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Abstract

We develop an empirical framework in which we identify and estimate the effects of
treatments on outcomes of interest when the treatments are results of strategic interac-
tion (e.g., bargaining, oligopolistic entry, decisions in the presence of peer effects). We
consider a model where agents play a discrete game with complete information whose
equilibrium actions (i.e., binary treatments) determine a post-game outcome in a non-
separable model with endogeneity. Due to the simultaneity in the first stage, the model
as a whole is incomplete and the selection process fails to exhibit the conventional mono-
tonicity. Without imposing parametric restrictions or large support assumptions, this
poses challenges in recovering treatment parameters. To address these challenges, we
first analytically characterize regions that predict equilibria in the first-stage game with
possibly more than two players, whereby we find a certain monotonic pattern of these
regions. Based on this finding, we derive bounds on the average treatment effects (ATE’s)
under nonparametric shape restrictions and the existence of excluded variables. We also
introduce and point identify a multi-treatment version of local average treatment effects
(LATE’s).

JEL Numbers: C14, C35, C57
Keywords: Heterogeneous treatment effects, strategic interaction, endogenous treatments,
average treatment effects, local average treatment effects.

1 Introduction

We develop an empirical framework in which we identify and estimate the heterogeneous
effects of treatments on outcomes of interest where the treatments are results of strategic
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interaction (e.g., bargaining, oligopolistic entry, decisions in the presence of peer effects or
strategic effects). Treatments are determined as an equilibrium of a game and these strategic
decisions of players endogenously affect common or player-specific outcomes. For example,
one may be interested in the effects of newspaper entry on local political behaviors, the effects
of entry of carbon-emitting companies on local air pollution and health outcomes, the effects
of the presence of potential entrants in nearby markets on pricing or investment decisions of
incumbents, the effects of large supermarkets’ exit decisions on local health outcomes, and
the effects of provision of limited resources where individuals make participation decisions
under peer effects as well as based on their own gains from the treatment. As reflected in
some of these examples, our framework allows us to study externalities of strategic decisions,
such as societal outcomes resulting from firm behaviors. Ignoring strategic interaction in
treatment selection processes may lead to biased, or at least less informative, conclusions
about the effects of interest.

We consider a model where agents play a discrete game with complete information, whose
equilibrium actions (i.e., a profile of binary endogenous treatments) determine a post-game
outcome in a nonseparable model with endogeneity. We are interested in various treatment
parameters in this model. In recovering these parameters, the setting of this paper poses
several challenges. First, the first-stage game posits a structure in which binary dependent
variables are simultaneously determined, thereby making the model as a whole incomplete.
Second, due to this simultaneity, the selection process does not exhibit the conventional mono-
tonic property á la Imbens and Angrist (1994). Furthermore, we want to remain flexible with
other components of the model. That is, we make no assumptions on the joint distributions
of the unobservables nor parametric restrictions on the player’s payoff function and on how
treatments affect the outcome. Also, we do not impose any arbitrary equilibrium selection
mechanism as a way of solving the multiplicity of equilibria. In nonparametric models with
multiplicity or/and endogeneity, identification may be achieved with excluded instruments of
large support. Even though such a requirement is met in practice, estimation and inference
can still be problematic (Andrews and Schafgans (1998), Khan and Tamer (2010)). We thus
allow instruments and other exogenous variables to be discrete and have small supports.

The first contribution of this paper is that, as an important initial step to address the
challenges described above, we analytically characterize regions that predict equilibria in the
first-stage game. Complete analytical characterization of the equilibrium regions for more
than two players has not been studied in the literature.1 Under symmetry and strategic
substitutability restrictions on the payoff functions, we fully characterize the geometric prop-
erties of the regions in the space of unobservables, which describe the properties of equilibria
in the game. More importantly, we show that these regions exhibit a monotonic pattern in
terms of the number of players who choose to take the action—e.g., the number of entrants
in an entry game.

The second contribution of this paper is that, after restoring a generalized version of
monotonicity in the selection process, we show how the model structure and the data can
be informative about treatment parameters, such as the average treatment effects (ATE’s)

1To estimate payoff parameters, Berry (1992) partly characterizes equilibrium regions. To calculate the
bounds on these parameters, Ciliberto and Tamer (2009) simulate their moment inequalities model that are
implied by the shape of these regions, especially the regions for multiple equilibria. While their approaches
are enough for the purpose of their analyses, full analytical results are critical for the identification analysis
of the current paper.

2



and the local ATE (LATE’s). We first establish the bounds on the ATE and other related
parameters with possibly discrete instruments of small support. We also show that tighter
bounds on the ATE can be obtained by introducing (possibly discrete) exogenous variables
excluded from the first-stage game. This is especially motivated when the outcome variable
is generated from externalities incurred by the players. We can derive sharp bounds as long
as the outcome variable is binary. Further, with continuous instruments of large supports, we
show that multiplicity and endogeneity become irrelevant and the ATE is point identified. To
derive informative bounds, we impose nonparametric shape restrictions on the outcome func-
tion, such as conditional symmetry and uniformity. The symmetry assumption is eventually
relaxed by using instruments that vary enough to offset the effect of strategic substitutabil-
ity. We provide a simple testable implication for the existence of such instruments variation
provided that the payoff unobservables are mutually independent. The symmetry assump-
tion may alternatively be relaxed by assuming that strategic interaction occurs only within
subgroups of players, thus allowing for partial symmetry. Next, we introduce and point
identify a multi-treatment version of the LATE. The simultaneity in the selection process
does not permit the usual equivalence result by Vytlacil (2002) between the specification of a
threshold-crossing selection rule and Imbens and Angrist (1994)’s monotonicity assumption.
A monotonic pattern restored for the equilibrium regions, however, enables us to recover the
LATE for a treatment of “dichotomous states.” A marked feature of our analyses is that for
the sharp bounds on the ATE and the identification of the LATE, player-specific instruments
are not necessary.

Partial identification in single-agent nonparametric triangular models with binary endoge-
nous variables has been studied in Shaikh and Vytlacil (2011) and Chesher (2005), among
others. Shaikh and Vytlacil (2011) provide bounds on the ATE in this setting. In a slightly
more general model, Vytlacil and Yildiz (2007) achieve point identification with an exogenous
variable that is excluded from the selection equation and has a large support. Our bound
analysis builds on these papers, but we study a multi-agent model with strategic interaction
as a key component of the model. A few existing studies have extended a single-treatment
model to a multiple-treatment setting (e.g., Heckman et al. (2006), Jun et al. (2011)), but
their models maintain monotonicity in the selection process and none of them allow simul-
taneity among the multiple treatments resulting from agents’ interaction as we do in this
paper.

In interesting recent work, Pinto (2015), Heckman and Pinto (2015), and Lee and Salanié
(2016) extend the monotonicity of the selection process in multi-valued treatments settings,
but they generally consider different types of treatment selection mechanisms than ours.
Pinto (2015) and Heckman and Pinto (2015) introduce unordered monotonicity, and Lee and
Salanié (2016) consider more general non-monotonicity. The latter paper does mention entry
games as one example of treatment selection processes they allow, but they assume known
payoffs and bypass the multiplicity of equilibria, which is one of the emphases of our paper.
Also, Lee and Salanié (2016)’s main focus is on identification of marginal treatment effects
with continuous instruments. In another important work, Chesher and Rosen (2017) consider
a wide class of generalized instrumental variable models in which our model falls and propose
a systematic method of characterizing sharp identified sets for admissible structures. The
focus of the present paper is to point and partially identify particular structural features (i.e.,
treatment parameters) analytically, and to investigate how the identification is related to the
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exogenous sources of variation in the model and to the equilibrium characterization in the
treatment selection process. Calculating the sharp bounds on these treatment parameters
using their general approach involves projections of identified sets that may require additional
parametric restrictions. Lastly, Han (2018) considers nonparametric identification of optimal
treatment regimes and dynamic treatment effects, where generalized monotonicity in the
determination of each period’s outcome and treatment is restored under some nonparametric
shape restrictions.

Without triangular structures, Manski (1997), Manski and Pepper (2000) and Manski
(2013) also propose bounds on the ATE with multiple treatments under various monotonic-
ity assumptions, including an assumption on the sign of treatment response. We take an
alternative approach that is more explicit about treatments interaction while remaining ag-
nostic about the direction of treatment response. Our results suggest that, provided that
there exist exogenous variation excluded from the selection process, the bounds calculated
from this approach can be more informative than those from their approach. Among these
papers, Manski (2013) is the closest to ours in that it considers multiple treatments and
multiple agents with simultaneous interaction, but with an important difference from our
approach. The interaction in his setting is through individuals which are the unit of observa-
tion. On the other hand, our setting features the interaction through the treatment/player
unit, and the unit of observation is i.i.d. markets or regions in which the first-stage game is
played and from which the outcome variable may emerge.

Identification in models for binary games with complete information has been studied
in Tamer (2003) and Ciliberto and Tamer (2009), Bajari et al. (2010), among others. The
present paper contributes to this literature by considering post-game outcomes in the model,
especially those that are not the game players’ direct concerns. As related work that considers
post-game outcomes, Ciliberto et al. (2016) introduce a model where firms make simultaneous
decisions of entry and pricing upon entry. As a result, their model can be seen as a multi-
agent extension of a sample selection model. The model considered in this paper, on the
other hand, is a multi-agent extension of a model for endogenous treatments. Ciliberto and
Tamer (2009) and Ciliberto et al. (2016) recover model primitives as their parameters of
interest and they impose parametric assumptions to facilitate their analyses. In contrast, our
parameters of interest are functionals of the primitives (but excluding the game parameters)
and thus allow our model to remain essentially nonparametric. Also a different approach to
partial identification under multiplicity is employed, as their approach is not applicable to
the particular setting of this paper even if the distribution of the unobserved payoff types is
assumed to be known.

The paper is organized as follows. Section 2 introduces the model, the parameters of
interest, and motivating examples. As the first main result of this paper, Section 3 presents
the analytical characterization of equilibrium regions for many players. Section 4 delivers
the partial identification results of this paper. We start by conducting the bound analysis on
the ATE’s for a two-player case and a binary dependent variable as an illustration. Then we
extend the results to a many-player case with a more general dependent variable. Section 5
relaxes the symmetry assumption introduced in the previous section, and Section 6 discusses
an extension of the model, point identification under large support, and relationship to Manski
(2013). The LATE parameter is introduced and identified in Section 7. Section 8 presents
a numerical illustration. Unless noted, the proofs of theorems and lemmas are collected in
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Appendix D.
For a generic S̃-vector v ≡ (v1, ...vS̃), let v−s denote an (S̃−1)-vector where s-th element

is dropped from v, i.e., v−s ≡ (v1, ..., vs−1, vs+1, ..., vS̃). When no confusion arises, we some-
times change the order of entry and write v = (vs,v−s) for convenience. For a multivariate
function f(v), the integral

∫
A f(v)dv is understood as a multi-dimensional integral over a set

A contained in the space of v. Vectors in this paper are row vectors.

2 Setup and Motivating Examples

Let D ≡ (D1, ..., DS) ∈ D ⊆ {0, 1}S be a S-vector of observed binary treatments and
d ≡ (d1, ..., dS) be its realization, where S is fixed. We assume that D is predicted as a pure
strategy Nash equilibrium of a complete information game with S players who make entry
decisions or individuals who choose to receive treatments.2 Let Y be an observed post-game
outcome that results from profileD of endogenous treatments. It can be an outcome common
to all players or an outcome specific to each player. Let (X,Z1, ..., ZS) be observed exogenous
covariates. We consider a model of a semi-triangular system:

Y = θ(D, X, εD), (2.1)

Ds = 1 [νs(D−s, Zs) ≥ Us] , s ∈ {1, ..., S}, (2.2)

where s is an index for players or interchangeably for treatments. Without loss of generality
we normalize the scalar Us to be distributed as Unif(0, 1), and νs : RS−1+dzs → (0, 1]
and θ : RS+dx+1 → R are unknown functions that are nonseparable in their arguments. We
allow the unobservables (εD, U1, ..., US) to be arbitrarily dependent to one another. Although
the notation suggests that the instruments Zs’s are player/treatment-specific they are not
necessarily required to be so for the analyses of this paper; see Appendix C for this discussion.
The exogenous variables X are variables excluded from all the equations for Ds. The existence
of X is not necessary but useful for the bound analysis of the ATE, and it can be motivated
when Y is generated from externalities incurred by the players and thus does not enter the
players’ first-stage payoff functions. There may be covariates W common to all the equations
for Y and Ds, which is suppressed for succinctness. Implied from the complete information
game, player s’s decision Ds depends on the decisions of all others D−s in D−s, and thus D
is determined by a simultaneous system. The model (2.1)–(2.2) is incomplete, i.e., the model
primitives and the covariates do not uniquely predict (Y,D) due to the possible existence of
multiple equilibria in the first-stage game of treatment selection. Moreover, the conventional
monotonicity in the sense of Imbens and Angrist (1994) is not exhibited in the selection
process due to simultaneity. The unit of observation, indexed by market or geographical
region i, is suppressed in all the expressions.

The potential outcome of receiving D = d can be written as

Yd = θ(d, X, εd), d ∈ D,

and εD =
∑

d∈D 1[D = d]εd. We are interested in the ATE and related parameters. With

2While mixed strategy equilibria are not considered in this paper, it may be possible to extend the setup
to incorporate mixed strategies following the argument in Ciliberto and Tamer (2009).
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the average structural function (ASF) E[Yd|X = x] for vector d ∈ D, the ATE can be written
as

E[Yd − Yd′ |X = x] = E[θ(d, x, εd)− θ(d′, x, εd′)], (2.3)

for d,d′ ∈ D. Another parameter of interest is the average treatment effect on the treated
(ATT): E[Yd − Yd′ |D = d′′, Z = z,X = x] for d,d′,d′′ ∈ D. Unlike the ATT or the
treatment of the untreated in the single-treatment case, d′′ does not necessarily equal d or
d′ here. One might also be interested in the sign of the ATE, which in this multi-treatment
case is essentially establishing an ordering among the ASF’s. Lastly, we are interested in the
LATE, which will be considered later after necessary concepts are introduced.

As an example of the ATE, we may choose d = (1, ..., 1) and d′ = (0, ..., 0) to measure
some cancelling-out effect, or we may be interested in more general nonlinear effects. Another
example would be choosing d = (1,d−s) and d′ = (0,d−s) for given d−s. In the latter
example, we can learn interaction effects of treatments, i.e., how much the average gain
(ATE) from treatment s is affected by other treatments: suppressing the conditioning on
X = x,

E
[
Y1,d−s − Y0,d−s

]
− E

[
Y1,d′−s

− Y0,d′−s

]
,

where Yd is interchangeably written as Yds,d−s here. For example with d−s = (1, ..., 1) and
d′−s = (0, ..., 0), complementarity between treatment s and all the other treatments can be

represented as E
[
Y1,d−s − Y0,d−s

]
−E

[
Y1,d′−s

− Y0,d′−s

]
> 0. Sometimes, we instead want to

focus on learning about complementarity between two treatments, while averaging over the
other S − 2 treatments. This can be dealt with a more general framework of defining the
ASF and ATE by introducing a partial potential outcome; this is discussed in Appendix A.

In identifying these treatment parameters, suppose we attempt to recover the effect of a
single treatment withD1 being a scalar in model (2.1)–(2.2) conditional on D2 = D−s = d−s,
and then recover the effects of multiple treatments by transitively using these effects of
single treatments. This strategy is not valid since D2 is a function of D1 and also due to
multiplicity. Therefore, the approaches in the literature with single-treatment, single-agent
triangular models are not directly applicable and a new theory is demanded in this more
general setting.

We provide two examples to which model (2.1)–(2.2) may apply; other examples men-
tioned in the introduction are discussed in Appendix B.

Example 1 (Externality of airline entry). In this example, we are interested in the effects
of airline competition on local air quality and health. Consider multiple airline companies
making entry decisions in local market i defined as a route that connects a pair of cities.
Let Yi denote the air pollution levels or average health outcomes of this local market. Let
Ds,i denote airline s’s decision to enter market i, which is correlated with some unobserved
characteristics of the local market that affect Yi. The parameter E[Yd,i − Yd′,i] captures
the effects of a market structure on pollution or health. One interesting question would be
whether the ATE is nonlinear in the number of airlines as companies may share the market
and operate more efficiently when facing more competition. As related work, Schlenker and
Walker (2015) document how sensitively local health outcomes, such as acute respiratory
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diseases, are affected by the change in airline schedules. Economic activity variables, such
as population and income, can be included in Wi, since they not only affect the outcomes but
also the entry decisions. The excluded variable Xi can be characteristics of the local market
that directly affect pollution or health levels, such as weather shocks or the share of pollution-
related industries in the local economy. We assume that, conditional on Wi, these factors
affect the outcome but do not enter the payoff functions of the airlines. The instruments Zs,i
are cost shifters that affect entry decisions. When Yi is a health outcome, pollution levels can
be included in Xi.

Example 2 (Media and political behavior). In this example, the question is how media affects
political participation or electoral competitiveness. In county or market i, either Yi ∈ [0, 1]
can denote voter turnout, or Yi ∈ {0, 1} can denote whether an incumbent is re-elected or
not. Let Ds,i denote a market entry decision by local newspaper type s, which is correlated
with unobserved characteristics of the county. In this example, Zs,i can be the neighborhood
counties’ population size and income, which is common to all players (Z1,i = · · · = ZS,i).
Lastly, Xi can include changes in voter ID regulations. Using a linear panel data model,
Gentzkow et al. (2011) show that the number of newspapers in the market significantly affects
the voter turnout but find no evidence whether it affects the re-election of incumbents. More
explicit modeling of the strategic interaction among newspaper companies can be important
to capture competition effects on political behavior of the readers.

