
Structural Breaks in the Variance Process and the

Pricing Kernel Puzzle

Tobias Sichert∗

sichert@finance.uni-frankfurt.de

January 1, 2018

Abstract

Numerous empirical studies agree that the pricing kernel derived from option prices is
not monotonically decreasing in index returns, but disagree whether it is U-shaped or
S-shaped. This is not only empirically inconsistent, but the two observations also seem
theoretically incompatible. In particular, the S-shape is conflicting with most modern
asset pricing models. By providing novel time series evidence, this paper reconciles the
so far conflicting empirical results. I show that the finding of S-shaped pricing kernels
is spurious and is removed by including structural breaks in the data generating process
into the estimation. In the sample period from 1992-2015 I identify five different high or
low variance regimes. Conditional on the regime, the obtained pricing kernels appear U-
shaped, while the S-shaped pricing kernels consistently disappear. The results are robust
to numerous variations in the methodology. The empirical results can be explained by
a variance-dependent pricing kernel, with structural breaks as a necessary component.
Lastly, the results show that the fit of the option pricing model increases substantially
when breaks are introduced.
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1 Introduction

The stochastic discount factor is the central object of interest in modern asset pricing.

It conveys valuable information about the assessment of risks by investors and tells us

how real-world probabilities are transformed into risk-neutral probabilities. In models

with a representative investor, it additionally relates to the agent’s marginal utility and

therefore speaks about preferences.

A natural way to get closer to the object of interest and to learn about these funda-

mental economic questions is to look at the projection of the stochastic discount factor

on returns of a broad market index (called pricing kernel in the following), where the

latter serves as a proxy for aggregate wealth. While many classical theories, like the

CAPM predict that the pricing kernel is monotonically decreasing in returns, empirical

estimates show that this is not necessarily the case. This stylized fact is called the pricing

kernel puzzle and was first documented by Jackwerth (2000), Aı̈t-Sahalia & Lo (2000)

and Rosenberg & Engle (2002) and, since then, has been confirmed by many others.1

Most studies document that the pricing kernel plotted against returns has the shape

of a rotated S, meaning that it is generally downward-sloping but has a hump around

zero.2 The top left plot of Figure 1 illustrates the typical S-shape. Yet, some studies

find a U-shaped pricing kernel (Christoffersen et al. 2013), as illustrated in the bottom

left plot, and others find even both S- and U-shapes in their sample (Grith et al. 2013).

However, the two shapes are theoretically incompatible. Although many theoretical

models can explain either one of the shapes, neither can explain both.3 In addition,

the S-shape is incompatible with an economy with one representative investor and ra-

tional expectations, which is the backbone of most modern theoretical asset pricing

models.4 It is therefore not surprising that theoretical explanations for the S-shape

1The literature on the pricing kernel puzzle has become too large to fully describe here. For
more details see e.g. Cuesdeanu & Jackwerth (2016), which provide a great and comprehensive
overview on the existing empirical, theoretical and econometric literature on the pricing kernel
puzzle.

2E.g., Jackwerth (2000), Aı̈t-Sahalia & Lo (2000), Rosenberg & Engle (2002), Liu et al. (2009),
Polkovnichenko & Zhao (2013), Figlewski & Malik (2014), Beare & Schmidt (2016), Belomestny
et al. (2015) Cuesdeanu & Jackwerth (2016), Barone-Adesi et al. (2016) Grith et al. (2016).

3This is true for both potential ways of coexistence: the shapes could alternate over time, or
a combination of the two could be present at the same point in time, like a W-shape.

4This is because the investor would be better off by investing in the region adjacent of the
hump. However, this cannot be an equilibrium, since the representative investor by definition
has to hold all securities. Hence, prices have to adjust such that the investor is willing to hold
all assets. See e.g. Hens & Reichlin (2013) for a more elaborate discussion of this argument.
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Figure 1: Selected representative results

The figure shows the results for two representative years. The plots contain the
natural logarithm of estimated pricing kernels. The left columns shows the results
obtained with a standard GARCH model with fixed parameters. The right column
shows the results for the change-point GARCH model. Log-returns are on the hor-
izontal axis. The horizon is one month. 2005 is a typical low-volatility year, while
2009 is a typical high-volatility year.
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have to turn to heterogeneous investors (e.g. Ziegler (2007)), market incompleteness

(Hens & Reichlin 2013), probability misestimation (e.g. Polkovnichenko & Zhao (2013)),

reference-dependent preferences (Grith et al. 2016), or ambiguity aversion (Cuesdeanu

2016). However, none of the existing models can explain the hump in the S-shape with

a risk-factor. In contrast, the U-shape can be explained by the variance risk premium

(Christoffersen et al. 2013), which itself is empirically well established (e.g. Carr & Wu

(2009)). Branger et al. (2011) show that this explanation can also be obtained in a

general equilibrium framework with Epstein-Zin preferences and stochastic volatility.

Hence, any model that generates a variance risk premium can at least qualitatively also

generate a U-shaped pricing kernel. Altogether, in the existing literature the two differ-

ent shapes seem to pose two different puzzles. Their potential co-existence would be a

challenge for theory and would pose a third puzzle.

This paper attempts to reconcile the different empirical and conflicting theoretical

results. First, it provides novel evidence on the time series behavior of the pricing kernel

puzzle, which has not been subject to much research. In particular, this paper shows that

structural breaks in the data generating process are the reason why some researchers

find S-shaped pricing kernels. Hence, the estimation of S-shaped pricing kernels appears

to be the consequence of a measurement error due to a misspecification of the volatility

process. This is shown by comparing the results of a novel estimation technique with

the (nested) standard estimates. Second, the paper demonstrates that the structural

breaks are also necessary to obtain a robust economic explanation for the results. In

particular, a variance dependent pricing kernel matches the empirical findings only if

structural breaks are included in the model.

To estimate the pricing kernel from option prices, two key quantities are required: the

risk-neutral index return density implied by option prices and a physical return density

forecast. While standard methods exists for the estimation of the first, the second one

requires some parametric assumptions. The literature recognized early on that the key

ingredient to predicting return distributions is the volatility forecast. It is well known,

e.g., from the vast literature on GARCH models in finance, that volatility is time-varying

and clustered. While standard volatility models can only capture the first property, I

will show that the clustering is important too.

First, I estimate a change-point (CP) GARCH model to identify points where the

parameters of the GARCH process change. The potential existence of structural breaks

in GARCH processes has been known in the econometric literature for many years (e.g.

Diebold (1986)). Although the vast majority of studies on empirical pricing kernels apply
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a GARCH model to condition the estimation on contemporary market expectations,

the robustness to breaks has never been analyzed. I suggest a new GARCH model

with structural breaks, and in 25 years of S&P 500 return data I estimate five different

regimes that exhibit significantly different volatility dynamics. In particular, this regime-

switching structure is able to capture the clustering of volatility by identifying phases

where market volatility remains below its long-term average for many years, which is

not possible using a standard GARCH model.

Next, the paper studies the estimation of empirical pricing kernels in a long sam-

ple of S&P 500 options over the period 1996-2015. The analysis demonstrates that

standard methods relying on GARCH models with fixed parameters, tend to estimate

S-shaped pricing kernels in times of low variance, and U-shapes otherwise. Furthermore,

when replacing the standard GARCH with the CP-GARCH in the otherwise identical

methodology S-shaped pricing kernels disappear altogether. Figure 1 illustrates these

findings for two representative years. In 2005, a typical low-volatility year, the standard

estimates (top left) are S-shaped, and become U-shaped when the CP-GARCH model

is used (top right). In 2009, a typical high-volatility year, the standard estimates are

U-shaped, and they remain U-shaped with the new methodology.

The analysis further shows that a standard GARCH model provides biased multi-

period volatility forecasts and that this is the crucial driver behind the fact that many

studies find S-shaped pricing kernels. It turns out that the forecasts by the standard

GARCH model revert to the long-run mean too quickly and are not able to capture

market phases where volatility is very low over extended periods of time. The reverse is,

to a lesser extent, true for periods of high volatility. This leads to systematically biased

volatility estimates and therefore to biased forecasts of the physical return distribution.

The bias is much more prominent in times of low volatility, which is why S-shaped pricing

kernels are observed only during these times.

The intuitive explanation for the results is that the overestimated volatility leads to

a return distribution forecast that is too wide, and has too much probability mass in the

tails and too little in the center. The excess weight in the left tail is not strong enough

to change the downward sloping pattern, but the excess weight of the right tail makes

the estimated pricing kernel slope downward instead of upward. The corresponding lack

of probability mass in the center in turn causes the locally increasing part.

Furthermore, the empirical results are robust to numerous variations in the methodol-

ogy. While the benchmark analysis is kept as non-parametric as possible, the robustness

section includes the popular approach, where the physical density is obtained directly
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from a GARCH model simulation. Moreover, a VIX-based volatility forecast is studied

as well as a realized volatility model based on high frequency data. Lastly, I test differ-

ent popular GARCH model specifications, consider various time horizons and also vary

several other methodological details.

In the final part, I discuss several asset pricing implications of the results. First, in

contrast to the results of some studies that at best apply to an unconditional average

estimate of the pricing kernel, I examine the conditional pricing kernel. A simple example

demonstrates how results concerning the unconditional pricing kernel can be misleading

in the light of the new empirical evidence.

Second, I show that the findings are consistent with the explanation brought forward

by Christoffersen et al. (2013). The authors suggest a variance-dependent stochastic

discount factor, which is increasing in variance and decreasing in returns. Since volatility

is high both for high negative and high positive returns, the stochastic discount factor

is non-monotonic. The high negative variance risk premium causes the projection of

the stochastic discount factor on the index returns to be U-shaped. The analysis below

shows that the structural breaks are necessary to fit the model to the data. While

the approach without breaks fails to match the time-series properties of the empirical

pricing kernels, the new model fits the data very well. Also, the same analysis reveals

that the introduction of structural breaks increases the fit of the option pricing model

considerably. It appears that the bias in the multi-period volatility forecasts carries

over to the risk-neutral dynamics as well and makes option prices systematically biased

when using fixed parameters. In sum, the results help to identify the kind of asset

pricing model required to explain the joint pricing of options and the index, which is

still considered a major challenge in finance (Bates 1996).

Overall, the paper provides novel semi-parametric evidence on the time series behav-

ior of the pricing kernel puzzle. It shows that the canonical use of a standard GARCH

model with fixed parameters significantly biases the results and the often documented

S-shaped pricing kernels are not robust to the application of a GARCH process with

structural breaks. These results challenge the existence of S-shaped pricing kernels,

which has almost become consensus in the literature and is considered a stylized fact by

some. Furthermore, the results show that the presence of structural breaks is relevant

for several other economic applications. The findings are relevant for both researchers

and practitioners. On the one hand, they significantly reduce the complexity of the

pricing kernel puzzle by ruling out the typical S-shape. This provides valuable guidance

for theorists when validating the predictions of their models. On the other hand, the
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evidence on the behavior and relevance of volatility is of interest to market participants,

since volatility is an important quantity, for example in the context of option pricing.

The remainder of the paper proceeds as follows. Section 2 introduces the change-

point GARCH model. Section 3 presents the data, estimation methodology, estimation

results and the model fit. Section 4 shows the empirical pricing kernels obtained with

the new model and contrasts them with the standard findings. It furthermore provides

a detailed analysis of how the different GARCH models drive the results. Section 5

presents asset pricing implications and a model that explains the empirical findings.

Section 6 conducts several robustness checks and Section 7 concludes. The Appendix

collects methodological details, algorithms and additional tables and plots.

2 A GARCH Model with Structural Breaks

2.1 From standard GARCH to change-point GARCH

Three quantities are required to estimate conditional pricing kernels (PKs) empirically:

the risk-free rate, conditional risk-neutral probabilities and conditional physical (objec-

tive) probabilities.5 The estimation of the first is an easy task and, since the discounting

effects over typical horizons of one or a few months are low, it is not a crucial parameter

in any case. The estimation of the second quantity is not straightforward, but well es-

tablished and understood methods exist. The estimation of the conditional risk-neutral

probabilities from option prices is described in Section 4.2. The remaining third quan-

tity, however, the conditional physical probability, is not easily quantifiable and requires

a minimum of parametric assumptions. The chosen method to condition the constructed

estimate of the return distribution is later shown to be the force that drives the results.

Some of the first studies on the pricing kernel puzzle use a kernel density estimation

of past raw index returns on the S&P 500 (e.g. Jackwerth (2000), Aı̈t-Sahalia & Lo

(2000)). Many other studies agree that it is important to condition the estimate on

current market volatility (see e.g. Rosenberg & Engle (2002) or Beare & Schmidt (2016)),

5There are different ways to study empirical pricing kernels implied by option prices. Some
approaches, as for example the use of option return data, only allow to study an unconditional
pricing kernel. Studying a conditional pricing kernel, however, has at least two advantages.
Firstly, one is able to look at time series properties. Secondly, an unconditional pricing kernel,
which is an average of all conditional ones, could dampen or average out any local increases or
decrease (see also Section 5.1). There is also a group of studies that assume a specific functional
form of the pricing kernel. This usually restricts the shape one can find and sometimes also
hampers the study of conditional kernels.
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and almost all studies use a GARCH model for this. However, some econometric papers

(e.g. Diebold (1986), Mikosch & Stărică (2004)) suggest that a standard GARCH model

with fixed parameters does not fit a long time series very well. The high degree of

variance persistence, in particular for long time series, has been questioned. It is argued

that estimated dynamics close to a unit root process are caused by changes in the

parameters of the GARCH process, which are ignored if the model is specified with fixed

parameters. Hence, one potential solution is to allow for structural breaks where the

parameters of the GARCH model may change. Among others, the studies of Bauwens

et al. (2014), Augustyniak (2014) and Klaassen (2002) show that GARCH models with

switching parameters outperform the standard model both in- and out-of-sample.

