
Bank regulation under fire sale externalitiesa

Gazi I. Karab

S. Mehmet Ozsoyc

September, 2017

Abstract

We examine the optimal design of and interaction between capital and liquidity regulations.
Banks, not internalizing fire sale externalities, overinvest in risky assets and underinvest in liquid
assets in the competitive equilibrium. Capital requirements can alleviate the inefficiency, but
banks respond by decreasing their liquidity ratios. When capital requirements are the only
available tool, the regulator tightens them to offset banks’ lower liquidity ratios, leading to
fewer risky assets and less liquidity compared with the second best. Macroprudential liquidity
requirements that complement capital regulations implement the second best, improve financial
stability, and allow for more investment in risky assets.
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1 Introduction

The recent financial crisis led to a redesign of bank regulations. Prior to the crisis, capital

adequacy requirements were the dominant tool of bank regulators around the world. Liq-

uidity requirements for internationally active banks were always part of the discussion in

the Basel Committee for Banking Supervision, but several factors delayed their introduction

until recently. One main factor was the argument that capital and liquidity requirements

are substitutes. It was believed that capital requirements would also address liquidity risk

by creating incentives for banks to hold assets with lower risk weights, which should have

better liquidity characteristics.1

The crisis, however, revealed that even well-capitalized banks can experience a deterio-

ration of their capital ratios due in part to illiquid positions (Brunnermeier, 2009). Without

the unprecedented liquidity and asset price supports of leading central banks, liquidity prob-

lems faced by several financial institutions simultaneously could have resulted in a dramatic

collapse of the financial system. The experience brought liquidity into the spotlight and pro-

vided the supervisory momentum to introduce harmonized liquidity regulations.2 As a result,

a third generation of bank regulation principles, popularly known as Basel III, strengthens

the previous Basel capital adequacy accords by adding macroprudential aspects and liquidity

requirements such as the liquidity coverage ratio (LCR) and the net stable funding ratio.

Several countries, including the United States and the countries in the European Union,

have already adopted Basel III liquidity requirements together with the enhanced capital

requirements. However, guidance from the theoretical literature on the regulation of liquidity

and the interaction between liquidity and capital regulations is quite limited, as emphasized

by Bouwman (2012) as well. The scarcity of academic guidance is also apparent in a 2011

survey paper on illiquidity by Jean Tirole, in which he succinctly asks, “Can we trust the

institutions to properly manage their liquidity, once excessive risk taking has been controlled

by the capital requirement?” (Tirole, 2011).

This paper is the first attempt, to the best of our knowledge, to provide an answer to Jean

Tirole’s question based on microfoundations, and it makes two main contributions. First,

we show that banks’ choices of capital and liquidity ratios in an unregulated competitive

equilibrium are inefficient under fire sale externalities. Both ratios have distinct effects on

the extent of fire sale risk that banks take and, hence, on the externalities they impose on each

other. Therefore, we argue that implementing the second-best allocations in a decentralized

economy requires regulating banks on both channels. Second, the paper contributes to the

1See Goodhart (2011) and Bonner and Hilbers (2015) for a review.
2See Rochet (2008), Bouwman (2012), Stein (2013), Tarullo (2014), Allen (2014), Bonner and Hilbers (2015) for

recent discussions on the regulation of bank liquidity.
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literature by analyzing the interaction between capital and liquidity regulations in addressing

this inefficiency. In particular, we uncover novel results on the effects of a capital-regulation-

only regime on banks’ risk-taking and liquidity choices as well as financial stability measures

and welfare. We show that banks respond to tightening capital requirements by decreasing

their liquidity buffers, a result consistent with the empirical evidence from several developed

countries after the introduction of Basel I in 1988 and Basel II in 2004 (Bonner and Hilbers,

2015). Studying the case of capital regulation alone is important because it represents the

pre–Basel III era and thus is informative for understanding the development of systemic risk

in that period.

We consider a three-period model in which a continuum of banks have access to two types

of assets. Banks have to decide at the initial period how many risky and liquid assets to carry

in their portfolio. We allow for a flexible balance sheet size, such that banks can increase

both their risky and liquid assets at the same time. Banks start with a fixed amount of equity

capital and borrow the funds necessary to finance their portfolio from consumers. The risky

asset has a constant return but requires, with a known probability, additional investment in

the future before collecting returns. This additional investment cost creates a liquidity need,

which is proportional to the amount of risky assets on a bank’s balance sheet. The liquid

asset provides zero net return; however, it can be used to cover the additional investment

cost. A combination of limited-commitment and debt-overhang problems prevents banks

from raising external finance to cover the additional investment cost. Therefore, if liquidity

from the initial period is not enough to offset the shock, banks’ only option is to sell some

of their risky assets to firms in the traditional sector.3 This sell-off of risky assets takes the

form of fire sales because traditional sector’s demand for risky assets is downward-sloping:

These firms are less productive in managing the risky asset, and the marginal product of

each additional asset is lower under their management. Thus, traditional firms offer a lower

price when banks try to sell a higher quantity of risky assets. A lower price, in turn, requires

each bank to further increase the quantity of risky assets to be sold, creating an externality

that goes through asset prices.

Atomistic banks do not take into account the effect of their initial portfolio choices on

the fire sale price. If banks hold more risky assets, the liquidity need in case of an aggregate

shock is greater. As a result, there are more fire sales and a lower fire sale price, which in

turn requires each bank to sell more risky assets to raise the required liquidity. Similarly,

smaller liquidity buffers in the banks’ initial portfolios lead to greater fire sales and a lower

fire sale price. We compare the unregulated competitive equilibrium in which banks freely

3The additional investment cost shock is aggregate in nature; therefore, the liquidity need cannot be satisfied
within the banking system, as all the banks are in need of liquidity. This assumption is not crucial for the results.
In Section 6.2, we study the case with idiosyncratic shocks.
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choose their capital and liquidity ratios to the allocations of a constrained planner. Without

internalizing the effect on the fire sale price, banks overinvest in the risky asset (lower capital

ratios) and underinvest in the liquid assets in the unregulated competitive equilibrium. The

constrained planner, in contrast, is subject to the same contracting constraints as the private

agents but internalizes the effect of initial allocations on the fire sale price. We also investigate

how the constrained efficient (second-best) allocations can be implemented using quantity-

based capital and liquidity regulations, as in the Basel Accords.

Our results indicate that the constrained efficient allocations can be achieved with joint

implementation of capital and liquidity regulations (complete regulation). The regulation

required is macroprudential because it addresses the instability in the banking system by

targeting aggregate capital and liquidity ratios. Banks hold liquid assets for precautionary

reasons even if there is no regulation on liquidity because they can use these resources to

protect against liquidity shocks. Liquidity is advantageous from a macroprudential stand-

point as well: Higher liquidity holdings lead to less-severe decreases in asset prices during

times of distress. However, banks fail to internalize this macroprudential aspect of liquid-

ity, which results in inefficiently low liquidity ratios when there is no regulation. Similarly,

banks neglect the macroprudential effects of capital ratios and end up choosing inefficiently

low capital ratios in the competitive equilibrium.

We then use this model to answer Tirole’s question, mentioned above, by studying a

regulatory framework with capital requirements alone, similar to the pre-Basel III episode,

which we call partial regulation. In this setup, banks respond to the introduction of capital

regulations by decreasing their liquidity ratios further below the already inefficient levels

in the competitive equilibrium. If there is no regulation, banks choose a composition of

risky and safe assets in their portfolio that reflects their privately optimal level of risk-

taking. When the level of risky investment is limited by capital regulations, banks reduce

the liquidity of their portfolio in order to get closer to their privately optimal level of fire sale

risk. This is, in a sense, an unintended consequence of capital regulation: Capital regulation

improves financial stability by limiting aggregate risky investment, which in turn weakens

banks’ incentives to hold liquidity because the marginal benefit of liquidity decreases with

financial stability. The regulator tightens capital regulations under a capital ratio regime to

offset banks’ lower liquidity ratios, reducing socially profitable long-term investments. As a

result, bank capital ratios under partial regulation are higher compared to the second-best

allocation.

The aforementioned findings have important policy implications. The lack of complemen-

tary liquidity requirements leads to lower levels of bank liquidity and long-term investments,

and more severe financial crises compared to the second best, undermining the purpose of
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capital adequacy requirements. Our results indicate that the pre-Basel III regulatory frame-

work, with its focus on capital requirements, was ineffective in addressing systemic instability

caused by fire sales, and that Basel III liquidity regulations are a step in the right direction.

The constrained inefficiency of competitive equilibrium in this paper is due to the ex-

istence of pecuniary externalities under incomplete markets. In our framework, this is the

only source of inefficiency.4 The Pareto suboptimality due to pecuniary externalities is well

known in the literature. Greenwald and Stiglitz (1986), for instance, show that pecuniary

externalities by themselves are not a source of inefficiency but can lead to significant welfare

losses when markets are incomplete or when there is imperfect information. More recently,

Lorenzoni (2008) shows that the combination of pecuniary externalities in the fire sale mar-

ket and limited commitment in financial contracts leads to too much investment in risky

assets in the competitive equilibrium. If the markets were complete there would not be a

reason for fire sales, and the first-best world would be established where there would be no

role for regulation.

The paper proceeds as follows. Section 2 contains a brief summary of related literature.

Section 3 provides the basics of the model and presents the unregulated competitive equilib-

rium and the constrained planner’s problem. Section 4 compares two alternative regulatory

frameworks: complete regulation (both capital and liquidity regulations) and partial reg-

ulation (only capital or liquidity regulation). Section 5 considers a few extensions of the

model to analyze if the constrained optimal can be implemented using a single linear rule

that combines capital and liquidity regulations, the implications of fire sale externalities for

shadow banking, and the quantitative implications of capital and liquidity regulations on

welfare and financial stability. Section 6 investigates the robustness of the results to some

changes in the model environment. Section 7 concludes. The internet appendix contains the

proofs and closed-form solutions of the model.

2 Literature review

Even though capital regulations have been studied extensively on their own, we are aware

of only a few papers that investigate the jointly optimal determination of capital and liquid-

ity regulations. Kashyap, Tsomocos, and Vardoulakis (2014) consider an extended version

of the Diamond and Dybvig (1983) model to investigate the effectiveness of several bank

regulations in addressing two common financial system externalities:5 excessive risk-taking

4We do not model agency or information problems that the literature has traditionally used to justify capital or
other bank regulations.

5The authors consider the following regulations: deposit insurance, loan-to-value limits, dividend taxes, and capital
and liquidity ratio requirements.
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due to limited liability and bank runs. Their paper does not consider fire sale externalities,

and as a result, optimal regulation does not necessarily involve capital or liquidity regula-

tions. Walther (2015) also studies macroprudential regulation in a model characterized by

pecuniary externalities due to fire sales. In his setup, the socially optimal outcome is to

have no fire sales in equilibrium, whereas in our paper partial fire sales are also optimal.

Furthermore, even though banks have two independent choice variables in his model as well,

Walther does not study implications of regulating only one channel on banks’ investment

decisions and financial stability.

A few other studies consider the effectiveness of capital and liquidity requirements sep-

arately in addressing a particular market failure, but unlike this paper do not study the

jointly optimal design of these regulations or the interaction between the two. Cifuentes,

Ferrucci, and Shin (2005) argue that liquidity buffers play a role similar to capital buffers

in curbing systemic externalities arising from asset fire sales, and they may even be more

effective under severe stress scenarios. Perotti and Suarez (2011) show that banks choose an

excessive amount of short term debt in the presence of systemic externalities and analyze

the effectiveness of liquidity regulations as in Basel III as opposed to Pigovian taxation in

implementing the social optimal level of short term funding. Calomiris, Heider, and Hoerova

(2013) argue that the role of liquidity requirements should be conceived not only as an in-

surance policy that addresses the liquidity risks in distressed times, as proposed by Basel

III, but also as a prudential regulatory tool that makes crises less likely.

Repullo (2005) shows, in direct contrast to our result, that a higher capital requirement

reduces the attractiveness of risky investment, and hence, causes a bank to increase its in-

vestment in safe assets. In his model, the balance sheet size of bank is exogenously fixed,

and hence, a decrease in risky investment necessarily implies an increase in safe assets. In

contrast, we consider a model with a flexible bank balance sheet in which capital require-

ment decreases risky investment level, and banks respond by decreasing their liquidity ratios.

Farhi, Golosov, and Tsyvinski (2009) consider a Diamond-Dybvig model with unobservable

liquidity shocks and unobservable trades. They show that competitive equilibria are ineffi-

cient even if the markets for aggregate risk are complete and that optimal allocations can be

implemented through a simple liquidity ratio requirement on financial intermediaries. Don-

aldson, Piacentino, and Thakor (2015) show that under a moral hazard problem a liquidity

requirement reduces bank lending below the efficient level while an increase in bank capital

requirement might increase bank liquidity creation.

Stein (2012) shows that banks, not internalizing the fire sale externalities, rely too much

on short term debt, a cheap form of financing, which in turn supports greater lending. In

Stein’s setup once the liquidity choice of banks is aligned with the socially optimal level by
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regulation, the investment decision is also aligned automatically. In our paper, regulating

liquidity alone or imposing a tax on it is not sufficient to guarantee the socially optimal

level of investment. Both the amount of total liquidity and total investment determine the

amount of fire sales, and thus should be regulated.

As in our paper, a few seminal papers have pointed out the inefficiency of liquidity

choice of banks in laissez-faire equilibrium under market incompleteness or informational

frictions. Bhattacharya and Gale (1987) consider an extended version of Diamond and

Dybvig (1983) with several banks and show that when banks face privately observed liquidity

shocks, they underinvest in liquid assets and free-ride on the common pool of liquidity in

the interbank market. Allen and Gale (2004b) show that when markets for hedging liquidity

risk is incomplete, private liquidity hoardings of banks are inefficient. Whether there is too

much or too little liquid assets in the laissez-faire equilibrium depends on the coefficient of

relative risk aversion: if it is greater than one, the liquidity is inefficiently low.

De Nicoló, Gamba, and Lucchetta (2012) consider a dynamic model of bank regulation

where liquidity is only welfare-reducing because unlike our paper, the authors do not consider

the role of liquidity in insuring banks against the fire sale risk. Covas and Driscoll (2014)

study the introduction of liquidity requirements on top of existing capital requirements

in a dynamic stochastic general equilibrium (DSGE) model. They show that imposing a

liquidity requirement leads to a decline in both the output and the amount of bank loans

in the steady state. Adrian and Boyarchenko (2013), using a DSGE framework as well,

find that liquidity requirements are a preferable prudential policy tool relative to capital

requirements, as tightening liquidity requirements lowers the likelihood of systemic distress

without reducing consumption growth. These studies impose the regulatory constraints

and study their implications, whereas in our paper optimal regulatory constraints emerge

endogenously to correct for specific market failures.

Even though the literature on the interaction between capital and liquidity requirements

is limited, there are studies that examine the interaction between different tools available to

regulators. Acharya, Mehran, and Thakor (2016) show that the optimal capital regulation

requires a two-tiered capital requirement with some bank capital invested in safe assets. The

special capital should be unavailable to creditors upon failure so as to retain market discipline

and should be available to shareholders only contingently on good performance in order to

contain risk-taking. Arseneau, Rappoport, and Vardoulakis (2015) show that two policy

tools (both asset purchases and interest on reserves) are needed to restore the constrained

efficiency when agents do not internalize the effects of portfolio allocations in the primary

market on the secondary market illiquidity. Nevertheless, they do not study the implications

of using only one policy tool or the interaction between the policies. Hellmann, Murdock,
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and Stiglitz (2000) show that under risk-shifting by banks, Pareto-efficient outcomes can

be achieved by adding deposit-rate controls to capital regulations. Such controls restore

prudent behavior by increasing franchise values.

Our paper is also related to the literature that features financial amplification and asset

fire sales, which includes the seminal contributions of Fisher (1933), Bernanke and Gertler

(1989), Kiyotaki and Moore (1997), Krishnamurthy (2003, 2010), and Brunnermeier and

Pedersen (2009). In our model, fire sales result from the combined effects of asset-specificity

and correlated shocks that hit an entire industry or economy. This idea, originating with

Williamson (1988) and Shleifer and Vishny (1992), is employed by fire sale models such as

Lorenzoni (2008), Davila and Korinek (2017), and Kara (2016). These papers show that un-

der pecuniary externalities arising from asset fire sales, there exists overinvestment in risky

assets in a competitive setting compared with the socially optimal solution. Relatedly, in He

and Kondor (2016) there is overinvestment in risky assets in boom periods and underinvest-

ment during recessions under pecuniary externalities. However, unlike our paper, none of

these papers consider jointly optimal determination of risky investment levels and liquidity.

The constrained inefficiency of competitive markets in this paper is due to the existence

of pecuniary externalities under incomplete markets. The Pareto suboptimality of compet-

itive markets when the markets are incomplete goes back at least to the work of Borch

(1962). The idea was further developed in the seminal papers of Hart (1975), Stiglitz (1982),

and Geanakoplos and Polemarchakis (1986), among others. Greenwald and Stiglitz (1986)

extended the analysis by showing that, in general, pecuniary externalities by themselves

are not a source of inefficiency but can lead to significant welfare losses when markets are

incomplete or there is imperfect information. Pecuniary externalities are categorized into

two types by Davila and Korinek (2017): distributive externalities that are due to marginal

rates of substitution of different agents not being equalized and collateral externalities that

arise from market price affecting the value of collateral. In our case, banks are financially

constrained and limited commitment impedes the equalization of the marginal rate of sub-

stitutions. The resulting distributive externalities lead to overinvestment in risky assets and

underinvestment in liquid assets.

3 Model

The model consists of three periods, t = 0, 1, 2; along with a continuum of banks and a

continuum of consumers, each with a unit mass. Consumers are risk neutral, and their

preferences are represented by the utility function E[c0 + c1 + c2]. Bankers are also risk

neutral but only consume in period 2.
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There are two types of goods in this economy, a consumption good and an investment good

(that is, the liquid and illiquid assets). Consumers are endowed with ω units of consumption

goods in each period.6 Banks have two technologies: a storage technology and a technology

that converts consumption goods into investment goods one-to-one at t = 0. Investment

goods that are managed by a bank until the last period will yield R > 1 consumption goods

per unit. However, investment goods are subject to a restructuring shock at t = 1, which

we discuss in detail below, and hence we refer to them as the risky assets. Risky assets can

be thought as mortgage-backed securities or a portfolio of loans to firms in the corporate

sector.7 Investment goods can never be converted back into the consumption goods, and

they fully depreciate after the return is collected at t = 2.

Banks choose at t = 0 how many risky assets to hold, denoted by ni, and how many liquid

(safe) assets, denoted by bi, to put aside for each unit of risky assets. The total amount of

liquid assets held by each bank is then nibi, and bi can be interpreted as a liquidity ratio.

