
Learning about the Neighborhood

Zhenyu Gao∗ Michael Sockin† Wei Xiong‡

December 2017

Abstract

We develop a model of neighborhood choice to analyze information aggregation and

learning in residential and commercial real estate markets. In the presence of perva-

sive informational frictions, housing prices serve as important signals to households

and commercial real estate developers about the economic strength of a neighborhood.

Through this learning channel, noise from supply and demand shocks can propagate

from housing prices to real activity, distorting not only migration into the neighbor-

hood, but also the supply of commercial real estate as it is an input to production.

Our analysis helps to rationalize the commercial real estate boom that accompanied

the recent U.S. housing boom, even though commercial real estate was not subject to

the household credit expansion that had contributed to the housing boom.
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In the aftermath of the U.S. housing cycle of the 2000s, much attention has been devoted

in academic and policy circles to understanding its causes and consequences. A widely-

held view is that the housing boom that occurred to different cities across the U.S. before

2006 was not driven by the economic fundamentals underlying these cities, but rather by

an expansion of credit to households (e.g. Mian and Sufi (2009)) or housing speculation

(e.g. Shiller (2009) that led to an unexpected and unsustainable rise in housing demand.

Interestingly, this housing cycle was accompanied by a similar boom and bust in commercial

real estate. Though also characterized by a dramatic run-up and collapse in prices, this

second boom and bust, and its relation to local economic outcomes attributed to the recent

housing cycle, have received less attention in the literature. Gyourko (2009a), for instance,

documents that commercial real estate equity REITs saw a price appreciation of 118% in

real terms between 1999 and 2006, and fell 45% by 2008. Offi ce prices also rose relative

to construction costs in 14 major MSAs, on average, more than 40% between 2003 and

2008, with only about half of this growth being attributable to stronger rent fundamentals.

While residential and commercial real estate markets historically respond in tandem to local

economic fundamentals, to the extent that the recent housing boom was not driven by local

economic fundamentals, it is diffi cult to explain the associated commercial real estate boom

and bust.

As noted by Glaeser (2013) and other commentators, areas such as Las Vegas and Phoenix

experienced more dramatic housing price booms and busts during the recent housing cycle

than would be predicted by theories based on supply elasticity. Along with this housing

boom, Las Vegas also saw a pronounced expansion in its casinos and resorts, including the

construction of the Cosmopolitan, the CityCenter, and the Echelon Place, that continued

into 2007.1 Anchoring, in part, on signals of strong fundamentals from the housing market,

such as the influx of maturing baby boomers fueling demand for condominiums, real estate

developers built new commercial properties, such that Las Vegas, which already had more

guest rooms than even Orlando or NYC in 2007, had more hotel rooms in development than

any other city in the country. Phoenix, similarly, constructed about 86.5 million square feet

of new commercial space, including offi ces, shopping centers, industrial buildings, hotels, and

apartments, from 2005 to 2009.2

In this paper, we develop a theoretical framework to highlight a novel mechanism for

1See the April 2007 NYT article "In Las Vegas, Too Many Hotels Are Never Enough".
2See the March 2010 NYT article "Phoenix Meets the Wrong End of the Boom Cycle".
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noise in housing markets to impact both residential and commercial real estate demands

through a learning channel. In our model, home buyers and commercial developers observe

neither the economic strength of a neighborhood, which ultimately determines the demand

for housing and commercial infrastructure in the neighborhood, nor the supply of housing.

Home buyers can choose whether to live in the neighborhood by purchasing a house, and how

much labor to supply and commercial infrastructure to buy once in the neighborhood, while

home builders and commercial developers choose how many residential units and commercial

infrastructure to build to sell to households. Households need commercial infrastructure to

produce output, and this complementarity in production links the commercial and residential

real estate markets.

In the presence of pervasive informational frictions, local housing markets provide a useful

platform for aggregating private information about the economic strength of the neighbor-

hood. It is intuitive that traded housing prices reflect the net effect of demand and supply

factors, in a similar spirit of the classic models of Grossman and Stiglitz (1980) and Hellwig

(1980) for information aggregation in asset markets. Different from the linear equilibrium

in these models, our model features an important neighborhood selection, through which

only households with private signals above a certain equilibrium threshold choose to live

in the neighborhood. This selection makes our model inherently non-linear. Nevertheless,

we are able to derive the equilibrium in analytical forms, building on the cutoff equilibrium

framework developed by Goldstein, Ozdenoren, and Yuan (2013) and Albagli, Hellwig, and

Tsyvinski (2014, 2015) for asset markets. Furthermore, our model allows us to analyze how

informational frictions affect not only the residential housing market but also the house-

holds’labor and production decisions, which, in turn, determine their demand in the local

commercial real estate market.

Specifically, we first present the model in Section 1. The model features a continuum

of households in an open neighborhood, which can be viewed as a county. Each house-

hold has a choice of whether to move into the neighborhood by purchasing a house, and

has a Cobb-Douglas utility function over its consumption of its own good and its aggre-

gate consumption of the goods produced by other households in the neighborhood. This

complementarity in households’consumption motivates each household to learn about the

unobservable economic strength of the neighborhood, which determines the common pro-

ductivity of all households and, consequently, their desire to live in the neighborhood. Each
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household requires both labor, which it supplies, and commercial infrastructure, to produce

its good according to a Cobb-Douglas production function of these two inputs. Since the

price of commercial infrastructure depends on its marginal product across households in the

neighborhood, competitive commercial developers must form expectations about the unob-

servable economic strength of the neighborhood when determining how much commercial

infrastructure to develop.

We derive the equilibrium in Section 2. Despite each household’s housing demand being

non-linear, the Law of Large Numbers allows us to aggregate their housing demand, and to

derive a cutoff equilibrium for the housing market. Each household possesses a private signal

regarding the neighborhood common productivity. By aggregating the households’housing

demand, the housing price aggregates their private signals. The presence of unobservable

supply shocks, however, prevents the housing price from perfectly revealing the neighborhood

strength and acts as a source of informational noise in the housing price. As the housing

price also affects commercial developers’expectations, noise in the housing price, originated

from either demand or supply side, may also distort their development decisions, leading to

correlated cycles between residential and commercial real estate markets.

In Section 3, we examine the effects of supply shocks and demand shocks on the equilib-

rium cutoff of households’entry decision to the neighborhood, the housing price, commercial

real estate price, and commercial real estate development across two dimensions: 1) elasticity

of housing supply in the neighborhood and 2) the degree of consumption complementarity

in the utility of households. Our analysis highlights that the reaction of a neighborhood

to housing market speculation can differ depending on whether its source is a demand or

supply side shock, and this gives rise to testable differences in the cross-section when sorting

areas by supply elasticity or the degree of complementarity of its industries. Furthermore,

our analysis highlights that speculation in housing not only has long-term consequences for

the housing market, but also for the commercial real estate market as well. In this sense,

there is a learning externality in that households, when choosing their housing demand, do

not internalize that it impacts expectations of commercial developers. In addition to a mis-

allocation of resources ex-ante, our learning channel also gives rise to persistent distortions

to local economies ex-post. To the extent that any overbuilding of offi ces and commercial

infrastructure is diffi cult to reverse in the short or medium-term, any excess supply will lower

the marginal product of other factors of production, such as labor, and may have amplified,
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and prolonged, some of the adverse consequences of the housing market in the recent re-

cession. Gao, Sockin, and Xiong (2017), for instance, find consistent evidence that supply

overhang in housing markets helped transmit the adverse impact of housing speculation to

the real economy during the recent bust.

The existing literature has emphasized the importance of accounting for home buyers’

expectations in understanding dramatic housing boom and bust cycles, e.g., Case and Shiller

(2003); Glaeser, Gyourko, and Saiz (2008); and Piazzesi and Schneider (2009). Much of the

analyses and discussions, however, are made in the absence of a systematic framework that

anchors home buyers’expectations to their information aggregation and learning process. In

this paper, we help fill this gap by developing a model for analyzing information aggregation

and learning in housing markets, and its spillover to commercial real estate. By doing so,

we are able to uncover a novel interaction in which distortions to housing prices can impact

the supply of commercial real estate through expectations about future rents. We also

demonstrate that supply elasticity, beyond its role in driving housing supply, determines

the informational content of the housing price, and how households weight the price signal

compared to other public signals of demand when learning. This learning effect implies

non-monotonic patterns in housing price volatility and real activity.

The literature has offered several other explanations for the comovement of residential

and commercial real estate cycles. Rosen (1979) and Roback (1982) link housing and com-

mercial real estate in spatial equilibrium settings in which land can either be developed for

residential or commercial use. As a consequence, both markets are driven by similar local

fundamentals, as prices, on the margin, reflect both the value of amenities to households

and productivity to firms. Our analysis links these two markets instead through the produc-

tion technology with which households produce output and, as a result, both housing and

commercial real estate are driven by expectations about future neighborhood productivity.

Gyourko (2009a) emphasizes the role of irrational investor and lender optimism, citing that

much of the recent run-up in commercial real estate prices was driven by investors competing

over the same income rents, rather than rising cash flows, who had easier access to capital

because of declining loan underwriting standards. Levitin and Wachter (2013) explain this

recent parallel boom in construction real estate as a change in investor demongraphics and

a deterioration in securitization underwriting standards. To the extent that more accom-

modative lending and securitization standards enabled optimistic commercial developers to
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act on their expectations of future rents, we view these two channels as complementary to

our learning channel.

Our model also differs from Burnside, Eichenbaum, and Rebelo (2013), which offers a

model of housing market booms and busts based on the epidemic spreading of optimistic or

pessimistic beliefs among home buyers through their social interactions. Our learning-based

mechanism is also different from Nathanson and Zwick (2017), which studies the hoarding

of land by home builders in certain elastic areas as a mechanism to amplify price volatility

in the recent U.S. housing cycle. Glaeser and Nathanson (2017) presents a model of biased

learning in housing markets, building on current buyers not adjusting for the expectations

of past buyers, and instead assuming that past prices reflect only contemporaneous demand.

This incorrect inference gives rise to correlated errors in housing demand forecasts over time,

which in turn generate excess volatility, momentum, and mean-reversion in housing prices. In

contrast to this model, informational frictions in our model anchor on the interaction between

the demand and supply sides, and feedback to both housing price and real outcomes. This

key feature is also different from the amplification to price volatility induced by dispersed

information and short-sale constraints featured in Favara and Song (2014).

By focusing on information aggregation and learning of symmetrically informed house-

holds with dispersed private information, our study differs in emphasis from those that

analyze the presence of information asymmetry between buyers and sellers of homes, such

as Garmaise and Moskowitz (2004) and Kurlat and Stroebel (2014). Neither does our model

emphasize the potential asymmetry between in-town and out-of-town home buyers, which is

shown to be important by Chinco and Mayer (2015).

