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Abstract

We investigate how many characteristics matter jointly for an investor who cares

not only about average returns but also about portfolio risk, transaction costs,

and out-of-sample performance. We find only a small number of characteristics—

six—are significant without transaction costs. With transaction costs, the number

of significant characteristics increases to 15 because the trades in the underlying

stocks required to rebalance different characteristics often net out. Thus, trans-

action costs increase the dimension of the cross section of stock returns because

combining characteristics helps to reduce transaction costs. We also show that

investors can improve out-of-sample performance net of transaction costs by ex-

ploiting a large set of characteristics instead of the small number considered in

prominent asset-pricing models.

Keywords: anomalies, risk, transaction costs, cross section of stock returns.
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1 Introduction

Hundreds of variables have been proposed to predict the cross-section of stock returns;

see, for instance, Harvey, Liu, and Zhu (2015), McLean and Pontiff (2016), and Hou,

Xue, and Zhang (2017).1 This abundance of cross-sectional predictors leads Cochrane

(2011) to ask, “Which characteristics really provide independent information about av-

erage returns?” Likewise, Goyal (2012) states that “these days one has a multitude of

variables that seem to explain the cross-sectional pattern of returns. The amount of inde-

pendent information in these variables is unclear as no study to date [...] has conducted

a comprehensive study to analyze the joint impact of these variables.”

Our goal is to investigate the dimension of the cross section of stock returns from a

portfolio perspective. In other words, how many firm-specific characteristics matter jointly

from the perspective of an investor who cares not only about average returns but also

about portfolio risk, transaction costs, and out-of-sample performance. As highlighted in

Pastor and Stambaugh (2000), a portfolio perspective is important because it provides

an economic metric for judging differences across models. It also allows one to assess

how many characteristics matter jointly because for portfolio allocation it is optimal to

trade combinations of characteristics to reduce both portfolio risk and transaction costs.

To achieve our goal, we consider a dataset with more than 50 firm-specific charac-

teristics and focus on three research questions. First, how many characteristics are jointly

significant from a portfolio perspective and why? Second, how does the answer to this

question change with transaction costs? Third, can an investor improve out-of-sample

performance net of transaction costs by exploiting a large set of characteristics instead

of the small number considered in prominent asset pricing models?

To address our research questions from a portfolio perspective, we extend the

parametric portfolio framework in Brandt, Santa-Clara, and Valkanov (2009). Paramet-

ric portfolios are obtained by adding to a benchmark portfolio a linear combination of

the long-short portfolios associated with each of the firm-specific characteristics consid-

ered. To determine which characteristics are jointly significant, we use a screen-and-

1See also the survey papers Subrahmanyam (2010), Richardson, Tuna, and Wysocki (2010), and
Nagel (2013), and the book Bali, Engle, and Murray (2016).
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clean method to test which characteristics have parametric portfolio weights that are

significantly different from zero. Finally, we demonstrate analytically and empirically in

Appendix A how our methodological approach based on the parametric portfolios relates

to the time-series and cross-sectional regression approaches.

Our answers to the three research questions are as follows. First, in the absence

of transaction costs, only a small number of characteristics—about six—are significant.

Five characteristics—unexpected quarterly earnings, return volatility, asset growth, 1-

month momentum, and gross profitability—are significant because they increase the mean

returns and also help to reduce the risk of the portfolio of characteristics. A sixth

characteristic, beta, is significant only because of its ability to reduce the risk of the

other characteristics, in particular, the return-volatility characteristic.2 We also find

that traditional characteristics such as 12-month momentum and book to market are not

significant because, although they have high mean returns, they do not offer a sufficiently

attractive tradeoff between portfolio mean return and risk.

Second, in contrast to what one would find if evaluating characteristics in iso-

lation, we find that the presence of transaction costs increases the number of jointly

significant characteristics from six to 15. This is because the trades in the underlying

stocks required to rebalance different characteristics often cancel each other out and thus,

combining characteristics allows one to substantially reduce transaction costs. We show

analytically that if one assumes that the trades in a particular stock required to rebalance

K different characteristics are independently and identically distributed with zero mean,

then the transaction cost required to rebalance an equally weighted portfolio of the K

characteristics in combination is 1/
√
K of that required to rebalance them separately.

Essentially, combining characteristics allows one to diversify trading, just as combining

them allows one to diversify risk. Empirically, we find that the marginal transaction

cost associated with trading the stocks underlying a characteristic is reduced by around

65% on average when they are combined. As a result, certain characteristics that would

2The returns of the beta and return-volatility characteristics are highly correlated over time, but
while return volatility has a large (negative) mean return, beta has a negligible mean return. Thus,
the investor optimally goes long the beta characteristic to hedge the risk of her short position in the
return-volatility characteristic, without compromising its mean return.
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require a large amount of trading in the underlying stocks if exploited in isolation, such

as the short-term-reversal characteristic (1-month momentum), continue to be significant

in the presence of transaction costs because of the trading diversification possible from

combining characteristics. The main takeaway from this finding is that transaction costs

increase the dimension of the cross section of stock returns.

Third, we show that an investor can exploit a large set of characteristics in the

presence of transaction costs to achieve an out-of-sample Sharpe ratio that is larger

than that obtained by exploiting a small set of characteristics. For instance, we find the

investor achieves an out-of-sample Sharpe ratio of returns net of transaction costs around

100% larger than that from exploiting the three traditional characteristics considered in

Brandt et al. (2009) and 25% higher than that from exploiting a set of four characteristics

that include investment and profitability characteristics such as those highlighted in Fama

and French (2015) and Hou, Xue, and Zhang (2014).3 These out-of-sample results confirm

that in the presence of transaction costs the cross section of stock returns is not fully

explained by a small set of characteristics.4

1.1 Characteristics versus factors

We now discuss the relation between firm-specific characteristics and risk factors in the

context of our work. Firm-specific characteristics are variables that can be computed

using individual-firm data, e.g., the historical stock-return volatility of a firm. Factors,

on the other hand, are variables that proxy for a common source of risk, e.g., the mar-

ket return. Firm-specific characteristics are related to factors because the return of a

long-short portfolio based on a characteristic can be used as a proxy for an underly-

3Fama and French (1992) argues that the cross-section of expected stock returns could be explained
with only three factors: market, size, and book to market. Following Jegadeesh and Titman (1993)
and Fama and French (1996), the academic community largely accepted a so-called Fama and French
(1993) and Carhart (1997) four-factor model containing also momentum. More recently, investment and
various forms of profitability have emerged as important factors. Novy-Marx (2013) proposes a four-
factor model containing market, value, momentum, and gross profitability; Hou et al. (2014) proposes
a four-factor model containing market, size, investment, and profitability (return on equity); and Fama
and French (2015) proposes a five-factor model with market, size, book to market, investment, and
operating profitability.

4This out-of-sample analysis also alleviates the data-mining concerns raised in Fama (1991), Kogan
and Tian (2013), Harvey et al. (2015), Bryzgalova (2015), McLean and Pontiff (2016), and Linnainmaa
and Roberts (2016), and Chordia, Goyal, and Saretto (2017).
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ing unknown risk factor. For instance, Fama and French (1993) finds that returns on

long-short portfolios based on size and book to market explain the cross-section of stock

returns, and thus argues that these characteristics are proxies for common risk factors.

The relation between characteristics and risk factors, however, is not always clear.

For instance, Daniel and Titman (1997) challenges the findings in Fama and French (1993)

and claims that it is the size and book-to-market characteristics themselves rather than

the covariance structure that explains the cross-section of expected stock returns. Pastor

and Stambaugh (2000) explains that once model uncertainty and margin constraints

are taken into account, the difference between characteristic-based and risk-factor-based

models is small from an investment perspective. In addition, Kozak, Nagel, and Santosh

(2016) argues that there is no clear distinction between risk-factor pricing and behavioral

asset pricing. Therefore, we consider 50 firm-specific characteristics and are agnostic

about whether a particular characteristic is a proxy for the loading on a common risk

factor or not; instead, we account for risk directly through the mean-variance utility of

the investor.5

1.2 Relation to literature on asset pricing

The asset pricing literature can be classified by the following three methodologies: cross-

sectional regression, time-series regression, and the stochastic discount factor approach.

In this section we discuss how our portfolio approach relates to these three approaches.

One of the most popular cross-sectional approaches is the Fama and MacBeth

(1973) procedure, which runs a cross-sectional regression of stock returns on firm-specific

characteristics at each date, and then tests the significance of the risk premia, defined

as the average of the regression slopes over time. One advantage of this approach when

studying the dimension of the cross section is that it allows one to test which char-

acteristics are jointly significant. Indeed, Green, Hand, and Zhang (2017) considers

94 characteristics and finds using Fama-MacBeth regressions that 12 are jointly signifi-

5In addition to the 50 firm-specific characteristics, we consider also beta (i.e., the exposure of each
stock to the market-return factor) because of its importance for investment management, as shown in
Frazzini and Pedersen (2014). Although beta is a risk-factor loading rather than a characteristic, for
simplicity of exposition we refer to all 51 variables as characteristics.
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cant, Freyberger, Neuhierl, and Weber (2016) considers 36 characteristics and finds using

nonparametric cross-sectional regressions that 15 provide independent information, and

Messmer and Audrino (2017) considers 68 characteristics and finds by applying adaptive

lasso to cross-sectional regressions that 14 provide independent information.

There are two main differences between these papers and our work. First, while

cross-sectional regressions focus on mean returns, our portfolio approach accounts for both

mean and variance of returns. Second, our portfolio approach accounts for transaction

costs. Analytically, we show that even in the absence of transaction costs our approach

based on the parametric portfolios produces results that are different from those of Fama-

MacBeth regressions unless the covariance matrix of asset returns is diagonal. That is,

if assets are correlated, a given characteristic could have a zero slope in cross-sectional

regressions and yet result in a nonzero parametric portfolio weight. This is the case, for

instance, when the correlation of the return of a characteristic with the returns of other

characteristics can be exploited by the investor to reduce risk.6

Empirically, we find that this is indeed the case. For instance, Fama-MacBeth

regressions find that while return volatility is significant, the beta characteristic is not.

A closer look reveals that the cross-sectional slopes of return volatility and beta are

highly correlated over time. Consequently, our portfolio approach, which takes risk into

account, finds that the investor optimally goes short return volatility and goes long beta

to reduce risk, and hence, we find that both characteristics are jointly significant. 7

The time-series approach regresses the return of a characteristic-based long-short

portfolio on the returns of a few commonly accepted factors, such as the Fama and French

(1993) and Carhart (1997) four factors. If the intercept of this time-series regression is

statistically significant, then the return on the characteristic is not fully explained by

the commonly accepted factors. Gibbons, Ross, and Shanken (1989) shows that testing

6The slopes in cross-sectional regressions can be estimated using either ordinary least squares (OLS)
or generalized least squares (GLS). Lewellen, Nagel, and Shanken (2010) recommends using GLS because
its R2 captures the mean-variance efficiency of the model’s factor-mimicking portfolios. Our analytical
results show that both OLS and GLS cross-sectional regressions produce results that are different in
general from those of our portfolio approach.

7Our out-of-sample analysis is also related to Lewellen (2015), which shows that Fama-MacBeth
regressions provide good out-of-sample estimates of stock expected returns. Our out-of-sample analysis,
however, focuses on estimating directly portfolio weights, which incorporate information about expected
returns as well as risk and transaction costs.
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the significance of the intercept is equivalent to testing whether the characteristic long-

short portfolio can improve the Sharpe ratio of a mean-variance investor who already

has access to the commonly accepted factors. Consequently, this approach captures the

tradeoff between mean return and risk. Recently, Novy-Marx and Velikov (2016) develops

a “generalized alpha” that extends the time-series regression to capture the impact of

transaction costs.

A disadvantage of the time series approach is that it focuses on the significance

of the intercept, and therefore, tests the significance of a single characteristic when it is

added to a set of commonly accepted factors.8 This is a limitation because the result of the

statistical inference depends on the sequence in which variables are selected. For instance,

a time-series regression of the return on the beta characteristic onto the returns of the

Fama and French (1993) and Carhart (1997) four factors finds that beta is not significant,

but a time-series regression of the beta return onto these four factors and the return of

the return-volatility characteristic finds that beta is significant. We show analytically

that, in the absence of transaction costs, our approach of testing the significance of

the characteristics for mean-variance parametric portfolios is equivalent to testing the

significance of the slopes of a particular time-series regression. The advantage of our

approach based on slope significance is that it allows one to consider all characteristics

simultaneously rather than sequentially. This is crucial because both risk and transaction

costs depend critically on how characteristics are combined.

There are also papers that combine elements from both cross-sectional and time-

series regressions. Back, Kapadia, and Ostdiek (2015) first runs cross-sectional regressions

to estimate risk premia and then runs time-series regressions of these risk premia on

factors. The advantage of this procedure is that it avoids the errors-in-variables problem.

Feng, Giglio, and Xiu (2017) combine the double-selection lasso in Belloni, Chernozhukov,

and Hansen (2014) with two-pass regressions to estimate risk prices and evaluate the

marginal contribution of a new factor with respect to an existing high-dimensional set

8Note that one can also regress the returns of multiple assets with respect to the commonly accepted
factors. Gibbons, Ross, and Shanken (1989) shows that in this case, testing whether the intercepts of
these regressions are jointly equal to zero is equivalent to testing whether the multiple assets can improve
the Sharpe ratio of an investor who already has access to the commonly accepted factors. The Gibbons,
Ross, and Shanken test, however, does not identify which of the multiple assets are significant.
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of factors. The advantage of this approach is that it explicitly accounts for potential

model-selection errors, and thus, avoids the biases associated with omitted variables.