2.2 Dynamics of the CP-GARCH model

One way to make the standard GARCH model more flexible is to use a change-point

(CP) model.6 Such a CP-GARCH model is laid out in the following. How the model is

used to construct a conditional return distribution is presented in Section 4.2.

There are two prominent GARCH models often used for modelling the dynamics of

stocks as well as for option pricing. The first is the NGARCH model of Duan (1995),

the second is the Heston-Nandi (HN) GARCH model of Heston & Nandi (2000). The

main analysis uses the HN-GARCH model because it convieniently allows for closed

form option priccing, and the robustness section shows that the results also hold for the

NGARCH model.7

The dynamics of the standard HN-GARCH model are:

ln
( St
St−1

)
= rt +

(
µ− 1

2

)
ht +

√
htzt, (1)

6A related and similar specification is a Markov switching model. See Appendix A for a
discussion for the relation of the CP model to the MS model in the context of the present study.

7The paper includes both versions for several reasons. Hsieh & Ritchken (2005) provide
evidence that the NGARCH model fits S&P 500 option prices better, especially out-of-the-money
contracts. Furthermore, the NGARCH model also fits the physical return distribution much
better, as can be seen by comparing the estimation results provided in Sections 5.2.6 and 6.6.
However, the HN-GARCH model allows for a closed form solution of the option price, while the
NGARCH model requires a numerical solution, usually based on Monte Carlo simulations. This
is of considerable relevance when estimating the model based on option prices. As a compromise,
the main analysis of the paper uses the HN-GARCH model. Some of the analysis is repeated
in the robustness section using the NGARCH model, and the results are very similar for both
models.
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ht = ω + α
(
zt−1 − γ

√
ht−1

)2
+ βht−1, (2)

zt ∼ N(0, 1), (3)

where S is the stock’s spot price, r is the daily continuously compounded interest rate,

z are return innovations and h is the conditional variance. The long-run variance of the

HN-GARCH model is:

E[ht] =
ω + α

1− β − αγ2
, (4)

and the expected variance over T days is:

E0

[
T∑
t=1

ht

]
= T · E[ht] + (h1 − E[ht])

1− (β + αγ2)T

1− (β + αγ2)
. (5)

The dynamics of the HN-GARCH model with structural breaks are:

ln
( St
St−1

)
= rt +

(
µyt −

1

2

)
ht +

√
htzt, (6)

ht = ωyt + βytht−1 + αyt

(
zt−1 − γyt

√
ht−1

)2
, (7)

zt ∼ N(0, 1),

where yt is an integer random variable taking values in [1, K + 1]. The latent state

process yt is first order Markovian with the absorbing and nonrecurrent transition matrix

P =



p11 1− p11 0 . . . 0 0

0 p22 1− p22 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . pKK 1− pKK
0 0 0 . . . 0 1


.

This transition matrix characterizes a change-point model (CP-GARCH) with K breaks.

A standard GARCH model with fixed parameters can be obtained by setting K = 0.

The economic interpretation of the change-point model is that there are different

regimes in the market, and when they end, fundamentals change. These changes are

so dramatic, that the standard and already dynamic model cannot capture them, but a

full new parametrisation of the model is required in each regime. The estimation below

9



shows that the identified regimes are on average 5-6 years long and are closely related

to business cycles.

3 Data, Model Estimation and Model Fit

3.1 Data

The data used to estimate both the fixed parameter and switching GARCH are daily

S&P 500 log returns (excluding dividends) from 02.01.1992 to 31.08.2015. The sample

is chosen to match the available option data from 02.01.1996 to 31.08.2015. The earlier

start date is used because the analysis on a longer sample shows that the regime that

prevails in 1996 starts around January 1992. As a robustness check, the fixed parameter

model is also estimated over the longer sample from 02.01.1986 to 30.06.2016 and the

obtained parameters are very similar. The risk-free rate is obtained from OptionMetrics

and the term structure is interpolated linearly.

3.2 Likelihood functions

3.2.1 Standard GARCH

For the Heston-Nandi GARCH model with fixed parameters a classical likelihood func-

tion based on daily returns is used. The conditional density function of the daily returns

is normal, so:

f(Rt|ht) =
1√

2πht
exp

(
−
(
Rt − rt −

(
µ− 1

2

)
ht
)2

2ht

)
, (8)

where Rt (rt) denotes the observed daily log stock return (daily continuously com-

pounded risk-free rate) at time t. The return log-likelihood is:

lnLR = −1

2

T∑
t=1

{
ln(2πht) +

(
Rt − rt −

(
µ− 1

2

)
ht

)2

/ht

}
. (9)

The physical variance is filtered from returns using:
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ht = ω + βht−1 + α
(
zt−1 − γ

√
ht−1

)2
,where

zt =

[
Rt − rt −

(
µ− 1

2

)
ht

]
/
√
ht,

h0 =
ω + α

1− β − αγ2
.

(10)

The optimal parameters are obtained from:

Θ = {ω, α, β, γ, µ} = arg max
Θ

lnLR. (11)

3.2.2 Change-point GARCH

For the change-point Heston-Nandi GARCH the likelihood of the observations, denoted

by g(R|Θ), is:

g(R|Θ) =
∑
y

g(R, y|Θ) =
∑
y

g(R|y,Θ)p(y|Θ) =

=
∑
y

[ T∏
t=1

1√
2πht

exp
(
−

(Rt − rt − (µtt − 1
2)ht)

2

2ht

)]
p(y|Θ),

(12)

where R = {R1, ..., RT } is the vector of returns and y = {y1, ...yT } is the vector of

regimes. The exact calculation of (12) is infeasible, but it is possible to obtain a good

approximation for it, which is discussed next.

3.3 Estimation Methodology

Sichert (2017) proposes an estimation algorithm for the change-point GARCH model

that uses particle filters, and both the Monte Carlo expectation-maximization algorithm

and the Monte Carlo maximum likelihood method to obtain the maximum likelihood

estimator (MLE).8 This hybrid algorithm, called Particle-MCEM-MCML, is based on

8GARCH models with switching parameters are notoriously difficult to estimate as a result
of the path dependence problem. This means that, due to the recursive nature of the GARCH
process, the conditional variance at any given point in time depends on the entire sequence
of regimes visited up to that point. To calculate the full likelihood function one would have to
integrate over all possible regime paths when computing the likelihood function. This is infeasible
since the number of possible paths grows linearly in the number of observations in the case of

11



the algorithms proposed by Augustyniak (2014) and Bauwens et al. (2014). The main

steps of the algorithm are repeated in Appendix D. For a more detailed discussion of

the approach as well as empirical studies the reader is referred to Sichert (2017). To

identify the optimal number of breaks the algorithm is run with the number of breaks

K = 2, ..., 10. Then the optimal number of breaks is chosen by the algorithm using the

Bayesian information criterion. Using the Aikaike information criterion would deliver

the same result. The optimal number of breaks

3.4 Model fit and properties

3.4.1 Estimation results

To the best of the author’s knowledge, there are no examples of an estimation of change-

point (or Markov-switching) Heston-Nandi GARCH model. Hence, a more detailed

analysis seems appropriate. Table 1 presents the estimation results. In the upper part,

the first column gives the parameters for the standard GARCH, while the remaining

columns contain the CP parameters for each regime. The section in the middle of the

table shows the degree of integration of each variance process as well as the annualized

long-run volatility implied by the parameters. The lower part of the table shows the log-

likelihoods of the estimates. The log-likelihood of the CP-GARCH model was calculated

using the particle filter methodology with 100,000 particles as in Bauwens et al. (2014),

which is accurate to the first decimal place. Last, two standard information criteria,

namely the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC) are provided. The optimal number of breaks is five, and the identified break dates

are 01.01.1992, 28.10.1996, 12.08.2003, 07.06.2007 and 29.11.2011, each being the first

date of the new regime.

When comparing the likelihood of the FP with the CP model, it becomes apparent

that the second one fits the data much better. This is of course expected if one adds more

parameters to the model. The two information criteria both correct the log-likelihood

for the number of parameters which are used. Comparing these measure across models

also strongly suggests that the CP-GARCH is better (lower values of AIC and BIC are

one break, and much faster for more breaks (but not exponentially, as in the Markov switching
case). Therefore, the first proposed estimation methods relied on simplification procedures that
circumvent the path dependence problem (Gray (1996), Klaassen (2002)). Bayesian methods
were, among others, proposed by Bauwens et al. (2010), Bauwens et al. (2014) and Billio et al.
(2016). The approach of Bauwens et al. (2014) furthermore allows to calculate the likelihood
function using a particle Markov chain Monte Carlo method.
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better). Furthermore, the estimates show that there are distinct variance regimes. The

long run variance differs significantly across the regimes, while the variance of the fixed

GARCH more or less fits the average variance. Lastly, the estimation over the full period

exhibits the typical result that the variance process is almost integrated. The separate

CP regimes, on the contrary, all have β + αγ2 lower than the one regimes model.

A few words are called for to address potential data mining concerns. First, note

that the average duration of one state in the CP model is about 5.5 years, which is fairly

long. Second, the parameters in the above estimations are structurally different, which

becomes especially clear when considering the lower ‘degree of integration’, i.e. the value

of β + αγ2. Furthermore, the dynamics across the regimes are very different as well as

the long-run variances. If there would not be any structural changes, the estimation

could not identify them in such a long sample.9

Figure 2 illustrates the identified regimes by plotting the break dates together with

the level and 21 day realized volatility of the S&P 500 index. By visual inspection alone

it becomes immediate that there are clear patterns of low and high volatility, which are

accompanied by good and low to moderate aggregate stock market returns, respectively.

The estimated regimes capture these periods very well. The first high volatility regime

contains extreme market events at the LTCM collapse and the bust of the dotcom bubble.

The second high volatility regime contains the recent financial crisis and its aftermath.

9It is standard in the related literature to estimate the GARCH model over the full sample,
even though this could introduce a potential bias. Second, the analysis focuses on the comparison
of the standard GARCH with fixed parameters versus the CP-GARCH, and both are estimated
over the same sample.

13



Table 1: Estimation Results of the HN-GARCH model

FP HN-GARCH CP-HN-GARCH

Parameters ’92-15 ’92-’97 ’97-’03 ’03-’07 ’07-’12 ’12-’15

ω 3.01E-19 2.24E-06 1.91E-06 5.36E-06 4.41E-10 3.51E-06
α 4.34E-06 1.37E-06 6.13E-06 8.05E-07 7.66E-06 2.15E-06
β 0.821 0.801 0.786 0.301 0.772 0.273
γ 188.9 269.1 164.7 836.8 161.1 542.8
µ 1.756 9.149 1.090 8.243 -0.380 8.650
pjj 0.99918 0.99941 0.99898 0.99911 1

Properties

β + αγ2 0.9762 0.900 0.9522 0.8641 0.9703 0.9074
Long-run volatility 0.166 0.096 0.206 0.107 0.255 0.124

Log-likelihood

Total 19495.9 19691.6
AIC -38981.8 -39325.1
BIC -38948.4 -39131.0

Parameter estimates are obtained by optimising the likelihood on returns. Param-
eters are daily, long run volatility is calculated as

√
long − run variance · 252. For

each model, the total likelihood value at the optimum is reported. The volatility
parameters are constrained such that the variance is positive (0 ≤ α < 1, 0 ≤
β < 1, αγ2 + β < 1, −α < ω). The Akaike information criterion (AIC) is cal-
culated as 2k − 2 ln(LR) and Bayesian information criterion (BIC) is calculated as
ln(n)k − 2 ln(LR), where n is the length of the sample and k is the number of esti-
mated parameters.
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Figure 2: 21 day volatility of S&P 500 log returns and log(S&P 500 level)

The figure shows the 21 day rolling window square root of the sum of squared

returns (top) and the natural logarithm of the level of the S&P 500 Index (bottom).

Black (red) vertical lines indicate the beginning of a low (high) variance regime.

3.4.2 Volatility forecasts of the model

To further assess the model fit, I next study the ex ante predicted 21 day volatility

of each model specification for each day in the sample, and compare it to the ex post

realized volatility. This multi-periods volatility forecast is of interest, because one month

(21 trading days) is a typical horizon of interest in the pricing kernel literature and

therefore the benchmark maturity in the empirical section below. For the comparison,

the estimated parameters are used to filter the volatility using (27) up to a point in time
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t, and then the model implied variance for t+ 1 to t+ 21 is calculated using (4).10 The

predicted volatility is calculated as the square root of the predicted variance.11 realized

volatility is calculated as: √√√√t+21∑
t+1

R2
t . (13)

Figure 3 displays the result graphically. It compares the realized 21 day volatility to

the models’ ex ante predicted volatility. The time series for the prediction is lagged by 21

days in the plot, such that for each point in time, the ex ante expectation is compared to

the ex post realization. It is clearly visible that the fixed parameter GARCH constantly

over-predicts volatility in times of low variance. This is because it always reverts back

to the long-term mean too quickly and cannot capture extended periods with a below

average volatility. To a lesser extent, the reverse is true for the high variance regimes,

where the one state GARCH mostly under-predicts volatility. On the contrary, the

CP-GARCH is much closer to the realized volatility in each case.

Table 2 shows the statistics corresponding to Figure 3. The first line contains the

realized volatility, while the following lines contain the average predicted volatility for the

fixed parameters (FP) and CP-GARCH as well as the root-mean-square error (RMSE).