3 Geometric Characterization of Equilibrium Regions

As an important step for the analyses of this paper, we formally characterize the regions in
the space of the unobservables that predict equilibria of the treatment selection process in the
first-stage game. The analytical characterization of the equilibrium regions when there are
more than two players (S > 2) can generally be complicated (Ciliberto and Tamer (2009, p.
1800)) and has not been fully studied in the literature. We make the following assumptions
on the first-stage nonparametric payoff function for each s ∈ {1, ..., S}. Let Zs be the support
of Zs.

Assumption SS. For every zs ∈ Zs, νs(d−s, zs) is strictly decreasing in each element of
d−s.

Assumption SY1. For every zs ∈ Zs, νs(d−s, zs) = νs(d̃−s, zs) for any permutation d̃−s
of d−s.

Assumption SS asserts that the agents’ treatment decisions are produced in a game with
strategic substitutability. The strictness of the monotonicity is not important for our purpose
but convenient in making statements about the regions. Assumption SY1 imposes symmetry
(conditional on Zs = zs) in terms of opponents’ decisions, which trivially holds in the two-
player case and becomes crucial with many players in the characterization by simplifying the
regions of multiple equilibria. This assumption is related to the exchangeability assumption
in classical entry games (e.g., Berry (1992), Kline and Tamer (2012)), which imposes that the
payoff of a player is a function of the number of other entrants, or the anonymity assumption
in large games (e.g., Kalai (2004), Menzel (2016)).3 In the language of Ciliberto and Tamer

3This assumption is imposed as part of a monotonicity assumption (Assumption 3.2) in Kline and Tamer
(2012). The “symmetry of payoffs” has a different meaning in their paper.
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(2009), although SY1 restricts heterogeneity in the fixed competitive effects (i.e., how each
of other entrants affects one’s payoff), the nonseparability between d−s and zs in νs(d−s, zs)
allows heterogeneity how each player is affected by other entrants; this heterogeneity is related
to the variable competitive effects.

We begin by introducing some notations for equilibrium profiles. For k = 1, ..., S, let
ek be an S-vector of all zeros except the k-th element being a unity, and let e0 ≡ (0, ..., 0).
For j = 0, ..., S, define ej ≡

∑j
k=0 ek, which is an S-vector where the first j elements are

unity and the rest are zero. For some positive integers ns, define a permutation function
σ : {n1, ..., nS} → {n1, ..., nS}, which has to be a one-to-one function. For example,(

n1 n2 n3 n4 n5

σ(n1) σ(n2) σ(n3) σ(n4) σ(n5)

)
=

(
1 2 3 4 5
2 1 5 3 4

)
.

Let Σ be a set of all possible permutations. Define a set of all possible permutations of
ej = (ej1, ..., e

j
S) as

Mj ≡
{
dj : dj = (σ(ej1), ..., σ(ejS)) for σ(·) ∈ Σ

}
(3.1)

for j = 0, ..., S. Note Mj is constructed to be a set of all equilibrium profiles with j treatments

selected or j entrants, and it partitions D =
⋃S
j=0Mj . There are S!/j!(S − j)! distinct dj ’s

in Mj . For example with S = 3, d2 ∈ M2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and d0 ∈ M0 =
{(0, 0, 0)}. Note d0 = e0 = (0, ..., 0) and dS = eS = (1, ..., 1).

Let D(z) ≡ (D1(z1), ..., DS(zS)) where z ≡ (z1, ..., zS) and Ds(zs) is the potential treat-
ment decision had the player s been assigned Zs = zs. We are interested in characterizing
a region R of U ≡ (U1, ..., US) in U ≡ (0, 1]S that satisfies U ∈ R ⇔ D(z) ∈ Mj for some
j. Let ẽj be a (S − 1)-vector where the first j elements are unity and the rest are zero for
j = 0, ..., S − 1. By Assumption SY1, νs(ẽj , zs) is the only relevant payoff function to define
the equilibrium regions. For notational simplicity, let νsj (zs) ≡ νsẽj (zs) ≡ ν

s(ẽj , zs). Now, for
each equilibrium profile, we define regions of U that are Cartesian products in U :

Rd0(z) ≡
S∏
s=1

(νs0(zs), 1] , RdS (z) ≡
S∏
s=1

(
0, νsS−1(zs)

]
and, given dj = (σ(ej1), ..., σ(ejS)) for some σ(·) ∈ Σ4 and j = 1, ..., S − 1,

Rdj (z) =

U : (Uσ(1), ..., Uσ(S)) ∈

{
j∏
s=1

(
0, ν

σ(s)
j−1 (zσ(s))

]}
×


S∏

s=j+1

(
ν
σ(s)
j (zσ(s)), 1

]
 .

(3.2)

For example, for σ(·) such that d1 = (σ(1), σ(0), σ(0)) = (0, 1, 0),

R010(z) =
(
ν1

1(z1), 1
]
×
(
0, ν2

0(z2)
]
×
(
ν3

1(z3), 1
]
.

4Sometime we use the notation djσ to emphasize the permutation function σ(·) from which dj is generated.
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⋃3

j=0Rj = U

Figure 1: Illustration of equilibrium regions in treatment selection process (Proposition 3.1)
for three players (S = 3).

Lastly, define the region of all equilibria with j treatments selected or j entrants as

Rj(z) ≡
⋃

d∈Mj

Rd(z). (3.3)

In what follows, we establish the geometric properties of these regions.

Definition 3.1. Sets A and B are neighboring sets when there exists a point in one set whose
open ε-ball has nonempty intersection with the other set for any ε > 0.

Two sets with a nonempty intersection are trivially neighboring sets. Two disjoint sets
can possibly be neighboring sets when they share a “border”. Let Z be the supports of
Z ≡ (Z1, ..., ZS).

Proposition 3.1. Consider the first-stage game (2.2). Under Assumptions SS and SY1, the
following holds: For every z ∈ Z (which is suppressed),
(i) Rj ∩Rj′ = ∅ for j, j′ = 0, ..., S with j 6= j′;
(ii) Rj and Rj−1 are neighboring sets for j = 1, ..., S;
(iii) Rj and Rj−t are not neighboring sets for j = t, ..., S and t ≥ 2;

(iv)
⋃S
j=0Rj = U .

This proposition fully characterizes the equilibrium regions. Figure 1 illustrates the results
of Proposition 3.1 for S = 3 withR0 = R000, R1 = R100∪R010∪R001, R2 = R110∪R101∪R011

and R3 = R111; also see Figures 4 and 5 for illustrations of individual Rdj ’s and regions of
multiple equilibria for this case.

For concreteness, we henceforth discuss Proposition 3.1 in terms of an entry game. By
(i) and the fact that MS and M0 are singleton, one can conclude that RdS and Rd0 are
regions of unique equilibrium. For j = 1, ..., S − 1, however, Rdj ∩ Rd̃j is not necessarily

empty for dj 6= d̃j . In particular, Rdj ∩ Rd̃j are regions of multiple equilibria. By (i), there
is no multiple equilibria where one equilibrium has j entrants and another has j′ entrants for
j′ 6= j. This is reminiscent of Berry (1992) and Bresnahan and Reiss (1990, 1991) in that
the equilibrium is unique in terms of the number of entrants. In other words, D(z) ∈ Mj

is uniquely predicted by U ∈ Rj(z). In the present paper, this result is obtained under
substantially weaker conditions on the payoff function than those in Berry (1992).
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Player s 1 2 3 4 5

Decision djs 1 1 0 1 0

Decision dj−1
s 1 0 0 0 1

Table 1: An example of equilibria that differ by one entrant with S = 5 and j = 3.

Proposition 3.1(ii)–(iii) assert that regions are neighboring sets when the number of en-
trants differs by one, but not when the number of entrants differs by more than one. By (i),
neighboring sets in (ii) are disjoint neighboring sets. Let A ∼ B denote that A and B are
neighboring sets. Note that A ∼ B implies B ∼ A and vice versa. Then (i)–(iii) immediately
imply that Rj ’s are disjoint regions that lie in U in a monotonic fashion, where all possible
neighboring relationships are expressed as

R1 ∼ R2 ∼ · · · ∼ RS−1 ∼ RS . (3.4)

Proposition 3.1(iv) implies that an equilibrium always exists in a discrete game with strategic
substitutes, regardless of the number of players or the shape of the distribution of unobserv-
ables. That is, an econometric model for this game is coherent (Tamer (2003); Chesher and
Rosen (2012)), which extends the finding with a two-player game in the literature. Proposi-
tion 3.1(i) and (iv) imply that Rj for j = 1, ..., S partition the entire U . Note that, reversion
(or crossing) of the “border” of the partition does not occur, otherwise it violates (iii).

Proposition 3.1(i)–(iii) can be shown by utilizing the properties of sets defined as Cartesian
products (Proposition D.1 in Appendix D) and by observing that the pairs of equilibrium pro-
files in question obey certain rules. For example for dj and dj−1 in (ii), there always exists a
player s∗ such that djs∗ = 1 and dj−1

s∗ = 0 by contradiction. For all other players, each equilib-

rium decision must be one of the following four pairs: (djs, d
j−1
s ) ∈ {(1, 1), (0, 0), (1, 0), (0, 1)}

∀s 6= s∗. One possibility of dj and dj−1 is where all the four pairs occur (although not neces-
sary) as displayed in Table 1 with S = 5, j = 3 and s∗ = 2 (or 4). Now to prove (ii), we show
that Rdj ∼ Rdj−1 ∀dj ∈ Mj and ∀dj−1 ∈ Mj−1. For any Cartesian products R =

∏S
s=1 rs

and Q =
∏S
s=1 qs, it satisfies that R ∼ Q if and only if rs ∼ qs ∀s. But it can be shown that

for each of (djs, d
j−1
s ) pairs above ∀s, Us falls into respective intervals rs and qs that satisfy

rs ∼ qs. This is formally shown as part of the proof of Proposition 3.1 in Appendix D.
Lastly, we introduce a uniformity assumption that is required in this multi-agent setting.

Assumption M1. For any zs, z
′
s ∈ Zs, either νs(d−s, zs) ≥ νs(d−s, z

′
s) ∀d−s ∈ D−s and

∀s ∈ {1, ..., S}, or νs(d−s, zs) ≤ νs(d−s, z′s) ∀d−s ∈ D−s and ∀s ∈ {1, ..., S}.

The uniformity is across d−s and s. Note that this assumption is weaker than a conven-
tional monotonicity that νs(d−s, zs) is either non-decreasing or non-increasing in zs for all
d−s and s. Assumption M1 is justifiable especially when zs is chosen to be of the same kind
for all players. For example in an entry game, if zs is chosen to be each player’s cost shifters,
then the payoffs would decrease in their costs for all players.

Now we are ready to state the first main result of this paper. For j = 0, ..., S, define the
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region of all equilibria with at most j entrants as

R≤j(z) ≡
j⋃

k=0

Rk(z).

Although this region is hard to express explicitly in general, it has a simple feature that
serves our purpose:

Theorem 3.1. Under Assumptions SS, SY1 and M1 and for any given z, z′ ∈ Z, either

R≤j(z) ⊆ R≤j(z′) ∀j, or R≤j(z) ⊇ R≤j(z′) ∀j. (3.5)

Theorem 3.1 establishes a generalized version of monotonicity in the treatment selection
process.5 This theorem plays a crucial role in calculating the bounds on the treatment
parameters, in showing sharpness of the bounds, and in introducing the LATE. In showing
Theorem 3.1, since deriving the explicit expression of R≤j can be cumbersome, we infer its
form by focusing on the “border” of R≤j and using the results of Proposition 3.1; see the
proof in Appendix D.6

4 Partial Identification of the ATE

4.1 Preliminaries

To characterize the bounds on the treatment parameters, we make the following assumptions.
Unless otherwise noted, the assumptions hold for each s ∈ {1, ..., S}.

Assumption IN. (X,Z) ⊥ (εd,U) ∀d ∈ D.

Assumption E. (εd,U) are continuously distributed ∀d ∈ D.

Assumption EX. For each d−s ∈ D−s, νs(d−s, Zs)|X is nondegenerate.

Assumptions IN, EX and all the analyses below can be understood as “conditional on
W ,” the common covariates in X and Z = (Z1, ..., ZS). Assumption EX is related to the
exclusion restriction and the relevance condition of the instruments Zs.

We now impose two shape restrictions on the outcome function θ(d, x, εd) via restrictions
on

ϑ(d, x;u) ≡ E[θ(d, x, εd)|U = u]

a.e. u. These restrictions on the conditional mean are weaker than those that are directly
imposed on θ(d, x, εd). Let X be the supports of X.

Assumption M. For every x ∈ X , either ϑ(1,d−s, x;u) ≥ ϑ(0,d−s, x;u) a.e. u ∀d−s ∈ D−s
or ϑ(1,d−s, x;u) ≤ ϑ(0,d−s, x;u) a.e. u ∀d−s ∈ D−s

5This notion of generalized monotonicity is also used in Han (2018) for the determination of both the
outcome and the treatment of each time period in a dynamic context.

6Berry (1992) derives the probability of an event that the number of entrants is less than a certain value,
which can be written as Pr[U ∈ R≤j(z)] using our notation. This result is not sufficient for the purpose of
our paper.
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Assumption M holds in a leading case of binary Y with a threshold crossing model that
satisfies uniformity:

Assumption M∗. (i) θ(d, x, εd) = 1[µ(d, x) ≥ εd] where εd is scalar and Fεd|U = Fεd′ |U
for any d,d′ ∈ D; (ii) for every x ∈ X , either µ(1,d−s, x) ≥ µ(0,d−s, x) ∀d−s ∈ D−s or
µ(1,d−s, x) ≤ µ(0,d−s, x) ∀d−s ∈ D−s.

Assumption M∗ implies Assumption M. Assumption M can be stated in twofold, corre-
sponding to (i) and (ii) of Assumption M∗: (a) for every x and d−s, either ϑ(1,d−s, x;u) ≥
ϑ(0,d−s, x;u) a.e. u, or ϑ(1,d−s, x;u) ≤ ϑ(0,d−s, x;u) a.e. u; (b) for every x, each in-
equality statement in (a) holds for all d−s. For an outcome function with a scalar in-
dex, θ(d, x, εd) = θ̃(µ(d, x), εd), part (a) is implied by εd = εd′ = ε (or more generally
Fεd|U = Fεd′ |U ) for any d,d′ ∈ D and E[θ̃(t, εd)|U = u] being strictly increasing (decreasing)

in t a.e. u.7 Functions that satisfy the latter assumption include: strictly monotonic functions
such as transformation models θ̃(t, ε) = r(t + ε) where unknown r(·) is a strictly increasing;
and functions that are not strictly monotonic such as limited dependent variables models
θ̃(t, ε) = 1[t ≥ ε] or θ̃(t, ε) = 1[t ≥ ε](t− ε). There can be, however, functions that violate the
latter assumption but satisfy part (a). For example, consider a threshold crossing model with
a random coefficient: θ(d, x, ε) = 1[φ(ε)dβ> ≥ xγ>] where φ(ε) is nondegenerate. When βs ≥
0, then E[θ(1,d−s, x, ε)−θ(0,d−s, x, ε)|U = u] = Pr

[
xγ>

βs+d−sβ>−s
≤ φ(ε) ≤ xγ>

d−sβ>−s
|U = u

]
and

thus nonnegative a.e. u, and vice versa. Part (a) also does not impose any monotonicity of
θ in εd (i.e., εd can be a vector).

Part (b) of Assumption M imposes mild uniformity as we deal with more than one treat-
ment. Uniformity is required across different values of d−s but not across s, which means
that different treatments can have different directions of monotonicity. More importantly,
knowledge on the direction of the monotonicity is not necessary, unlike Manski (1997) or
Manski (2013) where the semi-monotone treatment response is assumed for possible multiple
treatments.

Assumption SY. For every x ∈ X , ϑ(d, x;u) = ϑ(d̃, x;u) a.e. u for any permutation d̃ of
d.

For a benchmark analysis, we first maintain this conditional symmetry since it is conve-
nient to simplify the analysis given our incomplete model. Assumption SY imposes symmetry
in the functions as long as the observed characteristics X remain the same. This assumption
is relaxed in Section 5 by either using instruments that offset strategic substitutability or
allowing partial symmetry. An assumption related to SY is also found in Manski (2013).

Heuristically, the following is the idea of the bound analysis. For given d ∈ D, consider

E[Yd|X] = E[Yd|Z, X] = E[Y |D = d,Z, X] Pr[D = d|Z]

+
∑
d′ 6=d

E[Yd|D = d′,Z, X] Pr[D = d′|Z], (4.1)

7A single-treatment version of the latter assumption appears in Vytlacil and Yildiz (2007) (Assumption
A-4), which is weaker than assuming θ̃(t, ε) is strictly increasing (decreasing) a.e. ε; see Vytlacil and Yildiz
(2007) for related discussions.

12



where the first equality and Pr[D = d|Z, X] = Pr[D = d|Z] in the second equality are
by Assumption IN. In this expression, the counterfactual term E[Yd|D = d′,Z, X] can be
bounded as long as Y is bounded by a known interval (Manski (1990)) and instruments in Z
that are excluded from the equation for Y can then be used to narrow the bounds. The goal of
our analysis is to derive tighter bounds on the ATT’s E[Yd|D = d′,Z, X] by fully exploiting
the structure of the model under the above assumptions, without necessarily requiring Y to
be bounded by a known interval. These bounds then can be used to construct bounds on the
ATE.