The storage technology allows moving liquid assets from one period to another. Therefore,

the total asset size of a bank is ni + nibi = (1 + bi)ni. On the liability side, each bank is

endowed with e units equity capital at t = 0 in terms of consumption goods. The fixed

amount of equity capital assumption captures the fact that it is difficult for banks to raise

equity in the short-term (see for example, Almazan, 2002; Repullo, 2005; Dell’Ariccia and

Marquez, 2006). Hence, each bank raises li = (1 + bi)ni− e units of consumption goods from

consumers at t = 0 to finance its portfolio of safe and risky assets. We assume that each

bank is a local monopsony in the deposit market so that consumers earn zero net expected

interest rate from their lending to the banks. The non-contingent debt is the only allowed

contract between banks and consumers at the initial period, and therefore, the asset markets

are incomplete.

We assume that there is a nonpecuniary cost of operating a bank, captured by Φ((1 + bi)ni).

The operational cost is increasing in the size of the balance sheet, Φ′(·) > 0, and it is convex,

Φ′′(·) > 0. This assumption, similar to the ones imposed by Van den Heuvel (2008) and

Acharya (2003, 2009), ensures that the banks’ problem is well defined and that there is an

interior solution to this problem. It also allows us to have banks with flexible balance sheet

size in the model: Banks can increase or decrease the amount of risky and liquid assets

simultaneously. Thanks to this flexibility, we can study the interaction between these two

independent choices of banks.

Investment and deposit collection decisions are made at time t = 0. The only uncertainty

6We assume that the initial endowment of consumers is sufficiently large, and it is not a binding constraint in
equilibrium.

7To simplify the exposition, we abstract from modeling the relationship between banks and firms. Instead, we
assume that banks directly invest in physical projects. This assumption is equivalent to assuming that there are no
contracting frictions between banks and firms, as more broadly discussed by Stein (2012).
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Figure 1: Timing of the model

t=0 

Banks choose risky and safe assets 

Raise funds from consumers 

Good times 

       1-q 

Bad times 

       q 
t=1 

t=1 

Investment is distressed 

Fire-Sales 

t=2 

t=2 

in the model is about the risky asset and is resolved at the beginning of t = 1: The economy

lands in good times with probability 1−q and in bad times with probability q. In good times,

no bank is hit with restructuring shocks, and therefore no further action is taken. Banks keep

managing their investment goods and in the final period realize a total return of Rni + nibi.

However, in bad times, the risky assets are distressed and have to be restructured in order to

remain productive, as in Holmstrom and Tirole (1998) and Lorenzoni (2008). Restructuring

costs are equal to c ≤ 1 units of consumption goods per unit of the risky asset. If c is not

paid, the risky investment is scrapped (that is, it fully depreciates).

A bank can use the liquid assets hoarded from the initial period, nibi, to carry out the

restructuring of the distressed investment at t = 1. If the liquid assets are not sufficient to

cover the entire cost of restructuring, the bank needs external finance. However, we assume

that because of a combination of debt-overhang and limited-commitment problems, banks

cannot borrow the required resources from the household sector.8 The only way for banks

to raise the funds necessary for restructuring is by selling some fraction of the risky asset to

firms in the traditional sector, which are owned by consumers.

The asset sales by banks are in the form of fire sales: The risky asset is traded below

its fundamental value for banks, and the price decreases as banks try to sell more assets.

Banks retain only a fraction, γ, of their risky assets after fire sales, which depends on banks’

liquidity shortages as well as on the fire sale price of risky asset. The sequence of events is

illustrated in Figure 1.

We first solve the competitive equilibrium of the model when there is no regulation on

banks. Then we present the constrained planner’s problem and analyze its implementation

using quantity-based capital and liquidity requirements as in the Basel Accords.

8In section 6.1 we describe the general setting in which banks can pledge only a fraction of their returns in the
final period to the lenders. We then derive the parameter region that gives rise to this basic setup in which the
pledgeability constraint does not bind in the initial period but it does in the bad state of interim period because of
debt overhang. Throughout the paper we focus on that parameter region.
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3.1 Crisis and fire sales

The decision of agents at time t=0 depends on their expectations regarding the events at time

t = 1. Thus, applying the solution by backwards induction, we first analyze the equilibrium

at the interim period in each state of the world for a given set of investment levels. We

then study the equilibrium at t = 0. Note that if the good state is realized at t = 1, banks

take no further action and obtain a total return of πGoodi = Rni + bini at the final period,

t = 2. Therefore, for the interim period t = 1, studying the equilibrium only for bad times

is sufficient. We start with the problem of traditional firms in bad times, then analyze the

problem of banks.

3.1.1 Traditional sector

Firms in the traditional sector, owned by consumers, can buy investment goods from banks

and manage them. Unlike banks, they have a concave production technology, and they

employ y units of investment goods purchased from banks at t = 1 to produce F (y) units

of consumption goods at t = 2. Let P denote the market price of the investment good in

bad times at t = 1.9 Each firm in the traditional sector takes the market price as given and

chooses the amount of investment goods to buy, y, in order to maximize net returns from

investment at t = 2:

max
y≥0

F (y)− Py. (1)

The first-order condition of this problem, F ′(y) = P , determines the traditional firms’ (in-

verse) demand function for the investment good. We can define their demand function,

Qd(P ), as follows: Qd(P ) ≡ F ′(P )−1 = y.

Assumption 1 (Efficiency). F ′(y) > 0 and F ′′(y) < 0 for all y ≥ 0, with R ≥ F ′(0) > ν ≡
qR(1 + c)/(R− 1 + q).

Under the Efficiency assumption, firms in the traditional sector have a concave produc-

tion technology, which yields a downward-sloping demand function for investment goods

(see Figure 2). Firms are also less productive than banks at each level of investment goods

employed due to F ′(0) ≤ R. As a result, banks have to accept a price lower than the

fundamental value, R, to sell any assets to them and accept even lower prices to sell more

assets.

The origins of this idea can be found in Williamson (1988) and Shleifer and Vishny (1992),

who claim that some assets are industry-specific and, hence, less productive when managed

9The price of the investment good at t = 0 will be one as long as there is positive investment, and the price at
t = 2 will be zero because the investment good fully depreciates at this point.
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by outsiders.10 Outsiders do not have the specific expertise to manage these assets well and,

thus, they cannot afford to pay the value in best use for the assets of distressed enterprises.

For instance, monitoring and collection skills of loan officers greatly affect the value of bank

assets, particularly bank loans. The lack of such skills among outsiders creates a deadweight

cost when assets are transferred from banks to outsiders via fire sales (Acharya, Shin, and

Yorulmazer, 2011).11 A decreasing returns to scale technology for outsiders, as in the works

of Kiyotaki and Moore (1997), Lorenzoni (2008), and Korinek (2011), arises if the industry-

specific assets are heterogeneous. Traditional sector would initially purchase assets that are

easy to manage, but as they continue to purchase more assets, they would need to buy those

that require increasingly sophisticated management and operation skills.

In addition, we assume that F ′(0) is not too small—to be exact, F ′(0) > ν ≡ qR(1 +

c)/(R − 1 + q). This assumption ensures that a small amount of fire sale does not decrease

the price of assets dramatically below the fundamental value, R. Next, we need to impose

more structure on the return function of the traditional sector to ensure that the equilibrium

of this model exists and is unique.

Assumption 2 (Elasticity).

εd =
∂Qd(P )

∂P

P

Qd(P )
=

F ′(y)

yF ′′(y)
< −1 for all y ≥ 0

The Elasticity assumption states that the traditional sector’s demand for the investment

good is elastic and rules out multiple equilibria in the asset market at t = 1. Rewriting the

assumption as F ′(y) + yF ′′(y) > 0, it implies that banks’ proceeds from selling assets to

firms in the traditional sector, Py = F ′(y)y, is strictly increasing in the amount of assets

sold, y. Without this assumption, different levels of asset sales would raise the same level of

funds, leading to multiple equilibria.12

Assumption 3 (Regularity). F ′(y)F ′′′(y)− 2F ′′(y)2 ≤ 0 for all y ≥ 0.

The Regularity assumption holds for log-concave functions, yet it is weaker than log-

concavity.13 We use this assumption to guarantee that the objective functions of banks and

10Industry-specific assets can be physical or they can be portfolios of financial intermediaries (Gai et al., 2008).
11The existence of fire sales for both physical and financial assets is supported by empirical and anecdotal evidence.

Pulvino (2002) finds that distressed airlines sell aircraft at a 14 percent discount from the average market price. This
discount exists when the airline industry is depressed but not when it is booming. Coval and Stafford (2007) show
that fire sales exist in equity markets when mutual funds engage in sales of similar stocks.

12This assumption is also imposed by Lorenzoni (2008), Korinek (2011), and Kara (2016) to rule out multiple
equilibria under fire sales. Gai et al. (2008) provide an example in which this assumption is not satisfied and thus
multiple equilibria exist. The ex-ante beliefs of agents determine the choice of equilibrium, and the authors show
that the irrespective of the beliefs, the competitive equilibrium is constrained inefficient and leads to overinvestment.

13A function is said to be log-concave if the logarithm of the function is concave. Log-concave demand functions are
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the planner are concave and yield interior solutions.14

Assumption 4 (Technology). 1 + qc < R < 1/(1− q).

The first inequality in the Technology assumption states that the net expected return on

the risky asset is positive. The second inequality, R < 1/(1− q), guarantees that the return

in the good state alone is not high enough to make banks’ expected profit positive.

3.1.2 Banks’ problem in the bad state

Consider the problem of bank i when bad times are realized at t = 1. The bank has an

investment level, ni, and liquid assets of bini chosen at the initial period. If bi ≥ c, the bank

has enough liquid resources to restructure all of the assets. In this case, the bank obtains a

gross return of Rni+(bi−c)n on its portfolio at t = 2. However, if bi < c, then the bank does

not have enough liquid resources to cover the restructuring cost entirely, and thus, decides

what fraction of these assets to sell (1 − γi). Note that γi then represents the fraction of

assets that a bank keeps after fire sales.15 Thus, the bank takes the price of the investment

good (P ) as given and chooses γi to maximize total returns from that point on:

max
0≤γi≤1

Rγini + P (1− γi)ni + bini − cni, (2)

subject to the budget constraint

P (1− γi)ni + bini − cni ≥ 0. (3)

Budget constraint (3) states that the sum of the revenues raised by selling assets and

the liquid assets carried from the initial period must at least cover the restructuring cost.

By the Efficiency assumption, the equilibrium price of assets must satisfy P ≤ F ′(0) ≤ R,

otherwise the traditional sector would not purchase any assets. In equilibrium, we must also

have P > c, otherwise in the bad state banks would scrap assets rather than selling them;

that is, there would not be any fire sale. However, if there is no supply, then there is an

common in the Cournot games literature and are often used to prove the existence and uniqueness of an equilibrium
(Amir, 1996). Let φ(y) ≡ F ′(y) denote the (inverse) demand function of the traditional sector. We can rewrite this
assumption as φ(y)φ′′(y)−2φ′(y)2 ≤ 0. We can show that the demand function is log-concave if and only if φ(y)φ′′(y)−
φ′(y)2 ≤ 0. Clearly, the Regularity assumption holds whenever the demand function is log-concave. However, it is
weaker than log-concavity and may also hold if the demand function is log-convex (that is, if φ(y)φ′′(y)−φ′(y)2 ≥ 0).

14Many regular return functions satisfy conditions given by the Efficiency , Elasticity and Regularity assumptions.
Two examples that satisfy all three of these assumptions are F (y) = R ln(1 + y) and F (y) =

√
y + (1/2R)2.

15Following Lorenzoni (2008) and Gai et al. (2008), we assume that banks have to restructure an asset before
selling it. Basically, this means that banks receive the asset price P from the traditional sector, use a part, c, to
restructure the asset, and then deliver the restructured assets to the firms. Therefore, banks sell assets only if P is
greater than the restructuring cost, c. We could assume, without changing our results, that it is the responsibility of
the traditional sector to restructure the assets that they purchase.
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incentive for each bank to deviate and to sell some assets to outsiders. The deviating bank

would receive a price close to F ′(0), which is greater than the cost of restructuring, c by

the Efficiency and Technology assumptions.16 Having P > c together with the Technology

assumption implies that investment goods are never scrapped in equilibrium.

Banks want to choose the highest possible γi because they receive R by keeping assets on

the balance sheet, whereas by selling them they get P ≤ R. Therefore, banks sell just enough

assets to cover their liquidity shortage, cni − bini. This means that the budget constraint

binds, from which we can obtain γi = 1− (c− bi)/P . As a result, the fraction of investment

goods sold by each bank is

1− γi =
c− bi
P
∈ (0, 1), (4)

The fraction of assets sold, 1− γi, is decreasing in the price of the investment good, P , and

in liquidity ratio, bi, and increasing in the cost of restructuring, c. The supply of investment

goods by each bank, i, is then equal to

Qs
i (P, ni, bi) = (1− γi)ni =

c− bi
P

ni (5)

for c ≤ P ≤ R. This supply curve is downward-sloping and convex, which is standard in

the fire sales literature (see Figure 2, left panel). A negative slope implies that if there is

a decrease in the price of assets, banks have to sell more assets in order to generate the

resources needed for restructuring.

We can substitute the optimal value of γi using (4) into (2) and write the maximized

total returns of banks in the bad state at t = 1 as πBadi = Rγini = R(1− c−bi
P

)ni for a given

ni and bi. Note that the sum of the last three terms in (2) is zero at the optimal choice of

γi because of the binding budget constraint.

3.1.3 Asset market equilibrium at date 1

We consider a symmetric equilibrium where ni = n and bi = b for all banks. Therefore, the

aggregate risky investment level is given by n and the liquidity ratio is given by b as there

is a continuum of banks with a unit mass. The equilibrium price of investment goods in the

bad state, P , is determined by the market clearing condition

Qd(P )−Qs(P ;n, b) = 0. (6)

This equilibrium is illustrated in the left panel of Figure 2. Note that the equilibrium

price of the risky asset and the amount of fire sales at t = 1 are functions of the initial total

16Note that F ′(0) > ν ≡ qR(1 + c)/(R− 1 + q) together with R < 1/(1 − q) implies that F ′(0) > c.

14



Figure 2: Equilibrium in the investment goods market and comparative statics
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investment in the risky asset and the aggregate liquidity ratio. Therefore, we denote the fire

sale price in terms of state variables as P (n, b).

Lemma 1. The fire sale price of risky asset, P (n, b), is decreasing in n and increasing in b.

The fraction of risky assets sold, 1− γ(n, b), is increasing in n and decreasing in b.

Lemma 1 states that higher investment in the risky asset or a lower liquidity ratio increases

the severity of the financial crisis by lowering the asset prices. This effect is illustrated in the

right panel of Figure 2. Suppose that the banks enter the interim period with larger holdings

of risky assets. In this case, banks have to sell more assets at each price, as shown by the

supply function given by (5), because the aggregate liquidity shortage, (c− b)n, is increasing

in the amount of initial risky assets, n. Graphically, the aggregate supply curve shifts to the

right, as shown by the dotted-line supply curve in the right panel of Figure 2, which causes

a decrease in the equilibrium price of investment goods. A lower initial liquidity ratio has

a similar effect by increasing the liquidity shortage in the bad state, (c − b)n, and hence

causing a larger supply of risky assets to the market. Lower asset prices, by contrast, induce

more fire sales by banks because of the downward-sloping supply curve, and hence, making

financial crises more costly.

3.2 Competitive equilibrium

As a benchmark, we first study the competitive equilibrium. In the bad state, if banks face

a liquidity shortage, their only option is to sell some assets to the traditional sector. At the
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initial period, each bank, i, chooses the amount of investment in the risky asset, ni, and the

liquidity ratio, bi, to maximize its expected profits:

Πi(ni, bi) = (R + bi − qc)ni −D(ni(1 + bi))− I(bi < c)q(R− P )Qs
i (P, ni, bi), (7)

subject to its budget constraint, e + li0 ≥ ni + bini, at t = 0. Let Γ(ni, bi) ≡ (R + bi −
qc)ni −D(ni(1 + bi)) represent the basic profits that would be obtained if there were no fire

sales. D(ni(1 + bi)) = ni(1 + bi) + Φ(ni(1 + bi)) is the sum of the initial cost of funds and

the operational costs of a bank. Note that because consumers earn zero net expected return

on their lending to banks, the cost of funds to a bank is e + li0 = ni(1 + bi).
17 The last

term is the expected cost of fire sales: If liquidity hoarded at t = 0 is not sufficient to cover

the shock in the bad state at t = 1, that is bi < c as shown by the indicator function, I(·),
then the bank sells Qs

i (P, ni, bi) units of assets and loses R − P ≥ 0 on each unit sold. The

amount of assets sold, Qs
i (P, ni, bi), is a function of the initial portfolio allocations and the

price of assets, as shown by (5).

Whether or not fire sales take place in the competitive equilibrium depends on the initial

liquidity ratios of banks . If banks fully insure themselves against the fire sale risk—that is,

if they choose bi ≥ c for all i ∈ [0, 1] at t = 0—then fire sales in the bad state are avoided.

However, if banks purchase less than full insurance—that is, if bi < c—then fire sales exist.

The following lemma shows that in the competitive equilibrium, banks optimally choose less

than full insurance and, hence, fire sales take place.

Lemma 2. Under the Efficiency and Technology assumptions, banks always take fire sale

risk in equilibrium; that is, bi < c for all banks.

Even though both the amount (c) and frequency (q) of the aggregate liquidity shock are

exogenous in the model, whether and to what extent a fire sale takes place are endogenously

determined. In Lemma 2 we show that perfect insurance is never optimal and that banks

take some amount of fire sale risk; that is, they choose bi < c. The intuition of the proof is

as follows: The expected marginal return on liquid assets exceeds unity as long as there are

fire sales, and it decreases with the amount of liquidity. Perfect insurance guarantees that no

fire sale takes place and, as a result, the expected marginal return on liquid assets is equal

to one, which is dominated by the expected marginal return on risky assets. In other words,

there is no need to hoard any liquidity when there is no fire sale risk. Therefore, there is

an optimal interior level of liquidity ratio for which the private marginal return and cost of

liquidity are equalized.

Although banks take some fire sale risk, the main issue is whether banks take the socially

17In Section 6.1 we explicitly consider consumers’ participation constraint.
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optimal amount of fire sale risk. Lemma 2 allows us to focus on the imperfect insurance

case; that is, bi < c. We can write banks’ profit function under this result as:

Πi(ni, bi) = Γ(ni, bi)− q(R− P )Qs
i (P, ni, bi). (8)

The unique symmetric equilibrium in which ni = n and bi = b for all banks i ∈ [0, 1]

is determined by the first-order conditions of banks’ and traditional firms’ problems and

market clearing:

∂Γ

∂xi
− q(R− P )

∂Qs
i

∂xi
= 0, ∀xi ∈ {ni, bi} (9)

F ′(y) = P, (10)

y = Qs(P, n, b), (11)

where Qs
i (P, ni, bi) = c−bi

P
ni. We first show that the closed-form solution for the competitive

equilibrium price, P , is independent of the functional form of the traditional sector’s demand

and the operational cost of banks.