The numbers match the visual findings. The FP model is always biased towards the

long-run mean and hence severely over-predicts volatility in times of low volatility, and

vice versa. The CP model does match average numbers very well and hence has a lower

RMSE, often much lower. This analysis shows that the standard GARCH model does

10In this analysis the probability to switch into another regime is ignored, as well as the
uncertainty about which regime currently prevails. The first one has minor effects, since the
MLE for the switching probability is in the magnitude of 1/1000 to 1/1500 (see also Section
6.5). To address the second simplification, one would have to filter the probability of being
in a certain state at each point in time. This would require to run the estimation separately
for each day, which is infeasible. However, this quantity is also likely to be low, since in other
studies the filtered probability is often very close to one for one state and zero for the others (see
e.g. Augustyniak (2014)).

11Strictly speaking, the expected future volatility is not the same as the square root of the
expected variance. Unfortunately, no closed form solution for the expected volatility exists.
Untabulated numerical simulations show, however, that the two numbers are very similar. Fur-
thermore, the comparison of predicted variances to realized variances gives very similar results.
Lastly, one might argue that the true comparison to the used estimate for realized volatility is
the expected volatility of returns, i.e. including the risk-free rate and the drift term. Using this
measure does have a very small effect on the results, since the daily rt and µ · ht are very low
compared to daily volatility (order of magnitude of 100).
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a poor job in predicting future volatilities over a longer period of time. The model

performs particularly badly in times of low variance, but also in the other periods. This

indicates that the parameter estimates have the tendency to fit the extreme returns and

trade this off with a worse fit for the calm periods.

With these findings in mind, it becomes clearer why fixed parameter GARCH models

have such a high degree of integration and persistence. The higher αγ2 + β is, the more

slowly the process reverts to its long run mean. Hence, this parametrisation is necessary

to make even the one day ahead forecast, which is used in the estimation, to stay at the

respective high or low level. Overall, the CP-GARCH model allows to model extended

periods of low variance, while the GARCH with fixed parameters is biased and fails this

task.

One could of course object that rational expectations during times of low market

volatility could have been higher than the ex post realized ones. It seems a very unlikely

event, however, that the expectations exceeded the realization as extremely as shown

above for such a long time period. Another way to illustrate this is by the following com-

parison. The FP GARCH forecast of volatility in calm periods is on average as high as

the VIX in the same time period. The VIX is the non-parametric risk-neutral expecta-

tion of the future volatility derived from option prices. It is typically significantly higher

than the physical expectation, since it includes the variance-risk-premium. Hence, on

average the physical volatility forecast should be much below its risk-neutral counterpart

given the size of the variance risk premium documented in the literature (e.g. in Carr

& Wu (2009)). Several alternative models and also a forward-looking volatility forecast

are used in the robustness section.
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Figure 3: Predicted vs. realized 21 day volatility

The figure shows the 21 day rolling window realized volatility, measured as the square

root of the sum of squared returns, as well as the ex ante expected volatility implied

by the FP and CP-GARCH model. The predicted variance is lagged by 21 days,

such that expectation and realization are depicted at the same pint in time.
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Table 2: Predicted vs. realized 21 day volatility

’92-’96 ’96-’03 ’03-’07 ’07-’11 ’11-’15

Average realized 21d volatility .0268 .0573 .0300 .0683 .0334
FP Avg. predicted 21d volatility .0391 .0511 .0409 .0543 .0413
CP Avg. predicted 21d volatility .0270 .0586 .0308 .0701 .0354
FP RMSE predicted 21d volatility .0155 .0167 .0129 .0350 .0120
CP RMSE predicted 21d volatility .0079 .0157 .0066 .0302 .0085

The table shows the average realized 21 day volatility across the different regimes,
as well as the average ex ante predicted volatility by both the FP and CP-GARCH
model and the root-mean-square error (RMSE) of the predictions.

4 Empirical Pricing Kernels

In this section, I first discuss the option data used in the empirical analysis. The subse-

quent analysis then focuses on the shape of empirical pricing kernels implied by option

data. In particular, the sensitivity of the results to the GARCH model specifications is

studied. Subsequently, I analyze in detail the channel how the GARCH models impact

the result.

4.1 Data

The empirical analysis uses out-of-the-money S&P 500 call and put options that are

traded in the period from January 01, 1996 to August 31, 2015. This is the full sample

period available from OptionMetrics at the time of writing. The option data is cleaned

further in several ways. For each expiration date in the sample, the data of the trading

date is selected which is closest to the desired time to maturity (e.g. 30 days for one

month).12 Prior to 2008 there are only 12 expiration days per year (third Friday of each

month), but afterwards the number of expiration dates increased significantly with the

introduction of end-ofquarter, end-of month and weekly options, and all are included.

Next, only options with positive trading volume are considered and the standard filters

proposed by Bakshi et al. (1997) are applied.13

12For each time horizon that is analyzed here and in the robustness section, the desired time
to maturity was set such that it would be Wednesday data. It is common to use Wednesday
data, because it is the day of the week that is least likely to be a holiday and also less likely than
other days to be affected by day-of-the-week effects (such as Monday and Friday).

13For the full details on the data cleaning see the Appendix B.
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4.2 Methodology

The two major quantities that are required to empirically estimate pricing kernels are

the risk-neutral and the physical return density. The approach adopted here closely

follows the approach used by Christoffersen et al. (2013), which in turn is close to other

previous studies. The approach is chosen because it stays as non-parametric as possible,

but provides evidence on the conditional density.

The approach to estimate the risk-neutral density is standard and has the follow-

ing steps.14 Starting from the entire cross-section of options on a given day, first a

fourth-order polynomial for implied Black-Scholes volatility as a function of moneyness

is estimated.15 Using this estimated polynomial, next a grid of implied volatilities cor-

responding to a dense grid of strikes is calculated. Then, call prices are calculated

using the Black-Scholes formula. The risk-neutral interest rate is obtained from Option-

Metrics and linearly interpolated. The risk-neutral density can then be calculated using

the result of Breeden & Litzenberger (1978):

f∗(ST ) = exp(rτ)
[∂2CBS(St, X, τ, r, σ̂(St, X))

∂X2

]
|X=ST

. (14)

Finally, in order to plot the density against log returns rather than future spot prices,

the probabilities are transformed. The obtained densities are really conditional because

they reflect only option information from a given point in time. Note that here the

risk-neutral probabilities are only estimated (and later plotted) where data exists, and

the implied volatility curve is not extrapolated. This is chosen since on the one hand,

any extrapolation or tail fitting is potentially unreliable, and on the other hand the

data on average covers a cumulated probability of 95.5% at the one month horizon and

therefore the main results can be shown without any tail probabilities. Refraining from

”completing the tails” does not influence the estimation of the risk-neutral probabilities

14This approach is very close to the one proposed by Figlewski (2010). Numerous studies use
a similar approach, that all smooth and fit implied volatility instead of prices. It is generally
understood that fitting implied volatility is more reliable than fitting prices directly. Small
differences between approaches are in the degree of the polynomial used (typically degree of two
or four) and the filters applied to the option price data. Figlewski’s suggestion to fit the tails is
not considered here, because it is potentially unreliable. The tails are usually hard to fit, and
this holds both for the risk-neutral and the physical part. Furthermore, the general shape of the
pricing kernel becomes clear even without the tails.

15Appendix C contains the details on the calculation of the implied volatility. The results
remain unaltered if the implied volatiltiy provided by OptionMetrics is used.
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over the range of available option strikes.16 Also note that the risk-neutral estimates are

non-parametric and are not influenced by any assumption of structural breaks.

To provide some information about the behavior of the PK in the right tail, a different

approach is adopted. Below, I present the ratio of the cumulative return density in the

tail that is not covered by the (filtered) option data. The cumulative risk-neutral return

density, denoted F ∗(ST ), can also be obtained from option prices non-parametrically:

1− F ∗(ST ) = − exp(rτ)
[∂CBS(St, X, τ, r, σ̂(St, X))

∂X

]
|X=ST

. (15)

Setting ST equal to the highest available strike in the data delivers an estimate for the

cumulative risk-neutral probability in the right tail. Dividing this quantity by its physical

counterpart gives one data point for the right tail. This point provides an indication of

the behavior of the pricing kernel in the tail. It can be interpreted as the average PK in

that region.

The approach for obtaining the conditional physical density of returns is semi-

parametric and has become more popular recently.17 Many alternative approaches are

tested in the robustness section and they deliver very similar results. The benchmark

method for the return density is chosen because it has several distinct advantages. First,

it is flexible enough to incorporate the volatility forecasts of several other models, which

is done in the robustness section. Second, it allows me to explicitly detect the main driver

of the results by comparative statics. Last, but not least it is only semi-parametric and

thereby less parametric than many alternatives. The starting point is a long daily time

series of the natural logarithm of one month returns from January 02 1992 to August 31

2015. First, the monthly return series is standardized by subtracting the sample mean

return R̄ and afterwards dividing by the conditional one month volatility
√
h(t, T ) ex-

pected at the beginning of the month and calculated using (5). This yields a series of

16The risk-neutral probability is obtained directly from applying (14), and no additional treat-
ment as e.g. kernel fitting or scaling is necessary. Therefore, the standard approach to exclude
option prices with very low prices (best bid below 0.5$) is at least innocuous and probably leads
to an increase of the precision of the derivation of the risk-neutral probabilities. This is because
the bid-ask spreads of options with very low prices are usually very large, and the mid-price
is likely to be not the true price. Including the probably distorted prices would influence the
implied volatility interpolation, which would influence prices and this would finally influence the
the results.

17Christoffersen et al. (2013) use the same method, and similar methods in related settings are
used e.g. in Barone-Adesi et al. (2008) and Faias & Santa-Clara (2017).
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return shocks:

Z(t, T ) = (R(t, T )− R̄)/
√
h(t, T ). (16)

The conditional distribution is then constructed by multiplying the standardized return

shock series Z with the conditional volatility expectation on a given day:

f̂(R(t, T )) = f̂
(
R̄+

√
h(t, T )Z

)
. (17)

Hence, for each date in the sample a different conditional density is estimated. The

difference arises from the conditional volatility expectation, while the shape of the dis-

tribution is always the same. For both models the full return time series is used. For

the change-point model the volatility forecasting is performed using the parameters of

the respective regime.18

Since the option data contain several slightly different times to maturity and thereby

also different numbers of expected trading days, several different ‘monthly’ returns are

calculated, one for each observed number of expected trading days. Expected trading

days are the number of working days minus the holidays between the date of the option

price and the maturity date.19 Each option price date is then matched with the correct

length of the ‘monthly’ returns.

4.3 Results for the one month pricing kernel

This section documents the shape of the conditional pricing kernel using the non-

parametric method for estimating the risk-neutral and the semi-parametric method to

estimate the physical conditional densities described above. Each pricing kernel is then

calculated as the ratio of the current risk-neutral to the physical density, and then this ra-

tio is divided by the risk-free rate.20 The one month horizon is chosen for the benchmark

analysis, since it is the most studied horizon in the literature on empirical pricing kernels

and a maturity with very liquid option contracts. The robustness section shows that the

results also hold for other typical horizons. Figure 4 shows the natural logarithm of the

18Here again the probability of switching into a different state is ignored to keep the analysis
simpler and more tractable. The robustness section studies the impact of including this.

19This is called expected number of trading days here, because there happen to be unexpected
closings of the exchanges due to extreme events. Hence, the calculation is not based on the
number of actual trading days, but those that could reasonably be expected.

20In log-space the division by the risk-free rate is just a small parallel shift of the curve
downwards. Therefore, the documented PKs are easily comparable to studies that report just
the ratio of risk-neutral to physical probability.
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estimated pricing kernels using the HN-GARCH model with fixed parameters. Figure 5

displays the same for the CP-GARCH. The scale of the horizontal axis are log returns.

The colouring indicates times with high volatility (red) and times with low volatility

(black), as defined in Chapter 5.2.6. The dotted blue lines at the right end of the pricing

kernels depict the ratio of the risk-neutral to the physical cumulative return densities

(CDF) in the tail. Each CDF ratio is just one data point, but the line illustrates to

which PK the point corresponds. This gives an indication of the behaviour of the PK

in the right tail. It can be interpreted as the value of the average PK in the tail. The

x value for the CDF ratio is (arbitrarily) chosen as the return of the last traded strike

plus 0.013 (0.02) log-return points in times of low variance (high variance).

When comparing the two plots, several points emerge. The first plot mostly exhibits

U-shaped pricing kernels in times of high volatility, while the PKs in times of low volatil-

ity have the typical S-shape. The finding that the latter pattern prevails in times of low

volatility is noted already by Grith et al. (2013), but was never documented systemat-

ically nor for such a long time series. However, when the GARCH parameters are not

fixed, the kernels in times with low volatility are predominantly U-shaped. In times of

high volatility, the estimated PKs are now more noisy, but still predominantly U-shaped.

The varying wideness of the PKs is to be expected, since the PK has to at least price the

risk-free asset and the index correctly. If the physical distribution expectation becomes

more disperse, the PK must change in order to price the two assets, and vice versa.

Furthermore, the PK estimates from the CP model are closer together in the plots than

their FP counterparts. This suggests that they are closer to documenting a stable re-

lationship over time. Lastly, the observation that the estimated PKs in times of low

volatility are very steep at their left end makes a lot of sense in economic terms. If the

market return in these times would be very low, this would very likely be accompanied

by a large increase of variance and a severe worsening of economic conditions.

Two further comments on the shape of the PKs in the CP version are warranted.