Nevertheless, the inference in the two aforementioned approaches depends on the sequence

in which characteristics are tested, just like in time-series regressions.

Baker, Luo, and Taliaferro (2017) studies the relevance of cross-sectional and

time-series regressions for a mean-variance investor. The paper shows that a risk-neutral

investor facing quadratic transaction costs cares only about characteristics that are signif-

icant in cross-sectional regressions, a mean-variance investor facing no transaction costs

cares only about time-series regressions, and a mean-variance investor facing quadratic

transaction costs cares about both types of regressions. We sidestep the choice between

cross-sectional and time-series regressions by focusing directly on the parametric portfolio

problem of a mean-variance investor facing transaction costs.

Finally, the stochastic discount factor (SDF) approach is the most closely related

to our portfolio approach because one can show that for every mean-variance efficient

portfolio there is an SDF that is an affine function of the portfolio return. Ghosh,

Julliard, and Taylor (2016a,b) uses a model-free robust approach to estimate the SDF

that fits a cross section of asset returns by minimizing its entropy relative to the physical

probability measure. Using this approach, Ghosh, Julliard, and Taylor (2016b) identifies

a novel source of risk not captured by the Fama and French (1993) and Carhart (1997)

factors.

Kozak, Nagel, and Santosh (2017) proposes a robust SDF by imposing an economi-

cally-motivated prior on SDF coefficients that can shrink the contributions of both low-

variance principal components of characteristics as well as individual characteristics with

low risk prices. They find that principal-component-sparse SDFs explain the cross section

better than characteristic-sparse SDFs. A distinguishing feature of our work is that we

study the impact of transaction costs on the dimensionality of the cross section of stock

returns. Our main finding is that transaction costs increase the number of characteristics

that are significant for portfolio construction, and thus, transaction costs provide another

economic rationale for non-sparse characteristic-based asset-pricing models.
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1.3 Relation to literature on transaction costs

Several papers study the transaction costs associated with trading particular charac-

teristics: Korajczyk and Sadka (2004) studies the market-impact costs associated with

exploiting momentum and find that this characteristic can be exploited on only a rel-

atively modest scale. Novy-Marx and Velikov (2016) considers 23 different anomalies

and finds that strategies to minimize transaction costs significantly reduce the impact of

transaction costs on the profitability of anomaly-based trading strategies. Chen and Ve-

likov (2017) considers 135 anomalies and shows that if, in addition to transaction costs,

one takes into account the post-publication decay, the profitability of anomaly-based

trading strategies is substantially diminished. The aforementioned papers use publicly

available datasets to estimate the costs of an average investor. Frazzini, Israel, and

Moskowitz (2015), using proprietary data from an institutional money manager, finds

that the trading costs associated with exploiting size, momentum, and book to market

can be quite small for large institutional investors, and that these managers can exploit

these characteristics to a much larger extent than previously thought.

Very few papers consider the transaction costs associated with trading multiple

characteristics jointly. Hanna and Ready (2005) shows that the long-short stock-selection

strategy considered in Haugen and Baker (1996), which is based on a combination of more

than 50 characteristics, does not outperform the portfolios based solely on book to market

and momentum once transaction costs are taken into account. Hand and Green (2011)

considers parametric portfolios with three accounting-based characteristics in addition

to size, book to market, and momentum and finds that accounting-based characteristics

can improve performance substantially, but transaction costs reduce the benefits from

exploiting accounting-based characteristics. We show that by combining characteristics

the investor can alleviate the impact of transaction costs significantly because of trading

diversification.

Other papers have also found that combining characteristics helps to reduce trans-

action costs. For instance, Frazzini, Israel, and Moskowitz (2015) considers size, value,

and momentum and explains that “value and momentum trades tend to offset each other,

resulting in lower turnover which has real transaction costs benefits.” Barroso and Santa-
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Clara (2015) considers currency portfolios based on six characteristics and explains that

“transaction costs depend crucially on the time-varying interaction between character-

istics.” Novy-Marx and Velikov (2016) studies “filtering”, a cost mitigation technique

that allows investors trading one strategy to opportunistically take small positions in

another at effectively negative trading costs. We build on these three papers and show

how to quantify precisely the reduction in transaction costs when an investor optimally

rebalances a portfolio based on several characteristics.

The rest of this paper is organized as follows. Section 2 describes the data. Sec-

tion 3 explains how we apply and extend the methodology of parametric portfolios.

Our three research questions are addressed in three distinct sections: Section 4 studies

how many characteristics matter in the absence of transaction costs, Section 5 examines

how transaction costs affect the dimension of the cross section, and Section 6 investigates

whether investors can exploit a large set of characteristics to achieve better out-of-sample

performance relative to exploiting a small set of characteristics. Section 7 concludes. Ap-

pendix A studies analytically and empirically how our portfolio approach relates to the

cross-sectional and time-series regression approaches. Appendix B contains proofs for

all analytical results in the manuscript and the Internet Appendix contains robustness

checks studying how our results depend on: the presence of quadratic transaction costs

as opposed to proportional transaction costs that we consider in the main body of the

manuscript, exploiting characteristics only after their publication as in McLean and Pon-

tiff (2016), excluding microcaps, firm size, shortsale constraints, applying the reality

check in White (2000), expanding our dataset to also consider characteristics with a

large number of missing observations, different subperiods, the constraint on maximum

turnover, risk-aversion, and using different methods to standardize firm characteristics.

2 Data

We combine U.S. stock-market information from three databases, CRSP, Compustat, and

I/B/E/S, covering the period from January 1980 to December 2014. We start by compil-

ing data on the 100 firm-specific characteristics considered in Green, Hand, and Zhang
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(2014),9 but we drop characteristics with a large proportion of missing observations.10

Specifically, we first drop characteristics with more than 5% of missing observations for

more than 5% of those firms with CRSP returns available for the entire sample from

1980 to 2014. In addition, we drop characteristics without any observations for more

than 1% of these firms. The resulting dataset contains 51 characteristics, which include

the 24 variables that Green et al. (2014) finds significant in Fama-MacBeth regressions,

except fgr5yr (forecasted growth in five-year-earnings per share) and sfe (scaled analyst

forecast of one-year-ahead earnings). Table 1 lists the 51 characteristics together with

their definitions, the name of the author(s) who identified it, and the date and journal

of publication.

Our initial database contains every firm traded on the NYSE, AMEX, and NAS-

DAQ exchanges. We then remove firms with negative book-to-market ratios. Like Brandt

et al. (2009), we also remove firms below the 20th percentile of market capitalization be-

cause these are very small firms that are difficult to trade. Our final dataset considers 51

firm-specific characteristics for a total of 17,930 firms of which an average of 3,071 firms

have return data every month.

As in Green et al. (2014), we cross-sectionally winsorize each characteristic; that

is, we replace extreme observations that are beyond a certain threshold with the value

of the threshold. Specifically, we set equal to the third (first) quartile plus (minus) three

times the interquartile range any observations that are above (below) this threshold.

Finally, as in Brandt et al. (2009), we standardize each characteristic so that it

has a cross-sectional mean of zero and a cross-sectional standard deviation of one. The

resulting standardized characteristic is a long-short portfolio that goes long on stocks

whose characteristic is above the cross-sectional average, and short on stocks whose

characteristic is below the cross-sectional average.

9As in Green et al. (2014), when constructing monthly characteristics at time t, we assume that
annual (quarterly) accounting data is available at the end of month t− 1 if the firm’s fiscal year ended
at least six (four) months earlier.

10To ensure that our results are reliable, in our main analysis we consider only characteristics with
a small proportion of missing observations. However, in Section IA.7 of the Internet Appendix, we run
our experiments using all 100 characteristics and find that our main results are robust.
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3 Methodology

To study how many characteristics matter jointly from a portfolio perspective, we adopt

and extend the parametric portfolio methodology in Brandt et al. (2009). This section

explains parametric portfolios and our extensions. Section 3.1 applies the parametric

portfolio framework to the case with mean-variance utility and Section 3.2 shows how

to include transaction costs. Section 3.3 shows how the portfolio optimality conditions

can be used to identify the marginal contribution of each characteristic to the investor’s

mean-variance utility. Section 3.4 introduces the regularized parametric portfolios, which

are designed to deal with a large number of characteristics, and Section 3.5 describes a

screen and clean method to test whether the parametric portfolio weights corresponding

to the different characteristics are significantly different from zero.

3.1 Mean-variance parametric portfolios

Parametric portfolios use a set of firm-specific characteristics to tilt the benchmark port-

folio toward stocks that help to increase the investor’s utility. The portfolios are obtained

by adding to the benchmark portfolio a linear combination of long-short portfolios ob-

tained by standardizing K firm-specific characteristics so that they have zero mean and

unit standard deviation. The resulting parametric portfolio at time t, wt(θ) ∈ RNt , can

be written as

wt(θ) = wb,t + (x1,tθ1 + x2,tθ2 + . . .+ xK,tθK)/Nt, (1)

where wb,t ∈ RNt is the benchmark portfolio at time t, xk,t ∈ RNt is the long-short portfolio

obtained by standardizing the kth firm-specific characteristic at time t, θk is the weight

of the kth characteristic in the parametric portfolio, and Nt is the number of firms at

time t.11 As in Brandt et al. (2009), we consider a portfolio that is fully invested in risky

assets.12 The parametric portfolio can also be written in compact matrix notation by

11The weights of the characteristics in the parametric portfolio are scaled by the number of stocks Nt
so that they are meaningful for the case with a varying number of stocks. Without this scaling parameter,
increasing the number of stocks while keeping the weights fixed would result in more aggressive portfolio
allocations.

12Consequently, the parametric portfolio weights on the stocks need to sum to one. Because the
weights on the stocks in the long-short portfolios sum to zero, this implies that the parametric weight
on the benchmark portfolio must equal one.
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defining Xt ∈ RNt×K to be the matrix whose kth column is xk,t:

wt(θ) = wb,t +Xtθ/Nt, (2)

where θ ∈ RK is the parameter vector, whose kth component is the weight of the kth

characteristic θk, and Xtθ/Nt is the characteristic portfolio at time t.

The parametric portfolio return at time t + 1, which we denote as rp,t+1(θ), can

thus be rewritten as

rp,t+1(θ) = w>b,trt+1 + θ>X>t rt+1/Nt

= rb,t+1 + θ>rc,t+1, (3)

where rt+1 ∈ RNt is the return vector at time t + 1, rb,t+1 = w>b,trt+1 is the benchmark

portfolio return at time t+ 1, and rc,t+1 = X>t rt+1/Nt is the characteristic return vector

at time t + 1, which contains the returns of the long-short portfolios corresponding to

the K characteristics scaled by the number of firms Nt.
13 Equation (3) shows that

the parametric-portfolio return is the benchmark-portfolio return plus the return of the

characteristic portfolio.

We assume the investor optimizes a mean-variance utility. The advantages of

mean-variance utility, as we will show below, are that it allows us to identify the marginal

contribution of each characteristic to the investor’s utility and to compare analytically

the parametric portfolio weights to the results from time-series and cross-sectional re-

gressions.14 In particular, we assume the investor solves the following problem:

min
θ

γ

2
vart[rp,t+1(θ)]− Et[rp,t+1(θ)], (4)

where γ is the risk-aversion parameter and vart[rp,t+1(θ)] and Et[rp,t+1(θ)] are the variance

and mean of the parametric portfolio return, respectively.

Given T historical observations of returns and characteristics, the following propo-

sition shows that the parametric portfolio problem can be formulated as a tractable

quadratic optimization problem.

13Note that we use only lagged values of characteristics to build portfolios; thus, the returns of the
characteristic portfolio formed at time t, Xtθ/Nt are evaluated using the return at time t + 1; that is,
θ>X>t rt+1/Nt.

14We have run our empirical analysis also for power utility, as in Brandt et al. (2009), and the main
insights are unchanged.
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Proposition 3.1 The mean-variance parametric portfolio problem in (4) can be rewrit-

ten as

min
θ

(γ/2)θ>Σ̂cθ︸ ︷︷ ︸
var(char)

+ γθ>σ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

, (5)

where Σ̂c and µ̂c are the sample covariance matrix and mean of the characteristic-return

vector rc, and σ̂bc is the sample vector of covariances between the benchmark portfolio

return rb and the characteristic-return vector rc.

Proposition 3.1 shows that the mean-variance parametric portfolio problem is to find the

parameter vector θ that offers the optimal tradeoff between the variance of the charac-

teristic portfolio return, (γ/2)θ>Σ̂cθ; the covariance of the characteristic portfolio return

with the benchmark portfolio return, γθ>σ̂bc; and the mean characteristic portfolio re-

turn, θ>µ̂c.

