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Abstract

Complex risks di�er from simple risks in that agents facing them only possess imperfect
information about the underlying objective probabilities. This paper studies how complex
risks are priced by and shared among heterogeneous investors in a Walrasian market. I apply
decision theory under ambiguity to derive robust predictions regarding the trading of com-
plex risks in the absence of aggregate uncertainty. I test these predictions in the laboratory.
The experimental data provides strong evidence for theory’s predicted reduction in subjects’
price sensitivity under complex risks. While complexity induces more noise in individual
trading decisions, market outcomes remain theory-consistent. This striking feature can be
reconciled with a random choice model, where the bounds on rationality are reinforced by
complexity. When moving from simple to complex risks, equilibrium prices become more
whereas risk allocations become less sensitive to noise introduced by imperfectly rational
subjects. Markets’ e�ectiveness in aggregating beliefs about complex risks is determined by
the trade-o� between reduced price sensitivity and reinforced bounded rationality. More-
over, my results imply that complexity has similar but more pronounced e�ects on market
outcomes than ambiguity induced by conventional Ellsberg urns.
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1. Introduction

Financial markets have incurred a dramatic increase in complexity over the past decades. Suc-

cessive market integration and ongoing financial innovation both have expanded and complicated

the universe of tradable risks. The soaring levels of securitized contingent claims, a prominent

example of the latter, are generally believed to have catalyzed what eventually turned into

the Great Recession.1 Meanwhile, the implications of this rising complexity in traded assets’

inherited risk structure are still poorly understood.

Alongside information aggregation, financial markets’ essential raison d’être is their e�ciency

in allocating tradable risks to those with the highest risk bearing capacities. E�cient risk

sharing is, however, not prevailing unconditionally in such markets. Greenwald and Stiglitz

(1986) show that when either information is imperfect or markets are incomplete, competitive

market allocations are generally not constrained Pareto e�cient.

In this paper I study how ‘complex risks’ are priced by and shared among heterogeneous

agents. In contrast to simple risks, I regard a given asset’s payo� distribution as complex, if

agents only possess imperfect information about the underlying objective probabilities. Starting

from a complete market, I focus on the role of imperfect information on the pricing and sharing

of tradable risks when aggregate endowments are constant. I thus deliberately abstract from

financial innovation’s potential market completion e�ects in order to highlight complexity’s

informational role on market e�ciency.2

My analysis rests on two integral parts: First, within a simple economy without aggregate

uncertainty, I analyze competitive trading of both simple and complex risks via a complete

Walrasian market. In order to account for complexity e�ects on agents’ trading behavior, I

apply decision theory under ambiguity, equivalently often referred to as Knightian uncertainty

(Knight, 1921). Second, by conducting a laboratory experiment, I test the derived clear-cut

predictions empirically.

Given market completeness, the absence of aggregate risk implies the existence of individual

trading strategies that leave agents perfectly hedged against future consumption risk. Relying

on ambiguity theory, I show that, for complexity-averse agents, competitive supply and demand

become less price sensitive under complex risks, as agents become more reluctant to deviate from
1 See, e.g., Ghent et al. (2014) for a complexity-controlled performance analysis of mortgage-backed securities.
2 In reality, most markets, including those for financial assets, can hardly be characterized as being complete

in a static sense, i.e., in the absence of retrading opportunities. Hence, the financial innovation industry’s
touted services towards market completion have to be evaluated against dynamic completeness as developed
in Kreps (1982) and Du"e and Huang (1985). Assuming dynamic completeness, the existence of a Radner
equilibrium (Radner, 1972) crucially depends on agents’ ability of perfect foresight, i.e., to perfectly forecast
today all future prices depending on information revealed tomorrow. Asparouhove et al. (2016) experimentally
show how the inability of perfect foresight can cause considerable deviations from equilibrium prices. Thus,
one reasonable concern implied by the increasing complexity of traded risks is that agents lacking the required
resources to fully understand their complicated nature may fail to correctly forecast future price movements.
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their perfect hedging strategy. This is intuitive: If risks are complex, the agents not only demand

compensation for the risk they are bearing from not playing their perfect hedging strategy, but

also for the uncertainty about the actual riskiness induced by such an action.

Experimental asset market equilibria corroborate complexity aversion-implied trading be-

havior, i.e., I find complexity to (locally) reduce supply and demand price elasticity. At the

market level, complex risks are generally mispriced, but equally well shared relative to simple

risks. At the individual level, complexity causes more mistakes in subjects’ trading decisions,

where mistakes are defined as adopting strictly dominated strategies as implied by theory.

A comparison of both frequencies and distributions of dominated actions under simple and

complex risks confirms that subjects’ trading strategies become increasingly noisy under the

latter. Strikingly, as the number of subjects becomes larger, this noise cancels out in equilibrium

and theory-consistent risk allocations prevail. This can be explained by a random choice model,

where the relative likelihood of a given action is increasing in its ambiguity theory-based utility.

Overall, markets’ e�ectiveness in aggregating individual beliefs about complex risks is de-

termined by the trade-o� between reduced price sensitivity and increased severity of bounded

rationality (more dominated actions). Accounting for subjective beliefs, I find that, despite rein-

forced bounds to rational behavior, markets’ prove remarkably e�ective in pricing complex risks.

Beyond binding limits to rationality, their information aggregation is impaired, while optimal

risk sharing still prevails. Finally, my results indicate that complex risks have similar but more

pronounced implications on market outcomes than ambiguity induced by conventional Ellsberg

urns.

In contrast to a situation with known payo� distributions, complexity is introduced by

providing subjects instead with the formal definition of the underlying process in addition to

a dynamic visualization of its past trajectory. Thus, the presence of complex risks requires

subjects to deductively determine traded assets’ payo� distributions by processing complex

information. The advantage of this implementation is the simple structure of the complicated but

yet well-defined problem at heart. In fact, it requires solving a stochastic di�erential equation,

which, although technically doable by hand, turns out to be infeasible for the vast majority of

subjects.3 However, the problem’s simple formulation together with the visualized information

of one random realization allows one to appraise—with more or less certainty—the apparently

objective underlying risk.

In summary, the term complexity will henceforth refer to a complete Walrasian market for a

risky asset whose true payo� distribution is not known with certainty, thereby imposing complex

risks on utility maximizing traders. Although this notion of complexity is arguably specific, it
3 This is not surprising given the means at hand and the limited time available during the experiment. Presenting

subjects with an obviously solvable but complicated problem represents the design’s integral treatment.
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naturally extends to real world financial markets’ inherent purpose of multidimensional risk

sharing.4

In the absence of perfect information, subjects possess a more or less precise estimate of the

relevant payo� distribution, i.e., are faced with a smaller or wider set of possible priors. Consid-

ering the imperfection of the available information, “it would be irrational for an individual who

has poor information about her environment to ignore this fact and behave as though she were

much better informed” (Epstein and Schneider, 2010, p. 5). Trading decisions under complex

risks are henceforth analyzed by applying two seminal ambiguity models in financial economics:

a generalization of the multiple-priors model by Gilboa and Schmeidler (1989), and the smooth

ambiguity model by Klibano� et al. (2005). While the former implies kinked ambiguity prefer-

ences, the later allows for smooth ambiguity e�ects.

The intuition behind both models is simple. If agents are averse to perceived ambiguity, they,

ceteris paribus, prefer to avoid being exposed to imperfectly understood risks. When starting

from a zero ambiguity exposure, this leads to a no-trade interval.5 For nonzero initial endow-

ments in the risky asset, as pointed out by Dow and da Costa Werlang (1992), engaging in trade

is generally still optimal. In my model economy, incentives to trade stem from nontradable but

hedgeable consumption risk. In short, under both models, agents’ price sensitivity of their per-

fect hedging strategy decreases in the presence of complex risks. Intuitively, being completely

hedged insures agents not only against risk but also against potential complexity-induced ambi-

guity. The main di�erence between the two models lies in their implied conditions for mispricing.

Within the smooth ambiguity model, incorrect beliefs immediately impact equilibrium prices,

whereas this does not unconditionally hold for the multiple-priors model. Overall, my empirical

evidence speaks in favor of kinked preferences as embedded in the latter.

The merits of taking the study of how individual decision making aggregates to market

outcomes to the lab are manifold. First, by design, the lab easily allows for the construction

of a complete market. Moreover, the experimenter can exercise full control over each market

participants’ information set and how their individual decisions interact towards equilibrium.

Second, the laboratory environment o�ers the unique virtue of measuring subjects’ beliefs, in

particular their expectations, which most often constitutes an impossibility when confronted

with real world data. Third, treatment e�ects under investigation can be analyzed in isolation,
4 There is a vast scientific literature on various notions of (financial) complexity. In computer science and machine

learning one distinguishes, e.g., between computational complexity (required resources), sample complexity
(minimum number of draws), and Kolmogorov complexity (minimum descriptive length) of problem solving.
The herein considered form of complexity is somewhat di!erent in that it directly relates to the analysis of
pricing and risk sharing in a financial market. Interestingly enough, recent contributions in decision science
provide evidence for commonalities between the human brain and computer algorithms solving and reacting
to problems with varying levels of complexity (see, e.g., Bossaerts and Murawski (2016)).

5 For example, this phenomenon serves Dimmock et al. (2016) in explaining known household portfolio puzzles,
e.g., the equity home bias.

3



while controlling for any kind of endogeneity concerns. Thus, the lab enables a direct comparison

between simple versus complex risks, while comparing the latter to the ‘pure ambiguity’ case

usually associated with Ellsberg (1961)’s urn experiment. Once the unobservability of expec-

tations and the inability to monitor strategic uncertainty underlying field data are taken into

serious account, the advantages of full laboratory control become evident.

My design directly builds on the experimental setup proposed by Biais et al. (2017). Relying

on a two-state world with two nonredundant assets (a risk-free bond and a risky stock), it

o�ers the simplest possible setting to test the seminal general equilibrium theory by Debreu

(1959) and Arrow (1964). Controlling for subjects competitive behavior, Biais et al. (2017)

find market outcomes to be consistent with the theory of complete and perfect markets: On

average, (simple) risk is perfectly shared and only aggregate risk is priced. Therefore, Biais et al.

(2017)’s parameter-free test of the most fundamental asset pricing theory constitutes the ideal

benchmark upon which the trading of simple and complex risks can be compared.6 Moreover,

its simple market-clearing pricing scheme based on individual supply and demand functions can

be controlled for any kind of strategic uncertainty. This constitutes an impracticality in the

context of the continuous double auction that is normally used in experimental asset market

studies.

This paper relates to three distinctive strands of the literature. First, a growing literature

investigates the drivers and implications of financial complexity both from a theoretical as well

as an empirical perspective. Ellison (2005) and Gabaix and Laibson (2006) demonstrate theo-

retically that ine�cient levels of financial complexity can prevail in a competitive equilibrium.

Carlin (2009) finds that financial complexity is an increasing function in the degree of compe-

tition among financial institutions. Carlin and Manso (2011) show how educational initiatives

aiming to foster financial literacy may eventually cause welfare diminishing obfuscation, i.e., the

strategic acceleration of complexity by financial service providers in order to preserve industry

rents (see Ellison and Ellison (2009)). From an investor’s view, Brunnermeier and Oehmke

(2009) discuss three di�erent ways to deal with complexity: (i) applying separation results, (ii)

relying on models, or (iii) via standardization. Arora et al. (2011) illustrate how the usage of

computationally complex derivatives may worsen asymmetric information costs.

Célérier and Vallée (2017) empirically test the implications of the Carlin (2009) model and

indeed find complexity to be increasing in issuer competition. Furthermore, several studies an-

alyze the steadily growing market for complex securities, in particular their pricing, historical

performance, as well as the characteristics of the involved issuers and investors (Henderson and
6 For their most general predictions, Biais et al. (2017) only rely on first order stochastic dominance. When

allowing for deviations from their symmetric payo! distribution, my analysis assumes expected utility maxi-
mization instead.
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Pearson (2011), Ghent et al. (2014), Gri�n et al. (2013), Sato (2014), and Amromin et al.

(2011)). Relying on expected utility theory, Hens and Rieger (2008) moreover reject the often

claimed market completing e�ect of structured products. In summary, there exists both theoret-

ical and accumulating empirical evidence that financial institutions rely on a continuing increase

in complexity to shield industry rents from competitors and learning by investors rather than

to create higher quality products. My paper complements this literature by investigating rising

complexity’s implications on agents’ trading behavior.

Second, the herein presented analysis naturally relates to experimental studies on trading

ambiguous or complex assets. Implementing a continuous double auction of state-contingent

claims based on an Ellsberg urn, Bossaerts et al. (2010) analyze how subjects’ ambiguity aversion

a�ects asset prices and final portfolio holdings. Similar to the no-trade result, they find that,

for certain subsets of prices, ambiguity-averse agents prefer to hold nonambiguous portfolios.

Furthermore, Bossaerts et al. (2010) show how, in the presence of aggregate risk, su�ciently

ambiguity-averse investors indirectly impact asset prices by altering the per capita risk to be

shared among marginal investors.

Carlin et al. (2013) study how computational complexity alters bidding behavior in a de-

terministic environment.7 They find higher complexity to increase volatility, lower liquidity,

and decrease trade e�ciency, i.e., to reduce gains from trade. Moreover, Carlin et al. (2013)

provide evidence that, additionally to any noise arising from estimation errors, traders’ bidding

strategies are influenced by a complexity-induced adverse selection problem. Intuitively, given

traders’ private values of the tradable asset are a�liated, the fear of winner’s curse, i.e., to

systematically lose by trading against a better informed counterparty, leads traders to submit

more conservative ask and bid quotes.