A first objection might arise from the unclear direction of the plots at the right end,

especially in periods of low variance. Note that this ambiguity clearly increases from

the beginning to the end of a calm period. Therefore, a likely explanation is that after

several years of strong bull markets, the probability of further large positive returns is

lower. The adopted approach, however, cannot incorporate such a specific conditional

expectation, since the shape of the distribution (i.e. mean, skew and kurtosis) is always

the same and only the wideness (volatility) is conditional. This is supported by the

findings of Giordani & Halling (2016), who document that returns are more negatively
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skewed when valuation levels are high. Furthermore, this pattern of decreasing steepness

of right-hand end of the estimated PK over the course of a regime is also observed for

all robustness checks below. All alternatively tested methods have in common that

the skewness and all higher moments of the return density are constant. Figure 16 in

Appendix G shows the skewness of the risk-neutral return distribution during the last

low volatility regime. The skewness clearly decreases over the course of the regime.

However, there exists no established method to model this potential time series pattern

in the physical expectation.

In addition, the point where the PK starts to increase again is rather deep OTM.

It is possible that these strikes are not traded, or best bid is below $0.50, which is the

cut-off point in the data cleaning.21 Both arguments are supported by the finding that

the lower the highest available strike is, i.e. the right-hand end of the line, the lower

the right-hand end of the PK line is. Furthermore, Table 1 above shows the model still

slightly over-predicts the volatility in calm periods, especially in the last regime with

on average 6%. Over-predicted volatility is the key driver that generates the typical S-

shape, as discussed in detail in the next section. Therefore this can help to explain why

the PKs in the last regime are the most ambiguous ones. Finally, Chapter 4.6 provides

an argument that the pricing kernel is upward sloping in times of low volatility at least

on average.

The second comment refers to the PK estimates in high volatility regimes with the

CP model, which are more noisy and sometimes exhibit a pronounced hump around zero.

Similar to above, this is again mostly observed at the end of a high volatility regime. As

the standard GARCH is biased towards the long-run mean, the GARCH in high volatility

times is also biased towards its high long-run mean, which is significantly influences by

the extreme returns. Figure 3 shows that there are also periods with relatively low

volatility within these periods. However, the GARCH is not able to capture these

periods. In fact, it even overestimates the average volatility of these periods, as can be

seen from Table 2. Hence, the mechanism that causes these slightly S-shaped estimates

is the same that causes the S when one uses the standard GARCH methodology, as

discussed in the next section.

Overall, one can conclude that the rather simple modification of the methodology

led to a large change in findings. The application of a more accurate volatility forecast

makes the prominent finding of a hump around zero returns in the empirical pricing

kernel vanish. Moreover, the PKs seem to be U-shaped at least most of the time, if

21Cuesdeanu (2016) uses a similar argument in a different setting.
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not for all time periods. Furthermore, it becomes clear that the S-shaped kernels are

merely a results of the GARCH model with fixed parameters and are then only found

in periods of low variance. The robustness of the results to a variety of changes in data

and methods is shown below.
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Figure 4: Empirical pricing kernels with fixed parameters in the HN model

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi model with fixed parameters. Red (black) depicts times with

high (low) variance, as defined in Chapter 5.2.6. Log-returns are on the horizontal

axis. The horizon is one month. The blue line connects the points, which depict the

ratio of the CDFs of the tail, with the corresponding pricing kernels.
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Figure 5: Empirical pricing kernels with CP parameters in the HN model

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi model with CP parameters. Red (black) depicts times with

high (low) variance, as defined in Chapter 5.2.6. Log-returns are on the horizontal

axis. The horizon is one month. The blue line connects the points, which depict the

ratio of the CDFs of the tail, with the corresponding pricing kernels.
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4.4 How the volatility estimates drive the result

The introduction of structural breaks into the standard GARCH model changes the

results on empirical pricing kernels significantly. The new model has three potential

channels that can influence the results: the filtered volatility, the different conditional

return distributions and the forecasted volatility. Untabulated results show that the first

factor has little impact and that the filtered volatilities are similar for both FP GARCH

and CP-GARCH. The second factor has also surprisingly little influence. One could

expect that the different volatility forecasts of the models lead the different distributions

of standardized return shocks. But the top left plot in Figure 6 shows that these two

distributions are actually very similar. The figure shows the densities of the monthly

normalized return shocks (i.e. the Z from Equ. (16)) for the two models. The first

sub-plot shows all return shocks of the full time series, and the following ones only the

return shocks of the respective sub-periods. While the regime-specific shock densities

are very different, the aggregate, which is used for the empirical study, is very similar.

The last remaining factor, the different volatility forecasts, turn out to be the major

driver of the results. At each point in time, the physical return density forecast is

constructed by multiplying the respective return shock density (which are depicted top

left in Figure 6) with the conditional volatility forecast. Since the densities are very

similar, the key difference is the more realistic volatility forecast. The upward-biased

monthly volatility forecasts of the FP GARCH create a physical density that is too wide

and has too much probability mass in the tails, and too little in the center. The left

downward-sloping part is so steep that it is still downward-sloping despite the fatter

tail. However, the lack of probability mass in the center causes the hump in the middle.

Finally, the fatter right tail makes the PKs downward-sloping on the right end.

The small differences between the FP and CP return shock density depicted top left

in Figure 6 actually counteract this mechanism. The FP density has slightly more mass

at the mode, which should reduce the hump.

Figure 7 summarizes this mechanism graphically. The top plot contains the (similar)

shock distributions of the two models and is the same as the top left plot in Figure

6. In the following, the left plot shows the actual data for October 2005, and the

right plot shows the data for December 2009. The second row contains the physical

return forecasts. They are obtained by multiplying the respective shock density with

the corresponding volatility forecast and adding the mean return. It is clearly visible,

how in times of low volatility, the return density for the FP model has more probability
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mass in the tails and less in the center, relative to the CP counterpart, while the reverse is

true for the high volatility times. The third row contains the risk-neutral return density

derived from option prices. The last row shows the ratio of the risk-neutral to the

physical return density. One can clearly see how the overestimated volatility for the FP

model influences the shape of the estimated PK in 2005. In 2009, the underestimation

of the volatility makes the pricing kernel steeper, but does not change the estimation

qualitatively.

The sub-plots two to six in Figure 6 point to another interesting finding. First, for

the FP model, the densities of the respective regimes are substantially different from

the one of the full sample. An apparent pattern is that the densities in times of low

variance are much tighter, while the reverse is true for the other times. This pattern is

barely visible in the respective densities for the CP model. The application of a model

with better volatility forecasts, however, leads to estimated shock densities that are very

similar across time. The difference is caused solely by the different volatility forecasts.

In the low variance regimes, in the FP version the monthly returns are divided by an

upward-biased volatility forecast and hence produce a very narrow shock distribution.

Similarly, in times of high variance, where monthly returns are also much more volatile,

these returns are standardized by a downward-biased volatility forecast.

To further evaluate the similarity of the shock distributions I conduct a formal test.

Table 3 presents the p-values of a Kolmogorov-Smirnov-Test. The null hypothesis is that

the shock distribution of one regime is not different from the shock distribution of the

full sample. The results support what the visual evidence suggests. For the model with

fixed parameters the shock distribution of the regimes are significantly different from

the shocks of the full sample. For the CP model the null of equality cannot be rejected

for the three low variance regimes nor for regime 2, and only be rejected for regime 4,

which contains the financial crisis. This is interpreted as support of the approach, and

especially for the inclusion of breaks and the method to obtain the conditional physical

density.

Overall, the estimation of very homogeneous monthly shock distributions is a very

interesting side result, and not least because this is solely attributable to the different

volatility forecasts. This gives rise to the possibility of finding a time-invariant distribu-

tion for stock returns, which is left for further research.

The above analysis has shown how the shortcomings of a standard GARCH bias

the estimation of the physical return density and how this shapes the estimated pricing

kernels. To be able to observe this effect, it is necessary to use a long time series of both
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returns and option prices, which cover different market phases with both high and low

volatility.

Figure 6: Monthly return shock densities

The figure shows the estimated monthly return shock density (21 days) calculated as

in Equ. (16) using the FP GARCH and CP-GARCH. The first sub-plot depicts the

case where the shocks of all periods are pooled together, while the remaining ones

only contain the shocks of the respective regimes in timely order.
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Figure 7: Main mechanism how volatility estimates drive the results

The top row contains the monthly return shock densities of the FP GARCH and

CP-GARCH model for the full time series. From the second to the last row, the

left plots show data from October 2005 and the right plots show data for December

2009. The displays row shows the estimated conditional monthly return density at

the given date, while the third row displays the risk-neutral monthly return density

at the same date. The last row illustrates the estimated pricing kernels, which are

the ratio of the the respective densities.
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Table 3: Kolmogorov-Smirnov-Test of equal distribution of monthly return shocks

’92-’96 ’96-’03 ’03-’07 ’07-’11 ’11-’15

FP GARCH 1.5E-07 7.2E-08 4.2E-05 5.2E-09 5.7E-05
CP-GARCH 0.051 0.072 0.126 0.001 0.128

The table shows the p-values of a Kolmogorov-Smirnov-Test. The null hypothesis is
that the shock distribution of one regime is not different from the shock distribution
of the full sample.

4.5 Euler equation errors

Analyzing Euler equation errors is a non-parametric and standard way to test a candidate

pricing kernel. The Euler equation follows directly from the fundamental equation of

asset pricing, and the true pricing kernel sets the unconditional Euler equation errors to

zero.

In the following, the unconditional Euler equation error is defined as:

eR = E[Mt+1Rt+1]− 1, (18)

where Rt is the return of the index and Mt is the (empirical) pricing kernel, i.e. the

projection of the stochastic discount factor on the returns of the index.22 A uncondi-

tional Euler equation error of zero is a minimum condition that any candidate pricing

kernel should fulfill. To avoid unreliable extrapolation, I exclude observations where the

realisation is outside the domain where the empirical PK is defined.

Table 4 shows the results. The first two columns show the Euler equation errors of the

empirical PKs from Section 4.3, both with fixed and switching parameters. The other

columns show the errors for two methods from the robustness section. In particular,

columns three and four show the errors for the method where the conditional physical

return density is obtained from simulating the GARCH model. This is an approach that

is often used in the literature and I employ it below both for the fixed and switching

parameter model. The last column shows the results where the realised volatility model

of Corsi (2009) is used for forecasting volatility. The first line displays the Euler equation

22Note that the nature of the projection makes it unlikely that the empirical pricing kernel
estimates perform well with other test assets. This is because any cross-sectional variation that is
additional to the markets (as e.g. value or size) should by definition be orthogonal to the market
risk.
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errors and the second line contains the corresponding bootstrapped 90 % confidence

intervals in square brackets. They are obtained from N=25,000 i.i.d. bootstraps, since

the Ljung-Box test at lags up to 30 rejects autocorrelation in the time series. The third

and fourth line show the average Euler equation errors split into times of high and low

volatility, as defined in Chapter 5.2.6.

Table 4: Euler equation errors of empirical pricing kernels

FP empirical CP empirical FP GARCH CP GARCH Real. Vol

Error 0.067 0.003 0.054 -0.001 0.023
90% Confidence [0.032,0.106] [-0.03,0.043] [0.027,0.084] [-0.021,0.02] [-0.014,0.066]
Error low vol 0.044 -0.007 0.087 -0.004 0.019
Error high vol 0.103 0.02 0.006 0.005 0.032

The table shows the unconditional Euler equation errors, together with the 90% con-
fidence interval of the error and the Euler equation errors for the two sub-samples
of times with high and low volatility (as defined in Chapter 5.2.6). The 90 % con-
fidence intervals for the errors are obtained from 25,000 bootstrap draws from the
sample of errors (in square brackets). The first (second) column shows the errors
for the empirical pricing kernels with fixed (switching) parameters from Section 4.3.
The third and fourth column are for the model where the physical return density
is obtained from simulating the GARCH model (see also robustness Section 6.1).
The last column is for the model where the volatility forecasts are obtained from the
realised volatility model of Corsi (2009) (see also robustness Section 6.3).

The main result is that the standard approaches which use a GARCH model with

fixed parameters (column 1 and 3) produce Euler equation errors that are both eco-

nomically and statistically significant. They therefore fail a necessary condition. The

approaches that use a GARCH models with breaks on the contrary have errors that are

virtually zero. The third and fourth line reveal that this is also the case if only times of

high or low volatility are studied. For the standard model, the last two lines reveal that

it performs differently in these sub-periods, although no clear pattern emerges.

4.6 Verifying U-shape using option returns

The results on the estimated empirical pricing kernels in Section 4.3 are partly ambiguous

regarding the shape. In particular, towards the end of the low volatility regimes, it

is unclear whether the PK is upward or downward sloping. Unfortunately, it is not
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possible to test this statistically, or to calculate confidence bounds.23 I therefore take

an alternative approach. Bakshi et al. (2010) show how to use returns on options to

examine the shape of the pricing kernel. In particular, a U-shaped PK implies that the

returns of OTM call options decrease in their strike after a certain point. This can be

studied by sorting the options according to their moneyness and then calculating average

returns per moneyness bin. Their results show that the PK is U-shaped on average for

their full sample from 1988-2008. Note that the method is fully non-parametric, but

only speak about the average, i.e. unconditional pricing kernel.

To show that this effect stems not only from returns from times of high volatility

(where the U-shape is less ambiguous), I replicate their approach using only call option

data from the low volatility regimes. For this, from all call options from the respective

time period (and exaclty the same that are used above for the PK estimation), those

are selected that are closest to the target moneyness of the bin. Then their returns are

calculated using the corresponding settlement prices. Finally, average returns for each

moneyness group are calculated and the results are displayed in Table 5 (in percent). The

confidence bounds are bootstrapped as in Bakshi et al. (2010). The target moneyness

ranges from 0%, 1%,...,7%, and the sorting ends at 7% OTM, because the number of

traded options decreases significantly here.