3.2 Transaction costs

As in Brandt et al. (2009) and Hand and Green (2011), we consider an investor who faces

proportional transaction costs that decrease with firm size and over time. Proportional

transaction costs are a reasonable assumption for the average investor; see Novy-Marx and

Velikov (2016) and Chen and Velikov (2017). Nevertheless, Section IA.1 of the Internet

Appendix shows that our main findings are robust to using quadratic transaction costs

that are often used to model the price impact costs of large investors. We define the

proportional transaction cost parameter for the ith stock at time t as

κi,t = ytzi,t, (6)

where yt and zi,t capture the variation of the transaction cost parameter with time and

firm size, respectively. Following Brandt et al. (2009) and Hand and Green (2011), we

assume yt decreases linearly from 3.3 in January 1980 to 1.0 in January 2002, and after

that it remains at 1.0. We set zi,t = 0.006 − 0.0025 × mei,t, where mei,t is the market

capitalization of firm i at time t after being normalized cross-sectionally so that it takes

values between zero and one.15

15Brandt et al. (2009) defines yt so that transaction costs in 1974 are four times larger than in 2002.
Therefore, if we decrease yt uniformly until 1980, we would have a starting value for yt approximately
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Given T historical observations of returns and characteristics, the transaction cost

associated with implementing the parametric portfolios can be estimated as

TC(θ) =
1

T − 1

T−1∑
t=1

‖Λt(wt+1(θ)− w+
t (θ))‖1, (7)

where the transaction cost matrix at time t, Λt, is the diagonal matrix whose ith diagonal

element contains κi,t, ‖a‖1 =
∑N

i=1 |ai| is the 1-norm of the N -dimensional vector a, and

w+
t is the portfolio before rebalancing at time t+ 1, that is,

w+
t = (wb,t +Xt × θ/Nt) ◦ (et + rt+1), (8)

where et is the Nt-dimensional vector of ones and x◦y is the Hadamard or componentwise

product of vectors x and y.

Combining (5) and (7), the mean-variance parametric portfolio problem with

transaction costs is

min
θ

(γ/2)θ>Σ̂cθ︸ ︷︷ ︸
var(char)

+ θ>γσ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

+ TC(θ).︸ ︷︷ ︸
transaction costs

(9)

3.3 Understanding why a characteristic matters

To understand why particular characteristics are significant from a portfolio perspec-

tive, it is useful to consider the first-order optimality conditions for the mean-variance

parametric portfolio problem with transaction costs, that is, the problem in (9).

By decomposing the variance of the characteristic portfolio return, θ>Σ̂cθ, into

a term associated with the characteristic own-variances, θ>diag(Σ̂c)θ, and a term as-

sociated with the characteristic covariances, θ>(Σ̂c − diag(Σ̂c))θ, where diag(Σ̂c) is the

diagonal matrix whose kth diagonal element contains the variance of the kth character-

istic return, the mean-variance parametric portfolio problem with transaction costs can

equal to 3.3. This functional form results in proportional transaction costs of 180 basis points for the
smallest firms and 100 basis points for the largest firms in the 1980s, and about 60 basis points for the
smallest firms and 35 basis points for the largest firms after 2002. See also French (2008, p. 1553) for a
discussion of the time evolution of transaction costs.
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be rewritten as

min
θ

(γ/2)θ>diag(Σ̂c)θ︸ ︷︷ ︸
own−var(char)

+ (γ/2)θ>(Σ̂c − diag(Σ̂c))θ︸ ︷︷ ︸
cov(char)

+ θ>γσ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

+ TC(θ).︸ ︷︷ ︸
transaction costs

(10)

Note that the transaction cost term TC(θ) is a convex function of the parameter

θ, but it is not differentiable at values of θ for which there exist i and t such that

wi,t+1(θ) = w+
i,t(θ). Therefore, the optimality conditions must be formally defined in

terms of the subdifferential ∂TC(θ).

Proposition 3.2 The first-order optimality conditions for problem (10) are

0 ∈ γdiag(Σ̂c)θ︸ ︷︷ ︸
own−var(char)

+ γ(Σ̂c − diag(Σ̂c))θ︸ ︷︷ ︸
cov(char.)

+ γσ̂bc︸︷︷︸
cov(bench.)

− µ̂c︸︷︷︸
mean

+ ∂TC(θ)︸ ︷︷ ︸
costs

, (11)

where the ith component of the subdifferential of the transaction cost term is

∂θiTC(θ) =
1

T − 1

T−1∑
t=1

sign(wt+1(θ)− w+
t (θ))>(Λt[(Xt+1)•,i − (Xt)•,i ◦ (et + rt+1)]), (12)

where A•,i is the ith column of matrix A, and

sign(wj,t+1(θ)− w+
j,t(θ)) =


+1 if wj,t+1(θ) > w+

j,t(θ),

−1 if wj,t+1(θ) < w+
j,t(θ),

[−1, 1] if wj,t+1(θ) = w+
j,t(θ).

(13)

The first-order optimality conditions in (11) allow us to identify the marginal

contribution of each characteristic to the investor’s mean-variance utility. Specifically,

the kth component of the right-hand side in (11) is the marginal contribution of the

kth characteristic to the parametric portfolio mean-variance utility; that is, the marginal

change to mean-variance utility associated with a unit increase in the weight that the

parametric portfolio assigns to the kth characteristic. Moreover, the five terms on the

right-hand-side of (11) are: the marginal contributions of the kth characteristic to the

characteristic own-variance, γdiag(Σ̂c)θ; the characteristic covariance with other char-

acteristics, γ(Σ̂c − diag(Σ̂c))θ; the covariance between the characteristic and benchmark
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portfolios, γσ̂bc; the characteristic portfolio mean, −µ̂c; and the transaction cost, ∂ TC(θ).

By evaluating each of these five terms for each of the characteristics, we can identify its

contribution to the investor’s mean-variance utility.

Finally, to gauge the size of the trading diversification benefit associated with

combining characteristics, it will be useful to compute the marginal contribution to trans-

action costs of trading the ith characteristic in isolation (that is, without the benchmark

or any other characteristics), which is

∂θiTC(θ) =
1

T − 1

T−1∑
t=1

‖Λt[(Xt+1)•,i − (Xt)•,i ◦ (et + rt+1)]‖1, (14)

where (Xt)•,i is a vector with the standardized values of characteristic i at time t across

all the firms.

3.4 The regularized parametric portfolios

Although the parametric portfolios only require estimating one parameter per character-

istic, we consider a large number of characteristics. To deal with such high-dimensional

setting, we propose a new class of parametric portfolios, which we term the regularized

parametric portfolios. These portfolios are obtained by imposing a lasso16 constraint on

the parametric portfolio framework to achieve two goals. First, the lasso constraint helps

to avoid overfitting, reducing the impact of estimation error. Second, the lasso constraint

is a variable selection method that results in parametric portfolios where only the relevant

characteristics receive a nonzero parameter. This allows us to characterize the dimension

of the cross section and study how it changes with transaction costs.

In contrast, the minimum-entropy SDF approach used in Ghosh et al. (2016b)

results in SDFs that assign a nonzero weight to every characteristic, and thus, it is not

suitable to study the dimension of the cross section. The elastic-net SDF approach in

Kozak et al. (2017) shrinks the contributions to the SDF of both low-variance principal

16The term lasso originated as the acronym for least absolute shrinkage and selection operator. The
lasso was originally proposed in Tibshirani (1996) in the context of statistical learning and has become
a prominent tool in the age of machine learning. See Hastie, Tibshirani, and Wainwright (2015) for an
in-depth treatment of the lasso, and for a Bayesian interpretation of the lasso constraint in the context
of portfolio choice, see DeMiguel, Garlappi, Nogales, and Uppal (2009a).
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components of characteristics as well as individual characteristics with low risk prices.

Shrinking only the contributions of low-risk-price characteristics allows us to characterize

how transaction costs affect the number of characteristics that are significant for portfolio

construction.

The regularized parametric portfolios are obtained by solving problem (9) subject

to the lasso constraint, that is, by solving

min
θ

γ

2
θ>Σ̂cθ + θ>γσ̂bc − θ>µ̂c + TC(θ), (15)

s.t. ‖θ‖1 ≤ δ, (16)

where ‖θ‖1 =
∑K

k=1 |θk| is the 1-norm of the parameter vector, and δ is the threshold pa-

rameter. To gain intuition about the meaning of the threshold parameter δ, note that for

the case with threshold parameter δ =∞, we recover the standard parametric portfolios,

and for the case with δ = 0, we recover the benchmark portfolio; that is, we get θ = 0.

Thus as one increases the threshold parameter δ, the regularized parametric portfolios

move from the benchmark (value-weighted) portfolio toward the standard parametric

portfolio.

3.5 Testing the significance of characteristics considered jointly

We now explain how we test whether the parametric portfolio weights corresponding to

the different characteristics are significantly different from zero. Chatterjee and Lahiri

(2011) shows that it is challenging to carry out statistical inference in the presence of a

lasso constraint, such as the one imposed on the regularized parametric portfolios. To ad-

dress this issue, we use a two-stage screen-and-clean method similar to the methods pro-

posed in Wasserman and Roeder (2009), Meinshausen and Yu (2009), and Meinshausen,

Meier, and Buhlmann (2009). In the first stage, we screen the characteristics by using

the regularized parametric portfolios. Specifically, we use five-fold cross-validation, as ex-

plained in Hastie et al. (2015, Section 2.3), to select the lasso threshold δ that optimizes

the mean-variance criterion.17 For the resulting optimal lasso threshold, we compute the

17In particular, we divide the sample of monthly observations into five intervals of equal length. For
j from 1 to 5, we remove the jth-interval from the sample and use the remaining sample returns to
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regularized parametric portfolios and “screen” or remove any characteristics with a zero

parameter.

In the second stage, we clean the characteristics that were not removed in the first

stage. That is, we compute the parametric portfolios using the characteristics that were

not removed in the first stage, but now without a lasso constraint, thus circumventing

the concerns highlighted in Chatterjee and Lahiri (2011), and apply a bootstrap method

to establish which of these characteristics have parametric portfolio weights that are

significantly different from zero.18 Specifically, we apply the percentile-interval method

described in Efron and Tibshirani (1993, Section 13.3) and Hastie et al. (2015, Section

6.2) to establish the significance of the selected characteristics.19

Other approaches have been considered in the literature to identify characteris-

tics that are jointly relevant. For instance, Freyberger et al. (2016) and Messmer and

Audrino (2017) use a refinement of the lasso approach known as adaptive lasso to se-

lect characteristics in the context of cross-sectional regressions. The adaptive lasso is

complementary to our approach as it could be used as the variable selection method

for the screen stage of our screen-and-clean approach. Like the approaches above, our

screen-and-clean method considers all characteristics simultaneously. Alternatively, one

might think of using a sequential bootstrap method to test the significance of adding one

more characteristic to an existing parametric portfolio. This approach would be similar

compute the regularized parametric portfolio for several values of δ. We then evaluate the return of the
resulting portfolios on the jth-interval. After completing this process for each of the five intervals, we
have out-of-sample portfolio returns for the entire sample for each value of δ. Finally, we compute the
mean-variance utility of these out-of-sample returns and select the value of δ that corresponds to the
portfolio with the largest mean-variance utility.

18Barroso and Santa-Clara (2015) uses a one-stage bootstrap method essentially equivalent to our
“clean” stage to test the statistical significance of the different characteristics in a currency paramet-
ric portfolio. This method is appropriate in the context of that paper because it considers only five
characteristics and thus does not require a variable selection methodology like lasso.

19In detail, we first generate 1, 000 bootstrap samples from the original dataset using sampling with
replacement. Second, we estimate the optimal parametric portfolio for the remaining characteristics and
for each bootstrap sample. Finally, we declare as significant at the 5% level those characteristics whose
estimated parameter is strictly positive (strictly negative) for at least 95% of the bootstrap samples,
and compute the p-value as the proportion of bootstrap samples for which the parameter is less than
or equal to zero (greater than or equal to zero). Note that the parametric portfolio approach relies on
the assumption that, conditional on firm-specific characteristics, stock returns are independently and
identically distributed (iid). Therefore, we employ an iid bootstrap method. Nevertheless, to gauge the
importance of the iid assumption, we have repeated the tests using the stationary bootstrap in Politis
and Romano (1994), which takes serial dependence into account, and we have found that the results are
robust. In particular, we have run the (nonstudentized) stationary bootstrap with expected block sizes
of two and six months, and we have found that this does not affect the significance results.
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in spirit to the methodology proposed in Harvey and Liu (2015) in the context of se-

quential factor selection. From a portfolio perspective, however, a sequential significance

test would not capture the risk and trading-diversification benefits from adding several

characteristics simultaneously. This is crucial because both risk and transaction costs

depend critically on how characteristics are combined.

Finally, in results not reported to conserve space, we find that our main finding

that transaction costs increase the number of significant characteristics is robust to the

choice of significance test. The reason for this is that our main insight is obtained

by comparing the number of significant characteristics for the cases with and without

transaction costs. We find that, independently of the test or data sample used, trading

diversification results in an increased number of significant characteristics for the case

with transaction costs.

4 How many characteristics matter?

We now study how many characteristics matter jointly from a portfolio perspective. This

section considers the case without transaction costs, and Section 5 studies the effect of

transaction costs.

4.1 How many characteristics are jointly significant and why?

We apply the screen-and-clean method described in Section 3.5 to test the significance of

the characteristics when they are considered jointly in the absence of transaction costs.