Our work features a tractable cutoff equilibrium framework, similar to that in Gold-

stein, Ozdenoren, and Yuan (2013) and Albagli, Hellwig, and Tsyvinski (2014, 2015), which

employ risk-neutral agents, normally distributed asset fundamentals, and position limits to

deliver tractable nonlinear equilibria. Goldstein, Ozdenoren, and Yuan (2013) investigate

the feedback to the investment decisions of a single firm when managers, but not investors,

learn from prices. Albagli, Hellwig, and Tsyvinski (2014, 2015) focus on the role of asymme-

try in security payoffs in distorting asset prices and firm investment incentives when future

shareholders learn from prices to determine their valuations. In contrast, we focus on the

feedback induced by learning from housing prices to household neighborhood choice and

labor decisions in an equilibrium production setting, and its spillover to the investment de-
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cisions of commercial developers. The interaction between learning and supply elasticity

can potentially help explain why relatively unconstrained areas recently experienced more

pronounced house price boom-bust cycles, as documented in, for instance, Davidoff (2013),

Glaeser (2013), and Nathanson and Zwick (2017).

In addition, there are extensive studies in the housing literature highlighting the roles

played by both demand-side and supply-side factors in driving housing cycles. On the de-

mand side, Himmelberg, Mayer, and Sinai (2005) focus on interest rates, Poterba, Weil,

and Shiller (1991) on tax changes, Mian and Sufi (2009) on credit expansion, and DeFusco,

Nathanson, and Zwick (2017) and Gao, Sockin and Xiong (2017) on investment home pur-

chases. On the supply side, Glaeser, Gyourko, Saiz (2008) emphasize supply as a key force in

mitigating housing bubbles, Haughwout, Peach, Sporn and Tracy (2012) provide a detailed

account of the housing supply side during the U.S. housing cycle in the 2000s, and Gyourko

(2009b) systematically reviews the literature on housing supply. By introducing informa-

tional frictions, our analysis shows that supply-side and demand-side factors are not mutually

independent. Supply shocks can affect housing and commercial real estate demand by act-

ing as informational noise in learning, and influence households’and commercial developers’

expectations of the strength of the neighborhood.

1 The Model

The model has two periods t ∈ {1, 2} . There are three types of agents in the economy: house-
holds looking to buy homes in a neighborhood or elsewhere, home builders, and commercial

real estate developers. Suppose that the neighborhood is new and all households purchase

houses from home builders in a centralized market at t = 1 after choosing whether to live

in the neighborhood. Households choose their labor supply and demand for commercial fa-

cilities, such as offi ces and warehouses, to complete production, and consume consumption

goods at t = 2. Our intention is to capture the decision of a generation of home owners

to move into a neighborhood, and we view the two periods as representing a long period in

which they live together and share amenities, as well as exchange their goods and services.

1.1 Households

There is a continuum of households, indexed by i ∈ [0, 1]. A household can choose to live in

a neighborhood or elsewhere, and we can divide the unit interval into the partition {N ,O} ,
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with N ∩ O = ∅ and N ∪ O = [0, 1] . Let Hi = 1 if household i chooses to live in the

neighborhood, i.e., i ∈ N , and Hi = 0 if it chooses to live elsewhere.3 If household i at t = 1

chooses to live in the neighborhood, it must purchase one house at price P. This reflects, in

part, that housing is an indivisible asset and a discrete purchase, consistent with the insights

of Piazzesi and Schneider (2009).

Household i in the neighborhood has a Cobb-Douglas utility function over consumption

of its own good Ci and its consumption of the goods produced by all other households in the

neighborhood {Cj}j∈N :

U
(
{Cj}j∈N ;N

)
=

(
Ci

1− ηc

)1−ηc
(∫
N/iCjdj

ηc

)ηc

. (1)

The parameter ηc ∈ (0, 1) measures the weights of different consumption components in the

utility function. A higher ηc means a stronger complementarity between the consumption of

household i and its consumption of the composite good produced by the other households

in the neighborhood. As we will discuss later, this utility specification implies that each

household cares about the strength of the neighborhood, i.e., the productivities of other

households in the neighborhood. This assumption is motivated by the empirical findings

of Ioannides and Zabel (2003), and leads to strategic complementarity in each household’s

housing demand.4

The production function of household i is also Cobb-Douglas eAiKα
i l

1−α
i , where li is the

household’s labor choice, Ai is its productivity, Ki is the commercial facility rented from

commercial developers, and α ∈ (0, 1) the commercial facility share. Household i’s produc-

tivity, Ai, is comprised of a component, A, common to all households in the neighborhood

and an idiosyncratic component, εi:

Ai = A+ εi,

where A ∼ N
(
Ā, τ−1

A

)
and εi ∼ N

(
0, τ−1

θ

)
are both normally distributed and independent

of each other. Furthermore, we assume that
∫
εidΦ (εi) = 0 by the Strong Law of Large

Numbers. The common productivity, A, represents the strength of the neighborhood, as

a higher A implies a more productive neighborhood. As A determines the households’

3See Van Nieuwerburgh and Weill (2010) for a systematic treatment of moving decisions by households
across neighborhoods.

4There are other types of social interactions between households living in a neighborhood, which are
explored, for instance, in Durlauf (2004) and Glaeser, Sacerdote, and Scheinkman (2003).
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aggregate demand for housing, it represents the demand-side fundamental. One can view τ θ

as a measure of household diversity.

As a result of realistic informational frictions, A is not observable to households at t = 1

when they need to make the decision of whether to live in the neighborhood. Instead, each

household observes its own productivity Ai, after examining what it can do if it chooses

to live in the neighborhood. Intuitively, Ai combines the strength of the neighborhood A

and the household’s own attribute εi. Thus, Ai also serves as a noisy private signal about

A at t = 1, as the household cannot fully separate its own attribute from the opportunity

provided by the neighborhood. The parameter τ θ governs both the diversity in the neigh-

borhood, or dispersion in productivity, and the precision of this private signal. As τ θ →∞,
the households’ signals become infinitely precise and the informational frictions about A

vanish. Households care about the strength of the neighborhood because of complementar-

ity in their demand for consumption. Since households want to have similar amenities to

their neighbors, they need to learn about A because it affects their neighbors’consumption

decisions. Consequently, while a household may have a fairly good understanding of its own

productivity when moving into a neighborhood, complementarity in consumption demand

motivates it to pay attention to housing prices to learn about the average level A for the

neighborhood.

We start with each household’s problem at t = 2 and then go backwardly to describe its

problem at t = 1. At t = 2, we assume that A is revealed to all agents. Furthermore, we

assume that each household experiences a disutility for labor l1+ψ
i

1+ψ
, and that a household in

the neighborhood N maximizes its utility at t = 2 by choosing labor li, commercial facility

Ki, and its consumption demand {Cj}j∈N :

Ui = max
{{Cj}j∈N ,li,Ki}

U
(
{Cj}j∈N ;N

)
− l1+ψ

i

1 + ψ
(2)

such that piCi +

∫
N/i

pjCj (i) dj + P +RKi = pie
AiKα

i l
1−α
i + Πi,

where pi is the price of the good it produces, P is the housing price in the neighborhood,

and R is the price of commercial facilities. Households behave competitively and take the

prices of their goods as given. For simplicity, we assume that each home builder and com-

mercial developer is part of a household in the neighborhood, similar to the Lucas household

paradigm, and that the builder and developer bring home their profit Πi = P + RKi to
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the household after construction has taken place. This allows us to focus on distortions to

behavior from informational frictions at t = 1 in the absence of the mechanical impact on

wealth from the purchase of a house. As a result, at t = 2, household i’s budget constraint

simplifies to piCi +
∫
N/i pjCj (i) dj = pie

AiKα
i l

1−α
i . We further normalize the interest rate

from t = 1 to t = 2 to be zero.

At t = 1, before choosing its consumption, commercial facility usage, and labor supply,

a household need to decide whether to live in the neighborhood. In addition to their private

signals, all households and commercial developers observe a noisy public signal, Q, about

the strength of the neighborhood A :

Q = A+ τ
−1/2
Q εQ,

where εQ ∼ N (0, 1) independent of all other shocks. As τQ becomes arbitrarily large, A

becomes common knowledge to all agents.

In addition to the utility flow Ui at t = 2 from final consumption, we assume that

households have quasi-linear expected utility at t = 1, and incur a linear utility penalty

equal to the housing price P if they choose to live in the neighborhood and thus have to

buy a house. Given that households have Cobb-Douglas preferences over their consumption,

they are effectively risk-neutral at t = 1, and their utility flow is then the value of their

final consumption bundle less the cost of housing. Households make their neighborhood

choice subject to a participation constraint that their expected utility from moving into the

neighborhood E [Ui|Ii] − P must (weakly) exceed a reservation utility, which we normalize

to 0. One can interpret the reservation utility as the expected value of getting a draw of

productivity from another potential neighborhood less the cost of search. Household i makes

its neighborhood choice while taking the transfer from the home builder in its family as given:

max
Hi
{E [Ui|Ii]− PHi, 0} (3)

The choice of neighborhood is made at t = 1 subject to each household’s information set

Ii = {Ai, P,Q} , which includes its private productivity signal Ai, the public signal Q, and
the housing price P.5

5We do not include the volume of housing transactions in the information set as a result of a realistic
consideration that, in practice, people observe only delayed reports of total housing transactions at highly
aggregated levels, such as national or metropolitan levels.
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1.2 Commercial Developers

In addition to households, there is a continnum of risk-neutral commercial real estate de-

velopers that develop commercial facilities at t = 1, and sells them to households for their

production at t = 2. The representitive developer cares about R, the price of commercial

facilities at t = 2, which depend on the marginal productivity of the facilities. This, in

turn, depends on the strength of the neighborhood, and which households choose to live in

the neighborhood. The housing price in the neighborhood serves as a useful signal to the

developer when deciding how much commercial facilities to develop at t = 1.

To simplify our analysis, and distinguish our mechanism from that of Rosen (1979) and

Roback (1982), we decouple the supply of residential housing from the supply of commercial

real estate. We assume that land available for commercial facility is in elastic supply, and

a plot of land of size K can be developed into a commercial facility by incurring a convex

effort cost 1
λ
Kλ, where λ > 1, that is increasing in how much land is developed.

We assume that households rent commercial facility from commercial developers when

production occurs at t = 2, and that commercial developers must forecast this demand when

choosing how much commercial land K to develop at t = 1. The representative commercial

developer takes the commercial facility price schedule R as given, and chooses K subject to

the maximize its expected profits per unit of commercial land:

Πc = sup
K
E

[
RK − 1

λ
Kλ

∣∣∣∣ Ic] (4)

where Ic = {P,Q} is the public information set, which include the housing price P and the
public signal Q. We interpret this commercial facility K in this context broadly as com-

mercial real estate, infrastructure, and amenities necessary for households to be productive

in a neighborhood.6 It then follows that the optimal choice of commercial facility sets the

marginal cost, Kλ−1, equal to the marginal benefit, E [R| Ic] :

K = E [R| Ic]
1

λ−1 .

The choice of commercial facility is influenced by the expectations of the commercial de-

veloper about future neighborhood productivity, which is affected by the realization of the

6One can extend our analysis to consider K to be a public good, in which case the rental rates are the
taxes a local government that faces a balanced budget can raise to offset the costs of construction. Our
model then has implications for how housing markets impact local government fiscal policy.