Proposition 1. Under the Efficiency, Elasticity, Regularity, and Technology assumptions,

the competitive equilibrium price of assets is given by

P =
qR(1 + c)

R− 1 + q
. (12)

The equilibrium price, P , is increasing in the probability of the liquidity shock, q, and the

size of the shock, c, but decreasing in the return on the risky assets, R.

Proposition 1 shows that the price of assets in the bad state increases in the expected

size of the liquidity shock, qc. When banks expect to incur a larger additional cost for

the investment, or when they face this cost with a higher probability, they reduce risky

investment levels and increase liquidity buffers, as we show in the next proposition. As

a result, there are fewer fire sales and a higher price for risky assets in the competitive

equilibrium.

3.2.1 A closed-form solution for the competitive equilibrium

In order to obtain closed-form solutions for the equilibrium values of n and b, we need to

make functional-form assumptions for the traditional sector’s production technology, F , and

the operational cost of banks, Φ. Suppose that the operational cost of a bank is given by

Φ(x) = φx2, and hence Φ
′
(·) is increasing; that is, Φ

′
(x) = 2φx. Note that marginal cost
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of funds is increasing in parameter φ. On the demand side, suppose that the traditional

sector’s return function is given by F (y) = R ln(1 + y). It is easy to verify that this function

satisfies the Efficiency , Elasticity , and Regularity assumptions. We will refer to these two

functional form assumptions as the “log-quadratic assumptions” in the remainder of the

text and clarify whenever a result is obtained under these assumptions. In Section B.1 in

the internet appendix, we provide the closed-form solutions for the competitive equilibrium

investment level and liquidity ratios. Proposition 2 presents the comparative statics for the

competitive equilibrium.

Proposition 2. Under the log-quadratic functional form assumptions, the comparative stat-

ics for the competitive equilibrium risky investment level, n, and liquidity ratio, b, are as

follows:

1. The risky investment level (n) is increasing in the return on the risky asset (R) and

decreasing in the size of the liquidity shock (c), probability of the bad state (q), and the

marginal cost parameter (φ).

2. The liquidity ratio (b) is increasing in the return on the risky asset (R), size of the liq-

uidity shock (c), and the probability of the bad state (q), and decreasing in the marginal

cost parameter (φ).

Proposition 2 shows that b and n increase (decrease) simultaneously as a response to a

change in R (in φ), which is thanks to the flexible bank balance sheet size. Proposition 2

implies that banks act less prudently (by increasing risky investment and reducing liquidity)

if they expect financial shocks to be less frequent (a lower q) or less severe (a lower c), which

in turn leads to more severe disruption to financial markets (through lower asset prices and

more fire sales) if shocks do materialize, as shown by Proposition 1. Stein (2012) obtains a

similar result as well.18

3.3 Constrained planner’s problem

A constrained planner is subject to the same market constraints as the private agents. In

particular, the planner takes the limited commitment in financial contracts between banks

and consumers as given. However, unlike banks, the constrained planner takes into account

the effect of initial portfolio allocations on the price of assets in the bad state. The con-

strained planner maximizes banks’ expected profits subject to a constraint that, after the

18This result is reminiscent of the financial instability hypothesis of Minsky (1992), who suggests that “over periods
of prolonged prosperity, the economy transits from financial relations that make for a stable system to financial
relations that make for an unstable system.”
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transfers, consumers are at least as well off as they are in the decentralized equilibrium:

max
n,b,y

Γ(n, b)− I(b < c)q(R− P )Qs(P, n, b)− (1− q)T2, (13)

subject to y = Qs(P, n, b),

F ′(y) = P,

(1− q)T2 + 3ω + q[F (y)− Py] ≥ UCE
i . (14)

where I(·) is the indicator function and Qs(P, n, b) = c−b
P
n is the amount of assets sold by

banks in the bad state at t = 1. The last constraint states that consumers’ utility must

be at least as much as UCE
i , their expected utility in the competitive equilibrium. The

term, q[F (y)− Py], gives consumers’ expected profits from fire sales through the firms in

the traditional sector. Consumers earn net zero expected return from their lending to banks

in the initial period. Therefore, this lending only alters the timing of their consumption

across periods, but not their utility.

The planner also makes compensatory transfers between banks and consumers to ensure

that reallocation of resources leads to a Pareto improvement. We assume that transfers

happen only in good times and in the final period—that is, when the pledgeability constraint

of banks does not bind. In other words, the planner cannot use transfers to circumvent the

financial constraints of bankers. After the planner has determined allocations and transfers

in period 0, private agents follow their optimal strategies in the following periods. The first

question is whether the constrained planner would avoid fire sales completely by setting

b ≥ c. The next lemma addresses this question.

Lemma 3. Under the risk neutrality, Efficiency, and Technology assumptions, it is optimal

for the constrained planner to take fire sale risk; that is, the constrained optimal liquidity

ratio satisfies b < c.

The lemma states that it is optimal for the constrained planner to expose the banking

sector to some amount of fire sale risk. In other words, full insurance is not constrained

optimal. Lemma 3 allows us to focus on the b < c case when analyzing the constrained

planner’s problem. As we derive in Appendix B.2, we can simplify the optimality conditions

for planner’s problem to:

∂Γ

∂x
− q(R− P )

∂Qs

∂x
− q(R− P )

∂Qs

∂P

∂P

∂x
= 0, ∀x ∈ {n, b}. (15)

We denote the constrained efficient allocations by n∗∗, b∗∗, and the associated price of assets

in the bad state by P ∗∗. Section B.2 in the appendix presents the closed-form solutions for

n∗∗, b∗∗ and P ∗∗.
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These first-order conditions are similar to the first-order conditions of the banks’ prob-

lem in Section 3.2, shown in (9), except that each condition contains an additional term:

−q(R− P )∂Q
s

∂P
∂P
∂x

for x ∈ {n, b}. The difference arises because unlike the individual banks,

the constrained planner takes into account how changing the initial risky investment level

and liquidity ratio affects the price of assets, P , and hence, the amount of assets sold to the

traditional sector, Qs. In other words, the constrained social planner internalizes the fire sale

externalities, that is, the planner internalizes the fact that larger risky investments or lower

liquidity ratios lead to a lower asset price and more fire sales in the bad state. We can show

that the competitive equilibrium is constrained inefficient under some general conditions and

compare the competitive equilibrium level of risky assets and liquidity ratios with the con-

strained efficient allocations. To perform the comparison, we use the closed-form solutions

of equilibrium outcomes presented in the appendix B.2.

Proposition 3. Under the risk neutrality, Efficiency, Elasticity, and Technology assump-

tions, the competitive equilibrium is constrained inefficient. Furthermore, under the log-

quadratic functional form assumptions, competitive equilibrium allocations compare to the

constrained efficient allocations as follows:

1. Risky investment levels: n > n∗∗

2. Liquidity ratios: b < b∗∗

The inefficiency of the competitive equilibrium allocations is because of a combination

of market incompleteness and banks’ failure to internalize the fire sale externalities. Second

part of Proposition 3 shows that in the competitive equilibrium, unregulated banks overinvest

in the risky asset, n > n∗∗, and inefficiently insure against liquidity shocks by holding low

liquidity ratios, b < b∗∗. The first result of the proposition is reminiscent of Lorenzoni

(2008) and Korinek (2011), who show that there is excessive risky investment under fire sale

externalities. The latter, meanwhile, is reminiscent of Bhattacharya and Gale (1987) and

Allen and Gale (2004b), who show that private holdings of liquid assets are inefficient under

incomplete markets. Allowing banks to invest in both the risky illiquid asset and liquid

asset, we show that the pecuniary externality manifests itself in both choices of banks and

distorts both margins. Together with the flexible balance sheet size, this setup allows us to

study the interaction between the two as well.

3.4 Implementing the constrained efficient allocations: complete regulation

The constrained efficient allocations (n∗∗, b∗∗) can be implemented by applying simple quan-

tity regulations to banks—in particular, by imposing a minimum liquidity ratio as a fraction

of risky assets (bi ≥ b∗∗) and a maximum level of risky investment (ni ≤ n∗∗). The latter
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corresponds to a minimum risk-weighted capital ratio; that is, e/ni ≥ e/n∗∗, because the

inside equity of banks, e, is fixed in our model. For analytical convenience, we use the upper

bound on risky investment formulation for capital regulation in the rest of the paper.

The quantity-based rules can be mapped to the capital and liquidity regulations in the

Basel III accord. First, the risk-weighted capital ratio, e/ni, corresponds to the Basel defini-

tion, as it gives liquid assets, nibi, a zero risk weight while giving risky assets, ni, a weight of

one in the denominator. In reality, banks carry several risky assets on their balance sheet for

which Basel Accords require different risk weights. However, introducing assets with different

risk profiles to our setup would complicate the analysis without adding further insight.

Second, our liquidity regulation mimics the liquidity coverage ratio (LCR) requirement

proposed in Basel III. The LCR requires banks to hold high-quality liquid assets against the

outflows expected in the next 30 days under a stress scenario. In our setup, the expected

cash outflow in the bad state is the liquidity need, c, per each risky asset. Therefore, the

liquidity requirement in our setup can be equivalently written as bini/cni ≥ b∗∗n∗∗/cn∗∗.

It is true that the LCR focuses on liquidity shocks on the liability side whereas here we

consider liquidity shocks on the asset side. However, this modeling choice is not essential to

our result; all we need is a liquidity requirement in some states of the world that cannot be

fully met with raising external finance. If we instead model liquidity shock as a proportion

of deposits, we would then need capital regulation to limit the size of deposits and liquidity

requirement to increase the high quality liquid assets (cash).

4 Partial regulation: regulating only capital ratios

The liquidity requirement was missing in the pre-Basel III era. In order to understand

whether Basel III regulations are a step in the right direction, one needs to compare them

to the pre-Basel III era. For this purpose, in this section we consider an economy in which

the capital ratios of banks are regulated but there is no requirement on their liquidity ratios.

Hence, we consider banks that are free to choose their liquidity ratios for a given capital

requirement. This setup also allows us to study the interaction of banks’ capital and liquidity

ratios and to provide an answer to Tirole’s question quoted in the introduction: What

happens to banks’ liquidity when their capital ratios are regulated? Do banks manage their

liquidity in an efficient way, or does capital regulation distort their choice of liquidity?

We consider the problem of a planner who is endowed with only one tool. In particular,

the planner chooses the level of risky investment, n, at t = 0 in a Pareto efficient way but

allows banks to freely choose their liquidity ratio, bi. As in the previous section, the planner

is subject to the same contracting constraints as the private agents but takes into account
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the effect of the initial risky investment level on the price of assets in the bad state. Because

banks choose inefficiently high risky investment levels in the competitive equilibrium, the

planner’s preferred risky investment level has to be lower than the competitive equilibrium

level.19 Therefore, the optimal level can be implemented in a decentralized economy because

when it is introduced as a regulatory constraint, banks will set their risky investment at

this optimal level. We call this case a “partially regulated economy” and compare it to

the competitive equilibrium and second-best allocations studied in the previous section. We

start by studying the banks’ problem in this case. For a given regulatory upper bound on

investment level, n, banks set ni = n and choose the liquidity ratio, bi, to maximize their

expected profits:

max
bi

Πi(bi;n) = max
bi

(R + bi − qc)n−D(ni(1 + b))− q(R− P )Qs
i (P, n, bi). (16)

From the first-order condition of the banks’ problem (16) with respect to bi, we can obtain

banks’ (implicit) reaction function to the regulatory investment level—that is, the liquidity

ratio, bi, that banks choose for each given risky investment level, n—as follows:

bi(n) =
D
′−1(1− q + qR

P
)

n
− 1. (17)

The planner takes this reaction function into account while choosing the risky investment

level to maximize the expected bank profits subject to the constraint that consumers’ utility

after transfers is at least as high as in the competitive equilibrium:

max
n,y

Γ(n, b(n))− q{(R− P )Qs(P, n, b(n))− (1− q)T2},

subject to y = Qs(P, n, b(n)),

F ′(y) = P,

dΠi(bi;n)

dbi
= 0,

(1− q)T2 + 3ω + q[F (y)− Py] ≥ UCE
i .

As we derive in Appendix B.3, we can simplify the condition for planner’s choice of n to:

∂Γ

∂n
+
∂Γ

∂b
b′(n)− q(R− P )

(
∂Qs

∂n
+
∂Qs

∂b
b′(n)

)
− q(R− P )

∂Qs

∂P

dP

dn
= 0. (18)

We denote the optimal risky investment level that solves the first-order condition (18) by

19We prove this claim formally in the next section.
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n∗, the associated optimal liquidity choice of banks under partial regulation by b∗, and the

price of assets in the bad state by P ∗. Section B.3 in the appendix presents the closed-form

solutions for n∗, b∗, and P ∗.

Changing n has an indirect effect on the asset price in the bad state in addition to its

direct effect because banks change their liquidity ratios in response to changes in n, which

then changes the price of assets in the equilibrium. The main question in this case is how

banks respond to a tightening of capital regulations.

Proposition 4. Let the operational cost of a bank be given by Φ(x) = φx2. Then, banks

decrease their liquidity ratio as the regulator tightens capital requirements; that is, b
′
(n) ≥ 0

for any concave technology function for the traditional sector, F (·), that satisfies the Elas-

ticity and Regularity assumptions along with either:

(i) F ′(0) = R, or (ii) F ′(0) ≤ R and R < F ′(F ′+yF ′′)
F ′+2yF ′′

for all y ≥ 0.

Proposition 4 shows that banks reduce their liquidity ratios as the regulator tightens

the risky investment level. The regulator attempts to correct banks’ excessive risk-taking

by requiring a higher risk-weighted capital ratio. However, because this regulation prevents

banks from reaching their privately optimal level of risk, they react by reducing their liquidity

ratios. In other words, banks undermine the purpose of capital regulations by carrying less-

liquid portfolios. It would not be surprising to observe banks holding fewer liquid assets after

they have been asked by the regulator to decrease their risky asset holdings. However, what

is stated in Proposition 4 goes beyond that: Banks also decrease their liquidity ratios—that

is, banks hoard less liquidity per unit of risky asset.

The proof of the proposition provides sufficient conditions by showing that there is strate-

gic complementarity between the regulatory risky investment level, n, and the liquidity ratio,

bi, for each bank. The intuition of the proof is as follows: The marginal return to the liq-

uidity ratio, bi, is (1− q)ni + qR
P
ni, and it is decreasing in the fire sale price, P . Capital

regulation lowers the amount of risky investment, and hence increases the fire sale price as

we show in Lemma 1. As a result, liquidity hoarding becomes less attractive for banks, and

they decrease their liquidity ratio, bi. Banks’ ability to decrease their liquid assets while

capital regulation is limiting their risky assets is possible due to the flexible balance sheet

size of banks in our model.

We can also use an analogy from automobile safety regulations to explain Proposition

4. Peltzman (1975) and Crandall and Graham (1984) show that whether regulations such

as safety belts and airbags reduce the fatality rate depends upon the response of drivers to

the increased protection. They provide empirical evidence that drivers do indeed increase

their driving intensity as a response to safety regulations, resulting in a less than expected

reduction in fatality rates. Similarly, in our setup, capital regulations intend to make the
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financial system safer, but individual banks respond by taking more risk on the liquidity

channel. As a result, there is a less than expected increase in financial stability and wel-

fare from regulation as we show in the next section. In a sense, Proposition 4 reveals an

unintended consequence of capital regulation when it is applied in isolation.

4.1 Complete versus partial regulation: do we need liquidity requirements?

In this section, we investigate whether capital regulation alone can restore the second-best

allocations. For this reason, we compare the equilibrium outcomes (level of risky assets,

liquidity ratios, asset prices, and the amount of fire sales) in three different settings: a de-

centralized equilibrium without any regulation, a partially regulated economy in which there

is only capital regulation, and a complete regulation (second-best) case that has both cap-

ital and liquidity regulations. To perform the comparison, we use the closed-form solutions

presented in the appendix B. Proposition 5 summarizes the results.

Proposition 5. Under the log-quadratic functional form assumptions, risky investment lev-

els, liquidity ratios, and financial stability measures under competitive equilibrium (n, b, P ,

1− γ, (1− γ)n), partial regulation equilibrium (n∗, b∗, P ∗, 1− γ∗, (1− γ∗)n∗), and complete

regulation equilibrium (n∗∗, b∗∗, P ∗∗, 1− γ∗∗, (1− γ∗∗)n∗∗) compare as follows:

1. Risky investment levels: n > n∗∗ > n∗

2. Liquidity ratios: b∗∗ > b > b∗

3. Financial stability measures

(a) Price of assets in the bad state: P ∗∗ > P ∗ > P

(b) Fraction of assets sold: 1− γ > 1− γ∗ > 1− γ∗∗

(c) Total fire sales: (1− γ)n > (1− γ∗)n∗ > (1− γ∗∗)n∗∗

In a partially regulated financial system, unlike the competitive economy, the overinvest-

ment problem does not arise. On the contrary, in Proposition 5 we show that the invest-

ment in risky assets under partial regulation is lower compared to the constrained optimum:

n∗ < n∗∗. The underinvestment is related to the liquidity choice of banks: The problem of

unregulated banks having low liquidity ratios is exacerbated with the introduction of capital

regulation in isolation. In Proposition 5 we show that banks are less liquid under partial

regulation than they were in the competitive equilibrium, that is, b∗ < b. As suggested in

the discussion of Proposition 4, when capital regulation limits the risky investment, banks

optimally choose less-liquid portfolios, which partially offsets the positive impact of the re-

duction in risky investment on financial stability and welfare. Lower liquidity ratios expose

the financial system to excessive fire sales and asset price decreases. The precautionary be-

havior of the regulator is then to implement the capital regulation in a more restrictive way,
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which increases the fire sale price but leads to a lower level of investment in the profitable

risky asset.

Higher liquidity ratios are why more investment in long-term assets is allowed under

complete regulation. Proposition 5 shows that the constrained optimal level of liquidity

under complete regulation, b∗∗, is higher than the liquidity chosen by banks under the partial

regulation, b∗. Higher liquidity ratios allow banks to hold more risky assets without increasing

the fire sale risk.

In order to see the interaction between the capital and liquidity requirements, consider

the following scenario: A country transitions from partial regulation to complete regulation

by imposing new liquidity rules in addition to existing capital rules. To be specific, this

transition can be compared to moving from the Basel I/II regulatory approach to the Basel

III regulatory approach. Assuming that capital regulation had been set optimally during the

pre-Basel III period, capital requirements can be relaxed after the introduction of liquidity

requirements. Therefore, our results would predict that more long-term profitable risky

investment can be financed via the banking system after the implementation of liquidity

requirements.

How effective is capital regulation in addressing financial instability caused by fire sales

when it is not accompanied by liquidity requirements? To answer this question, we can

compare the measures of financial instability across the two regulatory regimes. More fire

sales and a lower price of the risky asset in the bad state are associated with greater financial

instability, and they imply that the externalities have a stronger presence in the economy.