Asparouhove et al. (2015) show how ambiguity preferences can explain asset prices under

asymmetric reasoning. They consider a continuous double auction of arrow securities, where,

midway through the auction, agents are confronted with an involved updating problem regard-

ing the relative likelihood of the underlying states.8 In line with Fox and Tversky (1995)’s

comparative ignorance proposition, Asparouhove et al. (2015) argue that agents perceive irrec-

oncilable post-updating market prices as ambiguous. Hence, if ambiguity-averse, agents who

apply incorrect reasoning become price-insensitive. Consistent with ambiguity aversion, the

more price-sensitive agents there exist, the less severe is the experimentally documented mis-

pricing.
7 In the experimental design by Carlin et al. (2013) participants trade di!erent assets whose values have to be

determined deductively by solving systems of linear equations, where the authors di!erentiate between simple
and complex computational problems.

8 The updating task in Asparouhove et al. (2015)’s experimental design is an adaptation of the famous ‘Monty
Hall problem’.
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Third, this paper also relates to an emerging literature comparing individuals’ preferences

towards pure Ellsberg-like ambiguity and complex risk(s), where, as in this paper, the latter

is uniquely defined by an objective probabilistic structure. The findings in Halevy (2007) give

support to a close relation between individuals’ ability to correctly reduce compound lotteries and

their attitudes to pure ambiguity. The vast majority of subjects (95%) who failed to disentangle

compound objective lotteries, displayed nonambiguity-neutral behavior.

In their recent paper, Armantier and Treich (2016) provide strong empirical evidence for “a

tight link between attitudes toward ambiguity and attitudes toward complex risk” (Armantier

and Treich, 2016, p. 5). In their ambiguity treatment, subjects are confronted with lotteries

whose outcomes depend on draws from an opaque Ellsberg urn, while complex risks are repre-

sented by lotteries that get settled by simultaneous draws from multiple transparent urns. Based

on estimated certainty equivalents for both lottery types, Armantier and Treich (2016) elicit am-

biguity as well as complex risk premiums. They find a strong positive correlation between the

two premiums across subjects.

The remainder of the paper is organized as follows. Section 2 introduces the model econ-

omy and develops the necessary theory for generating predictions about trading both simple

and complex risks. Section 3 describes the experimental design and confronts the theoretical

predictions with the data. Section 4 concludes.

2. Theory

This section introduces the model economy for which I thereafter study individual trading be-

havior conditional on agents’ information quality. If risks are simple, implications of varying

risk-preferences are analyzed within the classical framework of expected utility. In contrast, if

risks are complex, individual preferences are adjusted to account for their imperfect information.

The first case provides a clear-cut benchmark to which complexity-induced implications can be

compared to.

2.1. Model

I start from the simple economy of Biais et al. (2017). In the two-period interpretation of this

trading economy, t œ {1, 2}, uncertainty gets resolved in the second period, where there are two

possible states of the world, � = {u, d}. The probability of reaching state u is denoted by fi,

i.e. P(Ê=u) = fi and P(Ê=d) = 1 ≠ fi, respectively. Contrary to Biais et al. (2017), I allow for
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any nontrivial binary payo� distribution fi œ (0, 1).9 This generalization is crucial, given agents’

subjective probability estimates in the context of complex risks.

The economy o�ers access to a complete asset market, where shares of a risky asset (stock)

can be traded in exchange for units in the risk-free asset (numéraire). The stock pays a state-

dependent dividend X per share in t = 2, but nothing beforehand. The dividend fully transfers

the stock’s final value to shareholders, i.e., after payments have been made, all shares expire

worthless (no continuation value). Without loss of generality, it is assumed that X(u) > X(d).

The time di�erence between t = 1 and t = 2 is considered to be very short, allowing to abstract

from any time discounting. Therefore, in-between periods, the risk-free asset simply serves as

pure storage device (cash) that does not pay any interests.

There is an infinite number of agents populating the economy. I denote the unbounded set

of agents by I. Agent i œ I is endowed with nonnegative holdings in the risk-free asset Bi,

Si shares of the risky stock, and some state-contingent non-tradable income Ii(Ê) paid out in

t = 2 only. Moreover, every agent belongs to one of two types, i.e., either she is allowed to buy

shares (potential buyer) or to sell them (potential seller). There exist as many buyers as sellers

and their respective endowments are identical within each type. Every agent only cares about

her utility of consumption Ci(Ê) in t = 2, where consumption is given by the sum of the final

holdings in the risk-free asset, dividend payments, and nontradable income. In the first period,

potential buyers and sellers are able to trade shares via a call-market in order to maximize their

increasing utility from consumption Ui(Ci) in the second period.

Finally, agents’ state-contingent income is set to exactly o�set the aggregate consumption

risk caused by the stock’s dividend payments. If aggregate endowments are constant, I show

that for risk-averse agents, the rational expectation equilibrium is independent from potentially

heterogeneous attitudes towards simple consumption risks. In particular, under simple risks,

the stock market-clearing price and quantity remain una�ected by the shape of agents’ utility

functions (Ui)iœI . If, despite the income Ii(Ê), aggregate risk prevailed, market equilibrium

would necessarily reflect agents’ (average) risk preferences.10

2.2. Trading Simple Risks: Expected Utility

In the presence of simple risks, since the value of fi is common knowledge, agents possess perfect

information regarding the stock’s payo� distribution. According to classical consumption-based
9 Biais et al. (2017) only consider the symmetrical case, i.e., fi = 1/2. Imposing symmetry has the advantage of

delivering robust predictions even under the inapplicability of expected utility theory, i.e., by only assuming
the absence of first order stochastically dominated actions.

10 Constantinides (1982) shows that if agents with di!erent risk attitudes all maximize expected utility subject to
a common prior, equilibrium prices can always be rationalized in a representative agent framework. Hence, in
the absence of complex risks, market equilibrium can be explained by the risk preferences of this representative
agent.
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asset pricing theory, the stochastic discount factor then corresponds to the representative agent’s

marginal rate of intertemporal substitution. In Biais et al. (2017)’s simple economy, with con-

sumption restricted to t = 2, expected utility theory implies an equilibrium stock price P equal

to the stock’s normalized expected payo� weighted by her marginal utilities across states.11

By choosing (Ii(Ê))(iœI) such that aggregate consumption risk vanishes, the interconnectedness

between P and marginal utilities disappears, allowing for predictions robust to any parameteri-

zation of any set of increasing utility functions (Ui)iœI . The results in this subsection correspond

to generalizations of Biais et al. (2017) to values of fi ”= 1
/2.

Recalling the two-state nature of the economy in t = 2, one can write agent i’s expected

utility from consumption as

E

#
Ui(Ci(Ê))

$
= fi Ui(Ci(u)) + (1 ≠ fi) Ui(Ci(d))

= fi Ui

A

µi +
Ú

1 ≠ fi

fi

‡i

B

+ (1 ≠ fi) Ui

3
µi ≠

Ú
fi

1 ≠ fi

‡i

4
, (1)

where µi © fiCi(u)+(1≠fi)Ci(d) and ‡

2
i © fi(1≠fi) (Ci(u) ≠ Ci(d))2. Thus, any agent’s expected

utility can be rewritten as a function of her expected consumption, the standard deviation of

consumption across states, and the probability fi.

In the absence of aggregate risk, i.e., if aggregate endowment across SiX(Ê) and Ii(Ê) is

constant, there must exist a tradable quantity ‚
Q at which every seller and buyer is perfectly

hedged against any consumption risk in t = 2. If agents are risk-averse, i.e., whenever Ui is

strictly concave for every agent i, there exists a unique equilibrium for the call-market in t = 1.

Proposition 1. If Ui is di�erentiable and strictly concave ’i œ I, and there exists a tradable

quantity

‚
Q such that every seller and buyer is perfectly hedged, i.e., ‡i = 0, ’i œ I, then seller

i’s supply and buyer j’s demand curve for the risky asset have the unique intersection point

(E[X], ‚
Q), ’{i, j} µ I.

Proof. For proof see Appendix A.

The driving force behind Proposition 1 is the strict concavity of the utility functions, i.e., agents

aversion to consumption risk. To see this, it is helpful to separately consider the shape of both
11 When deciding on her optimal trading strategy Q in t = 1, the representative agent solves the following

problem (where Q > 0 implies buying)

max
Q

E[Ui(Ci(Ê))] s.t. Ci(Ê) = (Si + Q)X(Ê) + (Bi ≠ QP ) + Ii(Ê),

maximizing her expected utility from consumption in t = 2 subject to her budget constraint (neglecting any
borrowing constraints). Hence, the first order condition yields

P = E

5
U Õ

i(Ci(Ê))
E[U Õ

i(Ci(Ê))]X(Ê)
6

.
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seller i’s supply and buyer j’s demand curve for the risky stock.

First, note that for a price equal to one share’s expected dividend, seller i’s expected con-

sumption in Eq. (1) is independent of the number of shares sold. Since seller i is risk-averse,

for P = E[X] she will therefore always decide to sell exactly ‚
Q shares and thereby be perfectly

hedged against future fluctuations in consumption. However, for P < E[X] (P > E[X]) her

expected consumption only increases, if she sells less (more) than ‚
Q shares. Because she is

only willing to incur risk, i.e., deviate from selling ‚
Q shares, if appropriately compensated in

return, her supply curve must lie somewhere in the lower left and upper right quadrant of the

price-quantity space shown in Subfigure (a) of Figure 1.

Second, note that for P = E[X], similarly buyer j’s expected consumption in Eq. (1) is

independent of the number of shares bought. Given her risk-aversion, she chooses to buy exactly
‚
Q shares for P = E[X], and more (less) than ‚

Q shares if P < E[X] (P > E[X]), as illustrated

in Subfigure (b) of Figure 1. Thus, when there is no aggregate risk, seller i’s supply and buyer

j’s demand curve exhibit the unique intersection point (E[X], ‚
Q) as depicted in Subfigure (c).

Interestingly enough, depending on the shape of Ui, a large opposite income e�ect can

dominate the corresponding substitution e�ect of a given price change. Hence, seller i’s supply

or buyer j’s demand curve can e�ectively be nonmonotonic within the respective dominating

quadrants of the PQ-plane. The following remark provides an example of a nonmonotonic

supply curve.

Remark 1. Suppose, seller i’s utility function is defined piecewise as follows

Ui(C) =

Y
_]

_[

c1
C1≠‘

1≠‘ , for 0 Æ C Æ C,

c2 ≠ e

≠–C
, for C Æ C,

where – > ‘ > 0 and ‘ small, – > 0, and c1 and c2 are positive constants such that Ui

is di�erentiable ’C Ø 0. For certain parameter pairs (–, fi), seller i’s supply curve can be

nonmonotonic over a nonempty subset of P .

Proof. For proof see Appendix A.

Figure D.1 in the Appendix D shows an example of a nonmonotonic supply curve for similar

parameter values as in the actual experiment. The intuition for this exemplary nonmonotonicity

e�ect is simple. For every seller and any given Q, both C(d) and C(u) are strictly increasing in

P > 0. If prices are high enough, seller i’s higher CARA coe�cient –, relevant for C(Ê) > C,

can dominate her lower CRRA coe�cient ‘. Thus, for even higher prices, she is willing to bear

less and less risk, causing her supply curve to decrease until it eventually reaches ‚
Q, and thereby

completely eliminating her consumption risk.
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P

Q

dominated
(µi ¿ , ‡i ø)

dominated
(µi ¿ , ‡i ø)

E[X]

(!
µ

i
=

0)

(!
µ

i
=

0)

‚
Q

(a) Supply

P

Q

dominated
(µi ¿ , ‡i ø)

dominated
(µi ¿ , ‡i ø)

E[X]

(!
µ

i
=

0)

(!
µ

i
=

0)

‚
Q

(b) Demand

P

Q

P

ı = E[X]

Q

ı = ‚
Q

(c) Equilibrium

Figure 1. Trading equilibrium for simple risks

Notes: This figure shows the unique equilibrium for risk-averse agents in the absence of
aggregate consumption risk.

Absence of Risk Aversion

In case agents are not averse to consumption risk, for all P ”= E[X], an even stricter separation

between dominating and dominated strategies than shown in Figure 1 applies. From the proof

of Proposition 1 it directly follows that whenever Ui is either linear or convex, seller i always

strictly prefers to sell zero shares for P < E[X]. In contrast, for P > E[X], her expected utility

is maximized if and only if she sells her full initial endowment in shares. The symmetric behavior

applies to risk-neutral and risk-loving buyers, respectively.

For P = E[X], risk-neutral agents are indi�erent between trading ‚
Q shares or any other

quantity, whereas risk-loving agents are indi�erent between trading zero shares or the maximum

number possible. In summary, as long as they do not consistently choose among their set of

indi�erent strategies in an asymmetric manner, the equilibrium in Figure 1 remains una�ected

by a nonzero mass of nonrisk-averse agents.
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2.3. Trading Complex Risks: Heterogeneous Complexity Preferences

When agents’ information regarding the distribution of X(Ê) is imperfect, I consider the associ-

ated consumption risk to be (more) complex. In the presence of such complex risks, rationality

in decision making requires some form of acknowledgment regarding the information’s inherent

degree of (im)precision. The literature provides a vast number of models intended to account

for individuals’ degree of confidence in their relative likelihood estimates. In the following, I

analyze individual trading of complex risks within two classes of seminal ambiguity models:

multiple-priors utility and the ‘smooth ambiguity’ model proposed by Klibano� et al. (2005).

In the former, agents’ information quality has a ‘first order’ e�ect on their trading decision

(change in mean), whereas for the latter, lower information precision increases the total amount

of perceived ‘risk’ (see Epstein and Schneider (2010)). For multiple-priors utility, there exists a

direct mapping to rank-dependent expected utility, which I briefly discuss.