We consider a risk-aversion parameter γ = 5, we use the value-weighted portfolio as the

benchmark, and we run the bootstrap test on the 319 monthly observations from May

1988 to December 2014.20

The results from the “screen” stage, not reported to conserve space, establish that

the optimal lasso threshold for the case without transaction costs is δ = 25, and only

10 characteristics survive the screening. We then run the “clean” stage test for these

20Although our dataset covers the period from January 1980 to December 2014, we drop the first
100 months so that the significance test is run on the exact same sample as the out-of-sample analysis
in Section 6. Also, in Section IA.10 of the Internet Appendix, we consider other values of risk-aversion:
γ = 2 and 10.
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10 characteristics plus the three characteristics considered in Brandt et al. (2009): size,

book to market, and momentum. Table 2 reports the significance and marginal contri-

butions of each characteristic in the parametric portfolios. For each characteristic, the

first column gives the acronym, the second the optimal value of the parameter together

with its significance level, and the last four columns give the marginal contribution of

the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the char-

acteristic with the rest of the characteristics in the portfolio, (iii) the covariance of the

characteristic with the benchmark portfolio, and (iv) the characteristic mean. Marginal

contributions that drive the characteristic to be nonzero are in blue sans serif font, and

marginal contributions that drive the characteristic toward zero are in red italic font.21

We observe from Table 2 that, in the absence of transaction costs, six charac-

teristics are significant. Two characteristics are significant at the 1% confidence level:

unexpected quarterly earnings (sue) and return volatility (retvol); three characteristics

at the 5% level: asset growth (agr), 1-month momentum (mom1m), and gross prof-

itability (gma); and one characteristic, beta, is significant at the 10% level. From a

return-prediction perspective, Hou et al. (2014) and Fama and French (2015) show that

four and five variables, respectively, are enough to predict expected returns. Our result

confirms that, in the absence of transaction costs, a small number of characteristics are

sufficient also from a portfolio perspective.

Moreover, in line with Hou et al. (2014) and Fama and French (2015), we also

find that an investment characteristic (asset growth) and a profitability characteristic

(the gross profitability in Novy-Marx (2013)) are significant at the expense of the value

characteristics book to market (bm) and industry-adjusted book to market (bm ia), which

are not significant.22 In addition, consistent with recent findings in Ang, Hodrick, Xing,

and Zhang (2006, 2009) on the low-volatility characteristics, we find that return volatility

21Note that for characteristics with a positive parametric portfolio weight, negative (positive) marginal
contributions help to decrease (increase) the objective function in the minimization problem (9) and
thus increase (decrease) the investor’s mean-variance utility. Therefore for characteristics with positive
parametric portfolio weights, negative (positive) marginal contributions are in blue sans serif font (red
italic font). The opposite color and font convention applies to characteristics with negative parametric
portfolio weights.

22See Novy-Marx (2013) for a comprehensive analysis of the relation between gross profitability and
value.
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is significant. Consistent with the findings in Novy-Marx (2015), we find that unexpected

quarterly earnings is significant at the expense of 12-month momentum (mom12m), which

is not significant. Finally, we find that a short-term reversal characteristic, 1-month

momentum, is significant in the absence of transaction costs, which is consistent with the

results in Lo and MacKinlay (1990) in the context of contrarian strategies.

The marginal contributions in Table 2 show that the three most significant charac-

teristics—unexpected quarterly earnings (sue), return volatility (retvol), and asset growth

(agr)—matter from a portfolio perspective because they increase mean returns and re-

duce the risk of both the benchmark portfolio and the portfolio of characteristics. For

instance, return volatility has the largest mean return (marginal contribution 0.00323),

negative return covariance with the other characteristics (marginal contribution 0.02914),

and negative return covariance with the benchmark (marginal contribution 0.00292).23

The next two most significant characteristics (1-month momentum (mom1m) and gross

profitability (gma)) are significant because they increase mean return and reduce the

risk of the portfolio of characteristics, although they increase the risk of the benchmark

portfolio because their returns covary positively with the benchmark portfolio return.

The aforementioned five characteristics are significant because they help to reduce

the risk of the portfolio of characteristics and increase its mean return. The beta char-

acteristic is significant at the 10% level only because of its ability to reduce the risk of

the portfolio of characteristics. To see this, note that Table 2 shows that, consistent with

the findings in the existing literature (see Black (1993) and the references therein), the

marginal contribution of beta to mean return is very small. However, the beta return has

a large negative covariance with the returns of the other characteristics (marginal contri-

bution −0.01381), and this is what makes it relevant from a portfolio perspective. This

is illustrated in Figure 1, which depicts the marginal contributions of the six significant

23The marginal contributions to covariance with the benchmark and other characteristics and to
mean return are counteracted at the optimal parameter θretvol = −10.85 by its own-variance (marginal
contribution −0.03529). Note that the marginal contribution to own-variance grows linearly with the
characteristic parameter, and thus, it tends to dominate for characteristics with a large optimal parameter
θk.

23



characteristics, and shows that beta has a large marginal contribution to the covariance

with the other characteristics that helps to reduce the overall portfolio risk.24

Table 2 also explains why size, book to market, and momentum are not signif-

icant when evaluated from a portfolio perspective. For instance, 12-month momentum

(mom12m) is not significant, even though its expected return is large (marginal contribu-

tion −0.00275), because its return has a very large positive covariance with the returns

of the other characteristics in the portfolio. That is, 12-month momentum does not

offer a good tradeoff between mean return and portfolio risk diversification. Likewise,

book to market (bm) is not significant, even though it offers a substantial mean return

(marginal contribution −0.00205), because its return covaries positively with the returns

of the other characteristics (marginal contribution 0.00023).25 Unlike mom12m and bm,

market capitalization (mve) offers an insignificant mean return, and although it helps

to diversify the characteristic portfolio, the magnitude of this diversification benefit is

not sufficiently large to make it significant, consistent with the findings in the existing

literature; see, for example, the discussion in Asness, Frazzini, Israel, Moskowitz, and

Pedersen (2015).

4.2 How are the characteristics correlated?

As discussed above, the contribution of characteristics to portfolio risk plays an important

role. Thus, the correlations between the characteristic returns matter from a portfolio

perspective. To further understand the correlation structure of the most significant char-

acteristics, Table 3 reports the correlation matrix for the returns of the six significant

characteristics and the three characteristics considered in Brandt et al. (2009): size, book

to market, and momentum. We first observe that the returns of the size, book to market,

and momentum characteristics are not very highly correlated, with correlation coefficients

smaller than 20%. Intuitively, this is what one may expect from the returns of a small

set of factors that explain the cross section of expected stock returns. On the other hand,

24Note that the marginal contribution of beta to the portfolio mean is difficult to see in the figure
because it is close to zero.

25Industry adjusted book to market covaries negatively with the other characteristics, but its mean
return is substantially smaller than that of book to market and it covaries positively with the benchmark,
and as a result, it is not significant either.
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the returns of the six significant characteristics we identify are more highly correlated.

In particular, we observe from Table 3 that the beta return is highly correlated with the

return of both return volatility (correlation of 93%) and gross profitability (54%). In

addition, the returns of asset growth and gross profitability are also highly correlated

(56%).

To understand why these characteristics with highly correlated returns are jointly

significant for portfolio choice, consider the case of return volatility and beta. The returns

of these two characteristics are highly positively correlated, but the mean return of beta is

very small. As a consequence, the investor optimally goes long the beta characteristic to

hedge the risk of her short position in the return-volatility characteristic, while preserving

most of its mean return. The benefit of this strategy is illustrated in Panel (a) of Figure 2,

which shows the cumulative returns from going long the beta characteristic and shorting

the return-volatility characteristic. The strong correlation between the monthly returns

of the beta and return-volatility characteristics is evident from the figure. Moreover, the

cumulative return of shorting return volatility increases over time, while the cumulative

return of being long beta is flat. Panel (a) also shows the cumulative return of a blended

strategy that assigns a −50% weight to return volatility and a 50% weight to beta. This

blended strategy has increasing cumulative returns and very low volatility.

Asness, Moskowitz, and Pedersen (2013) finds that the returns of value and mo-

mentum are negatively correlated and a blended strategy of these two characteristics

performs well. We compare the return volatility and beta blended strategy with the

value and momentum blended strategy. Panel (b) in Figure 2 shows the cumulative re-

turn of these two blended strategies, where we have scaled them so that they have the

same volatility. We find that the return-volatility and beta blend attains a cumulative

return of 110%, whereas the value and momentum blend attains a cumulative return that

is slightly less than 80%.

Our finding that, despite the high correlation between the return volatility and

beta characteristics, the return-volatility characteristic commands a much higher average

return than beta is consistent with results in the existing literature. As explained in Bali

et al. (2016), return volatility and idiosyncratic volatility are very similar in the cross
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section.26 Therefore, the high average return of the return-volatility characteristic can

be traced back to the high average return of the idiosyncratic-volatility characteristic,

which is documented in Ang et al. (2006). Moreover, Bali et al. (2016, Table 15.7) shows

that the idiosyncratic risk characteristic commands a high average return mostly when

computed from daily data over short horizons, which is how return volatility is computed

in our analysis. Beta, on the other hand, is computed from weekly returns over the past

three years, and thus delivers much lower average returns; for a detailed analysis of the

relation between beta and idiosyncratic volatility, see Liu, Stambaugh, and Yuan (2016).

Finally, Appendix A compares analytically and empirically our methodological

approach based on the parametric portfolios with the cross-sectional (Section A.1) and

time-series (Section A.2) regression approaches.

5 What is the effect of transaction costs?

In this section, we examine how transaction costs affect the dimension of the cross section

of stock returns. As explained in Section 3.2, we consider an investor who faces propor-

tional transaction costs that decrease with firm size and over time, as specified in Brandt

et al. (2009) and Hand and Green (2011). Proportional transaction costs are a reasonable

assumption for the average investor; see Novy-Marx and Velikov (2016) and Chen and

Velikov (2017). However, for large investors a common assumption is that their price

impact is linear on the amount traded, and thus, they face quadratic transaction costs;

see, for instance, Korajczyk and Sadka (2004). In Section IA.1 of the Internet Appendix,

we show that our main findings are robust to the presence of quadratic transaction costs.

Intuitively, one may expect that in the presence of transaction costs fewer charac-

teristics would be significant. Indeed, we find that this is the case if one were to consider

each characteristic individually: 21 characteristics are individually significant in the ab-

sence of transaction costs, but only 14 in the presence transaction costs.27 However, when

26(Bali et al., 2016, p. 365) states that “idiosyncratic volatility and total volatility are very similar
in the cross section. While total volatility is a function of idiosyncratic volatility and systematic risk
(captured by beta in the CAPM model), it is important for a researcher to recognize that these variables
are highly similar empirically.”

27In results that are not reported to conserve space, we study the significance of the 51 single-
characteristic portfolios that are obtained by solving the problem defined in (9) for the case where only
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considered jointly, we find that the number of characteristics that are jointly significant

at the 5% level increases from five in the absence of transaction costs to 15 in the pres-

ence of transaction costs. The reason for this is that the additional characteristics help

to reduce the amount of trading required to rebalance the portfolio of stocks underlying

the characteristics. The main takeaway is that transaction costs increase the dimension

of the cross-section of stock returns.

5.1 How many characteristics are jointly significant and why?

Table 4 gives the significance and marginal contributions of the characteristics for the

parametric portfolios in the presence of transaction costs. For each characteristic, the

first column gives the acronym, the second the optimal value of the parameter and its

significance level, and the next five columns the marginal contribution of the characteristic

to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the

rest of the characteristics in the portfolio, (iii) the covariance of the characteristic with

the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction cost. The

last column reports the marginal contribution of the characteristic to transaction costs

when traded in isolation, that is, independently from the benchmark portfolio and the

other characteristics. Contributions that drive the characteristic to be nonzero are in

blue sans serif font, and contributions that drive the characteristic toward zero are in red

italic font (cf. Footnote 21).

The explanation for the result that the number of significant characteristics is

larger in the presence of transaction costs can be found by comparing the marginal

contribution to transaction cost of the characteristics when traded jointly (column seven

in Table 4) and in isolation (column eight in Table 4). The transaction costs associated

with trading combinations of characteristics are much smaller than those associated with

trading characteristics in isolation. We find that the marginal transaction cost associated

one characteristic is available. Because we are considering a single characteristic at a time, we do not
need to use the first step of the screen-and-clean test, and instead we just run the bootstrap significance
test on each of the 51 single-characteristic parametric portfolios. Finally, note that here we consider
51 individual significance tests and thus, following the suggestion in Harvey et al. (2015), we apply
Bonferroni’s adjustment. In particular, we require that p-values should be no greater than α/51 for
individual characteristics to be significant at the α level.
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with trading the 15 significant characteristics is reduced by around 65% on average when

they are combined.

A stark example of the trading diversification benefits from combining charac-

teristics is the short-term reversal characteristic (mom1m in the 14th row of Table 4),

which has an enormous marginal contribution to transaction costs if traded in isola-

tion (marginal contribution 0.00857), but a four times smaller marginal contribution to

transaction cost when traded in combination (marginal contribution 0.00211). This is il-

lustrated in Figure 3, which graphs the marginal contributions to transaction costs of the

15 significant characteristics for the case when the characteristics are traded jointly and

in isolation. The figure highlights the dramatic reduction to the marginal contribution

to transaction costs of 1-month momentum when traded in combination with the other

characteristics. As a result, the short-term reversal characteristic is significant even in the

presence of transaction costs. This result contrasts sharply with DeMiguel, Nogales, and

Uppal (2014) and Novy-Marx and Velikov (2016) that find that the short-term reversal

characteristic is not profitable after transaction costs when traded in isolation.28

The following proposition characterizes the reduction in transaction costs obtained

by combining characteristics.