Proposition 5 shows that the introduction of capital regulation in isolation increases the fire

sale price compared to the competitive equilibrium price. However, the price is still below

the constrained optimal price level, which can be achieved with the addition of liquidity

requirements. The message is the same when we compare both the fraction and the total

amount of risky assets that must be sold to withstand the liquidity shock under the two

regulatory regimes, as shown in items 3-a and 3-b in Proposition 5. In general, minimum

capital requirements may actually serve several purposes, such as countering moral hazard

problems generated by the existence of limited liability and deposit insurance, that we do

not analyze in this paper. However, what we show here is that, under fire sale externalities,

capital regulations are not effective in achieving second-best allocations unless they are

combined with liquidity requirements.

Our results indicate that neither capital nor liquidity ratios alone are perfect predictors

of potential instability; a better-capitalized banking system may end up conducting larger

fire sales. Under partial regulation, for instance, although the capital ratios are higher than

under complete regulation, the liquidity shock causes a larger disruption to financial markets.
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Similarly, a more-liquid banking system may experience greater financial instability; banks

are more liquid in the unregulated competitive equilibrium compared with partial regulation,

but the shock leads to more distortions in the former.

We end this section by comparing bank size across three different regimes in the following

proposition, and we discuss the implications of this result for simple leverage ratio regulation.

Proposition 6. Under the log-quadratic functional form assumptions, bank balance sheet

sizes across different regimes compare as follows:

n(1 + b) = n∗∗(1 + b∗∗) > n∗(1 + b∗)

Proposition 6 shows that the bank size in the competitive equilibrium is equal to the

socially optimal size. However, bank size is inefficiently small under partial regulation as

there are both lower risky and liquid assets in this regime compared to the constrained opti-

mum. Proposition 6 provides an interesting result on the regulation of leverage ratio, which

can be defined as e
n(1+b)

in this setup. Proposition 6 shows that the optimal simple lever-

age ratio is the same under complete regulation and unregulated competitive equilibrium.

Therefore, in the current setup, a leverage regulation applied in isolation would be ineffec-

tive.20 However, the leverage regulation combined either with a liquidity ratio requirement

or with a risk-weighted capital regulation would be sufficient to replicate the constrained

social optimum.

4.2 Can regulating only liquidity be the solution?

In our model, fire sales are triggered by a restructuring shock in the bad state. Banks are

solvent as long as they can cover this liquidity requirement because the return on the risky

asset (R) is greater than the cost of restructuring needed to keep the investment alive (c).

Therefore, one may wonder if the second-best allocations can be implemented using liquidity

regulation alone, that is, without using capital requirements at all. The short answer is no.

First, note that, in Lemma 3, we show that it is not optimal to avoid fire sales completely

in the bad state by forcing banks to perfectly insure against the liquidity shock by setting

b = c. Second, regulating only liquidity means that banks are free to choose their capital

ratios. The questions then becomes whether banks choose the optimal capital ratio when

the minimum liquidity requirement is set optimally.

Proposition 7. Under the Efficiency, Elasticity, Regularity, and Technology assumptions,

banks do not choose the constrained optimal risky investment level, n∗∗, if the regulator sets

20Nevertheless, leverage ratio regulation might be an important method of addressing other market failures, such
as risk shifting or informational asymmetries, which we do not study in this model.
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the minimum liquidity ratio at the constrained optimal level, b∗∗; that is, ni(b
∗∗) 6= n∗∗.

Proposition 7 states that banks do not choose the second-best investment level when they

are asked by the regulator to hold the second-best liquidity ratio. In fact, in the proof of the

proposition we show that banks choose higher than the second-best level of risky investment;

that is, ni(b
∗∗) > n∗∗, or equivalently, banks choose lower capital ratios compared with the

second-best. Therefore, the second-best allocations cannot be implemented by regulating

liquidity alone. Banks can take on the fire sale risk through both liquidity and capital

channels. As a result, implementing the second-best requires restraining banks on both

channels. Otherwise, banks use the unregulated channel to take more risk, undermining the

regulator’s intent to eliminate the inefficiency.

5 Extensions and further policy implications

5.1 More complex linear regulations and Pigouvian taxation

Our analysis so far indicates that we cannot implement the second-best allocations using a

simple capital or liquidity regulation in isolation. However, it is worth asking whether we

could implement the second-best using more complex rules that combine capital and liquidity

regulations. In this section, we show that a linear combination of a capital and a liquidity

regulation is sufficient to replicate the second-best allocations in a decentralized market.

Consider subjecting banks to the following linear rule τnn + τbb ≤ k. We can write the

Lagrangian of the banks’ problem in this case as follows:

Li = Γ(ni, bi)− q(R− P )Qs
i + λ(k − τnni − τbbi)

The corresponding first-order conditions of this problem are as follows:

∂Li
∂ni

=
∂Γ

∂ni
− q(R− P )

∂Qs
i

∂ni
− λτn = 0, (19)

∂Li
∂bi

=
∂Γ

∂bi
− q(R− P )

∂Qs
i

∂bi
− λτb = 0. (20)

To see how this rule will work and how we find the optimal coefficients τn, τb, and k,

compare the first-order conditions of the banks’ problem above to those of the constrained

planner’s problem, given by (15). We can choose k and τn, τb such that λ = 1, without loss

of generality. It is obvious that in this case if we define τn, τb as follows, our linear rule will
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implement the constrained optimal allocations:

τn = q[(R− P )
∂Qs

∂P

∂P

∂n
] = q(R− P ∗∗)(c− b∗∗)2n∗∗

P ∗∗2
> 0, (21)

τb = q[(R− P )
∂Qs

∂P

∂P

∂b
] = −q(R− P ∗∗)(c− b∗∗)n∗∗2

P ∗∗2
< 0, (22)

which implies that

k = τnn
∗∗ + τbb

∗∗ = −q(R− P )
(c− b∗∗)2n∗∗

P 2
n∗∗2 + q(R− P )

(c− b∗∗)n∗∗2

P 2
b∗∗. (23)

The optimal rule punishes banks for holding risky assets and rewards them for higher

liquidity ratios. The rule is intuitive because in our model, more risky assets increase fire sales

whereas more liquidity decreases fire sales. Therefore, the optimal rule indicates strategic

substitution between risky assets and liquidity from the banks’ perspective. Banks can

satisfy the rule either by decreasing their risky investment or by increasing their liquidity

ratios. In that regard, this linear rule provides more flexibility to banks compared to the

joint implementation of capital and liquidity ratio requirements discussed earlier.

On a separate note, we can also implement the constrained efficient allocations using

Pigouvian taxation instead of quantity-based rules. In this case, introducing two linear

Pigouvian taxes, one for risky investment and one for the liquidity ratio, will be sufficient.

The Pigouvian tax rates will then be equal to τn and τb, given by (21) and (22), respectively.

5.2 Implications for shadow banking

Central banks and regulatory institutions around the world mainly focus on regulating banks

to improve financial stability. However, actions of nonbank financial institutions affect the

stability of the system as well. Yet, some financial institutions are partially or totally exempt

from bank regulations. We analyze how unregulated financial institutions react to bank

regulation as well as what their reactions imply for financial stability. For that purpose, we

introduce a new group of financial institutions that are identical to banks but not regulated.

We denote the choices of regulated institutions with (ñ, b̃) and those of unregulated

institutions with (n, b). As before, n and ñ are the amount of risky investment while b

and b̃ denote the liquid asset per unit risky investment. Liquidity needs of regulated and

unregulated institutions in bad times at t = 1 respectively are: (c − b̃)ñ and (c − b)n. The

market clearing condition in the fire sale market is (c− b̃)ñ+(c−b)n = Py. Thus, the fire sale

price is a function of ñ, b̃, n, b. Below we analyze the response of unregulated institutions to

bank regulation. In particular, we study the risky asset choice of an unregulated institution

and see how it changes as the regulator limits the total risky investment ñ, in the regulated
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segment. An unregulated institution chooses ni, bi to maximize its expected profits, given

by:

Πi(ni, bi) = Γ(ni, bi)− q(R− P )Qs
i (P, ni, bi), (24)

where Qs
i (P, ni, bi) = (c − bi)ni/P . Here, the atomistic institution takes the fire sale price

P (ñ, b̃, n, b) as given and we treat ñ, b̃ as parameters of the model because unregulated insti-

tutions take them as given. The regulator effectively determines the aggregate amount of ñ

using capital regulations and aggregate amount of b̃ using liquidity requirements. Therefore,

the first-order condition of the unregulated institution with respect to ni is

∂Π(ni, bi)

∂ni
=
∂Γ

∂ni
− q(R− P )

c− bi
P

= 0.

In order to see how optimal ni changes with ñ, we need to evaluate the sign of the cross-partial

derivative of the profit function:

∂2Π(ni, bi)

∂ñ∂ni
= qR

c− bi
P 2

∂P

∂ñ
< 0.

Using the monotone comparative statics techniques outlined by Vives (2001), the negative

sign of the cross-partial derivative (by Lemma 1 and 2) indicates that n′(ñ) < 0, that is,

as regulation tightens risky investment level of banks, unregulated institutions respond by

increasing their risky investment. Therefore, ni and ñ are strategic, yet imperfect substitutes

from the unregulated institution’s point of view.

Similarly, we can show that b′(b̃) < 0, that is, as the regulation require banks to increase

their liquidity ratios, unregulated institutions respond by decreasing their liquidity ratios.

Thus, unregulated institutions free ride on the liquidity of regulated institutions.

In similar ways, we can also show that n′(b̃) > 0, and b′(ñ) > 0. Regulations on ñ

and b̃ make the financial system more stable by increasing the fire sale price, which in turn

create incentives for the unregulated institutions to invest more in risky assets and decrease

their liquidity buffer. The behavior of unregulated institutions creates a counter force to the

regulation.

To explain the intuition behind these results, we can consider another analogy from

automotive safety regulations in the spirit of Peltzman (1975): Cars and motorcycles usually

share the same roads. If we introduce speed restrictions on cars but not on motorcycles, roads

will initially become safer, but this will create incentives for motorcycle riders to increase

their driving intensity, creating a counter force to the regulation.

The effect analyzed in this section is similar to the one examined in international policy

coordination literature such as Acharya (2003), Dell’Ariccia and Marquez (2006), and Kara
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(2016). These papers show that bank regulations across countries are strategic substitutes,

and hence, countries have an incentive to relax regulations when others tighten. Similarly,

we show above that even in a given country bank capital and liquidity regulations have a

public good property under fire sale externalities. If we regulate only some institutions,

unregulated institutions that engage in similar investment behavior will free ride on the

improved stability brought by disciplined institutions. Therefore, as argued by Farhi et al.

(2009), efficient regulations should have a wide scope and apply to all relevant financial

institutions.

5.3 A numerical example

In this section we explore the quantitative benefits of a liquidity requirement that supple-

ments capital regulation. We calibrate our model period to be 2 years so that the total

model length is 4 years. We let the expected return on the risky investment R = 1.25, which

means that the annual return on risky investment is 5.7 percent (1.0574 = 1.25). We let

the probability of the bad state be q = 0.25 so that the crisis is expected to occur every

16 years (4/0.25). We choose the magnitude of the liquidity shock to be c = 0.1, which

means that once the crisis hits, banks have to invest an additional 10 percent to keep the

risky asset productive. Lastly, we choose the marginal operating cost parameter φ = 0.01, a

small number, and set the initial equity of banks to e = 1, without loss of generality. Table

1 provides the values of risky investment and liquidity ratios; prices of assets, fraction of

assets sold, and total amount of fire sales in the bad state; and utility/profit measures in the

competitive equilibrium, constrained planner’s solution, and under partial regulation. We

obtain these values using the closed-form solutions presented in the appendix B.

Table 1: Quantitative example

Competitive equi-
librium

Constrained effi-
cient allocations

Partial regulation

Risky investment (n) 9.81 9.69 9.58
Liquidity ratio (b) 0.043 0.055 0.042
Bank size (n(1+b)) 10.227 10.227 9.988
Price of risky asset (P) 0.688 0.815 0.695
Fraction of assets sold 0.08341 0.05504 0.08337
Total amount of fire sales 0.82 0.53 0.80
Total profits 1.0922 1.1018 1.0928
Bank profits 1.046 1.077 1.048
Traditional sector’s profits 0.0462 0.0249 0.0447

The example shows that banks hold too many risky assets and too little liquidity in the
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competitive equilibrium compared to the constrained efficient allocations. Partial regulation

restricts risky investment, but that comes at the expense of making banks even less liquid and

reducing the risky investment below the complete regulation level. As a result, total profits

increase only barely (0.05 percent), and the financial stability indicators (price of assets and

the amount of fire sales) improve only marginally compared to the competitive equilibrium.

The real improvement in welfare (0.88 percent) and financial stability (18 percent increase

in asset prices and 34 percent decrease in the fraction of assets sold) comes when we add

liquidity regulations to capital regulations and, hence, implement the constrained efficient

allocations. We obtain similar results when we repeat this numerical example for a large

range of parameters. Therefore, our quantitative analysis indicates that including liquidity

requirements in addition to the capital regulations offers significant quantitative benefits in

terms of welfare and financial stability.

The numerical example also shows that without transfers more regulation makes con-

sumers worse off: The profits in the traditional sector decrease somewhat when we introduce

capital regulations in isolation and then decreases significantly further when we add liquidity

requirements to the regulatory toolkit. Regulation makes the traditional sector worse off by

increasing the price of risky assets in the bad state. However, bank profits always increase

with regulation and increase in absolute value more than the decrease in the traditional

sector’s profits. As a result, total profits increase with more regulation. We conclude that

capital and liquidity regulations can be implemented in a Pareto-improving way by taxing

banks and transferring resources to consumers.

6 Discussion of assumptions

In this section, we show that our results are robust to some changes in the modeling environ-

ment. First, we provide a more general model with pledgeability constraints and derive the

parameter region that give rise to the basic setup where the constraint does not bind in the

initial period but it does in the bad state of interim period because of debt overhang. Second,

we show that the aggregate nature of the liquidity shock is not material for the mechanism

or the conclusions of the model. We allow the liquidity shock to be idiosyncratic rather than

aggregate and show that this setup is isomorphic to the aggregate shock case with a smaller

liquidity shock. Last, we discuss relaxing the convex operational cost assumption and its

implications for our results.
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6.1 Debt overhang and limited commitment

We assume that banks can only pledge a fraction α ∈ {αH , αL} of their revenues in the final

period to lenders. The fraction that can be pledged is higher in good times than bad times,

that is, αH > αL. 1 − α can be interpreted as a haircut for banks’ assets. Haircuts tend

to rise during times of financial distress, as documented by Shin (2008) and Gorton and

Metrick (2012). We set αH = 1 without loss of generality and assume that αL < 1.

Banks’ problem at t = 0 in the decentralized equilibrium is:

max
ni,bi,γi,li0,li1,ri

(1− q)[(R + bi)ni − rili0] + qmax{Rγini − rili0, 0} − e− Φ((1 + bi)ni), (25)

subject to

li0 ≤ (1− q)(R + bi)ni + αLqRγini Collateral constraint at t=0 (26)

li1b ≤ max{αLγiRni − rili0, 0} Collateral constraint at t=1, bad state (27)

(1− q)rili0 + qmin{rili0, αLRγini} ≥ li0 PC of lenders at t=0 (28)

e+ li0 ≥ ni + bini BC of banks at t=0 (29)

li1b + P (1− γi)ni + bini − cni ≥ 0 BC of banks in the bad state a t=1 (30)

where 0 ≤ γi ≤ 1 is the fraction of assets that a bank chooses to carry forward after receiving

the liquidity shock in the bad state at t = 1.

The collateral constraint of banks at t = 0, depicted in (26), puts an upper bound on the

leverage banks can take. Banks can borrow from consumers by pledging their future cash

flows and the right side of the constraint (26) represents the expected pledgeable cash flow.

In case of a good state at t = 1, no action is required: banks do not need any additional

financing and they will wait until t = 2 to collect project returns. In case of a bad shock,

however, banks prefer to borrow more if they have debt capacity. The collateral constraint

depicted in (27) determines if banks have any debt capacity left given their existing debt.

If their existing debt, rili0, exceeds their debt capacity αLγiRni the right side of constraint

equals zero, which implies that li1b = 0. In other words, if a bank enters the interim period

with high amount of debt, it cannot raise additional funds due to a debt-overhang problem.

Note that once the bad state is realized, banks’ debt capacity is lower compared with t = 0.

The participation constraint of consumers at t = 0 is shown in (28) which states that

expected payoff from lending to banks should be at least as much as the amount lent li0.

Banks’ budget constraints at t = 0 and t = 1 are provided in (29) and (30). In a bad state

at t = 1 a bank has three potential sources of liquidity to cover restructuring cost of risky
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assets: liquidity hoarded from the initial period, bini, amount raised by fire sales, P (1−γi)ni,
and additional borrowing li1b.

We would like to focus on an equilibrium where the collateral constraint does not bind

at the initial period, but it does in the bad state at t = 1 due to a debt-overhang problem.

Banks raise li0 = (1 + bi)ni − e amount of long-term debt from lenders at t = 0 and promise

them a non-contingent payment of rili0 at t = 2, where ri ≥ 1 is the associated gross interest

rate. A debt-overhang problem arises when the pledgeable return of a bank is, at most,

enough to honor the existing debt even if the fire sale can be completely avoided—that is,

if rili0 ≥ αLRni. In such a case, the bank cannot raise any additional funds in the bad

state, that is, li1b = 0. Therefore, we call rili0 ≥ αLRni as the debt-overhang condition,

and under this condition the collateral constraint at t = 1, given by (27), binds. Using

li0 = (1 + bi)ni − e we can rewrite the collateral constraint at t = 0, given by (26), and the

debt-overhang condition at t = 1 as follows:

(1 + bi)ni − e ≤ (1− q)(R + bi)ni + αLqRγini Collateral constraint at t=0 (31)

ri(1 + bi)ni − rie ≥ αLRni Debt-overhang condition at t=1 (32)

We are interested in a parameter region in which conditions (31) and (32) are both

satisfied. It is clear that when αL or e is high, the first collateral constraint (31) is more

likely to be satisfied whereas the debt-overhang condition (32) is less likely to be so. Thus,

there is an intermediate range of αL and e such that while the first constraint is satisfied, the

debt overhang problem arises in equilibrium at t = 1. With high equity, e, banks need less

outside funds at t = 0 thus the first constraint is less likely to bind. When αL is high enough,

the debt capacity of banks are high and accordingly the collateral constraint at t = 0 would

not bind. Banks enter t = 1 with a given debt of rili0. Therefore if αL is low, or if rili0 is

high, the debt capacity at t = 1 can be already saturated with the existing debt. Because

lower e implies higher initial debt, li0, it also leads to debt-overhang problem at t = 1. Thus

αL and e jointly determine whether a debt-overhang problem will arise at t = 1, and we focus

on the parameter region where it does arise. Note that the composition of the liability side

has no effect on the fire sale externality, and hence, on the results in our setup. Therefore,

instead of the level of equity e we can look at the simple leverage ratio ki = e/(ni + bini).