Multiple-priors Utility

Agents facing complex risks are unable to determine fi with certainty, but rather consider several

payo� distributions possible. Hence, intuitively, when making their trading decisions, they are

guided by a set of potential probability laws. I denote agent i’s subjective set of possible priors

on the state space � by Ci.

Based on this idea of multiple priors, Gilboa and Schmeidler (1989) axiomatize a multiple-

priors maxmin decision rule that assumes infinite ambiguity-aversion. In order to allow for a full

spectrum of ambiguity preferences, I employ the generalization proposed by Ghirardato et al.

(2004), the so-called –-maxmin model, instead. Assuming the set Ci of subjective priors to be

convex, agent i’s utility from consumption in t = 2 is then given by

Ui(Ci(Ê)) = –i min
fiœCi

!
E

#
Ui(fi)

$"
+ (1 ≠ –i) max

fiœCi

!
E

#
Ui(fi)

$"
, (2)

where, as before, E

#
Ui(fi)

$
© fi Ui(Ci(u)) + (1 ≠ fi) Ui(Ci(d)), Ui is a di�erentiable and strictly

concave utility function, and –i œ [0, 1]. First, note the straightforward interpretation of Eq. (2).

On the one hand, the cardinality or wideness of Ci measures agent i’s ambiguity perception: The

bigger her set of subjective priors, the more ambiguity she perceives. On the other hand, her

preferences towards ambiguity are expressed by –i: If –i >

1
/2, she puts more weight on the

minimal expected utility, implying ambiguity-aversion. In contrast, if –i <

1
/2 (–i = 1

/2), then

she is ambiguity-loving (ambiguity-neutral). For their axiomatization, Gilboa and Schmeidler

(1989) assume maximal ambiguity-aversion, i.e., –i = 1. Second, whenever Ci is a singleton,

Eq. (2) reduces to Eq. (1) with subjective probability fii, i.e., Eq. (2) converges to subjective

11



Table I. Agent types with multiple-pirors utility

beliefs about fi

correct (fi œ Bi) incorrect (fi ”œ Bi)

ambiguity-averse

yes (–i >

1
/2) Type AC Type AI

no (–i Æ 1
/2) Type NC Type NI

Notes: In the presence of complexity-induced ambiguity, I distinguish between four di�erent
types of agents with multiple-priors utility. Agent i can either be ambiguity-averse or does
not dislike ambiguity. Additionally, she can either apply correct or incorrect reasoning when
processing her imperfect information about fi.

expected utility as Ci æ fii. For ease of notation, I furthermore rely on the following definition:

Ei
#
X

$
:= –i Ei

#
X

$
+ (1 ≠ –i) Ei

#
X

$
, (3)

where Ei
#
X

$
© E

fii [X] with fii := arg min
fiœCi

µi(fi), and Ei
#
X

$
© E

fii [X] with fii := arg max
fiœCi

µi(fi).

When risks are complex, agents perceive ambiguity regarding the probability fi. In order

to analyze individual trading behavior within the –-maxmin model, a case-by-case analysis is

required, whereby agent i can behave di�erently from agent j in two dimensions: First, agent

i is either averse to (–i >

1
/2) or not disliking (–i Æ 1

/2) perceived ambiguity. Second, she can

either have correct or incorrect beliefs about the true payo� probability fi. More precisely, I

classify agent i as having incorrect beliefs, if fi is not su�ciently close to the midpoint of her set

of priors, i.e., if fi ”œ Bi µ Ci, where Bi itself depends on her ambiguity-aversion:

Bi =

Y
_]

_[

[fiM ≠ �(2–i ≠ 1), fiM + �(2–i ≠ 1)], for –i >

1
2 ,

fiM for –i Æ 1
2 ,

(4)

where fiM denotes the midpoint of Ci with length (or maximum di�erence) 2�. We note that

Bi æ Ci as –i æ 1 and Bi æ fiM as –i æ 1
/2. Table I summarizes the four possible combinations

of types.

Price Sensitivity

In order to deduce the e�ect(s) of complexity-driven ambiguity on agents’ trading behavior, the

di�erent types presented in Table I have to be considered separately. I start with the first row

of Table I. If aggregate endowments are constant, any risk-averse agent, as shown above, prefers

to trade exactly ‚
Q shares for P = E[X]. Now, given their distaste for the perceived ambiguity

regarding fi, agents of type AC and AI eventually both prefer to trade ‚
Q for prices significantly

di�erent from E[X]. More precisely, for any given degree of risk-aversion, the subset of prices

for which they wish to be perfectly hedged against consumption risk is increasing in both their
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ambiguity aversion and ambiguity perception.

Proposition 2. In the presence of perceived ambiguity and if there exists a tradable quantity

‚
Q such that ‡i = 0 ’i œ I, then agents of types AC and AI exhibit constant supply or demand

curves over closed subsets of P . Their absolute price elasticity is a decreasing function in both

–i and the cardinality/length of Ci.

Proof. For proof see Appendix A.

In case of no aggregate risk, it holds for any seller i that fii < fii for Q <

‚
Q and fii > fii

for Q >

‚
Q, respectively. Intuitively, if seller i is hedged against varying consumption by selling

exactly ‚
Q shares, her expected consumption µi decreases in 1 ≠ fii (fii) whenever she sells less

(more) than ‚
Q shares. Analogously, for any buyer j it holds that fij > fij for Q <

‚
Q and fij < fij

for Q >

‚
Q, respectively. These shifts in relative size of fii and fii around ‚

Q in combination with

ambiguity-aversion are the driving force behind Proposition 2.

To foster the reader’s intuition, the result in Proposition 2 is illustrated in Figure 2 from the

perspective of an ambiguity-averse seller—the analogous reasoning also applies to any ambiguity-

averse buyer. First, due to seller i’s risk-aversion, it can be shown (see proof of Proposition 2)

that for P = Ei[X], selling exactly ‚
Q shares strictly dominates trading any other quantity

of the risky asset. Moreover, given Eq. (2), she is only willing to sell less than ‚
Q shares for

prices strictly below Ei[X] (see proof of Proposition 2). This is illustrated in Subfigure (a) of

Figure 2. Analogously, seller i only agrees to sell more than ‚
Q shares in return for P > Ei[X]

(see Subfigure (b)). Second, due to the above discussed order e�ect of fii and fii, it follows that

the lower price bound L in Subfigure (a) and the upper price bound U in Subfigure (b) do not

coincide. Therefore, putting everything together, the piecewise constant supply curve depicted

in Subfigure (c) prevails, where seller i’s supply of the risky asset is constant over the closed

subset [L, U ].

In comparison to the analysis under simple risks in Section 2.2, a nice and intuitive interpre-

tation of Proposition Eq. (2) emerges. Since agents of types AC and AI are averse to ambiguity,

selling or buying ‚
Q shares becomes even more attractive compared to situations with objec-

tive payo� distributions. By trading exactly ‚
Q units of the risky asset, agents are not only

able to avoid risk, but additionally to dispose any exposure to perceived ambiguity. Trading ‚
Q

shares hence simultaneously corresponds to the perfect hedging strategy against both risk and

ambiguity. In return for this dual insurance, agents are willing to forego potential gains from

trade.

I now turn to the second row in Table I. For nonambiguity-averse agents, there are two

cases to be distinguished among. First, if –i equals 1
/2, agent i is ambiguity-neutral. For a
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‚
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‚
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Ei[X]

‚
Q

(c) Supply of types A

Figure 2. Supply curve of ambiguity-averse seller with multiple-priors

Notes: This figure shows the piecewise flat supply curve for complex risks implied by the
–-maxmin model (Eq. (2)) for a risk-averse and ambiguity-disliking seller i.

seller with –i = 1
/2, L and U in Figure 2 coincide, i.e., under complex risks, she behaves as a

subjective expected utility-maximizer. The analogous argument applies for an ambiguity-neutral

buyer. Second, if –i <

1
/2, agent i is ambiguity-loving. The same reasoning as in the proof of

Proposition 2 implies that for an ambiguity-loving seller, it holds that L > U . Hence, when risks

are complex, there exists a certain price between U and L for which she is indi�erent between

gaining exposure to ambiguity from selling less or more than ‚
Q shares. At or precisely beyond

this threshold, her supply curve therefore exhibits a discontinuity, i.e., jumping from strictly

below to strictly above ‚
Q.12 For prices below and above the threshold, her supply curve’s price

elasticity increases in comparison to simple risks. Again, the analogous argument can be made

for an ambiguity-loving buyer.
12 This can be interpreted as the natural counterpart of ambiguity-averse sellers’ piecewise flat supply curves.
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Mispricing and Suboptimal Risk Sharing

How complex risks are priced and shared in equilibrium, crucially depends on agents’ beliefs

regarding fi. If aggregate endowments are constant, the risky asset is mispriced whenever the

market-clearing price deviates from its expected dividend. Furthermore, the absence of aggregate

risk in combination with a complete market allows for perfect risk sharing. Hence, whenever the

market-clearing quantity (per capita) is di�erent from ‚
Q, consumption risk is only suboptimally

shared among risk-averse agents. I therefore subsequently refer to the market-clearing price and

quantity for simple risks, i.e., (E[X], ‚
Q), as benchmark equilibrium.

Nonambiguity-loving agents (–i Ø 1
/2) with correct beliefs (fi œ Bi) never cause any mis-

pricing or incomplete risk sharing, simply because their supply or demand curves always go

through (see above) the benchmark equilibrium. Due to the jump of their supply (demand)

curve between U and L, an ambiguity-loving seller (buyer) almost surely never chooses to sell

(buy) ‚
Q shares at P = E[X], independently of her beliefs regarding fi. While it is clear why

ambiguity-neutral agents with incorrect beliefs provoke mispricing and suboptimal risk shar-

ing, due to their piecewise constant supply and demand curves, this is, however, less clear for

ambiguity-averse agents whose Bi does not contain fi.

Proposition 3. In the presence of perceived ambiguity and if there exists a tradable quantity

‚
Q such that ‡i = 0 ’i œ I, then any nonzero mass of type AI sellers (buyers) moves aggregate

supply (demand) away from the market equilibrium under simple risks.

Proof. For proof see Appendix A.

Figure 3 illustrates the mechanics behind Proposition 3 for the simplified case of only three

sellers and buyers, respectively. Subfigure (a) depicts the exemplary supply curves (for a given

discrete price grid) from three di�erent sellers. Assuming type NC to be ambiguity-neutral,

she chooses—in line with her correct beliefs—to sell ‚
Q shares for P = E[X]. Due to type

AC’s pronounced ambiguity-aversion, her supply curve is constant over a considerable subset

of prices (delimited by circles). Importantly, since fi œ BAC , its constant part still contains the

benchmark equilibrium. In contrast, the constant piece of type AI’s supply curve (delimited

by squares) does not include the point (E[X], ‚
Q). Hence, neither the length of CAI nor the

degree of her ambiguity-aversion –AI >

1
/2 are su�cient to prevent that fi ”œ BAI . Therefore,

based on incorrect beliefs, her supply draws the average supply curve (solid line) away from the

benchmark equilibrium.

For simplicity, all three buyers in Subfigure (b) are assumed to hold correct beliefs such that

their demand curves all contain the benchmark equilibrium. This ensures that any mispricing

and incomplete risk sharing in equilibrium is solely driven by the AI-type seller’s supply curve in
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Figure 3. Equilibrium analysis for complex risks under multiple-priors utility

Notes: For the –-maxmin model (Eq. (2)), this figure illustrates how ambiguity-averse
agents with incorrect beliefs can cause mispricing and suboptimal risk sharing of complex
risks in equilibrium (Proposition 3). Subfigure (a) shows three exemplary supply curves
of one ambiguity-neutral (type NC) and two ambiguity-averse (type AC and AI) sellers.
All exemplary buyers in Subfigure (b) are assumed to be nonambiguity-loving and to have
correct beliefs. Subfigure (c) finally shows, how the incorrect beliefs of seller AI cause
mispricing and incomplete risk sharing of complex risks in equilibrium. Due to the absence
of aggregate consumption risk, both distortions are unambiguously defined and measurable.

Subfigure (a). The solid line constitutes the resulting average demand curve. Finally, Subfigure

(c) depicts the market-clearing price P

ı and quantity Q

ı (per capita) that corresponds to the

intersection of the average supply and demand curves. Due to seller AI’s underestimation of

fi, the market-clearing price is smaller than the stock’s expected dividend, implying mispricing

equal to |P ı ≠ E[X]|. Furthermore, the average market-clearing quantity of shares is greater

than ‚
Q, i.e., in equilibrium, agents do not share complex risks perfectly.

Intuitively, Proposition 3 establishes a condition under which ambiguity-induced price in-

sensitivity is su�ciently large in order to o�set any equilibrium e�ects of incorrect beliefs about

complex risks. Given the midpoint of agent i’s set of priors Ci, the more ambiguity-averse she is,
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i.e., the larger her –i, the wider becomes the subset of payo� distributions Bi for which incorrect

beliefs do not cause any deviations from the benchmark equilibrium. Note that for any –i < 1,

the subset Bi in Eq. (4) is strictly smaller than Ci. Thus, as long as agent i is not maximally

ambiguity-averse, requiring the true payo� distribution fi to be contained in Ci is not su�cient

for precluding di�erences between simple and complex equilibria.