Proposition 5.1 Assume that the trades in the ith stock required to rebalance K different

characteristics, that is, the quantities

tradei,k = (Xt+1)i,k − (Xt)i,k(1 + ri,t+1), k = 1, 2, . . . , K (17)

are independently and identically distributed as a Normal distribution with zero mean

and standard deviation σ. Then, the average transaction cost of the trade in the ith stock

required to rebalance an equally weighted portfolio of the K characteristics is 1/
√
K of

that required to rebalance the kth characteristic in isolation.

The intuition behind this proposition is that, just as we get diversification of risk when

we combine stocks, we get diversification in trading when we combine characteristics. To

28DeMiguel et al. (2014) finds that a short-term reversal (contrarian) strategy is not profitable in
the presence of even modest proportional transaction costs of 10 basis points. Novy-Marx and Velikov
(2016) finds that the short-term reversal strategy does not improve the investment opportunity set of an
investor with access to the Fama-French factors, even when a buy-and-hold transaction-cost-mitigation
strategy is employed.
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see this, note that rebalancing the long-short portfolio associated with each characteristic

requires trading in the same underlying stocks. Thus, exploiting multiple characteristics

allows one to cancel out some of the trades in the underlying stocks required to rebalance

the characteristic long-short portfolios. For instance, if to rebalance a particular char-

acteristic long-short portfolio one needs to buy a particular stock, whereas to rebalance

another characteristic one needs to sell the same stock, then the net amount of trading

required to exploit these two characteristics in combination is smaller than that required

to exploit them in isolation.

Proposition 5.1 relies on the assumption that the trades required to rebalance dif-

ferent characteristics are independently distributed. This is not a particularly restrictive

assumption because the average correlation among the trades required to rebalance the

15 significant characteristics in our dataset is very small at 5.42%. Nevertheless, the

following proposition extends the result in Proposition 5.1 to the general case.

Proposition 5.2 Assume that tradei,k for k = 1, 2, . . . , K are jointly distributed as a

multivariate Normal distribution with zero mean and covariance matrix Ω. Then,

1. The average transaction cost of the trade in the ith stock required to rebalance

an equally weighted portfolio of the K characteristics is
√
e>Ωe/(K

√
Ωkk) of that

required to rebalance the kth characteristic in isolation, where e ∈ RK is the vector

of ones and Ωkk is the variance of tradei,k.

2. If, in addition, the covariance matrix Ω is symmetric with respect to the K charac-

teristics; that is, if the variances of the trades in the ith stock required to rebalance

the K different characteristics are all equal to σ2, and the correlations between the

trades in the ith stock required to rebalance the K different characteristics are all

equal to ρ, then the average transaction cost of the trade in the ith stock required

to rebalance an equally weighted portfolio of the K characteristics is√
1 + ρ(K − 1)/

√
K (18)

of that required to rebalance the kth characteristic in isolation.
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Expression (18) demonstrates that provided the rebalancing trades of different char-

acteristics are not perfectly correlated, combining characteristics will result in trading

diversification and a reduction in transaction costs.

Finally, Section A.3 in Appendix A compares empirically the results from using

our parametric portfolio approach from those from using the generalized alpha approach

in Novy-Marx and Velikov (2016).

6 Out-of-sample analysis

The previous sections studied the significance of the different characteristics for portfolio

choice in-sample; that is, for our full sample of observations. In this section, we study

whether an investor can improve out-of-sample performance net of transaction costs by

exploiting a large set of characteristics instead of a small number of characteristics. To

answer this question, we use the regularized parametric portfolios described in Section 3.4.

This section is organized as follows. Section 6.1 describes the methodology that

we use to evaluate out-of-sample performance, Section 6.2 reports the performance of

the different portfolios, and Section 6.3 studies how the out-of-sample returns of the

regularized parametric portfolios load on three prominent factor models.

6.1 Methodology for out-of-sample evaluation

We compare the out-of-sample performance of the regularized parametric portfolios to

that of two parametric portfolios that exploit sparse sets of characteristics. To evaluate

the out-of-sample performance of the different portfolios we use a “rolling-horizon” pro-

cedure similar to that used in DeMiguel, Garlappi, and Uppal (2009b). First, we choose

a window over which to perform the estimation. The total number of monthly observa-

tions in the dataset is Ttot = 419. We choose an estimation window of T = 100 monthly

observations. Second, using the return data over the estimation window, we compute

the various portfolios we study. Third, we repeat this “rolling-window” procedure for

the next month, by including the data for the next month and dropping the data for the

earliest month. We continue doing this until the end of the dataset is reached. At the
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end of this process, we have generated Ttot − T = 319 portfolio-weight vectors for each

strategy; that is, wjt for t = T, . . . , Ttot− 1 and for each strategy j. Holding the portfolio

wjt for one month gives the out-of-sample return net of transaction costs at time t+ 1:

rjt+1 = (wjt )
>rt+1 − ‖Λt(w

j
t − (wjt−1)+)‖1,

where Λt is the transaction cost matrix at time t defined in Section 3.2, and (wjt−1)+ is

the portfolio for the jth strategy before rebalancing at time t; that is

(wjt−1)+ = wjt−1 ◦ (et−1 + rt),

where et−1 is the Nt−1 dimensional vector of ones, and x ◦ y is the Hadamard or com-

ponentwise product of vectors x and y. Then, for each portfolio we study, we compute

the monthly turnover, and the out-of-sample annualized mean, standard deviation, and

Sharpe ratio of returns net of transaction costs:

turnover =
1

Ttot − T

Ttot−1∑
t=T

‖wjt − (wjt−1)+‖1,

µ̂j =
12

Ttot − T

Ttot−1∑
t=T

(wjt )
>rt+1,

(σ̂j)2 =
12

Ttot − T

Ttot−1∑
t=T

(
(wjt )

>rt+1 − µ̂j
)2
, and

ŜR
j

=
µ̂j
σ̂j
.

To test the statistical significance of the difference between the Sharpe ratio of

the regularized parametric portfolio and those of the other benchmark and parametric

portfolios we consider, we use the iid bootstrap method in Ledoit and Wolf (2008), with

10,000 bootstrap samples to construct a one-sided confidence interval for the difference

between Sharpe ratios. We use three/two/one asterisks (∗) to indicate that the difference

is significant at the 0.01/0.05/0.10 level.29

29Note that to reduce computation time, we compute the optimal parameter vector θ only in January
of each year, and use this parameter vector to compute the parametric portfolios for every month of the
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6.2 Out-of-sample performance

Table 5 reports the out-of-sample performance of the different portfolios in the presence

of transaction costs and risk-aversion parameter γ = 5. Panel A reports the performance

for the portfolios that do not use any characteristics, which are the benchmark value-

weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports

the performance of two parametric portfolios that exploit a small number of character-

istics and two parametric portfolios that exploit large sets of characteristics. The first

parametric portfolio exploits the three characteristics considered in Brandt et al. (2009):

size, book to market, and momentum. The second parametric portfolio exploits four

characteristics: size, book to market, asset growth, and gross profitability, which include

investment and profitability characteristics such as those highlighted in Fama and French

(2015) and Hou et al. (2014). The first parametric portfolio that exploits a large set of

characteristics is based on the 15 characteristics that are significant in the presence of

transaction costs as reported in Table 4; note that this portfolio benefits from look-ahead

bias because these 15 characteristics were identified using the entire sample period. Fi-

nally, the regularized parametric portfolio that exploits a large set of 51 characteristics,

where the lasso threshold is calibrated each year using five-fold cross-validation to max-

imize mean-variance utility. The regularized parametric portfolios only use past data.

Therefore, this approach does not have the advantage of look-ahead bias.

We observe from Table 5 that the parametric portfolios based on size, book to

market, and momentum outperform the benchmark value-weighted and equally weighted

portfolios. The parametric portfolios based on size, book to market, asset growth, and

gross profitability outperform the parametric portfolios based just on size, book to mar-

ket, and momentum. The parametric portfolios based on the 15 significant characteristics

over the entire sample period perform even better than those based on size, book to mar-

year. We use the cross-validation methodology explained in Section 3.5 to calibrate the lasso threshold,
but using only the 100 observations in each estimation window. Also, we find that the regularized
parametric portfolios that solve problem (15)–(16) result in very large turnovers. Although we find that
these portfolios are profitable even after transaction costs (see Section IA.9 of the Internet Appendix),
they may not be implementable for institutional investors facing turnover constraints. Therefore, we
report the results for the parametric portfolios after scaling them to control for turnover. Specifically, we
scale the optimal parameter vector θ so that the portfolio monthly turnover is around 100%. Section IA.9
of the Internet Appendix reports the results in the absence of turnover controls.
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ket, asset growth, and gross profitability, but, as mentioned above, these parametric

portfolios benefit from look-ahead bias. The regularized parametric portfolios achieve a

similar Sharpe ratio, but without the benefit of look-ahead bias.30

The gains from exploiting a large set of characteristics are significant: the regu-

larized parametric portfolios achieve an out-of-sample Sharpe ratio that is 100% higher

than that of the parametric portfolios based on size, book to market, and momentum

and 25% higher than that of the parametric portfolios based on size, book to market,

asset growth, and gross profitability, with the differences being statistically significant.

The magnitude of the economic gains is evident also from Figure 4, which depicts the

out-of-sample cumulative returns of the value-weighted portfolio and the four parametric

portfolios we consider, after scaling them so that they all have the same volatility. These

out-of-sample results confirm that in the presence of transaction costs the cross section

of stock returns is not fully explained by a small number of characteristics.

6.3 Can factor models explain regularized portfolio returns?

The previous section demonstrates that the regularized parametric portfolios significantly

outperform the parametric portfolios that exploit size, book to market, and momentum,

and the parametric portfolios that exploit size, book to market, asset growth, and gross

profitability. To check the robustness of this result, we run a time-series regression of

the out-of-sample returns of the regularized parametric portfolio onto three sparse factor

models from the literature: the Fama and French (1993) and Carhart (1997) four-factor

model (FFC), the Fama and French (2015) five-factor model (FF5), and the Hou et al.

(2014) four-factor model (HXZ). All factors are obtained from Kenneth French’s and Lu

Zhang’s websites.

Table 6 shows that none of these three sparse factor models fully explains the

returns of the regularized parametric portfolios, which achieve an economically and sta-

30Note that although the parametric portfolios that exploit the 15 significant characteristics ben-
efit from look-ahead bias because the 15 characteristics are selected using the entire dataset, for the
out-of-sample experiment we estimate the optimal weights for these 15 characteristics using only past
data. Therefore, these portfolios suffer from estimation error, which explains why it is possible for the
regularized parametric portfolios to have similar performance despite not benefiting from look-ahead
bias.
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tistically significant abnormal average monthly return of about α = 1% for each of the

three models.31

7 Conclusion

A multitude of variables have been proposed in the literature to predict the cross-section

of expected stock returns. The existing literature takes a return-prediction perspective to

understand which variables provide independent information about average returns. In

contrast, we take a portfolio perspective that takes into account not only average returns

but also risk, transaction costs, and out-of-sample performance.

In response to the question posed by Cochrane, which we highlighted at the start

of the manuscript, we find that in the absence of transaction costs, out of the 51 char-

acteristics we consider, only a small number—about six—are jointly significant. In the

presence of transaction costs, the number of significant characteristics increases from

six to 15 because combining characteristics helps to reduce transaction costs in trading

the stocks underlying the characteristics. Kozak et al. (2017) argue that “the empiri-

cal asset-pricing literatures multi-decade quest for a sparse characteristics-based factor

model [...] is ultimately futile”. We find that transaction costs increase the number of

characteristics that are significant for portfolio construction. Thus, our results provide

another rationale for non-sparse characteristic-based factor models.

31The table also shows that the regularized parametric portfolio returns load significantly on the
market, value (HML), and momentum (UMD) factors for the FFC model, on the market, value, and
investment (CMA) factors for the FF5 model, and on the market, investment (I/A), and profitability
(ROE) factors for the HXZ model.
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A Relation to regression approaches

A.1 Relation to Fama-MacBeth regressions

In this section, we study analytically and empirically the relation between our approach

and the Fama-MacBeth regressions in the absence of transaction costs. The Fama-

MacBeth procedure can be described as running cross-sectional regressions of stock re-

turns, rt, onto firm-specific characteristics at each date t:

rt = Xt−1λt + εt, (A.1)

whereXt−1 ∈ RNt−1×K is the matrix of firm-specific characteristics at time t−1,32 λt ∈ RK

is the vector of slopes at time t, and εt ∈ RNt−1 is the vector of pricing errors at time

t. The Fama-MacBeth approach then tests the significance of the average of the slopes

over time, λ.

Most of the existing literature estimates the Fama-MacBeth cross-sectional regres-

sions using ordinary least squares (OLS). Lewellen et al. (2010), however, recommends

using generalized least squares (GLS) cross-sectional regressions because their goodness-

of-fit metric has a clear economic interpretation. In particular, they extend a result in

Kandel and Stambaugh (1995) to show that the GLS R2 measures the mean-variance

efficiency of the model’s factor-mimicking portfolios.33 The following proposition clari-

fies the relation between our portfolio approach and the Fama-MacBeth OLS and GLS

regressions.