If average call returns decrease when their moneyness increases, this shows that

the (average) pricing kernel is increasing with returns. The documented returns in the

sample have exactly this pattern. The noisy nature of option returns is well know (e.g.

Broadie et al. (2009)), but the results here have both a higher statistical and economic

significance than in Bakshi et al. (2010). Only the 4% or 5% group appear to violate the

monotonicity, with either the first having too low returns, or the later having too high

returns, or both. Among the negative average returns, only those in the 4% and 7%

bin are significantly different from zero. However, all except one pair-wise differences

between groups are positive and most of them are statistically significant. In sum, the

results are strongly consistent with a U-shaped pricing kernel. They show that also in

times of low volatility, at least on average, the PK is very likely to be upward sloping

in returns in the domain of high positive returns. This does not rule out that some

conditional PKs are not increasing, but in a sense, the majority of them should be

increasing. This helps to clarify the ambiguity of the empirical results above.

23Beare & Schmidt (2016) and (Härdle et al. 2014) develop a method for a statistical test and
for confidence bounds, respectively. However, they both use very restrictive assumptions, whicch
are not compatible with my approach.
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Table 5: Average returns of S&P500 index call options in times of low volatility

% OTM 1% 2% 3% 4% 5% 6% 7%

Average [%] 13.0 7.2 -6.4 -26.0 -25.3 -27.0 -51.1
90% Conf. [-0.2,26.4] [-8.5,23.6] [-25.4,13.7] [-49.1,-0.8] [-58.5,12.3] [-68,22] [-88,-4.9]

0% - 1% 1% - 2% 2% - 3% 3% - 4% 4% - 5% 5% - 6% 6% - 7%

Differences: 2.4 5.8 13.6 19.7 -0.7 1.7 24.1
90% Conf. [-1.1,5.8] [0.9,10.7] [6.3,20.6] [8.4,30.6] [-9,19.1] [-8.2,19.7] [6.8,64]

The reported average returns (in percent) are of call options on the S&P 500 index
over 01/1996-08/2015 that are closest to the target moneyness and that are from
periods of low volatility, as defined in Chapter 5.2.6. Call returns are calculated
using settlement prices. Moneyness is calculated as: strike/(index level at price
date). The average time to maturity is 30 days, and always in the interval [29,32].
The 90 % confidence intervals for average returns are obtained from 25,000 bootstrap
draws from the sample of option returns (in square brackets). To test for difference
in average returns across strikes, first 25,000 pairwise bootstrap samples of returns
to options are drawn.

5 Asset Pricing Implications

5.1 Implications for the unconditional pricing kernel

The results presented so far have important implications for the unconditional pricing

kernel. This is on the one hand relevant since there are several papers that explicitly

or implicitly estimate the unconditional pricing kernel. On the other hand, this is of

interest for economic models that imply only an unconditional pricing kernel.

One of the major empirical results above is that the pricing kernel is always U-shaped

and furthermore its wideness is strongly time-varying. The latter behavior is a necessary

property, since the PK has to adjust to the time-varying volatility of the physical return

distribution such that it prices at least the index and the risk-free rate correctly. If one

estimates an unconditional pricing kernel, this is in most methods analogous to averaging

all conditional kernels. However, when the wideness of the pricing kernel is time-varying,

this leads to misleading results. Figure 8 illustrates this with a simple example, which

consists of two stylized U-shaped PKs (dashed lines) and their average (solid line). The

wider PK represents high volatility times (dashed line) and the tighter one low volatility

times (dotted line), and both are roughly in line with the empirical results. The tighter

one, however, ends where the option data typically ends in calm periods. The option
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data ends where option prices get below typical thresholds of e.g. 0.50$ or are not traded.

Unavailable data is a restriction that no method can circumvent.24 If one calculates the

average of these two PKs where they are defined, one obtains an unconditional PK,

that has puzzling shapes and “humps” in unexpected areas. If one generalizes this idea

further and allows for more PKs with varying wideness, the “humps” would become

smoother, but the result is still hard to interpret. In sum, in the presence of U-shaped

PKs, an unconditional pricing kernel is hard to detect or even does not exist. This in

turn emphases the relevance to study the conditional pricing kernel.

Figure 8: Average pricing kernel in the presence of U-shaped pricing kernels

The figure shows two stylized U-shaped pricing kernels, which are in line with the

data, and their average. The tighter PK represents times of low variance (dotted

line), while the wider PK represents times of high variance (dashed line). The solid

line is the average of the two PKs where they are defined.

24Even if the data would be available or extrapolatable, the pricing kernel is very likely to
either increase towards infinity, or drop to zero, if the risk-neutral probabilities would be zero.
Either case would blur the average pricing kernel.
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5.2 A variance-dependent pricing kernel

An important question is how the empirically observed U-shaped pricing kernel can be

explained economically. Christoffersen et al. (2013) show that the variance risk premium

can rationalize the finding. This section shows that the structural breaks are necessary

to make a variance-dependent stochastic discount factor fit the empirical results. For

this, I first replicate the results of Christoffersen et al. (2013) and then introduce the

structural breaks.

In the following, first the model is introduced and then its empirical investigation

presented. An important purpose of the model is to successfully capture the differences

between the physical and risk-neutral distributions. To be able to evaluate its ability in

that regard, it is necessary to fit both distributions using the same, internally consistent,

set of parameters. As pointed out by Christoffersen et al. (2013), such an exercise has

been attempted only by a very limited number of studies.25 Moreover, note that it is

possible and frequently done to fit option prices and at the same time ignore the fit to

returns completely by only fitting the volatility state variable.

5.2.1 Stochastic discount factor

To bridge the gap from the physical to the risk-neutral probabilities a stochastic discount

factor (SDF) is required. In their original model Heston & Nandi (2000) use the SDF

kernel of Rubinstein (1976). In a log-normal context, this is equivalent to using the

Black-Scholes formula for one-period options. Instead, following Christoffersen et al.

(2013), the following SDF is assumed here:

M(t) = M(0)
(St
S0

)φ
exp

(
δt+ η

t∑
s=1

hs + ξ(ht+1 − h1)
)
, (19)

where the parameters δ and η govern the time preference, while φ and ξ govern the

respective aversion to equity and variance risk.26 With ξ = 0 the variance risk premium

is zero, and with ξ > 0 the variance risk premium is negative.27 With φ > 0 and ξ > 0,

the SDF is monotonically decreasing in returns and monotonically increasing in variance.

25For a discussion of the existing literature in this area see Christoffersen et al. (2013), begin-
ning of their Chapter 3.

26When variance is constant, (19) collapses to the power utility from Rubinstein (1976) and
the Black-Scholes model.

27For an discussion of the implications and differences of the SDF with and without a variance
risk premium see Christoffersen et al. (2013).
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The projection (pricing kernel) of the SDF on the return space is U-shaped, as can be

seen below. The reason is that volatility is not only high for large negative returns,

but also for large positive returns. For large positive returns, the variance risk premium

dominates the equity premium, and the projection is increasing.

Under the assumptions (1), (2), (3) and (19), the risk-neutral dynamics for the HN

GARCH model are:

ln
( St
St−1

)
= r − 1

2
h∗t +

√
h∗t z
∗
t ,

h∗t = ω∗ + βh∗t−1 + α∗
(
z∗t−1 − γ∗

√
h∗t−1

)2
,

(20)

where z∗t has a standard normal distribution under the risk-neutral measure and

h∗t =
ht

1− 2αξ
,

ω∗ =
ω

1− 2αξ
,

α∗ =
α

(1− 2αξ)2
,

γ∗ = γ − φ.

(21)

For the proof, see Appendix B of Christoffersen et al. (2013).

The risk-neutral dynamics are different from the physical dynamics and the transition

from one to the other is described by the stochastic discount factor. For a given set of

physical parameters, the parameter ξ governs the transition from the physical to the

risk-neutral parameters.

5.2.2 Data

The data used here is similar to the one above. Again, the data is out-of-the-money S&P

500 call and put options that are traded in the period from January 01, 1996 to August

31, 2015. For each Wednesdays in the sample period, the option series with a maturity

closest to 30 days is selected. From that maturity, the 15 most actively traded options

are used. For the full details on the data cleaning see the Appendix B. This results in

15,171 option prices with a maturity between 17 and 53 days.
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5.2.3 Joint likelihood function

First, the joint likelihood function is presented, which consists of an option-based com-

ponent and a return-based component. The conditional density function of the daily

returns is normal. For the HN-GARCH model:

f(Rt|h(t)) =
1√

2πht
exp

(
−
(
Rt − rt −

(
µ− 1

2

)
ht
)2

2ht

)
. (22)

The return log likelihood is:

lnLR = −1

2

T∑
t=1

{
ln(2πht) +

(
Rt − r −

(
µ− 1

2

)
ht

)2

/ht

}
. (23)

For the likelihood of the option prices, first define the Black-Scholes Vega (BSV) weighted

option valuation errors as:

εi =
(
CMkt
i − CMod

i

)
/BSVMkt

i , (24)

where CMkt
i denotes the market price of the ith option, CMod

i denotes the model price,

and BSVMkt
i denotes the Black-Scholes vega of the option at the market-implied level of

volatility. Under the assumption of i.i.d. normal pricing errors, the option log likelihood

reads:

lnLO = −1

2

N∑
i=1

{
ln(2π) + ln(s2

ε) + ε2
i /s

2
ε

}
, (25)

where s2
ε is estimated using the sample analog ŝ2

ε = 1
N

∑N
i=1 ε

2
i .

The joint optimisation problem is now:

max
Θ,Θ∗

lnwOLO + lnLR, (26)

where Θ = {ω, α, β, γ, µ, ξ} are the physical parameters and Θ∗ the risk-neutral param-

eters that are mapped from Θ using (21). The physical variance is filtered from returns

using:
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ht = ω + βht−1 + α
(
zt−1 − γ

√
ht−1

)2
,where

zt =

[
Rt − r −

(
µ− 1

2

)
ht

]
/
√
ht,

h0 =
ω + α

1− β − αγ2
,

(27)

and the risk-neutral variance is computed using:

h∗t = ht/(1− 2αξ).

The risk-free rate is obtained from OptionMetrics, the term structure is interpolated

linearly and used both for option pricing and return filtering.

With this set-up, the estimation fits the physical and risk-neutral dynamics jointly.

The transition between the two is governed by parametrically specified pricing kernel.

The parameters of the pricing kernel are estimated simultaneously with the parameters

of the dynamics.

5.2.4 Identification of breaks points

Theoretically it would be possible to perform a maximum-likelihood estimation of the

change-point version of the estimation that includes option data. However, this is prac-

tically infeasible due to the computational burden. Therefore, I use the breaks identified

in the estimation in Chapter 3, and estimate the model separately in each regime for the

change-point version. This is equivalent of treating each period as a separate sample.

5.2.5 Model fit and properties

Table 6 presents the estimation results. The physical parameters are now different from

the ones presented in Table 1. The requirement to simultaneously fit the option prices

requires a balancing of the risk-neutral and physical dynamics. As above, the standard

GARCH with fixed parameters has an average long-run volatility, while the CP model

has regimes that capture regimes of high and low volatility. The risk-neutral volatility

is higher than the physical volatility.
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The likelihood of the CP model is significantly higher than the likelihood of the

model with fixed parameters. Also the two information criterion, that put a penalty on

the number of parameters, prefer the model with breaks (lower AIC/BIC are better).

The physical likelihood from returns of the CP model is only slightly higher than of the

FP model. However, the option likelihood increases significantly. This is further studied

in Section 5.3

5.2.6 Model implied pricing kernels

Figure 9 and 10 present the model implied pricing kernels. The first one contains the PKS

for the GARCH with fixed parameters, and the second for the CP-GARCH. Each plotted

line is obtained by first simulating 100,000 paths under the physical measure using the

parameter estimates from Table 6, and then calculating the stochastic discount factor

and its projection on the index return. The comparison of the two plots shows how

the structural breaks are necessary to match the empirical results. First, the standard

GARCH always implies U-shaped PKs, while its empirical counterparts exhibit S-shapes

in many periods. On the contrary, the CP version of the model matches the empirical

results very well. Second, the model implied PKs of the standard GARCH have a very

similar shape across time, and there is little variation in their wideness. The empirical

kernels, however, are strongly time-varying. The CP version on the other hand exhibits

the same strong time variation in their wideness, and fits the empirical counterpart well.
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Table 6: Estimation Results of the Joint Estimation of the HN-GARCH model

FP HN-GARCH CP-HN-GARCH

Physical parameters ’92-15 ’92-’97 ’97-’03 ’03-’07 ’07-’12 ’12-’15
ω -1.81E-06 4.74E-06 -2.56E-06 3.52E-06 -2.34E-06 1.03E-06
α 3.24E-06 2.19E-06 5.99E-06 2.45E-06 4.67E-06 1.67E-06
β 0.877 0.380 0.891 0.550 0.866 0.463
γ 184.1 453.6 114.1 349.8 151.5 524.4
µ 3.396 8.736 1.323 8.835 0.808 9.736
pjj 0.99918 0.99941 0.99898 0.99911 1

Risk-neutral param.

