then for n ≥ 2 and h ∈ Hn−1
t :

h̃nt =
1
M

∑M
j=1 h(sj,n−1

t , sj,N
φ

t−1 )w̃j,nt W j,n−1
t

1
M

∑M
j=1 w̃

j,n
t W j,n−1

t

(39)

a.s.−→
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1

ĥnt =
1

M

M∑
j=1

h(ŝj,nt , sj,N
φ

t−1 )W j,n
t

a.s.−→
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1. (40)
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Moreover,

1

M

M∑
j=1

w̃j,nt W j,n−1
t

a.s.−→ pn(yt|Y1:t−1)

pn−1(yt|Y1:t−1)
(41)

and for h ∈ Hn
t ,

h̄nt =
1

M

M∑
j=1

h(sj,nt , sj,N
φ

t−1 )W j,n
t

a.s.−→
∫ ∫

h(st, st−1)pn(st, st−1|Y1:t)dstdst−1. (42)

The convergence in (42) implies that the recursive Assumption 2 is satisfied for iteration

n+1 of Algorithm 4. Thus, we deduce that the convergence in (42) holds for n = Nφ. This, in

turn, implies that if the recursive Assumption 2 for Algorithm 1 is satisfied at the beginning

of period t, it will also be satisfied at the beginning of period t+ 1. Thus, Lemmas 1 and 2

yield almost-sure approximations of the likelihood increment for every period t = 1, . . . , T .

Because T is fixed and pNφ(yt|Y1:t−1) = p(yt|Y1:t−1), we obtain the following theorem:

Theorem 1 Consider the nonlinear state-space model (1) with Gaussian measurement er-

rors. Suppose that the initial particles are generated by i.i.d. sampling from p(s0). Then

the Monte Carlo approximation of the likelihood function generated by Algorithms 1, 4, 5 is

consistent in the sense of (28).

3.2 Unbiasedness

Particle filter approximations of the likelihood function are often embedded into posterior

samplers for the parameter vector θ, e.g., a Metropolis-Hastings algorithm or a SMC algo-

rithm; see Herbst and Schorfheide (2015) for a discussion and further references in the context

of DSGE models. A necessary condition for the convergence of the posterior sampler is that

the likelihood approximation of the particle filter is unbiased.

Theorem 2 Suppose that the tempering schedule is deterministic and that the number of

stages Nφ is the same for each time period t ≥ 1. Then, the particle filter approximation of

the likelihood generated by Algorithm 1 is unbiased:

E
[
p̂(Y1:T )

]
= E

 T∏
t=1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nt W j,n−1
t

) = p(Y1:T ). (43)
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Our proof of Theorem 2 (see Online Appendix) exploits the recursive structure of the

algorithm and extends the proof by Pitt, Silva, Giordani, and Kohn (2012) to account for

the tempering iterations.

4 DSGE Model Applications

We now assess the performance of the tempered particle filter (TPF) and the bootstrap par-

ticle filter (BSPF) based on the accuracy of the likelihood approximation.11 We consider two

models in the subsequent analysis. The first is a small-scale New Keynesian DSGE model

that comprises a consumption Euler equation, a New Keynesian Phillips curve, a monetary

policy rule, and three exogenous shock processes. The second model is the medium-scale

DSGE model by Smets and Wouters (2007), which is the core of many of the models that

are used in academia and at central banks. Detailed model descriptions are provided in the

Online Appendix. While the presentation of the algorithms has focused on the nonlinear

state-space model (1), the numerical illustrations are based on linearized versions of the

DSGE models. Linearized DSGE models (with normally distributed innovations) lead to a

linear Gaussian state-space representation. This allows us to use the Kalman filter to com-

pute the exact values of the likelihood function p(Y1:T |θ) and the filtered states E[st|Y1:t, θ].

We assess the accuracy of the particle filter approximations by studying the sampling

distribution of their output across Nrun independent runs. We focus on the distribution of

the log likelihood approximation error

∆̂ = ln p̂(Y1:T |θ)− ln p(Y1:T |θ). (44)

Because the particle filter approximation of the likelihood function is unbiased (see Theo-

rem 2), Jensen’s inequality applied to the concave logarithmic transformation implies that

the expected value of ∆̂ is negative. Because there is always a trade-off between accuracy

and speed, we also assess the run-time of the filters.12 The run-time of any particle filter

is sensitive to the exact computing environment used. Thus, we provide some information

about the implementation in the Online Appendix. In this regard, it is important to note

11Some results on each filter’s ability to track the filtered states are reported in the Online Appendix.
12The run-times reported below do not account for the fact that the user of the TPF might experiment

with the choice of tuning constants. Moreover, the computing times for both filters will increase if the linear
solution is replaced by a nonlinear solution. The larger the time it takes to solve the model, the smaller the
percentage reduction in combined run-time for solution and filter attainable by the TPF.
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that the tempered particle filter is designed to work with a small number of particles (i.e., on

a desktop computer). Therefore, we restrict the computing environment to a single machine,

and we do not try to leverage large-scale parallelism via a computing cluster, as in Gust,

Herbst, Lopez-Salido, and Smith (2017).

As described in Section 2.3, implementing the bootstrap particle filter requires choosing

the number of particles M , while the tempered particle filter requires additionally choosing

the tuning parameters r∗, c∗, and NMH . We discuss these choices and their effect on the

accuracy of the filters below. Results for the small-scale New Keynesian DSGE model are

presented in Section 4.1 and results for the Smets-Wouters model appear in Section 4.2.

4.1 A Small-Scale DSGE Model

We first use the BSPF and the TPF to evaluate the likelihood function associated with the

small-scale New Keynesian DSGE model used in Herbst and Schorfheide (2015). From the

perspective of the particle filter, the key feature of the model is that it has three observables

(output growth, inflation, and the federal funds rate). To facilitate the use of particle filters,

we augment the measurement equations by independent measurement errors, whose standard

deviations we set to be 20% of the standard deviation of the observables.13

Great Moderation Sample. The data span is 1983Q1 to 2002Q4, for a total of 80 obser-

vations for each series. We assess the performance of the particle filters for two parameter

vectors, which are denoted by θm and θl and tabulated in Table 1. The value θm is chosen as

a high likelihood point, close to the posterior mode of the model. The log likelihood at θm

is ln p(Y |θm) = −306.49. The second parameter value, θl, is chosen to be associated with a

lower log-likelihood value. Based on our choice, ln p(Y |θl) = −313.36. The sample and the

parameter values are identical to those used in Chapter 8 of Herbst and Schorfheide (2015).

We compare the BSPF with two variants of the TPF, which differ with respect to the

targeted inefficiency ratio: r∗ = 2 and r∗ = 3. For the BSPF, we use M = 40, 000 particles,

and for the TPF, we consider M = 4, 000 and M = 40, 000 particles, respectively. In

Algorithm 3, we use NMH = 1 Metropolis-Hastings steps and set the initial scale of the

proposal covariance matrix to c∗ = 0.3. We also report results for two related algorithms.

The first algorithm is the resample-move variant of the bootstrap particle filter (RMPF)

described in Section 2.3 which sets r∗ = ∞. This algorithm does not utilize any bridge

13The measurement error standard deviations are 0.1160 for output growth, 0.2942 for inflation, and 0.4476
for the interest rates.
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Table 1: Small-Scale Model: Parameter Values

Parameter θm θl Parameter θm θl

τ 2.09 3.26 κ 0.98 0.89
ψ1 2.25 1.88 ψ2 0.65 0.53
ρr 0.81 0.76 ρg 0.98 0.98
ρz 0.93 0.89 r(A) 0.34 0.19
π(A) 3.16 3.29 γ(Q) 0.51 0.73
σr 0.19 0.20 σg 0.65 0.58
σz 0.24 0.29 ln p(Y |θ) -306.5 -313.4

distributions, but unlike the BSPF it involves a mutation step that changes the particle

values. The second algorithm is the conditionally-optimal particle filter (COPF). While the

implementation of the COPF is generally infeasible for nonlinear DSGE models, in case of

a linearized model we can directly sample from p(st|yt, sjt−1) using a Kalman filter updating

step and compare the accuracy of the proposed TPF to this infeasible benchmark.

Figure 1 displays density estimates based on Nrun = 100 for the sampling distribution of

∆̂ associated with the BSPF and the four variants of the TPF for θ = θm (left panel) and

θ = θl (right panel). For θ = θm, the TPF (r∗ = 2) with M = 40, 000 (the green line) is

the most accurate of all the filters considered, with ∆̂ distributed tightly around zero. The

distribution of ∆̂ associated with TPF (r∗ = 3) with M = 40, 000 is slightly more disperse,

with a larger left tail, as the higher tolerance for particle inefficiency translates into a higher

variance for the likelihood estimate. Reducing the number of particles to M = 4, 000 for

both of these filters results in a higher variance estimate of the likelihood. The most poorly

performing TPF (with r∗ = 3 and M = 4, 000) is associated with a distribution for ∆̂ that

is similar to the one associated with the BSPF that uses M = 40, 000. Overall, the TPF

compares favorably with the BSPF when θ = θm. The performance differences become even

more stark when we consider θ = θl; depicted in the right panel of Figure 1. While the

sampling distributions indicate that the likelihood estimates are less accurate for all the

particles filters, the BSPF deteriorates by the largest amount. The TPF, by targeting an

inefficiency ratio, adaptively adjusts to account for the relatively worse fit of θl.

Table 2 displays summary statistics for the likelihood approximation errors as well as

information about the average number of stages and run time of each filter. We compute

the mean-squared error (MSE), the bias, and the variance of ∆̂ across Nrun = 200 runs. For

each r∗, we run two versions of the TPF: one with same number of particles as the BSPF
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Figure 1: Small-Scale Model: Distribution of Log-Likelihood Approximation Errors
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Notes: Density estimate of ∆̂ = ln p̂(Y1:T |θ) − ln p(Y1:T |θ) based on Nrun = 100 runs of the
particle filter.

(M = 40, 000) and one with M calibrated so that the respective TPF has approximately

the same run time as the BSPF. The results convey essentially the same story as Figure 1.

Using a resample-move step without the bridge distribution (RMPF) leads to only a slightly

more accurate likelihood estimate than the BSPF, despite having a sustantially longer run

time (we are using NMH = 10 for this algorithm). The generally infeasible COPF with

M = 400 particles is an order of magnitude more accurate than all the other filters. Thus,

while the use of the tempering iterations leads to a significant improvement in accuracy, it

remains substantially worse than the COPF. The results in Table 2 are comparable to those

reported in Table 8.2 of Herbst and Schorfheide (2015). For the COPF the numbers are very

similar, while for the BSPF the differences are a bit larger. The discrepancies are due to the

fact that we are computing the means and standard deviations of the approximation errors

based on “only” Nrun = 200 independent runs of the algorithms. In Table 8.2 of Herbst and

Schorfheide (2015) we also showed results for an auxiliary PF (see Pitt and Shephard (1999)

and Doucet and Johansen (2011)), but we found that the auxiliary PF did not improve much

over the BSPF.

The row labeled T−1
∑T

t=1N
φ
t shows the average number of tempering iterations asso-

ciated with each particle filter. The BSPF has, by construction, always an average of one.