Proposition A.1 Assume that the standardized firm characteristics are constant through

time so that Xt = X. Then, the OLS and GLS Fama-MacBeth average slopes are

λOLS = (X>X)−1X>µ̂r, and (A.2)

λGLS = (X>Σ̂−1
r X)−1X>Σ̂−1

r µ̂r, (A.3)

32For the sake of simplicity and without loss of generality, we can assume that Xt−1 is divided by the
number of firms at time t− 1, as we do for parametric portfolios.

33Lewellen et al. (2010) studies two-pass cross-sectional regressions, rather than Fama-MacBeth re-
gressions; see (Cochrane, 2009, Sections 12.2 and 12.3). For our theoretical analysis, we make the
simplifying assumption that the characteristics are time invariant, and in this case the cross-sectional
regressions coincide with the Fama-MacBeth regressions. In addition, we use firm-specific characteristic
data, rather than factor data, and thus all of our analysis is based on a single pass regression of stock
returns onto characteristics.
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where µ̂r ∈ RN is the sample mean of stock returns and Σ̂r ∈ RN×N is the sample

covariance matrix of stock returns. Assume also that the sample vector of covariances

between the benchmark portfolio return and the characteristic portfolio return vector is

zero (σbc = 0). Then the optimal mean-variance parametric portfolio is

θ∗ =
1

γ
(X>Σ̂rX)−1X>µ̂r. (A.4)

Proposition A.1 shows that the OLS and GLS Fama-MacBeth slopes differ in gen-

eral from the mean-variance parametric portfolio weights; that is, testing the significance

of Fama-MacBeth slopes is different from testing the significance of the weights a mean-

variance investor assigns to each characteristic. Note, in particular, that the OLS and

GLS Fama-MacBeth slopes are different in general from the mean-variance parametric

portfolio weights unless the sample covariance matrix of asset returns is equal to the

identity matrix (Σr = I).

The following corollary provides further insight into the difference between the

parametric portfolio weights and the OLS Fama-MacBeth slopes.

Corollary A.2 Let the assumptions in Proposition A.1 hold, and assume in addition

that the columns of the firm-specific characteristic matrix X are orthonormal; that is,

X>X = I. Then, the optimal mean-variance parametric portfolio is

θ∗ =
1

γ
Σ̂−1
c λOLS, (A.5)

where Σ̂c is the sample covariance matrix of characteristic returns and γ is the risk-

aversion parameter.

Corollary A.2 shows that, for the particular case in which the columns of the

firm-specific characteristic matrix are orthonormal, there is a componentwise one-to-

one relationship between mean-variance parametric portfolio weights and OLS Fama-

MacBeth slopes only if the sample covariance matrix of characteristic returns, Σ̂c, is

diagonal.34 If, on the other hand, characteristic returns are correlated, then a given

34To see this, note that if Σ̂c is diagonal, then θ∗k = (λOLS)k/(γ(Σ̂c)kk), where (Σ̂c)kk is the kth

element of the diagonal of Σ̂c, and thus there is a one-to-one correspondence between the kth component
of θ∗ and the kth component of λOLS .
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characteristic k could have a zero OLS Fama-MacBeth slope (λk = 0), and yet have a

nonzero parametric portfolio weight (θ∗k 6= 0). This is the case, for instance, when the

correlation of the kth characteristic return with the returns on the other characteristics

can be exploited by the investor to reduce risk and thus improve her overall mean-variance

utility.

The above theoretical results demonstrate that testing the significance of Fama-

MacBeth slopes will, in general, produce results that are different from those of testing the

significance of the weights that a mean-variance investor assigns to each characteristic.

We now compare empirically the significance results from OLS Fama-MacBeth regressions

with those of our approach.35 Table 7 reports the significance of the Fama-MacBeth

slopes for the six characteristics we found to be significant in Section 4.1 plus size, book

to market, and momentum. The first column lists the name of the characteristics, the

second column reports the multiple regression slopes and Newey-West t-statistics (in

brackets),36 and the third column reports the individual regression slopes and Newey-

West t-statistics.

We see from Table 7 that the five characteristics that are significant at the 5%

level in Section 4.1 are also jointly significant for cross-sectional regressions. However,

in contrast to the finding in Section 4.1, beta is not significant in the Fama-MacBeth

regressions even at the 10% level. This is because, as shown in Proposition A.1, Fama-

MacBeth slopes differ in general from parametric portfolio weights when the returns on

the characteristics are correlated over time and the investor can exploit this to reduce

the risk of the mean-variance portfolio. Regarding the book-to-market and momentum

characteristics, we see from Table 7 that both book to market (bm) and 12-month mo-

mentum (mom12m) are significant for multiple cross-sectional regressions, whereas they

were not significant from a portfolio perspective. Intuitively, these characteristics are sig-

nificant in multiple cross-sectional regressions because these regressions ignore the large

contribution of these characteristics to the risk of the overall portfolio of characteristics,

which reduces their appeal from a portfolio perspective.

35We do not run GLS Fama-MacBeth regressions because the sample covariance matrix of stock
returns is singular for our case with thousands of stocks and only hundreds of monthly dates.

36We compute t-statistics with Newey-West adjustments of 12 lags, as in Green et al. (2014).
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A.2 Relation to time-series regressions

In this section, we study analytically and empirically the relation of our portfolio approach

to the time-series regression approach in the absence of transaction costs. The time-

series approach may be described as regressing the return of a new characteristic onto

the returns of Kc commonly accepted characteristics; that is,

rn,t = αTS + β>TSrc,t + εt, (A.6)

where rn,t ∈ R is the return of the new characteristic at time t, rc,t ∈ RKc is the return

of the commonly accepted characteristics at time t, the error term εt ∈ R follows a Nor-

mal distribution with zero mean and standard deviation σε, αTS ∈ R is the intercept

of the regression, and βTS ∈ RKc is the slope vector. If the intercept in this regression

is significant, the return on the new characteristic is not fully explained by the return

of the commonly accepted characteristics. Gibbons et al. (1989) shows that a signif-

icant intercept implies that the new characteristic-based long-short portfolio improves

the investment opportunity set of a mean-variance investor who already has access to

the returns on the set of commonly accepted characteristics.

As explained above, the time-series regression approach tests the significance of the

intercept. In contrast, the following proposition shows that, in the absence of transaction

costs, our approach is equivalent to testing the significance of the slopes in a particular

constrained time-series multiple regression. Britten-Jones (1999) shows that the tangency

mean-variance portfolio can be identified by solving a linear regression. We extend this

result to the context of any parametric portfolio on the mean-variance efficient frontier

by introducing a constraint on the mean return of the portfolio.

Proposition A.3 For a given risk-aversion parameter γ, the optimal parameter θ∗ for

the mean-variance parametric portfolio problem without transaction costs (5) is equal to

the ordinary least square (OLS) estimate of the slope vector in the following time-series

regression model:

rb,t = α− β>rc,t + εt, (A.7)

where rb,t ∈ R is the return of the benchmark portfolio, rc,t ∈ RK is the return on the

characteristics, α ∈ R is the intercept, and β ∈ RK is the slope vector, subject to the
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constraint that

β>µc = (θ∗)>µc, (A.8)

where µc is the mean characteristic return vector and (θ∗)>µc is the average return of the

mean-variance parametric portfolio.

The advantage of the parametric-portfolio approach is that by focusing on the

slopes, it allows one to test the significance of the different characteristics when they are

considered jointly. The traditional time-series approach, on the other hand, is designed

to test only the significance of a single characteristic when it is added to a set of com-

monly accepted characteristics; see also Footnote 8. This is a limitation of the time-series

regression because the result of the statistical inference depends on the sequence in which

variables are selected. For instance, when regressing the return of each characteristic onto

the returns of the four Fama and French (1993) and Carhart (1997) factors downloaded

from Kenneth French’s website, we find that eight characteristics are significant in the

absence of transaction costs, but beta is not significant.37 Beta, however, is significant

when its returns are regressed onto the four Fama and French (1993) and Carhart (1997)

factors plus the return of the return-volatility long-short portfolio, because beta helps to

hedge the return-volatility characteristic.38 Accordingly, beta matters if one controls for

return volatility.39 Our portfolio approach considers all characteristics simultaneously

and finds that return volatility and beta are jointly significant together with four other

characteristics. These empirical results highlight the importance of considering all char-

acteristics simultaneously. Other advantages of our portfolio approach are that it allows

one to consider transaction costs in a straightforward manner and identify the marginal

contribution of each characteristic to the investor’s utility.

37We run 48 significance tests corresponding to the 51 characteristics except size, value, and momen-
tum and thus, following Harvey et al. (2015) we apply Bonferroni’s adjustment and require that p-values
should be no greater than α/48 for individual characteristics to be significant at the α level.

38We again apply Bonferroni’s adjustment.
39This result is analogous to that in Asness et al. (2015), which finds that despite the weak performance

of the size characteristic when evaluated in isolation, it becomes significant once it is considered in
combination with a quality characteristic.
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A.3 Relation to generalized alpha

In this section, we compare empirically the results from our portfolio approach in the pres-

ence of transaction costs with those from using the generalized alpha developed in Novy-

Marx and Velikov (2016), which extends the traditional time-series regression framework

to take transaction costs into account. Novy-Marx and Velikov (2016) proposes com-

puting the returns of the mean-variance portfolio in the presence of transaction costs

for the commonly accepted characteristics, MVEX , and the returns of the mean-variance

portfolio in the presence of transaction costs for the commonly accepted characteristics

plus the new characteristic, MVEX,y. Then it runs the following regression:

MVEX,y/wy = α + βMVEX + ε, (A.9)

where wy is the weight of the mean-variance portfolio on the new characteristic. Novy-

Marx and Velikov (2016) shows that in the absence of transaction costs, the generalized

alpha in (A.9) equals the alpha from the traditional time-series approach. In the presence

of transaction costs, this approach tests the significance of adding the new characteristic

to a set of commonly accepted characteristics taking transaction costs into account.40

As discussed in Section A.2, the main advantage of our portfolio approach with

respect to the time-series approach is that it considers all characteristics simultaneously

and tests their significance when considered jointly, whereas the time-series regressions

are designed to consider one characteristic at a time; see Footnote 8. To illustrate this,

we compute the generalized alpha for each of our characteristics with respect to the four

Fama and French (1993) and Carhart (1997) factors downloaded from Kenneth French’s

website. We find that, in the presence of transaction costs, none of the characteristic

portfolios has a significant generalized alpha with respect to the four factors.41 However,

in the absence of transaction costs, Section A.2 showed that eight characteristics were

significant with respect to the four factors. That is, the number of characteristics that

are significant with respect to the four factors for the time-series approach decreases in

40Although the implementation in Novy-Marx and Velikov (2016) considers the transaction cost
associated with each characteristic independently, here we extend the approach in Novy-Marx and Velikov
(2016) to capture trading diversification.

41To address the multiple testing problem, we again apply Bonferroni’s adjustment because we carry
out 48 significance tests corresponding to our 51 characteristics except size, value, and momentum.
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the presence of transaction costs when the characteristics are considered in isolation.42

In contrast, our portfolio approach shows that the number of significant characteristics

increases in the presence of transaction costs. This is because our approach allows one

to consider all characteristics simultaneously and identify the optimal combination of

characteristics that results in substantial trading diversification.

42This result regarding the significance of characteristics when considered in isolation is consistent
with the results in Novy-Marx and Velikov (2016), which finds that fewer characteristics are significant
in the presence of transaction costs than in the absence of transaction costs.
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B Proofs for all propositions

Proof of Proposition 3.1

Equation (3) shows that the parametric portfolio is a combination of the benchmark

portfolio and the K standardized firm-specific characteristics, scaled by the number of

firms Nt. Therefore, we can define this combination as w = [1, θ] ∈ RK+1 and the

vector of benchmark and characteristic returns as Rt = [rb,t , rc,t+1/Nt]. Under this

specification, the mean-variance parametric portfolio problem takes the familiar form:

min
w

γ

2
w>Σ̂w − w>µ̂, (B.1)

s.t. w1 = 1, (B.2)

where w = [w1, θ] ∈ RK+1 and Σ̂ and µ̂ are the sample covariance matrix and mean

of Rt = [rb,t , rc,t+1]. The result follows by using straightforward algebra to eliminate

the decision variable w1 and the constraint, and then removing terms in the objective

function that do not depend on the parameter vector θ.

Proof of Proposition 3.2

The marginal contributions of the characteristics are given by the subdifferential of the

objective function in (10) with respect to θ. Note that the first four terms in (10) are

differentiable with respect to θ and thus their subdifferentials coincide with their gradient.

It is straightforward to show that the gradients of these four terms are given by the first

four terms in the right-hand side of (11).

The only term that is not differentiable is the implied transaction cost from trading

asset j at time t + 1. According with expression (7), we can define the transaction cost

term for asset j at time t+ 1 as

uj,t+1 = |Λjj,t

(
wj,t+1(θ)− w+

j,t(θ)
)
|, (B.3)

where Λjj,t is the associated transaction cost parameter for asset j at time t. Therefore,

it suffices to characterize the subdifferential of expression (B.3).43 Note that the function

inside the absolute value is differentiable with respect to θ. Thus, applying the chain

rule for subdifferentials, we have that the subdifferential of uj,t+1 with respect to the ith

43See Rockafellar (2015) for an extensive treatment of subdifferentials.
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parametric portfolio weight θi is equal to the subdifferential of the absolute value function

times the differential of Λjj,t

(
wj,t+1(θ)− w+

j,t(θ)
)
.