ω∗ -2.06E-06 7.77E-06 -3.30E-06 5.74E-06 -2.85E-06 1.30E-06
α∗ 4.23E-06 5.88E-06 9.97E-06 6.50E-06 6.96E-06 2.64E-06
β∗ 0.877 0.380 0.891 0.550 0.866 0.463
γ∗ 164.3 282.1 89.6 220.3 124.8 424.5
ξ 19185 89267 18727 78927 19384 61690

Properties

β + αγ2 0.9864 0.830 0.9689 0.8496 0.9736 0.9213
β∗ + α∗γ∗2 0.9906 0.8484 0.9710 0.8655 0.9749 0.9387
Long-run volatility 0.163 0.101 0.167 0.100 0.149 0.093
Long-run volatility∗ 0.240 0.151 0.240 0.151 0.203 0.127

Log-likelihood

Total 31597.7 33061.3
From returns 19492.5 19530.1
From options 12105.1 13531.2

AIC -63183.4 -66062.7
BIC -63139.0 -65840.7

Parameter estimates are obtained by optimizing the likelihood on returns and
options jointly. Parameters are daily, long run volatility is calculated as√
long − run variance · 252. For each model, the total likelihood value at the opti-

mum is reported as well as the value of the returns component at the optimum and
the option component at the optimum. The volatility parameters are constrained
such that the variance is positive (0 ≤ α < 1, 0 ≤ β < 1, αγ2+β < 1, −α < ω). The
Akaike information criterion (AIC) is calculated as 2k− 2 ln(LR +LO) and Bayesian
information criterion (BIC) is calculated as ln(n)k − 2 ln(LR + LO), where n is the
length of the sample and k is the number of estimated parameters.
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Figure 9: Theoretical pricing kernels with fixed parameters in the HN model

The figure shows the theoretical pricing kernel in the Heston-Nandi GARCH model

with fixed parameters. Red (black) depicts times with high (low) variance, as defined

in Ch. 5.2.6. Log-returns are on the horizontal axis. The horizon is one month.
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Figure 10: Theoretical pricing kernels with CP parameters in the HN model

The figure shows the theoretical pricing kernel in the Heston-Nandi GARCH model

with CP parameters. Red (black) depicts times with high (low) variance, as defined

in Ch. 5.2.6. Log-returns are on the horizontal axis. The horizon is one month.
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5.3 Option pricing fit

The variance-dependent pricing kernel has a good fit to the estimated empirical pricing

kernels when the breaks are included. Part of the better fit is that the change-point

physical dynamics match the volatility regimes better, as discussed above. In the es-

timation, the theoretical pricing kernel is fitted both to the physical and risk-neutral

dynamics jointly. This section analyzes how the option pricing part contributes to the

model performance.

In Table 6, the estimated higher likelihood from option prices of the CP model relative

to the FP model already indicates that the pricing error is reduced significantly by the

breaks. Further insights can be obtained from the time series pattern of the pricing

errors. Figure 11 displays the time series of the option pricing errors of the model.

At each date, the vega weighted pricing errors are not squared, but averaged. Pricing

errors are market prices minus model prices, hence when the pricing error is negative, the

model overprices the option, and vice versa. The used parameters are the risk-neutral

parameters from Table 6. The average pricing errors exhibit an interesting time series

patten: in times of low volatility the FP model frequently overprices the actual data.

For example, between 2004 and 2006, there is a period of several years where options

are constantly overpriced by the model. To a lesser extent, the reverse is true for high

volatility periods. For example, at the end of the 1990ies and around 2010 there are

periods of several years where options are constantly underpriced by the model. The

pricing errors of the CP model on the contrary do not display any systematic pattern of

over- or underpricing. They also have lower time-clustering of the pricing errors. These

findings suggest that the FP GARCH option pricing model has a systematic bias in its

prices.

The reason for this bias is most likely the same bias in forecasted volatility that was

extensively documented above. Over the average option maturity of one month, the

forecasted risk-neutral volatility also reverts back to its long-run mean. This leads to

an overestimation of volatility in periods of low volatility, and vice versa, relative to the

market believes. This then results in the overpricing and underpricing, respectively.

In sum, one can conclude that the bias in multi-period volatility forecasts of the

GARCH model with fixed parameters also carries over to the risk-neutral dynamics as

well. When the GARCH model is enriched by structural breaks, the bias is removed.

The results show the structural breaks are important for both the physical and risk-

neutral dynamics. In sum, they are equally relevant for the model variance-dependent
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pricing kernel to match the data.

Figure 11: Time series of average option pricing erros

The figure shows the time series of average vega weighted option pricing errors of the

Heston-Nandi GARCH model with fixed and CP parameters. Black (red) vertical

lines indicate the beginning of a low (high) variance regime.

6 Robustness

6.1 Expected physical return distribution from GARCH

simulations

A popular alternative to obtain a conditional forecast of the physical return distribution

is to simulate it directly from the GARCH model.28 In the following, this approach

is adopted and implemented once using the FP GARCH estimates and once using the

28e.g. Rosenberg & Engle (2002), Barone-Adesi et al. (2008) Liu et al. (2009), Barone-Adesi
& Dall’o (2012), Cuesdeanu & Jackwerth (2016), Cuesdeanu (2016) .
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CP-GARCH estimates as in Table 1. The physical expectation is obtained from a ker-

nel estimation applied to the monthly returns from 10,000 simulated paths of the HN-

GARCH model with daily normal innovations starting from the ex ante filtered variance.

Figure 12 and 13 show the results. In the first plot, one observes the typical pattern:

U-shaped PKs in times of high variance and strongly S-shaped ones in times of low vari-

ance. Notably, this pattern is even more pronounced here than in the analysis above.

When switching to the CP-GARCH model, the finding of S-shaped PKs disappears.

In some low volatility time periods the estimated PKs now have a region where they

are non-decreasing, but not increasing anymore. The previous observation that the PK

estimates become less U-shaped towards the end of a regime carries over also to this

analysis. Presumably, the fully conditional risk-neutral density adjusts more quickly to

changes in the shape of the distribution, while the physical estimate can not incorporate

this. A systematic analysis of the source of the different shapes as in the benchmark case

is not possible. Since the shape of the returns density depends on the interplay of all

parameters, the identification of the driving force is not possible. However, the results

above strongly suggest that the reason is the biased volatility forecast of the GARCH

with fixed parameters. Since the forecasted volatility studied in 5.2.6 is the expected

sum of the future path, this bias will be present in the simulated density too.

Furthermore, it appears that the GARCH models often do not have a good fit to

the empirical returns. Figure 17 in the Appendix G illustrates this by comparing the

return densities obtained from the GARCH models with the empirical returns. For the

full time series, a long simulation (1 million days) with the FP GARCH model is used

to calculate monthly returns. This should ideally converge to the full time series of the

data. The top left figure shows that the FP GARCH model on average has too much

probability mass in the tails and too little in the center. This generates the typical

S-shape. However, this is only true in the average, and does not convey information on

when and how this effect is present conditionally, since the true conditional distribution

is unobservable.

For the regimes, the CP model is also simulated for 1 million days and then monthly

returns are calculated. For the FP version, 100,000 paths are simulated with the fixed

parameters, but starting from the long-run variance of the CP model, which is close to

the average variance of the regimes. The comparison only within one regime should be

taken with a grain of salt, because it is not clear whether the ex post selected sample is

what ex ante should be expected. In any case it becomes clear that the GARCH model

does not have a great fit to the observed data, and the fixed parameter version less so
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than the CP version.

Lastly, the results in Section 4.5 show that the estimated PKs that employ the fixed

parameter GARCH model violate the unconditional Euler equation. The pricing errors

are particularly large in times of low volatility, which casts additional doubt on the

validity of the S-shape. It also shows that there is a problem by the physical density

forecasts obtained from the FP GARCH model especially in these regimes.
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Figure 12: Empirical pricing kernels with fixed parameters in the HN model with
simulated densities

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi GARCH model with FP parameters. The physical density

is obtained from the simulation of the GARCH model. Red (black) depicts times

with high (low) variance. Log-returns are on the horizontal axis. The horizon is one

month. The blue line connects the points, which depict the ratio of the CDFs of the

tail, with the corresponding pricing kernels.
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Figure 13: Empirical pricing kernels with changing parameters in the HN model
with simulated densities

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi GARCH model with CP parameters. The physical density

is obtained from the simulation of the GARCH model. Red (black) depicts times

with high (low) variance. Log-returns are on the horizontal axis. The horizon is one

month. The blue line connects the points, which depict the ratio of the CDFs of the

tail, with the corresponding pricing kernels.
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6.2 Using VIX volatility forecasts

The above analysis points out that it is important to use a precise and unbiased con-

ditional volatility forecast. So far at least the volatility forecast was model-dependent.

The VIX is a non-parametric and conditional volatility forecast that is well understood

in finance, and the flexibility of the benchmark method allows me to use it. However,

it comes with the problem that it is not the expected future volatility, but the expected

future volatility under the risk-neutral measure. This means that it includes one or

several risk premia and is typically much higher than the physical expectation. Never-

theless, I present an analysis where the level of the VIX replaces the model-implied ex

ante expected volatility in (16) and (17). This means that the level of the VIX is used

both for normalizing the monthly returns and for rescaling. By first dividing and then

multiplying any forecasting error due to risk premia at least partly cancels out, as long

as the relationship is monotonic. If the VIX is a linear function of the physical volatility

expectation everything cancels out and no error is introduced.

The results are presented for two reasons. First, the VIX is a well understood measure

and can at least be used as a robustness check. Second, the VIX is a truly conditional

expectation that in particular reflects market expectations. This is the reason why other

studies also use it as a measure for the expected physical variance (see e.g. Figlewski

& Malik (2014)). Figure 14 presents the results. The estimated PKs are U-shaped

throughout the entire time series and without any major humps. Again it is evident

that the steepness of the right-hand end of the PK estimates decreases over the course

of the regimes.
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Figure 14: Empirical pricing kernels using the VIX as volatility forecast

The figure shows the natural logarithm of estimated pricing kernels obtained by

using the VIX as volatility forecast. Red (black) depicts times with high (low)

variance. Log-returns are on the horizontal axis. The horizon is one month. The

blue line connects the points, which depict the ratio of the CDFs of the tail, with

the corresponding pricing kernels.
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6.3 Using realized volatility forecasts from the Corsi model

Corsi (2009) proposes an appealing model for realized volatility, that is structurally very

different to the GARCH models. It has become popular due to its parsimony, straight-

forward estimation and good empirical performance. The model uses high frequency

data (typically 5 minute intervals) to estimate realized volatility. Since both using re-

alized volatility from high-frequency data and the Corsi model have become popular, I

include the latter as a robustness check. The heterogeneous autoregressive (HAR) model

of Corsi (2009) uses volatility components constructed over different time horizons and

is given by:

√
RVt = α0 + αd

√
RVt−1 + αw(

√
RV )t−5:t−1 + αm(

√
RV )t−22:t−1 + ut, (28)

where:

(
√
RV )t+1−k:t =

1

k

k∑
j=1

√
RVt−j , (29)

RVt =
M∑
j=1

r2
t,j , (30)

whereRVt is the realized variance over day t, M is the sampling frequency and (
√
RV )t+1−k:t

is the k period realized volatility. For brevety, I refer the reader to the original paper

for further details of the model. I use realized volatility data based on 5 minute returns

of the S&P 500 obtained from the website of the Oxford-Man Institute, which starts at

1.1.2000. The estimated parameters are displayed in Table 7. The parameter estimates

are very similar to those of Corsi (2009) for all parameters, besides α0. Analogously

to Table 2 above, Table 8 presents the volatility forecasts of the model, together with

the forecasts of the CP-GARCH over the same time period. In times of low volatility,

the HAR forecasts are slightly below the realization, but by a very similar magnitude

by which the CP-GARCH forecasts are too high. In times of high volatility, the HAR

model is significantly below the realized volatility on average. The RMSEs of the HAR

model are always larger than their CP-GARCH counterparts. In sum, this suggests that

the HAR model produces generally downward bias multi-period volatility forecasts. The

reason could be that the model is specified in terms of volatility, not variance. This

removes the bias towards the rather infrequent high volatility levels that other models

have. But at the same time, the model appears to be biased towards the more fre-
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quent low volatility periods.29 Introducing structural breaks into the HAR model would

probably improve its performance in that regard. I leave this for future research.

Table 7: Parameter estimates for the HAR model

α0 αd αw αm
Estimate .0005 .3632 .3876 .1965

The table shows the parameter estimates for the heterogeneous autoregressive (HAR)
model of Corsi (2009) with data from 1.1.2000-31.8.2015.

Table 8: Predicted vs. realized 21 day volatility

’00-’03 ’03-’07 ’07-’11 ’11-’15

Average realized 21d volatility .626 .0300 .0683 .0334
HAR Avg. predicted 21d volatility .0508 .0291 .0523 .0302
CP Avg. predicted 21d volatility .0619 .0308 .0701 .0354
HAR RMSE predicted 21d volatility .0204 .0069 .0323 .0102
CP RMSE predicted 21d volatility .0160 .0066 .0302 .0085

The table shows the average realized 21 day volatility across the different regimes,
as well as the average predicted volatility by both the HAR and CP-GARCH model
and the root-mean-square error (RMSE) of the predictions.

29The performance of the HAR model increases when the variance is calculated based on 5
minute data. However, the overall picture that the HAR model underpredicts volatility in times
of high variance remains unchanged.
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Figure 15: Empirical pricing kernels using the volatility forecast of the Corsi (2009)
HAR model

The figure shows the natural logarithm of estimated pricing kernels obtained by

using the volatility forecast from the Corsi (2009) HAR model. Data only exists

from 1.1.2000 onwards. Red (black) depicts times with high (low) variance. Log-

returns are on the horizontal axis. The horizon is one month. The blue line connects

the points, which depict the ratio of the CDFs of the tail, with the corresponding

pricing kernels.
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I incorporate this volatility model into my pricing kernel estimation methodology,

by employing its volatility forecast in (16) and (17), while everything else remains un-

changed. The results, which are displayed in Figure 15 are interesting in several regards.