When r∗ = 2, the TPFs uses on average 4.3 stages per time period. With a higher tolerance

for inefficiency, when r∗ = 3, the average number of stages falls to 3.2. Note that when con-

sidering θl, the TPF always uses a slightly larger number of stages, reflecting the relatively
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Table 2: Small-Scale Model: PF Summary Statistics

BSPF TPF RMPF COPF
Number of Particles M 40,000 7,000 8,500 40,000 40,000 40,000 400
Target Ineff. Ratio r∗ 2 3 2 3 ∞

High Posterior Density: θ = θm

MSE(∆̂) 6.49 1.77 2.63 0.26 0.32 4.90 0.14

Bias(∆̂) -1.52 -0.71 -0.90 -0.17 -0.16 -1.19 -0.11

Variance(∆̂) 4.18 1.27 1.82 0.23 0.29 3.48 0.12

T−1
∑T

t=1 Nφ,t 1.00 4.31 3.24 4.31 3.24 1.00 0.00
Average Run Time (sec) 0.48 0.52 0.48 2.92 2.26 2.05 0.02

Low Posterior Density: θ = θl

MSE(∆̂) 75.33 6.86 11.52 1.25 2.29 52.06 0.23

Bias(∆̂) -6.93 -1.94 -2.64 -0.49 -0.85 -5.86 -0.19

Variance(∆̂) 27.30 3.09 4.53 1.01 1.57 17.76 0.19

T−1
∑T

t=1 Nφ,t 1.00 4.36 3.29 4.35 3.28 1.00 0.00
Average Run Time (sec) 0.47 0.49 0.46 2.70 2.02 2.16 0.02

Notes: The results are based on Nrun = 200 independent runs of the particle filters. The log
likelihood discrepancy is defined as ∆̂ = ln p̂(Y1:T |θ)− ln p(Y1:T |θ).

worse fit of the model under θ = θl compared with θ = θm.

Table 2 also displays the average run time of each filter (in seconds). When using the same

number ofM = 40, 000 particles, the BSPF runs much more quickly than the TPFs, reflecting

the fact that the additional tempering iterations require many more likelihood evaluations,

in addition to the computational costs associated with the mutation phase. However, holding

computational time fixed, the TPFs deliver much more accurate approximations, as evident

in the results in columns (3) and (4). For θm the two configurations of the TPF are able to

achieve MSE reductions by 73% and 59%, respectively. For θl the MSE reductions increase

to 90% and 85% respectively.14

Great Recession Sample. We previously pointed out that the BSPF is very sensitive to

outliers. To examine the extent to which this is also true for the TPF, we re-run the previous

experiments on the sample 2003Q1 to 2013Q4. This period includes the Great Recession,

which was a large outlier from the perspective of the small-scale DSGE model (and most

other econometric models). Figure 2 plots the density of the approximation errors of the

14Some results on the accuracy of the filtered states are provided in the Online Appendix.
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Figure 2: Small-Scale Model: Distribution of Log-Likelihood Approximation Errors, Great
Recession Sample
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particle filters.

log likelihood estimates associated with each of the filters. The difference in the distribution

of approximation errors between the BSPF and the TPFs is massive. For θ = θm and

θ = θl, the approximation errors associated with the BSPF are concentrated in the range of

−200 to −300, almost two orders of magnitude larger than the errors associated with the

TPFs. This happens because the large drop in output in 2008Q4 is not predicted by the

forward simulation in the BSPF. In turn, the filter collapses, in the sense that the likelihood

increment in that quarter is estimated using essentially only one particle.

Table 3 tabulates the results for each of the filters. Consistent with Figure 2, the MSEs

associated with the log-likelihood estimate of the BSPF are 47, 534 and 79, 473 for θ = θm and

θ = θl, respectively, compared to 85 and 150 for the better of the two TPF configurations,

holding computational time fixed. If we increase the number of particles to M = 40, 000,

then for θ = θm the TPF (r∗ = 2) with has an MSE of 33, which is about 1,425 times smaller

than the BSPF and only raises the computational time by a factor of 10. A key driver of

this result is the adaptive nature of the TPF. While the average number of stages used is

about 5 for r∗ = 2 and 4 for r∗ = 3, for t = 2008Q4 – the period with the largest outlier –

the TPF uses about 15 stages, on average.

Figure 3 provides an illustration of why the TPF provides much more accurate approxima-

tions than the BSPF. We focus on one particular state, namely model-implied output growth,

which is observed output growth minus its measurement error. We focus on t = 2008Q4. The
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Table 3: Small-Scale Model: PF Summary Statistics – The Great Recession

BSPF TPF
Number of Particles M 40,000 5,500 7,000 40,000 40,000
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

MSE(∆̂) 47,533.80 85.02 143.88 33.37 66.99

Bias(∆̂) -215.22 -8.54 -11.49 -5.33 -7.74

Variance(∆̂) 1,215.88 12.08 11.78 4.94 7.08

T−1
∑T

t=1Nφ,t 1.00 5.13 3.88 5.10 3.86
Average Run Time (sec) 0.26 0.27 0.27 2.02 1.42

Low Posterior Density: θ = θl

MSE(∆̂) 79,473.19 150.63 244.44 64.03 116.84

Bias(∆̂) -278.88 -11.72 -15.14 -7.62 -10.47

Variance(∆̂) 1,700.42 13.25 15.14 5.92 7.20

T−1
∑T

t=1Nφ,t 1.00 5.36 4.06 5.32 4.04
Average Run Time (sec) 0.27 0.29 0.28 2.12 1.49

Notes: The results are based on Nrun = 200 independent runs of the particle filters. The log
likelihood discrepancy is defined as ∆̂ = ln p̂(Y1:T |θ)− ln p(Y1:T |θ).

Figure 3: Small-Scale Model: BSPF versus TPF in 2008Q4
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t , and true filtered density p(st|Y1:t) (red).

left panel depicts the BSPF approximations p̂(st|Y1:t−1) and p̂(st|Y1:t) as well as the “true”

density p(st|Y1:t). The BSPF essentially generates draws from the forecast density p̂(st|Y1:t−1)
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and reweights them to approximate the density p(st|Y1:t). In 2008Q4, these densities have

very little overlap. This implies that essentially one draw from the forecast density receives

all the weight and the BSPF filtered density is a point mass. This point mass provides a

poor approximation of p(st|Y1:t).

The right panel of Figure 3 displays a waterfall plot of density estimates p̂n(st|Y1:t) for

n = 1, . . . , Nφ
t = 15. The densities are placed on the y-axis at the corresponding value of

φn,t. The first iteration in the tempering phase has φ1,t = 0.002951, which corresponds to an

inflation of the measurement error variance by a factor over 300. This density looks similar

to the predictive distribution p(st|Y1:t−1), with a 1-step-ahead prediction for output growth

of about −1% (in quarterly terms). As we move through the iterations, φn,t increases slowly

at first and p̂n(st|Y1:t) gradually adds more density where st ≈ −2.5. Each correction step of

Algorithm 2 requires only modest reweighting of the particles and the mutation steps refresh

the particle values. The filter begins to tolerate relatively large changes from φn,t to φn+1,t,

as more particles lie in this region, needing only three stages to move from φn,t ≈ 0.29 to

1. Alongside p̂Nφ
t
(st|Y1:t) we also show the true filtered density in red, obtained from the

Kalman filter recursions. The TPF approximation at n = Nφ
t matches the true density

extremely well.

4.2 The Smets-Wouters Model

We next assess the performance of the tempered particle filter for the Smets and Wouters

(2007), henceforth SW, model. This model forms the core of the latest vintage of DSGE

models. We estimate the model over the period 1966Q1 to 2004Q4 using seven observables:

real per capita growth rates of output, consumption, investment, wages; hours worked;

inflation; and the federal funds rate. The SW model has a high-dimensional state space st

with more than a dozen state variables. The performance of the BSPF deteriorates quickly

due to the increased state space and the fact that it is much more difficult to predict seven

observables than it is to predict three observables with a DSGE model. As a consequence,

the estimation of nonlinear variants of the SW model has proven to be extremely difficult.

We compute the particle filter approximations conditional on two sets of parameter val-

ues: θm and θl. θm is the parameter vector associated with the highest likelihood value

among the draws that we generated with a posterior sampler. θl is a parameter vector that

attains a lower likelihood value. The log-likelihood difference between the two parameter

vectors is approximately 13. The standard deviations of the measurement errors are chosen
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Figure 4: Smets-Wouters Model: Distribution of Log-Likelihood Approximation Errors
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Notes: Density estimate of ∆̂ = ln p̂(Y1:T |θm) − ln p(Y1:T |θm) based on Nrun = 100 runs of
the particle filters and NMH = 10.

to be approximately 20% of the sample standard deviation of the time series.15 For compar-

ison purposes, the parameter values and the data are identical to the ones used in Chapter

8 of Herbst and Schorfheide (2015) and their values are tabulated in the Online Appendix.

For the small-scale New Keynesian model we only used one mutation step at each tem-

pering stage, i.e., NMH = 1, which worked well. After some experimentation with the SW

model, we increased the number of mutation steps to NMH = 10. This allows the particles

to better adapt to the current density because it increases the probability that their values

change. The subsequently-reported results are based on NMH = 10, whereas results for

NMH = 1 are relegated to the Online Appendix.

Figure 4 displays density estimates of the approximation errors associated with the log-

likelihood estimates under θ = θm and θ = θl. We use M = 40, 000 particles for the BSPF.

For the TPF, we use M = 4, 000 or M = 40, 000, consider r∗ = 2 and r∗ = 3 and set c∗ = 0.3

in the mutation step. Under both parameter values, the BSPF exhibits the most bias, with

its likelihood estimates substantially below the true likelihood value. The distribution of the

bias falls mainly between −400 and −100. Thus, drawing from the posterior distribution

of the SW model using a particle MCMC algorithm based on the BSPF, would be nearly

impossible. The TPFs perform better, although they also underestimate the likelihood by a

15The standard deviations for the measurement errors are 0.1731 (output growth), 0.1394 (consumption
growth), 0.4515 (investment growth), 0.1128 (wage growth), 0.5838 (log hours), 0.1230 (inflation), and 0.1653
(interest rates).
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Table 4: SW Model: PF Summary Statistics

BSPF TPF
Number of Particles M 40,000 2,000 2,800 40,000 40,000
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

MSE(∆̂) 63,881.68 1,164.15 1,135.35 57.79 93.05

Bias(∆̂) -245.64 -30.94 -30.41 -6.55 -8.51

Variance(∆̂) 3,543.79 206.58 210.51 14.92 20.56

T−1
∑T

t=1Nφ,t 1.00 6.12 4.69 6.07 4.68
Average Run Time (sec) 3.33 3.00 3.49 62.57 48.85

Low Posterior Density: θ = θl

MSE(∆̂) 69,612.88 1,489.59 1,993.62 108.39 191.56

Bias(∆̂) -255.06 -36.20 -41.66 -9.36 -12.36

Variance(∆̂) 4,559.09 179.24 258.30 20.82 38.88

T−1
∑T

t=1Nφ,t 1.00 6.18 4.76 6.14 4.71
Average Run Time (sec) 3.28 3.34 3.33 63.98 49.56

Notes: Results are based on Nrun = 200 independent runs of the particle filters and NMH =
10. The log likelihood discrepancy is defined as ∆̂ = ln p̂(Y1:T |θ)− ln p(Y1:T |θ).

large amount.