Note that Λjj,t > 0 and thus, the subdifferential of the absolute value function

is given by the sign function as precisely defined in (13). Finally, the differential of the

term Λjj,t

(
wj,t+1(θ)− w+

j,t(θ)
)

is

d[Λjj,t

(
wj,t+1(θ)− w+

j,t(θ)
)
]

dθi
= Λjj,t[(Xt+1)ji − (Xt)ji(1 + rj,t+1)].

The result follows by adding the subdifferentials of uj,t+1 for j = 1, 2, . . . , Nt, and then

combining the subdifferentials with respect to θi for i = 1, 2, . . . , K into a single vector.

Proof of Proposition 5.1

The trade in the ith stock required to rebalance an equally weighted portfolio of K

characteristics is:

tradeewi =
1

K

K∑
k=1

tradei,k =
1

K

K∑
k=1

[(Xt+1)i,k − (Xt)i,k(1 + ri,t+1)]. (B.4)

Because tradei,k for k = 1, 2, . . . , K are independently and identically distributed as a

Normal distribution with zero mean and standard deviation σ, we have that tradeewi is

distributed as a Normal distribution with zero mean and standard deviation σ/
√
K.

Therefore the average cost of the trade in the ith stock required to rebalance an

equally weighted portfolio of the K characteristics is κi times the mean absolute deviation

of tradeewi , where κi is the transaction-cost parameter for the ith stock. Geary (1935)

shows that the mean absolute deviation of a Normally distributed random variable is√
2/π times its standard deviation. Therefore, the average cost of the trade in the ith

stock required to rebalance an equally weighted portfolio of K characteristics is

TC(tradeewi ) = κi ×
√

2/π × σ/
√
K. (B.5)

Following a similar argument, the average cost of the trade in the ith stock required to

rebalance the kth characteristic in isolation is TC(tradeki ) = κi ×
√

2/π × σ, which is
√
K × TC(tradeewi ).
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Proof of Proposition 5.2

The trade in the ith stock required to rebalance an equally weighted portfolio of K

characteristics is tradeewi = 1
K

∑K
k=1 tradei,k. Because tradei,k for k = 1, 2, . . . , K are

jointly distributed as a multivariate Normal distribution with zero mean and and covari-

ance matrix Ω, we have that tradeewi is distributed as a Normal distribution with zero

mean and standard deviation
√
e>Ωe/K. The results follows from simple algebra and

the arguments in the proof of Proposition 5.1.

Proof of Proposition A.1

Let us consider the following cross-sectional regression model:

rt = Xλt + εt, (B.6)

where rt ∈ RN is the vector of stock returns at time t, X ∈ RN×K is the matrix of

standardized firm characteristics, λt ∈ RK is the vector of slopes at time t, and εt ∈ RN

is the vector of pricing errors at time t.44 The OLS and GLS Fama-MacBeth slopes of

model (B.6) are

λOLS = (X>X)−1X>µ̂r (B.7)

λGLS = (X>Σ̂−1
r X)−1X>Σ̂−1

r µ̂r, (B.8)

where µ̂r is the vector of sample mean returns. It is straightforward to see that λOLS and

λGLS are identical when Σ̂r is the identity matrix. On the other hand, we know that the

solution of a mean-variance parametric portfolio is

θ∗ =
1

γ
Σ̂−1
c µ̂c − Σ̂−1

c σ̂bc. (B.9)

Now, given the assumption that firm characteristics are constant, we can define the

vector of mean characteristic-portfolio returns and the covariance matrix of characteristic-

portfolio returns as µ̂c = X>µ̂r and Σ̂c = X>Σ̂rX, respectively. Assuming that the

covariance between characteristic portfolio returns and the benchmark portfolio is zero,

expression (B.9) can be then redefined as

θ∗ =
1

γ
(X>Σ̂rX)−1X>µ̂r. (B.10)

44Note that we now assume that characteristics Xt and the number of firms Nt are constant through
time and therefore we can drop subscripts t.
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Therefore, one can see that λOLS, λGLS and θ∗ will be equivalent when Σ̂r is the identity

matrix of dimension N and the covariance between characteristic portfolio returns and

the benchmark portfolio is zero.

Proof of Corollary A.2

The result in Corollary A.2 follows from the assumption that X>X = I, which implies

that λOLS = X>µ̂r = µ̂c. Then, if the covariance between characteristic-portfolio re-

turns and the benchmark portfolio is zero, we can define the solution of a mean-variance

parametric portfolio as

θ∗ =
1

γ
Σ̂−1
c λOLS. (B.11)

Proof of Proposition A.3

We can estimate model (A.7) with OLS. The corresponding optimization problem, in

matrix form, is

min
α,β

r>b rb + α2T + β>r>c rcβ − 2αr>b eT + 2r>b rcβ − 2αe>T rcβ

s.t. µ̂>c β = µ0,

where eT is a T -dimensional vector of ones. Now, given that Σ̂c = r>c rc − µ̂cµ̂>c , σ̂bc =

r>b rc − µ̂bµ̂>c , and e>T rc = T µ̂c, we can write the above problem as

min
α,β

r>b rb + α2T + β>Σ̂cβ + β>µ̂cµ̂
>
c β − 2αr>b eT + 2(σ̂bc + µ̂bµ̂c)

>β − 2αT µ̂>c β

s.t. µ̂>c β = µ0,

and now, because µ̂>c β is constant in the feasible region, we can obtain the OLS slopes

of (A.7) as the solution to the following problem:

min
β

β>Σ̂cβ + 2σ̂bcβ

s.t. µ̂>c β = µ0,

which is a quadratic mean-variance optimization problem. If we set µ0 equal to the

solution of the mean-variance parametric portfolio problem times the vector of mean

characteristic portfolio returns, this is θ∗>µ̂c, the OLS slopes of the time-series model in

(A.7) coincide with the solution of the mean-variance parametric portfolio problem in

(5).
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Table 1: List of characteristics considered

This table lists the characteristics we consider ordered alphabetically by acronym. The first column gives the number of the characteristic, the second
column gives the characteristic’s definition, the third column gives the acronym, and the fourth and fifth columns give the authors who analyzed
them, and the date and journal of publication. Our definitions and acronyms match those in Green et al. (2014).

# Characteristic and definition Acronym Author(s) Date and Journal

1 Abnormal volume in earnings announcement: Average daily trading volume for 3 days
around earnings announcement minus average daily volume for 1-month ending 2 weeks
before earnings announcement divided by 1-month average daily volume. Earnings an-
nouncement day from Compustat quarterly

aeavol Lerman, Livnat & Mendenhall 2007, WP

2 Asset growth: Annual percent change in total assets agr Cooper, Gulen & Schill 2008, JF
3 Bid-ask spread: Monthly average of daily bid-ask spread divided by average of daily

spread
baspread Amihud & Mendelson 1989, JF

4 Beta: Estimated market beta from weekly returns and equal weighted market returns for
3 years ending month t− 1 with at least 52 weeks of returns

beta Fama & MacBeth 1973, JPE

5 Book to market: Book value of equity divided by end of fiscal-year market capitalization bm Rosenberg, Reid & Lanstein 1985, JPM
6 Industry adjusted book to market: Industry adjusted book-to-market ratio bm ia Asness, Porter & Stevens 2000, WP
7 Cash productivity: Fiscal year-end market capitalization plus long term debt minus total

assets divided by cash and equivalents
cashpr Chandrashekar & Rao 2009 WP

8 Industry adjusted change in asset turnover: 2-digit SIC fiscal-year mean adjusted change
in sales divided by average total assets

chatoia Soliman 2008, TAR

9 Change in shares outstanding: Annual percent change in shares outstanding chcsho Pontiff & Woodgate 2008, JF
10 Industry adjusted change in employees: Industry-adjusted change in number of employees chempia Asness, Porter & Stevens 1994, WP
11 Change in 6-month momentum: Cumulative returns from months t − 6 to t − 1 minus

months t− 12 to t− 7
chmom Gettleman & Marks 2006 WP

12 Industry adjusted change in profit margin: 2-digit SIC fiscal-year mean adjusted change
in income before extraordinary items divided by sales

chpmia Soliman 2008, TAR

13 Change in tax expense: Percent change in total taxes from quarter t− 4 to t chtx Thomas & Zhang 2011 JAR
14 Convertible debt indicator: An indicator equal to 1 if company has convertible debt

obligations
convind Valta 2016 JFQA

15 Dollar trading volume in month t−2: Natural log of trading volume times price per share
from month t− 2

dolvol Chordia, Subrahmanyan & Anshuman 2001, JFE

16 Dividends-to-price: Total dividends divided by market capitalization at fiscal year-end dy Litzenberger & Ramaswamy 1982, JF
17 3-day return around earnings announcement: Sum of daily returns in three days around

earnings announcement. Earnings announcement from Compustat quarterly file
ear Kishore, Brandt, Santa-Clara & Venkatachalam 2008, WP

18 Change in common shareholder equity: Annual percent change in book value of equity egr Richardson, Sloan, Soliman & Tuna 2005, JAE
19 Earnings to price: Annual income before extraordinary items divided by end of fiscal year

market cap
ep Basu 1977, JF

20 Gross profitability: Revenues minus cost of goods sold divided by lagged total assets gma Novy-Marx 2013 JFE
21 Industry sales concentration: Sum of squared percent of sales in industry for each company herf Hou & Robinson 2006, JF
22 Employee growth rate: Percent change in number of employees hire Bazdresch, Belo & Lin 2014 JPE
23 Idiosyncratic return volatility: Standard deviation of residuals of weekly returns on weekly

equal weighted market returns for 3 years prior to month-end
idiovol Ali, Hwang & Trombley 2003, JFE

24 Industry momentum: Equal weighted average industry 12-month returns indmom Moskowitz & Grinblatt 1999, JF
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Table 1 continued: List of characteristics considered

# Characteristic and definition Acronym Author(s) Date and Journal

25 Leverage: Total liabilities divided by fiscal year-end market capitalization lev Bhandari 1988, JF
26 Change in long-term debt: Annual percent change in total liabilities lgr Richardson, Sloan, Soliman & Tuna 2005, JAE
27 12-month momentum: 11-month cumulative returns ending one month before month-end mom12m Jegadeesh 1990, JF
28 1-month momentum: 1-month cumulative return mom1m Jegadeesh 1990, JF
29 36-month momentum: Cumulative returns from months t− 36 to t− 13 mom36m De Bondt & Thaler 1985, JF
30 6-month momentum: 5-month cumulative returns ending one month before month-end mom6m Jegadeesh & Titman 1990, JF
31 Market capitalization: Natural log of market capitalization at end of month t− 1 mve Banz 1981, JFE
32 Industry-adjusted firm size: 2-digit SIC industry-adjusted fiscal year-end market capital-

ization
mve ia Asness, Porter & Stevens 2000, WP

33 ∆% CAPEX - industry ∆% AR: 2-digit SIC fiscal-year mean adjusted percent change in
capital expenditures

pchcapx ia Abarbanell & Bushee 1998, TAR

34 ∆% gross margin - ∆% sales: Percent change in gross margin minus percent change in
sales

pchgm pchsale Abarbanell & Bushee 1998, TAR

35 ∆% sales - ∆% AR: Annual percent change in sales minus annual percent change in
receivables

pchsale pchrect Abarbanell & Bushee 1998, TAR

36 Price delay: The proportion of variation in weekly returns for 36 months ending in month
t explained by 4 lags of weekly market returns incremental to contemporaneous market
return

pricedelay How & Moskowitz 2005, RFS

37 Financial-statements score: Sum of 9 indicator variables to form fundamental health score ps Piotroski 2000, JAR
38 R&D to market cap: R&D expense divided by end-of-fiscal-year market capitalization rd mve Guo, Lev & Shi 2006, JBFA
39 Return volatility: Standard deviation of daily returns from month t− 1 retvol Ang, Hodrick, Xing & Zhanf 2006, JF
40 Return on assets: Income before extraordinary items divided by one quarter lagged total

assets
roaq Balakrishnan, Bartov & Faurel 2010, JAE

41 Revenue surprise: Sales from quarter t minus sales from quarter t − 4 divided by fiscal-
quarter-end market capitalization

rsup Kama 2009, JBFA

42 Sales to cash: Annual sales divided by cash and cash equivalents salecash Ou & Penman 1989, JAE
43 Sales to inventory: Annual sales divided by total inventory saleinv Ou & Penman 1989, JAE
44 Sales to receivables: Annual sales divided by accounts receivable salerec Ou & Penman 1989, JAE
45 Annual sales growth: Annual percent change in sales sgr Lakonishok, Shleifer & Vishny 1994, JF
46 Volatility of dollar trading volume: Monthly standard deviation of daily dollar trading

volume
std dolvol Chordia, Subrahmanyan & Anshuman 2001, JFE

47 Volatility of share turnover: Monthly standard deviation of daily share turnover std turn Chordia, Subrahmanyan & Anshuman 2001, JFE
48 Cashflow volatility: Standard deviation for 16 quarters of cash flows divided by sales stdcf Huang 2009, JEF
49 Unexpected quarterly earnings: Unexpected quarterly earnings divided by fiscal-quarter-

end market cap. Unexpected earnings is I/B/E/S actual earnings minus median fore-
casted earnings if available, else it is the seasonally differenced quarterly earnings before
extraordinary items from Compustat quarterly file

sue Rendelman, Jones & Latane 1982, JFE

50 Share turnover: Average monthly trading volume for most recent 3 months scaled by
number of shares outstanding in current month

turn Datar, Naik & Radcliffe 1998, JFM

51 Zero trading days: Turnover weighted number of zero trading days for most recent month zerotrade Liu 2006, JFE
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Table 2: Significance and marginal contributions without transaction costs

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5. We run a screen-and-clean significance test. For the screen
step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso
threshold that maximizes investor’s utility is δ = 25. For the clean step, we run the bootstrap experiment for
the parametric portfolios using those characteristics with nonzero θ’s from the previous step plus the three
characteristics considered in Brandt et al. (2009): size, book to market, and momentum. Characteristic p-
values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks
(∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. For each characteristic,
the first column gives the acronym, the second the optimal value of the parameter and the significance aster-
isks, and the next four columns give the marginal contribution of the characteristic to: (i) the characteristic
own-variance, (ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the
covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contribu-
tions that drive the characteristic to be nonzero are in blue sans serif font, and contributions that drive the
characteristic toward zero are in red italic font (cf. Footnote 21).