10



housing price P . Market-clearing in the market for commercial facility at t = 2 requires

that: ∫
N
Kidi = K

∫
N
di, (5)

where
∫
N di represents the population of households that live in the neighborhood. As we

mentioned before, we assume that each developer is part of a household and rebates the

profits of its sale to the household to which it belongs.

The commercial developers’decision to develop commercial facility at t = 1 gives another

source of amplification for informational frictions. In addition to distorting neighborhood

choice of potential household entrants, informational frictions in housing markets also distort

costly investment in resources that foster economic growth in the neighborhood. In the

absence of informational frictions, housing prices may distort neighborhood choice but not

expectations about neighborhood productivity.

1.3 Home Builders

There is a population of home builders, indexed on a continuum [0, 1] , in the neighborhood.

Home builders also face uncertainty about the aggregate strength of the neighborhood and

the ability of the supply side to respond to the demand. Specifically, builder i builds a single

house subject to a disutility from labor:

e−
1

1+k
ωiSi,

where Si ∈ {0, 1} is the builder’s decision to build and

ωi = ξ + ei

is the builder’s productivity, which is correlated across builders in the neighborhood through

ξ. We assume that ξ = kζ, where k ∈ (0,∞) is a constant parameter, and ζ represents an

unobserved, common shock to building cost in the neighborhood. From the perspective of

households and builders, ζ ∼ N
(
ζ̄ , τ−1

ζ

)
. Then ξ = kζ can be interpreted as a supply shock

with normal distribution ξ ∼ N
(
ξ̄, k2τ−1

ζ

)
, with ξ̄ = kζ̄. Furrthermore, ei ∼ N (0, τ−1

e ) such

that
∫
eidΦ (ei) = 0 by the Strong Law of Large Numbers.

Builders in the neighborhood at t = 1 maximize their revenue:

Πs (Si) = max
Si

(
P − e−

1
1+k

ωi
)
Si. (6)
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We normalize the disutility by 1
1+k

so that, if we interpret k as supply elasticity, then as

k →∞, e−
1

1+k
ωi converges to e−ζ , so that prices remain finite a.s. and supply is completely

driven by the common supply shock. Since builders are risk-neutral, it is easy to determine

the builders’optimal supply curve:

Si =

{
1 if P ≥ e−

1
1+k

ωi

0 if P < e−
1

1+k
ωi
. (7)

The parameter k measures the supply elasticity of the neighborhood. A more elastic neigh-

borhood has a larger supply shock, i.e., the supply shock has greater mean and variance. In

the housing market equilibrium, the supply shock ξ not only affects the supply side but also

the demand side, as it acts as informational noise in the price signal when the households

use the price to learn about the common productivity A.

1.4 Noisy Rational Expectations Cutoff Equilibrium

Our model features a noisy rational expectations cutoff equilibrium, which requires clearing

of the two real estate markets that is consistent with the optimal behavior of households,

homer builders and commercial developers:

• Household optimization:
{
{Ci}i∈N , li, Ki

}
solves each household’s maximization prob-

lem at t = 2 as specified in (2) and Hi solves its problem at t = 1 as specified in

(3).

• Commercial developer optimization: K solves the representative commercial devel-

oper’s maximization problem in (4).

• Builder optimization: Si solves each builders’maximization problem in (6).

• At t = 1, the residential housing market clears:∫ ∞
−∞

Hi (Ai, P,Q) dΦ (εi) =

∫ ∞
−∞

Si (ωi, P,Q) dΦ (ei) ,

where each household’s housing demand Hi (Ai, P,Q) depends on its productivity Ai

and the housing price P, and each builder’s housing supply Si (ωi, P,Q) depends on

its productivity ωi, the housing price P, and the public signal Q. The demand from

households and supply from builders are integrated over the idiosyncratic components

of their productivities {εi}i∈[0,1] and {ei}i∈[0,1] , respectively.
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• At t = 2, the market for each household’s good clears:∫
N
Ci (j) dj = eAiKα

i l
1−α
i , ∀ i ∈ N ,

and the market for commercial facilities clears:∫
N
Kidi = K

∫
N
di.

2 Equilibrium

In this section, we analyze a symmetric cutoff equilibrium, in which the choice of each

household to live in the neighborhood is monotonic with respect to its own productivity Ai.

2.1 Choices of Households and Commercial Developers

We first analyze household choices. At t = 2, households need to make their production

and consumption decisions, after the strength of the neighborhood A is revealed to the

public, and home builders and commercial developers have also made their choices at t =

1. Household i has eAiKα
i l

1−α
i units of good i for consumption and trading with other

households. It maximizes its utility function given in (2). The following proposition describes

the household’s consumption, labor, and commercial facility choices. Its marginal utility of

goods consumption also gives the equilibrium goods price.

Proposition 1 Households i’s optimal goods consumption and labor supply at t = 2 are:

Ci (i) = (1− ηc) eAiKα
i l

1−α
i , Cj (i) =

1

Φ
(√

τ θ (A− A∗)
)ηceAjKα

j l
1−α
j ,

log li =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

ηc
ψ
A+

1− ηc
(1− α)ψ + (1 + αψ) ηc

Ai −
α

1− α
1

ψ
logR

+
1

1− α
ηc
ψ

log

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) + l0.

The price of the good produced by household i is:

pi = e
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc(A−Ai)+ 1

2
ηc

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
θ

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


ηc

,
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and its optimal choice of commercial facilities is:

logKi =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

1 + ψ

ψ
ηcA+

(1 + ψ) (1− ηc)
(1− α)ψ + (1 + αψ) ηc

Ai −
1

1− α
ψ + α

ψ
logR

+
1

1− α
1 + ψ

ψ
ηc log

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) + h0.

Furthermore, the expected utility of household i at t = 1 is given by:

E

[
U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

=
ψ + α

1 + ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] ,
with constants l0 and h0 given in the Appendix.

Proposition 1 shows that each household spends a fraction 1−ηc of its wealth (excluding
housing wealth) on consuming its own good Ci (i) and a fraction ηc on goods produced by

its neigbors
∫
N/iCj (i) dj. When ηc = 1/2, the household consumes its own good and the

goods of its neighbors equally. The price of each good is determined by its output relative to

that of the rest of the neighborhood. One household’s good is more valuable when the rest

of the neighborhood produces more, and thus each household needs to take into account the

labor decisions of the other households in its neighborhood when making its own decision.

The proposition demonstrates that the labor chosen by a household is determined by not

only by its own productivity eAi but also the aggregate production of other households in the

neighborhood. This latter component arises from the complementarity in the utility function

of the household. Note that in the expressions above A∗ is the equilibrium threshold for each

household to enter the neighborhood.

Proposition 1 also reveals that the optimal choice of labor for each household is log-

linear with the strength of the neighborhood, A, its own productivity, Ai, and the logarithm

of the commercial real estate price, logR. The final (nonconstant) term reflects selection,

in that only households with productivity above A∗ enter the neighborhood. Since A is

the mean of the distribution of household productivities, it shows up in this truncation.

This proposition also demonstrates that household i’s optimal choice of commercial facilities

has a similar functional form, with the last (nonconstant) term reflecting selection into the

neighborhood. Household i’s optimal labor choice and demand for commercial facilities are

increasing in the strength of the neighborhood A because of consumption complementarity,

since a higher A represents improved trading opportunities, while they are decreasing in the

price of commercial facilities logR.
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We now discuss each household’s decision on whether to live in the neighborhood at t = 1

when it still faces uncertainty about A. As a result of Cobb-Douglas utility, the household

is effectively risk-neutral over its aggregate consumption, and its optimal choice reflects the

difference between its expected output in the neighborhood and the cost of living there,

which is the price P to buy a house. This is because the household views the transfer from

its home builder Πi and its commercial developers RKi as exogenous to whether it lives in

the neighborhood. It then follows that household i’s neighborhood decision is given by:

Hi =

{
1 if ψ+α

1+ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] ≥ P

0 if ψ+α
1+ψ

E
[
pieAiKα

i l
1−α
i

∣∣ Ii] < P
.

This decision rule for neighborhood choice supports our conjecture to search for a cutoff

strategy for each household, in which only households with productivities above a critical

level, A∗, enter the neighborhood. This cutoff is eventually solved as a fixed point in the

equilibrium.

Given each household’s equilibrium cutoff A∗ at t = 1 and optimal choices at t = 2,

we can impose market-clearing in the market for commercial facilities to arrive at its price

R at t = 2. Commercial developers forecast this price when choosing their optimal stock

of commercial facilities to develop at t = 1. These observations are summarized by the

following proposition.

Proposition 2 Given K units of commercial facilities developed by commercial developers,

the price of commercial facilities R at t = 2 takes the log-linear form:

logR =
1 + ψ

ψ + α
A− (1− α)

ψ

ψ + α
logK +

1 + ψ

ψ + α
ηc log

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)

+ (1− α)
ψ

ψ + α
log

Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) + r0,

with constant r0 given in the Appendix. The optimal supply of commercial facilities by
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commercial developers at t = 1 is given by:

logK =
1

λ− α 1+ψ
ψ+α

logE

e 1+ψ
ψ+α

A

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


1+ψ
ψ+α

ηc

(8)

·

Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


ψ(1−α)
ψ+α

∣∣∣∣∣∣∣∣∣∣
Ic

+ k0,

with constant k0 given in the Appendix.

Proposition 2 reveals that the commercial real estate price at t = 2 is increasing in the

strength of the neighborhood, A, with the last two (nonconstant) terms refecting selection

by households into the neighborhood, and is decreasing in the supply of commercial facilities

K. It also demonstrates that the optimal supply of commercial facilities reflects expectations

over not only the strength of the neighborhood, A, but also the impact of truncation from

the neighborhood choice of households on the expected price of commercial facilities at

t = 2. The expectation term captures not only the expected productivity from the terms-of-

trade (relative prices of household goods) in the first ratio, but also the dispersion in labor

productivity in the second ratio.

2.2 Perfect-Information Benchmark

With perfect information, all households, home builders, and commercial developers observe

the strength of the neighborhood A when making their neighborhood choice decision. It is

straightforward to show that the optimal choice of commercial facility K simplifies to:

logK =

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

ηc

log

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)



+ (1− α)
ψ

1 + ψ

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

log

Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


+ k0,

where k0 is given in the Appendix and
1+ψ
ψ+α

λ−α 1+ψ
ψ+α

> 0 since λ− α 1+ψ
ψ+α

> λ− 1 > 0.
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Similar to the labor choice of households from Proposition 1, the supply of commercial

facility is log-linear with respect to the strength of the neighborhood, A, with a correction

term for the truncation in the household population that occurs because of household se-

lection into the neighborhood. This truncation term reflects two forces. The first is that a

smaller population implies less demand for a given choice of commercial facility per house-

hold, while the second reflects that the price at which households charge each other for their

goods, pi, is also affected by this truncation.