Table 4 underscores the results in Figure 4. The best-performing TPF reduces the MSE

in the log-likelihood approximation for θm from 63,881.68 to 58 for θm. This increased

performance comes at a computational cost: the TPF (r∗ = 2),M = 40, 000 filter takes

about 62 seconds, while the BSPF takes only about 3 seconds. However, even if we reduce

the number of particles for the TPFs to achieve approximately the same run time as the

BSPF (see columns 3 and 4), the TPFs come out ahead by a wide margin. Across the two

parameter values and the two filter specifications, the TPF still is able to reduce the MSE

by a factor of at least 35. We conclude that holding computational time fixed, tempering

leads to a significant improvement in the accuracy of the likelihood approximation.

5 Conclusion

We developed a particle filter that automatically adapts the proposal distribution for the

particles sjt to the current observation yt. We start with a forward simulation of the state-

transition equation under an inflated measurement error variance and then gradually reduce
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the variance to its nominal level. In each step, the particle values and weights change so

that the distribution slowly adapts to p(sjt |yt, sjt−1). We demonstrate in two DSGE model

applications that controlling for run time the algorithm generates significantly more accurate

approximations than the standard bootstrap particle filter, in particular in instances in

which the model generates very inaccurate one-step-ahead predictions of yt. The tempering

iterations can also be used to improve a particle filter with a more general initial proposal

distribution than the BSPF. Moreover, our filter can be easily embedded in particle MCMC

algorithms.
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nomic Models: A Likelihood Approach,” Review of Economic Studies, 74(4), 1059–1087.

Geweke, J., and B. Frischknecht (2014): “Exact Optimization By Means of Sequen-

tially Adaptive Bayesian Learning,” Mimeo.

Godsill, S. J., and T. Clapp (2001): “Improvement Strategies for Monte Carlo Particle

Filters,” in Sequential Monte Carlo Methods in Practice, ed. by A. Doucet, N. De Freitas,

and N. Gordon, pp. 139–158. Springer Verlag, New York.

Gordon, N., D. Salmond, and A. F. Smith (1993): “Novel Approach to Nonlinear/Non-

Gaussian Bayesian State Estimation,” Radar and Signal Processing, IEE Proceedings F,

140(2), 107–113.

Gust, C., E. Herbst, D. Lopez-Salido, and M. E. Smith (2017): “The Empirical

Implications of the Interest-Rate Lower Bound,” American Economic Review, forthcoming.



34

Herbst, E., and F. Schorfheide (2014): “Sequential Monte Carlo Sampling for DSGE

Models,” Journal of Applied Econometrics, 29(7), 1073–1098.

(2015): Bayesian Estimation of DSGE Models. Princeton University Press, Prince-

ton.

Jasra, A., D. A. Stephens, A. Doucet, and T. Tsagaris (2011): “Inference for Levy-

Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo,” Scandinavian

Journal of Statistics, 38, 1–22.

Johansen, A. M. (2016): “On Blocks, Tempering and Particle MCMC for Systems Iden-

tification,” Manuscript, University of Warwick.

Kollmann, R. (2015): “Tractable Latent State Filtering for Non-Linear DSGE Models

Using a Second-Order Approximation and Pruning,” Computational Economics, 45(2),

239–260.

Liu, J. S. (2001): Monte Carlo Strategies in Scientific Computing. Springer Verlag, New

York.

Neal, R. M. (1998): “Annealed Importance Sampling,” Technical Report, Department of

Statistics, University of Toronto, 9805.

Pitt, M. K., and N. Shephard (1999): “Filtering via Simulation: Auxiliary Particle

Filters,” Journal of the American Statistical Association, 94(446), 590–599.

Pitt, M. K., R. d. S. Silva, P. Giordani, and R. Kohn (2012): “On Some Properties

of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter,” Journal

of Econometrics, 171(2), 134–151.
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A Theoretical Derivations

A.1 Monotonicity of Inefficiency Ratio

Recall the definitions

ej,t =
1

2
(yt −Ψ(sj,n−1

t ))′Σ−1
u (yt −Ψ(sj,n−1

t ))

and

w̃j,nt (φn) =

(
φn
φn−1

)ny/2
exp[−(φn − φn−1)ej,t].

Provided that the particles had been resampled and W j,n−1
t = 1, the inefficiency ratio can

be manipulated as follows:

InEff(φn) =
1
M

∑M
j=1

(
w̃j,nt (φn)

)2(
1
M

∑M
j=1 w̃

j,n
t (φn)

)2

=

1
M

∑M
j=1

(
φn
φn−1

)ny
exp[−2(φn − φn−1)ej,t](

1
M

∑M
j=1

(
φn
φn−1

)ny/2
exp[−(φn − φn−1)ej,t]

)2

=
1
M

∑M
j=1 exp[−2(φn − φn−1)ej,t](

1
M

∑M
j=1 exp[−(φn − φn−1)ej,t]

)2

=
A1(φn)

A2(φn)
.

Note that for φn = φn−1, we obtain ESS(φn) = 1. We now will show that the inefficiency

ratio is monotonically increasing on the interval φn ∈ [φn−1, 1]. Differentiating with respect
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to φn yields (we use the superscript (1) to denote first derivatives):

InEff(1)(φn) =
A

(1)
1 (φn)A2(φn)− A1(φn)A

(1)
2 (φn)

[A2(φn)]2
,

where

A
(1)
1 (φn) = − 2

M

M∑
j=1

ej,t exp[−2(φn − φn−1)ej,t]

A
(1)
2 (φn) =

(
2

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)(
− 1

M

M∑
j=1

ej,t exp[−(φn − φn−1)ej,t]

)
.

The denominator in InEff(1)(φn) is always non-negative and strictly different from zero. Thus,

we can focus on the numerator:

A
(1)
1 (φn)A2(φn)− A1(φn)A

(1)
2 (φn)

=

(
− 2

M

M∑
j=1

ej,t exp[−2(φn − φn−1)ej,t]

)(
1

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)2

−
(

1

M

M∑
j=1

exp[−2(φn − φn−1)ej,t]

)(
2

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)

×
(
− 1

M

M∑
j=1

ej,t exp[−(φn − φn−1)ej,t]

)

= 2

(
1

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)

×
[(

1

M

M∑
j=1

exp[−2(φn − φn−1)ej,t]

)(
1

M

M∑
j=1

ej,t exp[−(φn − φn−1)ej,t]

)

−
(

1

M

M∑
j=1

ej,t exp[−2(φn − φn−1)ej,t]

)(
1

M

M∑
j=1

exp[−(φn − φn−1)ej,t]

)]
.

To simplify the notation, we now write ej instead of ej,t, let λ = φn − φn−1 ≥ 0, and

define

xj = exp[−(φn − φn−1)ej] =
1

exp[λej]
.
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Note that 0 < xj ≤ 1 and ej ≥ 0. We scale the numerator of InEff(1)(φn) by M3/2, which

leads to

M3

2

[
A(1)(φn)A2(φn)− A1(φn)A

(1)
2 (φn)

]
=

(
M∑
j=1

xj

)[(
M∑
j=1

x2
j

)(
M∑
j=1

ejxj

)
−
(

M∑
j=1

ejx
2
j

)(
M∑
j=1

xj

)]
.

Thus, the sign of InEff(1)(φn) is determined by the sign of

∆M =

(
M∑
j=1

ejxj

)(
M∑
j=1

x2
j

)
−
(

M∑
j=1

ejx
2
j

)(
M∑
j=1

xj

)
.

Consider the special case of M = 2:

∆M = +e1x1x
2
1 + e1x1x

2
2 + e2x2x

2
1 + e2x2x

2
2

−e1x
2
1x1 − e1x

2
1x2 − e2x

2
2x1 − e2x

2
2x2

= e1x1x2(x2 − x1) + e2x1x2(x1 − x2)

= x1x2(x2 − x1)(e1 − e2)

= x1x2

(
1

exp[λe2]
− 1

exp[λe1]

)
(e1 − e2)

≥ 0,

because for any λ ≥ 0

sign

(
1

exp[λe2]
− 1

exp[λe1]

)
= sign(e1 − e2).
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Now consider the general case:

∆M =
M∑
j=1

M∑
l=1

ejxjx
2
l −

M∑
j=1

M∑
l=1

ejx
2
jxl

=
M∑
j=1

∑
l 6=j

ejxjx
2
l −

M∑
j=1

∑
l 6=j

ejx
2
jxl

=
M∑
j=1

∑
l 6=j

ejxjxl(xl − xj)

=
M∑
j=1

∑
l<j

ejxjxl(xl − xj) +
M∑
l=1

∑
j<l

ejxjxl(xl − xj)

=
M∑
j=1

∑
l<j

ejxjxl(xl − xj) +
M∑
j=1

∑
l<j

elxlxj(xj − xl)

=
M∑
j=1

∑
l<j

ejxjxl(xl − xj)(ej − el)

The manipulations are similar to the case of M = 2. The first equality is obtained from the

definition of ∆M . The second equality is obtained by noticing that the j = l terms cancel.

In the third equality we combine the terms that arise in the two double summations. Now

imagine that the right-hand-side terms are arranged in a matrix where j is the row index

and l the column index:
0 e1x1x2(x2 − x1) e1x1x3(x3 − x1)

e2x2x1(x1 − x2) 0 e2x2x3(x3 − x2)

e3x3x1(x1 − x3) e3x3x2(x2 − x3) 0


The fourth equality is obtained by separately summing the terms below and above the di-

agonal. The fifth equality is obtained by switching the j and the l index in the second

summation. Finally, the last equality is obtained by combining the two double sums. Be-

cause,

sign

(
1

exp[λel]
− 1

exp[λej]

)
= sign(ej − el),
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we can deduce that

∆M ≥ 0

and conclude that the inefficiency ratio InEff(φn) is increasing in φn. �

A.2 Proofs for Section 3.1

The proofs in this section closely follow Chopin (2004) and Herbst and Schorfheide (2014).

Throughout this section, we will assume that h(·) is scalar and we use absolute values |h|
instead of a general norm ‖h‖. Extensions to vector-valued-h functions are straightforward.

We use C to denote a generic constant. We will make repeated use of the following moment

bound for r > 1

E
[∣∣X − E[X]

∣∣r] ≤ Cr
(
E
[∣∣X∣∣r]+

∣∣E[X]
∣∣r) (A.1)

≤ 2CrE
[∣∣X∣∣r],

where Cr = 1 for r = 1 and Cr = 2r−1 for r > 1. The first inequality follows from the Cr

inequality and the second inequality follows from Jensen’s inequality.

We will make use of the following SLLN (Markov, see White (2001) p. 33): Let {Zj} be

a sequence of independent random variables with finite means µj = E[Zj]. If for some δ > 0,∑∞
j=1 E

[
|Zj − µj|1+δ

]
/j1+δ < ∞, then 1

M

∑M
j=1 Zj − µj

a.s−→ 0. Note that E
[
|Zj − µj|1+δ

]
<

C <∞ implies that the summability condition is satisfied because
∑∞

j=1(1/j)1+δ <∞.

Recall that under a multivariate Gaussian measurement error distribution, the density

pn(yt|st) can be bounded from above. Thus, pn(yt|st) ∈ Hñ
t̃

and ω̃j,nt ∈ Hñ
t̃

for any t̃ and ñ.

Moreover, for any h(st, st−1) ∈ Hn
t , we can deduce that h̃(·) = h(·)ω̃j,nt ∈ Hn

t .