4.2 Analysis with Binary Y

As a leading case, we first consider model (2.1)–(2.2) with binary Y (consistent with As-
sumption M∗(i)) and no X to illustrate the main idea of our bound analysis. Moreover, with
binary Y sharp bounds on the mean treatment parameters can be obtained in this model of
a triangular structure. Consider

Y = 1[µ(D) ≥ εD], (4.2)

where, again, W is suppressed for succinctness.
We first define quantities that are identified directly from the data. For two realization

of z, z′ of Z, define

h(z, z′) ≡ E[Y |Z = z]− E[Y |Z = z′] (4.3)

= Pr[Y = 1|Z = z]− Pr[Y = 1|Z = z′],

which record the change in the distributions of Y as Z changes. To see this change relative
to the change in the distribution of D, define a joint propensity score as pM (z) ≡ Pr[D ∈
M |Z = z] for M ⊂ D and consider

pM≤j (z) < pM≤j (z
′) ∀j = 0, ..., S − 1, (4.4)

where M≤j ≡
⋃j
k=0Mk. Under Assumption EX, the existence of z, z′ that satisfy (4.4) is

guaranteed by Theorem 3.1, since pM≤j (z)− pM≤j (z′) = Pr[U ∈ R≤j(z)]−Pr[U ∈ R≤j(z′)]
by Assumption IN. Let a function sgn{h} take values −1, 0, 1 when h is negative, zero and
positive, respectively.

Lemma 4.1. In model (4.2) and (2.2), suppose Assumptions SS, SY1, M1, IN, E, EX, M∗

and SY hold. For z, z′ such that (4.4) holds, it satisfies that

sgn{h(z, z′)} = sgn
{
µ(dj)− µ(dj−1)

}
for dj ∈Mj and dj−1 ∈Mj−1 with j = 1, ..., S.

Given the result of this lemma, we recover the signs of µ(dj)−µ(dj−1), i.e., the direction
of monotonicity in Assumption M∗(ii). This knowledge is useful to calculate bounds on the
unknown conditional mean terms (the ATT’s) in (4.1).

To illustrate the proof of this lemma, suppose S = 2; a formal proof can be found in
Section 4.3 in a more general setting. By Proposition 3.1, (1, 0) and (0, 1) are the values of

13



D that can be realized as possible multiple equilibria. Given this knowledge, we define

hM (z, z′) ≡ Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|Z = z]

− Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|Z = z′],

and

h11(z, z′) ≡ Pr[Y = 1,D = (1, 1)|Z = z]− Pr[Y = 1,D = (1, 1)|Z = z′],

h00(z, z′) ≡ Pr[Y = 1,D = (0, 0)|Z = z]− Pr[Y = 1,D = (0, 0)|Z = z′],

so that h(z, z′) = h11(z, z′)+h00(z, z′)+hM (z, z′). Making use of the conditional symmetry
assumption (SY), combiningD = (1, 0) andD = (0, 1) will conveniently manage the multiple
equilibria problem. Define

R11(z) ≡
{
U : U1 ≤ ν1

1(z1), U2 ≤ ν2
1(z2)

}
,

R00(z) ≡
{
U : U1 > ν1

0(z1), U2 > ν2
0(z2)

}
,

R10(z) ≡
{
U : U1 ≤ ν1

0(z1), U2 > ν2
1(z2)

}
,

R01(z) ≡
{
U : U1 > ν1

1(z1), U2 ≤ ν2
0(z2)

}
.

Let µd ≡ µ(d) for brevity. Given Assumption M∗(i), let ε be a r.v. such that Fε|U = Fεd|U
for any d ∈ D. By Assumption IN,

h11(z, z′) + h00(z, z′) = Pr[ε ≤ µ11,U ∈ R11(z)]− Pr[ε ≤ µ11,U ∈ R11(z′)]

+ Pr[ε ≤ µ00,U ∈ R00(z)]− Pr[ε ≤ µ00,U ∈ R00(z′)], (4.5)

where the equality uses R11 and R00 being disjoint and regions of unique equilibrium. By
Assumption SY that µ10 = µ01, we have

hM (z, z′) = Pr[ε ≤ µ10,U ∈ R10(z) ∪R01(z)]− Pr[ε ≤ µ10,U ∈ R10(z′) ∪R01(z′)]. (4.6)

The main insight to obtain the results of Lemma 4.1 is as follows. By (4.3), h captures how
Pr[Y = 1|Z = z] changes in z. By h = h11 + h00 + hM and (4.5)–(4.6), such a change can
be translated into shifts in the regions of equilibria while the thresholds of ε in each of h11,
h00 and hM remaining unchanged by the exclusion restriction. Therefore by inspecting how
Pr[Y = 1|Z = z] changes in z (i.e., the sign of h) relative to the changes in the equilibrium
regions R11 and R00 (i.e., the signs of hD11 and hD00), we recover the signs of µ11 − µ01 and
µ10 − µ00. In doing so, we use a crucial fact that the changes in the region R10 ∪ R01 are
offset with the changes in R11 and R00.

To be specific, since (z, z′) are chosen such that (4.4) holds, it satisfies that R11(z) ⊃
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Figure 2: Inflow and outflow at change in Z in calculating h.

R11(z′) and R00(z) ⊂ R00(z′) by Theorem 3.1.8 Then

∆+(z, z′) ≡ {R10(z) ∪R01(z)} \
{
R10(z′) ∪R01(z′)

}
= R00(z′)\R00(z), (4.7)

∆−(z, z′) ≡
{
R10(z′) ∪R01(z′)

}
\ {R10(z) ∪R01(z)} = R11(z)\R11(z′), (4.8)

because, as z changes, an inflow of one region is an outflow of a region next to it. This set
algebra is illustrated in Figure 2. Then (4.6) becomes

hM (z, z′) = Pr[ε ≤ µ10,U ∈ ∆+(z, z′)]− Pr[ε ≤ µ10,U ∈ ∆−(z, z′)], (4.9)

by the following general rule: for a uniform random vector Ũ and two sets B and B′ contained
in Ũ and for a r.v. ε and set A ⊂ E ,

Pr[ε ∈ A, Ũ ∈ B]− Pr[ε ∈ A, Ũ ∈ B′] = Pr[ε ∈ A, Ũ ∈ B\B′]− Pr[ε ∈ A, Ũ ∈ B′\B].
(4.10)

Therefore by combining (4.9) with (4.5) applying (4.10) once more, we have

h(z, z′) = Pr[ε ≤ µ11,U ∈ ∆−(z, z′)]− Pr[ε ≤ µ00,U ∈ ∆+(z, z′)]

− Pr[ε ≤ µ10,U ∈ ∆−(z, z′)] + Pr[ε ≤ µ10,U ∈ ∆+(z, z′)]. (4.11)

Now, given Assumption E, Assumption M∗(ii) holds with µ(1, d−s) > µ(0, d−s) for any d−s
if and only if

h(z, z′) = Pr[µ01 ≤ ε ≤ µ11,U ∈ ∆−(z, z′)] + Pr[µ00 ≤ ε ≤ µ10,U ∈ ∆+(z, z′)],

which is positive as is the sum of two probabilities. One can analogously show this for other
signs and we have the result of Lemma 4.1.9 Lastly, to gain efficiency in determining the sign
of h(z, z′) for z, z′ ∈ Z, define the integrated version of h as

H ≡ E
[
h(Z,Z ′)

∣∣pM≤j (Z) < pM≤j (Z
′) ∀j = 0, ..., S − 1

]
. (4.12)

8We assume for simplicity that this choice of z and z′ satisfies A∗ = ∅, where A∗ is defined in the proof of
a more general case (Lemma 4.2).

9Note that in deriving the result of the lemma, a player-specific exclusion restriction is not crucial and one
may be able to relax it.
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Then sgn{H} = sgn {µ11 − µ01} = sgn {µ10 − µ00} in this illustration.
Using 4.1, now consider calculating the upper bound on Pr[Y00 = 1]. Suppose H ≥ 0.

Then by Lemma 4.1, µ00 ≤ µ10, µ00 ≤ µ01, and µ00 ≤ µ10 ≤ µ11. Then we can derive the
upper bound on, e.g., Pr[Y00 = 1|D = (1, 0), Z] as

Pr[Y00 = 1|D = (1, 0), Z = z] = Pr[ε ≤ µ00|D = (1, 0),Z = z]

≤ Pr[ε ≤ µ10|D = (1, 0),Z = z] (4.13)

= Pr[Y = 1|D = (1, 0),Z = z],

which is smaller than one, the upper bound without the knowledge of the direction. Likewise,
using µ00 ≤ µ01 and µ00 ≤ µ11, we can calculate upper bounds on the other unobserved terms
Pr[Y00 = 1|D = d,Z] for d 6= (0, 0) analogous to the ones in (4.1). Consequently we have

Pr[Y00 = 1] ≤ Pr[Y = 1|Z = z].

Likewise, we can derive the lower bounds on Pr[Y00 = 1] when H ≤ 0.10

To be more general, we calculate the bounds on E[Ydj ] = Pr[Ydj = 1] for given dj ∈ Mj

and j = 0, ..., S. We also show that the bounds are sharp. We consider the case H > 0; the
case H < 0 is symmetric and the case H = 0 is straightforward. Recall M≤j ≡

⋃j
k=0Mk and

let M>j ≡
⋃S
k=j+1Mk = D\M≤j , which are understood to be empty sets for unconforming

values of j. Then one can show that Ldj ≤ Pr[Ydj = 1] ≤ Udj with

Udj ≡ inf
z∈Z

{
Pr[Y = 1,D ∈Mj |Z = z] +

∑
d′∈M>j

Pr[Y = 1,D = d′|Z = z]

+
∑

d′∈M≤j−1

Pr[D = d′|Z = z]

}
, (4.14)

Ldj ≡ sup
z∈Z

{
Pr[Y = 1,D ∈Mj |Z = z] +

∑
d′∈M≤j−1

Pr[Y = 1,D = d′|Z = z]

+
∑

d′∈M>j

Pr[D = d′|Z = z]

}
. (4.15)

We can simplify these bounds and show that they are sharp under the following assump-
tion.

Assumption C. (i) µd(·) and νd−s(·) are continuous; (ii) Z is compact.

For j′ = 0, ..., S − 1, the joint propensity score with M>j′ satisfies

pM>j′ (z) = Pr[U ∈ U\R≤j′(z)]. (4.16)

Under Assumption C and by Theorem 3.1, there exist vectors z̄ ≡ (z̄1, ..., z̄S) and z ≡
10When H ≥ 0, the lower bounds on Pr[Y00 = 1] is trivially zero.
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(z1, ..., zS) that satisfy

pM>j′ (z̄) = max
z∈Z

pM>j′ (z), pM>j′ (z) = min
z∈Z

pM>j′ (z), (4.17)

∀j′ = 0, ..., S − 1.

Theorem 4.1. Given model (4.2) and (2.2), suppose the assumptions of Lemma 4.1 and
Assumption C hold. Also suppose H ≥ 0. Then the bounds Udj and Ldj in (4.14) and (4.15)
simplify as

Udj = Pr[Y = 1,D ∈M>j−1|Z = z̄] + Pr[D ∈M≤j−1|Z = z̄],

Ldj = Pr[Y = 1,D ∈M≤j |Z = z] + Pr[D ∈M>j |Z = z],

and these bounds and thus the bounds on the ATE are sharp.

In a single treatment model, Shaikh and Vytlacil (2011) use the propensity score as a scalar
conditioning variable, which summarizes all the exogenous variation in the selection process
and is convenient in simplifying the bounds and proving sharpness. In the context of the
current paper, however, this approach is invalid since Pr[Ds = 1|Zs = zs,D−s = d−s] cannot
be written in terms of a propensity score of player s as D−s is endogenous. We instead use
vector Z as conditioning variables and establish partial ordering for the relevant conditional
probabilities (that define the lower and upper bounds) w.r.t. the joint propensity score
(4.16). In proving the sharpness of the bounds, Theorem 3.1 plays an important role. Even
though D is a vector that is determined by simultaneous decisions, Theorem 3.1 combined
with the partial ordering above establishes “monotonicity” of the event U ∈ Rj(z) (and
U ∈ U\Rj(z)) w.r.t. z.

Bounds when X is present in the model and its variation is additionally exploited will be
narrower than the bounds in Theorem 4.1, but showing sharpness of these bounds requires a
different approach of expressing bounds. This is discussed in the next section.

4.3 General Analysis

In this section we consider the full model (2.1)–(2.2), in which Y may no longer be binary
and the number of players may exceeds two. We also exploit additional exogenous variation
that is generated from X conditional on Z. The existence of such variation is motivated by
the examples of externalities we discussed. We first introduce a generalized version of the
sign matching results (Lemma 4.1). For realizations x of X and z, z′ of Z, define

h(z, z′, x) ≡ E[Y |Z = z, X = x]− E[Y |Z = z′, X = x], (4.18)

hj(z, z
′, x) ≡ E[Y |D ∈Mj ,Z = z, X = x] Pr[D ∈Mj |Z = z]

− E[Y |D ∈Mj ,Z = z′, X = x] Pr[D ∈Mj |Z = z′]. (4.19)

The introduction of the quantity (4.19) is motivated by Proposition 3.1.11 Also, since Mj ’s

are disjoint,
∑S

j=0 Pr[D ∈ Mj |Z = ·] = 1 and thus h(z, z′, x) =
∑S

j=0 hj(z, z
′, x). Let

11Even if Pr[D = dj |Z = z] 6= Pr[U ∈ Rdj (z)] due to multiple equilibria, it satisfies that Pr[D ∈ Mj |Z =
z] = Pr[U ∈ Rj(z)].
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x = (x0, ..., xS) be an array of (possibly different) realizations ofX, i.e., each xj for j = 0, ..., S
is a realization of X, and define

h(z, z′;x) ≡
S∑
j=0

hj(z, z
′;xj).

Recall ϑ(d, x;u) ≡ E[θ(d, x, ε)|U = u], and for succinctness let ϑj(x;u) ≡ ϑ(ej , x;u) as ej

is the only relevant set of treatments under Assumption SY. We state the main lemma of
this section.

Lemma 4.2. In model (2.1)–(2.2), suppose Assumptions SS, SY1, IN, E, EX, M and SY
hold, and h(z, z′, x) and h(z, z′;x) are well-defined. For z, z′ such that (4.4) holds, it satisfies
that, for j = 1, ..., S,
(i) sgn{h(z, z′, x)} = sgn {ϑj(x;u)− ϑj−1(x;u)} a.e. u;
(ii) for ι ∈ {−1, 0, 1}, if sgn{h(z, z′;x)} = sgn{ϑk−1(xk−1;u)− ϑk(xk;u)} = ι ∀k 6= j, then
sgn{ϑj(xj ;u)− ϑj−1(xj−1;u)} = ι a.e. u.

Part (i) parallels Lemma 4.1. To show Lemma 4.2, we track the inflow and outflow in
each Rj(Z) when the value of Z changes. Specifically, based on Theorem 3.1 we equate
the inflow and outflow of Rj with those of R≤j ’s in calculating (4.19) (and thus h(z, z′;x)),
which can be written as

hj(z, z
′, x) = E[Y |U ∈ Rj(z),Z = z, X = x] Pr[U ∈ Rj(z)]

− E[Y |U ∈ Rj(z
′),Z = z′, X = x] Pr[U ∈ Rj(z

′)], (4.20)

by Assumption IN. This approach is analogous to the simpler analysis shown in Section 4.2.
For part (i) of Lemma 4.2, suppose that ϑj(x;u) − ϑj−1(x;u) > 0 a.e. u ∀j = 1, ..., S.

Then by (D.7), h > 0. Conversely, if h > 0 then it should be that ϑj(x;u)− ϑj−1(x;u) > 0
a.e. u ∀j = 1, ..., S. Suppose not and suppose ϑj(x;u)−ϑj−1(x;u) ≤ 0 with positive measure
for some j. Then by Assumption M, this implies that ϑj(x;u) − ϑj−1(x;u) ≤ 0 ∀j a.e. u,
and thus h ≤ 0 which is contradiction. By applying similar arguments for other signs, we
have the desired result. The proof for Lemma 4.2(ii) is in Appendix D.

Using Lemma 4.2, note first that the sign of the ATE is identified by Lemma 4.2(i) since
E[Yd|X = x] = E[ϑ(d, x;U)]. Next, we calculate the bounds on E[Yd|X = x] with d = dj

for a given dj ∈Mj for some j = 0, ..., S. Consider

E[Ydj |X = x] = E[Y |D = dj ,Z = z, X = x] Pr[D = dj |Z = z]

+
∑
d′ 6=dj

E[Ydj |D = d′,Z = z, X = x] Pr[D = d′|Z = z]. (4.21)

Note that for d′ ∈Mj ,

E[Ydj |D = d′,Z = z, X = x] = E[Y |D = d′,Z = z, X = x] (4.22)

by Assumption SY. In order to bound E[Ydj |D = d′,Z = z, X = x] for d′ /∈Mj in (4.21), we
systematically use the results of Lemma 4.2. First, analogous to (4.12), define the integrated
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version of h(z, z′;x) as

H(x) ≡ E
[
h(Z,Z ′;x)

∣∣pM≤j (Z) < pM≤j (Z
′) ∀j = 0, ..., S − 1

]
.

Then define the following sets of two consecutive elements of x that satisfy the conditions in
Lemma 4.2: for j = 1, ..., S,

X 0
j,j−1(ι) ≡ {(xj , xj−1) : sgn{H(x)} = ι, x0 = · · · = xS},
X 1
j,j−1(ι) ≡ {(xj , xj−1) : sgn{H(x)} = ι, (xk, xk−1) ∈ X 0

k,k−1(−ι) ∀k 6= j} ∪ X 0
j,j−1(ι),

...

X tj,j−1(ι) ≡ {(xj , xj−1) : sgn{H(x)} = ι, (xk, xk−1) ∈ X t−1
k,k−1(−ι) ∀k 6= j} ∪ X t−1

j,j−1(ι).