From Multiple-priors to Rank-dependent Expected Utility

Since the seminal work by Tversky and Kahneman (1992), cumulative prospect theory has

become the most prominent alternative to expected utility for modeling decision making under

uncertainty. Therefore, a reasonable question likely asked by the reader is the following: How

do trading decisions under complex risks from agents with rank-dependent utility di�er from

the herein presented analysis? For binary acts, e.g., trading the above risky asset, Chateauneuf

et al. (2007) show that their proposed ‘neo-additive’ decision weights allow for a one-to-one

correspondence from –i and Ci in Eq. (2) to (i) a likelihood sensitivity index and (ii) a pessimism

(optimism) index as generally used in rank-dependent expected utility models.13

Smooth Ambiguity Preferences

Proposition 2’s somehow extreme result of (local) perfect price inelasticity is arguably linked

to the kinked preferences induced by the maxmin property of Eq. (2). In order to support

the generalizability of the result’s qualitative finding, I henceforth analyze individual trading

behavior under the ‘smooth ambiguity’ model by Klibano� et al. (2005). Adopting the above

notation, agent i’s utility from consumption in t = 2 can then be written as

Ui(Ci(Ê)) =
⁄

!(")
„i

!
E

#
Ui(fĩ)

$"
dµi(fĩ), (5)

where �(�) is the simplex of all possible payo� distributions on �, µi is agent i’s subjective

probability measure on �(�), and „i is a continuous, strictly increasing, real-valued function.

Eq. (5) has an intuitive interpretation: On the one hand, the more payo� distributions

exhibit a nonzero probability mass under µi, the bigger agent i’s set of possible priors. On the

other hand, the curvature of „i(·) expresses her ambiguity preferences: As for utility functions

in the presence of risk, concavity of „i(·) implies ambiguity-averse, linearity ambiguity-neutral,

and convexity ambiguity-loving preferences. Hence, similar to the –-maxmin model in Eq. (2),

the smooth ambiguity model allows for a separation between the level of ambiguity perceived
13 In rank-dependent expected utility models, the likelihood sensitivity index measures the steepness of the

probability weighting function and the optimism (pessimism) index its intersection point with the 45-degree
line.
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Figure 4. Supply curve of ambiguity-averse seller with smooth preferences

Notes: This figure shows the decreased price elasticity of the supply curve for complex risks
implied by the smooth ambiguity model (Eq. (5)) for a risk-averse and ambiguity-disliking
seller i.

by agent i as well as her general preferences towards ambiguity per se. For ease of notation and

analog to Eq. (3), I rely on the following definition:

Ei[X] :=
⁄

!(")
E÷fi[X]dµi(fĩ), (6)

where E÷fi[X] denotes the expected payo� of the risky asset based on P(Ê=u) = fĩ and P(Ê=d) =

1 ≠ fĩ, respectively.

Proposition 4. Let µi(fĩ) be the normalized Lebesgue measure on agent i’s set of possible priors

[fii, fii] µ [0, 1], i.e., µi(fĩ) := 1
/(fii ≠ fii)dfĩ ’fĩ œ [fii, fii]. In the presence of perceived ambiguity

and if there exists a tradable quantity

‚
Q such that ‡i = 0 ’i œ I, then

(i) agent i’s price elasticity is an increasing function in the second order derivative of „i(·).

(ii) any nonzero mass of sellers (buyers) for whom

fii+ fii

2 ”= fi moves aggregate supply (demand)

away from the benchmark equilibrium under simple risks.

Proof. For proof see Appendix A.

As implied by the proof of Proposition 4, with utility as in Eq. (5), any agent’s supply

(demand) curve goes through ( ‚
Q, Ei[X]). Thus, independently of her ambiguity preferences,

she always finds it optimal to sell (buy) ‚
Q shares for a price P equal to her subjective expected

payo� per share given her subset of priors.

For prices below and above Ei[X], Figure 4 exemplary illustrates how imperfect informa-

tion about fi a�ects an ambiguity-averse seller’s supply curve. The demand curve for any

ambiguity-averse buyer behaves analogously. If, under complex risks, seller i dislikes any per-

ceived ambiguity regarding fi, selling ‚
Q shares generally becomes more attractive than under
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simple risks. Due to her smooth distaste for ambiguity, i.e., the concavity of „i(·), she smoothly

decreases her supply’s price elasticity for prices di�erent from Ei[X], as displayed in Figure 4.

However, in contrast to Figure 2, her supply curve never becomes perfectly inelastic for any

interior nonempty subset of prices.

In case seller i is ambiguity-loving, i.e., „i(·) is convex, the slope of her supply curve amplifies

when moving form simple to complex risks. Comparing Figure 4 to Subfigure (a) in Figure 1

moreover shows how increasing complexity under Eq. (5) manifests itself similarly as a shift in

sellers’ risk aversion under Eq. (1): If seller i is ambiguity-averse, she is always willing to accept

a lower µi in return for a gradual reduction in ‡i.

For equally probable priors, the second part of Proposition 4 states that whenever there is a

critical mass of agents for whom fi is di�erent from their respective midpoint of priors, they shift

aggregate supply (demand) away from the benchmark equilibrium. Under the smooth ambiguity

model, the pricing and allocation of complex risks is therefore more sensitive to agents’ ex-ante

beliefs than under kinked ambiguity-preferences. For smooth preferences, ambiguity-induced

price insensitivity can never o�set a critical mass’ distorting equilibrium e�ects of incorrect

beliefs, no matter how small the respective deviations relative to fi are.

Summary

In contrast to the smooth ambiguity model, the pricing of complex risks by ambiguity-averse

agents with multiple-priors utility is less sensitive to incorrect beliefs. Within the multiple-priors

model, the necessary mispricing condition requires the exclusion from a set, i.e., fi ”œ Bi, instead

of a pointwise deviation from fi. Another implication of its piecewise constant supply (demand)

curve is the arising possibility of multiple equilibria. In an economy with three-dimensional

heterogeneous agents, i.e., with respect to their beliefs as well as their preferences towards risk

and ambiguity, multiple equilibria are nevertheless unlikely to prevail. For instance, if the supply

curve of a given mass of sellers equals ‚
Q for a nonsingleton subset of prices, a nonzero mass

of sellers whose supply is not constant over the same subset is su�cient for the average supply

curve to be nonconstant.

In general, within both models, complex risks have similar implications for individual trading

behavior and aggregate market outcomes:

1. If averse to complexity-induced ambiguity, the price sensitivity of agents with nonsingleton

priors decreases under complex risks.

2. Agents with nonsingleton priors can cause mispricing and trade towards suboptimal allo-

cations of complex risks.
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These two implications are not independent. A decrease in price sensitivity around the perfect

hedging quantity ‚
Q reduces the potential for imperfectly shared idiosyncratic risks. This is

intuitive, because, under complex risks, ambiguity-averse agents always prefer to trade (close

to) ‚
Q shares for a wider range of prices. However, for smooth ambiguity preferences, a reduction

in price sensitivity does not attenuate the degree of mispricing induced by imperfect information

(see above).

2.4. Price-taking Behavior, Asymmetric Information, and Strategic Uncertainty

Before turning to the experimental test of the above theory, three potentially interfering e�ects

need to be addressed more carefully. First, my model economy assumes infinitely many agents.

When implementing it in the laboratory, complying with this particular assumption constitutes

an apparent impossibility. I meet this practical constraint by running all sessions with a relatively

high number of at least 16 subjects.14 Moreover, I alternate between two di�erent pricing

schemes: market-clearing—as persistently assumed above—and random price draws (see below).

Comparing subjects’ supply and demand functions between these two pricing schemes allows me

to control for their price-taking behavior.

Second, and more importantly, depending on how agents self-assess their information pro-

cessing capabilities relative to others, they might perceive considerable information asymmetries

in the presence of complex risks. In a Grossman and Stiglitz (1980) rational-expectation equilib-

rium, market-clearing prices imperfectly reflect informed traders’ costly information about the

risky stock’s expected payo�. Applied to my setting, there exists a dominant strategy for (com-

pletely) uninformed agents whose implications are in line with the ambiguity preference-based

theory above: Agents who perceive themselves as uninformed (i.e., face too high information

processing costs) and simultaneously believe markets to generate, at least partially, informa-

tion e�cient prices should always submit perfectly inelastic supply (demand) functions, i.e.,

Qi(P ) = ‚
Q ’P .

Note, however, that in contrast to Grossman and Stiglitz (1980), I require some unobservable

heterogeneity in agents’ information processing abilities (costs) in order to prevent market-

clearing prices to be fully informative.15 Otherwise, given the conditionality of agents’ supply

(demand) functions on market-clearing prices, no one has an incentive to process the complex

information in the first place. Thus, Grossman and Stiglitz (1980)’s informational e�ciency

paradox would prevail.
14 This minimum number is in line with the average number of 17.6 subjects per session in Biais et al. (2017).
15 Whenever agent i believes that there is a nonzero mass of agents submitting supply (demand) functions based

on relatively less informative beliefs, she finds herself better o! trading according to her more informative
beliefs.
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Third, any further potential implications caused by strategic uncertainty must be accounted

for. In a trading game such as the one considered herein, agent i generally faces strategic

uncertainty about the behavior of the remaining ≠i traders. Whenever agent i forms subjective

beliefs about her opponents’ actions, these beliefs—whether rationalizable or not—may a�ect

her trading decisions ex-ante.

Alternating between market-clearing and random price draws not only allows for testing the

price-taking hypothesis, but additionally enables me to control for any potential e�ects from

either perceived asymmetric information or strategic uncertainty.

3. Experiment

In this section I first present the parameterization of the model economy, motivate and illus-

trate the chosen lab implementation of complex risks, and provide a detailed overview of the

conducted sessions. The collected data is then analyzed on both the aggregate as well as on

the individual level. For the latter, I construct two di�erent measures of price sensitivity. The

variant discrepancy between individual behavior and aggregate outcomes under simple versus

complex risks can be reconciled with varying bounds on quasi-rational choice. Finally, mar-

kets’ general e�ectiveness in aggregating traders’ imperfect information about complex risks is

evaluated.

3.1. Design and Sessions Overview

The selection process of the model parameters is twofold. On the one hand, the distribution of

the stock’s binary dividend needs to be fixed. In order to control for a natural focal point e�ect,

I alternate between two values of fi, i.e., fi œ {1
/3, 1

/2}. Furthermore, to simplify calculations

of expected payo�s, I set the stock’s dividend X(Ê) equal to ECU 150 (experimental currency

units) in state u and ECU 0 in state d, respectively.

On the other hand, agents’ endowments need to be as such that aggregate consumption

is constant across states. Table II presents the endowments for both sellers and buyers that

independently apply at the beginning of every trading round. Note, in the presence of equally

many sellers as buyers, consumption risk is zero on the aggregate level. In particular, if any

seller i and any buyer j agree to trade ‚
Q = 2 shares at a price per share of P , both are perfectly

hedged with constant consumption equal to ECU 300 + 2P and ECU 600 ≠ 2P , respectively.

The symmetry between sellers’ and buyers’ potential overall consumption is intentional. When

comparing local sensitivities between their supply and demand, symmetric function arguments
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Table II. Endowments for sellers and buyers

Seller Buyer
Stock 4 0
Bond 0 300
Cont. income I(Ê)

State u: I(u) 0 0
State d: I(d) 300 300

Agg. endowment constant

Notes: This table shows the endowments for sellers and buyers, respectively, that apply at
the beginning of every independent trading round. All figures except the number of shares
are in experimental currency units (ECU).

allow me to isolate and solely analyze preference driven di�erences.16

Complex versus Simple Risks in the Laboratory

When implemented in the laboratory, complex risks need to satisfy two necessary conditions in

order to comply with the above definition:

(i) they have to follow an objective underlying probability distribution, and

(ii) subjects have to be aware of the problem’s well-defined nature and the existence of its

unique solution.

Moreover, when aiming for informative empirical data, the (imperfect) information about com-

plex risks should

(iii) not be too complex, i.e., imposing at least some nontrivial restrictions on subjects’ sets of

priors, but

(iv) still be complex enough such that subjective priors neither are singletons.

I argue that the following implementation satisfies (i)–(iv). Consider the geometric Brownian

motion shown in Subfigure (a) of Figure 5. In the ‘complexity treatment’, subjects were provided

with both the dynamic visualization of a reference path between t = 0 and t = 1, as well as the

formal specification of the stochastic di�erential equation governing its evolution. In order to

map a continuous process St into the required binary payo� distribution,17 a simple threshold

approach was applied. More specifically, whenever the reference path in t = 2 was greater or

equal than a predefined threshold L, i.e., if S2 Ø L, the risky stock paid a dividend X(u) equal to
16 Despite the symmetry in total consumption, endowment e!ects and reference-dependent preferences (see,

e.g., Kahneman et al. (1991)) could of course still be at play here. However, I find no such evidence in my
experimental data.

17 Not to be confused with seller i’s share endowment Si in Section 2.
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(a) Pre-trading screenshot (b) Post-trading screenshot

Figure 5. Complex risks in the laboratory

Notes: This figure shows the information about complex risks subjects were provided with
during the experiment. For the first stage, Subfigure (a) presents an example of the infor-
mation displayed on subjects’ screens when asked to enter their supply (demand) schedules.
Whenever the blue reference path ends up in the green region, the stock pays a dividend
per share equal to ECU 150 (experimental currency units) and zero otherwise. Given the
here considered parameterization, Appendix B shows that the former probability equals 1

/2.
For the second stage, Subfigure (b) presents a possible realization of the process and the
stock’s corresponding payo� per share.

150 and zero otherwise. As demonstrated in Appendix B, the problem of determining P(S2ØL)

as in Figure 5 can be solved with a back-of-the-envelope calculation applying Itō calculus.