Proof of Lemma 1.

Part (i). The forward iteration of the state-transition equation amounts to drawing sjt

from the density p(st|sj,N
φ

t−1 ). Use E
p(st|sj,N

φ

t−1 )
[·] to denote expectations under this density and
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consider the decomposition:

h̃1
t|t−1 −

∫ ∫
h(st, st−1)p(st, st−1|Y1:t−1)dstdst−1 (A.2)

=
1

M

M∑
j=1

(
h(s̃j,1t , s

Nφ

t−1)− E
p(st|sj,N

φ

t−1 )
[h(st, s

j,Nφ

t−1 )]

)
W j,Nφ

t−1

+
1

M

M∑
j=1

(
E
p(st|sj,N

φ

t−1 )
[h(st, s

j,Nφ

t−1 )]W j,Nφ

t−1 −
∫ ∫

h(st, st−1)p(st, st−1|Y1:t−1)dstdst−1

)
= I + II.

We now show that terms I and II in (A.2) converge to zero. According to the above

definition

I =
1

M

M∑
j=1

(
h(s̃jt , s

j,Nφ

t−1 )− E
p(·|sj,N

φ

t−1 )
[h]

)
W j,Nφ

t−1 .

Here we used the abbreviation

Ep(·|st−1)[h] = Ep(st|st−1)[h(st, st−1)].

Conditional on the particles {sj,Nφ

t−1 ,W
j,Nφ

t−1 } the summands in term I form a triangular array

of mean-zero random variables that within each row are independently distributed. In Al-

gorithm 4 the particles were resampled during the t − 1 tempering iteration Nφ, such that

WNφ

t−1 = 1. Using the bound

Ep(st|st−1)

[∣∣h(st, st−1)− Ep(·|st−1)[h]
∣∣1+δ

]
< C <∞

implied by the definition of H1
t , we can apply the SLLN to deduce that term I

a.s.−→ 0.

The second term in (A.2) takes the form

II =
1

M

M∑
j=1

(
Ep(·|sjt−1)[h]−

∫ ∫
h(st, st−1)p(st, st−1|Y1:t−1)dstdst−1

)
.

The definition of H1
t implies that Ep(·|st−1)[h] ∈ HNφ

t−1. The almost-sure convergence to zero of

term II can now be deduced from the recursive Assumption 1. By combining the convergence
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results for terms I and II we have established (34).

Part (ii). The convergences in (35) and (37) follow immediately from the fact that p1(yt|st) ∈
H1
t . Moreover, if h(st, st−1) ∈ H1

t , then h(st, st−1)p1(yt|st) ∈ H1
t . Finally, p1(yt|st) > 0, which

implies that the almost-sure limit of the denominator in (35) is strictly positive.

Part (iii). To verify (36), let F̃t,1,M denote the σ-algebra generated by the particles {s̃j,1t , sj,N
φ

t−1 ,W
j,1
t }.

Moreover, define

E[h|F̃t,1,M ] =
1

M

M∑
j=1

h(s̃j,1t , s
j,Nφ

t−1 )W̃ j,1
t ,

and write

h̄1
t −

∫
h(st, st−1)p1(st, st−1|Y1:t)dst (A.3)

=
1

M

M∑
j=1

(
h(sj,1t , s

j,Nφ

t−1 )− E[h|F̃t,1,M ]
)

+

(
1

M

M∑
j=1

h(s̃j,1t , s
Nφ

t−1)W̃ j,1
t −

∫ ∫
h(st, st−1)p1(st, st−1|Y1:t)dstdst−1

)

=
1

M

M∑
j=1

(
h(sj,1t , s

j,Nφ

t−1 )− E[h|F̃t,1,M ]
)

+

(
h̃1
t −

∫ ∫
h(st, st−1)p1(st, st−1|Y1:t)dstdst−1

)
= I + II.

From (35), we can immediately deduce that term II converges to zero almost surely. Re-

call that we are resampling the pairs (s̃j,nt , sj,N
φ

t−1 ). Thus, under multinomial resampling the

h(sj,1t , s
j,Nφ

t )’s form a triangular array of i.i.d. random variables conditional on F̃t,1,M . Using

Kolmogorov’s SLLN for i.i.d. sequences, it suffices to verify for that

E
[∣∣h(sj,1t , s

j,Nφ

t )
∣∣ ∣∣∣∣ F̃t,1,M] <∞.
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We can manipulate the moment as follows

E
[∣∣h(sj,1t , s

j,Nφ

t−1 )
∣∣ ∣∣∣∣ F̃t,1,M] =

1

M

M∑
j=1

∣∣h(s̃j,1t , s
j,Nφ

t−1 )
∣∣W̃ j,1

t

a.s−→
∫ ∣∣h(st, st−1)

∣∣p1(st, st−1|Y1:t)dstdst−1 <∞.

Because h ∈ H1
t implies |h| ∈ H1

t , we obtain the almost-sure convergence from (35). �

Proof of Lemma 2.

Part (i). We begin by establishing the convergence of the approximations in (39) and (41).

Because for Gaussian measurement errors the incremental weights are bounded, for any

h(st, st−1) ∈ Hn−1
t :

w̃j,nt =
pn(yt|st)
pn−1(yt|st)

∈ Hn−1
t and h(st, st−1)

pn(yt|st)
pn−1(yt|st)

∈ Hn−1
t .

Moreover,

∫ ∫
h(st, st−1) pn(yt|st)

pn−1(yt|st)pn−1(st, st−1|Y1:t)dstdst−1∫ pn(yt|st)
pn−1(yt|st)pn−1(st|Y1:t)dst

(A.4)

=

∫ ∫
h(st, st−1) pn(yt|st)

pn−1(yt|st)
pn−1(yt|st)p(st,st−1|Y1:t−1)

pn−1(yt|Y1:t−1)
dstdst−1∫ pn(yt|st)

pn−1(yt|st)
pn−1(yt|st)p(st|Y1:t−1)

pn−1(yt|Y1:t−1)
dst

=

∫ ∫
h(st, st−1)pn(yt|st)p(st, st−1|Y1:t−1)dstdst−1∫

pn(yt|st)p(st|Y1:t−1)dst

=

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1.

The first equality is obtained by reversing Bayes Theorem and expressing the “posterior”

pn−1(st, st−1|Y1:t) as the product of “likelihood” pn−1(yt|st) and “prior” p(st, st−1|Y1:t−1) di-

vided by the “marginal likelihood” pn−1(yt|Y1:t−1). We then cancel the pn−1(yt|st) and the

marginal likelihood terms to obtain the second equality. Finally, an application of Bayes

Theorem leads to the third equality.

The recursive Assumption 2 in combination with (A.4) yields the almost-sure convergence

in (39) and (41). Recall that pNφ(yt|Y1:t−1) = p(yt|Y1:t−1) by construction and that an
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approximation of p1(yt|Y1:t−1) is generated in Step 2(a)iii of Algorithm 1. Together, this

leads to the approximation of the likelihood increment p(yt|Y1:t−1) in (23).

Part (ii). Resampling preserves the SLLN obtained for the correction step. Formally, the

convergence in (40) can be established with an argument similar to the one used in Step (iii)

of the proof of Lemma 1.

Part (iii). We begin with an outline of how to prove the convergence in (42) and will

subsequently provide some initially-omitted details. Abbreviate

EKn(·|ŝt;st−1)[h] = EKn(st|ŝt;st−1)[h(st, st−1)] =

∫
h(st, st−1)Kn(st|ŝt; st−1)dst,

which is a function of (ŝt, st−1). We can decompose the Monte Carlo approximation from

the mutation step as follows:

1

M

M∑
j=1

h(sj,nt , sj,N
φ

t−1 )W j,n
t −

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1 (A.5)

=
1

M

M∑
j=1

(
h(sj,nt , sj,N

φ

t−1 )− E
Kn(·|ŝj,nt ;sj,N

φ

t−1 )
[h]

)
W j,n
t

+
1

M

M∑
j=1

(
E
Kn(·|ŝj,nt ;sj,N

φ

t−1 )
[h]−

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1

)
W j,n
t

= I + II, say.

By construction, conditional on the particles {ŝj,nt , sj,N
φ

t−1 ,W
j,n
t }, term I is an average of

independent mean-zero random variables, which converges to zero.

The analysis of term II is more involved for two reasons. First, as previously highlighted,

E
Kn(·|ŝj,nt ;sj,N

φ

t−1 )
[h] is a function not only of ŝt but also of st−1. Second, while the invariance
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property (21) implies that

∫
EKn(·|ŝt;st−1)[h]pn(ŝt|yt, st−1)dŝt (A.6)

=

∫ (∫
h(st, st−1)Kn(st|ŝt; st−1)dst

)
pn(ŝt|yt, st−1)dŝt

=

∫
h(st, st−1)

(∫
Kn(st|ŝt; st−1)pn(ŝt|yt, st−1)dŝt

)
dst

=

∫
h(st, st−1)pn(st|yt, st−1)dst,

the summation over (ŝj,nt , sj,N
φ

t−1 ,W
j,n
t ) generates an integral with respect to pn(st, st−1|Y1:t)

instead of pn(st|yt, st−1); see (40).

To obtain the expected value of EKn(·|ŝt;st−1)[h] under the distribution pn(ŝt, st−1|Y1:t),

notice that

pn(st, st−1|Y1:t) = pn(st, st−1|yt, Y1:t−1) (A.7)

= pn(st|st−1, yt, Y1:t−1)p(st−1|yt, Y1:t−1)

= pn(st|st−1, yt)p(st−1|yt, Y1:t−1).

The last equality holds because, using the first-order Markov structure of the state-space

model, we can write

pn(st|yt, st−1, Y1:t−1) =
pn(yt|st, st−1, Y1:t−1)p(st|st−1, Y1:t−1)∫
pn(yt|st, st−1, Y1:t−1)p(st|st−1, Y1:t−1)dst

=
pn(yt|st)p(st|st−1)∫
pn(yt|st)p(st|st−1)dst

= pn(st|yt, st−1).
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Therefore, we obtain

∫ ∫
EKn(·|ŝt;st−1)[h]pn(ŝt, st−1|Y1:t)dŝtdst−1 (A.8)

=

∫ (∫
EKn(·|ŝt;st−1)[h]pn(ŝt|yt, st−1)dŝt

)
pn(st−1|yt, Y1:t−1)dst−1

=

∫ (∫
h(st, st−1)pn(st|yt, st−1)dst

)
pn(st−1|yt, Y1:t−1)dst−1

=

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1.

The first equality uses (A.7). The second equality follows from the invariance property (A.6).

For the third equality, we used (A.7) again. Thus, under suitable regularity conditions, term

II also converges to zero almost surely, which leads to the convergence in (42).

To complete the proof, we need to construct moment bounds for the terms I and II

that appear in (A.5). Under the assumption that the resampling step is executed at every

iteration n, term I takes the form:

I =
1

M

M∑
j=1

(
h(sj,nt , sj,N

φ

t−1 )− E
Kn(·|ŝj,nt ;sj,N

φ

t−1 )
[h]

)
.

Conditional on the σ-algebra generated by the particles of the selection step, term I is an

average of independently distributed mean-zero random variables. By virtue of h ∈ Hn
t , we

can deduce that, omitting the j and n superscripts,

EKn(·|ŝt;st−1)

[∣∣h(st, st−1)− EKn(·|ŝt;st−1)[h]
∣∣1+δ]

< C <∞.