Note that X tj,j−1(ι) ⊂ X t+1
j,j−1(ι) for any t. Define Xj,j−1(ι) ≡ limt→∞X tj,j−1(ι).12 Then by

Lemma 4.2,

if (xj , xj−1) ∈ Xj,j−1(ι), then sgn{ϑj(xj ;u)− ϑj−1(xj−1;u)} = ι a.e. u. (4.23)

Consider j′ < j for E[Ydj |D = dj
′
,Z, X] in (4.21). Then, for example, if (xk, xk−1) ∈

Xk,k−1(−1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, then ϑj(x;u) ≤ ϑj′(x
′;u) where x = xj and

x′ = xj′ by transitively applying (4.23). Therefore

E[Ydj |D = dj
′
,Z = z, X = x] = E[θ(dj , x, ε)|U ∈ Rdj′ (z),Z = z, X = x]

=
1

Pr[U ∈ Rdj′ (z)]

∫
R

dj
′ (z)

ϑj(x;u)du

≤ 1

Pr[U ∈ Rdj′ (z)]

∫
R

dj
′ (z)

ϑj′(x
′;u)du

= E[θ(dj
′
, x′, ε)|U ∈ Rdj′ (z),Z = z, X = x′]

= E[Y |D = dj
′
,Z = z, X = x′]. (4.24)

Symmetrically, for j′ > j, if (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, then
ϑj(x;u) ≤ ϑj′(x

′;u) where x = xj and x′ = xj′ . Therefore the same bound as (4.24) is
derived. Given these results, to collect all x′ ∈ X that yield ϑj(x;u) ≤ ϑj′(x

′;u), we can
construct a set

x′ ∈
{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪
{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
.

Then we can further shrink the bound in (4.24) by taking infimum over all x′ in this set. The
lower bound on E[Ydj |D = dj

′
,Z = z, X = x] can be constructed by simply choosing the

opposite signs in the preceding argument.

12In practice, the formula for X tj,j−1 provides a natural algorithm to construct the set Xj,j−1 for the compu-
tation of the bounds. The calculation of each X tj,j−1 is straightforward as it is a search over a two-dimensional
space for (xj , xj−1) once the set X t−1

j,j−1 from the previous step is obtained. Practitioners can employ truncation

t ≤ T for some T and use X Tj,j−1 as an approximation for Xj,j−1.
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In conclusion, for bounds on the ATE E[Ydj |X = x], we can introduce the sets XL
dj

(x;d′)
and XU

dj
(x;d′) for d′ 6= dj as follows: for d′ ∈Mj′ with j′ 6= j,

XLdj (x;d′) ≡
{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪
{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
, (4.25)

XUdj (x;d′) ≡
{
xj′ : (xk, xk−1) ∈ Xk,k−1(1) ∪ Xk,k−1(0) for j′ + 1 ≤ k ≤ j, xj = x

}
∪
{
xj′ : (xk, xk−1) ∈ Xk,k−1(−1) ∪ Xk,k−1(0) for j + 1 ≤ k ≤ j′, xj = x

}
, (4.26)

and for d′ ∈Mj ,
XLdj (x;d′) = XUdj (x;d′) ≡ {x}, (4.27)

where the last display is by (4.22). The following theorem summarize our results:

Theorem 4.2. In model (2.1)–(2.2), suppose the assumptions of Lemma 4.2 hold. Then the
sign of the ATE is identified, and the upper and lower bounds on the ASF and ATE with
d, d̃ ∈ D are

Ld(x) ≤ E[Yd|X = x] ≤ Ud(x)

and

Ld(x)− Ud̃(x) ≤ E[Yd − Yd̃|X = x] ≤ Ud(x)− Ld̃(x)

where, for given d† ∈ D,

Ud†(x) ≡ inf
z∈Z

{
E[Y |D = d†,Z = z, X = x] Pr[D = d†|Z = z]

+
∑
d′ 6=d†

inf
x′∈XU

d†
(x;d′)

E[Y |D = d
′
,Z = z, X = x′] Pr[D = d

′ |Z = z]

}
,

Ld†(x) ≡ sup
z∈Z

{
E[Y |D = d†,Z = z, X = x] Pr[D = d†|Z = z]

+
∑
d′ 6=d†

sup
x′∈XL

d†
(x;d′)

E[Y |D = d
′
,Z = z, X = x′] Pr[D = d

′ |Z = z]

}
.

When the variation of Z is only used in deriving the bounds, Xk,k−1(ι) should simply
reduce down to X 0

k,k−1(ι) in the definition of XL
dj

(x;d′) and XU
dj

(x;d′). When Y is binary
with no X, such bounds are equivalent to (4.14) and (4.15). The variation of X given
Z yields substantially narrower bounds than the sharp bounds established in Theorem 4.1
under Assumption C. The resulting bounds, however, are not automatically implied to be
sharp from Theorem 4.1, since they are based on a different DGP and the additional exclusion
restriction.

Remark 4.1. Maintaining that Y is binary, sharp bounds on the ATE with variation in X
can be derived assuming that the signs of ϑ(d, x;u)− ϑ(d′, x′;u) are identified for d,d′ ∈ D
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and x, x′ ∈ X via Lemma 4.2. To see this, define

X̃Ud (x;d′) ≡
{
x′ : ϑ(d, x;u)− ϑ(d′, x′;u) ≤ 0 a.e. u

}
,

X̃Ld (x;d′) ≡
{
x′ : ϑ(d, x;u)− ϑ(d′, x′;u) ≥ 0 a.e. u

}
,

which are identified by assumption. Then by replacing X id(x;d′) with X̃ id(x;d′) (for i ∈
{U,L}) in Theorem 4.2, we may be able to show that the resulting bounds are sharp. Since
Lemma 4.2 implies that X i

dj
(x;d′) ⊂ X̃ i

dj
(x;d′) but not necessarily X i

dj
(x;d′) ⊃ X̃ i

dj
(x;d′),

these modified bounds and the original bounds in Theorem 4.2 do not coincide. This contrasts
the result of Shaikh and Vytlacil (2011) for a single-treatment model, and the complication lies
in the fact that we deal with an incomplete model with a vector treatment. When there is no X,
Lemma 4.2(i) establishes equivalence between the two signs, and thus X i

dj
(x;d′) = X̃ i

dj
(x;d′)

for i ∈ {U,L}, which results in Theorem 4.1. Relatedly, we can also exploit variation from
W , namely variables that are common to both X and Z (with or without exploiting excluded
variation of X). This is related to the analysis of Chiburis (2010) and Mourifié (2015) in a
single-treatment setting. One caveat of this approach is that, similar to these papers, we need
an additional assumption that W ⊥ (ε,U).

Remark 4.2. When X does not have enough variation, an assumption that Y ∈ [Y , Y ] with
known endpoints can be introduced to calculate the bounds. To see this, suppose we do not
use the variation in X and suppose H(x) ≥ 0. Then ϑk(x;u) ≥ ϑk−1(x;u) ∀k = 1, ..., S by
Lemma 4.2(i) and by transitivity, ϑj′ ≥ ϑj for any j′ > j. Therefore, we have

E[Ydj |X = x] ≤
∑
d∈Mj

E[Y |D = d,Z, X = x] Pr[D = d|Z]

+
∑

d′∈Mj′ :j
′>j

E[Y |D = d′,Z, X = x] Pr[D = d′|Z]

+
∑

d′∈Mj′ :j
′<j

E[Ydj |D = d′,Z, X = x] Pr[D = d′|Z]. (4.28)

Without using variation in X, we can bound the last term in (4.28) by Y ∈ [Y , Y ]. This is
done in Section 4.2 with θ(d, x, ε) = 1[µd ≥ ε] and ϑj(x;u) = Fε|U (µej |u). Another example
would be when Y ∈ [0, 1] as in Example 2.

Remark 4.3. It may be possible to point identify the ATE by extending the result of Theorem
4.2 using X with larger support. For example, Lemma 4.2 enables us to find x′ such that
ϑj(x;u) = ϑj′(x

′;u) (j 6= j′), from which we can point identify the ATT:

E[Ydj |D = dj
′
,Z = z, X = x] =

1

Pr[U ∈ Rdj′ (z)]

∫
R

dj
′ (z)

ϑj(x;u)du

=
1

Pr[U ∈ Rdj′ (z)]

∫
R

dj
′ (z)

ϑj′(x
′;u)du

= E[Y |D = dj
′
,Z = z, X = x′].

The existence of such x′ requires sufficient variation of X conditional on Z, which is rem-
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Figure 3: Illustration of Assumptions ASY and ASY∗.

iniscent of Vytlacil and Yildiz (2007). This approach is alternative to the use of the large
variation of Z for point identification, which is discussed in Section 6.3 below.

5 Relaxing Symmetry

We propose two different ways of relaxing the conditional symmetry assumption in the out-
come function (Assumption SY) introduced in the preceding section.

5.1 Compensation of Strategic Substitutability

Assumption SY can be relaxed when there exists variation in Z that offsets the effect of
strategic substitutability. With such variation, we show that regions of multiple equilibria
are not involved in calculating h(z, z′;x) and thus Assumption SY is no longer required in
the bound analysis of the ATE.

Assumption ASY. For j = 1, ..., S − 1, there exist z, z′ ∈ Z such that νsj−1(z′s) ≤ νsj (zs)
∀s.

Assumption ASY states that there exists variation in Z that offsets the effect of strategic
substitutability (Assumption SS), which can be stated as νsj−1(zs) > νsj (zs). For example in
an entry game with Zs being cost shifters, Assumption ASY may hold with z′s > zs ∀s. In
this example, all players may become less profitable with the increase in cost by government
regulations, while one player becomes unprofitable to enter whose absence does not help
overturn the decrease of other firms’ profits. Assumption ASY is illustrated in Figure 3 with
νs0(z′s) < νs1(zs) for s = 1, 2. Assumption ASY has a simple testable sufficient condition
provided that the unobservables in the payoffs are independent to one another.

Assumption ASY∗. There exist z, z′ ∈ Z such that

Pr[D = (0, ..., 0)|Z = z] + Pr[D = (1, ..., 1)|Z = z′] > 1. (5.1)

Lemma 5.1. When Us ⊥ Ut for all s 6= t, Assumption ASY∗ implies Assumption ASY.

The mutual independence of Us’s (conditional on W ) is useful in inferring the relation-
ship between players’ interaction and instruments from the observed decisions of players.
The intuition for the sufficiency of Assumption ASY2 is as follows. As long as there is no
dependence in unobserved types, (5.1) dictates that the variation of Z is large enough to
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offset strategic substitutability, because otherwise the payoffs of players cannot move in the
same direction, thus cannot resulting in same decisions.13

Under Assumption ASY, we can apply an analogous strategy as in the symmetric case in
Section 4 to determine the direction of monotonicity and ultimately calculate the bounds on
the ATE. For example, the following lemma replaces Lemma 4.2(i):

Lemma 5.2. In model (2.1)–(2.2), suppose Assumptions SS, SY1, M1, IN, E, EX and M
hold, and h(z, z′, x) is well-defined. For z, z′ such that Assumption ASY and (4.4) hold, it
satisfies that

sgn{h(z, z′, x)} = sgn {ϑ(1,d−s, x;u)− ϑ(0,d−s, x;u)}

a.e. u ∀d−s ∈ D−s and ∀s = 1, ..., S.

Lemma 4.2(ii) can be similarly modified. When Assumption ASY hold, it can be shown
that

R∗dj (z) ∩R∗
d̃j

(z′) = R∗dj (z
′) ∩R∗

d̃j
(z) = ∅ (5.2)

for dj 6= d̃j , where R∗d(·) is the region that predicts D = d.14 This is shown as part of the
proof of above lemma. The result (5.2) liberates us from concerning about the regions of
multiple equilibria and about a possible change in equilibrium selection at the change in Z.
Therefore we can separately consider each dj when calculating h(z, z′, x).

Remark 5.1. The condition (5.2) is related to stability in the equilibrium selection mecha-
nism at the change in Z: For j = 1, ..., S − 1, there exist z, z′ ∈ Z such that the region that
predicts D = dj is invariant for Z ∈ {z, z′} within Rj(z) ∩Rj(z

′) ∀dj ∈ Mj. In fact, this
condition is equivalent to (5.2) and trivially holds when Z varies sufficiently enough that the
regions of multiple equilibria do not intersect to each other. This occurs when Assumption
ASY holds.

5.2 Partial Symmetry: Interactions Within Groups

In some cases, strategic interactions may occur within groups of players (i.e., treatments).
In the airline example, it may be the case that larger airlines interact to one another as a
group, so do smaller airlines as a different group, but there may be no interaction across
the groups.15 In general for K groups of players/treatments, we consider, with player index
s = 1, ..., Sg and group index g = 1, ..., G,

Y = θ(D1, ...,DG, X, εD), (5.3)

Dg
s = 1

[
νs,g(Dg

−s, Z
g
s ) ≥ Ugs

]
, (5.4)

13The requirement of Z variation in (5.1) is significantly weaker than the large support assumption invoked
for an identification at infinity argument (Assumption EX∗ below).

14Unlike Rd(z) which is purely determined by the payoffs νsd−s
(zs), R

∗
d(z) is unknown to the econometrician

even if all the players’ payoffs had been known, since the equilibrium selection rule is unknown.
15We can also easily extend the model so that smaller airlines take larger airlines’ entry decisions as given

and play their own entry game, which may be more reasonable to assume.
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where eachDg ≡ (Dg
1, ..., D

g
Sk

) is the treatment vector of group g andD ≡ (D1, ...,DG). This
model generalizes the model (2.1)–(2.2). It can also be seen as a special case of exogenously
endowing an incomplete undirected network structure, where players interact to one another
within each of complete sub-networks. In this model each group can differ in its number
(Sg) and identity of players (under which the entry decision is denoted by Dg

s). Also, the
unobservables U g ≡ (Ug1 , ..., U

g
S) can be arbitrarily correlated across groups, in addition to

the fact that Ugs ’s can be correlated within group g and U ≡ (U1, ...,UG) can be correlated
with εD. This partly relaxes the independence assumption across markets, which is frequently
imposed in the entry game literature.

To calculate the bounds on the ATE E[Yd − Yd′ |X = x] we apply the results in Theorem
4.2, by adapting those assumptions to the current extension. In what follow is the modifi-
cation of Assumption SY that (the conditional mean of) the outcome function is symmetric
within each group but not across groups. This in turn can be seen as relaxation of Assump-
tion SY. In terms of notation, let D−g ≡ (D1, ...,Dg−1,Dg+1, ...,DG) and its realization be
d−g. Then such an assumption would be stated as follows.

Assumption SY∗. For g = 1, ..., G and every x ∈ X , ϑ(dg,d−g, x;u) = ϑ(d̃g,d−g, x;u) a.e.
u for any permutation d̃g of dg.

Under this partial conditional symmetry assumption, the bound on the ASF can be
calculated by iteratively applying the previous results to each group.16 Assumptions SS,
SY1, EX and M can be modified so that they satisfy for within-group treatments and in-
teraction. In particular, Assumption EX can be modified as follows: for each dg−s ∈ D

g
−s,

νs,g(dg−s, Z
g
s )|X,Z−g is nondegenerate, where Z ≡ (Zg,Z−g). That is, there must be group-

specific instruments that are excluded from other groups.17

We briefly show how to modify the previous bound analysis with binary Y and no X for
simplicity. Analogous to the previous notation, let Mg

j be the set of equilibria with j entrants

in group g and let Mg,≤j ≡
⋃j
k=0M

g
k . Suppose G = 2, and d1 ∈ {0, 1}S1 and d2 ∈ {0, 1}S2 .

Consider the ASF E[Yd] = E[Yd1,d2 ] with d1 ∈ M1
j−1 and d2 ∈ M2

k−1 for some j = 1, ..., S1

and k = 1, ..., S2. To calculate its bounds, we can bound E[Yd|D = d′,Z] in (4.1) for d̃ 6= d
by sequentially applying the analysis of Section 4 in each group. First consider d̃ = (d̃1,d2)
with d̃1 ∈M1

j . We apply Lemma 4.2 for the D1 portion after holding D2 = d2. Suppose

Pr[Y = 1|D2 = d2,Z1 = z1,Z2 = z2]− Pr[Y = 1|D2 = d2,Z1 = z1′,Z2 = z2] ≥ 0,

Pr[D1 ∈M1,>j−1|Z1 = z1]− Pr[D1 ∈M1,>j−1|Z1 = z1′] > 0,

then we have µd̃1,d2 ≥ µd1,d2 . The proof of Lemma 4.2 can be adapted by holding D2 = d2

in this case, because there is no strategic interaction across groups and therefore the multiple
equilibria problem only occurs within each group. Note that this strategy still allows that
there is dependence between D1 and D2 even after conditioning on Z due to dependence

16This assumption can be further relaxed by adapting Assumption ASY in the framework of this section.
17We maintain Assumption R in the current setting since the assumption is equivalent to assuming a rank

invariance within each group, i.e., εdg,d−g = εd̃g,d−g ∀dg, d̃g ∈ {0, 1}Sg and g = 1, ..., G.

24



between U1 and U2. Then,

Pr[Yd1,d2 = 1|D = (d̃1,d2),Z = z] = Pr[ε ≤ µd1,d2 |D = (d̃1,d2),Z = z]

≤ Pr[ε ≤ µ
d̃1,d2 |D = (d̃1,d2),Z = z] (5.5)

= Pr[Y = 1|D = (d̃1,d2),Z = z].

Next, consider d = (d1,d2) and d̃ = (d̃1, d̃2) with d̃2 ∈ M2
k and the other elements as

previously determined. Then by applying Lemma 4.2 this time for the D2 portion after
holding D1 = d̃1, we have µ

d̃1,d̃2 ≥ µd̃1,d2 by supposing

Pr[Y = 1|D1 = d̃1,Z1 = z1,Z2 = z2]− Pr[Y = 1|D1 = d̃1,Z1 = z1,Z2 = z2′] ≥ 0,

Pr[D2 ∈M2,>j−1|Z2 = z2]− Pr[D2 ∈M2,>j−1|Z2 = z2′] > 0.