Marginal contributions to
Characteristic Param. variance cov (char.) cov (bench.) mean

sue 20.12∗∗∗ 0 .00341 −0.00068 −0.00019 −0.00254
retvol −10.85∗∗∗ −0 .03529 0.02914 0.00292 0.00323
agr −10.37∗∗ −0 .00397 0.00050 0.00057 0.00290
mom1m −3.10∗∗ −0 .00509 0.00454 −0 .00109 0.00164
gma 5.97∗∗ 0 .00252 −0.00255 0 .00069 −0.00066
beta 2.36∗ 0 .00971 −0.01381 0 .00419 −0.00008
bm ia 6.49 0 .00337 −0.00328 0 .00072 −0.00081
chcsho −5.89 −0 .00210 −0 .00111 0.00092 0.00228
rd mve 6.01 0 .00215 −0.00096 0 .00045 −0.00164
std turn 8.53 0 .01442 −0.01576 0 .00214 −0.00080
bm 3.10 0 .00264 0 .00023 −0.00082 −0.00205
mve −4.02 −0 .00136 0.00148 −0 .00034 0.00022
mom12m −4.42 −0 .00784 0.01125 −0 .00066 −0 .00275
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Table 3: Correlations of significant characteristics

This table reports the correlation matrix for the returns of the six characteristics that are most significant in the absence of transaction costs and the
returns of the three characteristics considered in Brandt et al. (2009): size (mve), book to market (bm), and momentum (mom12m).

Characteristics sue retvol agr mom1m gma beta bm mve mom12m

Unexpected quarterly earnings (sue) 1.00 −0.43 −0.08 0.18 −0.18 −0.36 −0.05 0.41 0.45
Return volatility (retvol) −0.43 1.00 0.22 −0.18 0.45 0.93 −0.46 −0.63 −0.17
Asset growth (agr) −0.08 0.22 1.00 −0.33 0.56 0.33 −0.64 0.03 −0.17
1-month momentum (mom1m) 0.18 −0.18 −0.33 1.00 −0.23 −0.26 0.14 0.19 0.28
Gross profitability (gma) −0.18 0.45 0.56 −0.23 1.00 0.54 −0.62 −0.24 −0.06
Beta (beta) −0.36 0.93 0.33 −0.26 0.54 1.00 −0.54 −0.52 −0.21
Book to market (bm) −0.05 −0.46 −0.64 0.14 −0.62 −0.54 1.00 −0.05 −0.08
Market capitalization (mve) 0.41 −0.63 0.03 0.19 −0.24 −0.52 −0.05 1.00 0.20
12-month momentum (mom12m) 0.45 −0.17 −0.17 0.28 −0.06 −0.21 −0.08 0.20 1.00
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Table 4: Significance and marginal contributions with transaction costs

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5. We run a screen-and-clean significance test. For
the screen step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find
that the lasso threshold that maximizes investor’s utility is δ = 25. For the clean step, we run the boot-
strap experiment for the parametric portfolios using those characteristics with nonzero θ’s from the previous
step plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momen-
tum. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
For each characteristic, the first column gives the acronym, the second the optimal value of the parameter
and the significance asterisks, and the next five columns give the marginal contribution of the characteristic
to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics
in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when it is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 21).

Marginal contributions to Indiv.
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 11.85∗∗∗ 0 .00425 −0.00333 0 .00045 −0.00164 0 .00027 0 .00055
agr −7.27∗∗∗ −0 .00278 −0 .00012 0.00057 0.00290 −0 .00057 0 .00125
sue 3.00∗∗∗ 0 .00051 0 .00077 −0.00019 −0.00254 0 .00146 0 .00240
turn −3.41∗∗∗ −0 .00806 0.00502 0.00279 0.00068 −0 .00043 0 .00177
retvol −1.92∗∗∗ −0 .00623 0.00148 0.00292 0.00323 −0 .00139 0 .00468
std turn 1.28∗∗∗ 0 .00217 −0.00433 0 .00214 −0.00080 0 .00082 0 .00493
zerotrade −1.53∗∗∗ −0 .00129 0.00284 −0 .00205 0.00124 −0 .00075 0 .00235
chatoia 4.51∗∗ 0 .00029 0 .00008 −0.00005 −0.00077 0 .00046 0 .00116
chtx 1.36∗∗ 0 .00026 −0.00022 0 .00015 −0.00123 0 .00104 0 .00232
beta 3.39∗∗ 0 .01398 −0.01829 0 .00419 −0.00008 0 .00021 0 .00126
ps 4.94∗∗ 0 .00156 −0.00027 −0.00068 −0.00127 0 .00066 0 .00140
gma 6.60∗∗ 0 .00278 −0.00298 0 .00069 −0.00066 0 .00016 0 .00090
herf −5.78∗∗ −0 .00144 0.00061 0.00041 0.00061 −0 .00019 0 .00077
mom1m −0.62∗∗ −0 .00102 0.00258 −0 .00109 0.00164 −0 .00211 0 .00857
bm ia 2.85∗∗ 0 .00148 −0.00168 0 .00072 −0.00081 0 .00029 0 .00128
stdcf −5.05∗ −0 .00259 0.00101 0.00068 0.00114 −0 .00024 0 .00067
pchgm pchsale 3.46∗ 0 .00034 0 .00006 −0.00003 −0.00079 0 .00042 0 .00122
chcsho −3.11∗ −0 .00111 −0 .00166 0.00092 0.00228 −0 .00044 0 .00123
bm 1.74∗ 0 .00148 0 .00122 −0.00082 −0.00205 0 .00017 0 .00121
chmom −0.67 −0 .00065 0.00166 −0 .00073 0.00044 −0 .00072 0 .00404
baspread 0.55 0 .00240 −0.00795 0 .00329 0 .00279 −0.00053 0 .00322
ep 1.27 0 .00206 0 .00045 −0.00166 −0.00104 0 .00018 0 .00125
idiovol −1.80 −0 .00680 0.00194 0.00308 0.00187 −0 .00008 0 .00109
roaq −0.12 −0 .00014 0.00292 −0 .00114 −0 .00215 0.00051 0 .00186
mve −2.28 −0 .00077 0.00092 −0 .00034 0.00022 −0 .00003 0 .00045
mom12m −0.61 −0 .00109 0.00418 −0 .00066 −0 .00275 0.00031 0 .00265
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Table 5: Out-of-sample performance

This table reports the out-of-sample performance of the regularized parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5. Panel A reports the performance for the portfolios
that do not use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally
weighted portfolio (1/N). Panel B reports the performance of four parametric portfolios: the parametric
portfolio that exploits the size, book-to-market, and momentum characteristics (Size/val./mom.), the para-
metric portfolio that exploits the size, book-to-market, asset growth, and gross profitability characteristics
(Size/val./inv./prof.), the parametric portfolio that exploits the 15 most significant characteristics identified
using the entire sample (Fifteen significant characteristics), and the regularized parametric portfolio that
identifies the characteristics ex ante (Regularized). The lasso threshold is calibrated using cross-validation
over the estimation window. For each portfolio, the first column reports the monthly turnover, and the next
three columns report the out-of-sample annualized mean, standard deviation, and Sharpe ratio of returns,
net of transaction costs. We test the significance of the difference of the Sharpe ratio of each portfolio
with that of the regularized parametric portfolio. Three/two/one asterisks (∗) indicate that the difference is
significant at the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no characteristics
VW 0.050 0.085 0.150 0.567∗∗∗

1/N 0.134 0.085 0.177 0.482∗∗∗

Panel B: Portfolios with characteristics
Size/val./mom. 0.754 0.145 0.215 0.675∗∗∗

Size/val./inv./prof. 0.963 0.236 0.220 1.072∗∗

Fifteen significant characteristics 1.065 0.223 0.166 1.343
Regularized 0.979 0.241 0.178 1.356
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Table 6: Factor loadings of regularized parametric portfolios

This table reports the intercept, slopes, and t-statistics (in brackets) from regressing the out-of-sample
regularized portfolio returns onto three different factor models: (1) the Fama and French (1993) and Carhart
(1997) four-factor model (FFC) that includes the market, size (SMB), value (HML), and momentum (UMD)
factors; (2) the Fama and French (2015) five-factor model (FF5) that includes the market, size, value,
profitability (RMW), and investment (CMA) factors; and, (3) the Hou et al. (2014) four-factor model (HXZ)
that includes the market, size, investment (I/A), and profitability (ROE) factors. We report t-statistics with
Newey-West adjustments of 12 lags. Factors are obtained from Kenneth French’s and Lu Zhang’s websites.

FFC Coefficient FF5 Coefficient HXZ Coefficient

α 0.0115 α 0.0102 α 0.0095
[4.12] [3.59] [2.89]

Market 0.8898 Market 0.9747 Market 0.9147
[15.29] [15.35] [11.90]

SMB 0.0745 SMB 0.1212 SMB 0.2547
[0.49] [0.84] [1.37]

HML 0.3697 HML −0.2640 I/A 0.7491
[1.84] [−1.71] [2.65]

UMD 0.3249 RMW 0.2554 ROE 0.3316
[2.46] [1.31] [1.69]

CMA 1.0852
[3.64]
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Table 7: Fama-MacBeth regressions for significant characteristics

This table reports the slope coefficients from Fama-MacBeth regressions and the corresponding t-statistics
(in brackets) with Newey-West adjustments of 12 lags. We report the results for multiple and individual
regressions for the six most significant characteristics in the absence of transaction costs, and the three char-
acteristics considered in Brandt et al. (2009): size (mve), book to market (bm), and momentum (mom12m).

Characteristic Multiple Individual

Unexpected quarterly earnings (sue) 0.0019 0.0027
[7.38] [7.10]

Return volatility (retvol) −0.0037 −0.0032
[−4.42] [−2.22]

Asset growth (agr) −0.0026 −0.0031
[−5.39] [−5.09]

1-month momentum (mom1m) −0.0033 −0.0017
[−4.67] [−2.13]

Gross profitability (gma) 0.0020 0.0007
[3.80] [1.34]

Beta (beta) 0.0013 0.0001
[0.99] [0.04]

Book to market (bm) 0.0016 0.0021
[2.11] [2.17]

Market capitalization (mve) −0.0007 −0.0002
[−1.76] [−0.40]

12-month momentum (mom12m) 0.0026 0.0030
[2.43] [2.45]
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Figure 1: Marginal contributions of significant characteristics

This figure shows the marginal contributions to the investor’s utility of the six significant characteristics in the absence of transaction costs. The
horizontal axis gives the labels of the significant characteristics: unexpected quarterly earnings (unexp. earn.), return volatility (ret. vol.), asset
growth, 1-month momentum (reversals), grow profitability (profit.), and beta. Contributions that drive the characteristic to be nonzero are depicted
with positive bars, and contributions that drive the characteristic toward zero are depicted with negative bars; cf. Footnote 21.
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Figure 2: Beta and return-volatility cumulative returns

This figure shows the cumulative returns of a strategy that goes long on beta (long beta) and a strategy
that goes short on return volatility (short retvol). Panel (a) depicts the cumulative returns for long beta and
short retvol, together with the cumulative return of a blended strategy formed by assigning 50% weight to
beta and −50% to retvol. Panel (b) depicts the cumulative returns of the blended strategy with beta and
retvol and the cumulative returns of a blended strategy that assigns 50% to book to market (bm) and 50%
to 12-month momentum (mom12m). For comparison purposes in Panel (b) we normalize both strategies so
that they have the same volatility.
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Figure 3: Marginal contribution to transaction costs of characteristics traded in combination and individually

This figure shows the marginal contribution to transaction costs (in absolute value) when characteristics are traded in combination with other
characteristics (Combination), and when characteristics are traded in isolation (Individual). We plot the marginal contribution to transaction costs
of the 15 most significant characteristics in Table 4.
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Figure 4: Out-of-sample cumulative returns

This figure shows the out-of-sample cumulative returns of the value-weighted portfolio (VW) and
four different parametric portfolios in the presence of transaction costs, for risk-aversion parameter
γ = 5. The four parametric portfolios are: the parametric portfolio that exploits the size, book-to-
market, and momentum characteristics (Size/val./mom.), the parametric portfolio that exploits the
size, book-to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.), the
parametric portfolio with the 15 most significant characteristics identified using the entire sample
(Fifteen significant characteristics), and the regularized parametric portfolio that identifies the char-
acteristics ex ante (Regularized). The lasso threshold is calibrated using cross-validation over the
estimation window. For comparison purposes we normalize all portfolio returns so that they have
the same volatility.
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