Using the closed-form solutions in the appendix we can determine the range for leverage

ratio, ki, and fraction of pledgeable revenue in the bad state αL that leads to debt-overhang

problem. As we can see by the shaded region in Figure 3, debt-overhang problem arises for

a reasonably large parameter space without violating the collateral constraint at t = 0.

When the parameters e and αL lie in the shaded region in Figure 3 and the debt-overhang
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Figure 3: Parameter region that leads to debt-overhang problem
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arises, the bank will be in default in the bad state.21 Hence it has to pay initial lenders a

positive interest rate, ri > 1, in good times to compensate. In an equilibrium where fire

sales takes place in the bad state, the interest on initial bank debt has to be such that the

participation constraint (PC) of initial lenders binds:

(1− q)rili0 + αLqRγini = li0 PC (33)

For the PC condition of consumers to be satisfied, ri has to be such that

ri ≥
li0 − αLqRγini

(1− q)li0
≡ r∗i . (34)

To obtain this constraint we rearrange the PC condition (33) and note that min{αLRγini, rili0} =

αLRγini. In order to maximize profits, banks set ri = r∗i . Note that, profit of banks in the

bad state in this case is Rγini − αLRγini = (1 − αL)Rγini. Now, we can substitute the

optimal r∗i back into the banks’ objective function (25) and simplify to obtain:

max
ni,bi,γi,li0

(1− q)(R + bi)ni + qRγini − (1 + bi)ni − Φ((1 + bi)ni),

21If a bank is in default after fire sales, we assume that it is required by law to manage the remaining assets until
final period and deliver returns to consumers.
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subject to

e+ li0 ≥ ni + bini BC of banks at t=0 (35)

P (1− γi)ni + bini − cni ≥ 0 BC of banks in the bad state a t=1 (36)

Thus, in the parameter space in which banks are not collateral constrained at t=0 but

a debt-overhang problem arises at t = 1, banks’ optimization problem that we obtain is

identical to the one presented in our benchmark model.

6.2 Idiosyncratic liquidity shocks

In the basic model, the liquidity shock is aggregate in nature, as in Lorenzoni (2008). In this

section, we show that the aggregate nature of the liquidity shock is without loss of generality

and that our results do not change if we allow idiosyncratic liquidity shocks. In this more

general setup, liquidity shocks hit only a fraction of the banks. Thus, banks are ex-post

heterogeneous in terms of their liquidity needs. Banks that receive the liquidity shock need

funding while others are left with excess liquidity. Banks with excess liquidity can use these

resources to buy the risky assets from the distressed banks, potentially at fire sale prices.22

Therefore, in this variant of the model, banks hoard liquidity also for a strategic purpose:

They can use their liquid assets to buy risky assets at fire sale prices. This function of

liquidity is also present in the models of Acharya, Shin, and Yorulmazer (2011), Allen and

Gale (2004b), Allen and Gale (2004a), and Gorton and Huang (2004). The amount of risky

assets that can be bought with the liquid holdings of a shock-free bank is bini/P .

First, we analyze the case conditionally on the liquidity shock but without knowing

which banks receive the shock. We assume that, conditional on being in the bad state, the

probability of being hit with a liquidity shock is λ for each bank. Hence, by the law of

large numbers, a fraction λ of banks is hit by the liquidity shock in the bad state. The

expected profit of a bank before the realization of which banks receive the shock, conditional

on the bad state, is λRγini + (1− λ)(ni + bini

P
)R. The first term, λRγini, is the return from

remaining risky assets after fire sales multiplied by the probability of receiving the liquidity

shock, λ. The amount of remaining risky assets after fire sales is denoted by γi for bank i,

as in the benchmark model. The second term captures the returns from risky investment

in the case without the liquidity shock, including the returns from risky asset bought using

hoarded liquidity. We substitute for γi and rewrite the expected profit conditional on the

22In principle, it is possible that the amount of excess liquidity in the banking system exceeds the liquidity needs of
the shock-receiving banks. At the end of this subsection we explain why this situation does not arise in equilibrium.
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bad state, as follows:

Πi|bad = λR

(
1− c− bi

P

)
ni + (1− λ)niR + (1− λ)

bini
P
R,

= λRni −
λRcni
P

+ λR
bini
P

+ (1− λ)Rni +
bini
P
R− λbini

P
R.

Further simplification yields:

Πi|bad = R

(
1− cλ− bi

P

)
ni = Rγ̃ini,

where γ̃i = 1 − cλ−bi
P

. This γ̃i is similar to γi in the basic setup; the only difference is that

the size of the liquidity shock, c, is replaced with cλ in the numerator of the definition. In

this setup, when we set λ = 1, we are back to our benchmark case. Thus, allowing λ to be

between zero and one provides a more general model. In order to write the expected profits

of banks at t = 0 in this more general setup, we simply note that the economy ends up in the

bad state only with probability q and obtains the returns derived earlier, while good times

arise with probability 1− q and feature returns that are the same as in the benchmark case:

Πi = (1− q)(R + bi)ni + qR

(
1− cλ− bi

P

)
ni −D(ni(1 + bi).

Compared with the benchmark case, the only difference in banks’ expected profit at

t = 0 is that c is replaced with cλ. For completeness, we conclude by writing the demand

and supply functions in this more-general case. The aggregate liquidity need in the bad state

is λ(c− b)n, and the liquidity supply is (1− λ)bn+ PQd(P ). Equating demand and supply

yields λ(c−b)n = (1−λ)bn+PQd(P ), and simplifying reduces this market-clearing condition

to (λc− b)n = PQd(P ). Compared with the market-clearing condition in the original setup,

the only difference is, again, that c has been replaced with λc. Thus, in this new setup, if

we relabel λc = c̃, we are back to our original setup where c is replaced with c̃.

It would be possible to have no fire sales in the bad state in this setup if the liquid

assets in the hands of shock-free banks were in excess of the liquidity need of shock-receiving

banks, so that the risky assets were traded within the banking system without needing to

sell to the traditional sector. Although this case is possible in principle, it is never observed

in equilibrium because it is not optimal for banks to hoard sufficient liquidity for this case

to arise. Comparing the demand for liquidity with the supply of liquidity in the case of

the liquidity shock, it is clear that the fire sales arise if and only if λcn is greater than bn.

In other words, fire sales are observed in equilibrium as long as c̃ > b. Given that c̃ is a

parameter, the ex-ante liquidity choice of banks determines whether fire sales occur. As we
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know from the benchmark case, banks optimally set bi < c. Because this is true for any

parameter value, it is true for c̃ as well. The intuition is the same: Holding liquidity is costly

if the shock does not materialize. Thus, for banks to hoard liquidity, there must be some

additional return to holding liquidity in case of the liquidity shock. This additional return is

only possible if the fire sale price is less than R, which is only possible if there are fire sales.

In other words, if there will not be any fire sales in the bad state—that is, if P = R—then

there is no benefit to holding liquidity. But this contradicts the assumption of sufficient

liquidity in the banking system.

6.3 Operational costs of a bank

We assume a convex operational cost similar to the ones imposed by Van den Heuvel (2008)

and Acharya (2003, 2009) because it ensures the existence of an equilibrium. However, the

form of this function is not essential for our key results, as long as an equilibrium exists.

To be more specific, Lemmas 2, 3 and Proposition 7 do not require any specific functional

form and Proposition 4 is robust to some alternative modeling choices such as concave cost

functions, like the square root or natural logarithm functions.23

In our model, the net interest rate on bank deposits is zero. Without an additional cost

(such as an operational cost) banks can borrow more from depositors and park these funds

as liquid assets (cash) in their portfolios. In that way they could freely insure against the

fire sale risk. We believe that such a scenario is not realistic. First, banks do face costs

to attract deposits. Second, unlimited amount of funds from depositors at zero cost would

cancel out the opportunity cost of holding liquid assets, namely the cost of bygone profits

from other investments. A constant balance sheet size would emphasize this opportunity cost

mechanism, as it does in many papers in the literature. However, with a fixed balance sheet

size, the choice between risky assets and liquid assets boils down to a mere portfolio allocation

problem. A setup with a single choice variable does not allow the type of interactions we

study. Thus, by employing a flexible balance sheet size, we avoid two extreme assumptions;

namely, that banks have an unlimited amount of funds at their disposal, and that bank

balance sheet size is inflexible.

Furthermore, whether bank size matters for the inefficiencies banks create is also discussed

in the context of the recent financial crisis, as well as how bank regulation might affect bank

size. Regulatory rules might affect bank profitability, which may lead banks to resize their

operations. To speak to these discussions, a flexible balance sheet size is important because

it also allows us to study the optimal size of banks’ balance sheets. Our result in Proposition

6 emphasizes that the composition of a bank’s balance sheet matters more than its size, and

23These results are not included here but are available upon request from the authors.
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that regulation does not necessarily imply a reduction in balance sheet size.

7 Conclusion

In this paper, we investigate the optimal design of bank regulation and the interaction be-

tween capital and liquidity requirements. Our model is characterized by fire sale externalities,

because atomistic banks do not take into account the effect of their initial portfolio choices

on the fire sale price. Existence of these fire sale externalities creates an inefficiency. In the

unregulated competitive equilibrium, banks overinvest in the risky asset and underinvest in

the liquid asset compared to a constrained planner’s allocations. We investigate whether

the constrained efficient allocations can be implemented using quantity-based capital and

liquidity regulations, as in the Basel Accords. The regulation required is macroprudential

because it addresses the instability in the banking system by targeting aggregate capital and

liquidity ratios.

Our results indicate that the pre-Basel III regulatory framework, with its reliance only on

capital requirements, was ineffective in addressing systemic instability caused by fire sales.

Capital requirements can lead to less severe fire sales by forcing banks to reduce risky assets—

however, we show that banks respond to stricter capital requirements by decreasing their

liquidity ratios. Anticipating this response, the regulator preemptively sets capital ratios

at high levels. Ultimately, this interplay between banks and the regulator leads to lower

levels of risky assets and liquidity compared to the second-best allocations. Macroprudential

liquidity requirements that complement capital regulations, as in Basel III, can implement

the second best, improve financial stability and allow for a higher level of investment in risky

assets.

It is important to highlight that our results cannot be interpreted as indicating that the

actual capital regulation requirements were too high in a particular country (such as the

U.S.) in the pre-crisis period, which corresponds to pre-Basel III framework, and that now

they should be relaxed. Our results only say that if capital regulations were set optimally

from a welfare maximizing point in the absence of liquidity regulation, they would be set at

higher levels compared to the second-best environment in which the regulator is also endowed

with the liquidity regulation tool. Our model is not meant to be quantitative and hence does

not speak to whether actual capital ratios in practice either under Basel I/II or Basel III

are too low or too high. However, many studies, most famously Admati et al. (2010), have

argued that current minimum capital requirements are too low.

The message of this paper goes beyond bank regulation. Our results imply that capital

ratios are not a perfect predictor of the stability of the banking system or any individual
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bank under a potential distress scenario. Without sufficient liquidity buffers, banks’ capital

can easily erode with fire sale losses. Under fire sale externalities, then, a well-capitalized

banking system may experience greater losses than a less-capitalized banking system with

strong liquidity buffers. Thus, capital ratios alone cannot be barometers of soundness of

individual banks or a banking system.

The Basel III liquidity ratio LCR currently applies to only large banks in the U.S. In

contrast, our results suggests that liquidity regulations should apply even to small banks

because in our model all banks are small by definition, as we consider atomistic banks that

engage in fire sales markets and take asset prices as given. Answering the question of whether

liquidity regulations should be applied differently to large and small banks, like the question

of whether they should be applied differently to well-capitalized and poorly-capitalized banks,

is beyond the scope of our current model. We leave these interesting theoretical and policy

questions to future research.
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Bank regulation under fire sale externalities

Gazi Ishak Kara S. Mehmet Ozsoy

Internet Appendix

A Proofs omitted in the main text

Lemma 1. The fire sale price of risky asset, P (n, b), is decreasing in n and increasing in b.
The fraction of risky assets sold, 1− γ(n, b), is increasing in n and decreasing in b.

Proof. Part 1: P (n, b), is decreasing in n and increasing in b.
The asset market clearing condition in the bad state at t = 1 is given as

Qs(P ) =
c− b
P

n = Qd(P ),

which can be written as
(c− b)n = PQd(P ). (A.1)

First, take the partial derivative of both sides of this last equation with respect to n:

c− b =
∂P

∂n
Qd(P ) + P

∂Qd(P )

∂P

∂P

∂n
=
∂P

∂n

{
Qd(P ) + P

∂Qd(P )

∂P

}
=
∂P

∂n
Qd(P )

{
1 + εd

}
,

where

εd =
∂Qd(P )

∂P

P

Qd
,

is the price elasticity of the traditional sector’s demand function. Rearranging the last
equation gives

∂P

∂n
=

c− b
Qd(P )(1 + εd)

< 0

since 1 + εd < 0 by the Elasticity assumption, and c − b > 0 by assumption here because
we are examining the case with fire sales. We later show in Lemma 2 and 3 that c − b > 0
indeed holds in equilibrium.

Now take the partial derivative of both sides of (A.1) with respect to b:

−n =
∂P

∂b
Qd(P ) + P

∂Qd(P )

∂P

∂P

∂b
=
∂P

∂b

{
Qd(P ) + P

∂Qd(P )

∂P

}
=
∂P

∂b
Qd(P )

{
1 + εd

}
.

Rearranging the last equation gives

∂P

∂b
= − n

Qd(P )(1 + εd)
> 0.

because 1 + εd < 0 by Elasticity assumption.
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Part 2: 1− γ(n, b), is increasing in n and decreasing in b.
Using (4) we can write banks’ asset sales in equilibrium as 1−γ(n, b) = (c−b)/P (n, b). Note
that

∂(1− γ)

∂n
=
∂(1− γ)

∂P

∂P

∂n
> 0,

because ∂(1 − γ)/∂P = −c/P 2 < 0 from (4) and by Lemma 1 we have that ∂P/∂n < 0.
Similarly, we can obtain

∂(1− γ)

∂b
= − 1

P
+
∂(1− γ)

∂P

∂P

∂b
< 0,

since ∂(1− γ)/∂P < 0 as shown above, and by Lemma 1 we have that ∂P/∂b > 0.

Lemma 2. Under the Efficiency and Technology assumptions, banks always take fire sale
risk in equilibrium; that is, bi < c for all banks.

Proof. It is straightforward to show that banks never carry excess liquidity in equilibrium,
that is, bi > c. This is because when bi > c the liquid assets in excess of the shock, (bi− c)n,
have no use even in the bad state; the expected return on liquid assets is equal to one and
dominated by the expected return on the risky asset, R− cq, by the Technology assumption.

To prove bi < c, we start with the full insurance case, that is bi = c, and move ε amount
of investment from liquid asset to risky asset, and show that this reallocation is profitable.
Deviating bank get exposed to fire sale risk as a result of this reallocation. First, we rewrite
expected profit in terms of the total amount of liquid assets at the bank, defined as Bi ≡ bini,
rather than the liquidity ratio, b:

Πi = (1− q)(R + bi)ni + qR

(
1− c− bi

P

)
ni −D(ni + nibi),

= (1− q)(Rni +Bi) + qR

(
ni −

cni −Bi

P

)
−D(ni +Bi),

In case of perfect insurance the size of liquidity hoarded at the initial period is equal to
the size of the liquidity need in the bad state, that is, Bi = cni. Expected profit in the full
insurance case boils down to Πfi = Rni+(1−q)Bi−D(ni+Bi). Now, moving some amount
of funds in the initial period from liquid assets to the risky investment, yields Bi,new = Bi−ε
and ni,new = ni + ε. Let us denote the fire sale price after the reallocation by Pε. Expected
profit is as follows after the reallocation of funds

Πi,new = Πi,fi + ε(R− 1 + q)− qR(1 + c)ε

Pε
,

= Πi,fi + ε(R− 1 + q)− qR(1 + c)ε

Pε
,

where Pε = F ′(0). The following equation provides the condition for the deviating bank to
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profit from this reallocation of funds away from full insurance:

ε(R− 1 + q)− qR(1 + c)ε

Pε
≥ 0. (A.2)

Using Efficiency assumption, Pε = F ′(0) > ν implies that this condition is satisfied and
deviation is profitable.

Proposition 1. Under the Efficiency, Elasticity, Regularity, and Technology assumptions,
the competitive equilibrium price of assets is given by

P =
qR(1 + c)

R− 1 + q
. (A.3)

The equilibrium price, P , is increasing in the probability of the liquidity shock, q, and the
size of the shock, c, but decreasing in the return on the risky assets, R.

Proof. The first-order conditions of the banks’ problem (7) with respect to ni and bi respec-
tively are:

(1− q)(R + bi) + qRγi = D
′
(ni(1 + bi))(1 + bi), (A.4)

(1− q)ni + qR
1

P
ni = D

′
(ni(1 + bi))ni, (A.5)

where γi = 1− (c− bi)/P as obtained in the previous section. Combining the two equations
gives:

(1− q)R + (1− q)bi + qR + qR(
bi − c
P

) = (1− q) + (1− q)bi +
qR

P
+
qR

P
bi.

In this last equation, the terms that involve the liquidity ratio, bi, on both sides cancel out
each other, and hence we can solve for P , the competitive equilibrium price of assets. It is
straightforward to obtain the sign of the derivative of the equilibrium price with respect to
model parameters, R, c, q.

Proposition 2. Under the log-quadratic functional form assumptions, the comparative stat-
ics for the competitive equilibrium risky investment level, n, and liquidity ratio, b, are as
follows:

1. The risky investment level (n) is increasing in the return on the risky asset (R) and
decreasing in the size of the liquidity shock (c), probability of the bad state (q), and the
marginal cost parameter (φ).

2. The liquidity ratio (b) is increasing in the return on the risky asset (R), size of the liq-
uidity shock (c), and the probability of the bad state (q), and decreasing in the marginal
cost parameter (φ).
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Proof. The derivatives below use the following closed-form solution for the competitive equi-
librium risky investment level and liquidity ratio as obtained in Section B.1:

n =
[R− 1− qc][R− 1 + q + 2φR(1 + c)]

(R− 1 + q)(1 + c)22φ
, b =

cq − 2φR
τ+1

q + 2φR
τ+1

.

In most derivatives below, we use the Technology assumption (R − 1 − qc > 0) to obtain
the sign. The derivatives for the risky investment level and their signs can be obtained as
follows after some algebraic manipulation:

∂n

∂R
=

(R− 1 + q)2 + 2φ(1 + c)[(R + q − 1)2 + (1− q)q(1 + c)]

(R− 1 + q)2(1 + c)22φ
> 0.

∂n

∂c
=
−[2(R− 1) + q(1− c) + 2φR(1 + c)]

2φ(1 + c)3
< 0.

∂n

∂q
=
−c(R− 1 + q)2 − 2φR(1 + c)(R− 1)(1 + c)

(R− 1 + q)2(1 + c)22φ
< 0.