Then

Pr[Yd1,d2 = 1|D = (d̃1, d̃2),Z = z] ≤ Pr[ε ≤ µ
d̃1,d2 |D = (d̃1, d̃2),Z = z]

≤ Pr[ε ≤ µ
d̃1,d̃2 |D = (d̃1, d̃2),Z = z] (5.6)

= Pr[Y = 1|D = (d̃1, d̃2),Z = z],

where the first inequality is by (5.5). Note that in deriving the upper bound in (5.6), it is
important that at least the two groups share the same signs of within-group h’s and hD’s.
This is clearly a weaker requirement than imposing Assumption SY.

6 Discussions

6.1 Player-Specific Outcomes

Henceforth, we considered a scalar Y that may represent an outcome common to all players in
a given market or a geographical region. The outcome, however, can also be an outcome that
is specific to each player. In this regard, consider a vector of outcomes Y = (Y1, ..., YS) where
each element Ys is a player-specific outcome. An interesting example of this setting may be
where Y is also an equilibrium outcome from strategic interaction not only through D but
also through itself. In this case, it would become important to have a vector of unobservables
even after assuming e.g., rank invariance, since we may want to include εD = (ε1,D, ..., εS,D),
where εs,D is an unobservable directly affecting Ys.

18 We may also want to include a vector
of observables of all players X = (X1, ..., XS), where Xs directly affects Ys. Then interaction
among Ys can be modeled via a reduced-form representation:

Ys = θs(D,X, εD), s ∈ {1, ..., S}.

In firms’ entry, the first-stage scalar unobservable Us may represent each firm’s unobserved
fixed cost (while Zs captures observed fixed cost). The vector of unobservables in the player-
specific outcome equation represents multiple shocks, such as the player’s demand shock and

18In this case, Assumption R should be imposed on εs,D for each s.
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variable cost shock, and other firms’ variable cost shocks and demand shocks. Unlike in
a linear model, it would be hard to argue that these errors are all aggregated in a scalar
variable in this nonlinear outcome model, since it is not known in which fashion they enter
the equation.

6.2 Relation to Manski’s Work

Manski (2013) introduces a framework for social interaction where responses (i.e., outcomes)
of agents are dependent on one another through their treatments. The framework relaxes the
stable unit treatment value assumption (SUTVA) by allowing interaction across the units.
Our framework is similar to Manski (2013) in that we also allow interaction among outcomes
of players through their treatments, as we discuss in Section 6.1. The difference is that we
consider interaction across treatment/player unit s, whereas he considers interaction across
observational unit i. Furthermore, we explicitly model the selection process of how treatments
are determined simultaneously through players’ strategic interaction. His model, following his
earlier work (Manski (1997) and Manski and Pepper (2000)), stays silent about the process.
Despite the difference, the two settings share a similar spirit of departing from the SUTVA.
The shape restrictions we impose are related to the assumptions of Manski (2013) for the
treatment response, which we compare here. First of all, Assumption SY appears in Manski
as an anonymity assumption. Also, we find that Assumptions SY and SY∗ are related to the
constant TR (CTR) assumption in Manski, although he assumes anonymity separate from
this assumption. The CTR assumption states that, with d = (di)

N
i=1,

c(d) = c(d′) =⇒ Yd = Yd′ .

As noted in Manski, c(d) is an effective treatment in that, as long as c(d) stays constant, the
response does not change. SY and SY∗ can be restated using this concept with a particular
choice of c(d): with d = (ds)

S
s=1 ,

c(d) = c(d′) =⇒ E[Yd|X = x,U = u] = E[Yd′ |X = x,U = u] (6.1)

for given x ∈ X and a.e. u, where c(d) is chosen such that the game for treatment decisions has
a unique equilibrium in terms of c(d). The conditional symmetry assumption (Assumption
SY) can be seen as one example of this, where the game has a unique equilibrium in terms of
c(d) that is invariant to permutation, such as the number of players who choose to take the
action (c(d) =

∑S
s=1 ds). Likewise, SY∗ corresponds to c(d) = (c1(d), ..., cG(d)) with cg(d) =∑Sg

s=1 d
g
s. There can certainly be other choices of c(d) that delivers a unique equilibrium in

the game, although we do not explore this further.

6.3 Point Identification of the ATE

When there exist player-specific excluded instruments of large support, we point identify
the ATEs. In this case, the shape restrictions (especially on the outcome function) are not
needed. The following assumption holds for each s ∈ {1, ..., S}.

Assumption EX∗. For each d−s ∈ D−s, νs(d−s, Zs)|(X,Z−s) has an everywhere positive
Lebesgue density.
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Assumption EX∗ is stronger than Assumption EX. It imposes not only the exclusion
restriction of EX but also a player-specific exclusion restriction and large support.

Theorem 6.1. In model (2.1) and (2.2), suppose Assumptions IN, E and EX∗ hold. Then
the ATE in (2.3) is identified.

The identification strategy is to exploit the large variation of player specific instruments
based on Assumption EX∗, which simultaneously solves the multiple equilibria problem and
the endogeneity problem. Suppose S = 2 and Zs is scalar for illustration; the general case
can be proved analogously. For example, to identify E[Y11|X], consider

E[Y |D = (1, 1), X = x,Z = z] = E[Y11|D = (1, 1), X = x,Z = z]

= E[θ(1, 1, x, ε11)|ν1(1, z1) ≥ U1, ν
2(1, z2) ≥ U2]

→ E[θ(1, 1, x, ε11)] = E[Y11|X = x],

where the second equation is by Assumption IN, and the convergence is by Assumption EX∗

with z1 → ∞ and z2 → ∞. Likewise, E[Y00|X = x] can be identified. The identification of
E[Y10|X = x] and E[Y01|X = x] can be achieved by similar reasoning. Note that D = (1, 0)
or D = (0, 1) can be predicted as an outcome of multiple equilibria. When either (z1, z2)→
(∞,−∞) or (z1, z2) → (−∞,∞) occurs, however, a unique equilibrium is guaranteed as a
dominant strategy, i.e., D = (1, 0) or D = (0, 1), respectively. Based on these results, we can
(point) identify all the ATE’s.

7 The LATE

The result of Theorem 3.1 on the equilibrium regions can be used to establish a framework
that defines the LATE parameter for multiple treatments that are generated by strategic
interaction. In this section, given model (2.1)–(2.2), we only maintain the assumptions
on the payoff functions in the equations for Ds, but not the assumptions on the outcome
functions in the equation for Y . In particular, we no longer require Assumptions M and
SY. In the case of a single binary treatment, there is well-known equivalence between the
LATE monotonicity assumption and the specification of a selection equation (Vytlacil (2002)).
This equivalence result is inapplicable to our setting due to the simultaneity in the first
stage.19 But Proposition 3.1 implies that, under Assumptions SS and SY1, there is in fact
a monotonic pattern in the way the equilibrium regions lie in the space of U as written
in (3.4). This generalized monotonicity, formalized in Theorem 3.1, allows us to establish
equivalence between a version of the LATE monotonicity assumption and the simultaneous
selection model (2.2).

We first introduce a relevant counterfactual outcome that can be used in defining the
LATE parameter. For M ⊆ D, introduce a selection variable DM ∈ M that selects an
equilibriumDM = d when facing a set of equilibria, M . This variable is useful in decomposing
the event D = d into two sequential events: D = d is equivalent to an event that D ∈M and

19For instance in a two-player entry game, when cost shifters Z1 and Z2 increase, it may be the case that
in one market only the first player enters given this increase as her monopolistic profit offsets the increased
cost, while in another market only the second player enters by the same reason applied to this player. The
direction of monotonicity is reversed in these two markets.
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DM = d. Trivially, we have DD = D. When M ( D is not a singleton, DM is not observed
precisely because the equilibrium selection mechanism is not observed in general.20 Using
DM , we define a joint counterfactual outcome YM as an outcome had D been an element in
M :

YM =
∑
d∈M

1[DM = d]Yd. (7.1)

Conditional onD ∈M , YM is assigned to be one of the usual counterfactual outcome Yd based
on the equilibrium being selected. When M = D, we can write Y = YD =

∑
d∈D 1[D = d]Yd,

which yields the standard expression that relates the observed outcome with the potential
outcomes. Moreover, for any partition {M̃k}Kk=1 such that

⋃K
k=1 M̃k = D, we can express

∑
d∈D

1[D = d]Yd =
K∑
k=1

∑
d∈M̃k

1[D ∈ M̃k]1[DM̃k
= d]Yd =

K∑
k=1

1[D ∈ M̃k]YM̃k
,

where the first equality is by the equivalence of the events mentioned above and the second
equality is by (7.1). Therefore, we can establish the following relationship:

Y =

K∑
k=1

1[D ∈ M̃k]YM̃k
, (7.2)

that is, YM̃k
is observed when D ∈ M̃k.

Now, consider a treatment of dichotomous states (e.g., dichotomous market structures):
for j = 0, ..., S − 1,

D ∈M>j vs. D ∈M≤j ,

where M≤j ≡
⋃j
k=0Mk and M>j ≡

⋃S
k=j+1Mk are previously defined; e.g., for S = 2 and

j = 1, M≤1 = {(1, 0), (0, 1), (0, 0)} and M>1 = {(1, 1)}. Consider a corresponding treatment
effect:

YM>j − YM≤j ,

where Y = 1[D ∈ M>j ]YM>j + 1[D ∈ M≤j ]YM≤j by (7.2). This quantity is the effect of
being treated with an equilibrium of at least j + 1 entrants relative to being treated with an
equilibrium of at most j entrants. We now establish that a version of the LATE monotonicity
assumption for this treatment 1[D ∈ M>j ] of dichotomous states is implied by the model
specification (2.2), using Theorem 3.1. Recall D(z) ≡ (D1(z1), ..., DS(zS)) where Ds(zs) is
the potential treatment.

20Alternatively, following the notation of Heckman et al. (2006), we can introduce a equilibrium selection
indicator DM,d that indicates that an equilibrium d is selected among equilibria in a set M :

DM,d =

{
1 if d ∈M is selected,

0 o.w.

Then, DM = d if and only if DM,d = 1.
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Lemma 7.1. Under Assumptions SS, SY1 and M1, the first-stage game (2.2) implies that,
for any z, z′ ∈ Z and j = 0, ..., S − 1,

Pr[D(z) ∈M≤j ,D(z′) ∈M>j ] = 0
or

Pr[D(z) ∈M>j ,D(z′) ∈M≤j ] = 0.
(7.3)

The condition (7.3) is a generalized version of Imbens and Angrist (1994)’s monotonicity
assumption.

Proof. For given z, z′ ∈ Z, suppose without loss of generality that in Assumption M1,
νsd−s(zs) ≥ νsd−s(z

′
s) ∀d−s and ∀s. Then by Theorem 3.1, it follows that R>j(z) ⊇ R>j(z′).

Then

Pr[D(z) ∈M≤j ,D(z′) ∈M>j ] = Pr[U ∈ R≤j(z) ∩R>j(z′)] = 0.

Lemma 7.1 allows us to give the IV estimand a LATE interpretation in our model:

Theorem 7.1. Given model (2.1)–(2.2), suppose Assumptions SS, SY1, M1, IN and EX
hold. Then it satisfies that, for any j = 0, ..., S − 1,

h(z, z′)

pM>j (z)− pM>j (z′)
=

E[Y |Z = z]− E[Y |Z = z′]

Pr[D ∈M>j |Z = z]− Pr[D ∈M>j |Z = z′]

= E[YM>j − YM≤j |D(z) ∈M>j ,D(z′) ∈M≤j ].

The LATE parameter E[YM>j − YM≤j |D(z) ∈ M>j ,D(z′) ∈ M≤j ] is the average of
treatment effect YM>j − YM≤j for a subgroup of “markets” that form more competitive
markets (with at least j + 1 entrants) when players face Z = z, but form less competitive
markets (with at most j entrants) when players face Z = z′. For concreteness, suppose
S = 2, j = 1, Zs is each airline company’s cost shifters and Y is the pollution level in a
market. The LATE

E[Y{(1,1)} − Y{(1,0),(0,1),(0,0)}|D(z) = (1, 1),D(z′) ∈ {(1, 0), (0, 1), (0, 0)}]

is the effect of the existence of competition on pollution levels for markets consist of “com-
pliers.”21 It is the average difference of potential pollution levels in a duopoly market (i.e.,
duopolistic competition) versus a monopoly or non-operating market (i.e., no competition) for
the subgroups of markets that form a duopoly when companies are facing low cost (Z = z) but
form a monopoly or do not operate when facing high cost (Z = z′). Figure 6 depicts this sub-
group of markets. In this example, the LATE monotonicity assumption (implied by the entry
game of strategic substitutes with symmetric payoffs) rules out those markets that respond to

21In this multi-agent multi-treatment scenario, compliers are defined as those players whose behaviors are
such that market structures are formed in conformance with the LATE monotonicity assumption (7.3). Unlike
in the traditional setting (Imbens and Angrist (1994)) where compliers are defined in terms of the subset of
population, the subpopulation in the present setting is the collection of the markets consist of the complying
players.
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cost shifters as “defiers.” The LATE becomes the ATE when 1 = Pr[D(z) = (1, 1),D(z′) ∈
{(1, 0), (0, 1), (0, 0)}] = Pr[D = (1, 1)|Z = z]−Pr[D ∈ {(1, 0), (0, 1), (1, 1)}|Z = z′], which is
related to the large-support argument in Theorem 6.1.

In general, the LATE can be defined with YM−YM ′ for any two partitioning setsM andM ′

of D (i.e., D = M∪M ′ with M∩M ′ = ∅) as long as 1[D(z) ∈M ] = 1−1[D(z) ∈M ′] satisfies
the LATE monotonicity assumption. Lemma 7.1 ensures that our simultaneous selection
model imposes this monotonicity for a particular partition, M = M>j and M ′ = M≤j . Also
the LATE using a more general function of the potential outcomes can be recovered analogous
to Abadie (2003): E[g(YM>j , X)− g(YM≤j , X)|D(z) ∈M>j ,D(z′) ∈M≤j ] for a measurable
function g(·) such that E |g(·)| <∞.

Remark 7.1. Similarly, it may be possible to recover the marginal treatment effect (MTE) of
Heckman and Vytlacil (1999, 2005, 2007). Given our setting, it should be a transition-specific
MTE for YMj −YMj−1. The identification of this MTE would require continuous variation of
Z. For discrete Z, the approach by Brinch et al. (2017) can be applied by imposing structures
on the MTE function.

Remark 7.2. The equilibrium selection mechanism may differ across different counterfactual
worlds. In terms of our notation, DM (z) may differ from DM (z′), where DM (z) is the
counterfactual variable of DM . Note that not only the equilibrium being selected is different
but also the selection mechanism can be different. This feature may be emphasized by writing
DM (z) = λz(z,U) where the functional form of the equilibrium selection function may also
change in z. By considering YM instead of Yd, however, we can be agnostic about the selection
mechanism, i.e., about the specification of λz(·, ·). The definition (7.1) asserts that Yd can be
meaningfully analyzed within the current framework only when the equilibrium being selected
is known.

8 Numerical Studies

To illustrate the main results of this paper, we calculate the bounds on the ATE using the
following data generating process:

Yd = 1[µ̃d + βX ≥ ε],
D1 = 1[δ2D2 + γ1Z1 ≥ V1],

D2 = 1[δ1D1 + γ2Z2 ≥ V2],

where (ε, V1, V2) are drawn from a joint normal distribution with zero means and each cor-
relation coefficient being 0.5, and drawn independent of (X,Z). We draw Zs (s = 1, 2) and
X from multinomial, allowing Zs to take two values, Zs = {−1, 1} and X to take either
three values, X = {−1, 0, 1}, or fifteen values, X = {−1,−6

7 ,−
5
7 , ...,

5
7 ,

6
7 , 1}. Being consistent

with Assumptions M and SY, we choose µ̃11 > µ̃10 = µ̃01 > µ̃00, and with Assumption SS,
we choose δ1 < 0 and δ2 < 0. Without loss of generality, we choose positives values for γ1,
γ2, and β. Specifically, µ̃11 = 0.25, µ̃10 = µ̃01 = 0 and µ̃00 = −0.25. For default values,
δ1 = δ2 ≡ δ = −0.1, γ1 = γ2 ≡ γ = 1 and β = 0.5.

In this exercise, we focus on the ATE E[Y11 − Y00|X = 0] whose true value is 0.2 given
the parameter values. For h(z, z′, x), we consider z = (1, 1) and z′ = (−1,−1). Note that
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H(x) = h(z, z′, x) and H(x, x′, x′′) = h(z, z′;x, x′, x′′) since Zs is binary. Then we can derive
the sets XUd (0;d′) and XLd (0;d′) for each d ∈ {(1, 1), (0, 0)} and d′ 6= d in Theorem 4.2.

Based on our design, H(0) > 0 and thus the bounds when we use Z only are, with x = 0,

max
z∈Z

Pr[Y = 1,D = (0, 0)|z, x] ≤ Pr[Y00 = 1|x] ≤ min
z∈Z

Pr[Y = 1|z, x],

and

max
z∈Z

Pr[Y = 1|z, x] ≤ Pr[Y11 = 1|x] ≤ min
z∈Z
{Pr[Y = 1,D = (1, 1)|z, x] + 1− Pr[D = (1, 1)|z, x]} .

Using bothZ andX, we have narrower bounds. For example when |X | = 3, withH(0,−1,−1) <
0, the lower bound on Pr[Y00 = 1|X = 0] becomes

max
z∈Z
{Pr[Y = 1,D = (0, 0)|z, 0] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z,−1]} .

With H(1, 1, 0) < 0, the upper bound on Pr[Y11 = 1|X = 0] becomes

min
z∈Z
{Pr[Y = 1,D = (1, 1)|z, 0] + Pr[Y = 1,D ∈ {(1, 0), (0, 1)}|z, 1] + Pr[D = (0, 0)|z, 0]} .