Therefore, the SLLN implies that I
a.s.−→ 0. For term II, we have

II =
1

M

M∑
j=1

(
E
Kn(·|ŝj,nt ;sj,N

φ

t−1 )
[h]−

∫ ∫
h(st, st−1)pn(st, st−1|Y1:t)dstdst−1

)
.

Now define

ψ(ŝt, st−1) = EKn(·|ŝt;st−1)[h].
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The definition of Hn
t implies that ψ(ŝt, st−1) ∈ Hn−1

t . Thus, we can deduce from (40) that

II
a.s.−→ 0. �

A.3 Proofs for Section 3.2

The subsequent proof of the unbiasedness of the particle filter approximation uses Lemmas 3

and 5 below. Throughout this section, we use the convention that W j,0
t = W j,Nφ

t−1 . Moreover,

we often use the j subscript to denote a fixed particle as well as a running index in a sum-

mation. That is, we write aj/
∑M

j=1 a
j instead of aj/

∑M
l=1 a

l. We also define the information

set

Ft−1,n,M =
{

(sj,N
φ

0 ,W j,Nφ

0 ), (sj,11 ,W j,1
1 ), . . . , (sj,N

φ

1 ,W j,Nφ

1 ), . . . , (A.9)

(sj,1t−1,W
j,1
t−1), . . . , (sj,nt−1,W

j,n
t−1)
}M
j=1
.

A.3.1 Additional Lemmas

Lemma 3 Suppose that the incremental weights w̃j,nt are defined as in (9) and (16) and that

there is no resampling. Then

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)
=

1

M

M∑
j=1

Nφ∏
n=1

w̃j,nT

W j,Nφ

T−1 (A.10)

and

W j,Nφ

T−h−1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)
=

Nφ∏
n=1

w̃j,nT−h−1

W j,Nφ

T−h−2. (A.11)

Proof of Lemma 3. The lemma can be proved by induction. If there is no resampling,

then W j,n
t = W̃ j,n

t .

Part 1. The inductive hypothesis to show (A.10) takes the form

Nφ∏
n=n∗

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)
=

1

M

M∑
j=1

 Nφ∏
n=n∗

w̃j,nT

W j,n∗−1
T . (A.12)
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If the hypothesis is correct, then

Nφ∏
n=n∗−1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)
(A.13)

=

 1

M

M∑
j=1

 Nφ∏
n=n∗

w̃j,nT

W j,n∗−1
T

( 1

M

M∑
j=1

w̃j,n∗−1
T W j,n∗−2

T

)

=

 1

M

M∑
j=1

 Nφ∏
n=n∗

w̃j,nT

 w̃j,n∗−1
T W j,n∗−2

T

1
M

∑M
j=1 w̃

j,n∗−1
T W j,n∗−2

T

( 1

M

M∑
j=1

w̃j,n∗−1
T W j,n∗−2

T

)

=
1

M

M∑
j=1

 Nφ∏
n=n∗−1

w̃j,nT

W j,n∗−2
T .

The first equality follows from (A.12), and the second equality is obtained by using the

definition of W j,n∗−1
T .

It is straightforward to verify that the inductive hypothesis (A.12) is satisfied for n∗ = Nφ.

Setting n∗ = 1 in (A.12) and noticing that W j,0
T = W j,Nφ

T−1 leads the desired result.

Part 2. To show (A.11), we can use the inductive hypothesis

W j,Nφ

T−h−1

Nφ∏
n=n∗

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)
=

 Nφ∏
n=n∗

w̃j,nT−h−1

W j,n∗−1
T−h−1. (A.14)

If the inductive hypothesis is satisfied, then

W j,Nφ

T−h−1

Nφ∏
n=n∗−1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)
(A.15)

= W j,Nφ

T−h−1

Nφ∏
n=n∗

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)(
1

M

M∑
j=1

w̃j,n∗−1
T−h−1W

j,n∗−2
T−h−1

)

=

 Nφ∏
n=n∗

w̃j,nT−h−1

 w̃j,n∗−1
T−h−1W

j,n∗−2
T−h−1

1
M

∑M
j=1 w̃

j,n∗−1
T−h−1W

j,n∗−2
T−h−1

(
1

M

M∑
j=1

w̃j,n∗−1
T−h−1W

j,n∗−2
T−h−1

)

=

 Nφ∏
n=n∗−1

w̃j,nT−h−1

W j,n∗−2
T−h−1.
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For n∗ = Nφ the validity of the inductive hypothesis can be verified as follows:

W j,Nφ

T−h−1

(
1

M

M∑
j=1

w̃j,N
φ

T−h−1W
j,Nφ−1
T−h−1

)
(A.16)

=
w̃j,N

φ

T−h−1W
j,Nφ−1
T−h−1

1
M

∑M
j=1 w̃

j,Nφ

T−h−1W
j,Nφ−1
T−h−1

(
1

M

M∑
j=1

w̃j,N
φ

T−h−1W
j,Nφ−1
T−h−1

)
= w̃j,N

φ

T−h−1W
j,Nφ−1
T−h−1 .

Setting n∗ = 1 in (A.14) leads to the desired result. �

The following lemma simply states that the expected value of a sum is the sum of the

expected values, but it does so using a notation that we will encounter below.

Lemma 4 Suppose sj, j = 1, . . . ,M , is a sequence of random variables with density
∏M

j=1 p(s
j),

then

∫
· · ·
∫ (

1

M

M∑
j=1

f(sj)

)( M∏
j=1

p(sj)

)
ds1 · · · dsM =

1

M

M∑
j=1

∫
f(sj)p(sj)dsj.

Proof of Lemma 4. The statement is trivially satisfied for M = 1. Suppose that it is true

for M − 1, then

∫
· · ·
∫ (

1

M

M∑
j=1

f(sj)

)( M∏
j=1

p(sj)

)
ds1 · · · dsM (A.17)

=

∫
· · ·
∫ (

1

M
f(sM) +

M − 1

M

1

M − 1

M−1∑
j=1

f(sj)

)(
p(sM)

M−1∏
j=1

p(sj)

)
ds1 · · · dsM

=

(
1

M

∫
f(sM)p(sM)dsM

)M−1∏
j=1

∫
p(sj)dsj

+

(
M − 1

M

1

M − 1

M−1∑
j=1

∫
f(sj)p(sj)dsj

)∫
p(sM)dsM

=
1

M

M∑
j=1

∫
f(sj)p(sj)dsj, (A.18)

which verifies the claim for all M by induction. �
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Lemma 5 Suppose that the incremental weights w̃j,nt are defined as in (9) and (16) and

that the selection step is implemented by multinomial resampling for a predetermined set of

iterations n ∈ N . Then,

E

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)∣∣∣∣FT−1,Nφ,M

 =
1

M

M∑
j=1

p(yT |sj,N
φ

T−1 )W j,Nφ

T−1 (A.19)

and

1

M

M∑
j=1

E

p(YT−h:T |sj,N
φ

T−h−1)W j,Nφ

T−h−1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)∣∣∣∣FT−h−2,Nφ,M

 (A.20)

=
1

M

M∑
j=1

p(YT−h−1:T |sj,N
φ

T−h−2)W j,Nφ

T−h−2.

Proof of Lemma 5. We first prove the lemma under the assumption of no resampling, i.e.,

N = ∅. We then discuss how the proof can be modified to allow for resampling.

Part 1 (No Resampling). We deduce from Lemma 3 that

E
[ Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)∣∣∣∣FT−1,Nφ,M

]
=

1

M

M∑
j=1

E
[Nφ∏

n=1

w̃j,nT

W j,Nφ

T−1

∣∣∣∣FT−1,Nφ,M

]
.

(A.21)

The subsequent derivations focus on the evaluation of the expectation on the right-hand

side of this equation. We will subsequently integrate over the particles s1:M,1
T , . . . , s1:M,Nφ−1

T ,

which enter the incremental weights w̃j,nT . We use s1:M,n
T to denote the set of particle values

{s1,n
T , . . . , sM,n

T }. Because W j,Nφ

T−1 ∈ FT−1,Nφ,M it suffices to show that

E
[Nφ∏

n=1

w̃j,nT

∣∣∣∣FT−1,Nφ,M

]
= p(yT |sj,N

φ

T−1 ). (A.22)
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Recall that the initial state particle sj,1T is generated from the state-transition equation

p(sT |sj,N
φ

T−1 ). The first incremental weight is defined as

w̃j,1T = p1(yT |sj,1T ).

The incremental weight in tempering iteration n is given by

w̃j,nT =
pn(yT |sj,n−1

T )

pn−1(yT |sj,n−1
T )

.

Because we are omitting the selection step, the new particle value is generated in the mutation

step by sampling from the Markov transition kernel

sj,nT ∼ Kn(snT |sj,n−1
T , sj,N

φ

T−1 ), (A.23)

which has the invariance property

pn(sT |yT , sT−1) =

∫
Kn(sT |ŝT ; sT−1)pn(ŝT |yT , sT−1)dŝT . (A.24)

Using the previous notation, we can write

E

Nφ∏
n=1

w̃j,nT

∣∣∣∣FT−1,Nφ,M

 (A.25)

=

∫
· · ·
∫ Nφ∏

n=3

pn(yT |sj,n−1
T )

pn−1(yT |sj,n−1
T )

Kn−1(sj,n−1
T |sj,n−2

T , sj,N
φ

T−1 )


×p2(yT |sj,1T )

p1(yT |sj,1T )
p1(yT |sj,1T )p(sj,1T |sj,N

φ

T−1 )dsj,1T · · · dsj,N
φ−1

T .

The bridge posterior densities were defined as

pn(st|yt, st−1) =
pn(yt|st)p(st|st−1)

pn(yt|st−1)
, pn(yt|st−1) =

∫
pn(yt|st)p(st|st−1)dst. (A.26)
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Using the invariance property of the transition kernel in (A.24) and the definition of the

bridge posterior densities, we deduce that

∫
Kn−1(sj,n−1

T |sj,n−2
T , sj,N

φ

T−1 )pn−1(yT |sj,n−2
T )p(sj,n−2

T |sj,Nφ

T−1 )dsj,n−2
T (A.27)

=

∫
Kn−1(sj,n−1

T |sj,n−2
T , sj,N

φ

T−1 )pn−1(sj,n−2
T |yT , sj,N

φ

T−1 )pn−1(yT |sj,N
φ

T−1 )dsj,n−2
T

= pn−1(sj,n−1
T |yT , sj,N

φ

T−1 )pn−1(yT |sj,N
φ

T−1 )

= pn−1(yT |sj,n−1
T )p(sj,n−1

T |sj,Nφ

T−1 ).

The first equality follows from Bayes Theorem in (A.26). The second equality follows from

the invariance property of the transition kernel. The third equality uses Bayes Theorem

again.

We can now evaluate the integrals in (A.25). Consider the terms involving sj,1T :

∫
K2(sj,2T |sj,1T , sj,N

φ

T−1 )
p2(yT |sj,1T )

p1(yT |sj,1T )
p1(yT |sj,1T )p(sj,1T |sj,N

φ

T−1 )dsj,1T (A.28)

=

∫
K2(sj,2T |sj,1T , sj,N

φ

T−1 )p2(yT |sj,1T )p(sj,1T |sj,N
φ

T−1 )dsj,1T

= p2(yT |sj,2T )p(sj,2T |sj,N
φ

T−1 ).