∂n

∂φ
=
−(R− 1− qc)(R− 1 + q)

2(R− 1 + q)(1 + c)2φ2
< 0.

Similarly, the derivatives for the liquidity ratio and their signs can be obtained as follows:

∂b

∂R
=

2φ(1−q)
(τ+1)2

[2φR
τ+1

+ q]2
> 0.

∂b

∂c
=

q2

[2φR
τ+1

+ q]2
> 0.

∂b

∂q
=

2φR
(τ+1)2

[2φR
τ+1

+ q]2
> 0.

∂b

∂φ
=
− 2R
τ+1

q(1 + c)

[2φR
τ+1

+ q]2
< 0.

Lemma 3. Under the risk neutrality, Efficiency, and Technology assumptions, it is optimal
for the constrained planner to take fire sale risk; that is, the constrained optimal liquidity
ratio satisfies b < c.

Proof. In principle, it is possible to completely insure against the fire sale risk. Under
full insurance, similar to some interpretation of narrow banking (Freixas and Rochet, 2008,
Chapter 7.2.2), the banks are able to cover the liquidity need even in the worst scenario by
using their liquid holdings. However, we show that full insurance is not optimal and the
constrained social planner takes some fire sale risk, by setting the aggregate liquidity ratio
less than the liquidity need in the bad state, that is, by setting b < c.

To show this, we start with the full insurance case, that is b = c, and move ε amount of
investment from liquid asset to risky asset, and show that this reallocation provides a Pareto
improvement. Banks get exposed to fire sale risk as a result of this reallocation. As we show
in Lemma 2 this reallocation does not hurt banks as long fire-sale price is not dramatically
different from the fundamental value of risky assets, i.e. R ≥ F ′(0) > ν as given by the
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Efficiency assumption. Consumer are better off with this reallocation because the expected
profit of traditional sector they own is now positive, q[F (yε) − yεPε] > 0 while it was zero
under the full insurance case.

Proposition 3. Under the risk neutrality, Efficiency, Elasticity, and Technology assump-
tions, the competitive equilibrium is constrained inefficient. Furthermore, under the log-
quadratic functional form assumptions, competitive equilibrium allocations compare to the
constrained efficient allocations as follows:

1. Risky investment levels: n > n∗∗

2. Liquidity ratios: b < b∗∗

Proof. To prove that the competitive equilibrium is constrained inefficient we compare the
equations that define the competitive equilibrium and constrained planner’s allocations, and
show that the additional terms in the constrained planner’s problem are strictly different
than zero. The first-order conditions of the competitive equilibrium are defined in Section
3.2, shown in equation (9), and the ones for constrained planner’s case is derived in Section
3.3, shown in equations (15) and (B.11).

∂Γ

∂xi
− q(R− P )

∂Qs
i

∂xi
= 0, ∀xi ∈ {ni, bi} (A.6)

∂Γ

∂x
− q(R− P )

∂Qs

∂x
− q(R− P )

∂Qs

∂P

∂P

∂x
= 0, ∀x ∈ {n, b} (A.7)

where Qs
i (P, ni, bi) = c−bi

P
ni.

Using (5), we obtain that ∂Qs

∂P
= −(c − b)n/P 2 < 0, that is, the supply of assets is

downward-sloping for banks. Therefore, the extra term in constrained planner’s problem is
negative for risky investment because in Lemma 1 we have shown that ∂P/∂n < 0. This
term captures the extra units of fire sales by other banks, caused by each banks’ additional
investment in the risky asset. Similarly, when comparing the first-order conditions with
respect to the liquidity ratio, the extra term in constrained planner’s problem is positive
because we have shown in Lemma 1 that ∂P/∂b > 0. This term captures the public good
property of liquidity: The liquid asset held by banks not only insures them against the fire
sale risk but also constitutes a positive externality on other banks via greater fire sale prices.

We defer the proof of the second part of this proposition to Lemmas 5 and 6, which are
under the proof of Proposition 5 below.

Proposition 4. Let the operational cost of a bank be given by Φ(x) = φx2. Then, banks
decrease their liquidity ratio as the regulator tightens capital requirements; that is, b

′
(n) ≥ 0

for any concave technology function for the traditional sector, F (·), that satisfies the Elas-
ticity and Regularity assumptions along with either:

(i) F ′(0) = R, or (ii) F ′(0) ≤ R and R < F ′(F ′+yF ′′)
F ′+2yF ′′

for all y ≥ 0.
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Proof. We are studying the partial regulation case, in which banks are free to choose their
liquidity ratio bi but the regulator limits their choice of ni. Therefore, we can write banks’
expected profit function at t = 0 as follows

max
bi

Πi(bi;n) = (1− q){R + bi}n+ qRγin−D(n(1 + bi)). (A.8)

Here, we can treat n like a parameter of the model because banks take it as given. The
regulator, in a sense, determines the aggregate amount of n. Therefore, the first-order
conditions of the banks’ problem above is

∂Π(bi;n)

∂bi
= (1− q)n+ qRn

∂γ

∂bi
− n− 2φn2(1 + bi) = 0

= (1− q)n+ qRn
1

P
− n− 2φn2(1 + bi) = 0,

which can be simplified as

q

(
R

P
− 1

)
= 2φn(1 + bi). (A.9)

Note that we can obtain the derivative of the equilibrium price with respect to the
regulatory parameter, n, as follows:

∂P

∂n
=
F2(c− bi)
F1 + yF2

, (A.10)

where Fk ≡ dkF (y)
dyk

for k = 1, 2, and y shows the quantity of assets sold to the traditional

sector in fire sales.
Banks’ profit function exhibits increasing differences in bi and n if its cross derivative

is positive. Increasing differences means that b′(n) > 0, that is, the optimal choice of bi
in banks’ problem is increasing with the regulatory parameter, n. We can obtain the cross
derivative of banks’ expected profit as

∂2Π(n, bi)

∂bi∂n
= (1− q) + qR

(
1

P
− n

P 2

∂P

∂n

)
− 1− 4φn(1 + bi).

Substituting for φn(1+bi) from the banks’ first-order condition (A.9) and using the expression
for ∂P/∂n, given by (A.10), and we can simplify the cross derivative of banks’ expected profit
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as follows

∂2Π(n, bi)

∂bi∂n
= (1− q) + qR

(
1

P
− n

P 2

F2(c− bi)
F1 + yF2

)
− 1− 2q

(
R

P
− 1

)
,

= −q + qR

(
1

P
− n(c− bi)

Py

1

P

yF2

F1 + yF2

)
− 2qR

P
+ 2q,

= q + qR

(
1

P
− n(c− bi)

Py

1

P

yF2

F1 + yF2

)
− 2qR

P
,

where in the second line we manipulated the second term within the parentheses by multi-
plying and dividing by y. Now, use of the equality of y = n(c − bi)/P in equilibrium and
finally substitute P = F1 to get:

∂2Π(n, bi)

∂bi∂n
= q + qR

(
1

P
− 1

P

yF2

F1 + yF2

)
− 2qR

P
= q − qR

(
1

P
+

1

P

yF2

F1 + yF2

)

= q

{
1−R [F1 + 2yF2]

F1(F1 + yF2)

}
.

Increasing differences hold if

∂2Π(bi;n)

∂bi∂n
> 0⇔ R <

F1(F1 + yF2)

F1 + 2yF2

≡ κ. (A.11)

Therefore, if we assume that the traditional sector’s technology F satisfies (A.11), we are
done. If we do not make this assumption, we can instead assume that F1(0) = R and show
that (A.11) holds for all y > 0. Note that when y is equal to zero κ is equal to F1 by
definition, and we have that F1(0) = R by assumption. Therefore, in order to show that
κ > R for all y > 0, all we need to show is that κ is increasing in y. Below we show that the
derivative of κ with respect to y is indeed positive:

dκ

dy
=

[F2(F1 + yF2) + F1(F2 + F2 + yF3)][F1 + 2yF2]

(F1 + 2yF2)2
,

=
[3F1F2 + yF 2

2 + F1F3y][F1 + yF2 + yF2]− [F1(F1 + yF2)][F2 + 2F2 + 2yF3]

(F1 + 2yF2)2
.(A.12)

Because the denominator of the derivative is positive we focus on the numerator to obtain
the sign of the derivative. The numerator of (A.12) can be simplified as follows:

dκ

dy
× (F1 + 2yF2)

2 = y(F 2
2 − F1F3)(F1 + yF2) + yF2[3F1F2 + yF 2

2 + F1F3y],

= y(F 2
2 − F1F3)F1 + yF2[yF

2
2 − yF1F3 + 3F1F2 + yF 2

2 + yF1F3],

= y(F 2
2 − F1F3)F1 + yF2[3F1F2 + 2yF 2

2 ].
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Divide both sides with y to simplify further:

dκ

dy
× (F1 + 2yF2)

2

y
= F1F

2
2 − F 2

1F3 + 3F1F
2
2 + 2yF 3

2

= 4F1F2 − F 2
1F3 + 2yF 3

2

= 2F1F2 − F 2
1F3 + 2F1F2 + 2yF 3

2

= F1(2F
2
2 − F1F3) + 2F 2

2 (F1 + yF2) > 0.

2F 2
2 −F1F3 is positive due to the Regularity assumption, and F1 + yF2 is positive due to the

Elasticity assumption.

Proposition 5. Under the log-quadratic functional form assumptions, risky investment lev-
els, liquidity ratios, and financial stability measures under competitive equilibrium (n, b, P ,
1− γ, (1− γ)n), partial regulation equilibrium (n∗, b∗, P ∗, 1− γ∗, (1− γ∗)n∗), and complete
regulation equilibrium (n∗∗, b∗∗, P ∗∗, 1− γ∗∗, (1− γ∗∗)n∗∗) compare as follows:

1. Risky investment levels: n > n∗∗ > n∗

2. Liquidity ratios: b∗∗ > b > b∗

3. Financial stability measures

(a) Price of assets in the bad state: P ∗∗ > P ∗ > P

(b) Fraction of assets sold: 1− γ > 1− γ∗ > 1− γ∗∗
(c) Total fire sales: (1− γ)n > (1− γ∗)n∗ > (1− γ∗∗)n∗∗

Proof. Proof of this proposition is established through a series of lemmas below.

Lemma 4. P ∗∗ > P ∗ > P

Proof. Part 1: P ∗ > P . First, note that we obtain the competitive equilibrium price of
assets in Proposition 1 as:

P =
qR(1 + c)

R− 1 + q
=

β

Rσ
,

using the definitions of σ, β from (B.28) and (B.32). Now, take the cubic equation given by
(B.33) and divide it by Rσ to obtain:

R{2φσP ∗3 + (σqR− 2φβ)P ∗ − qβ}+ 2φβP ∗2 − 2φ(1 + c)P ∗3 = 0

R

[
2φ

R
P ∗3 +

(
q − 2φβ

σR

)
P ∗ − qβ

σR

]
+

2φβ

σR
P ∗2 − 2φ(1 + c)

σR
P ∗3 = 0

Note that (1 + c)/σ = P , and substitute this into the equation above and manipulate:

R

[
2φ

R
P ∗3 + (q − 2φP )P ∗ − qP

]
+ 2φPP ∗2 − 2φ

R
PP ∗3 = 0

R

(
2φ

R
P ∗2 + q

)
P ∗ −

(
2φRP ∗ + qR− 2φP ∗2 +

2φ

R
P ∗3
)
P = 0

8



From this last equivalence we can obtain the price ratios in these two cases as:

P

P ∗
=

2φP ∗2 + qR
2φ
R
P ∗3 − 2φP ∗2 + 2φRP ∗ + qR

=
2φRP ∗2 + qR2

2φP ∗3 − 2φRP ∗2 + 2φR2P ∗ + qR2
, (A.13)

In order to show that P < P ∗, we need to show that the numerator of this ratio is less then
its denominator, that is

2φRP ∗2 + qR2 < 2φP ∗3 − 2φRP ∗2 + 2φR2P ∗ + qR2

4φRP ∗2 < 2φP ∗(P ∗2 +R2)

0 < (R− P ∗)2

The last inequality holds because we must have P ∗ < R in equilibrium. P ∗ < R holds
in equilibrium for the following reason: Assumption Efficiency states that P ∗ ≤ R, yet
the equality cannot arise in equilibrium as P ∗ = R implies P = R as well due to (A.13).
However, given the solution for P in Proposition 1, P < R holds due to the Technology
assumption, R− cq − 1 > 0. Thus, we must have P ∗ < R.

Part 2: P ∗∗ > P ∗. First, note that

R− 1− qc = R− 1 + q − q − qc = R− 1 + q − q(1 + c) = qRσ − q(1 + c) = q(σR− 1− c),

where σ, β are defined by (B.28) and (B.32). Using this equivalence we can write the poly-
nomial equation that gives P ∗∗, equation (B.17), as

(R− 1− qc)P ∗∗2 + qβP ∗∗ − qRβ = 0

q(σR− 1− c)P ∗∗2 + qβP ∗∗ − qRβ = 0

σR− 1− c
R

P ∗∗2 +
β

R
P ∗∗ = β

Now substitute β using the last equation above into the cubic equation that gives P ∗, equa-
tion (B.33):

2φ(σR− 1− c)P ∗3 + 2φβP ∗2 +R(σqR− 2φβ)P ∗ − qRβ = 0

2φ(σR− 1− c)P ∗3 + 2φβP ∗2 +R

(
σqR− 2φ

σR− 1− c
R

P ∗∗2 − 2φ
β

R
P ∗∗
)
P ∗ − qRβ = 0

2φ(σR− 1− c)P ∗3 + 2φβP ∗2 + σqR2P ∗ − 2φ(σR− 1− c)P ∗∗2P ∗ − 2φβP ∗∗P ∗ − qRβ = 0

(2φσR− 1− c)P ∗(P ∗2 − P ∗∗2) + 2φβP ∗(P ∗ − P ∗∗) + qR(σRP ∗ − β) = 0(A.14)

Note that the first two terms in (A.14) must have the same sign, which will be equal to
the inverse of the sign of the last term, qR(σRP ∗ − β). Therefore, in order to show that
P ∗ − P ∗∗ < 0, we need to show that qR(σRP ∗ − β) > 0. We can write this last terms as

qR(σRP ∗ − β) = qR2σP ∗ − q(1 + c)R2 > 0⇔ σP ∗ − 1− c > 0.
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Note that by Part 1, we know that P < P ∗. Hence, if σP−1−c ≥ 0 then we must necessarily
have σP ∗ − 1− c > 0. Using the closed-form solution of the competitive equilibrium, given
by (12), we can show that:

σP − 1− c =
R− 1 + q

qR

qR(1 + c)

R− 1 + q
− 1− c = 0

Therefore, we must have σP ∗− 1− c > 0, which implies that P ∗∗ > P ∗ in order for equation
(A.14) to hold.

Lemma 5. b∗∗ > b > b∗

Proof. Part 1: b∗∗ > b. Note that the closed-form solutions for the liquidity ratios in these
two cases were obtained in equations (B.4) and (B.18) as:

b =
cq(τ + 1)− 2φR

q(τ + 1) + 2φR
, b∗∗ =

cq(τ ∗∗ + 1)2 − 2φR

q(τ ∗∗ + 1)2 + 2φR
.

Comparing the liquidity ratios under competitive equilibrium (b) and under the constrained
planner’s solution (b∗∗), we see that they have the same following functional form:

f(x) =
cqx− 2φR

qx+ 2φR
. (A.15)

The only difference is x = τ+1 in the competitive case versus x = (τ ∗∗+1)2 in the constrained
planner’s problem. First, note that

f ′(x) =
cq(qx+ 2φR)− (cqx− 2φR)q

(qx+ 2φR)2
=

2φRq(1 + c)

(qx+ 2φR)2
> 0. (A.16)

Therefore, in order to show that b∗∗ > b, all we need to show is that (τ ∗∗+1)2 > τ +1, which
can be written equivalently as:

R2

P ∗∗2
>
R

P
⇔ P ∗∗2 < RP.

Now, substitute P ∗∗2 from the solution to the constrained planner’s problem, given by (B.17)
and the competitive equilibrium price, P , from (12) to write this inequality as:

qβ(R− P ∗∗)

R− 1− qc
< R

qR(1 + c)

R− 1 + q

R− P ∗∗ < R
R− 1− qc
R− 1 + q

R

(
1− R− 1− qc

R− 1 + q

)
< P ∗∗

Rq(1 + c)

R− 1 + q
= P < P ∗∗.
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The last inequality holds by Lemma 4. Therefore, (τ ∗∗ + 1)2 > τ + 1, which implies that
b∗∗ > b.

Part 2: b > b∗. Note that the closed-form solutions for the liquidity ratios in these two
cases were obtained in equations (B.4) and (B.21)as:

b =
cq(τ + 1)− 2φR

q(τ + 1) + 2φR
, b∗∗ =

cq(τ ∗ + 1)− 2φR

q(τ ∗ + 1) + 2φR
.

Comparing the liquidity ratios under competitive equilibrium (b) and under the partial regu-
lation case (b∗), we see that they have the same functional form, f(x), given above by (A.15).
The only difference is x = τ + 1 in the competitive case versus x = τ ∗+ 1 in the partial case.
We have shown above, by (A.16), that f ′(x) > 0. Therefore, in order to show that b > b∗,
all we need to show is that τ > τ ∗. Note that because τ ∗ = R/P ∗− 1 and τ = R/P − 1, and
P ∗ > P by Lemma 4, we have that τ > τ ∗. This completes the proof.

Lemma 6. n > n∗∗ > n∗

Proof. Part 1: n > n∗∗. Using the closed-form solution for the competitive equilibrium,
(B.5), and for the constrained planner’s problem, (B.19), the difference in risky investment
levels across these two cases can be written as

n− n∗∗ =
τ

τ + 1

q(τ + 1) + 2φR

2φ(1 + c)
− τ ∗∗

τ ∗∗ + 1

q(τ ∗∗ + 1)2 + 2φR

2φ(1 + c)

=
1

2φ(1 + c)

{
τ [q(τ + 1) + 2φR]

(τ + 1)
− τ ∗∗[q(τ ∗∗ + 1)2 + 2φR]

(τ ∗∗ + 1)

}
=

1

2φ(1 + c)

{
qτ + 2φR

τ

(τ + 1)
− qτ ∗∗(τ ∗∗ + 1)− 2φR

τ ∗∗

(τ ∗∗ + 1)

}
=

1

2φ(1 + c)

{
qτ − qτ ∗∗(τ ∗∗ + 1) + 2φR

τ

(τ + 1)
− 2φR

τ ∗∗

(τ ∗∗ + 1)

}
First, note that τ = R/P − 1 > τ ∗∗ = R/P ∗∗ − 1 by Lemma 4, and this implies that

2φR τ
(τ+1)
−2φR τ∗∗

(τ∗∗+1)
is positive. Therefore, n−n∗∗ is positive if qτ−qτ ∗∗(τ ∗∗+1) ≥ 0. Next,

we show that this inequality indeed holds. From (B.16) we have R− 1− qc = qR(R−P ∗∗)(1+c)
P 2 ,

which implies that:

τ =
R− 1− qc
q(1 + c)

=
R(R− P ∗∗)

P ∗∗2
=

R

P ∗∗
(
R

P ∗∗
− 1) = τ ∗∗(τ ∗∗ + 1),

where we use that τ = R/P − 1 and P = qR(1+c)
R−1+q , as given by 12.