For comparison, we calculate the bounds by Manski (1990) using Z. The Manski’s bounds
are

max
z∈Z

Pr[Y = 1,D = (0, 0)|z, x] ≤ Pr[Y00 = 1|x]

≤ min
z∈Z
{Pr[Y = 1,D = (0, 0)|z, x] + 1− Pr[D = (0, 0)|z]} ,

and

max
z∈Z

Pr[Y = 1,D = (1, 1)|z, x] ≤ Pr[Y11 = 1|x]

≤ min
z∈Z
{Pr[Y = 1,D = (1, 1)|z, x] + 1− Pr[D = (1, 1)|z]} .

We also compare the estimated ATE using the specification of a standard linear IV model
where the nonlinearity of the true DGP are ignored:

Y = π0 + π1D1 + π2D2 + βX + ε,(
D1

D2

)
=

(
γ10

γ20

)
+

(
γ11 γ12

γ21 γ22

)(
Z1

Z2

)
+

(
V1

V2

)
.

Here the first stage is the reduced-form representation of the linear simultaneous equations
model for strategic interaction. Under this specification, the ATE becomes E[Y11 − Y00|X =
0] = π1 + π2, which is estimated via two-stage least squares (TSLS).

The bounds calculated for the ATE are shown in Figures 7–10. Figure 7 shows how the
bounds on the ATE change as the value of γ changes from 0 to 2.5. The larger γ is the
stronger the instrument Z is. The first conspicuous result is that the TSLS estimate of the
ATE is biased due the the problem of misspecification. Next, as expected, the Manski’s
bounds and our proposed bounds converge to the true value of the ATE as the instrument
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becomes stronger. Overall, our bounds, with or without exploiting the variation of X, are
much narrower than the Manski bounds.22 Notice that the sign of the ATE is identified in
the whole range of γ as predicted by the first part of Theorem 4.2, in contrast to the Manski’s
bounds. By using the additional variation from X with |X | = 3, the width of the bounds is
decreased, particularly with the smaller upper bounds on the ATE in this simulation design.
Figure 8 depicts the bounds using X with |X | = 15, which yields narrower bounds than using
X with |X | = 3 and substantially narrower than those using only Z.

Figure 9 shows how the bounds change as the value of β changes from 0 to 1.5, where a
larger β corresponds to a stronger exogenous variable X. The jumps in the upper bound are
associated with the sudden changes in the signs of H(−1, 0,−1) and H(0, 1, 1). At least in
this simulation design, the strength of X is not a crucial factor to obtain narrower bounds.
In fact, based other simulation results (which are omitted in the paper), we conclude that
the number of values X can take matters more than the dispersion of X (unless we pursue
point identification of the ATE).

Figure 10 shows how the width of the bounds is related to the extent to which the
opponents’ actions D−s affect one’s payoff, captured in δ. We vary the value of δ from −2 to
0, and when δ = 0, the players solve a single-agent optimization problem. Thus, heuristically,
the bound at this point would be similar to the ones that can be obtained when Shaikh and
Vytlacil (2011) is extended to a multiple-treatment setting with no simultaneity. In the
figure, as the value of δ gets smaller, the bounds get narrower.
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A Partial ATE

Define a partial counterfactual outcome as follows: with a partition D = (D1,D2) ∈ D1 ×
D2 = D and its realization d = (d1,d2),

Yd1,D2 ≡
∑

d2∈D2

1[D2 = d2]Yd1,d2 . (A.1)

This is a counterfactual outcome that is fully observed once D1 = d1 is realized. Then for
each d1 ∈ D1, the partial ASF can be defined as

E[Yd1,D2 ] =
∑

d2∈D2

E[Yd1,d2 |D2 = d2] Pr[D2 = d2] (A.2)

and the partial ATE between d and d′ as

E[Yd1,D2 − Yd1′,D2 ]. (A.3)

Using this concept, we can consider complementarity concentrated on, e.g., the first two
treatments: E

[
Y11,D2 − Y01,D2

]
> E

[
Y10,D2 − Y00,D2

]
.

B More Examples

Example 3 (Incumbents’ response to potential entrants). In this example, we are interested
in how market i’s incumbents respond to the threat of entry of potential competitors. Let
Yi be an incumbent firm’s pricing or investment decision and Ds,i be an entry decision by
firm s in “nearby” markets, which can be formally defined in each context. For example, in
airline entry, nearby markets are defined as city pairs that share the endpoints with the city
pair of an incumbent (Goolsbee and Syverson (2008)). That is, potential entrants are airlines
that operate in one (or both) of the endpoints of the incumbent’s market i, but who have
not connected these endpoints. Then the parameter E[Yd,i − Yd′,i] captures the incumbent’s
response to the threat, specifically whether it responds by lowering the price or making an
investment. As in Example 1, Zs,i are cost shifters and Xi are other factors affecting price
of the incumbent, excluded from nearby markets, conditional of Wi. The characteristics of
the incumbent’s market can be a candidate of Xi, such as the distance between the endpoints
of the incumbent’s market in the airline example.

Example 4 (Food desert). Let Yi denote a health outcome, such as diabetes prevalence, in
region i, and Ds,i be the exit decision by large supermarket s in the region. Then E[Yd,i−Yd′,i]
measures the effects of absence of supermarkets on health of the residents. Conditional on
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other factors Wi, the instrument Zs,i can include changes in local government’s zoning plans
and Xi can include the region’s health-related variables, such as the number of hospitals and
the obesity rate. This problem is related to the literature on “food desert” (e.g., Walker et al.
(2010)).

Example 5 (Ground water and agriculture). In this example, we are interested in the im-
pact of access to groundwater on economic outcomes in rural areas (Foster and Rosenzweig
(2008)). In each Indian village i, symmetric wealthy farmers (of the same caste) make irri-
gation decisions Ds,i, i.e., whether or not to buy motor pumps, in the presence of peer effects
and learning spillovers. Since ground water is a limited resource that is seasonally recharged
and depleted, other farmers’ entry may negatively affects one’s payoff. The adoption of the
technology affects Yi, which can be the average of local wages of peasants or prices of agri-
cultural products, or a village development or poverty level. In this example, continuous or
binary instrument Zs,i can be the depth to groundwater, which is exogenously given (Sekhri
(2014)), or provision of electricity for pumping in a randomized field experiment. Xi can be
village-level characteristics that villagers do not know ex ante or do not concern about.23

C Model with Common Z

Consider model (2.1)–(2.2) but with instruments common to all players/treatments, i.e.,
Z1 = · · · = ZS :

Y = θ(D, X, εD),

Ds = 1 [νs(D−s, Z1) ≥ Us] , s ∈ {1, ..., S}.

This setting can be motivated by such instruments as appeared in Example 2. Given this
model, Assumptions SS, SY1, M1, IN, EX and C will be understood with Z1 = · · · = ZS
imposed.24 Then the bound analysis for the ATE including sharpness as well as the LATE
result will naturally follow. The intuition of this straightforward extension is as follows. As a
generalized version of monotonicity in the treatment selection process is restored (Theorem
3.1), model (2.1)–(2.2) can essentially be seen as a triangular model with an ordered-choice
type of a first-stage. Therefore an instrument that “shift” the entire first-stage process
is sufficient for the purpose of our analyses. Player-specific instruments do introduce an
additional source of variation, as it is crucial for the point identification of the ATE that
employs identification at infinity.

D Proofs

D.1 Proof of Proposition 3.1

The following proposition is useful in proving Proposition 3.1:

23Especially in this example, the number of players/treatments Si is allowed to vary across villages. We
assume in this case that players/treatments are symmetric (in a sense that becomes clear later) and ν1(·) =
· · · = νSi(·) = ν(·).

24Assumption ASY may be slightly harder to justify with a common instrument.
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Proposition D.1. Let R and Q be sets defined by Cartesian products: R =
∏S
s=1 rs and

Q =
∏S
s=1 qs where rs and qs are intervals in R. Then the following holds:

(i) If rs ∩ qs = ∅ for some s, then R ∩Q = ∅;
(ii) If rs ∼ qs ∀s, then R ∼ Q;
(iii) If rs � qs for some s, then R � Q;
(iv) R ∩Q =

∏S
s=1 rs ∩ qs;

(v) cl(R) =
∏S
s=1 cl(rs) where cl(·) is the closure of its argument.

The proof of this proposition follows directly from the definition of R and Q. To utilize
Proposition D.1, we show that Proposition 3.1(i)–(iii) are implied by similar statements that
satisfy for all individual pairs between two regions: (i′) Rdj ∩ Rdj′ = ∅ ∀dj ∈ Mj and

∀dj′ ∈Mj′ with j 6= j′; (ii′) Rdj and Rdj−1 are neighboring sets ∀dj ∈Mj and ∀dj−1 ∈Mj−1;
(iii′) Rdj and Rdj−t are not neighboring sets ∀dj ∈Mj and ∀dj−t ∈Mj−t with t ≥ 2.

Before proving Proposition 3.1(i), we prove (i′). We first show a simple case as a reference:
Rej ∩Rej−1 = ∅ for j = 1, ..., S. Note that

Rej (z) =

{
j∏
s=1

(
0, νsj−1(zs)

]}
×


S∏

s=j+1

(
νsj (zs), 1

]
Rej−1(z) =

{
j−1∏
s=1

(
0, νsj−2(zs)

]}
×


S∏
s=j

(
νsj−1(zs), 1

]
and the j-th coordinates are

(
0, νjj−1(zj)

]
in Rej and

(
νjj−1(zj), 1

]
in Rej−1 . Since these two

intervals are disjoint, by Proposition D.1(i), we can conclude that Rej ∩ Rej−1 = ∅. Now to
prove (i′), we equivalently prove Rdj ∩ Rdj−t = ∅ for t ≥ 1 and 0 ≤ j − t ≤ S − t, and draw
insights from the simple case. Note that dj−t contains S − j + t zeros. Then there exists

s∗ such that djs∗ = 1 but dj−ts∗ = 0, i.e., Us∗ ∈
(

0, νs
∗
j−1(zs∗)

]
in Rdj but Us∗ ∈

(
νs
∗
j−t(zs∗), 1

]
in Rdj−t . Suppose not. Then ∀s such that djs = 1, it must hold that dj−ts = 1. This
implies that dj−t has at least as many elements of unity as dj , which is contradiction as

t ≥ 1. Therefore since
(

0, νs
∗
j−1(zs∗)

]
and

(
νs
∗
j−t(zs∗), 1

]
are disjoint, Rdj and Rdj−t are

disjoint. When t ≥ 2, by Assumption SS, νs
∗
j−t(zs∗) > νs

∗
j−1(zs∗) and therefore

(
νs
∗
j−t(zs∗), 1

]
and

(
0, νs

∗
j−1(zs∗)

]
are disjoint and thus the same conclusion follows. Also when t = 1,(

νs
∗
j−1(zs∗), 1

]
and

(
0, νs

∗
j−1(zs∗)

]
are obviously disjoint. This proves (i′).

For Proposition 3.1(i), one can conclude from (i′) that Rdj is disjoint to Rdj′ for any

dj
′ ∈Mj′ and hence is disjoint to

⋃
d∈Mj′

Rd. This is true ∀dj ∈Mj , and therefore
⋃

d∈Mj
Rd

is disjoint to
⋃

d∈Mj′
Rd.

To prove (ii′), by Proposition D.1(ii), one needs to show that each pair of intervals of
the same coordinate are neighboring intervals. This is immediately true for Rej and Rej−1

above, since (a) for coordinates 1 ≤ s ≤ j− 1,
(

0, νsj−1(zs)
]
∼
(

0, νsj−2(zs)
]

with a nonempty

intersection since
(

0, νsj−1(zs)
]
⊂
(

0, νsj−2(zs)
]
; (b) for coordinate s = j,

(
0, νjj−1(zj)

]
∼
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(
νjj−1(zj), 1

]
and they are disjoint; and (c) for coordinates j + 1 ≤ s ≤ S,

(
νsj (zs), 1

]
∼(

νsj−1(zs), 1
]

with a nonempty intersection since
(
νsj (zs), 1

]
⊃
(
νsj−1(zs), 1

]
. Now consider

Rdj and Rdj−1 . In dj and dj−1, there exists s∗ such that djs∗ = 1 but dj−1
s∗ = 0 by the same

argument as above with t = 1. The rest of the elements in dj and dj−1 fall into one of the
four types: for s 6= s∗, (a′) djs = dj−1

s = 1; (b′) djs = 1 but dj−1
s = 0; (c′) djs = dj−1

s = 0;
and (d′) djs = 0 but dj−1

s = 1. See Table 1 in the main text for an example of this result.
We aim to express the corresponding intervals of Us that generate these values of djs and
dj−1
s . By definition, the number of ones (and zeros) in dj and dj−1 differs only by one,

which happens in each vector’s s∗-th element. Knowing this, for these pairs of djs and dj−1
s

in (a′)–(d′), we can determine the decision of the opponents of player s (i.e., the value of j
in νsj ) which is useful to construct the payoff of s, and thus the corresponding interval of Us.

Specifically, we can determine that the corresponding interval pairs are: (a′′)
(

0, νsj−1(zs)
]

and
(

0, νsj−2(zs)
]
; (b′′)

(
0, νsj−1(zs)

]
and

(
νsj−1(zs), 1

]
; (c′′)

(
νsj (zs), 1

]
and

(
νsj−1(zs), 1

]
; (d′′)(

νsj (zs), 1
]

and
(

0, νsj−2(zs)
]
. It is straightforward that the pairs in (a′′)–(c′′) are neighboring

sets by the same arguments as for (a)–(c). The pair in (d′′) are also neighboring sets because

νsj (zs) < νsj−2(zs) by Assumption SS. Lastly, for coordinate s∗,
(

0, νs
∗
j−1(zs∗)

]
∼
(
νs
∗
j−1(zs∗), 1

]
as in (b′′). Therefore, Rdj ∼ Rdj−1 .

For Proposition 3.1(ii), one can conclude from (ii′) that Rdj neighbors Rdj−1 for any
dj−1 ∈ Mj−1 and hence neighbors

⋃
d∈Mj−1

Rd. This is true ∀dj ∈ Mj , and therefore⋃
d∈Mj

Rd ∼
⋃

d∈Mj′
Rd.

The result in Proposition 3.1(iii) follows from the proof of (i’) above that there exists s∗

such that djs∗ = 1 but dj−ts∗ = 0, i.e., Us∗ ∈
(

0, νs
∗
j−1(zs∗)

]
in Rdj but Us∗ ∈

(
νs
∗
j−t(zs∗), 1

]
in

Rdj−t . When t ≥ 2, by Assumption SS, νs
∗
j−t(zs∗) > νs

∗
j−1(zs∗) and therefore

(
0, νs

∗
j−1(zs∗)

]
�(

νs
∗
j−t(zs∗), 1

]
which implies that, by Proposition D.1(iii), their Cartesian products are not

neighboring sets.

Lastly, we prove Proposition 3.1(iv). We consider a S-dimensional hyper-grid for (0, 1]S

that runs through all possible values of νsj across j = 0, ..., S for each s = 1, ..., S. Specifically,
under Assumption SS and by conveniently letting νsS = 0 and νs−1 = 1, the hyper-grid is a
Cartesian product of 1-dimensional grids defined by 0 = νsS < νsS−1 < · · · < νs0 < νs−1 = 1 for
each coordinate s. Let each hyper-cube in this hyper-grid be represented as

r1(j1)× r2(j2)× · · · × rS(jS) ≡
(
ν1
j1 , ν

1
j1−1

]
×
(
ν2
j2 , ν

2
j2−1

]
× · · · ×

(
νSjS , ν

S
jS−1

]
,

where rs(·) are intervals implicitly defined in the equation and labeled with js = 0, ..., S.
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Using these notations, Rej for j = 0, ..., S can be expressed as

Rej =

U : (U1, ..., US) ∈


j∏
s=1

S⋃
k=j

rs(k)

×


S∏
s=j+1

j⋃
k=0

rs(k)




=

U : (U1, ..., US) ∈
S⋃

j1=j

· · ·
S⋃

jj=j

·
j⋃

jj+1=0

· · ·
j⋃

jS=0

r1(j1)× · · · × rS(jS)

 , (D.1)

where the second equality is by iteratively applying the following: for sets A, B and C being
Cartesian products (including intervals as a trivial case),

(A ∪B)× C = (A× C) ∪ (B × C).

More generally, R
djσ

for some σ(·) ∈ Σ can be defined as

R
djσ

=

U : (Uσ(1), ..., Uσ(S)) ∈
S⋃

j1=j

· · ·
S⋃

jj=j

·
j⋃

jj+1=0

· · ·
j⋃

jS=0

rσ(1)(j1)× · · · × rσ(S)(jS)

 .

(D.2)

Below we show that any hyper-cube r1(j1)× r2(j2)×· · ·× rS(jS) is contained in one of R
djσ

’s

for some j and σ(·). We first proceed by showing that there are hyper-cubes that are con-
tained in Rej ’s. We then show that any hyper-cube can be transformed using a permutation
function into a hyper-cube contained in Rej , which means that the original hyper-cube is
contained in some Rdj which is a “permutated version” of Rej .

Claim 1: For j1 ≥ j2 ≥ · · · ≥ jS , r1(j1)× r2(j2)× · · · × rS(jS) is contained in Rej for some
j ≤ j1.
Claim 2: For any {j1, ..., jS}, r1(j1) × r2(j2) × · · · × rS(jS) is contained in Rdj for j ≤
max{j1, ..., jS}.

Proof of Claim 1: Start with a hyper-cube at a corner:

r1(0)× r2(0)× · · · × rS(0) ≡
(
ν1

0 , 1
]
×
(
ν2

0 , 1
]
× · · · ×

(
νS0 , 1

]
.