Thus,

E

Nφ∏
n=1

w̃j,nT

∣∣∣∣FT−1,Nφ,M

 (A.29)

=

∫
· · ·
∫ Nφ∏

n=4

pn(yT |sj,n−1
T )

pn−1(yT |sj,n−1
T )

Kn−1(sj,n−1
T |sj,n−2

T , sj,N
φ

T−1 )


×p3(yT |sj,2T )

p2(yT |sj,2T )
p2(yT |sj,2T )p(sj,2T |sj,N

φ

T−1 )dsj,2T · · · dsj,N
φ−1

T

=

∫
pNφ(yT |sj,N

φ−1
T )

pNφ−1(yT |sj,N
φ−1

T )
pNφ−1(yT |sj,N

φ−1
T )p(sj,N

φ−1
T |sj,Nφ

T−1 )dsj,N
φ−1

T

= p(yT |sj,N
φ

T−1 ).
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The first equality follows from (A.28). The second equality is obtained by sequentially

integrating out sj,2T , . . . , s
j,Nφ−2

T , using a similar argument as for sj,1T . This proves the first

part of the lemma.

Part 2 (No Resampling). Using Lemma 3, we write

E
[
p(YT−h:T |sj,N

φ

T−h−1, θ)W
j,Nφ

T−h−1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)∣∣∣∣FT−h−2,Nφ,M

]

= E
[
p(YT−h:T |sj,N

φ

T−h−1, θ)

Nφ∏
n=1

w̃j,nT−h−1

W j,Nφ

T−h−2

∣∣∣∣FT−h−2,Nφ,M

]
(A.30)

To prove the second part of the lemma, we slightly modify the last step of the integration

in (A.29):

E

p(YT−h:T |sj,N
φ

T−h−1)

Nφ∏
n=1

w̃j,nT−h−1

∣∣∣∣FT−2,Nφ,M

 (A.31)

=

∫
p(YT−h:T |sj,N

φ

T−h−1)pNφ(yT−h−1|sj,N
φ−1

T−h−1)p(sj,N
φ−1

T−h−1 |sj,N
φ

T−h−2)dsj,N
φ−1

T−h−1

= p(YT−h−1:T |sj,N
φ

T−h−2),

as required.

Part 1 (Resampling in tempering iteration n̄). We now assume that the selection step is

executed once, in iteration n̄, i.e., N = {n̄}. For reasons that will become apparent subse-

quently, we will use i subscripts for particles in stages n = 1, . . . , n̄− 1. Using Lemma 3, we

deduce that it suffices to show:

E
[( n̄−1∏

n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))(
1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)
(A.32)

×
(

1

M

M∑
j=1

( Nφ∏
n=n̄+1

w̃j,nT

)
W j,n̄
T

)∣∣∣∣FT−1,Nφ,M

]

=
1

M

M∑
j=1

p(yT |sj,N
φ

T−1 )W j,Nφ

T−1 .
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To evaluate the expectation, we need to integrate over the particles s1:M,1
T , . . . , s1:M,Nφ

T as well

as the particles ŝ1:M,n̄
T generated during the selection step. We have to distinguish two cases:

Case 1, n 6= n̄ : sj,nT ∼ Kn(sj,nT |sj,n−1
T , sj,N

φ

T ), j = 1, . . . ,M

Case 2, n = n̄ : sj,nT ∼ Kn(sj,nT |ŝj,nT , sj,N
φ

T ), j = 1, . . . ,M ;

ŝj,nT ∼MN
(
s1:M,n−1
T , W̃ 1:M,n

T

)
, j = 1, . . . ,M

where MN(·) here denotes the multinomial distribution.

In a preliminary step, we are integrating out the particles ŝ1:M,n̄
T . These particles enter the

Markov transition kernel Kn̄(sj,n̄T |ŝj,n̄T , sj,N
φ

T−1 ) as well as the conditional density p(ŝj,n̄T |s1:M,n̄−1
T ).

Under the assumption that the resampling step is executed using multinomial resampling,

p(ŝj,n̄T |s1:M,n̄−1
T ) =

1

M

M∑
i=1

W̃ j,n̄
T δ(ŝj,n̄T − si,n̄−1

T ),

where δ(x) is the Dirac function with the property that δ(x) = 0 for x 6= 0 and
∫
δ(x)dx = 1.

Integrating out the resampled particles yields

p(s1:M,n̄
T |s1:M,n̄−1

T ) (A.33)

=

∫ M∏
j=1

Kn̄(sj,n̄T |ŝj,n̄T , sj,N
φ

T−1 )

[
1

M

M∑
i=1

W̃ i,n̄
T δ(ŝj,n̄T − si,n̄−1

T )

]
dŝ1:M,n̄

T

=
M∏
j=1

∫
Kn̄(sj,n̄T |ŝj,n̄T , sj,N

φ

T−1 )

[
1

M

M∑
i=1

W̃ i,n̄
T δ(ŝj,n̄T − si,n̄−1

T )

]
dŝj,n̄T

=
M∏
j=1

[
1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

]
.

In the last equation, the superscript for sT−1 changes from j to i because during the resam-

pling, we keep track of the history of the particle. Thus, if for particle j = 1 the value ŝ1,n̄
T

is set to s3,n̄−1
T , we also use s3,Nφ

T−1 for this particle.
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We can now express the expected value, which we abbreviate as E , as the following

integral:

E = E
[( n̄−1∏

n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T−1

))(
1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)
(A.34)

×
(

1

M

M∑
j=1

( Nφ∏
n=n̄+1

w̃j,nT

)
W j,n̄
T

)∣∣∣∣FT−1,Nφ,M

]

=

∫
· · ·
∫ ( n̄−1∏

n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T−1

))(
1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)(
1

M

M∑
j=1

( Nφ∏
n=n̄+1

w̃j,nT

))

×
( n̄−1∏
n=1

M∏
j=1

Kn(si,nT |si,n−1
T , si,N

φ

T−1)

)( M∏
j=1

[
1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

])

×
( Nφ−1∏
n=n̄+1

M∏
j=1

Kn(sj,nT |sj,n−1
T , sj,N

φ

T−1 )

)
ds1:M,1

T · · · ds1:M,Nφ−1
T .

For the second equality, we used the fact that W j,n̄
T = 1.

Using Lemma 4, we can write

∫
· · ·
∫ (

1

M

M∑
j=1

( Nφ∏
n=n̄+1

w̃j,nT

)( Nφ−1∏
n=n̄+1

M∏
j=1

Kn(sj,nT |sj,n−1
T , sj,N

φ

T−1 )

)
ds1:M,n̄+1

T · · · ds1:M,Nφ−1
T

=
1

M

M∑
j=1

∫
· · ·
∫ ( Nφ∏

n=n̄+1

w̃j,nT

)( Nφ−1∏
n=n̄+1

Kn(sj,nT |sj,n−1
T , sj,N

φ

T−1 )

)
dsj,n̄+1

T · · · dsj,Nφ−1
T

=
1

M

M∑
j=1

F (sj,n̄T , sj,N
φ

T−1 ). (A.35)



Online Appendix A-21

Now consider the following integral involving terms that depend on s1:M,n̄
T :

I1 =

∫ (
1

M

M∑
j=1

F
(
sj,n̄T , sj,N

φ

T−1

))( 1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)
(A.36)

×
M∏
j=1

[
1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

]
ds1:M,n̄

T

=

(
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)[ 1

M

M∑
i=1

W̃ i,n̄
T Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

]
dsj,n̄T

)

×
(

1

M

M∑
j=1

w̃j,n̄T W j,n̄−1
T

)

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)[ 1

M

M∑
i=1

w̃i,n̄T W i,n̄−1
T Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

]
dsj,n̄T .

The first equality is the definition of I1. The second equality is a consequence of Lemma 4.

The last equality is obtained by recalling that

W̃ i,n̄
T =

w̃i,n̄T W i,n̄−1
T

1
M

∑M
i=1 w̃

i,n̄
T W i,n̄−1

T

.

We proceed in the evaluation of the expected value E by integrating over the particle

values s1:M,1
T , . . . , s1:M,n̄−1

T :

E =

∫
· · ·
∫
I1 ·
( n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))
(A.37)

×
( n̄−1∏
n=1

M∏
j=1

Kn(si,nT |si,n−1
T , si,N

φ

T−1)

)
ds1:M,1

T · · · ds1:M,n̄−1
T ,
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where

I1 ·
( n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))

=

(
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)[ 1

M

M∑
i=1

w̃i,n̄T W i,n̄−1
T Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

]
dsj,n̄T

)

×
( n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)[ 1

M

M∑
i=1

w̃i,n̄T W i,n̄−1
T

( n̄−1∏
n=1

(
1

M

M∑
i=1

w̃i,nT W i,n−1
T

))
×Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

]
dsj,n̄T

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)[ 1

M

M∑
i=1

w̃i,n̄T

( n̄−1∏
n=1

w̃i,nT

)
W i,Nφ

T−1

×Kn̄(sj,n̄T |si,n̄−1
T , si,N

φ

T−1)

]
dsj,n̄T .

The last equality follows from the second part of Lemma 3. Notice the switch from j to i

superscript for functions of particles in stages n < n̄. Thus,

E =
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

) ∫
· · ·
∫ [

1

M

M∑
i=1

w̃i,n̄T

( n̄−1∏
n=1

w̃i,nT

)
W i,Nφ

T−1 (A.38)

×Kn̄(sj,n̄T |si,n̄−1
T , si,N

φ

T−1)

]( n̄−1∏
n=1

M∏
i=1

Kn(si,nT |si,n−1
T , si,N

φ

T−1)

)
ds1:M,1

T · · · ds1:M,n̄−1
T dsj,n̄T

=
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)[ 1

M

M∑
i=1

∫
· · ·
∫ ( n̄∏

n=1

w̃i,nT

)
W i,Nφ

T−1

×Kn̄(sj,n̄T |si,n̄−1
T , si,N

φ

T−1)
n̄−1∏
n=1

Kn(si,nT |si,n−1
T , si,N

φ

T−1)dsi,1T · · · dsi,n̄−1
T

]
dsj,n̄T .

The second equality follows from Lemma 4. The calculations in (A.29) imply that

∫
· · ·
∫ ( n̄∏

n=1

w̃i,nT

)
W i,Nφ

T−1

n̄−1∏
n=1

Kn(si,nT |si,n−1
T , si,N

φ

T−1)dsi,1T · · · dsi,n̄−2
T (A.39)

= pn̄−1(yT |si,n̄−1
T )p(si,n̄−1

T |si,Nφ

T−1)W i,Nφ

T−1 .
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In turn,

E =
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)[ 1

M

M∑
i=1

∫
Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)

×pn̄(yT |si,n̄−1
T )p(si,n̄−1

T |si,Nφ

T−1)W i,Nφ

T−1 ds
i,n̄−1
T

]
dsj,n̄T

=
1

M

M∑
i=1

[
1

M

M∑
j=1

∫
F
(
sj,n̄T , sj,N

φ

T−1

)
Kn̄(sj,n̄T |si,n̄−1

T , si,N
φ

T−1)dsj,n̄T (A.40)

×pn̄(yT |si,n̄−1
T )p(si,n̄−1

T |si,Nφ

T−1)W i,Nφ

T−1 ds
i,n̄−1
T

]
=

1

M

M∑
i=1

∫
F
(
si,n̄T , s

i,Nφ

T−1

)
pn̄(yT |si,n̄T )p(si,n̄T |si,N

φ

T−1)W i,Nφ

T−1 ds
i,n̄
T

=
1

M

M∑
j=1

∫
· · ·
∫ ( Nφ∏

n=n̄+1

w̃j,nT

)( Nφ−1∏
n=n̄+1

Kn(sj,nT |sj,n−1
T , sj,N

φ

T−1 )

)
×pn̄(yT |sj,n̄T )p(sj,n̄T |sj,N

φ

T−1 )W j,Nφ

T−1 ds
j,n̄+1
T · · · dsj,Nφ−1

T pn̄(yT |sj,n̄T )p(sj,n̄T |sj,N
φ

T−1 )dsj,n̄T

=
1

M

M∑
j=1

p(yT |sj,N
φ

T−1 )W j,Nφ

T−1 .