We now characterize the neighborhood choice of households and the housing price. House-

holds will sort into the neighborhood according to a cutoff equilibrium determined by the

net benefit of living in the neighborhood, which trades off household income opportunities

with other households in the neighborhood with the price of housing. Despite the inherent

nonlinearity of our framework, we derive a tractable, unique cutoff equilibrium that is char-

acterized by the solution to a fixed-point problem over the endogenous cutoff of entry in the

neighborhood, A∗. This is summarized in the following proposition.

Proposition 3 In the absence of informational frictions, there exists a unique cutoff equilib-

rium in which the following hold: 1) household i follows a cutoff strategy in its neighborhood

choice such that:

Hi =

{
1 if Ai ≥ A∗

0 if Ai < A∗
,

where A∗ (A, ξ) solves equation (17) in the Appendix; 2) the housing price takes the log-linear

form:

logP =
1

1 + k

(√
τ θ
τ e

(A− A∗)− ξ
)

;

3) the cutoff productivity A∗ (A, ξ) is monotonically decreasing in ξ and increasing in A; and

4) the population that enters the neighborhood is monotonically increasing in both A and ξ.

Proposition 3 characterizes the cutoff equilibrium in the economy in the absence of in-

formational frictions, and confirms the optimality of a cutoff strategy for households in

their neighborhood choice. Households sort based on their individual productivities into

the neighborhood, with the most productive, who expect the most gains from living in the

neighborhood, entering and participating in production at t = 2. This determines the supply

of labor at t = 2, and, through this channel, the price of commercial facilities at t = 2.

Given a cutoffproductivity A∗ (A, ξ) , the housing price P positively loads on the strength

of the neighborhood, A, since a higher A implies stronger demand for housing, and loads
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negative on the supply shock ξ, reflecting that a discount is needed to ensure that a positive

shift in housing supply is absorbed by a larger household population. As one would expect,

the cutoffA∗ enters negatively into the price since households above the cutoff sort into the

neighborhood. The higher the cutoff, the fewer the households that enter the neighborhood,

and the lower the housing price that is needed to clear the market with the lower housing

demand. Despite its log-linear representation, the housing price is actually a generalized

linear function of
√

τθ
τe
A− ξ, since A∗ is an implicit function of A and logP.

Finally, the last part of the proposition provides comparative statics of the cutoff house-

hold that enters the neighborhood with productivity A∗ (A, ξ) . This cutoff is decreasing in

ξ, since a lower house price causes more households to enter the neighborhood for a given

neighborhood strength A, and consequently a higher population enters the neighborhood

as ξ increases. The cutoff, in contrast, is increasing in neighborhood strength A, since a

higher A implies a higher housing price, and can also raise the price of commercial facilities,

depending on the supply response of commercial developers. This dominates the counter-

veiling force that a higher A also signals more gains from trade from complementarity in

household consumption decisions, and more commercial facilities developed by commercial

developers. Though the cutoff productivity increases, more households ultimately enter the

neighborhood because a higher A shifts right (in the sense of FOSD) the distribution of

households more than it moves the cutoff.

As a result of endogenous selection into the neighborhood, the productivity of the neigh-

borhood is determined by which households choose to live there. The aggregate productivity

of the neighborhood AN is given by:

AN = log

∫ ∞
A∗

eAjdΦ (εj) = A+
1

2
τ−1
θ + log Φ

(
τ
−1/2
θ +

A− A∗

τ
−1/2
θ

)
.

The first two terms would be what one would expect without neighborhood choice, while

the third term reflects that productivity is truncated by selection. Importantly, since A∗ =

A∗ (A, ξ) , it follows that A∗ depends on the housing price in the neighborhood, introducing

feedback from housing markets to real decisions. Similar aggregation results exist for total

income
∫
N e

AjpiK
αl1−αj dΦ (εj) and labor supply

∫
N ljdΦ (εj) as well.
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2.3 Cutoff Equilibrium with Informational Frictions

Having characterized the perfect-information benchmark equilibrium, we now turn to the

equilibrium at t = 1 in the presence of informational frictions. With informational frictions,

households and developers must now forecast the strength of the neighborhood, A, and the

realized price of commercial facilities R, when choosing whether to live in the neighborhood,

and when deciding the stock of commercial facilities to develop. We again conjecture a cutoff

equilibrium and, in addition, now conjecture that the housing price contains a suffi cient

statistic, z (P ) that is linear in A and in the supply shock ξ :

z (P ) = A+
1

zξ

(
ξ − ξ̄

)
.

In addition to the housing price, each household’s type, Ai, also acts as a private signals

about the strength of the neighborhood, A. Since types are positively correlated with this

common productivity, higher types also have more optimistic expectations about A. As such,

we anticipate that households will again follow a cutoff strategy when deciding whether to

live in the neighborhood.

By solving for the learning of households and commercial developers, and clearing the ag-

gregate housing demand of the households with the supply from home builders, we derive the

housing market equilibrium. The following proposition summarizes the housing price from

each household’s housing demand, and the supply of commercial facilities in this equilibrium.

Proposition 4 There exists a cutoff equilibrium in the presence of informational frictions

in which the following hold: 1) the posterior of household i after observing housing price P,

the household public signal Q, and its own productivity Ai is conditionally Gaussian with

conditional mean Âi and variance τ̂A given by:

Âi = τ̂−1
A

(
τAĀ+ τQQ+

τ θ
τ e
τ ξ

(√
τ e
τ θ

(
logP + ξ̄

)
+ A∗

)
+ τ θAi

)
,

τ̂A = τA + τQ +
τ θ
τ e
τ ξ + τ θ,

and the posterior of commercial developers is conditionally Gaussian with conditional mean

Âc and variance τ̂ cA given by:

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ θ
τ e
τ ξ

(√
τ e
τ θ

(
logP + ξ̄

)
+ A∗

))
,

τ̂ cA = τA + τQ +
τ θ
τ e
τ ξ;
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2) household i follows a cutoff strategy in its neighborhood choice such that:

Hi =

{
1 if Ai ≥ A∗

0 if Ai < A∗
,

where A∗ (A,Q, ξ) solves equation (19) in the Appendix; 3) the equilibrium commercial facility

supply takes the form:

logK =
1

λ− α 1+ψ
ψ+α

logF
(
Âc − A∗, τ̂ cA

)
+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A∗ + k0.

where F
(
Âc − A∗, τ̂ cA

)
is given in the Appendix, and logK is increasing in the conditional

belief of the commercial developers, Âc; 4) the housing price takes the log-linear form:

logP =
1

1 + k

(√
τ θ
τ e

(A− A∗)− ξ
)

;

and 5) the equilibrium converges to the perfect-information benchmark in Proposition 3 as

τQ ↗∞.

Proposition 4 establishes the analogue of the cutoff equilibrium in the presence of infor-

mational frictions. Households now must form beliefs about the strength of the economy

when deciding whether to live in the neighborhood. From equation (18) in the Appendix,

we can express A∗ (A,Q, ξ) as A∗ (logP,Q) , which verifies that the cutoff is indeed measur-

able to households when making their decisions at t = 1. Consequently, after observing the

housing price P and the public signal Q, they know the exact value of A∗ and form their

conditional estimate of A.

Importantly, informational frictions provide a channel for housing prices to feed into the

supply decision of commercial developers through learning. With perfect information, hous-

ing prices only impact the supply of commercial facility by altering the cost that households

pay to enter the neighborhood. Since the price of commercial facility depends on the imper-

fectly observed strength of the neighborhood, commercial developers use the housing price

as a signal when forming their beliefs about this strength. Consequently, any noise in this

signal will distort commercial developers’optimal choice of how much commercial facilities

to develop.

Though optimal policies are qualitatively similar to those in the perfect-information

benchmark, these policies are distorted by informational frictions. The cutoff household

productivity A∗ now reflects that households and commercial developers imperfectly observe
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the neighborhood’s strength, and use the housing price to form their beliefs. The distor-

tion to both beliefs and the cutoff productivity then feed back into the optimal choice of

commercial facilities supplied at t = 1, amplifying the impact of informational frictions.

The complementarity between households is even more important for a cutoff strategy in

the presence of informational frictions. Without complementarity, a stronger neighborhood,

i.e., higher A, is bad news for households, since a higher A raises housing prices, and can

also raise the price of commercial facilities depending on the supply response of commercial

developers. Furthermore, a higher household type Ai signals a stronger neighborhood, which

gives a household with a high type Ai less incentive to enter the neighborhood. With

complementarity, however, a stronger neighborhood is also good news for households, since

it signals that other households in the neighborhood will be more productive, and household

i will get a better terms-of-trade when it trades with other households at t = 2. A higher Ai,

consequently, can be good news since it signals a stronger neighborhood. This latter effect

reinforces the cutoff equilibrium.

Informational frictions distort housing prices by shifting the productivity cutoff A∗ =

A∗ (logP,Q). With perfect information, dA
∗(logP,Q)
d logP

> 0 captures only the direct effect that

a higher price deters households from entering the neighborhood because of the cost effect,

shifting up the productivity of the marginal household. In the presence of informational

frictions, however, dA
∗(logP,Q)
d logP

also reflects an information effect that prices act as a positive

signal about the strength of the neighborhood, which lowers dA∗(logP,Q)
d logP

compared to its

perfect-information benchmark value because it also encourages more households to enter

the neighborhood.

The sensitivity of the price to changes in z (P ) = A−
√

τe
τθ
ξ (i.e., the suffi cient statistic

of P ), by the Implicit Function Theorem, is:

d logP

dz
=

(
(1 + k)

√
τ e
τ θ

+
dA∗ (logP,Q)

d logP

)−1

.

As d logP
dz

is greater in the presence of informational frictions, this effect can make housing

prices more volatile, as highlighted by Albagli, Hellwig, and Tsyvinski (2015) in their analy-

sis of the cutoff equilibrium in an asset market. This interesting feature also differentiates

our cutoff equilibrium from other type of non-linear equilibrium with asymmetric informa-

tion, such as the log-linear equilibrium developed by Sockin and Xiong (2015) to analyze

commodity markets. In their equilibrium, prices become less sensitive to their analogue of

21



z in the presence of informational frictions. This occurs because households, on aggregate,

underreact to the fundamental news in the their private signals because of noise, and this is

reflected in a lower weight on z in prices compared to perfect-information.

To understand how housing prices impact learning, it is instructive to consider two po-

lar cases for supply elasticity. When k = 0, then housing prices are only a function of the

strength of the neighborhood, A, and prices are fully revealing to households and commercial

developers. Informational frictions, as a result, unravel when supply is infinitely inelastic.

When, instead, k →∞, then prices converge to logP = −ζ, and the housing price is driven
only by the supply shock.7 When supply is perfectly elastic, then prices contain no informa-

tion about demand, and therefore no information about the strength of the neighborhood.

Consequently, the information content of prices, and the weight that households and com-

mercial developers assign to prices in forming their conditonal estimates of the neighborhood

strength, dissipates as supply elasticity increases.