This hyper-cube is contained in Re0 as the two in fact coincide. Consider the next hyper-cube
on the grid along the 1-st coordinate: r1(1)× r1(0) · · · × rS(0). This hyper-cube is contained
in Re1 as

Re1 =

S⋃
j1=1

·
1⋃

j2=0

· · ·
1⋃

jS=0

r1(j1)× · · · × rS(jS).

We move to the 2-nd coordinate holding the 1-st coordinate fixed. Then r1(1)×r2(1)×r3(0)×
· · · × rS(0) is still contained in Re1 . Likewise, from r1(1)× r2(1)× r3(1)× r4(0)× · · · × rS(0)
all the way to r1(1)× · · · × rS(1), these hyper-cubes are contained in Re1 .

Now consider the next hyper-cube along the 1-st coordinate, i.e., r1(2)×r2(0)×· · ·×rS(0).
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This is contained in Re1 . We move to the next coordinates holding the 1-st coordinate
fixed. Then r1(2)× r2(1)× r3(0)× · · · × rS(0), r1(2)× r2(1)× r3(1)× r4(0)× · · · × rS(0) to
r1(2)×r1(1)×· · ·×rS(1) are still contained inRe1 . But the next r1(2)×r2(2)×r3(0)×· · ·×rS(0)
is no longer contained in Re1 but is contained in

Re2 =

S⋃
j1=2

·
S⋃

j2=2

·
2⋃

j3=0

· · ·
2⋃

jS=0

r1(j1)× r2(j2)× · · · × rS(jS).

Likewise, following the same sequential rule, r1(2) × r2(2) × r3(1) × r4(0) × · · · × rS(0),
r1(2)×r2(2)×r3(1)×r4(1)×r5(0)×· · ·×rS(0) to r1(2)×· · ·×rS(2) are all contained in Re2 .
This argument can iteratively be applied to all other hyper-cubes r1(j1)×r2(j2)×· · ·×rS(jS)
generated by the same sequential rule maintaining j1 ≥ j2 ≥ · · · ≥ jS . This proves Claim 1.

Proof of Claim 2: In general, consider r1(j1)×· · ·×rS(jS) for given j1, ..., jS . There exists
permutation σ(·) and a sequence {ks}Ss=1 such that js = kσ(s) and k1 ≥ k2 ≥ · · · ≥ kS . Then
a hyper-cube

rσ(1)(j1)× · · · × rσ(S)(jS) = rσ(1)(kσ(1))× · · · × rσ(S)(kσ(S))

in the space of (Uσ(1), ..., Uσ(S)), or equivalently r1(k1)×· · ·×rS(kS) in the space of (U1, ..., US),
satisfies the condition in Claim 1 and thus is contained in Rej for some j ≤ kS by Claim
1. Let σ−1(·) be the inverse of σ(·). Note that σ−1(·) itself is a permutation function. In
general, for permutation σ̃(·), if r1(k1) × · · · × rS(kS) is contained in Rej for some j, then
rσ̃(1)(k1)× · · · × rσ̃(S)(kS) is contained in R

djσ̃
by definition. Therefore, since rσ−1(σ(s))(js) =

rs(js) ∀s, we can conclude that r1(j1)×· · ·×rS(jS) is contained in R
dj
σ−1

for j ≤ kS = jσ−1(S).

This proves Claim 2.

D.2 Proof of Theorem 3.1

We prove the theorem by showing the following lemma:

Lemma D.1. Under Assumptions SS, SY1 and M1 and for j = 0, ..., S − 1, R≤j(z) is
expressed as a union across σ(·) ∈ Σ of Cartesian products, each of which is a product of

intervals that are either (0, 1] or
(
ν
σ(s)
j (zσ(s)), 1

]
for some s = 1, ...S.

This lemma asserts that the region which predicts all equilibria with at most j entrants is
solely determined by the payoffs of players who stay out facing j entering opponents. Given
this lemma, (3.5) holds by Assumption M1.

To prove Lemma D.1, first, consider a pair of Rdj+1(z) and Rdj (z) (for dj+1 ∈ Mj+1

and dj ∈Mj) in Rj+1(z) and Rj(z), respectively. From the proof of Proposition 3.1(ii), we
know that the elements in dj+1 and dj fall into one of the four types (a′)–(d′) (including s∗),

and thus the corresponding pairs of intervals fall into one of the four types: (a†)
(

0, νsj (zs)
]

and
(

0, νsj−1(zs)
]
; (b†)

(
0, νsj (zs)

]
and

(
νsj (zs), 1

]
; (c†)

(
νsj+1(zs), 1

]
and

(
νsj (zs), 1

]
; (d†)(

νsj+1(zs), 1
]

and
(

0, νsj−1(zs)
]
.
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Definition D.1. For two Cartesian products R and Q such that R ∼ Q and R ∩ Q = ∅,
their border R ‖ Q is a set that satisfies R ‖ Q ≡ cl(R) ∩ cl(Q). Also, the border R ‖ Q is a
hyper-surface that is common to cl(R) and cl(Q).

By Proposition 3.1, Rdj+1(z) ∼ Rdj (z) and Rdj+1(z)∩Rdj (z) = ∅, and thus their border
can be properly defined. Given (a†)–(d†), we show that Rdj+1(z) ‖ Rdj (z) is a Cartesian

product of
(

0, νsj (zs)
]
‖
(
νsj (zs), 1

]
= {νsj (zs)} (for some s) and other intervals. Specifically,

by applying Proposition D.1(iv) and (v) with R = cl(Rdj+1(z)), Q = cl(Rdj (z)), and rs and
qs being the closures of the intervals in (a†)–(d†), we have

Rdj+1(z) ‖ Rdj (z) = {νsj (zs)} ×
∏
k 6=s

rk ∩ qk, (D.3)

for some s, where each rk∩qk is one of
[
0, νkj (zk)

]
, {νkj (zk)},

[
νkj (zk), 1

]
, and

[
νkj+1(zk), ν

k
j−1(zk)

]
.

Observe that Rdj+1(z) ‖ Rdj (z) is therefore a lower-dimensional Cartesian product (with di-
mension less than S), which is consistent with the notion of a border or a hyper-surface. Also,
observe that this hyperspace is located at νsj (zs) in the s-coordinate. Likewise, (D.3) holds for
any Rdj+1(z) and Rdj (z) pair with a different value of s and different choice for each rk ∩ qk.
But, since cl(A∪B) = cl(A)∪ cl(B) for any sets A and B, cl(Rj+1(z)) =

⋃
d∈Mj+1

cl(Rd(z))

and cl(Rj(z)) =
⋃

d∈Mj
cl(Rd(z)), and thus

Rj+1(z) ‖ Rj(z) =
⋃

dj+1∈Mj+1

⋃
dj∈Mj

(Rdj+1(z) ‖ Rdj (z)) . (D.4)

Now, let R>j(z) ≡
⋃

d∈M>j Rd(z) = U\R≤j(z) where M>j ≡
⋃S
k=j+1Mk. Note that

R≤j(z) ∼ R>j(z) and R≤j(z) ∩R>j(z) = ∅ by Proposition 3.1. Then R≤j(z) ‖ R>j(z) =
Rj+1(z) ‖ Rj(z) by the discussions around (3.4). Since R≤j(z)∪R>j(z) = U by definition,
R≤j(z) ‖ R>j(z) is the only nontrivial hyper-surface of cl(R≤j(z)) (and of cl(R>j(z))),
i.e., a surface that is not part of the surface of cl(U). Therefore by (D.3) and (D.4), we
can conclude that cl(R≤j(z)) and hence R≤j(z) is a function of z only through νsj (zs) ∀s.
Moreover, in the expression of Rdk(z) in (3.2) with k ≤ j− 1 (and hence in the expression of
R≤j−1(z)), there is no interval with νsj (zs) in its endpoint by definition.25 Also, the interval
in the expression of Rdj (z) in (3.2) (and hence in the expression of Rj(z)) that has νsj (zs) in

its endpoints is
(
νsj (zs), 1

]
∀s. Consequently, R≤j(z) = R≤j−1(z) ∪Rj(z) is only expressed

with
(
νsj (zs), 1

]
∀s and (0, 1]. If R≤j(z) is expressed using other intervals whose endpoints

are functions of zs, then it contradicts the fact that R≤j(z) is a function of z only through
νsj (zs). This completes the proof.

25That is, the payoff νsj (zs) is not relevant in defining markets with fewer than j entrants.

41



D.3 Proof of Theorem 4.1

Recall M≤j ≡ M j and M>j ≡
⋃S
k=j+1Mk. Then the bounds (4.14) and (4.15) can be

rewritten as

Udj = inf
z∈Z
{p̃M>j−1(z) + pM≤j−1(z)} , Ldj = sup

z∈Z
{p̃M≤j (z) + pM>j (z)} ,

where for a set M ⊂ D, p̃M (z) ≡ Pr[Y = 1,D ∈M |Z = z] and pM (z) ≡ Pr[D ∈M |Z = z].

Since D = M≤j̃ ∪M>j̃ for some j̃, note that p̃M>j̃ (z) = Pr[Y = 1|Z = z]− p̃M≤j̃ (z). Using

this result, for z, z′ such that
∑S

k=j′+1 h
D
k (z, z′) = pM>j′ (z)−pM>j′ (z′) > 0 (j′ = 0, ..., S−1),

observe that each term in Udj satisfies

p̃M>j−1(z)− p̃M>j−1(z′) = −p̃M≤j−1(z) + p̃M≤j−1(z′) = Pr[ε ≤ µD,U ∈ ∆j(z′, z)]

pM≤j−1(z)− pM≤j−1(z′) = −Pr[U ∈ ∆j(z′, z)]

by (D.8) and (D.11), and thus

p̃M>j−1(z) + pM≤j−1(z)−
{
p̃M>j−1(z′) + pM≤j−1(z′)

}
= −Pr[ε > µD,U ∈ ∆j(z′, z)] < 0.

Then this relationship creates a partial ordering of p̃M>j−1(z) + pM≤j−1(z) as a function of z
in terms of pM>j′ (z) (for any j′). According to this ordering, p̃M>j−1(z) + pM≤j−1(z) takes
its smallest value as pM>j′ (z) takes its largest value. Therefore, by (4.17),

Udj = inf
z∈Z
{p̃M>j−1(z) + pM≤j−1(z)} = p̃M>j−1(z̄) + pM≤j−1(z̄).

By a symmetric argument, Ldj = supz∈Z {p̃M≤j (z) + pM>j (z)} = p̃M≤j (z) + pM>j (z).
To prove that these bounds on E[Ydj ] are sharp, it suffices to show that for sj ∈ [Ldj , Udj ],

there exists a density function f∗ε,U such that the following claims hold:
(A) f∗ε|U is strictly positive on R.

(B) The proposed model is consistent with the data: ∀j = 0, ..., S

Pr[D ∈M≤j |Z = z] = Pr[U∗ ∈ R≤j(z)],

Pr[Y = 1|D ∈M≤j ,Z = z] = Pr[ε∗ ≤ µD|U∗ ∈ R≤j(z)],

Pr[Y = 1|D ∈M>j ,Z = z] = Pr[ε∗ ≤ µD|U∗ ∈ R>j(z)].

(C) The proposed model is consistent with the specified values of E[Ydj ]: Pr[ε∗ ≤ µdj ] = sj .
Theorem 3.1 and the partial ordering above establishes monotonicity of the event U ∈

R≤j(z) (and U ∈ R>j(z)) w.r.t. z. For example, for z, z′ such that pM>j (z) > pM>j (z′),
Theorem 3.1 implies that R≤j(z) ⊂ R≤j(z′) and hence

1[U ∈ R≤j(z′)]− 1[U ∈ R≤j(z)] = 1[U ∈ R≤j(z′)\R≤j(z)]. (D.5)

Given 1[D ∈M≤j ] = 1[U ∈ R≤j(Z)], (D.5) is analogous to a scalar treatment decision D̃ =
1[D̃ = 1] = 1[Ũ ≤ P̃ ] with a scalar instrument P̃ , where 1[Ũ ≤ p′]−1[Ũ ≤ p] = 1[p ≤ Ũ ≤ p′]
for p′ > p. Based on this result and the results for the first part of Theorem 4.1, we can
modify the proof of Theorem 2.1(iii) in Shaikh and Vytlacil (2011) to show (A)–(C).
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D.4 Proof of Lemma 4.2

We introduce a lemma that establishes the connection between Theorem 3.1 and Lemma 4.2.

Lemma D.2. Based on the results in Proposition 3.1, h(z, z′;x) ≡
∑S

j=0 hj(z, z
′, xj) satis-

fies

h(z, z′;x) =
S∑
j=1

∫
∆j−1(z′,z)

{ϑj(xj ;u)− ϑj−1(xj−1;u)} du, (D.6)

where ∆j−1(z′, z) ≡ R≤j−1(z′)\R≤j−1(z).

As a special case of this lemma, h(z′, z;x, ..., x) = h(z′, z, x) =
∑S

j=0 hj(z
′, z, x) can be

expressed as

h(z′, z, x) =

S∑
j=1

∫
∆j−1(z′,z)

{ϑj(x;u)− ϑj−1(x;u)} du. (D.7)

We prove Lemma D.2 by drawing on the results of Proposition 3.1. By Theorem 3.1, for
z and z′ such that (4.4) holds, we have

Rj(z) ⊆ Rj(z′) (D.8)

for j = 0, ..., S, includingRS(z) = RS(z′) = U as a trivial case. For those z and z′, introduce
notations26

∆j,+(z, z′) ≡ Rj(z)\Rj(z
′), (D.9)

∆j,−(z, z′) ≡ Rj(z
′)\Rj(z), (D.10)

and

∆j(z′, z) ≡ Rj(z′)\Rj(z). (D.11)

Note that, for j = 1, ..., S,

Rj(·) = Rj(·)\Rj−1(·), (D.12)

since Rj(z) ≡
⋃j
k=0Rk(z). Fix j = 1, ..., S. Consider

∆j,+(z, z′) =
(
Rj(z) ∩Rj−1(z)c

)
∩
(
Rj(z′) ∩Rj−1(z′)c

)c
=
(
Rj(z) ∩Rj−1(z)c

)
∩
(
Rj(z′)c ∪Rj−1(z′)

)
=
(
Rj(z) ∩Rj−1(z)c ∩Rj(z′)c

)
∪
(
Rj(z) ∩Rj−1(z)c ∩Rj−1(z′)

)
=
{(
Rj(z)\Rj(z′)

)
∩Rj−1(z)c

}
∪
{(
Rj−1(z′)\Rj−1(z)

)
∩Rj(z)

}
= ∆j−1(z′, z) ∩Rj(z),

26Note that ∆+(z,z′) and ∆−(z,z′) defined in Section 4.2 for the S = 2 are simplified versions of these
notations: ∆+(z,z′) = ∆1,+(z,z′) and ∆−(z,z′) = ∆1,−(z,z′).
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where the first equality is by plugging in (D.12) into (D.9), the third equality is by the
distributive law, and the last equality is by (D.8) and hence

(
Rj(z)\Rj(z′)

)
∩Rj−1(z)c = ∅.

But

∆j−1(z′, z) ∩Rj(z) = ∆j−1(z′, z)\
(
∆j−1(z′, z)\Rj(z)

)
.

Symmetrically, by changing the role of z and z′, consider

∆j,−(z′, z) =
(
Rj(z′) ∩Rj−1(z′)c

)
∩
(
Rj(z) ∩Rj−1(z)c

)c
=
{(
Rj(z′)\Rj(z)

)
∩Rj−1(z′)c

}
∪
{(
Rj−1(z)\Rj−1(z′)

)
∩Rj(z′)

}
= ∆j(z′, z) ∩Rj−1(z′)c,

where the last equality is by (D.8) that Rj−1(z) ⊂ Rj−1(z′). But

∆j(z′, z) ∩Rj−1(z′)c = ∆j(z′, z)\
(
∆j(z′, z) ∩Rj−1(z′)

)
.

Note that

∆j−1(z′, z)\Rj(z) = ∆j(z′, z)\Rj−1(z′) ≡ A∗, (D.13)

because

∆j−1(z′, z)\Rj(z) = Rj−1(z′) ∩Rj−1(z)c ∩Rj(z)c = Rj−1(z′) ∩Rj(z)c

= Rj(z′) ∩Rj(z)c ∩Rj−1(z′) = ∆j(z′, z) ∩Rj−1(z′),

where the second equality is by Rj−1(z) ⊂ Rj(z) and the third equality is by Rj−1(z′) ⊂
Rj(z′). In sum,

∆j,+(z, z′) = ∆j−1(z′, z)\A∗, ∆j,−(z, z′) = ∆j(z′, z)\A∗. (D.14)

(D.14) shows how the outflow (∆j,+(z, z′)) and inflow (∆j,−(z, z′)) of Rj can be written
in terms of the inflows of Rj−1 and Rj , respectively. And figuratively, A∗ adjusts for the
“leakage” when the change from z to z′ is relatively large. Now, with ϑj(u) ≡ ϑj(x;u) ≡
ϑ(ej , x;u), (4.20) can be expressed as∫

Rj(z)
ϑj(u)du−

∫
Rj(z′)

ϑj(u)du

=

∫
∆j,+(z,z′)

ϑj(u)du+

∫
Rj(z)∩Rj(z′)

ϑj(u)du−
∫

∆j,−(z,z′)
ϑj(u)du−

∫
Rj(z)∩Rj(z′)

ϑj(u)du

=

∫
∆j,+(z,z′)

ϑj(u)du−
∫

∆j,−(z,z′)
ϑj(u)du, (D.15)
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where the last equality is derived by IN and SY. First, for j = 1, ..., S, by (D.14),∫
∆j,+(z,z′)

ϑj(u)du−
∫

∆j,−(z,z′)
ϑj(u)du =

∫
∆j(z′,z)\A∗

ϑj(u)du−
∫

∆j(z′,z)\A∗
ϑj(u)du

=

∫
∆j−1(z′,z)\A∗

ϑj(u)du+

∫
A∗
ϑj(u)du−

∫
A∗
ϑj(u)du

−

{∫
∆j(z′,z)\A∗

ϑj(u)du+

∫
A∗
ϑj(u)du−

∫
A∗
ϑj(u)du

}

=

∫
∆j−1(z′,z)

ϑj(u)du−
∫

∆j(z′,z)
ϑj(u)du, (D.16)

where the last equality is because ∆j−1(z′, z) ⊃ A∗ and ∆j(z′, z) ⊃ A∗ by the definition of
A∗.