First, the estimated pricing kernels appear U-shaped most of the time. Again, the pat-

tern of decreasing steepness of the right-hand side of the PK estimates is present. As

above, the reason is that this approach cannot handle time-variation in the higher mo-

ments. Furthermore, the wideness of the PK estimates across time is very similar. This

is probably caused by the general underestimation of volatility by the HAR model, espe-

cially in times of high volatility. The Euler equation errors in Chapter 4.5 fully support

this conjecture. Lastly, the wiggles around zero are the result of an unsmooth empirical

return shock density. Figure 18 in Appendix G illustrates this. Overall, using the HAR

model can at least partly confirms the u-shape of the the pricing kernels.

6.4 Different maturities

Studies on empirical pricing kernels typically use maturities between two weeks and two

months. To show that the results are not specific to the one month horizon, I repeat

the analysis with maturities of two weeks, six weeks and two months. For each horizon,

both the results for the benchmark method with empirical shocks and for the simulated

GARCH kernel method from Section 6.1 are reported. The graphs show that the results

are impressively robust against changes in the analyzed horizon. All the observations

above can be found for the other maturities and are equally strong. To save space, not

all the results are shown. Figures 19 - 22 in the Appendix G contain the results for the

two weeks and six weeks horizon with the benchmark method.

6.5 Including the switching probability

The benchmark analysis ignores the probability to switch into another regime, since

this probability is very small. As a first robustness, a version with a crude control for

a regime switching probability is estimated. The highest switching probability is close

to 0.001. With this switching probability, the probability of the state to switch at all

over a time period of 21 days is 1 − 0.99921 = 2.08%. The analysis is repeated using a

2% switching probability from a red (black) regime to an average low (high) variance

regime. The 2% are still a rather high estimate, because even if the state switches, it

can switch at any of the 21 days and hence only parts of the final density come from the

later state. The results show that the impact is only marginal and the omission of the
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switching probability cannot explain the results. Due to space limitations, the results

are not displayed, but are available from the author upon request.

The second robustness fully includes the switching probabilities in the forecasting of

the variance. The forecast is then used both in the construction of the shock densities

and the conditional return density. This comes at the cost that the approach is more

involved and Appendix E contains the technical details. Again, the results show that

the impact is only marginal and the omission of the switching probability is a reasonable

simplification.

6.6 Different GARCH model

An alternative to the so far employed Heston-Nandi GARCH model that is also used

for option pricing is the NGARCH model of Duan (1995). The following analysis shows

that the results are robust to using an alternative GARCH model specification.

The dynamics of the NGARCH model as well as the corresponding parameter es-

timates are in Appendix F. The likelihood functions and algorithms are analogous to

those presented in Chapter 3.

All the above analysis is repeated using the NGARCH model and the results remain

the same as above. This does not only hold for the pricing kernel estimates, but also

for the (biased) volatility forecasting, the properties of the shock densities as well as all

the robustness checks. Due to space limitations, the results are not displayed, but are

available from the author upon request.

The major difference in the dynamics of the two GARCH models are the drift term in

the return equation and the concatenation of the variance in the “alpha-term” in the vari-

ance equation. Most other popular GARCH models use one of these two specifications,

and mainly differ in how the “leverage-effect” is modelled. Although the dynamics are

different, there are no differences in the results. Furthermore, the above analysis shows

that the key driver of the results are the biased volatility forecast of the fixed parame-

ter GARCH. This effect most likely carries over to any GARCH specifications and the

results can also be obtained using other GARCH models.

6.7 Second order polynomial

As a minor robustness check the fourth order polynomial, that was used to interpolate

implied volatilities as described in 4.2, is replaced with the also popular second order
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polynomial. The estimated pricing kernels do barely change and the results stay unal-

tered. The fourth order polynomial is preferred since untabulated analysis shows that

it fits the data better.

6.8 Generalizability to other equity indices

A relevant question is whether the obtained results are generalizable to other equity

indices. Due to a lack of option data, I cannot extend the analysis to other indices. It

is promising, however, that Grith et al. (2013), who use DAX 30 data from June 2003

to June 2006, conclude that the hump is more pronounced in calm periods.

6.9 Relation of the results to other methods in the existing

literature

The methods used so far to derive an estimate of the conditional physical return distri-

bution are the methods used in the majority of the existing literature on option implied

pricing kernels. However, some approaches are not covered. This paragraph discusses

how the presented results relate to these approaches.

First, there are several studies that assume a specific distribution for the physical

return density, as variance-gamma, normal-inverse-Gaussian, or lognormal. This is po-

tentially restrictive and it is not clear how the chosen parametric distribution influences

the results and what empirical PK shapes are actually possible. Furthermore, some stud-

ies do not condition their return density forecasts on current market volatility, which

most of the literature agrees on is important. Those who do condition on volatility typ-

ically do this using a standard GARCH model with fixed parameters and are therefore

most likely prone to the bias documented above. If the method is altered to condition on

volatility correctly, the results are expected to be similar, at least qualitatively, since also

both the GARCH kernel method and the empirical shock method lead to qualitatively

similar results, despite different forecasted return distributions.

Second, some studies make assumptions that restrict the functional form of the

pricing kernel.30 However, this by assumption typically makes certain shapes hard to

find or even rules them out a priori.

Third, there are several studies that estimate an unconditional pricing kernel, which

30Cuesdeanu & Jackwerth (2016) provide a good and comprehensive overview of these studies
in their Ch. 2.2.
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allows some of them to be more or less non-parametric. This approach is fundamentally

different from the approach taken here. Section 5.1 below discusses this approach in

the light of the presented results. The main insight is that this approach might deliver

wrong results.

Fourth, some studies use a rolling window of pure historic returns and kernel es-

timation methods to obtain the (conditional) physical returns density. This method

does not condition the estimate on current market volatility. Since market volatility is

time-varying and clustered, the past few years are often not a good proxy for the future

expected returns. This is in particular the case at the beginning of a calm periods, where

the past mostly consists of a crisis. Since the risk-neutral distribution is purely forward

looking, this approach leads to findings of pronounced humps especially at the beginning

of a calm period.
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7 Conclusion

This paper identifies structural breaks in the volatility process of the S&P 500 using a

change-point GARCH model. The model has the advantage that it can capture market

phases where the volatility is very high or low for extended periods of time. This is in

contrast to a standard GARCH model that, when estimated over a long time series, leads

to volatility forecasts that systematically and significantly biased, especially in times of

low volatility. Using a standard GARCH model is a popular approach in the literature

on empirical pricing kernels. The results brought forward show that the biased volatility

forecasts are the reason why many researchers find S-shaped pricing kernels, especially

in times of low volatility. When replacing the standard GARCH by the CP-GARCH

in the otherwise identical methodology, the S-shaped pricing kernels disappear and U-

shaped pricing kernels are observed over the entire time series. It is very encouraging

that this observation is robust to a number of changes in the method, model and data.

Furthermore, the empirical results are matched very well by a variance-dependent pricing

kernel, but only when the model contains structural breaks. It furthermore emerges that

the breaks are equally important for modelling the risk-neutral GARCH dynamics, that

are otherwise also biased. Overall, the results are very helpful for asset pricing models

as they show which kind of risk-factors and pricing kernel patterns are to be explained.

Most obviously, they rule out the theoretically very challenging need to explain the

coexistence of U-shaped and S-shaped pricing kernels.

The results and empirical exercises in this paper can be extended and generalized

in a number of ways. First, the proposed methodology can be applied to other major

stock indices. The finding of Grith et al. (2013) for DAX 30 data that the S-shape is

more pronounced in calm periods, suggests that the conclusions extend to other indices.

Second, one can study more general pricing kernels and richer dynamics. The partic-

ular challenge is to fit both the observed returns and option prices as pointed out by

Christoffersen et al. (2013). Finally, the results provide an important benchmark to

more general asset pricing models. The findings suggests that a model should generate a

U-shaped projection of the stochastic discount factor on returns. Identifying risk factors

which make states with high returns risky and expensive for investors is economically

very interesting.
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Appendix

A Relation to Markov Switching Model

A close relative to a change-point model is the probably more popular Markov-switching

(MS) model, also called regime-switching GARCH. The above model could become a

Markov-switching model by changing the transition matrix P from absorbing to recur-

ring. But there are several reasons why the CP model is preferred here over the MS

model. First of all, the estimation of a MS-GARCH model is even more complicated

than that of a CP-GARCH model. One way to illustrate this is: for a time series of

length T , the MS model has (K+1)T possible paths, while in the CP model the number

of paths is at least linear in T , but not exponential. Augustyniak (2014) is the first

and so far only one to provide an algorithm for and to conduct a maximum-likelihood

estimation of a MS-GARCH model. However, preliminary analysis as well as correspon-

dence with the author revealed that (at least a two state) MS-GARCH model is not well

specified. Without any restrictions on the parameters, the optimal variance parameters

are explosive in the (infrequently observed) very high volatility regime. Furthermore,

the model seems to overfit the data, because paths generated from estimated parameters

exhibit unreasonable dynamics. The main reason are the extreme positive and negative

daily returns that occur from time to time. The estimation fits especially those in the

(very) high variance regime. Therefore, one would probably need three or even four

states to produce reasonable dynamics. The estimation of this model would be very

difficult. Furthermore, the model then would be not so different from the CP model

used here that has five states over the full time series.

In addition, the solution of the variance depended pricing kernel model, if one cor-

rectly includes the switching probabilities, is even more complicated for the MS version

than for the CP. Lastly, the CP might have the better economic interpretation. The

idea behind a model with structural breaks is that some fundamentals in the economy

change. The regimes of a CP model, which usually last a few years, can roughly be seen

as business cycles. Even though the MS model roughly identifies the same regimes, if one

simulates the model it switches at random points in time, which can easily be implausible

close together to represent a business cycle. On the other hand, the CP model amplifies

a problem that also the MS shares: The problem of how an individual could know the

parameters of the next state (and maybe even this state) if that state is different to all

others and has never occurred before. This concern is addressed in Section 6.2 of the
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robustness section by using a purely forward looking volatility forecast.

Overall, for the outlined reasons the less common CP model is preferred here over

the MS model.

B Data Cleaning

Here is a detailed list of the option data cleaning steps applied.

B.1 General Option Data

1. All S&P 500 Options in the period from 1.1.1996-31.8.2015 with a time to maturity

>14 days and <366 days are downloaded from OptionMetrics. This amounts to

roughly 6 million option quotes.

2. Remove all quotes that have:

• zero trading volume on the day of the price quote

• best bid is below $0.50

• that are more than 20 points in-the-money

• violate

3. For each week in the sample, use only Wednesday data. If the Wednesday of a

week is not a trading day the Tuesday of that week is used. If this is also not a

trading day the week is excluded. This happened a few times, (e.g. mostly around

Christmas and New Year, e.g. at and after 11.09.2001).

4. Of the cleaned data, identify the six most actively traded contracts (by total

volume). If some contracts have the same volume, the ones with the larger number

of outstanding options are used. If this would also tie, the selection is randomized

(i.e. the given random ordering is used).

5. For the sub-sample with only close to 30 day maturity: in each week, the option

series which has a remaining time to maturity closest to 30 days is selected. If 30

days are not matched exactly, the next closest maturity is selected, starting with

31 days, next 29, then 32, then 28 and so on.
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B.2 Pricing Kernel Option Data

1. All S&P 500 Options in the period from 1.1.1996-31.8.2015 with a time to maturity

>27 days and <34 days (monthly horizon) are downloaded from OptionMetrics.

(For the other horizons, the used thresholds are: >11 and <20, < 39 and > 48, <

55 and > 65)

2. Remove all quotes that:

• have zero trading volume on the day of the price quote

• have best bid is below $0.50

• are more than 20 points in-the-money.

3. For each month, find the option series that has a remaining time to maturity

closest to the desired time to maturity. For the benchmark one month horizon

this is 30 days, and in the robustness section this is 16 days (two weeks), 44 days

(six weeks) and 60 days (two months).

C Estimation of Risk-Neutral Density

1. Clean the data as described above.

2. Get risk-free rate from OptionsMetrics, and interpolate linearly for the correct

maturity.

3. Calculate implied dividend yield from at the money call and put pair.

First, the implied forwards from put-call parity:

C +Ke−rτ = P + Fe−rτ , (31)

and then dividend yield via the spot-forward parity:

F = Se(r−DivY ield)τ . (32)

4. Transform mid-prices into implied volatilities using Black and Scholes (1973). In

the region of +/- 20 points from at-the-money, take a weighted average (by volume)

of put and call implied volatilities.
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5. Fit a 4th order polynomial to the implied volatilities over a dense set of strike

prices, and convert back into call option prices using Black-Scholes.

6. Numerically differentiate the call prices using (14) to recover the risk-neutral re-

turn distribution.

D Particle-MCEM-MCML algorithm

This section repeats the main steps in the Particle-MCEM-MCML algorithm suggested

by Sichert (2017) to estimate the CP-GACH model. This hybrid algorithm, called

Particle-MCEM-MCML, is based on the algorithms proposed by Augustyniak (2014)

and Bauwens et al. (2014). For further details and empirical applications see Sichert

(2017) .

Let θ denote the parameter vector, St the stock price, yt the latent state variable, and

S = S1:T = {s1, ..., sT }′ and Y = Y1:T = {y1, ..., yT }′ the corresponding vectors.31 The

algorithm starts with an initial guess of the parameters θ(0) and r counts the number of

steps, starting from 1.32

Algorithm 1 (Particle-MCEM-MCML Algorithm).