Part 2: n∗∗ > n∗. For the second part of this lemma, we use the fact that P ∗∗ > P ∗ as
shown by Lemma 4. Using the closed-form solution for n∗∗ from (B.19) and n∗ from (B.22),
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we can write the difference in risky investment levels across these two cases as:

n∗∗ − n∗ =
τ ∗∗

τ ∗∗ + 1

q(τ ∗∗ + 1)2 + 2φR

2φ(1 + c)
− τ ∗

τ ∗ + 1

q(τ ∗ + 1) + 2φR

2φ(1 + c)
,

=
1

2φ(1 + c)

{
τ ∗∗

τ ∗∗ + 1
[q(τ ∗∗ + 1)2 + 2φR]− τ ∗

τ ∗ + 1
[q(τ ∗ + 1) + 2φR]

}
,

=
Θ

2φ(1 + c)(τ ∗ + 1)(τ ∗∗ + 1)
(A.17)

where

Θ ≡ q(τ ∗∗ + 1)(τ ∗ + 1)[τ ∗∗(τ ∗∗ + 1)− τ ∗] + 2φR[τ ∗∗(τ ∗ + 1)− τ ∗(τ ∗∗ + 1)]

= q(τ ∗∗ + 1)(τ ∗ + 1)[τ − τ ∗] + 2φR[τ ∗∗ − τ ∗], (A.18)

where we use the equivalence, τ = τ ∗∗(τ ∗∗+ 1), obtained in Part 1 above. Since the denomi-
nator of (A.17) is positive, in order to prove that n∗∗−n∗ > 0, it suffices to show that Θ > 0.
In order to show that this inequality holds, first, we would like to write 2φR that shows up
Θ in terms of τ ’s. For that start from the cubic equation that gives the partial equilibrium
price as obtained by (B.33):

0 =
2φ

q
(R− 1− qc)P ∗3 + 2φR(1 + c)P ∗2 +R2(σq − 2φ(1 + c))P ∗ − (1 + c)qR2,

0 =
2φ

q
q(1 + c)τP ∗3 + 2φR(1 + c)P ∗2 +R(R− 1 + q − 2φR(1 + c))P ∗ − (1 + c)qR2,

0 = 2φ(1 + c)τP ∗3 + 2φR(1 + c)P ∗2 +R

(
qR(1 + c)

P
− 2φR(1 + c)

)
P ∗ − (1 + c)qR2,

0 = 2φ(1 + c)τP ∗3 + 2φR(1 + c)P ∗2 +
qR2(1 + c)

P
P ∗ − 2φR2(1 + c)P ∗ − (1 + c)qR2,

0 = 2φ(1 + c)τ
R3

(τ∗ + 1)3
+ 2φR(1 + c)

R2

(τ∗ + 1)2
+
qR2(1 + c)

P

R

τ∗ + 1
− 2φR2(1 + c)

R

τ∗ + 1
− (1 + c)qR2,

0 = 2φ(1 + c)τ
R3

(τ∗ + 1)3
+ 2φ(1 + c)

R3

(τ∗ + 1)2
+ qR2(1 + c)

τ + 1

R

R

τ∗ + 1
− 2φ(1 + c)

R3

τ∗ + 1
− (1 + c)qR2,

0 =
2φ(1 + c)R3

(τ∗ + 1)3
[τ + τ∗ + 1− (τ∗ + 1)2] + qR2(1 + c)

[
τ + 1

τ∗ + 1
− 1

]
,

0 =
2φR

(τ∗ + 1)2
[τ − τ∗(τ∗ + 1)]− q(τ∗ − τ),

where in the first line we use definition of σ, given by (B.28), to write σR − 1 − c =
(R − 1 − qc)/q, while using τ = R/P − 1 = (R − 1 − qc)/[q(1 + c)] in the second line. In

the third line we replaced R− 1 + q with qR(1+c)
P

using equation (12) for price in competitive
equilibrium and later we use P ∗ = R/(τ ∗ + 1) to replace P ∗. From the last equation above
we can obtain:

2φR =
q(τ ∗ + 1)2(τ ∗ − τ)

τ − τ ∗(τ ∗ + 1)
=

q(τ ∗ + 1)2(τ ∗ − τ)

τ ∗∗(τ ∗∗ + 1)− τ ∗(τ ∗ + 1)
,

12



where we use the equivalence, τ = τ ∗∗(τ ∗∗ + 1), again. Now we plug this expression for 2φR
back into (A.18) and show below that Θ > 0 holds:

q(τ ∗∗ + 1)(τ ∗ + 1)[τ − τ ∗] > 2φR[τ ∗ − τ ∗∗] =
q(τ ∗ + 1)2(τ ∗ − τ)

τ ∗∗(τ ∗∗ + 1)− τ ∗(τ ∗ + 1)
[τ ∗ − τ ∗∗]

τ ∗∗ + 1 >
(τ ∗ + 1)(−1)(τ ∗ − τ ∗∗)
τ ∗∗(τ ∗∗ + 1)− τ ∗(τ ∗ + 1)

τ ∗∗ + 1 >
(τ ∗ + 1)(τ ∗ − τ ∗∗)

τ ∗(τ ∗ + 1)− τ ∗∗(τ ∗∗ + 1)

This inequality can be simplified further as follows:

(τ ∗∗ + 1)τ ∗(τ ∗ + 1)− τ ∗∗(τ ∗∗ + 1)2 > (τ ∗ + 1)(τ ∗ − τ ∗∗)
(τ ∗ + 1)[τ ∗(τ ∗∗ + 1)− (τ ∗ − τ ∗∗)] > τ ∗∗(τ ∗∗ + 1)2

(τ ∗ + 1)τ ∗∗(τ ∗ + 1) > τ ∗∗(τ ∗∗ + 1)2

(τ ∗ + 1)2 > (τ ∗∗ + 1)2.

This inequality is true because P ∗∗ > P ∗, as shown by Lemma 4, which implies that τ ∗ > τ ∗∗,
using the definitions τ ∗ = R/P ∗ − 1 and τ ∗∗ = R/P ∗∗ − 1.

Lemma 7. 1− γ > 1− γ∗ > 1− γ∗∗

Proof.

1− γ =
c− b
P

together with b∗∗ > b∗ and P ∗∗ > P ∗ =⇒ 1− γ∗ > 1− γ∗∗

To obtain (1− γ) > (1− γ∗), we can equivalently show that
c−b
P

c−b∗
P∗

> 1.

Using equations (B.4) and (B.21) for b and b∗ respectively, b = qc(τ+1)−2φR
2φR+q(τ+1)

=⇒ c− b =
2φR(1+c)

2φR+q(τ+1)
, and similarly we can derive c− b∗ = 2φR(1+c)

2φR+q(τ∗+1)
. Writing τ and τ ∗ in terms of P

and P ∗ we get the following,

c−b
P

c−b∗
P ∗

=
c− b
c− b∗

P

P ∗
=

2φP ∗ + q

2φP + q

P

P ∗
P ∗

P
> 1.

The last inequality holds because P ∗ > P by Lemma 4.

Lemma 8. (1− γ)n > (1− γ∗)n∗ > (1− γ∗∗)n∗∗

Proof. Given that the demand function for risky assets in the interim period is downward
sloping (continuous and differentiable as well), the prices disclose the amount of fire sales.
Hence, we can use the results in Lemma 4 to prove this lemma:

(1− γ)n =
R

P
− 1 and P ∗∗ > P ∗ > P =⇒ (1− γ∗∗)n∗∗ < (1− γ∗)n∗ < (1− γ)n.
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Proposition 6. Under the log-quadratic functional form assumptions, bank balance sheet
sizes across different regimes compare as follows:

n(1 + b) = n∗∗(1 + b∗∗) > n∗(1 + b∗)

Proof. Using the closed-form solutions in Sections B.1 and B.2, we can write the bank size
under the competitive equilibrium and constrained planner’s problem as follows:

n(1 + b) =
τ

τ + 1

2φR + q(τ + 1)

2φ(1 + c)

q(τ + 1)(1 + c)

2φR + q(τ + 1)
=

τ

τ + 1

q(τ + 1)

2φ
=
qτ

2φ
.

n∗∗(1 + b∗∗) =
τ ∗∗

τ ∗∗ + 1

2φR + q(τ ∗∗ + 1)2

2φ(1 + c)

q(τ ∗∗ + 1)2(1 + c)

2φR + q(τ ∗∗ + 1)2
=
qτ ∗∗(τ ∗∗ + 1)

2φ
.

Above we use equations (B.5) and (B.4) for the balance sheet size in competitive equi-
librium and equations (B.18) and (B.19) for the constrained planner’s case. Note that in
Part I of Lemma 6 we show that τ = τ ∗∗(τ ∗∗ + 1). Thus, comparing the equations above we
conclude n(1 + b) = n∗∗(1 + b∗∗).

Lastly, b∗∗ > b > b∗, as shown in Lemma 5, and n > n∗∗ > n∗, as shown in Lemma 6,
together imply that n(1 + b) > n∗(1 + b∗), that is, the bank balance sheet size is the smallest
under partial regulation.

Proposition 7. Under the Efficiency, Elasticity, Regularity, and Technology assumptions,
banks do not choose the constrained optimal risky investment level, n∗∗, if the regulator sets
the minimum liquidity ratio at the constrained optimal level, b∗∗; that is, ni(b

∗∗) 6= n∗∗.

Proof. We first study bank behavior under liquidity regulation alone. In this case, the
regulator chooses the optimal liquidity ratio, b, at t = 0 to maximize the net expected
social welfare but allows banks to freely choose their risky investment level, ni. Consider the
problem of a bank first: For a given regulatory liquidity ratio, b, a bank chooses the level of
risky investment, ni, to maximize its expected profits:

max
ni

Πi(ni; b) = max
ni

(R + b− qc)ni −D(ni(1 + b))− q(R− P )Qs
i (P, ni, b) (A.19)

The first-order condition of the banks’ problem (A.19) with respect to ni is

R + b− qc−D′(ni(1 + b))(1 + b)− q(R− P )
∂Qs

i

∂ni
= 0, (A.20)

where Qs
i (P, ni, b) = (1− γ)ni = c−b

P
ni.

We then compare this first-order condition with the corresponding one of the constrained
planner’s problem, given by (B.12). These two first-order conditions are written explicitly

14



below for comparison:

Ψ ≡ (1− q)(R+ b) + qR
{
γ +

∂γ

∂n
n
}

+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
−D

′
(·)(1 + b) = 0,

Υ ≡ (1− q)(R+ b) + qRγi −D
′
(·)(1 + b) = 0.

The constrained planner’s first-order condition, Ψ, includes extra terms because the planner inter-
nalizes the effects of fire sale externalities. These extra terms are:

Z = qR
∂γ

∂n
n+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
Hence, we can write Ψ = Υ + Z. We first show that the sum of these extra terms is negative:

Z = qR
∂γ

∂n
n+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
= qR

∂γ

∂n
n+ q

{
P

(
c− b
P
− ∂γ

∂n
n

)
− c+ b

}
= qR

∂γ

∂n
n+ q

{
c− b− ∂γ

∂n
nP − c+ b

}
= qR

∂γ

∂n
n− qP ∂γ

∂n
= q

∂γ

∂n
n(R− P ) < 0,

where we use that in equilibrium F ′((1− γ)n∗∗) = P ∗∗. The sign of Z is negative because R > P ∗∗

by the Efficiency assumption, and ∂γ/∂n < 0 by Lemma 1.
Z < 0 implies that banks’ first-order condition, Υ, evaluated at the constrained efficient allo-

cations, n∗∗, b∗∗ is positive, that is Υ(n∗∗, b∗∗) > 0. On the contrary, we have Υ(n(b∗∗), b∗∗) = 0 by
definition of optimality. Furthermore, we can show that Υ is decreasing in n for a given b, that is:

∂Υ

∂n
= qR

∂γ

∂n
−D′′(·)(1 + b)2 < 0,

because D
′′
(·) > 0 by assumption and ∂γ/∂n < 0 by Lemma 1. Therefore, we must have n(b∗∗) >

n∗∗.
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B Closed-form solutions

B.1 A closed-form solution for the competitive equilibrium

Suppose that the operational cost of a bank is given by Φ(x) = φx2 and let the traditional
sector’s technology function be given by F = Rln(1 + y). Firms in traditional sector choose
how much assets, y, to buy from banks in the bad state at t = 1 to maximize their profits,
F (y) − Py, where P is the price of assets. The first-order condition of this problem yields
(inverse) demand function of firms in traditional sector for risky assets:

P = F ′(y) =
R

1 + y
and hence y = F ′−1(P ) =

R

P
− 1 ≡ Qd(P ). (B.1)

We solve for the competitive equilibrium price, P , in the main text, as shown by (12). Now,
use this solution in the demand side function and define the total amount of assets purchased
by the traditional sector, τ , in terms of the exogenous variables as follows:

y =
R

P
− 1 =

R− 1 + q

q(1 + c)
− 1 ≡ τ. (B.2)

We obtain the total supply of asset by banks as (1− γ)n by (5) in Section 3.1.2. Hence, the
market clearing condition, (1− γ)n = τ , yields:

(c− b)n = Pτ =⇒ n =
Pτ

c− b
. (B.3)

This equation gives the investment level, n, as a function of the liquidity ratio, b. We can
solve for the latter from the first-order conditions of banks’ problem in the decentralized
case, given by (A.4-A.5), as derived in the proof of Proposition 1 below. Using R

P
= τ + 1

from (B.2) and the functional form of the operational cost, Φ
′
(n(1 + b)) = 2φn(1 + b), in the

first-order condition with respect to b, given by (A.5) yields:

1− q + q(τ + 1) = 1 + 2φn(1 + b),

1 + qτ = 1 + 2φ
Pτ

c− b
(1 + b),

where in the second line we use n = Pτ/(c − b) from (B.3). Substituting R/(τ + 1) for P
from (B.2) yields

c− b =
2φ

q

R(1 + b)

τ + 1
.

Finally, rearrange to obtain the liquidity ratio in the competitive equilibrium as

b =
cq(τ + 1)− 2φR

q(τ + 1) + 2φR
. (B.4)

To obtain the risky investment level in the competitive equilibrium substitute this ex-
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pression for b in (B.3):

n =
τ

τ + 1

q(τ + 1) + 2φR

2φ(1 + c)
(B.5)

B.2 A closed-form solution for the constrained planner’s problem

Lemma 3 allows us to focus on the b < c case when analyzing the constrained planner’s
problem which simplifies as follows:

max
n,b,y

Γ(n, b)− q{(R− P )Qs(P, n, b)} − (1− q)T2, (B.6)

subject to y = Qs(P, n, b),

F ′(y) = P,

(1− q)T2 + 3ω + q[F (y)− Py] ≥ Ui,CE, (B.7)

where Qs = c−b
P
n. The transfers must be such that consumers receive in expectation what

they lose from the change in the amount of fire sales and price of assets:

(1− q)T2 = q[F (yCE)− PCEyCE − F (y) + Py]. (B.8)

In other words, the constraint on consumers’ expected utility binds. Substituting this value
for transfers back into the planner’s problem helps us to get rid of the constraint on con-
sumers’ expected utility:

max
n,b,y

Γ(n, b)− q{(R− P )Qs(P, n, b)}+ q[F (y)− Py]− q[F (yCE)− PCEyCE], (B.9)

subject to y = Qs(P, n, b),

F ′(y) = P.

Corresponding first-order conditions with respect to x ∈ {n, b} are, respectively,

∂Γ

∂x
− q

[
(R− P )

(
∂Qs

∂x
+
∂Qs

∂P

∂P

∂x

)
−Qs ∂P

∂x
− (F ′(y)− P )

(
∂y

∂x
+
∂y

∂P

∂P

∂x

)
+ y

∂P

∂x

]
= 0.(B.10)

Using an envelope argument, F ′(y) = P , and the market clearing condition y = Qs, we
can simplify the optimality condition for welfare to:

∂Γ

∂x
− q(R− P )

∂Qs

∂x
− q(R− P )

∂Qs

∂P

∂P

∂x
= 0, ∀x ∈ {n, b}. (B.11)

Using the equilibrium condition y = Qs = (1 − γ)n = (c−b)n
P

and Γ(ni, bi) ≡ (R + bi −
qc)ni − D(ni(1 + bi)) we can write the the first-order conditions of the planner’s problem
with respect to n and b are respectively:

(1 − q)(R+ b) + qR
{
γ +

∂γ

∂n
n
}

+ q

{
F ′((1 − γ)n)

(
1 − γ − ∂γ

∂n
n

)
− c+ b

}
= D

′
(n(1 + b))(1 + b), (B.12)

(1 − q)n+ qR
∂γ

∂b
n+ q

{
F ′((1 − γ)n)

(
−∂γ
∂b

)
n+ n

}
= D

′
(n(1 + b))n, (B.13)
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where γ = 1 + b−c
P

from banks’ problem in the bad state, as obtained in Section 3.1.2.
Combining the two first-order conditions to obtain:

(1− q)(R + b) + qR
{
γ +

∂γ

∂n
n
}

+ q

{
F ′((1− γ)n)

(
1− γ − ∂γ

∂n
n

)
− c+ b

}
=[

(1− q) + qR
∂γ

∂b
+ qF ′((1− γ)n)

(
−∂γ
∂b

)
+ q

]
(1 + b). (B.14)

From this point on we use the log-quadratic functional form assumptions in order to get
closed form solutions to the planner’s problem. First, note that using the functional form
for traditional sector’s demand, given by (B.1), in the market clearing condition (6) yields
the price of assets in the bad state as a function of initial portfolio allocations:

E(P, n, b) = Qd(P )−Qs(P, n, b) = 0 =⇒ R− P
P

=
c− b
P

n =⇒ P = R− (c− b)n. (B.15)

Substituting ∂γ
∂n

= − (c−b)2
P 2 and ∂γ

∂b
= R

P 2 , and later P = R − (c− b)n into (B.14) and noting
that F ′((1− γ)n) = P yields:

(1− q)(R+ b) + qR
{

1− c− b
P
− (c− b)2

P 2
n
}

+ q

{
P

(
c− b
P

+
(c− b)2

P 2
n

)
− c+ b

}
=[

(1− q) + qR
R

P 2
− qP R

P 2
+ q

]
(1 + b),

or equivalently:

(1− q)(R− 1) + (1− q)(1 + b) + qR− qR
{ (c− b)P + (c− b)2n

P 2

}
+ q

{
P

(c− b)P + (c− b)2n
P 2

− c+ b

}
=

(1− q)(1 + b) + q
R

P 2
(R− P )(1 + b) + q(1 + b).