3 Model Implications

We now investigate several implications of our theoretical framework for the response of the

neighborhood to housing demand and supply shocks. We provide a comparative statistics

analysis to illustrate how aspects of the neighborhood and its real estate markets vary across

two dimensions: 1) supply elasticity k, and 2) the degree of consumption complementarity

in the utility of households ηc. Supply elasticity is a natural candidate for classifying the

cross-section of housing markets, as it has been emphasized in the literature, in such work

as Malpezzi and Wachter (2005) and Glaeser, Gyourko, and Saiz (2008), to help explain

certain features of housing cycles, such as housing price volatility. Similarly, the degree of

complementarity captures the agglomeration and spillover effects that lead to coordination

among firms and industries that locate in one area, such as the financial industry in New

York City, the technology sector in San Francisco, the Research Triangle in North Carolina,

and the oil industry in Houston. As emphasized, for instance, by Dougal, Parsons, and

Titman (2015), employers and/or workers can benefit from locating in close proximity to

competitors, either from knowledge spillovers or from implicit insurance in labor markets.

While we have analytical expressions for most equilibrium variables, the key equilibrium

7It is straightforward to see from equation (19) that A∗ remains finite a.s. as k →∞, allowing us to take
the limit.
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cutoffA∗ needs to be numerically solved from the fixed-point condition in equation (19). We

therefore analyze the equilibrium properties of A∗ and other variables through a series of

numerical illustrations. The parameters we choose for the numerical examples are provided

below in Table 1. For the share of profits of commercial facility, we treat it is as being

similar to capital and select the typical estimate of about α = .33. For the Frisch elasticity

of labor supply, we choose ψ = 2.5, which is within the typical range found in the literature.

We set τ ζ to be four-fold larger than τA to ensure that, with perfect information, the log

housing price variance is montonically declining in supply elasticity, as observed empirically.

We set λ = 1.1 to have commercial land be in elastic supply to avoid having convexity in

its production function drive our results. We choose for the neighborhood fundamentals

A = ζ = −.5, though the qualitative patterns we highlight hold more generically for a wide
range of shock values. In addition, we set the noise in the demand signal, Q, to 0.

τA 0.50 τ ζ 2.00 τ θ 0.20
τ θ 0.20 τQ 1.00 ηc 0.50
α 0.33 ψ 2.50 k 0.50
λ 1.10 A 0 ζ 0

Table 1: Numerical Parameters

3.1 Equilibrium Cutoff

We first analyze how the cutoffproductivity for the marginal household to enter the neighbor-

hood varies across housing supply elasticity and the degree of consumption complementarity.

Figure 1 demonstrates that with perfect information, as housing supply becomes more

elastic, more households enter the neighborhood. This shifts down the cutoffproductivityA∗,

above which households enter the neighborhood, because housing is cheaper. As the degree of

consumption complementarity increases, the cutoffproductivity falls for the same realization

of fundamentals since households benefit more from participating in the neighborhood, as

they derive more of their consumption from trading with other households.

Informational frictions increase the population in the neighborhood by lowering the cutoff

productivity, and this holds across both supply elasticity and the degree of complementarity.

Since each household’s productivity now acts as a private signal about the strength of the

neighborhood, A, their type plays a dual role in their housing purchase decision. With

consumption complementarity, households coordinate on housing prices as a public signal
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Figure 1: Equilibrium cutoff across housing supply elasticity (left) and degree of complementarity
(right).

about the strength of the neighborhood, and uncertainty about A provides option value

to households over their future trading opportunities. That the increased population with

informational frictions relies on the complementarity between households can be seen from

the limit as it goes to zero in the right panel in Figure 1.

3.2 Housing Supply Shock

We next characterize the response of the neighborhood to a supply or demand shock to

understand how informational frictions could affect economic outcomes in the neighborhood.

To facilitate our discussion, we also compute the price for commercial facilities at t = 1 as

the marginal development cost at the optimal supply, Kλ−1. While there is no centralized

trading of commercial facilities at t = 1, we can view the shadow price of producing another

unit as its effective price. This price allows us to discuss comovement between residential

and commercial real estate markets, as well as boom and bust cycles in commercial real

estate.

We now consider the long-term impact of a housing supply shock to the neighborhood.

One can think of this shock as a shift in the supply curve of housing because of, for instance,

land speculation by builders as in Nathanson and Zwick (2017), or a non-fundamental shift

in home builder expectations. To do this, we construct a non-linear impulse response or
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Figure 2: Neighborhood responses to a supply shock across supply elasticity (left) and degree of
complementarity (right).

perturbation by taking the partial derivative of each outcome with respect to the building

cost shock ζ.Wemeasure the long-term impact of this supply shock as the partial derivative.

Figure 2 displays the response of the neighborhood to a negative supply shock across

supply elasticity. The differences between the responses under perfect and imperfect in-

formation are pronounced. The housing price increases under perfect information with a

negative supply shock, and the housing stock falls since the higher housing price discourages

households from entering. With perfect information, the tighter supply has modest impacts

on the commercial real estate prices at both t = 1 and t = 2 and on the supply of commercial

facilities. The supply shock has a similar impact across complementarity as across supply

elasticity, with a muted impact on the commerical real estate market.

In the presence of informational frictions, the negative supply shock is, in part, inter-

preted by households as a positive demand shock when they observe a higher housing price.

Across supply elasticity, this overreaction is most severe at intermediate supply elasticities,

since prices are fully revealing when supply is perfectly inelastic, and prices are completely

uninformative about demand when supply is very elastic. As a result, the housing price and

increase in housing stock is hump-shaped in supply elasticity, and peaks at an intermediate
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range. This increase in population and uncertainty about the strength of the neighborhood

pushes up the price and supply of commercial facilities at t = 1, and also display hump-

shaped patterns, and this price then mean-reverts with a U-shape at t = 2. The difference

in the responses of the commercial real estate prices at t = 1 and t = 2 is that the price

at t = 1 has a higher variance with informational frictions, which, by Jensen’s Inequality,

pushes up the stock of commercial land developed.

Across the degree of household consumption complementarity, the housing price increases

with the supply shock monotonically. Interestingly, the housing stock panel reveals that a

suffi cient level of complementarity is necessary for higher housing prices as signals about

demand to have a positive effect on household entry into the neighborhood. While informa-

tional frictions push up the commercial real estate price and supply at t = 1, and depress

the commercial real estate price at t = 2, monotonically across complementarity, the differ-

ence across the degree of complementarity is modest. The hump-shape in the housing stock

reflects the dampening effect of the escalation in the housing price on household entry at

very high degrees of complementarity.

The stark differences in the responses to the supply shock in the presence of informa-

tional frictions suggests that there are long-term consequences to informational frictions.

As expectations about household demand are corrected over time, any excess infrastructure

in housing and commercial facilities from overbuilding will eventually have to be corrected.

The differences in the responses between perfect and incomplete information in the figures

above quantify the extent to which there must be a correction. Consequently, informational

frictions can introduce a long-term misallocation of resources that are most severe, from

Figure 2, at intermediate supply elasticities, such as in Las Vegas, and in areas with the

highest degree of services complementarity, such as NYC and San Francisco.

3.3 Speculative Demand Shock

We now consider the impact of a speculative demand shock to the neighborhood. One can

think of this shock as a shift in the demand curve of housing because of a nonfundamental

shift in household and commercial developer expectations. This shift could arise for instance,

because of optimism in the housing market, as in Ferreira and Gyourko (2011), Gao, Sockin

and Xiong (2017), or Kaplan, Mitman, and Violante (2017), or noise in public information,

as in Morris and Shin (2002) or Hellwig (2005). Specifically, we consider a demand shock to
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Figure 3: Neighborhood responses to a demand shock across supply elasticity (left) and degree of
complementarity (right).

be a positive shock to the noise in the public signal Q about the neighborhood’s common

productivity A, which is a shock to expectations that is independent of the true demand

fundamental, and the response to be the partial derivative of economic outcomes with respect

to the shock. In the absence of informational frictions, when the common productivity is

observable, then this demand shock has no impact on neighborhood outcomes.

Figure 3 illustrates the responses of the neighborhood across supply elasticity and the

degree of comsumption complementarity to the speculative demand shock. Interestingly,

the responses in the housing and commerical stocks and the commercial real estate price at

t = 1 are monotonically increasing in supply elasticity, and the commercial real estate price

at t = 2 is decreasing across supply elasticity. While supply shocks lead to the most confusion

at intermediate elasticities, since this is when households and commercial developers pay the

most attention to the housing price as a signal about household demand, demand shocks

have the most pronounced impact in very elastic areas. This occurs because of substitution

between the two sources of public information. As the housing price becomes less informative

at higher elasticities, the public signal becomes relatively more informative, and households

and commercial developers put more weight on it when forming their expectations. As such, a
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positive speculative demand shock has the most pronounced impact at high elasticities. This

reflects a fundamental difference between how supply and demand shocks impact household

learning across supply elasticity. The response of the housing price is humped-shaped since,

though demand shocks do put upward pressure on the housing price, eventually housing

prices are completely driven by supply shocks.

Similar to a supply shock, the impact of the speculative demand shock puts upward

pressure on housing prices and the commercial stock, and both are monotonically increasing

in the degree of complementarity. Commercial real estate prices are inflated at t = 1, and

then reverse at t = 2, as a result of the overreaction of commercial developers to the noise

in the public demand signal. At extremely high degrees of complementarity, the impact of a

stronger neighborhood on housing prices dominates the additional benefits of trading with

productive households, causing the housing stock response to peak in an intermediate range.

To the extent that informational frictions distort these economic outcomes, there will be a

correction in the long-term to their perfect-information analogues.

The above analysis suggests that shocks to the supply and demand sides of the hous-

ing market have different cross-sectional predictions for the joint cycles of residential and

commercial real estate markets, across both supply elasticity and the degree of service com-

plementarity. While the responses to the supply shock tends to be hump-shaped across

supply elasticity, they are instead monotonic for the speculative demand shock, except in

the housing price. This suggests that one must look at additional economic outcomes beyond

the housing price in trying to disentangle the source of speculative shocks in housing markets.

Interestingly, while the economic responses across the degree complementarity are distinct

from those across supply elasticity, which provides a rich set of empirical predictions, they

are similar for both speculative supply and demand shocks. This suggests that the cross-

section of supply elasticity can be helpful in distinguishing between sources of speculation,

whether it originates from the demand or supply side, in real estate markets. Importantly,

there is not a tight link between the response of housing and commercial real estate markets

to speculative shocks in the absence of informational frictions, suggesting a role for informa-

tional frictions in explaining the comovement observed between the two markets during the

recent U.S. housing cycle, a role we next address.

28



3.4 The Recent U.S. Housing and Commercial Real Estate Cycles

We now return to one of the central motivations of our analysis, the joint dynamics of housing

and commercial real estate markets. While a positive comovement is to be expected because

the two markets have common fundamentals,8 to the extent that the recent U.S. housing

boom was not driven by strong economic fundamentals, it is diffi cult to explain the boom

in commercial real estate that accompanied the housing boom across many cities before

2006. Theories linking housing and commercial real estate markets, such as the dual use

of land, as in Rosen (1979) and Roback (1982), or the role of commercial land an input to

household production, as in our benchmark setting with perfect information, have diffi culty

rationalizing why the commercial real estate market would rise with a housing bubble. The

dual use theory would suggest that commercial real estate would be crowded out by a bubble

in the housing market, and our model with perfect information, at best, predicts a modest

comovement between the two markets in response to supply and speculative demand shocks.