1. Simulate mr samples of the state vector Y1:T from p(Y1:T |S1:T , θ
(r−1), P ) using the

particle Gibbs sampler. The sampler is described next.

Particle Gibbs sampler:

Let wit denote the normalized weights that are associated toN particles {y1
t , ..., y

N
t }

which represent possible realizations of yt. These weights serve to approximate

the probability p(yt|st, θ, P ). More specifically p(yt = j|st, θ, P ) ≈
∑N

i=1w
i
t1{yit=j}

with 1{} being the indicator function.

Define the ancestor variable Akt as the particle from which the particle k at time

t is sampled, and the lineage variable bkt as the particle belonging to the path of

the particle k at time t. Set bkT := k so that we have the backward recursion

31The increase readability, here st denotes the stock price at time t, which was St in the main
text above.

32The main steps are mostly based on Augustyniak (2014), while the particle sampler is mostly
based on Bauwens et al. (2014), both with several adjustments. For a detailed discussion see the
respective papers.
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bkt = A
bkt+1

t . The bkt variable represents next the lineage of the previous yt draw.

The conditional SMC can be computed for p(yt|st, θ, P ) for t = 1, ..., T , assum-

ing we have {yb
k
1

1 , ..., y
bkT
T } and given uniform initial weights wi0 = 1/N and initial

particles si0 = 1 as:

(a) ∀i ∈ [1, N ],compute git = wit−1

∑K
j=1 p(yt = j|yit−1, P ) f(st|Ft−1, θ, P, yt = j),

Ft−1 denoting the data and particles until t - 1, and the normalized weights

ω̃it = git/
∑N

j=1 g
j
t .

(b) ∀i ∈ [1, N ] \ bkt sample independently a label variable Ait−1 ∼ ω̃t such that

Ait−1 ∈ [1, N ].

(c) ∀i ∈ [1, N ] \ bkt , sample a particle yit ∼ p(yt|y
Ai

t−1

t−1 ).

(d) ∀i ∈ [1, N ] compute ŵit =
f(st|Ft−1,yit,θ,P )∑K

j=1 f(st|Ft−1,θ,P,yt=j)p(yt=j|s
Ai
t−1

t−1 )

and the normal-

ized.

After reaching T :

(e) ∀i ∈ [1, N ] \ bkT recursively calculate the ancestral lineage and path for each

Y i
1:T .

(f) ∀i ∈ [1,mr] sample ki ∼ wT . The Y ki

1:T are the new state vectors.

2. Monte Carlo E-step: Calculate Q̂(θ | θ(r−1)), an approximation of the conventional

E-step Q(θ | θ(r−1)), where

Q̂(θ | θ(r−1)) =
1

mr

mr∑
i=1

log[f(S, Y (i) | θ)]

= −T log(2π)

2
− 1

2mr

T∑
t=1

mr∑
i=1

[log(h
(i)
t )) +

(St − (rt + (µ
y
(i)
t
− 1

2)h
(i)
t ))2

(h
(i)
t ))

]

+
1

mr

T∑
t=1

mr∑
i=1

log(p
y
(i)
t−1,y

(i)
t

)

= term 1 + term 2.

(33)

In the previous expressions, h
(i)
t is shorthand for ht(Y

(i)
1:t ).
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3. M-step: Perform the following maximization:

θ(r) = arg max
θ

Q̂(θ | θ(r−1)) (34)

This optimization can again be split into two independent steps since terms 1 and

term 2 of Eq. (33) involve different subsets of the parameters. Term 1 includes the

mean and GARCH parameters while term 2 only contains transition probabilities.

Maximization of term 1 must be performed numerically and is similar to a stan-

dard GARCH optimization to calculate the MLE. To improve the performance of

that optimization, the gradient of term 1 with respect to the mean and GARCH

parameters should be provided to the optimization routine (see Appendix C of

Augustyniak (2014)). Maximization of term 2 can be done analytically. Term 2 is

at its maximum when the transition probabilities take the values

pjk =
fjk∑N
l=1 fjl

, j, k = 1, ...,K, (35)

where fjk denotes the total number of transitions from state j to state k in all

of the mr simulated state vectors. A proof of this result is in Appendix B of

Augustyniak (2014).

4. Apply a decision rule to determine whether to switch to the MCML algorithm. If

the decision is to switch, go to step 5 and set θ∗ = θ(r). Otherwise, add 1 to r and

go to step 1.

5. Simulate m∗ samples of the state vector Y from p(Y |S, θ∗, P ∗) using the particle

Gibbs sampler described in step 1 of the algorithm to obtain the importance sample

{Y (i)}m∗
i=1.

6. MCML-step: Perform the following maximization to obtain the MLE:

θ̂ = arg max
θ

[
log

m∗∑
i=1

ω
(i)
θ|θ∗

]
, (36)

where ω
(i)
θ|θ∗ = log f(S, Y (i)|θ, P )− log f(S, Y (i)|θ∗, P ∗).
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E Formulas with switching probabilities

This section describes the calculation of the expected variance that includes the switching

probability. When the current regime is j, the formula for the expected variance is:

V ARt(T ) = Et

( T∑
τ=t+1

hτ

)
=
[
pTj,j · V ARj,t(T ) + pT−1

j,j pj,j+1 · V ARj+1,t+τ (T )[hj+1,t+1]

+ pT−1
j,j pj,j+1 ·

T−1∑
τ=1

(
V ARj,t(t+ τ) + V ARj+1,t+τ (T )[Et(hj+1,t+τ+1)]

)]
/(pTj,j + pT−1

j,j pj,j+1T ) =

=
1

pj,j + pj,j+1T

[
pj,jV ARj,t(T ) + pj,j+1V ARj+1,t+τ (T )[hj+1,t+1]+

pj,j+1

T−1∑
τ=1

(
V ARj,t(t+ τ) + V ARj+1,t+τ (T )[Et(hj+1,t+τ+1)]

)]
,

(37)

where:

• pj,j is the probability to stay in regime j,

• pj,j+1 is the probability to switch from regime j to regime j + 1,

• V ARj,t(T ) is the at time t expected variance from t+1 to T , conditional on staying

in regime j from t + 1 to T and calculated using Equ. 5 with the parameters of

the respective regime,

• hj+1,t+1 = ωj+1 + αj+1(zt−1 − γj+1

√
ht−1)2 + βj+1ht−1

• Et(hj+1,t+τ+1) is the expected variance in t+τ+1 conditional on staying in regime

j from t to t+ τ and switching regime in t+ τ + 1;

Et(hj+1,t+τ+1) = ωj+1 + (βj+1 + αj+1 · γ2
j+1)Et(j, ht+τ ), and

Et(j, ht+τ ) = (βj + αj · γ2
j )τ−1hj,t+1 +

ωjαj

βj+αjγ2j
[1− (βj + αj · γ2

j )τ−1]

• and V ARj+1,t+τ (T )[·] is the expected variance from t + τ + 1 to T , when the

process switches to regime j + 1 in t+ τ + 1. It is calculated using Equ. 5 where

h1 is replaced with [·].

To understand the formula, it might be useful to further discuss the dynamics in 6 and

7: On (the morning of) day t, first nature draws the latent state variable yt, then the
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variance process is updated, and then the return is realized during the day, using the

new variance. The variance process is updated using the variance from t − 1 and the

parameters of the new regime.

The formula gives the expected variance over all possible path with zero switches

(first term) or one switch (second and third term). The second term is the case when

the regime switches on the next day, while the third term contains all other possible

paths with one regime switch. The denominator normalizes the probabilities.

The presented formula omits the probability of more than one regime switch, to keep

the analysis tractable. This is both economically and statistically reasonable. First, the

idea of the breaks are that they represent long swings like business cycles and a regime

that lasts less than 21 days seems unreasonable. Second, the statistic probability of

observing more than one switch within 21 days is very low (e.g. 0.02% when using a

relatively high switching probability of 0.001). Since multiple switches are ignored, the

probabilities would not exactly add up to one and hence they are normalized to one by

the denominator.

Lastly, for the last regime no j+ 1 exists. I chose to use the second to last regime as

a proxy for the unknown regime. Using the parameters of regime j + 1 in regime j does

contain some forward looking bias. However, this can be seen as a proxy for using an

alternating pattern of high an low volatility regimes, since the long-run volatility across

the high an low volatility regimes respectively is very similar.

F NGARCH formulas and parameter estimates

F.1 Dynamics

The dynamics of the standard NGARCH model are are:

ln
( St
St−1

)
= rt + µ

√
ht −

1

2
ht +

√
htzt, (38)

ht = ω + αht−1(zt−1 − γ)2 + βht−1 (39)

zt ∼ N(0, 1).

Furthermore the long run variance of the NGARCH model is:

E[ht] =
ω

1− β − α(1 + γ2)
, (40)
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and the expected variance over any period is:

E0

[
T∑
t=1

ht

]
= T · E[ht] + (h1 − E[ht])

1− (β + α(1 + γ2))T

1− (β + α(1 + γ2))
. (41)

Finally, the dynamics of the NGARCH model with structural breaks are:

ln
( St
St−1

)
= rt + µyt

√
ht −

1

2
ht +

√
htzt, (42)

ht = ωyt + βytht−1 + αytht−1(zt−1 − γyt)2 (43)

zt ∼ N(0, 1),

where yt and P are as defined in Section 2.2.
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F.2 Parameter estimates

Table 9: Estimation Results of the NGARCH model

FP NGARCH CP-NGARCH

Parameters ’92-15 ’92-’97 ’97-’03 ’03-’07 ’07-’12 ’12-’15

ω 1.84E-06 2.86E-06 6.55E-06 4.73E-06 4.05E-06 3.88E-06

α 7.44E-02 4.19E-02 5.07E-02 2.14E-02 7.31E-02 6.25E-02

β 0.830 0.791 0.739 0.394 0.793 0.487

γ 1.065 1.470 1.878 4.763 1.317 2.547

µ 0.021 0.050 0.001 0.046 -0.013 0.062

pjj 0.99918 0.99941 0.99898 0.99911 1

Properties

β + α(1 + γ2) 0.9884 0.924 0.9679 0.9017 0.9934 0.9545

Long-run volatility 0.200 0.097 0.227 0.110 0.392 0.147

Log-likelihood

Total 19555.5 19653.1

AIC -39101.0 -39248.3

BIC -39067.5 -39054.2

Parameter estimates are obtained by optimising the likelihood on returns. Param-

eters are daily, long run volatility is calculated as
√
long − run variance · 252. For

each model, the total likelihood value at the optimum is reported. The volatility

parameters are constrained such that the variance is positive (0 ≤ α < 1, 0 ≤
β < 1, α(1 + γ2) + β < 1, 0 < ω). The Akaike information criterion (AIC) is

calculated as 2k − 2 ln(LR) and Bayesian information criterion (BIC) is calculated

as ln(n)k − 2 ln(LR), where n is the length of the sample and k is the number of

estimated parameters.
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G Additional Plots

Figure 16: Skewness of risk-neutral return density and moving average

The figure shows the skewness of the estimated risk-neutral density during the last

low volatility regime (29.11.2011-31.08.2015). The blue line shows the estimate for

each date, and the red line shows the moving average of the past 12 observations.

The data and method to obtain the option implied distribution is as in Section 4.

The tails of the distribution are not completed.

71



Figure 17: Monthly return density for the CP-GARCH model, FP GARCH model
and empirical returns

The figure shows the estimated monthly return densities (21 days) for the CP-

GARCH, the FP GARCH and the empirical returns. The first FP GARCH densities

and all CP-GARCH densities are obtained from a long simulation (1 million days).

The FP GARCH density in the regimes is obtained from 100,000 simulations, that

are started from the average variance of the regime. The first sub-plot contains the

full time series and the FP GARCH model, while the remaining ones only contain

the distributions of the respective regimes in timely order.
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Figure 18: Monthly return density for the CP-GARCH model, FP GARCH model
and empirical returns

The figure shows the estimated monthly return densities (21 days) for the HAR

model of Corsi (2009) (blue line), and the corresponding pricing kernel estimates

(black and red, respectively). The left plot shows data of the date that is closest to

the average low volatility, while the right plot shows data of the date that is closest

to the average high volatility. The vertical line (dashed) shows where the kink in the

return density forecasts translates into a hump in the pricing kernel estimate.
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Figure 19: Empirical pricing kernels with fixed parameters in the HN model and
two weeks horizon

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi model with fixed parameters. Red (black) depicts times

with high (low) variance. Log-returns are on the horizontal axis. The horizon is two

weeks. The blue line connects the points, which depict the ratio of the CDFs of the

tail, with the corresponding pricing kernels.
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Figure 20: Empirical pricing kernels with CP parameters in the HN model and
two weeks horizon

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi model with CP parameters. Red (black) depicts times with

high (low) variance. Log-returns are on the horizontal axis. The horizon is two

weeks. The blue line connects the points, which depict the ratio of the CDFs of the

tail, with the corresponding pricing kernels.
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Figure 21: Empirical pricing kernels with fixed parameters in the HN model and
six weeks horizon

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi model with fixed parameters. Red (black) depicts times

with high (low) variance. Log-returns are on the horizontal axis. The horizon is six

weeks. The blue line connects the points, which depict the ratio of the CDFs of the

tail, with the corresponding pricing kernels.
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Figure 22: Empirical pricing kernels with CP parameters in the HN model and six
weeks horizon

The figure shows the natural logarithm of estimated pricing kernels obtained from

using the Heston-Nandi model with CP parameters. Red (black) depicts times with

high (low) variance. Log-returns are on the horizontal axis. The horizon is six weeks.

The blue line connects the points, which depict the ratio of the CDFs of the tail,

with the corresponding pricing kernels.
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