When submitting their respective supply (demand) functions during the first stage of trad-

ing rounds with complex risks, subjects were presented the type of information as exemplary

displayed in Subfigure (a) of Figure 5. While doing so, they were given the possibility to repeat-

edly observe the reference path’s dynamic evolution between t = 0 and t = 1. Across complex

trading rounds, two di�erent parameterizations of St were used—one for fi = 1
/3 and one for

fi = 1
/2, respectively—whereas the realized path was unique to every round. At the second

stage, subjects were informed about their number of shares sold (bought) and were presented

with the realization of S2 as, e.g., shown in Subfigure (b).

For submitting their supply (demand) schedules, subjects faced—similar as in Biais et al.

(2017)—a predefined price vector. The increment of the uniformly spaced price vector was set to

five ECU, i.e., for every P œ {0, 5, 10, ..., 145, 150}, subjects were asked to choose the preferred

number of shares to be sold (bought).18 These quantities were entered with a precision of two

decimal places.
18 In order to minimize the number of necessary keyboard entries, the decision process was divided into two

substages (see the experimental instructions in Appendix E for details).

23



!"

#

$%&'((%)*%+',-./(0%-+'1,2

" ! "

! ! !" "

!" " ! "

! ! !" "

!" " ! "

! ! !" "

$3%4%%%%%%%%%%5%$3%4%! "

!

"

6)7)-8,-%9%$3:%);%%%

6)7)-8,-%9%:%);%%%

(a) Pre-trading screenshot for simple risks
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(b) Pre-trading screenshot for ambiguous risks

Figure 6. Simple and ambiguous risks in the laboratory

Notes: This figure shows the information about simple and ambiguous risks subjects were
provided with at the first stage during the respective trading rounds of the experiment.
Whenever the randomly drawn ball is green, the stock pays a dividend per share equal to
ECU 150 (experimental currency units) and zero otherwise. In contrast to simple risks in
Subfigure (a), the distribution of green and red balls in Subfigure (b) is arbitrary.

In order to more precisely test the above theoretical predictions, it is helpful to control for

subjects’ beliefs about complex risks. This is achieved in the following way. During the first

stage of complex trading rounds, subjects were additionally asked to provide their point estimate

regarding the stock’s expected payo� per share.19 Independently of subjective preferences, the

thereby elicited point estimates allow to anchor subjects’ individual sets of priors.

In contrast, during the first stage of trading rounds with simple risks, subjects knew the exact

probability of the stock paying a dividend equal to 150. For the case where fi = 1
/2, subjects

were confronted with an urn containing 15 green and 15 red balls, as depicted in Subfigure (a)

of Figure 6. At the second stage, the color of one randomly drawn ball was revealed. Whenever

this ball happened to be green, the stock paid a dividend per share equal to ECU 150 and zero

otherwise. Finally, as a control treatment, the tradable risks of the last trading round were

purely ambiguous. Instead of a ‘transparent urn’, subjects were confronted with the Ellsberg

(1961)-like urn shown in Subfigure (b), whose composition of green and red balls was unknown.

Sessions Structure, Incentivization, and Subject Summary Statistics

Table III provides an overview of the six sessions conducted in the ‘Laboratory for Experimen-

tal and Behavioral Economics’ at the University of Zurich during fall 2016. The number in

parenthesis indicates the number of subjects in a given session. Each session consisted of ten in-

dependent trading rounds. All subjects only participated in one session. For every single trading

round, Table III lists the actual payo� distribution, the nature of the underlying consumption
19 Depending on subjects’ respective preferences, the risky asset’s expected payo! under complex risks is either

defined by the mean of Eq. (3) for trading more or less than ‚Q shares, or by Eq. (6), respectively.
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Table III. Sessions overview

Session 1 (#16) Session 2 (#18) Session 3 (#16)

Round fi Type Pricing fi Type Pricing fi Type Pricing
1 1 C (P) MC 1 C (P) MC 1 C (P) MC
2 high C (P) random high C (P) random high C (P) random
3 low C (P) MC low C (P) MC low C (P) MC
4 1

/2 C MC 1
/3 C random 1

/3 C MC
5 1

/3 C MC 1
/2 C random 1

/3 C random
6 1

/2 C random 1
/3 C MC 1

/2 C MC
7 1

/3 C random 1
/2 C MC 1

/2 C random
8 1

/2 S MC 1
/2 S random 1

/2 S MC
9 1

/3 S random 1
/3 S MC 1

/3 S random
10 ambig A MC ambig A random ambig A MC

Session 4 (#16) Session 5 (#16) Session 6 (#16)

Round fi Type Pricing fi Type Pricing fi Type Pricing
1 1

/2 S (P) MC 1
/2 S (P) MC 1

/2 S (P) MC
2 9

/10 S (P) random 9
/10 S (P) random 9

/10 S (P) random
3 1

/2 S MC 1
/2 S random 1

/2 S MC
4 1

/3 S random 1
/3 S MC 1

/3 S random
5 high C (P) MC high C (P) MC high C (P) MC
6 1

/2 C MC 1
/3 C random 1

/3 C MC
7 1

/3 C MC 1
/2 C random 1

/3 C random
8 1

/2 C random 1
/3 C MC 1

/2 C MC
9 1

/3 C random 1
/2 C MC 1

/2 C random
10 ambig A MC ambig A random ambig A MC

Notes: This table provides an overview of the six conducted sessions. Each session con-
sisted of ten independent trading rounds. The number in parenthesis indicates the number
of subjects in a given session. For every session, the first column lists the actual payo�
distribution, the second column the nature of the underlying consumption risk (simple (S)
versus complex (C)), and the third column the applied pricing scheme (market clearing
(MC) versus random price draw (random)). The ‘high’ (‘low’) fi refers to an integer param-
eterization of the geometric Brownian motion that implies a 84.21% (15.89%) probability
of a dividend per share equal to 150. Trading rounds with a ‘P’ in parenthesis are practice
rounds.

risk—simple (S) versus complex (C), and the applied pricing scheme—market clearing (MC)

versus random price draw (random). A ‘high’ (‘low’) fi refers to an integer parameterization of

the stochastic reference path St that results in a probability P(S2ØL) of 84.21% (15.89%), and

‘P’ denotes a practice round. To control for potential ‘comparative ignorance e�ects’ (see Fox

and Tversky (1995)), the sequential ordering of simple and complex risks is reversed between

the first three and the last three sessions.

In each session, after the ten trading rounds shown in Table III, subjects were additionally

presented with two lotteries, each based on one of the two urns in Figure 6. For both lotteries,

their certainty equivalents were elicited via Abdellaoui et al. (2011)’s computerized iterative

choice list method. Importantly, the lotteries’ payo�s were chosen such that they matched the

range of possible consumption levels in each of the previous trading rounds (see Figure D.2 in
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Appendix D). Overall, one session lasted approximately 90 minutes.

At the end of every session, one out of the seven nonpractice trading rounds or one of the two

lottery outcomes was randomly chosen, each with equal probability. Subjects then were paid

either their final wealth of the selected trading round or the outcome of the selected lottery,

both divided by twelve. Additionally, if their point estimate regarding fi was correct (within

±3%), they earned an extra three Swiss francs, whenever the corresponding trading round was

selected for payment. On average, participants received 38.40 Swiss francs, with a maximum of

CHF 50 and a minimum of CHF 25.

Recruited subjects were students from either the University of Zurich or ETH Zurich, major-

ing in economics, business, mathematics, physics, engineering, or computer science, respectively.

Their respective role of either a buyer or a seller was randomly assigned at the beginning of the

experiment and thereafter retained throughout all trading rounds. The instructions provided to

subjects acting as sellers are provided in Appendix E.20

Table IV presents the average values (proportions) of certain socioeconomic variables col-

lected via a short questionnaire following the main experiment. Risk aversion is measured as

the normalized di�erence between the simple lottery’s expected payo� and subjects’ respective

certainty equivalents. A value of one (minus one) denotes maximum (minimum) risk aversion,21

a value of zero implies risk-neutrality. The total sample’s average risk aversion of 0.060 corre-

sponds to a constant relative risk aversion (CRRA) coe�cient of 0.684.22 Ambiguity aversion

is defined as the individual di�erences in certainty equivalents for the simple and ambiguous

lottery. Hence, a positive value indicates ambiguity aversion. A standard randomization check

reveals no significant indications of an unbalanced sample.23

3.2. Aggregate Market Outcomes

Figure 7 shows average supply and demand curves across sessions with identical chronology of

simple versus complex risks. For trading rounds with complex risks, the vertical solid (dotted)

line indicates sellers’ (buyers’) average point estimate of the risky asset’s expected payo�. In

general, subjects overestimate the latter,24 where in three of four cases, sellers’ average estimate

exceeds the one of buyers.25 Focusing on average supply and demand curves around (average)
20 Analogous instructions were provided to subjects acting as buyers and are available upon request.
21 According to Abdellaoui et al. (2011)’s iterative choice list method.
22 My estimate of average relative risk aversion is in line with the experimental literature: see Holt and Laury

(2002) for binary lotteries, Goeree et al. (2002) for private value auctions, Goeree et al. (2003) for generalized
matching pennies games, and Goeree and Holt (2004) for one-shot matrix games. Similarly, Biais et al. (2017)
find the representative investor’s CRRA coe"cient to approximately equal 0.5.

23 Throughout the entire paper, I report two-sided p-values.
24 One possible explanation is that subjects fail to account for the second order e!ect due to the nonzero quadratic

variation of the Brownian motion Wt.
25 This could be due to an ‘indirect’ endowment e!ect.
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Table IV. Summary statistics and randomization check

Total sample Sellers Buyers p-value
Variable (N = 98) (N = 49) (N = 49)

Age 23.674 23.837 23.510 0.689
(3.008) (3.287) (2.724)

Gender 0.337 0.286 0.388 0.393
(0.475) (0.456) (0.492)

UZH (ETH) 0.582 0.653 0.510 0.219
(0.496) (0.481) (0.505)

# semesters 3.806 3.633 3.980 0.365
(2.827) (2.928) (2.742)

Knowledge BM 0.459 0.367 0.551 0.105
(0.501) (0.487) (0.503)

Risk aversion 0.060 0.087 0.035 0.328
(0.265) (0.294) (0.232)

CRRA-“ 0.684 1.045 0.323 0.335
(3.358) (4.415) (1.740)

Ambiguity aversion 0.101 0.067 0.133 0.133
(0.245) (0.225) (0.262)

Notes: This table reports means and standard deviations (in parenthesis) in the total sam-
ple and across sellers and buyers, respectively. p-values for the null hypothesis of perfect
randomization are listed in the last column (Wilcoxon signed rank tests for interval vari-
ables and Yates (1934)’ corrected ‰

2 tests for binary variables). ‘Age’ is reported in years.
‘Gender’ and ‘UZH’ are dummy variables indicating female subjects and students from
the University of Zurich (versus ETH). ‘# semesters’ denotes the number of completed
semesters. ‘Knowledge BM’ is a dummy variable equal to one for subjects who have heard
about the mathematical object ‘Brownian motion’ before. Risk aversion is measured as
the normalized di�erence (œ [≠1, 1]) between the simple lottery’s expected payo� and sub-
jects’ respective certainty equivalents. CRRA-“ denotes the corresponding constant relative
risk aversion coe�cient. Ambiguity aversion is measured as the individual di�erences in
certainty equivalents between the simple and ambiguous lottery.

expected payo�s, price sensitivities locally decrease for all four cases in Figure 7 when moving

from simple to complex risks.

Table V reports average market clearing prices and quantities in concordance with Figure 7,

i.e., across sessions with the same sequential order of simple and complex trading rounds. More-

over, column three and four of Table V list the degree of mispricing and suboptimal risk sharing

according to the respective definitions in Section 2. As anticipated, mispricing is clearly less

pronounced under simple than under complex risks. Notably, however, even under complex

risks, the price of the risky stock seems relatively reasonable (average deviation from expected

payo�s of approximately 14%). Both simple and complex risks are well shared. Strikingly, in

three out of four cases, the degree of risk sharing is higher or equal for complex relative to simple

trading rounds.

In order to better visualize local di�erences in price sensitivity, I adjust the average supply

and demand curves under complex risks in Figure 7 to control for subjective beliefs. Essentially,
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Figure 7. Average supply and demand

Notes: This figure shows the average supply and demand curves across subjects and trading
rounds. In the top (bottom) row, averages are computed across sessions where complex
(simple) trading rounds are followed by simple (complex) trading rounds. In the left (right)
column, averages are computed across trading rounds where fi is equal to 1

/2 (1
/3). The black

horizontal line (first from the left) corresponds to the risky asset’s expected payo�. The
solid horizontal line indicates sellers’ average point estimate of the risky asset’s expected
payo� under complex risks, whereas the dotted horizontal line corresponds to the average
of buyers’ respective point estimates. In the lower left plot, the two exactly coincide.

the price grid, against which each individual curve gets plotted, is adapted such that average

payo� estimates coincide with risky assets’ true expected payo�s (see Appendix C for details).

Figure 8 presents the adjusted supply and demand curves under complex risks. In contrast

to Figure 7, Figure 8 allows for a direct comparison of price sensitivities. For prices close to

but below E[X], all four supply curves for simple risks lie below the respective supply curves

for complex risks, only to cross the latter for prices close to but (generally) higher than E[X]

(vertical lines in Figure 8). The opposite holds true for the two demand curves where fi equals
1
/2 (left column of Figure 8). For fi equal to 1

/3, demand curves coincide for very low prices, but

are higher in the case of complex risks for prices around and above E[X].