The second equality is obtained by changing the order of two summations. To obtain the

third equality, we integrate out the si,n̄−1
T terms along the lines of (A.27). Notice that the

value of the integral is identical for all values of the j superscript. Thus, we simply set j = i

and drop the average. For the fourth equality, we plug in the definition of F
(
si,n̄T , s

i,Nφ

T−1

)
and

replace the i index with a j index. The last equality follows from calculations similar to

those in (A.29). This completes the analysis of Part 1.

Part 2 (Resampling in tempering iteration n̄). A similar argument as for Part 1 can be used

to extend the result for Part 2.

Resampling in multiple tempering iterations. The previous analysis can be extended to the

case in which the selection step is executed in multiple tempering iterations n ∈ N , assuming

that the set N does not itself depend on the particle system. �
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A.3.2 Proof of Main Theorem

Proof of Theorem 2. Suppose that for any h such that 0 ≤ h ≤ T − 1

E
[
p̂(YT−h:T |Y1:T−h−1, θ)|FT−h−1,Nφ,M

]
=

1

M

M∑
j=1

p(YT−h:T |sj,N
φ

T−h−1, θ)W
j,Nφ

T−h−1, (A.41)

where

p̂(YT−h:T |Y1:T−h−1, θ) =
T∏

t=T−h

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nt W j,n−1
t

) .

Then, by setting h = T − 1, we can deduce that

E
[
p̂(Y1:T |θ)|F0,Nφ,M

]
=

1

M

M∑
j=1

p(Y1:T |sj,N
φ

0 , θ)W j,Nφ

0 . (A.42)

Recall that for period t = 0, we adopted the convention that Nφ = 1 and assumed that the

states were initialized by direct sampling: sj,N
φ

0 ∼ p(s0) and W j,Nφ

0 = 1. Thus,

E
[
p̂(Y1:T |θ)

]
= E

[
E
[
p̂(Y1:T |θ)|F0,Nφ,M

]]
(A.43)

= E
[

1

M

M∑
j=1

p(Y1:T |sj,N
φ

0 , θ)W j,Nφ

0

]
=

∫
p(Y1:T |s0, θ)p(s0)ds0

= p(Y1:T |θ),

as desired.

In the remainder of the proof, we use an inductive argument to establish (A.41). If (A.41)
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holds for h, it also has to hold for h+ 1:

E
[
p̂(YT−h−1:T |Y1:T−h−2, θ)|FT−h−2,Nφ,M

]
= E

[
E
[
p̂(YT−h:T |Y1:T−h−1, θ)

∣∣FT−h−1,Nφ,M

]
p̂(yT−h−1|Y1:T−h−2, θ)

∣∣∣∣FT−h−2,Nφ,M

]
=

1

M

M∑
j=1

E
[
p(YT−h:T |sj,N

φ

T−h−1, θ)W
j,Nφ

T−h−1p̂(yT−h−1|Y1:T−h−2, θ)
∣∣FT−h−2,Nφ,M

]
=

1

M

M∑
j=1

E

p(YT−h:T |sj,N
φ

T−h−1, θ)W
j,Nφ

T−h−1

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT−h−1W
j,n−1
T−h−1

)∣∣∣∣FT−h−2,Nφ,M


=

1

M

M∑
j=1

p(YT−h−1:T |sj,N
φ

T−h−2, θ)W
j,Nφ

T−h−2.

Note that FT−h−2,Nφ,M ⊂ FT−h−1,Nφ,M . Thus, the first equality follows from the law of

iterated expectations. The second equality follows from the inductive hypothesis (A.41).

The third equality uses the definition of the period-likelihood approximation in (23) of Al-

gorithm 2. The last equality follows from the second part of Lemma 5.

We now verify that the inductive hypothesis (A.41) holds for h = 0. Using the definition

of p̂(yT |Y1:T−1, θ), we can write

E
[
p̂(yT |Y1:T−1, θ)|FT−1,Nφ,M

]
= E

Nφ∏
n=1

(
1

M

M∑
j=1

w̃j,nT W j,n−1
T

)∣∣∣∣FT−1,Nφ,M

 (A.44)

=
1

M

M∑
j=1

p(yT |sj,N
φ

T−1 )W j,Nφ

T−1 .

The second equality follows from the first part of Lemma 5. Thus, we can deduce that (A.41)

holds for h = T − 1 as required. This completes the proof. �
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B DSGE Models and Data Sources

B.1 Small-Scale DSGE Model

B.1.1 Equilibrium Conditions

We write the equilibrium conditions by expressing each variable in terms of percentage

deviations from its steady state value. Let x̂t = ln(xt/x) and write

1 = βEt
[
e−τ ĉt+1+τ ĉt+R̂t−ẑt+1−π̂t+1

]
(A.45)

0 =
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(A.46)

−βEt
[(
eπ̂t+1 − 1

)
e−τ ĉt+1+τ ĉt+ŷt+1−ŷt+π̂t+1

]
+

1− ν
νφπ2

(
1− eτ ĉt

)
eĉt−ŷt = e−ĝt − φπ2g

2

(
eπ̂t − 1

)2
(A.47)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t (A.48)

+(1− ρR)ψ2 (ŷt − ĝt) + εR,t

ĝt = ρgĝt−1 + εg,t (A.49)

ẑt = ρz ẑt−1 + εz,t. (A.50)

Log-linearization and straightforward manipulation of Equations (A.45) to (A.47) yield

the following representation for the consumption Euler equation, the New Keynesian Phillips

curve, and the monetary policy rule:

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
(A.51)

+ĝt − Et[ĝt+1]

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t
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where

κ = τ
1− ν
νπ2φ

. (A.52)

To construct a likelihood function, we have to relate the model variables to a set of ob-

servables yt. We use the following three observables for estimation: quarter-to-quarter per

capita GDP growth rates (YGR), annualized quarter-to-quarter inflation rates (INFL), and

annualized nominal interest rates (INT). The three series are measured in percentages, and

their relationship to the model variables is given by the following set of equations:

Y GRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt) (A.53)

INFLt = π(A) + 400π̂t

INTt = π(A) + r(A) + 4γ(Q) + 400R̂t.

The parameters γ(Q), π(A), and r(A) are related to the steady states of the model economy

as follows:

γ = 1 +
γ(Q)

100
, β =

1

1 + r(A)/400
, π = 1 +

π(A)

400
.

The structural parameters are collected in the vector θ. Since in the first-order approximation

the parameters ν and φ are not separately identifiable, we express the model in terms of κ,

defined in (A.52). Let

θ = [τ, κ, ψ1, ψ2, ρR, ρg, ρz, r
(A), π(A), γ(Q), σR, σg, σz]

′.

B.1.2 Data Sources

1. Per Capita Real Output Growth Take the level of real gross domestic product,

(FRED mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the Civilian

Non-institutional Population (FRED mnemonic “CNP16OV” / BLS series “LNS10000000”),
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call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Annualized Inflation. Take the CPI price level, (FRED mnemonic “CPIAUCSL”),

call it CPIt. Then,

Annualized Inflation = 400 ln

(
CPIt
CPIt−1

)
.

3. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-

FUNDS”), call it FFRt. Then,

Federal Funds Rate = FFRt.
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B.2 The Smets-Wouters Model

B.2.1 Equilibrium Conditions

The log-linearized equilibrium conditions of the Smets and Wouters (2007) model take the

following form:

ŷt = cy ĉt + iy ît + zyẑt + εgt (A.54)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 (A.55)

+
wlc(σc − 1)

σc(1 + h/γ)
(l̂t − Etl̂t+1)

− 1− h/γ
(1 + h/γ)σc

(r̂t − Etπ̂t+1)− 1− h/γ
(1 + h/γ)σc

εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etît+1 (A.56)

+
1

ϕγ2(1 + βγ(1−σc))
q̂t + εit

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 (A.57)

+(1− β(1− δ)γ−σc)Etr̂kt+1 − εbt
ŷt = Φ(αk̂st + (1− α)l̂t + εat ) (A.58)

k̂st = k̂t−1 + ẑt (A.59)

ẑt =
1− ψ
ψ

r̂kt (A.60)

k̂t =
(1− δ)
γ

k̂t−1 + (1− (1− δ)/γ)̂it (A.61)

+(1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

µ̂pt = α(k̂st − l̂t)− ŵt + εat (A.62)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ιp
1 + βγ(1−σc)

π̂t−1 (A.63)

− (1− βγ(1−σc)ξp)(1− ξp)
(1 + ιpβγ(1−σc))(1 + (Φ− 1)εp)ξp

µ̂pt + εpt
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r̂kt = l̂t + ŵt − k̂st (A.64)

µ̂wt = ŵt − σl l̂t −
1

1− h/γ (ĉt − h/γĉt−1) (A.65)

ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 (A.66)

+Etπ̂t+1) +
1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t

− (1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (λw − 1)εw)ξw
µ̂wt + εwt

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t )) (A.67)

+r∆y((ŷt − ŷ∗t )− (ŷt−1 − ŷ∗t−1)) + εrt .