Gyourko (2009a) and Levitin and Wachter (2013) argue that a deteriorating composition

of commercial real estate investors, and a similar relaxation of credit conditions as in the

housing market, can help explain the joint boom in housing and commercial real estate

markets, yet these theories are silent about why speculation occurred simultaneously in both

markets.

The presence of realistic informational frictions offers an explanation as to how speculative

booms, with roots in the residential real estate market, can spread to the commercial real

estate market as well. Anchoring on higher signals from the housing market, such as housing

prices, both households and commercial developers became optimistic about the prospects

of their local economies. This shared optimism led both markets to experience not only

dramatic price boom and bust cycles, but also overbuilding that would need to be absorbed

once the prices burst and expectations corrected. Insofar as optimistic home buyers and

commercial developers needed access to credit to act on their expectations during the boom,

we view the relaxation of credit as a complementary force.

Our earlier thought experiments with supply and speculative demand shocks reveal that

noise that breeds overoptimism in the housing market, a positive demand shock or a negative

supply shock, can also spill over to the commercial real estate market through the learning

8Gyourko (2009) documents a historical correlation of approximately 0.4 between log housing values in
residential and commercial real estate indices.
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channel. This leads to a boom-bust in commercial real estate prices, and to an oversupply of

commercial facilities. Consistent with the motivating narratives of Las Vegas and Phoenix,

the remarkable housing boom also saw a pronounced expansion in hotels, apartments, and

other commercial real estate properties whose construction continued even after the housing

market peaked. Furthermore, from the previous two subsections, the supply of housing and

commercial real estate respond similarly to speculative supply and demand shocks in the

presence of informational frictions, whereas the response of commercial real estate is modest

when there is perfect information.

Interestingly, Gyourko (2009a) documents that, while commercial real estate and equity

REIT prices appreciated during the recent U.S. housing cycle, this appreciation appears to

have been disconnected from rental rates, the cash flow fundamental for commercial real

estate, which remained stable.9 Our analysis suggests such a disconnect is rationalizable

with informational frictions. Speculation in housing markets can lead to a boom-bust cycle

in commercial real estate markets when commercial developers form expectations of the

future demand by observing the housing market, and that this is likely to be more severe in

areas with intermediate elasticities.

Consequently, our learning channel can provide a rationale in explaining the two synchro-

nized real estate cycles. Importantly, our analysis emphasizes that the overbuilding during

these cycles will have long-term consequences for neighborhoods as their economies converge

to the levels that would have prevailed with perfect information.

4 Conclusion

In this paper, we introduce a model of information aggregation in housing and commer-

cial real estate markets, and examine its implications for not only housing prices, but also

economic outcomes such as neighborhood choice and the supply of commercial real estate.

We provide empirical predictions for the expected response of neighborhoods to speculative

demand and supply shocks across supply elasticity and the degree of service complemen-

tarity, and offer a rationale for the synchronized boom and bust cyles observed in the U.S.

housing and commercial real estate markets during the 2000s. Our analysis highlights that

9This leads Gyourko (2009) to conclude that the appreciation in commercial real estate prices was driven
by a decline in investor discount rates. Our analysis formalizes this idea by showing that, by impacting
commercial investor expectations, a boom in housing markets could decrease the required rate of return in
commercial real estates market compared to what would prevail under perfect information.
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speculative booms in real estate markets can have long-term consequences on local eco-

nomic conditions, as any overbuilding in housing and commercial real estate markets must

be absorbed as the markets correct over time.
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Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The first order conditions of household i’s optimization problem in (2) respect to Ci (i) and

Cj (i) at an interior point are:

Ci (i) :
1− ηc
Ci (i)

U
(
{Ck (i)}k∈N ;N

)
= θipi, (9)

Cj (i) :
ηc∫

N/iCjdj
U
(
{Ck (i)}k∈N ;N

)
= θipj, (10)

where θi is the Lagrange multiplier for the budget constraint. Rewriting (10) as

ηcCj∫
N/iCjdj

U
(
{Ck (i)}k∈N ;N

)
= θipjCj
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and integrating over N , we arrive at

ηcU
(
{Ck (i)}k∈N ;N

)
= θi

∫
N/i

pjCjdj.

Dividing equations (9) by this expression leads to ηc
1−ηc

=
∫
N/i pjCj(i)dj

piCi(i)
, which in a symmetric

equilibrium implies pjCj (i) = 1

Φ(
√
τθ(A−A∗))

ηc
1−ηc

piCi (i) . By substituting this equation back

to the household’s budget constraint in (2), we obtain:

Ci (i) = (1− ηc) eAiKα
i l

1−α
i .

The market-clearing for the household’s good requires that Ci (i)+
∫
N/iCi (j) dj = eAiKα

i l
1−α
i ,

which implies that Ci (j) = 1

Φ(
√
τθ(A−A∗))

ηce
AiKα

i l
1−α
i .

The first order condition in equation (9) also gives the price of the good produced by

household i. Since the household’s budget constraint in (2) is entirely in nominal terms, the

price system is only identified up to θi, the Lagrange multiplier. We therefore normalize θi
to 1. It follows that:

pi =
1− ηc
Ci (i)

U
(
{Cj (i)}j∈N ;N

)
=
(
eAil1−αi Kα

i

)−ηc ( 1

Φ
(√

τ θ (A− A∗)
) ∫
N/i

eAj l1−αj Kα
j dj

)ηc

.

(11)

Furthermore, given equation (1), it follows since Ci (i) = (1− ηc) eAiKα
i l

1−α
i and Cj (i) =

1

Φ(
√
τθ(A−A∗))

ηce
AjKα

j l
1−α
j that:

U
(
{Ck (i)}k∈N ;N

)
=

(
eAil1−αi Kα

i

)1−ηc

(
1

Φ
(√

τ θ (A− A∗)
) ∫
N/i

eAjKα
j l

1−α
j dj

)ηc

= pie
AiKα

i l
1−α
i ,

from substituting with the household’s budget constraint at t = 2. The first-order conditions

for household i’s choice of li at an interior point is:

lψi = (1− α) θipie
Ai

(
Ki

li

)α
= (1− α)

1− ηc
Ci (i)

U
(
{Ck (i)}k∈N ;N

)
eAi
(
Ki

li

)α
. (12)

from equation (9). ImposingCi = (1− ηc) eAiKα
i l

1−α
i in equation (12), and U

(
{Ck (i)}k∈N ;N

)
=

pie
AiKα

i l
1−α
i , it follows that:

log li =
1

ψ + α + (1− α) ηc
log(1−α)+

1

ψ + α + (1− α) ηc
log

((
eAiKα

i

)(1−ηc)
( ∫

N/i e
AjKα

j l
1−α
j dj

Φ
(√

τ θ (A− A∗)
))ηc

)
.

(13)

The optimal labor choice of household i, consequently, represents a fixed point problem over

the optimal labor strategies of other households in the neighborhood.
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Recogizing that Ki =
(
αpie

Ai l1−αi

R

) 1
1−α

, we can substitute the price function pi to arrive

at:

logKi =
1

1− (1− ηc)α
log

((
eAil1−αi

)1−ηc

(
1

Φ
(√

τ θ (A− A∗)
) ∫
N/i

eAj l1−αj Kα
j dj

)ηc
)

− 1

1− (1− ηc)α
logR +

1

1− (1− ηc)α
logα, (14)

which is a fixed-point problem for the optimal choice of commercial land.

Given the optimal labor supply of household i li and optimal demand for commercial

land Ki jointly satisfy the functional fixed-point equations (13) and (14), let us conjecture

for i for which Ai ≥ A∗, so that i ∈ N is in the neighborhood, that:

log li = l0 + lAA+ lsAi + lR logR + lΦ log

Φ

(
(1 + (αhs + (1− α) ls)) τ

−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) ,

where R is the rental rate of commercial land, and that capital satisfies:

logKi = h0 + hAA+ hsAi + hR logR + hΦ log

Φ

(
(1 + (αhs + (1− α) ls)) τ

−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) ,

Substituting these conjectures into the fixed-point recursion for labor, equation (13), we

arrive, by the method of undetermined coeffi cients, at the coeffi cient restrictions:

cons : (ψ + α) l0 = log (1− α) + αh0 +
1

2
ηc (1 + αhs + (1− α) ls)

2 τ−1
θ ,

A : (ψ + α) lA = αhA + (1 + αhs + (1− α) ls) ηc,

Ai : (ψ + α + (1− α) ηc) ls = (1− ηc) (1 + αhs) ,

logR : (ψ + α) lR = αhR,

Φ : (ψ + α) lΦ = ηc + αhΦ.

Similarly, substituting these conjectures into the fixed-point recursion for commercial land,

equation (14), we arrive at the coeffi cient restrictions:

cons : (1− α)h0 = (1− α) l0 +
1

2
ηc (1 + αhs + (1− α) ls)

2 τ−1
θ + logα,

A : (1− α)hA = (1− α) lA + ηc (1 + αhs + (1− α) ls) ,

Ai : (1− (1− η)α)hs = (1− ηc) (1 + (1− α) ls) ,

logR : (1− α)hR = (1− α) lR − 1,

Φ : (1− α)hΦ = (1− α) lΦ + ηc.
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We consequently have ten linear equations and ten coeffi cients, from which follows that:

l0 =
1

2

1

1− α
ηc
ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
θ +

α

1− α
1

ψ
logα +

1

ψ
log (1− α) ,

lA =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

ηc
ψ
,

ls =
1− ηc

(1− α)ψ + (1 + αψ) ηc
,

lR = − α

1− α
1

ψ
,

lΦ =
1

1− α
ηc
ψ
,

and

h0 =
1

2

1

1− α
1 + ψ

ψ
ηc

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
θ +

1

1− α
ψ + α

ψ
logα +

1

ψ
log (1− α) ,

hA =
1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

1 + ψ

ψ
ηc,

hs =
(1 + ψ) (1− ηc)

(1− α)ψ + (1 + αψ) ηc
,

hR = − 1

1− α
ψ + α

ψ
,

hΦ =
1

1− α
1 + ψ

ψ
ηc,

which confirms the conjectures.

Consequently, we find that, for Ai ≥ A∗ :

log li =
1

2

1

1− α
ηc
ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
θ +

α

1− α
1

ψ
logα +

1

ψ
log (1− α)

+
1− ηc

(1− α)ψ + (1 + αψ) ηc
Ai +

1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

ηc
ψ
A

− α

1− α
1

ψ
logR +

1

1− α
ηc
ψ

log

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) ,

and:

logKi =
1

2

1

1− α
1 + ψ

ψ
ηc

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
θ +

1

1− α
ψ + α

ψ
logα +

1

ψ
log (1− α)

+
(1 + ψ) (1− ηc)

(1− α)ψ + (1 + αψ) ηc
Ai +

1

1− α
1 + ψ

(1− α)ψ + (1 + αψ) ηc

1 + ψ

ψ
ηcA

− 1

1− α
ψ + α

ψ
logR +

1

1− α
1 + ψ

ψ
ηc log

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) .
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Substituting this functional form for the labor supply and commercial labor demand of

household i into equation (11), the price of household i′s good then reduces to:

pi = e
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc(A−Ai)+ 1

2
ηc

(
1+ψ

(1−α)ψ+(1+αψ)ηc

)2
τ−1
θ

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


ηc

.