For a more systematic investigation of the empirical supply and demand functions depicted

in Figure 8, I plot the respective averages across all sessions (to further reduce noise) together

with their respective error bounds, indicating standard errors of the mean. The resulting supply

and demand curves are shown in Figure 9. The above described pattern now manifests itself
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Table V. Average market clearing prices and quantities

Market clearing Mispricing
Suboptimal
risk sharing

P

!
Q

! |P ! ≠ E[X]| |Q! ≠ ‚
Q|

Simple risks

fi = 1
/2

Sessions 1-3 76.87 2.10 1.87 0.10
Sessions 4-6 79.47 2.33 4.47 0.33

fi = 1
/3

Sessions 1-3 52.82 2.01 2.82 0.01
Sessions 4-6 46.89 2.00 3.11 0.00

Complex risks

fi = 1
/2

Sessions 1-3 80.30 1.94 5.30 0.06
Sessions 4-6 80.98 2.10 5.98 0.10

fi = 1
/3

Sessions 1-3 63.47 1.99 13.47 0.01
Sessions 4-6 56.98 2.15 6.98 0.15

Notes: This table reports average market clearing prices and quantities across sessions with
the same sequential order of trading rounds involving simple and complex risks, respectively.
Moreover, the measures of mispricing and suboptimal risk sharing as defined in Section 2
are listed in column three and four.

more clearly. For fi equal to 1
/2 (left column of Figure 9), the average supply (demand) for

simple risks crosses the respective supply (demand) for complex risks from below (above). For

fi equal to 1
/3, the same is true for sellers, whereas for buyers, average demands converge at a

price close to the risky stock’s expected payo�. Furthermore, in all four cases, there is a clear

di�erence in price sensitivity around prices equal to expected values.

The statistical significance of the di�erences in Figure 9 is tested by conducting a Wilcoxon

signed-rank test, where, in the case of complex risks, interpolated quantities are used. The

results thereof are plotted in Figure D.3 in Appendix D. As conjectured, the average supply

curves are statistically di�erent for prices below and above expected payo�s. In case of fi equal to
1
/2, the same statistically significant hump-shaped pattern around E[X] is observed for average

demand curves. For fi equal to 1
/3, their p-values are close to 0.1 below E[X], temporarily

increase around E[X], and decrease again sharply to values close to zero thereafter.

Naturally, an analogous analysis lends itself to contrast subjects’ behavior between the two

applied pricing mechanisms: market clearing and random price draws. Figure 10 presents the

respective supply and demand curves averaged across complex trading rounds with equal pricing

schemes. Overall, average supply and demand for complex risks look very similar between

the two pricing mechanisms. The p-values of the corresponding Wilcoxon signed-rank test are
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Figure 8. Average supply and demand adjusted for subjective beliefs

Notes: This figure shows the average adjusted supply and demand curves across subjects
and trading rounds. Average curves for complex risks are adjusted as described in Ap-
pendix C in order to account for deviations of average beliefs from the true underlying
payo� distribution. In the top (bottom) row, averages are computed across sessions where
complex (simple) trading rounds are followed by simple (complex) trading rounds. In the
left (right) column, averages are computed across trading rounds where fi is equal to 1

/2
(1

/3). The black horizontal line corresponds to the risky asset’s expected payo�.

plotted in Figure D.4 in Appendix D. The patterns in Figure D.4 indicate that there exists no

statistical evidence against the hypothesis of a globally (across pricing schemes) adopted price-

taking behavior. Hence, neither the limited number of subjects, nor asymmetric information,

nor strategic uncertainty has an e�ect on local price sensitivity under complex risks.

3.3. Individual Behavior

Aggregate market outcomes appear to corroborate the predictions from theory: Equilibrium

quantities are less price-sensitive under complex than simple risks, thereby mitigating the sub-

optimality in the former’s allocation. I subsequently turn to the analysis of individual trading

behavior. Therefore, I propose two measures of local price sensitivity at the subject level.

First, from a quantity perspective, I count for each subject i the number of consecutive prices
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Figure 9. Differences in average supply and demand for simple and complex risks

Notes: This figure shows the average adjusted supply and demand curves across subjects
and trading rounds. Average curves for complex risks are adjusted as described in Ap-
pendix C in order to account for deviations of average beliefs from the true underlying
payo� distribution. In the top (bottom) row, average supply (demand) curves are com-
puted across all sessions. In the left (right) column, averages are computed across trading
rounds where fi is equal to 1

/2 (1
/3).

for which her submitted supply (demand) schedule equals ‚
Q shares, i.e.,

M1
i := |{Q = ‚

Q}i|, (7)

where the bars denote the cardinality of the considered set. When determining M1
i , I focus

on subjects who adopt the perfect hedging strategy at least once. Note that this is a direct

implication of risk- and ambiguity-aversion. Additionally, subjects who adopt the perfect hedging

strategy more than once but for nonconsecutive prices, i.e., whose supply (demand) functions

must be nonmonotonic, are excluded.26

Second, from a price sensitivity perspective, I compute the slope of each subject i’s supply
26 As demonstrated in Figure D.1 in Appendix D, there exist strictly concave (piece-wise defined) utility functions

that imply nonmonotonic supply (demand) curves. Therefore, I also compute M1
i across all subjects, even

allowing for zero values. None of the herein presented qualitative results are a!ected.
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Figure 10. Average supply and demand across pricing schemes

Notes: This figure shows the average adjusted supply and demand curves for complex risks
across subjects and the two di�erent pricing schemes: market clearing (MC) and random
price draws (random). Average curves are adjusted as described in Appendix C in order to
account for deviations of average beliefs from the true underlying payo� distribution. In
the top (bottom) row, average supply (demand) curves are computed across all sessions. In
the left (right) column, averages are computed across complex trading rounds where fi is
equal to 1

/2 (1
/3).

(demand) function at her individual point estimate Ei[X], i.e.,

M2
i := �Qi(Ei[X]), (8)

where for sellers

�Qi(Ei[X]) ‚= Qi(Pl+2 ) ≠ Qi(Pl),

and for buyers

�Qi(Ei[X]) ‚= Qi(Pf≠2) ≠ Qi(Pf ),

respectively, with Pl (Pf ) denoting the last (first) price strictly below (above) seller (buyer)

i’s point estimate Ei[X]. The ‘±2’ in the index ensures that Pl < Ei[X] < Pl+2 for sellers

and Pf≠2 < Ei[X] < Pf for buyers, respectively. By construction, M2
i can only be computed

if Pl+2 (Pf ) is smaller or equal to max(P ) = 150. Under simple risks it holds of course that

Ei[X] = E[X] ’i œ I. Moreover, M2 can be interpreted as a less extreme measure of price
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(a) Average frequency of perfect hedging strategy (b) Average local slope

Figure 11. Individual measures of price sensitivity

Notes: This figure shows average individual trading behavior under simple and complex
risks across all subjects. Subfigure (a) plots the average consecutive price range for which
subjects adopt the perfect hedging strategy, i.e., aiming to trade ‚

Q shares (see Eq. (7)).
Subfigure (b) plots the average slope of subjects’ supply and demand curves at their indi-
vidual point estimates of the risky asset’s expected payo� (see Eq. (8)). Error bars indicate
standard errors of the mean.

sensitivity than M1, where the latter only accounts for perfect price inelasticity.

Figure 11 displays the between-treatment average values of M1 and M2 across all subjects.

Subfigure (a) plots the average frequency with which the perfect hedging strategy is adopted.

The average price range for which subjects choose to trade ‚
Q shares increases by 0.225 under

complex relative to simple risks (p-value = 0.726, t-test). Average slopes of pooled supply

and demand curves as defined in Eq. (8) are plotted in Subfigure (b). Price sensitivity locally

decreases by 0.232 when moving from complex to simple risks (p-value = 0.003, t-test).

The results presented in Figure 11 are somewhat inconclusive. While, from a price sensi-

tivity perspective, the empirical evidence conforms well to the theoretical predictions, from a

pure quantity perspective, no significant increase in the average frequency of the perfect hedg-

ing strategy is observed. One can think of two possible reasons: (i) subjects exhibit smooth

ambiguity preferences instead of multiple-priors utility, or (ii) subjects fail to trade in their best

interest when risks are too complex.

The second argument requires some more elaboration. There exists no theory-consistent

reason, why agents failing to trade ‚
Q shares at a price equal to Ei[X] should adopt the per-
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fect hedging strategy more frequently under complex relative to simple risks. Put di�erently,

increasing complexity of traded risks may tighten the bounds on traders’ rationality as, thereby

(partially) detracting the explanatory power of the proposed preference-based theory.

Complexity Bounds on Rationality

In order to control for varying bounds on rationality, I follow Biais et al. (2017) by contrasting

individual trading data to a setting of bounded rationality in the spirit of McKelvey and Palfrey

(1995, 1998)’s quantal response models.27 As proposed by Luce (1959), I hereafter assume that

agent i’s trading decisions follow a random choice model. Specifically, for a given price P , her

probability density of trading Qj shares under simple risks is given by

fi(Qj |P ) = Âi (E[Ui(Qj |P )])
s

Âi (E[Ui(Q|P )]) dQ
, (9)

where Âi(·) denotes an increasing di�erentiable function and Q runs from zero to the maximum

number of tradable shares.

Since Âi(·) is increasing in E[Ui(Qj |P )], Eq. (9) implies that the likelihood with which agent

i decides to sell (buy) Qj shares is also increasing in E[Ui(Qj |P )]. In other words, the higher

the expected utility from trading Qj shares for a price P , the greater the probability that agent

i actually ends up doing so. Hence, the lower the slope of Âi(·), the more frequently she deviates

from her optimal strategy, i.e., the more severe are the bounds on her rationality.

As in Biais et al. (2017), applying bounded rational behavior as formalized in Eq. (9) to the

above theory of trading simple risks imposes the following three implications:28

S1 For P = E[X], the distribution of supplied and demanded shares has a unique mode at ‚
Q.

S2 For P < E[X], the distribution of supplied and demanded shares is asymmetric around ‚
Q

and decreasing above (below) ‚
Q for sellers (buyers).

S3 For P > E[X], the distribution of supplied and demanded shares asymmetric around ‚
Q

and decreasing below (above) ‚
Q for sellers (buyers).

According to Proposition 1, every risk-averse agent whose rationality is bounded as in Eq. (9)

most likely aims to trade ‚
Q shares for P = E[X]. Similarly, such risk-averse sellers and buyers

more often adopt dominating instead of dominated strategies. Moreover, for a given price, the
27 A somewhat stricter caveat as in Biais et al. (2017) applies: In my competitive setting with su"ciently imperfect

price informativeness (see above), agents solely trade according to their own beliefs. By di!erentiating between
market-clearing and random pricing, I control for any deviations from such individual behavior.

28 In contrast to Biais et al. (2017), risk-aversion, i.e., the accordance of agents’ expected utilities with second
order stochastic dominance, is a necessary condition for the decreasing quantity distributions for prices di!erent
than Ei[X]. If fi = 1/2, which always holds in Biais et al. (2017), first order stochastic dominance is su"cient.

34



Figure 12. Supply distribution for prices equal to expected payoffs

Notes: This figure shows the number of shares supplied by sellers for prices equal to (es-
timated) expected payo�s. The empirical distributions are computed across subjects and
sessions. The left (right) plot contrasts average distributions between simple and complex
trading rounds with fi equal to 1

/2 (1
/3). If, under complex risks, sellers’ point estimate

Ei [X] lies between two elements of the predefined price vector, linearly interpolated quan-
tities are reported.

larger the distance between the chosen quantity and the corresponding set of dominating trades,

the less frequently should they opt for the former. Because of the randomness implied by Eq. (9),

all three implications are convergence results. Hence, if subjects’ behavior is indeed governed by

Eq. (9), whether the limited number of subjects in my sample su�ces to yield according results

remains an empirical question.

Similarly, under complex risks, agent i’s decides to trade Qj shares for a price P with

probability

f

i
(Qj |P ) =

Â

i
(Ei[Ui(Qj |P )])

s
Â

i
(Ei[Ui(Q|P )]) dQ , (10)

where, again, Â

i
(·) denotes an increasing di�erentiable function. There are two di�erences

between Eq. (9) and Eq. (10): On the one hand, given the complexity of traded risks under

Eq. (10), agents rely on their individual expectation operator Ei[·]. On the other hand, due to

the di�erent informational precision levels at hand, Âi(·) and Â

i
(·) most likely compose di�erent

functions. In particular, postulating more severe (global) bounds on agent i’s rationality in the
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presence of complex risks is equivalent to

Âi(x) > Â

i
(x) and Â

Õ
i(x) > Â

Õ
i
(x) ’x œ Ei[Ui(·)], (11)

which implies more frequent deviations from her optimal trading strategy. Eq. (11) translates

to the following three implications regarding individual trading behavior under complex risks:

C1 For P = Ei[X], the distribution of supplied and demanded shares still exhibits a unique

mode at ‚
Q, but is more dispersed than under simple risks.

C2 For P < Ei[X], the distribution of supplied and demanded shares is less asymmetric

around ‚
Q and decreases less above (below) ‚

Q for sellers (buyers) than under simple risks.

C3 For P > Ei[X], the distribution of supplied and demanded shares is less asymmetric

around ‚
Q and decreases less below (above) ‚

Q for sellers (buyers) than under simple risks.

Analogously to S1–S3, the three distribution results C1–C3 hold if the number of agents behaving

according to Eq. (10) goes to infinity.

Figure 12 presents the supply distribution for P = Ei[X]. While integer numbers are more

frequently supplied than fractions of shares, both distributions are roughly symmetric around ‚
Q

= 2 shares, constituting the clear mode under simple risks and complex risks with fi = 1
/2 (left

plot in Figure 12). When moving from simple to complex risks, the frequency of the perfect

hedging strategy decreases sharply, i.e., from 0.694 to 0.235 for fi = 1
/2 and from 0.469 to 0.163

for fi = 1
/3 (p-values for di�erences = 0.000, t-test). In the case of fi = 1

/3, the frequencies of

the most extreme deviations from ‚
Q increase considerably under complex risks. These results

are in line with both implications S1 and C1.