Note that (c − b)P + (c − b)2n = (c − b)[R − (c − b)n] + (c − b)2n = R(c − b). Substitute
this equilavance into the equation above and simplify:

R− 1 + q − qRR(c− b)
P 2

+ qP
R(c− b)
P 2

− qc+ qb = q
R

P 2
(R− P )(1 + b) + q + qb.

R− 1− qc =
qR

P 2
{(R− P )(1 + b) +R(c− b)− P (c− b)}

R− 1− qc =
qR

P 2
{(R− [R− (c− b)n](1 + b) +R(c− b)− [R− (c− b)n](c− b)}

R− 1− qc =
qR

P 2
{(R−R + (c− b)n(1 + b) +R(c− b)−R(c− b) + (c− b)2n}

R− 1− qc =
qR

P 2
{(c− b)n(1 + b) + (c− b)2n}
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Further simplification yields:

R− 1− qc =
qR(c− b)n(1 + c)

P 2

R− 1− qc =
qR(R− P )(1 + c)

P 2
, (B.16)

where we substitute P = R− (c− b)n in the second line using the market clearing condition
(B.15), and (c − b)n = R − P using the same condition again in the last line above. From
(B.16) we obtain the following quadratic equation in P :

(R− 1− qc)P 2 + qR(1 + c)P − qR2(1 + c) = 0, (B.17)

which we can solve for the price of assets under constrained planner’s solution, P ∗∗:

P ∗∗ =
−qR(1 + c) +

√
q2R2(1 + c)2 + 4(R− 1− qc)qR2(1 + c)

2(R− 1− qc)
.

We can define τ ∗∗ ≡ R/P ∗∗ − 1 similar to (B.2) to represent the total amount of assets
sold under fire sales to the traditional sector in terms of the model parameters, and write
risky investment as a function of the liquidity ratio as n∗∗ = P ∗∗τ ∗∗/(c− b) using the market
clearing condition, similar to (B.15).

We use these equations to solve for the constrained efficient portfolio allocations n∗∗, b∗∗.
For that start from the first-order condition with respect to b given above by (B.13):

1− q + qR
∂γ

∂b
+ q

{
F ′((1− γ)n)

(
−∂γ
∂b

)
+ 1

}
= D

′
(n(1 + b)),

1− q + qR
R

P 2
+ q

{
−P R

P 2
+ 1

}
= 1 + 2φn(1 + b),

q
R2

P 2
− qR

P
= 2φn(1 + b).

Writing all endogenous variables in terms of τ ∗ and simplifying yields

q(τ ∗∗ + 1)2 − q(τ ∗∗ + 1) = 2φ
Pτ ∗∗

c− b
(1 + b),

q(τ ∗∗ + 1)(τ ∗∗ + 1− 1) = 2φ
R

τ ∗∗ + 1

τ ∗∗

c− b
(1 + b),

q(τ ∗∗ + 1)2τ ∗∗(c− b) = 2φRτ ∗∗(1 + b),

q(τ ∗∗ + 1)2c− 2φR = b{2φR + q(τ ∗∗ + 1)2},

where we use R/P ∗∗ = τ ∗∗ + 1 and n∗∗ = P ∗∗τ ∗∗/(c − b). For future reference, using the
second from the last number, we can obtain the liquidity shortage per risky asset in the
constrained planner’s solution as

c− b∗∗ =
2φR(1 + b∗∗)

q(τ ∗∗ + 1)2
.
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We can obtain the closed-form solution for the constrained efficient liquidity ratio, b∗∗, by
rearranging the last equation above, as

b∗∗ =
cq(τ ∗∗ + 1)2 − 2φR

q(τ ∗∗ + 1)2 + 2φR
. (B.18)

Finally, we can obtain the closed-form solution for the risky investment level by substituting
b∗∗ into n∗∗ = P ∗∗τ ∗∗/(c− b) and using P ∗∗ = R/(τ ∗∗ + 1)

n∗∗ =
Pτ ∗∗

c− b
=

Rτ ∗∗

τ ∗∗ + 1

q(τ ∗∗ + 1)2 + 2φR

2φR(1 + c)
=

τ ∗∗

τ ∗∗ + 1

q(τ ∗∗ + 1)2 + 2φR

2φ(1 + c)
. (B.19)

B.3 A closed-form solution for the partial regulation case

In the partial regulation case, we consider the problem of a planner who chooses the level
of risky investment, n, at t = 0 in a Pareto efficient way but allows banks to freely choose
their liquidity ratio, bi. We first analyze banks’ problem in this setting and then turn to the
planner’s problem. When the planner’s optimal investment level is introduced as a regulatory
upper bound on investment level, n, banks set ni = n and choose the liquidity ratio, bi, to
maximize their expected profits:

max
bi

Πi(bi;n) = (1− q){R + bi}n+ qRγin−D(n(1 + bi).

The first-order condition of the banks’ problem (B.3) with respect to bi is

1− q + qR
1

P
= D

′
(n(1 + bi)). (B.20)

We use the log-quadratic functional form assumptions as in the closed-form solutions of
the unregulated competitive equilibrium in Section B.1 and constrained planner’s problem in
Section B.2. We can also define τ ∗ ≡ R/P ∗−1 similar to (B.2) to represent the total amount
of assets sold under fire sales to the traditional sector in terms of the model parameters, and
write risky investment as a function of the liquidity ratio as n∗ = P ∗τ ∗/(c − b) using the
market clearing condition, similar to (B.15). Now, use the functional-form for the operational
cost in banks’ first-order condition and manipulate

1− q +
qR

P
= 1 + 2φn(1 + b),

q

(
R

P
− 1

)
= 2φ

Pτ

c− b
(1 + b),

qτ = 2φ
R

τ + 1

τ

c− b
(1 + b),

where we first use n = Pτ
c−b and then substitute P = R

τ+1
. From the last equation we can

obtain an expression for the liquidity ratio in this case in terms of τ ∗ as follows

b∗ =
qc(τ ∗ + 1)− 2φR

q(τ ∗ + 1) + 2φR
. (B.21)
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Using n = Pτ
c−b and P = R

τ+1
once more, we can obtain a similar expression for the risky

investment level in this case in terms of τ ∗ as follows:

n∗ =
τ ∗

τ ∗ + 1

q(τ ∗ + 1) + 2φR

2φ(1 + c)
. (B.22)

All that remains now is to obtain a closed-form solution for τ ∗ = R/P ∗−1, and substitute
that in (B.21) and (B.22) to obtain closed-form solutions for n∗ and b∗. To obtain a closed-
form solution for P ∗ we analyze the regulator’s problem. The regulator takes into account
that for any given n, the banks optimally choose their liquidity ratio b(n), as shown by the
response function (17).

The planner takes this reaction function into account while choosing the risky investment
level to maximize the expected bank profits subject to the constraint that consumers’ utility
after transfers is at least as high as in the competitive equilibrium:

max
n,y

Γ(n, b(n))− q{(R− P )Qs(P, n, b(n))− (1− q)T2},

subject to y = Qs(P, n, b(n)),

F ′(y) = P,

dΠi(bi;n)

dbi
,= 0

(1− q)T2 + 3ω + q[F (y)− Py] ≥ UCE
i .

The transfers must be such that consumers receive in expectation what they lose from
the change in the amount of fire sales and price of assets:

(1− q)T2 = q[F (yCE)− PCEyCE − F (y) + Py] (B.23)

In other words, the constraint on consumers’ expected utility binds. Substituting this value
for transfers back into the planner’s problem helps us to get rid of the constraint on con-
sumers’ expected utility:

max
n,y

Γ(n, b(n))− q{(R− P )Qs(P, n, b(n))}+ q[F (y)− Py]− q[F (yCE)− PCEyCE],(B.24)

subject to y = Qs(P, n, b(n)),

F ′(y) = P.

dΠi(bi;n)

dbi
,= 0

The optimal risky investment level in this case is determined by the following first-order
condition of the planner’s problem with respect to n:

∂Γ

∂n
+
∂Γ

∂b
b′(n)− q

[
(R− P )

(
∂Qs

∂n
+
∂Qs

∂b
b′(n) +

∂Qs

∂P

dP

dn

)
−QsdP

dn

]
+q

[
(F ′(y)− P )

(
∂y

∂n
+
∂y

∂b
b′(n) +

∂y

∂P

dP

dn

)
+ y

dP

dn

]
= 0,
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where

Qs =
c− b
P

n and
dP

dn
=
∂P

∂n
+
∂P

∂b
b′(n).

Using an envelope argument, F ′(y) = P , and the market clearing condition y = Qs, we
can simplify the optimality condition for welfare to:

∂Γ

∂n
+
∂Γ

∂b
b′(n)− q(R− P )

(
∂Qs

∂n
+
∂Qs

∂b
b′(n)

)
− q(R− P )

∂Qs

∂P

dP

dn
= 0. (B.25)

Using the equilibrium condition y = Qs = (1− γ)n (c−b)n
P

and Γ(n, bi) ≡ (R+ bi − qc)n−
D(n(1 + bi)) we can write the first-order condition as

(1− q){R + b(n) + nb
′
(n)}+ qR

{
γ + n

dγ

dn

}
+ q[F ′(·)

(
1− γ − dγ

dn
n

)
− c+ b(n) + nb′(n)] =

D
′
(n(1 + b)){1 + b(n) + nb

′
(n)}.(B.26)

We use the log-quadratic functional form assumptions as in the closed-form solutions of
the unregulated competitive equilibrium in Section B.1 and constrained planner’s problem
in Section B.2. First, note that substituting for P using (B.15) into γ, given by (4), we get

γ = 1 +
b(n)− c

P
= 1 +

b(n)− c
R + (b(n)− c)n

,

Using this equivalence, we can obtain the total derivative of γ with respect to n as:

dγ

dn
=

∂γ

∂b
b′(n) +

∂γ

∂n

=
P − (b(n)− c)n

P 2
b′(n)− (b(n)− c)2

P 2

=
b′(n)

P
− nb′(n)(b(n)− c)

P 2
− (b(n)− c)2

P 2
. (B.27)

Replacing dγ/dn in the first-order condition (B.26) with (B.27) and rearranging yields

(1− q){R+ b(n)}+ qR

(
1 +

b(n)− c
P

− n(b(n)− c)2

P 2

)
+ nb

′
(n)

{
1− q +

qR

P
−D′(·)− qR(b(n)− c)n

P 2

}
+q

[(
−b(n)− c

P
− b′(n)n

P
+
n2b′(n)(b(n)− c)

P 2
+
n(b(n)− c)2

P 2

)
P + (b(n)− c) + nb′(n)

]
−D

′
(·){1 + b(n)} = 0,

where we replace F ′((1−γ)n) = P using the market clearing condition (B.15) in the second
line. We have that 1 − q + qR/P −D′(·) = 0 from the banks’ first-order condition (B.20).
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Hence, the first-order condition above can further be simplified as follows:

R− 1 + q − qR2(1 + c)

P 2
− qRn(b(n)− c)(1 + b(n))

P 2
− qRb′(n)n2(b(n)− c)

P 2

+
qn(b(n)− c)2P

P 2
+
qb′(n)n2(b(n)− c)P

P 2
= 0.

Divide the last equation by qR to obtain

R− 1 + q

qR
− R(1 + c)

P 2
− n(b(n)− c)(1 + b(n))

P 2
− b′(n)n2(b(n)− c)

P 2

+
n(b(n)− c)2P

RP 2
+
b′(n)n2(b(n)− c)P

RP 2
= 0.

Let us define

σ ≡ R− 1 + q

qR
. (B.28)

Using this definition, we can write this first-order condition as

1

P 2

{
σP 2 −R(1 + c)− n(b(n)− c)(1 + b(n))− b′(n)(b(n)− c)n2

}
+

1

P 2

{
(b− c)2nP

R
+ b

′
(n)

n2(b− c)P
R

}
= 0. (B.29)

We focus on the terms inside the braces because in equilibrium price must be strictly
positive. Using this term, we would like to write endogenous variables n and b in terms
of the parameters of the model and P , and then, use these expression in the first-order
conditions of the banks’ problem (B.20) to obtain a closed-form solution for P . For that,
first, below we obtain 1 + b(n), n(b(n)− c) and b′(n) in terms of the parameters of the model
and P starting from the banks’ first-order condition (B.20):

(1− q) + q
R

P
= 1 + 2φn(1 + b), (B.30)

q(R− P ) = P2φn(1 + b),

q(R− P ) = [R + (b− c)n]2φn(1 + b),

−q(b− c)n = 2φn(1 + b)R + 2φn(1 + b)(b− c)n,
−(b− c)[q + 2φn(1 + b)] = 2φ(1 + b)R,

where we substitute for P = R + (b − c)n using (B.15). Now, take the derivative of both
sides with respect to n, and collect terms that involve b

′
(n):

−b′(n)[q + 2φn(1 + b)]− 2φ(b− c)[1 + b+ nb′(n)] = 2φRb′(n),

−b′(n)[q + 2φn(1 + b)]− 2φ(b− c)(1 + b)− 2φ(b− c)nb′(n) = 2φRb′(n),

−b′(n)[2φR + 2φn(b− c) + q + 2φn(1 + b)] = 2φ(b− c)(1 + b),

−b′(n)[2φR + q + 2φn(2b+ 1− c)] = 2φ(b− c)(1 + b).
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From the last equation we obtain:

b′(n) =
−2φ(b− c)(1 + b)

2φR + q + 2φn(2b+ 1− c)
. (B.31)

We further simplify b′(n) in order to eliminate b from this expression. In order to do this
simplification, note that first, from the market clearing condition at t = 1, P = R+ (b− c)n,
as derived in (B.15), we can obtain that

b− c = −R− P
n

.

Second, from the banks’ first-order condition, given by (B.30), we can obtain that

1 + b =
q

2φn

(
R

P
− 1

)
.

Use these values for 1 + b and b− c into (B.31) to write b′(n) as a function of n, P and the
parameters of the model as follows

b′(n) =
−2φ(−1)R−P

n
q

2φn

(
R
P
− 1
)

2φR + q − 2φ(R− P ) + 2φ q
2φ

(
R
P
− 1
) ,

=
q

n2P
(R− P )2

1
P

[2φRP + qP − 2φP (R− P ) + q(R− P )]
,

=
q(R− P )2

n2[2φRP + qP − 2φRP + 2φP 2 + qR− qP ]
,

=
q(R− P )2

n2[2φP 2 + qR]
.

Eventually, use the expressions obtained for 1 + b(n), n(b(n) − c) and b′(n) above to
rewrite the term inside the braces in (B.29) as:

σP 2 −R(1 + c) + (R− P )
q(R− P )

2φPn
+

q(R− P )2

n2[2φP 2 + qR]

R− P
n

n2 +
P (R− P )2

nR
− q(R− P )2

n2[2φP 2 + qR]

R− P
nR

Pn2 = 0

σP 2 −R(1 + c) +
q(R− P )2

n

[
1

2φP
+

R− P
2φP 2 + qR

]
+

(R− P )2P

nR

2φP 2 + qP

2φP 2 + qR
= 0

Note that the last equation takes the form of A + B/n + C/n = 0 where A,B,C group
relevant terms. Therefore, we can obtain n in the form of n = −B/A − C/A, that is, from
the last equation we can obtain n in terms of P and the parameters of the model:

n =
q(R− P )2

[
1

2φP
+ R−P

2φP 2+qR

]
R(1 + c)− σP 2

+
(R− P )2 (2φP

2+qP )P
(2φP 2+qR)R

R(1 + c)− σP 2
≡ ψ1(P ) + ψ2(P ).

We can similarly obtain an expression for b in terms of P and the parameters of the
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model using the equilibrium price function P = R + (b− c)n, which implies that

b =
P −R
n

+ c =
P −R + cn

n
=
P −R + c[ψ1(P ) + ψ2(P )]

ψ1(P ) + ψ2(P )
.

Now, substitute these expressions for n and b back into the banks’ first-order condition
(B.30) in order to obtain a fixed-point equation that involves only P as an endogenous
variable, from which we can solve for the equilibrium price P :

2φn(1 + b) = −q +
qR

P
,

2φ[ψ1(P ) + ψ2(P )]

[
P −R+ c[ψ1(P ) + ψ2(P )]

ψ1(P ) + ψ2(P )
+ 1

]
+ q =

qR

P

2φP{P −R+ (1 + c)[ψ1(P ) + ψ2(P )]}+ qP = qR

−2φP (R− P ) + 2φP (1 + c)[ψ1(P ) + ψ2(P )]} = q(R− P )

2φ(1 + c)P [ψ1(P ) + ψ2(P )] = (2φP + q)(R− P )

2φ(1 + c)P (R− P )2
{
q

[
1

2φP
+

R− P
2φP 2 + qR

]
+
P (2φP 2 + qP )

R(2φP 2 + qR)

}
= [R(1 + c)− σP 2](R− P )(2φP + q)

2φ(1 + c)P (R− P )

{
q
R(2φPR+ qR)

(2φP 2 + qR)R
+

2φP 2(2φP 2 + qP )

2φPR(2φP 2 + qR)

}
= [R(1 + c)− σP 2](2φP + q)

Now, we sum the terms in side the braces on the left-hand side and multiply both sides with the
common denominator of the left-hand side after summation and simplify further to get:

2φ(1 + c)P (R− P ){qR(2φPR+ qR) + 2φP 2(2φP 2 + qP )} = [R(1 + c)− σP 2](2φP + q)2φPR(2φP 2 + qR)

(1 + c)(R− P ){qR2(2φP + q) + 2φP 3(2φP + q)} = [R(1 + c)− σP 2](2φP + q)R(2φP 2 + qR)

(1 + c)(R− P )(2φP + q)(qR2 + 2φP 3) = [R(1 + c)− σP 2](2φP + q)R(2φP 2 + qR)

(1 + c)(R− P )(qR2 + 2φP 3) = [R(1 + c)− σP 2]R(2φP 2 + qR)

(1 + c)R(qR2 + 2φP 3)− (1 + c)P (qR2 + 2φP 3) = R2(1 + c)(2φP 2 + qR)− σP 2R(2φP 2 + qR)

(1 + c)R2φP 2 − (1 + c)qR2 − (1 + c)2φP 3 = R2(1 + c)2φP − σR2φP 3 − σPRqR

We can rearrange this last equation to obtain a cubic equation in terms of the partial equilibrium
price:

2φ(σR− 1− c)P 3 + 2φR(1 + c)P 2 +R2(σq − 2φ(1 + c))P − (1 + c)qR2 = 0.

Define
β ≡ R(1 + c). (B.32)

Replacing β for R(1 + c) we can also write the cubic equation for the partial regulation price
as follows:

2φ(σR− 1− c)P ∗3 + 2φβP ∗2 +R(σqR− 2φβ)P ∗ − qRβ = 0 (B.33)

It is easy to show that this cubic equation has only one real root and two complex conjugate
roots. The only real root can easily be obtained using Vieta’s substitution for cubic equations.
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