Finally, that U
(
{Ck (i)}k∈N ;N

)
= pie

AiKα
i l

1−α
i , implies:

E

[
U
(
{Cj (i)}j∈N ;N

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

=
ψ + α

1 + ψ
E
[
pie

AiKα
i l

1−α
i

∣∣ Ii] .
A.2 Proof of Proposition 2

Substituting the optimal demand for commercial land Ki into the market-clearing condition

for the rental market (5) reveals that the rental rate R is given by:

logR =
1 + ψ

ψ + α
A− (1− α)

ψ

ψ + α
logK +

1 + ψ

ψ + α
ηc log

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)

+ (1− α)
ψ

ψ + α
log

Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
) + r0,

where K is the total amount of commercial land supplied by commercial developers at t = 2,

and:

r0 = logα+
1− α
ψ + α

log (1− α)+
1

2

(
1 + ψ

ψ + α
ηc + (1− α)

ψ

ψ + α
(1− ηc)

2

)(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
θ .

Since market-clearing in the market for commercial land imposes thatK
∫
i∈N di =

∫
i∈N Kidi,

it follows from equation (4) that the optimal choice of how much commercial land commercial

developers create is given by equation (8) and constant k0 is given by:

k0 =
logα + 1−α

ψ+α
log (1− α) + 1

2

(
1+ψ
ψ+α

ηc + (1− α) ψ
ψ+α

(1− ηc)
2
)(

1+ψ
(1−α)ψ+(1+αψ)ηc

)2

τ−1
θ

λ− α 1+ψ
ψ+α

A.3 Proof of Proposition 3

When all households and builders observe A directly, there are no longer information frictions

in the economy. Substituting for prices, the optimal labor and commercial land choices of
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household i, the realized rental rate R, and commercial land demand Ki from Proposition

2, the utility of household i at t = 1 from choosing to live in the neighborhood is then:

E [Ui|Ii] =
ψ + α

1 + ψ
e
u0+uAA+

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai .

Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


uΦ

×

Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


(1−λ)

α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α

,

where:

u0 =
1

2

1

1− α
1 + ψ

ψ

(
ληc

1− α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

− α (λ− 1)

λ− α 1+ψ
ψ+α

ψ (1− α)

ψ + α
(1− ηc)

2

)(
1 + ψ

(1− α)ψ + (1 + αψ) ηc

)2

τ−1
θ

+
1

ψ

1− α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

(
α

1− α (1 + ψ) logα + λ log (1− α)

)

uA =
1

1− α
1 + ψ

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − (λ− 1)

α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

)
,

uΦ =
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

ηc > 0.

Since the household with the critical productivity A∗ must be indifferent to its neighborhood

choice at the cutoff, it follows that Ui − P = 0, which implies:

e
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
Ai

Φ

(
(1+ψ)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


uΦ Φ

(
(1+ψ)(1−ηc)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)
Φ
(√

τ θ (A− A∗)
)


(1−λ)α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

=
1 + ψ

ψ + α
e−u0−uAAP, Ai = A∗ (15)

which implies the difference in benefit of living with more productive households must be

offset by the differences in the cost of living in the neighborhood.

Fixing the critical value A∗ and price P, we see that the LHS of equation (15) is increasing

in monotonically in Ai, since
1+ψ

(1−α)ψ+(1+αψ)ηc
(1− ηc) > 0. This confirms the optimality of the

cutoff strategy that households for which Ai ≥ A∗ enter the neighborhood, and households

for which Ai < A∗ to live somewhere else. Since Ai = A+ εi, it then follows that a fraction

Φ
(
−√τ θ (A∗ − A)

)
enter the neighborhood, and a fraction Φ

(√
τ θ (A∗ − A)

)
choose to live
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somewhere else. As one can see, it is the integral over the idiosyncratic productivity shocks

of households εi that determines the fraction of households in the neighborhood.

From the optimal supply of housing by builder i in the neighborhood (7), there exists a

critical value ω∗ :

ω∗ = − (1 + k) logP, (16)

such that builders with productivity ωi ≥ ω∗ build houses. Consequently, a fractionΦ
(
−√τ e (ω∗ − ξ)

)
build households in the neighborhood.

Imposing market-clearing, it must be the case that:

Φ (−√τ θ (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing conditions, and impose equation (16) to arrive at:

logP =
1

1 + k

(√
τ θ
τ e

(A− A∗)− ξ
)
.

Substituting for prices, we can express equation (15) as:

e

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
+

√
τθ/τe
1+k

)
A∗

Φ

(
(1+ψ)(1−ηc)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)
Φ

(
A−A∗
τ
−1/2
θ

)


(1−λ)α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α Φ

(
(1+ψ)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)uΦ

Φ

(
A−A∗
τ
−1/2
θ

)uΦ

=
1 + ψ

ψ + α
e

(
1

1+k

√
τθ
τe
−uA

)
A− 1

1+k
ξ−u0 . (17)

Taking the derivative of the log of the LHS of equation (17) with respect to A∗, which is a

monotonic transformation of the LHS:

d logLHS

dA∗
= uΦ

1

τ
−1/2
θ

φ

(
A−A∗
τ
−1/2
θ

)
Φ

(
A−A∗
τ
−1/2
θ

) − φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
+

(1 + ψ) (1− ηc)
(1− α)ψ + (1 + αψ) ηc

+
1

1 + k

√
τ θ
τ e
− 1

τ
−1/2
θ

(λ− 1)α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

φ

(
A−A∗
τ
−1/2
θ

)
Φ

(
A−A∗
τ
−1/2
θ

) − φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
 .

The term in parentheses are nonnegative by the properties of the normal CDF. The last

term is nonpositive, since λ > 1, and attains its minimum at A∗ → ∞, from which follows,

substituting for uΦ, that:

d logLHS

dA∗
→A∗→∞

1

1 + k

√
τ θ
τ e

+
λ 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

> 0.
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Consequently, since d logLHS
dA∗ > 0 when the last term attains its (nonpositive) minimum,

it follows that d logLHS
dA∗ > 0. Therefore, logLHS, and consequently LHS, since log is a

monotonic transformation of the LHS, is monotonically increasing in A∗. Since the RHS of

equation (17) is fixed for all A∗, it follows that the LHS and RHS of equation (17) intersect

at most once. Therefore, the can be, at most, one cutoff equilibrium. Furthermore, since

the LHS of equation (17) tends to 0 as A∗ → −∞, and the RHS is nonnegative, it follows
that a cutoff equilibrium always exist. Therefore, there exists a unique cutoff equilibrium in

this economy.

Finally, it is straightforward to apply the Implicit Function Theorem to (17) to conclude

that

dA∗

dA
=

1
1+k

√
τθ
τe
− d logLHS

dA
− uA

d logLHS
dA∗

dA∗

dξ
= − 1

1 + k

1
d logLHS
dA∗

< 0,

where:

d logLHS

dA
= −uΦ

1

τ
−1/2
θ

φ

(
A−A∗
τ
−1/2
θ

)
Φ

(
A−A∗
τ
−1/2
θ

) − φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)


+
1

τ
−1/2
θ

(λ− 1)
α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

φ

(
A−A∗
τ
−1/2
θ

)
Φ

(
A−A∗
τ
−1/2
θ

) − φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)
 .

Notice that the nonpositive term in d logLHS
dA

achieves its minimum at A→ −∞, at which:

d logLHS

dA
→A→−∞ ((λ− 1)α (1− ηc)− ληc)

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

1 + ψ

(1− α)ψ + (1 + αψ) ηc
.

Then, as A→ −∞, the numerator of dA∗
dA

converges to:

1

1 + k

√
τ θ
τ e
− d logLHS

dA
− uA → A→−∞ −

(1 + ψ)

(
((λ−1)α(1−ηc)−ληc)

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

+ 1
1−α

1+ψ
ψ
ηc

)
(1− α)ψ + (1 + αψ) ηc

+
1

1− α
1 + ψ

ψ

(λ− 1)α 1+ψ
ψ+α

λ− α 1+ψ
ψ+α

+
1

1 + k

√
τ θ
τ e
,

which is positive. Consequently:
dA∗

dA
≥ 0.
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Finally, we can rewrite equation (17) as:

e
−
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

+ 1
1+k

√
τθ
τe

)
s

Φ

(
(1+ψ)(1−ηc)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ s

τ
−1/2
θ

)
Φ

(
s

τ
−1/2
θ

)


(1−λ)α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α Φ

(
(1+ψ)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ s

τ
−1/2
θ

)uΦ

Φ

(
s

τ
−1/2
θ

)uΦ

=
1 + ψ

ψ + α
e
−λ 1

1−α
1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

A− 1
1+k

ξ−u0

,

where s = A−A∗ determines the population that enter the neighborhood. It is straightfor-
ward to see, with some manipulation, that:

d logLHS

ds
= − 1

1 + k

√
τ θ
τ e
− λ

λ− α 1+ψ
ψ+α

1 + ψ

ψ + α
< 0,

and therefore:

ds

dξ
= −

1
1+k

d logLHS
ds

> 0,

ds

dA
= −

λ 1
1−α

1+ψ
ψ

1−α 1+ψ
ψ+α

λ−α 1+ψ
ψ+α

d logLHS
ds

> 0.

Conequently, the population that enters, Φ
(√

τ θs
)
, is increasing in A and ξ.

A.4 Proof of Proposition 4

We first conjecture that each household’s housing purchasing, each builder’s housing supply,

and the housing price follow a cutoff strategy, and that learning by households and capital

owners is linear as derived in the main text. Given our assumption about the suffi cient

statistic in prices, each household’s posterior about A is Gaussian A |Ii ∼ N
(
Âi, τ̂

−1
A

)
with

conditional mean and variance

Âi = Ā+ τ−1
A

[
1 1 1

]  τ−1
A + τ−1

Q τ−1
A τ−1

A

τ−1
A τ−1

A + z−2
ξ τ−1

ξ τ−1
A

τ−1
A τ−1

A τ−1
A + τ−1

θ

−1  Q− Ā
z (P )− Ā
Ai − Ā


= τ̂−1

A

(
τAĀ+ τQQ+ z2

ξ τ ξz (P ) + τ θAi
)
,

τ̂A = τA + τQ + z2
ξ τ ξ + τ θ.

We recognize that the conditional estimate of Âi of household i is increasing in its own

productivity Ai. Similarly, the posterior for capital owners about A is Gaussian A |Ic ∼
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N
(
Âc, τ̂ c−1

A

)
, where

Âc = Ā+ τ−1
A

[
1 1

] [ τ−1
A + τ−1

Q τ−1
A

τ−1
A τ−1

A + z−2
ξ τ−1

ξ

]−1 [
Q− Ā

z (P )− Ā

]
= τ̂ c−1

A

(
τAĀ+ τQQ+ z2

ξ τ ξz (P )
)
,

τ̂ cA = τA + τQ + z2
ξ τ ξ.