For j = 0, ∫
∆0,+(z,z′)

ϑ0(u)du−
∫

∆0,−(z,z′)
ϑ0(u)du = −

∫
∆0(z′,z)

ϑ0(u)du, (D.17)

since ∆0,+(z, z′) = ∅ by the choice of (z, z′) and ∆0,−(z, z′) = ∆0(z′, z). For j = S,∫
∆S,+(z,z′)

ϑS(u)du−
∫

∆S,−(z,z′)
ϑS(u)du =

∫
∆S−1(z′,z)

ϑS(u)du, (D.18)

since ∆S,−(z, z′) = ∅ by the choice of (z, z′) and ∆S,+(z, z′) = ∆S−1(z′, z). Then combining
(4.20) and (D.15)–(D.18) evaluated at x = xj ,

h(z, z′;x) ≡
S∑
j=0

hj(z, z
′, xj) =

S∑
j=1

∫
∆j−1(z′,z)

{ϑj(xj ;u)− ϑj−1(xj−1;u)} du.

This completes the proof of Lemma D.2.
Now we prove 4.2. Part (i) is already shown in the text, so we prove part (ii) here. By

Lemma D.2, h(z, z′;x) =
∑S

j=1

∫
∆j−1(z′,z) {ϑj(xj ;u)− ϑj−1(xj−1;u)} du with ∆j−1(z′, z) ≡

R̄j−1(z′)\R̄j−1(z), which can be rewritten as

h(z, z′;x)−
∑
k 6=j

∫
∆k−1(z′,z)

{ϑk(xk;u)− ϑk−1(xk−1;u)} du

=

∫
∆j−1(z′,z)

{ϑj(xj ;u)− ϑj−1(xj−1;u)} du. (D.19)

We prove the case ι = 1; the proof for the other cases follows symmetrically. For k 6= j, when
ϑk−1(xk−1;u)−ϑk(xk;u) > 0 a.e. u, it satisfies−

∫
∆k−1(z′,z) {ϑk(xk;u)− ϑk−1(xk−1;u)} du >

0. Combining with h(z, z′;x) > 0 implies that the l.h.s. of (D.19) is positive. This implies
that ϑj(x;u)−ϑj−1(x;u) > 0 a.e. u. Suppose not and suppose ϑj(xj ;u)−ϑj−1(xj−1;u) ≤ 0
with positive probability. Then by Assumption Y, ϑj(x;u)− ϑj−1(x;u) ≤ 0 a.e. u, which is
contradiction.
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D.5 Proof of Lemma 5.1

The claim is that when (5.2) holds, it satisfies Rdj (z) ∩ Rd̃j (z
′) = ∅ for dj 6= d̃j . But the

latter is equivalent to Assumption ASY by the first part of the proof of Lemma 5.2 below.
We first prove the claim for S = 2 and then generalize it. The probabilities in (5.2) equal

Pr[D = (0, 0)|Z = z] = Pr[U ∈ R00(z)],

Pr[D = (1, 1)|Z = z′] = Pr[U ∈ R11(z′)].

Under independent unobserved types, these probabilities are equivalent to the volume of
R00(z) and R11(z′), respectively. We consider two isoquant curves: a curve that delivers
the same volume as R00(z) with origin (1, 1) and a curve for R11(z′) with origin (0, 0) in U .
Consider an extreme scenario along these isoquant curves. Namely, consider the situation
that player 1 is unprofitable to enter irrespective of player 2’s decisions when Z = z. Then
U = R̃00(z) ∪ R̃01(z) where Pr[U ∈ R̃00(z)] = Pr[U ∈ R00(z)]. Also, consider a situation
that player 1 is profitable to enter irrespective of player 2’s decisions when Z = z′. Then U =
R̃10(z′)∪R̃11(z′) where Pr[U ∈ R̃11(z′)] = Pr[U ∈ R11(z′)]. In order for R̃01(z)∩R̃10(z′) = ∅,
it must be that

1− Pr[U ∈ R̃00(z)] = Pr[U ∈ R̃01(z)] < 1− Pr[U ∈ R̃10(z′)] = Pr[U ∈ R̃11(z′)]

or equivalently, 1 − Pr[U ∈ R00(z)] < Pr[U ∈ R11(z′)] should hold. But note that if
R̃01(z) ∩ R̃10(z′) = ∅, then R01(z) ∩ R10(z′) = ∅ for any R01(z) and R10(z′) along the
isoquant curves, since R01(z) ⊂ R̃01(z) and R10(z′) ⊂ R̃10(z′). Symmetrically one can show
R10(z) ∩R01(z′) = ∅.

To prove the general case for S > 2, we iteratively apply the argument for the two
players case. Consider two isoquant hyper-surfaces, one with origin (1, ..., 1) for Rd0(z) and
the other with origin (0,...,0) for RdS (z). Consider a scenario where the first S − 1 players
are unprofitable to enter irrespective of the remaining player’s decision when Z = z. Then
U = R̃d0(z)∪R̃0,...,0,1(z) where Pr[U ∈ R̃d0(z)] = Pr[U ∈ Rd0(z)]. Also, consider a situation
where the first S − 1 players are profitable irrespective of the remaining player’s decision
when Z = z′. Then U = R̃1,...,1,0(z′) ∪ R̃dS (z′) where Pr[U ∈ R̃dS (z′)] = Pr[U ∈ RdS (z′)].
Then when (5.1) holds, R̃0,...,0,1(z) ∩ R̃1,...,1,0(z′) = ∅. Note that R̃0,...,0,1(z) ⊃ Rd−s,1(z)

for any Rd−s,1(z) with d−s 6= (1, ..., 1) and R̃1,...,1,0(z′) ⊃ Rd−s,0(z′) for any Rd−s,0(z′) with

d−s 6= (0, ..., 0) by Proposition 3.1. Therefore Rd−s,1(z) ∩ Rd−s,0(z′) 6= 0 for dj and d̃j such

that dj 6= d̃j , dj = (d−s, 1) and d̃j = (d−s, 0) for j = 1, ..., S − 1. Since the same argument
applies irrelevant of which S − 1 players we choose from the outset, Rdj (z)∩Rd̃j (z

′) = ∅ for

dj 6= d̃j as it is desired.

D.6 Proof of Lemma 5.2

The first part proves the claim in Remark 5.1. For any dj and d̃j (dj 6= d̃j), the expres-
sion of Rdj (z) ∩ Rd̃j (z

′) can be inferred as follows. First, there exists s∗ such that djs∗ = 1

and d̃js∗ = 0, otherwise it contradicts dj 6= d̃j . That is, Us∗ ∈
(

0, νs
∗
j−1(zs∗)

]
in Rdj (z) and

Us∗ ∈
(
νs
∗
j (z′s∗), 1

]
in Rd̃j (z

′). For other s 6= s∗, the pair is realized to be one of the four
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types: (i) djs = 1 and d̃js = 0; (ii) djs = 0 and d̃js = 1; (iii) djs = 1 and d̃js = 1; (iv) djs = 0 and
d̃js = 0. Then the corresponding pair of intervals for Rdj (z) and Rd̃j (z

′), respectively, falls

into one of the four types: (i)
(

0, νsj−1(zs)
]

and
(
νsj (z

′
s), 1

]
; (ii)

(
νsj (zs), 1

]
and

(
0, νsj−1(z′s)

]
;

(iii)
(

0, νsj−1(zs)
]

and
(

0, νsj−1(z′s)
]
; (iv)

(
νsj (zs), 1

]
and

(
νsj (z

′
s), 1

]
. Then by Proposition

D.1(iv), Rdj (z)∩Rd̃j (z) is a product of the intersections of the interval pairs. But the inter-
sections resulting from (i) and (ii) are empty and hence Rdj (z) ∩ Rd̃j (z

′) = ∅ if and only if
νsj−1(zs) ≤ νsj (z′s) ∀s. Finally, note that Rdj (z) ∩Rd̃j (z

′) = ∅ implies R∗
dj

(z) ∩R∗
d̃j

(z′) = ∅.

Now, we prove Lemma 5.2 with binary Y , no X and S = 2 for simplicity; the general case
can be easily shown by analogously modifying the proof of Lemma 4.2. In place of hM (z, z′)
that is used to prove Lemma 4.1, introduce

h10(z, z′) ≡ Pr[Y = 1,D = (1, 0)|Z = z]− Pr[Y = 1,D = (1, 0)|Z = z′],

h01(z, z′) ≡ Pr[Y = 1,D = (0, 1)|Z = z]− Pr[Y = 1,D = (0, 1)|Z = z′].

Then h defined in (4.3) satisfies h = h11 + h00 + h10 + h01; in fact, hM = h10 + h01. Let R∗10

and R∗01 be the regions that predict D = (1, 0) and D = (0, 1), respectively. For (z, z′) such
that (4.4) holds, we have R11(z) ⊃ R11(z′) and R00(z) ⊂ R00(z′), respectively, by Theorem
3.1. Since R∗10 ∪R∗01 = R10 ∪R01 = R1, (4.7) and (4.8) can alternatively be expressed as

∆+(z, z′) ≡ {R∗10(z) ∪R∗01(z)} \R1(z′), (D.20)

∆−(z, z′) ≡
{
R∗10(z′) ∪R∗01(z′)

}
\R1(z). (D.21)

Consider partitions ∆+(z, z′) = ∆1
+(z, z′)∪∆2

+(z, z′) and ∆−(z, z′) = ∆1
−(z, z′)∪∆2

−(z, z′)
such that

∆1
+(z, z′) ≡ R∗10(z)\R1(z′), ∆2

+(z, z′) ≡ R∗01(z)\R1(z′),

∆1
−(z, z′) ≡ R∗10(z′)\R1(z), ∆2

−(z, z′) ≡ R∗01(z′)\R1(z).

That is, ∆1
+(z, z′) and ∆1

−(z, z′) are regions of R∗10 exchanged with the regions for D = (0, 0)
and D = (1, 1), respectively, and ∆2

+(z, z′) and ∆2
−(z, z′) are for R∗01.

By Assumption IN,

h10(z, z′) = Pr[ε ≤ µ10,U ∈ R∗10(z)]− Pr[ε ≤ µ10,U ∈ R∗10(z′)]

= Pr[ε ≤ µ10,U ∈ R∗10(z)\R∗10(z′)]− Pr[ε ≤ µ10,U ∈ R∗10(z′)\R∗10(z)]

= Pr[ε ≤ µ10,U ∈ ∆1
+(z, z′)]− Pr[ε ≤ µ10,U ∈ ∆1

−(z, z′)]

= Pr[ε ≤ µ10,U ∈ ∆1
+(z, z′) ∪A∗]− Pr[ε ≤ µ10,U ∈ ∆1

−(z, z′) ∪A∗],

where A∗ is defined in (D.13), the second equality is by (4.10) and the third equality is by
the following derivation:

R∗10(z)\R∗10(z′) =
[{
R∗10(z) ∩R1(z′)c

}
\R∗10(z′)

]
∪
[{
R∗10(z) ∩R1(z′)

}
\R∗10(z′)

]
=
[{
R∗10(z) ∩R1(z′)c

}]
∪
[{
R∗10(z′) ∩R1(z)

}
\R∗10(z′)

]
= ∆1

+(z, z′),
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where the first equality is by the distributive law and U = R1(z′)c∪R1(z′), the second equal-
ity is by R1(z′)c = R∗10(z′)c ∩R∗01(z′)c (the first term) and by Assumption ASY (the second
term), and the last equality is by the definition of ∆1

+(z, z′) and {R∗10(z′) ∩R1(z)} \R∗10(z′)
being empty. Analogously, one can show that R∗10(z′)\R∗10(z) = ∆1

−(z, z′) using Assumption
ASY and the definition of ∆1

−(z, z′). Likewise,

h01(z, z′) = Pr[ε ≤ µ01,U ∈ R∗01(z)]− Pr[ε ≤ µ01,U ∈ R∗01(z′)]

= Pr[ε ≤ µ01,U ∈ R∗01(z)\R∗01(z′)]− Pr[ε ≤ µ01,U ∈ R∗01(z′)\R∗01(z)]

= Pr[ε ≤ µ01,U ∈ ∆2
+(z, z′)]− Pr[ε ≤ µ01,U ∈ ∆2

−(z, z′)].

Also, by the definitions of the partitions,

h11(z, z′) = Pr[ε ≤ µ11,U ∈ ∆−(z, z′) ∪A∗]
= Pr[ε ≤ µ11,U ∈ ∆1

−(z, z′) ∪A∗] + Pr[ε ≤ µ11,U ∈ ∆2
−(z, z′)]

and

h00(z, z′) = −Pr[ε ≤ µ00,U ∈ ∆+(z, z′) ∪A∗]
= −Pr[ε ≤ µ00,U ∈ ∆1

+(z, z′) ∪A∗]− Pr[ε ≤ µ00,U ∈ ∆2
+(z, z′)].

Now combining all the terms yields

h(z, z′) = Pr[ε ≤ µ11,U ∈ ∆1
−(z, z′) ∪A∗]− Pr[ε ≤ µ10,U ∈ ∆1

−(z, z′) ∪A∗]
+ Pr[ε ≤ µ11,U ∈ ∆2

−(z, z′)]− Pr[ε ≤ µ01,U ∈ ∆2
−(z, z′)]

+ Pr[ε ≤ µ10,U ∈ ∆1
+(z, z′) ∪A∗]− Pr[ε ≤ µ00,U ∈ ∆1

+(z, z′) ∪A∗]
+ Pr[ε ≤ µ01,U ∈ ∆2

+(z, z′)]− Pr[ε ≤ µ00,U ∈ ∆2
+(z, z′)].

Then by Assumption M, µ1,d−s − µ0,d−s share the same signs for all s and ∀d−s ∈ {0, 1} and
therefore sgn{h(z, z′)} = sgn

{
µ1,d−s − µ0,d−s

}
.

D.7 Proof of Theorem 7.1

For given j = 0, ..., S − 1, consider

E[Y |Z = z]− E[Y |Z = z′]

= E
[
YM≤j + 1[D(z) ∈M>j ] {YM>j − YM≤j}

]
− E

[
YM≤j + 1[D(z′) ∈M>j ] {YM>j − YM≤j}

]
= E

[{
1[D(z) ∈M>j ]− 1[D(z′) ∈M>j ]

}
{YM>j − YM≤j}

]
= E[YM>j − YM≤j |D(z) ∈M>j ,D(z′) ∈M≤j ] Pr[D(z) ∈M>j ,D(z′) ∈M≤j ]
− E[YM>j − YM≤j |D(z) ∈M≤j ,D(z′) ∈M>j ] Pr[D(z) ∈M≤j ,D(z′) ∈M>j ]

= E[YM>j − YM≤j |D(z) ∈M>j ,D(z′) ∈M≤j ] Pr[D(z) ∈M>j ,D(z′) ∈M≤j ], (D.22)

where the first equality plugs in Y = 1[D ∈M>j ]YM>j+
{

1− 1[D ∈M>j ]
}
YM≤j and applies

Assumption IN, and the last equality is by supposing that the result of Lemma 7.1 is satisfied
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with
Pr[D(z) ∈M≤j ,D(z′) ∈M>j ] = 0. (D.23)

But note that

Pr[D(z) ∈M>j ,D(z′) ∈M≤j ] = Pr[D(z) ∈M>j ]− Pr[D(z) ∈M>j ,D(z′) ∈M>j ],

where Pr[D(z) ∈M>j ,D(z′) ∈M>j ] = Pr[D(z′) ∈M>j ] by (D.23). Combining this result
with (D.22) yields the desired result.
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Figure 4: Illustration of equilibrium regions in treatment selection process (Proposition 3.1)
for three players (S = 3).
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Figure 7: Bounds on the ATE with different strength of vector Z = (Z1, Z2) of binary
instruments when X takes three different values (|X | = 3).

This figure (and the next) depicts the simulated bounds for E[Y11 − Y00|X = 0] = 0.2 (the straight

dotted line). The horizontal axis is the value of the coefficients on the instruments (γ1 = γ2 = γ). The

stronger the instruments, the narrower the bounds are. The cross lines are Manski (1990)’s bounds.

The red solid lines are our bounds using only the variation of Z, which identify the sign of the ATE.

The blue circle lines are bounds where the variation of X, the exogenous variable excluded from the

treatment selection process, is also used. Lastly, the green solid line is the simulated TSLS estimand

assuming a linear simultaneous equations model.
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Figure 8: Bounds with different strength of vector Z = (Z1, Z2) of binary instrument when
X takes fifteen different values (|X | = 15).
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Figure 9: Bounds under Different Strength of X with |X | = 15.

The horizontal axis is the value of the coefficient on the exogenous variable X excluded from the

treatment selection process. The jumps in the bounds when both the variations of Z and X are

used (the blue circle lines) are because different inequalities are involved for different values of the

coefficient; see the text for details.
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Figure 10: Bounds under Different Strength of Interaction with |X | = 3.

The horizontal axis is the value of the coefficients on the opponents’ decisions (δ1 = δ2 = δ). The

smaller the interaction effects, the narrower the bounds are. Again, the jumps in the bounds when

both the variations of Z and X are used (the blue circle lines) are because different inequalities are

involved for different values of the coefficient.
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