Figure 13 depicts the distribution of shares supplied for P < Ei[X] and P > Ei[X], respec-

tively. Under both simple and complex risks, supplies of less (more) than ‚
Q shares clearly occur

most often for low (high) prices. Additionally, except for complex risks with fi = 1
/3 (upper right

plot in Figure 13), the frequency of supplying more (less) than ‚
Q shares is decreasing (increasing)

in Qi for P < Ei[X] (P > Ei[X]), with generally lower frequency levels under simple risks. The

supply distributions presented in Figure 13 reconcile well with the above proposed implications.

First, subjects more often choose dominating instead of dominated actions, where the occurrence

of the latter is decreasing in their inferiority (see implications C2–C3). Second, under complex

risks, subjects deviate more frequently from utility-maximizing actions than under simple risks

(S2–S3). The analogous analysis of the corresponding demand distributions (see Figure D.5 and

Figure D.6 in Appendix D) reveals similar evidence in support of S1–S3 and C1–C3 for buyers.

In summary, my empirical findings reconcile well with the random choice models postulated
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Figure 13. Supply distribution for prices different from expected payoffs

Notes: This figure shows the number of shares supplied by sellers for prices di�erent from
expected payo�s. The empirical distributions between simple and complex risks are com-
puted across subjects and sessions. In the top (bottom) row, total supplies for prices below
(above) Ei [X] are reported. The left (right) column shows average supply distributions
across trading rounds with fi equal to 1

/2 (1
/3).

in Eq. (9) and Eq. (10): Complexity tightens the bounds on risk-averse agents’ rational behavior,

where, rationality under complex risks is defined in line with decision theory under ambiguity. A

simple counting exercise further underpins this hypothesis. Figure 14 shows the distributions of

dominated action frequencies between risk types. As expected, subjects more frequently fall for

dominated trading strategies if risks are complex. Although, as can be deduced from Figure D.7

in Appendix D, some limited learning takes place while trading complex risks.

Once varying levels of rationality are controlled for, the inconclusiveness regarding the above

two price sensitivity measures disappears. Figure 15 shows the between-treatment average values

of M1, where two di�erent rationality conditions are applied. In Subfigure (a), averages are only

computed for subjects who prefer to be perfectly hedged for P = Ei[X] under complex risks.

For these subjects, the price range for which they supply (demand) ‚
Q shares increases by 5.172

under complex relative to simple risks (p-value = 0.000, t-test).

In contrast, Subfigure (b) plots averages computed across potentially di�erent subjects: Un-

der simple risks, only nondominated supply and demand curves (as presented in Figure 14)
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Figure 14. Frequency of dominated trading strategies

Notes: This figure shows the distributions of dominated action frequencies across all sub-
jects. Under simple risks, dominated actions correspond to o�ered (demanded) quantities
above (below) ‚

Q shares for P < E[X] and vice versa for P > E[X]. Under complex risks,
dominated actions correspond to o�ered (demanded) quantities above (below) ‚

Q shares for
P < Ei [X] and vice versa for P > Ei [X]. Note that in the presence of complex risks, the
price thresholds depend on subjects’ individual point estimates.

are considered. Accordingly, the corresponding average for complex risks is solely based on

nondominated supply and demand curves equal to ‚
Q at P = Ei[X]. Relying on these con-

ditions, the average cardinality of continuous prices for which the perfect hedging strategy is

adopted increases by 3.853 under complex risks (p-value = 0.012, t-test). Hence, for both cases

in Figure 15, the conditional M1 measure relates strikingly well with the theory’s predictions,

particularly so with those implied by kinked ambiguity preferences.

Regression Analysis and Comparison to Ambiguity

For a full regression analysis, I additionally include the remaining data from each session’s last

trading round (see Table III), where tradable risks are based on the draw from the nontransparent

Ellsberg (1961)-like urn depicted in Figure 5. Since subjects’ beliefs in these rounds are unknown,

classifying individual trades involving ambiguous risks into dominated and nondominated actions

is no longer possible.
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(a) Same subjects (b) No dominated actions

Figure 15. Conditional frequency of perfect hedging strategy

Notes: This figure shows the average frequency of the perfect hedging strategy under simple
and complex risks, conditional on rational trading behavior. Both subfigures plot condi-
tional average cardinalities of the consecutive price ranges for which subjects supply (de-
mand) ‚

Q shares (see Eq. (7)). In Subfigure (a), averages are only based on subjects who,
under complex risks, supply (demand) ‚

Q shares at P = Ei [X]. In Subfigure (b), the average
value for simple risks is computed across all nondominated (see Figure 14) supply (demand)
curves. The corresponding average for complex risks is determined across all nondominated
supply (demand) curves that additionally go through ‚

Q at P = Ei [X]. Error bars indicate
standard errors of the mean.

Table VI reports OLS coe�cient estimates of the following pooled regression model:

M1,2
ir = —0 + —1Complexityr + —2Ambiguityr + —3RAi

+ —4 (AAi ◊ Complexityr) + —5 (AAi ◊ Ambiguityr) + bXir + ‘ir, (12)

where the dependent variable is either one of the above introduced sensitivity measures for

subject i in trading round r. Complexityr and Ambiguityr are dummy variables indicating

trading rounds with complex and ambiguous risks, respectively. RAi and AAi measure subject

i’s risk and ambiguity aversion (see Table III). Finally, Xir contains socio-economic and trading

round specific control variables, and ‘ir denotes the idiosyncratic error term. Corrected standard

errors clustered at the subject level are reported in parenthesis.

The reported coe�cients in Table VI a�rm the findings from Figure 11. The second and

fourth columns show that complex risks significantly decrease the slope of local supply (demand)
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Table VI. Unconditional regression Analysis

Dependent variable
M1 M2 M1 M2

Constant 3.974a 0.661a 3.413 0.685b

(0.511) (0.096) (2.373) (0.335)
Complexity (dummy) 0.408 -0.240a -0.645 -0.249a

(0.646) (0.065) (0.709) (0.085)
Ambiguity (dummy) 1.617c 0.017 1.727c 0.009

(0.959) (0.123) (0.955) (0.122)
RA (risk aversion) 5.389b -0.216 5.302b -0.263

(2.111) (0.252) (2.137) (0.229)
AA (ambig. aversion) ◊ Complexity 1.935 -0.142 0.305 -0.061

(1.978) (0.156) (1.817) (0.150)
AA ◊ Ambiguity 5.360 -0.299 4.573 -0.216

(3.940) (0.334) (3.847) (0.294)
Order ◊ Complexity - - 2.269b 0.005

- - (0.959) (0.087)
Gender - - 1.534c -0.294a

- - (0.830) (0.098)
Controls No No Yes Yes
N 465 653 465 653

Notes: This table reports OLS coe�cient estimates. The dependent variables are uncondi-
tional measures of local price sensitivity. M1 denotes the cardinality of consecutive prices
for which subjects adopt the perfect hedging strategy, i.e., aiming to trade ‚

Q shares. M2

measures the average slope of subjects’ supply and demand curves at their individual point
estimates of the risky asset’s expected payo�. ‘Complexity’ and ‘Ambiguity’ are dummy
variables indicating trading rounds with complex and ambiguous risks, respectively. ‘Risk
aversion’ measures the normalized di�erence between the simple lottery’s expected payo�
and subjects’ respective certainty equivalents. The first two interaction terms control for
di�erent e�ects of ‘Ambiguity aversion’ across trading rounds with simple and complex
risks, where ambiguity aversion is measured as the di�erence between subjects’ certainty
equivalents for the simple and the ambiguous lottery. The term ‘Order ◊ Complexity’ in-
teracts the dummy variable ‘Order’, indicating sessions where complex risks were proceeded
by simple risks, with complex trading rounds. ‘Gender’ is a dummy variable indicating fe-
male subjects. ‘Controls’ comprise subjects’ age, their attended university, and number of
completed semesters. Furthermore, ‘Controls’ contain subjects’ self-evaluated understand-
ing and di�culty level of the assigned task (measured by integers from one to five) and two
additional dummy variables controlling for their familiarity and knowledge regarding the
Brownian motion. Numbers in parenthesis denote robust standard errors clustered at the
subject level. Superscripts a , b, and c indicate statistical significance at the 1%, 5%, and
10%-level, respectively.

by approximately 0.25 on average. As revealed by columns one and three, no such unconditional

e�ect is observed on subjects’ adopted frequency of the perfect hedging strategy. Nevertheless,

as expected, the latter is higher in rounds with ambiguous risks and increases with subjects’

risk aversion. When regressing local slopes on the ambiguity dummy and risk aversion, both

coe�cients exhibit the anticipated sign but lack statistical significance.

Controlling for a potential order e�ect, I find evidence for Fox and Tversky (1995)’s com-

parative ignorance e�ect: If complex risks are proceeded by simple risks, the adopted perfect
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hedging frequency increases significantly. Furthermore, female subjects more often follow the

perfect hedging strategy and submit significantly less (locally) sensitive supply (demand) func-

tions. This contrasts the findings in Borghans et al. (2009) that men require higher compensation

for the introduction of ambiguity than do women.

Despite having the expected sign in all eight cases, none of the estimates of —4 and —5 as

defined in Eq. (12) are statistically significant. Under kinked ambiguity preferences, an a�ection

for ambiguous risks potentially causes supply (demand) discontinuities. Although technically

in line with the above predictions, such discontinuities likely augment the inherent noise level

of empirically observed supply (demand) functions. Therefore, I reestimate Eq. (12) for only

nonambiguity-averse subjects. The corresponding coe�cient estimates are reported in Table D.1

in Appendix D.

The results with respect to the complexity dummy as well as subjects’ risk aversion remain

qualitatively the same. Similar holds true for the above described order and gender e�ects.

However, four of the eight coe�cients interacted with ambiguity aversion become statistically

significant (at least at the 5%-level). Strikingly, both magnitudes and statistical significance are

clearly higher for the trading round with ambiguous risks relative to those with complex risks

(despite the latter’s fourfold larger sample size).

In summary, these findings point towards three important implications. First, ambiguity

preferences appear to possess the highest explanatory power in the presence of purely ambiguous

rather than complex risks. This comes as little surprise, but reassures the design’s e�ectiveness

in translating ambiguity preferences into measurable model-based trading predictions. Second,

and more importantly, complex risks reduce local supply (demand) slopes more substantially

than does pure ambiguity. In particular, this can be seen from comparing the coe�cient esti-

mates for the complexity and ambiguity dummies and recalling the small values of the applied

ambiguity aversion measure. Third, in synthesis, while ambiguity preference-based theories ex-

plain individual behavior under complex risks reasonably well, the aversion to pure ambiguity

underestimates the latter’s impact on market outcomes.

Given the fundamental di�erence regarding the existence of a uniquely defined risk structure,

it is not surprising that the magnitudes of subjects’ reactions to complex and ambiguous risks

are di�erent. Even though their beliefs under pure ambiguity are unknown, a similar analysis

as presented in Figure 12 lends itself as a simplified comparison of relative bounded rationality.

For both simple and ambiguous risks, Figure D.8 in Appendix D presents the joint distributions

of supplied and demanded shares at a price of ECU 75. Assuming subjects adopt the natural

reference point of a fifty-fifty chance under pure ambiguity, there is no evidence that pure

ambiguity has any hampering e�ect on subjects’ rationality.
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3.4. Market’s E�ectiveness in Aggregating Complex Information

In light of the attained insights regarding individual trading behavior, I finally move back to

an equilibrium perspective by returning to this paper’s underlying elementary question: How

well are financial markets suited to cope with complexity? In particular, are they capable of

e�ciently allocating complex risks at informative prices? I investigate this question by dissecting

both the equilibration processes and their respective outcomes of the above asset markets.

Figure 16 displays bootstrapped distributions of aggregate market outcomes. All densities

are based on ten thousand resamples of 49 individual supply and demand functions. For any

given resample, average supply and demand are crossed and linearly interpolated market-clearing

prices P

ı and quantities Q

ı deduced.

Comparing estimated densities between simple and complex risks unveils three striking char-

acteristics of market equilibrium. First, and not surprisingly, both distributions of P

ı under

simple risks are closer to and more centered around E[X] than those under complex risks. Sec-

ond, and contrary to market-clearing prices, the centers of both Q

ı distributions under complex

risks are remarkably close to ‚
Q = 2 shares, i.e., the perfect hedging strategy. In case of fi = 1

/2

(lower left plot in Figure 16), complex risks are even more e�ciently shared than simple risks.

Both observations are in line with actual market outcomes reported in Table V.

Third but foremost, the relative variation between simple and complex risks is much larger

for market-clearing prices than for market-clearing quantities. Given their predicted decrease in

supply and demand sensitivity, this observation aligns well with the above ambiguity preference-

based theories. Figure D.9 in Appendix D furthermore illustrates how these relative variations

in P

ı and Q

ı depend on the underlying resampling size. All variability ratios are considerably

stable in the number of traders. At the maximum resampling size, both standard deviations

of P

ı under complex risks are still more than twice as high as under simple risks. In contrast,

standard deviations of market clearing quantities are consistently much closer for simple and

complex risks. In the limit, the variation in Q

ı under complex risks only exceeds the one under

simple risks by approximately 30% for fi = 1
/2 and less than 10% for fi = 1

/3. Hence, throughout

its equilibration path, the variation in markets’ risk sharing ability are remarkably similar for

simple and complex risks.