This completes our characterization of learning by households and capital owners.

Let us now turn to the optimal commercial land decision of commercial developers.

Since the posterior for A − A∗ of households is conditionally Gaussian, it follows that the
expectations in the expression for K in Proposition 2 is a function of the first two conditional

moments, Âi − A∗ and τ̂−1
A . Let:

F
(
Âc − A∗, τ̂ cA

)
= E




e(A−A∗)Φ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)ηc
Φ

(
A−A∗
τ
−1/2
θ

)ηc+ψ(1−α)
1+ψ

Φ

(
(1+ψ)(1−ηc)

(1−α)ψ+(1+αψ)ηc
τ
−1/2
θ + A−A∗

τ
−1/2
θ

)−ψ(1−α)
1+ψ


1+ψ
ψ+α

∣∣∣∣∣∣∣∣∣∣∣
Ic

 ,

where F
(
Âc − A∗, τ̂A

)
≥ 0. Define z = A−A∗

τ
−1/2
θ

, and the function f (z) :

f (z) = eτ
−1/2
θ z

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)ηc
Φ (z)ηc

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
Φ (z)


ψ

1+ψ
(1−α)

.

Then it follows that:

1

f (z)

df (z)

dz
= τ

−1/2
θ + ηc

φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

) − φ (z)

Φ (z)


+

ψ

1 + ψ
(1− α)

φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

) − φ (z)

Φ (z)

 .

Notice that
φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ +z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ +z

) − φ(z)
Φ(z)

achieves its minimum as z → −∞. Applying
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L’Hospital’s Rule, it follows that the minimum of 1
f(z)

df(z)
dz

is given by:

lim
z→−∞

1

f (z)

df (z)

dz
= τ

−1/2
θ + lim

z→−∞
ηc

 d
dz
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
θ + z

)
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
θ + z

) − d
dz
φ (z)

φ (z)


+

ψ

1 + ψ
(1− α)

 d
dz
φ
(

(1+ψ)(1−ηc)
ψ+α+(1−α)ηc

τ
−1/2
θ + z

)
φ
(

(1+ψ)(1−ηc)
ψ+α+(1−α)ηc

τ
−1/2
θ + z

) − d
dz
φ (z)

φ (z)


= α

1 + ψ

ψ + α + (1− α) ηc
(1− ηc) τ

−1/2
θ

> 0

from which follows that 1
f(z)

df(z)
dz
≥ 0 for all z, and therefore df(z)

dz
≥ 0, since f (z) ≥ 0.

Consequently, since f (z)
1+ψ
ψ+α is a monotonic transformation of f (z) , it follows that dF

dx
(x, τ̂A)

≥ 0 since this holds for all realizations of A − A∗. This establishes that the optimal choice
of commercial land is increasing in the conditional estimate of commercial developers, Âc,

since f (z) is increasing for each realization of z.

The optimal choice of commercial land then takes the form

logK =
1

λ− α 1+ψ
ψ+α

logF
(
Âc − A∗, τ̂ cA

)
+

1+ψ
ψ+α

λ− α 1+ψ
ψ+α

A∗ + k0.

Substituting this expression into the functional form for commercial land, the utility of

household i is then given by:

E [Ui|Ii] =
ψ + α

1 + ψ
e

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai+
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

(logF(Âc−A∗,τ̂cA)+ 1+ψ
ψ+α

A∗)+ 1
1−α

1+ψ
ψ

(
1+ψ

(1−α)ψ+(1+αψ)ηc
ηc−α

1+ψ
ψ+α

)
A∗+u0

×E



e

1
1−α

ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
(A−A∗)

Φ

(
(1+ψ)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)ηc
Φ

(
A−A∗
τ
−1/2
θ

)ηc−α
Φ

(
(1+ψ)(1−ηc)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)α


1+ψ
ψ+α

| Ii

 .
where u0 is given in the proof of Proposition 3.

Since the posterior for A − A∗ of households is conditionally Gaussian, it follows that

the expectations in the expressions above are functions of the first two conditional moments

Âi − A∗ and τ̂−1
A . Let:

G
(
Âi − A∗, τ̂A

)
= E



e

1
1−α

ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
(A−A∗)

Φ

(
(1+ψ)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)ηc
Φ

(
A−A∗
τ
−1/2
θ

)ηc−α
Φ

(
(1+ψ)(1−ηc)τ

−1/2
θ

(1−α)ψ+(1+αψ)ηc
+ A−A∗

τ
−1/2
θ

)α


1+ψ
ψ+α

| Ii

 ,
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where G
(
Âi − A∗, τ̂A

)
≥ 0. Define z = A−A∗

τ
−1/2
θ

, and the function g (z) :

g (z) = e
1

1−α
ψ+α
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
τ
−1/2
θ z

Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)ηc
Φ (z)ηc

Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
Φ (z)−α

−α

.

Then it follows that:

1

g (z)

dg (z)

dz
=

1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ
−1/2
θ

−ηc

φ (z)

Φ (z)
−
φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)


+α

φ (z)

Φ (z)
−
φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
 .

Notice that
φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ +z

)
Φ
(

1+ψ
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ +z

) − φ(z)
Φ(z)

achieves its minimum as z → −∞. Applying

L’Hospital’s Rule, it follows that the minimum of 1
g(z)

dg(z)
dz

is given by:

lim
z→−∞

1

g (z)

dg (z)

dz
=

1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ
−1/2
θ

+ηc lim
z→−∞

 d
dz
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
θ + z

)
φ
(

1+ψ
ψ+α+(1−α)ηc

τ
−1/2
θ + z

) − d
dz
φ (z)

φ (z)


+α lim

z→−∞

 d
dz
φ (z)

φ (z)
−

d
dz
φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)
Φ
(

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

τ
−1/2
θ + z

)


=
1

1− α
ψ + α

ψ

(
1 + ψ

(1− α)ψ + (1 + αψ) ηc
ηc − α

1 + ψ

ψ + α

)
τ
−1/2
θ

+ ((1− ηc)α− ηc)
1 + ψ

(1− α)ψ + (1 + αψ) ηc
τ
−1/2
θ .

With some manipulation, the above expression collapsed to:

lim
z→−∞

1

g (z)

dg (z)

dz
= 0,

and it follows that 1
g(z)

dg(z)
dz
≥ 0, and therefore dg(z)

dz
≥ 0, since g (z) ≥ 0. Consequently, since

g (z)
1+ψ
ψ+α is a monotonic transformation of g (z) , it follows that dG

dx
(x, τ̂A) ≥ 0 since this holds

for all realizations of A− A∗.
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Since the household with the critical productivity A∗ must be indifferent to its neighbor-

hood choice at the cutoff, it follows that Ui − P = 0, which implies

e

(1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

Ai+
α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

(logF(Âc−A∗,τ̂cA)+ 1+ψ
ψ+α

A∗)+ 1
1−α

1+ψ
ψ

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
A∗+u0

G
(
Âi − A∗, τ̂A

)
=

1 + ψ

ψ + α
P, Ai = A∗ (18)

which does not depend on the unobservedA or the supply shock ξ.As such, A∗ = A∗ (logP,Q) .

Furthermore, since Â∗i is increasing in Ai and G
(
Â∗i − A∗, τA

)
is (weakly) increasing in Âi,

it follows that the LHS of equation (18) is (weakly) monotonically increasing in Ai, con-

firming the cutoff strategy assumed for households is optimal. Those for which the RHS

is nonnegative enter the neighborhood, and those for which it is negative go choose to live

elsewhere.

It then follows from market-clearing that

Φ (−√τ θ (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing conditions, and impose equation (16) to arrive at

logP =
1

1 + k

(√
τ θ
τ e

(A− A∗)− ξ
)

from which follows that

z (P ) =

√
τ e
τ θ

(1 + k) logP + A∗ = A−
√
τ e
τ θ
ξ,

and therefore zξ =
√

τθ
τe
. This confirms our conjecture for the suffi cient statistics in housing

prices and that learning by households is indeed a linear updating rule. As a consequence,

it follows we can express the conditional estimates of household i as:

Âi = τ̂−1
A

(
τAĀ+ τQQ+

τ θ
τ e
τ ξ

(√
τ e
τ θ

(1 + k) logP + A∗
)

+ τ θAi

)
,

τ̂A = τA + τQ +
τ θ
τ e
τ ξ + τ θ,

and for capital owners as:

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ θ
τ e
τ ξ

(√
τ e
τ θ

(1 + k) logP + A∗
))

,

τ̂ cA = τA + τQ +
τ θ
τ e
τ ξ.
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Substituting for prices, and simplifying A∗ terms, we can express equation (18) as:

e

(
λ

1+ψ
ψ+α

λ−α 1+ψ
ψ+α

+

√
τθ/τe
1+k

)
A∗

G
(
Â∗ − A∗, τ̂A

)
F
(
Âc − A∗, τ̂ cA

) α
1+ψ
ψ+α

λ−α 1+ψ
ψ+α =

1 + ψ

ψ + α
e

1
1+k

√
τθ
τe
A− 1

1+k
ξ−u0 ,

(19)

where:

Â∗i = τ̂−1
A

(
τAĀ+ τQQ+

τ θ
τ e
τ ξ

(√
τ e
τ θ

(1 + k) logP + A∗
)

+ τ θA
∗
)
,

Âc = τ̂ c−1
A

(
τAĀ+ τQQ+

τ θ
τ e
τ ξ

(√
τ e
τ θ

(1 + k) logP + A∗
))

.

Notice that the LHS of equation (19) is continuous in A∗. It follows, as A∗ → −∞, that the
LHS of equation (19) tends to:

lim
A∗→−∞

LHS =

e (1+ψ)(1−ηc)
(1−α)ψ+(1+αψ)ηc

A∗+u0E
[
e

1+ψ
ψ+α

A
∣∣∣ Ic] α

1+ψ
ψ+α

λ−α 1+ψ
ψ+α E

[
e

1+ψ
ψ(1−α)

(
(1+ψ)ηc

(1−α)ψ+(1+αψ)ηc
−α 1+ψ

ψ+α

)
A | Ii

]
A∗→−∞

= 0.

Furthermore, by L’Hospital’s Rule and the Sandwich Theorem, one also has that:

lim
A∗→∞

LHS =∞.

Since the LHS of equation (19) is continuous in A∗ and the RHS is fixed for all A∗, it follows

that the LHS and RHS intersect at least once. Therefore, a cutoffequilibrium in the economy

with informational frictions exists.

Finally, notice that, as τQ ↗∞, that Âc and Âi converge to A a.s., since τ̂ cA, τ̂ iA ↗∞.
Taking the limit along a sequence of τQ, it is straightforward to verify that equation (18)

converges to equation (17), and therefore A∗ converges to its perfect-information benchmark

value. Taking similar limits for the expressions for capital and labor supply verify that they

also converge to their perfect-information benchmark values, and therefore the noisy rational

expectations cutoff equilibrium converges to the perfect-information benchmark economy as

τQ ↗∞.

46