The exogenous shocks evolve according to

εat = ρaε
a
t−1 + ηat (A.68)

εbt = ρbε
b
t−1 + ηbt (A.69)

εgt = ρgε
g
t−1 + ρgaη

a
t + ηgt (A.70)

εit = ρiε
i
t−1 + ηit (A.71)

εrt = ρrε
r
t−1 + ηrt (A.72)

εpt = ρrε
p
t−1 + ηpt − µpηpt−1 (A.73)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1. (A.74)
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The counterfactual no-rigidity prices and quantities evolve according to

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + zyẑ

∗
t + εgt (A.75)

ĉ∗t =
h/γ

1 + h/γ
ĉ∗t−1 +

1

1 + h/γ
Etĉ∗t+1 (A.76)

+
wlc(σc − 1)

σc(1 + h/γ)
(l̂∗t − Etl̂∗t+1)

− 1− h/γ
(1 + h/γ)σc

r∗t −
1− h/γ

(1 + h/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etî∗t+1

+
1

ϕγ2(1 + βγ(1−σc))
q̂∗t + εit (A.77)

q̂∗t = β(1− δ)γ−σcEtq̂∗t+1 − r∗t (A.78)

+(1− β(1− δ)γ−σc)Etrk∗t+1 − εbt
ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat ) (A.79)

k̂s∗t = k∗t−1 + z∗t (A.80)

ẑ∗t =
1− ψ
ψ

r̂k∗t (A.81)

k̂∗t =
(1− δ)
γ

k̂∗t−1 + (1− (1− δ)/γ)̂it (A.82)

+(1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit

ŵ∗t = α(k̂s∗t − l̂∗t ) + εat (A.83)

r̂k∗t = l̂∗t + ŵ∗t − k̂∗t (A.84)

ŵ∗t = σl l̂
∗
t +

1

1− h/γ (ĉ∗t + h/γĉ∗t−1). (A.85)
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The steady state (ratios) that appear in the measurement equation or the log-linearized

equilibrium conditions are given by

γ = γ̄/100 + 1 (A.86)

π∗ = π̄/100 + 1 (A.87)

r̄ = 100(β−1γσcπ∗ − 1) (A.88)

rkss = γσc/β − (1− δ) (A.89)

wss =

(
αα(1− α)(1−α)

Φrkss
α

) 1
1−α

(A.90)

ik = (1− (1− δ)/γ)γ (A.91)

lk =
1− α
α

rkss
wss

(A.92)

ky = Φl
(α−1)
k (A.93)

iy = (γ − 1 + δ)ky (A.94)

cy = 1− gy − iy (A.95)

zy = rkssky (A.96)

wlc =
1

λw

1− α
α

rkssky
cy

. (A.97)

The measurement equations take the form:

Y GRt = γ̄ + ŷt − ŷt−1 (A.98)

INFt = π̄ + π̂t

FFRt = r̄ + R̂t

CGRt = γ̄ + ĉt − ĉt−1

IGRt = γ̄ + ît − ît−1

WGRt = γ̄ + ŵt − ŵt−1

HOURSt = l̄ + l̂t.
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B.2.2 Data

The data cover 1966Q1 to 2004Q4. The construction follows that of Smets and Wouters

(2007). Output data come from the NIPA; other sources are noted in the exposition.

1. Per Capita Real Output Growth. Take the level of real gross domestic prod-

uct (FRED mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the

Civilian Non-institutional Population (FRED mnemonic “CNP16OV” and BLS series

“LNS10000000”) normalized so that its 1992Q3 value is 1 and call it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Per Capita Real Consumption Growth. Take the level of personal consumption

expenditures (FRED mnemonic “PCEC”), call it CONSt. Take the level of the GDP

price deflator (FRED mnemonic “GDPDEF”) and call it GDPPt. Then,

Per Capita Real Consumption Growth

= 100

[
ln

(
CONSt

GDPPtPOPt

)
− ln

(
CONSt−1

GDPPt−1POPt−1

)]
.

3. Per Capita Real Investment Growth. Take the level of fixed private investment

(FRED mnemonic “FPI”) and call it INVt. Then,

Per Capita Real Investment Growth

= 100

[
ln

(
INVt

GDPPtPOPt

)
− ln

(
INVt−1

GDPPt−1POPt−1

)]
.

4. Per Capita Real Wage Growth. Take the BLS measure of compensation per

hour for the nonfarm business sector (FRED mnemonic “COMPNFB” / BLS series
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“PRS85006103”) and call it Wt. Then,

Per Capita Real Wage Growth

= 100

[
ln

(
Wt

GDPPt

)
− ln

(
Wt−1

GDPPt−1

)]
.

5. Per Capita Hours Index. Take the index of average weekly nonfarm business hours

(FRED mnemonic / BLS series “PRS85006023”) and call it HOURSt. Take the number

of employed civilians (FRED mnemonic “CE16OV”), normalized so that its 1992Q3 value

is 1 and call it EMPt. Then,

Per Capita Hours = 100 ln

(
HOURStEMPt

POPt

)
.

The series is then demeaned.

6. Inflation. Take the GDP price deflator, then

Inflation = 100 ln

(
GDPPt
GDPPt−1

)
.

7. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-

FUNDS”) and call it FFRt. Then,

Federal Funds Rate = FFRt/4.
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C Computational Details

The code for this project is available at http://github.com/eph/tempered_pf. The appli-

cations in Section 4 were coded in Fortran and compiled using the Intel Fortran Compiler

(version: 13.0.0), including the math kernel library. The calculations in Algorithm 1, part

2(a)ii, Algorithm 2, part 1(a)i, and Algorithm 2, part 2(c) were implemented using OpenMP

(shared memory) multithreading.

http://github.com/eph/tempered_pf
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D Additional Numerical Results

D.1 Filtered States for Small-Scale DSGE Model

To document the accuracy of the filtered state, we consider the latent government spending

shock as a prototypical hidden state. Using the Kalman filter, we can compute E[ĝt|Y1:T ],

which we compare to the particle filter approximation, denoted by Ê[ĝt|Y1:T ]. Figure A-1 plots

root-mean-squared errors (RMSEs) for Ê[ĝt|Y1:T ]. The ranking of the filters is consistent with

the ranking based on the accuracy of the likelihood approximations. The BSPF performs

the worst. Using the TPF with M = 40, 000 particles reduces the RMSE roughly by a factor

of three.

Figure A-1: Small-Scale Model: Accuracy of Filtered State

1984 1989 1994 1999
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BSPF, M=40k
TPF(r*=2), M=40k
TPF(r*=3), M=40k

TPF(r*=2), M=4k
TPF(r*=3), M=4k

Notes: The figure depicts RMSEs associated with Ê[ĝt|Y1:t]. Results are based on Nrun = 100
independent runs of the particle filters.

D.2 Smets-Wouters Model

The parameters used for the likelihood evaluation of the SW model are summarized in

Table A-1.

In Table A-2 we report the accuracy statistics for the TPF with NMH = 1. Holding the

number of particles fixed at M = 40, 000 and reducing the number of mutation steps from
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Table A-1: SW Model: Parameter Values

θm θl θm θl

β̃ 0.159 0.182 π̄ 0.774 0.571
l̄ −1.078 0.019 α 0.181 0.230
σ 1.016 1.166 Φ 1.342 1.455
ϕ 6.625 4.065 h 0.597 0.511
ξw 0.752 0.647 σl 2.736 1.217
ξp 0.861 0.807 ιw 0.259 0.452
ιp 0.463 0.494 ψ 0.837 0.828
rπ 1.769 1.827 ρ 0.855 0.836
ry 0.090 0.069 r∆y 0.168 0.156
ρa 0.982 0.962 ρb 0.868 0.849
ρg 0.962 0.947 ρi 0.702 0.723
ρr 0.414 0.497 ρp 0.782 0.831
ρw 0.971 0.968 ρga 0.450 0.565
µp 0.673 0.741 µw 0.892 0.871
σa 0.375 0.418 σb 0.073 0.075
σg 0.428 0.444 σi 0.350 0.358
σr 0.144 0.131 σp 0.101 0.117
σw 0.311 0.382 ln p(Y |θ) −943.0 −956.1

Notes: β̃ = 100(β−1 − 1).

NMH = 10 to NMH = 1 speeds up the run time by a factor of three. Note that this is less

than you might expect, given the fact that the number of Metropolis-Hastings steps at each

iteration has decreased by a factor of ten. This reflects two things. First, the mutation phase

is easily parallelizable on a multi-core desktop computer. Second, a substantial fraction of

computational time is spent during the resampling (selection) phase, which is not affected

by increasing the number of Metropolis-Hastings steps.

To match the run times of the TPF(NMH = 1) with the run time of the BSPF(M =

40, 000) we reduce the number of particles to M = 8, 000 for θm and to M = 6, 000 for θl.

Compared to the results reported in the main text for NMH = 10 in Table 4, the number

of particles for the TPF is about 3 times larger. However, even with the larger number of

particles, the MSE of the log-likelihood approximation is a lot worse than what is obtained

with NMH = 10, highlighting the importance of the mutation.
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Table A-2: SW Model: PF Summary Statistics

BSPF TPF
Target Ineff. Ratio r∗ 2 3 2 3

High Posterior Density: θ = θm

Number of Particles M 40,000 8,000 8,000 40,000 40,000

MSE(∆̂) 63,881.68 11,349.01 18,676.99 3,858.63 5,911.39

Bias(∆̂) -245.64 -100.65 -128.98 -57.71 -72.92

Variance(∆̂) 3,543.79 1,219.55 2,041.44 527.94 594.46

T−1
∑T

t=1 Nφ,t 1.00 6.17 4.75 6.13 4.72
Average Run Time (sec) 3.33 3.97 3.01 22.41 17.54

Low Posterior Density: θ = θl

Number of Particles M 40,000 6,000 6,000 40,000 40,000

MSE(∆̂) 69,612.88 22,052.28 30,372.77 5,578.91 7,155.54

Bias(∆̂) -255.06 -142.43 -167.17 -71.37 -80.58

Variance(∆̂) 4,559.09 1,766.12 2,426.31 485.38 661.68

T−1
∑T

t=1 Nφ,t 1.00 6.26 4.81 6.22 4.77
Average Run Time (sec) 3.28 3.35 2.35 22.69 18.19

Notes: Results are based on Nrun = 100 independent runs of the particle filters and NMH =
1. The log likelihood discrepancy is defined as ∆̂ = ln p̂(Y1:T |θ)− ln p(Y1:T |θ).
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Dr. Sylvia Kaufmann

Journal of Econometrics, Guest Editor

Study Center Gerzensee

VIA EMAIL

RE: Revision Tempered Particle Filtering

Dear Sylvia:

We are very grateful for the conditional acceptance of our paper Tempered Particle Filtering

in the special issue of the Journal of Econometrics. Many thanks for your careful reading of

the draft and your suggestions on how to improve the manuscript.

We reduced the length of the paper from 41 pages to 34 pages (keeping the formatting

the same). Foremost, the reduction was achieved by moving some material from the theory

section (Section 3) as well as some tables and figures from the empirical section (Section 4)

into the Online Appendix. We also condensed the exposition throughout the manuscript. In

response to your specific comments, here is what we did.

Notation:

1. We now make use of t subscripts, writing φn,t and Nφ,t, except in parts where the

notation gets too cumbersome or where it is assumed that the tempering schedule is

fixed (Section 3).

2. We removed the M subscripts.

3. We re-wrote the description of Algorithm 2. In particular, we changed the termination

condition to φn,t = 1 as you suggested and re-wrote/re-formatted Step 1(a)iii, which

describes when the do-loop is terminated.

Typos:

1. We corrected the typos flagged in line items 1. – 10.
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11. We harmonized the use of the h(·) notation with and without arguments.

12. Lemma 1: we now refer to the first Monte Carlo average as h̃1
t|t−1, emphasizing that

this is an expectation given t−1 information. We also explicitly write in Lemma 2 that

the convergence results hold for n ≥ 2. The main issue is that the order of correction,

selection, and mutation is slightly different for n = 1.

13. We removed the ratio on the left-hand-side (it was essentially a labeling of the Monte

Carlo average). The notation did not look particularly nice and it was not used else-

where in the paper.

14. Done.

15. We fixed the notation. We meant to use A
(1)
2 to denote the first derivative of A2 with

respect to φn.

Finally, we adjusted the number of particles in columns 3 and 4 of Tables 2, 3, and 4 to

approximately equalize the run times of the TPFs and the BSPF(M = 40, 000). We feel

that the suggested edits led to an improved exposition and hope that we addressed your

comments in a satisfactory manner.

With best wishes,

Edward Herbst

Frank Schorfheide
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