In order to conclusively evaluate markets’ ability to (partially) aggregate agents’ subjective

information about complex risks, simply referring to the results shown in Figure 16 would not

be fair. The above distributions of P

ı under complex risks do not yet take into account the

dispersion of subjects’ beliefs regarding the risky asset’s true expected payo�. Therefore, I
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Figure 16. Bootstrapped equilibrium distributions

Notes: This figure shows bootstrapped densities of market-clearing prices and quantities
for simple and complex risks. Every average supply and demand curve is based on resam-
pling 49 individual supply and demand schedules (same resampling size under simple and
complex risks). For each pair of averaged supply and demand, the linearly interpolated
market-clearing price and quantity are computed. Repeating this procedure ten thousand
times yields the depicted estimated densities of equilibrium prices (top row) and quantities
(bottom row). The left (right) column shows bootstrapped densities for trading rounds
with fi equal to 1

/2 (1
/3).

propose to consider the following ratio of standard deviations instead:

Std(P ı)-Ratio =
Û

V ar(P ı
c )

V ar (P ı
s + E

ı
c [X]) , (13)

where P

ı
s (P ı

c ) denotes the market-clearing price for simple (complex) risks, and E

ı
c [X] indicates

subjects’ average estimate of E[X] under complex risks. When comparing variations in P

ı
c to

those in P

ı
s , Eq. (13) actually controls for the fluctuations of subjects’ point estimates by adding

E

ı
c [X] to the variance in its denominator.

Whether the ratio in Eq. (13) is eventually greater or smaller than unity, i.e., whether mar-

kets e�ciently aggregate complex risks or not, is again an empirical question. From a theoretical

perspective, however, the answer is: it depends. The decisive factor is whichever of the follow-

ing trade-o� e�ects dominates: increased severity of bounded rationality versus reduced price

sensitivity. In the absence of both e�ects, the ratio in Eq. (13) should equal one. Whenever
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risk-averse agents’ behave fully rationally, P

ı
s coincides with E[X] and is thus deterministic.

Moreover, if agents are neutral to complexity-induced ambiguity, V ar(P ı
c ) exactly corresponds

to V ar(Eı
c [X]), since the market-clearing price always equals the average of agents’ expected

asset payo�.

In the presence of ambiguity aversion and a thereby implied decrease in local price sensitivity

under complex risks, V ar(P ı
c ) may fall below V ar(Eı

c [X]), thereby pushing Eq. (13) downwards.

To see this, consider two di�erent agents: an ambiguity-neutral seller and an infinitely ambiguity-

averse buyer. Facing complex risks, the seller shall belief that E[X] œ [a, b] with uniform

probability, while the buyer believes that E[X] is uniformly distributed over [a+ b
2 , b], where

a < b. Hence, the seller’s supply curve goes through (a+ b
2 ,

‚
Q), whereas the buyer’s demand

curve is completely flat at ‚
Q over the nonempty subset of prices [a+ b

2 , b]. Therefore, the unique

trading equilibrium equals (a+ b
2 ,

‚
Q) with P

ı
c = a+ b

2 and E

ı
c = 3a+5 b

8 . However, if instead the

buyer believes that E[X] œ [a,

a+ b
2 ], P

ı
c would still equal a+ b

2 , but E

ı
c would jump to 5a+3 b

8 .

In contrary, given more severe bounds on rationality under complex risks, i.e., in case Eq. (11)

applies, the noise in P

ı
c relative to P

ı
s increases, which ultimately pushes Eq. (13) upwards.

Both cases are present in the experimental data. Figure 17 shows the respective values

of Eq. (13), conditional on subjects’ maximum number of dominated actions (see Figure 14).

Unconditionally, the standard deviation ratio for fi = 1
/2 lies below one (0.813), whereas for

fi = 1
/3 it exceeds one (1.170). This is in line with the observations from Figure 12 and Figure 13:

Relative to fi equal to one half, the number of strongly dominated actions is substantially higher

for fi equal to one third, implying more severe bounds on subjects’ rationality in the latter case.

As shown in the right plot of Figure 17, the ratio for fi = 1
/3 is decreasing in the strictness

of the applied rationality constraint. Focusing on subjects who completely abstain from any

dominated actions, it eventually also falls below unity.

To sump up, markets’ prove to be notably e�cient in pricing and sharing complex risks,

despite increased noise levels in individual trading behavior. Nevertheless, beyond binding

limits to bounded rationality, their information aggregation is severely impaired, while their risk

sharing ability yet prevails.

4. Concluding Remarks

In this paper, I study how complex but purely objective risks are traded in a competitive asset

market. Relying on decision theory under ambiguity, the paper provides a novel perspective on

agents’ trading behavior in the presence of imperfectly understood uncertainty. In his seminal

work, Ellsberg (1961) himself characterizes ambiguity as “a quality depending on the amount,
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Figure 17. Relative variability of market-clearing prices

Notes: Conditioning on subjects’ maximum number of dominated actions (see Figure 14),
this figure shows the ratio

Std(P ! )-Ratio =

Û
V ar(P !

c )
V ar (P !

s + E

!
c [X]) ,

where P

!
s (P !

c ) denotes the market-clearing price for simple (complex) risks, and E

!
c [X]

indicates subjects’ average estimate of E[X] under complex risks. Both estimates P

!
s and

P

!
c are bootstrapped based on resampling and averaging individual supply and demand

schedules. For each pair of averaged supply and demand, the linearly interpolated market-
clearing price is computed. The respective resample size is set to the minimum number of
sellers or buyers who satisfy the given rationality condition (maximum allowed number of
dominated actions). This procedure is repeated ten thousand times. The left (right) plot
shows standard deviation ratios for trading rounds with fi equal to 1

/2 (1
/3).

type, and ‘unanimity’ of information, and giving rise to one’s degree of ‘confidence’ in an estimate

of relative likelihoods” (Ellsberg, 1961, p. 657)—an interpretation that advocates a bridging of

ambiguity models and financial markets for increasingly complex assets.

In the absence of aggregate risk, the controlled setting of Biais et al. (2017) o�ers an ideal

experimental framework to distinctively test for complexity’s impact on individual trading deci-

sions and aggregate market outcomes. Starting from Debreu (1959) and Arrow (1964)’s seminal

benchmark for simple risks, ambiguity preference-based predictions possess significant explana-

tory power regarding both adopted trading strategies and equilibrium allocations under complex

risks. In general, I find asset markets to prove remarkably e�ective in pricing complex risks and
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even more robust in sharing them optimally across risk-averse investors. However, the former

quality crucially depends on the severity by which complexity curtails agents’ rationality under

the perceived ambiguity of complex risks.

46



References

Abdellaoui, M., A. Baillon, L. Placido, and P. Wakker (2011). The Rich Domain of Uncertainty:

Source Functions and Their Experimental Implementation. American Economic Review 101,

695–723.

Amromin, G., J. Huang, C. Sialm, and E. Zhong (2011). Complex Mortgages. NBER Working

Paper (17315).

Armantier, O. and N. Treich (2016). The Rich Domain of Risk. Management Science 62 (7),

1954–1969.

Arora, S., B. Barak, M. Brunnermeier, and R. Ge (2011). Computational Complexity and

Information Asymmetry in Financial Products. Communications of the ACM 54 (5), 101–

107.

Arrow, K. J. (1964). The Role of Securities in the Optimal Allocation of Risk-bearing. Review

of Economic Studies 31 (2), 91–96.

Asparouhove, E., P. Bossaerts, J. Eguia, and W. R. Zame (2015). Asset Pricing and Asymmetric

Reasoning. Journal of Political Economy 123, 66–122.

Asparouhove, E., P. Bossaerts, R. Nilanjan, and W. R. Zame (2016). “Lucas” in the Laboratory.

Journal of Finance 71 (6), 2727–2780.

Biais, B., T. Mariotti, S. Moinas, and S. Pouget (2017). Asset Pricing and Risk Sharing in a

Complete Market: An experimental Investigation. Working Paper .

Borghans, L., J. J. Heckman, B. H. Golsteyn, and H. Meijers (2009). Gender Di�erences in Risk

Aversion and Ambiguity Aversion. Journal of the European Economic Association 7 (2-3),

649–658.

Bossaerts, P., P. Ghirardato, S. Guarnaschelli, and W. R. Zame (2010). Ambiguity in Asset

Markets: Theory and Experiment. Review of Financial Studies 23, 1325–59.

Bossaerts, P. and C. Murawski (2016). How Humans Solve Complex Problems: The Case of the

Knapsack Problem. Scientific Reports 6, 34851.

Brunnermeier, K. and M. Oehmke (2009). Complexity in Financial Markets. Working paper .

Carlin, B. (2009). Strategic Price Complexity in Retail Financial Markets. Journal of Financial

Economics 91, 278–87.

47



Carlin, B., S. Kogan, and R. Lowery (2013). Trading Complex Assets. Journal of Finance 68,

1937–60.

Carlin, B. and G. Manso (2011). Obfuscation, Learning, and the Evolution of Investor Sophis-

tication. Review of Financial Studies 24, 755–85.
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Appendix A: Proofs

Proof of Proposition 1. Here I prove the case if agent i is a seller. In the case of a buyer, the

analogous reasoning applies. Relying on the identities in Eq. (1), any agent i’s expected utility

from consumption can be rewritten as (neglecting the subscript i)

E

#
U(C(Ê))

$
= fi U

A

µ +
Ú

1 ≠ fi

fi

‡

B

+ (1 ≠ fi) U

3
µ ≠

Ú
fi

1 ≠ fi

‡

4

! f(µ, ‡, fi),

and since U is increasing it follows that

ˆf

ˆµ

= fi U

Õ
A

µ +
Ú

1 ≠ fi

fi

‡

B

+ (1 ≠ fi) U

Õ
3

µ ≠
Ú

fi

1 ≠ fi

‡

4

> 0, (A.1)

and from decreasing marginal utility from consumption that

ˆf

ˆ‡

= fi U

Õ
A

µ +
Ú

1 ≠ fi

fi

‡

B Ú
1 ≠ fi

fi

+ (1 ≠ fi) U

Õ
3

µ ≠
Ú

fi

1 ≠ fi

‡

4 3
≠

Ú
fi

1 ≠ fi

4

=
Ò

fi(1 ≠ fi) U

Õ
A

µ +
Ú

1 ≠ fi

fi

‡

B

≠
Ò

fi(1 ≠ fi) U

Õ
3

µ ≠
Ú

fi

1 ≠ fi

‡

4

< 0. (A.2)

When selling Q shares for a price equal to P , the seller’s consumption in t = 2 equals

C(u) = (S ≠ Q)X(u) + (B + QP ) + I(u) (A.3)

in state u, and

C(d) = (S ≠ Q)X(d) + (B + QP ) + I(d) (A.4)

in state d.

Let us now denote the expected asset payo� E[X] by P

ı, i.e.,

P

ı := fiX(u) + (1 ≠ fi)X(d).

Furthermore, we define ‚
Q as the quantity for which ‡

2 = 0, i.e.,

‡

2 = 0 … C(u) = C(d)
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… (S ≠ Q)X(u) + I(u) = (S ≠ Q)X(d) + I(d)

… ‚
Q = S + I(u) ≠ I(d)

X(u) ≠ X(d) , (A.5)

where we assume that ‚
Q > 0. From the definition of µ together with (Eq. (A.3)) and (Eq. (A.4))

we get
ˆµ

ˆQ

= fi(P ≠ X(u)) + (1 ≠ fi)(P ≠ X(d)),

and thus

ˆµ

ˆQ

Y
______]

______[

< 0 if P < P

ı
,

= 0 if P = P

ı
,

> 0 if P > P

ı
.

(A.6)

First, strict concavity now implies

E

#
U(C(Ê))

$
< U

3
fiµ +

Ò
fi(1 ≠ fi)‡ + (1 ≠ fi)µ ≠

Ò
(1 ≠ fi)fi‡

4

= U(µ),

hence, from (Eq. (A.5)) and (Eq. (A.6)) it follows that, ’fi œ (0, 1), (P ı
,

‚
Q) strictly dominates

all other points on the line (P ı
, Q).

Second, (Eq. (A.1)) & (Eq. (A.6)) together with (Eq. (A.2)) & (Eq. (A.5)) imply that

(i) for any given price P < P

ı, any point in the upper left quadrant of Subfigure (a) of

Figure 1 is strictly dominated by (P,

‚
Q);

(ii) for any given price P > P

ı, any point in the lower right quadrant of of Subfigure (a) of

Figure 1 is strictly dominated by (P,

‚
Q).

Hence, ’fi œ (0, 1), the seller’s supply curve has to lie somewhere in the lower left and upper

right quadrant and has to go through the point (P ı
,

‚
Q). This completes the proof.

Proof of Remark 1. Since ‘ can be arbitrarily small, I directly consider the limit ‘ æ 0, i.e.,

lim‘æ0 Ui(C) = c1C, for 0 Æ C Æ C. The corresponding first and second derivatives of Ui(C)

are

lim
‘æ0

U

Õ
i(C) = c1, and lim

‘æ0
U

ÕÕ
i (C) = 0.

For C Ø C, the respective derivatives are

U

Õ
i(C) = –e

≠–C
, and U

ÕÕ
i (C) = ≠–

2
e

≠–C
.
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The following conditions ensure the di�erentiability of Ui(C) at C:

c1C = c2 ≠ e

≠–C … c2 = c1C + e

≠–C
, (A.7)

c1 = –e

≠–C
. (A.8)

Given Eq. (A.3) and Eq. (A.4), the FOC for E

#
U(C(Ê))

$
with respect to Q implies

fiU

Õ(C(u))(P ≠ X(u)) + (1 ≠ fi)U Õ(C(d))(P ≠ X(d)) = 0. (A.9)

Taking the first derivative of the LHS of Eq. (A.9) with respect to P yields

fiU

Õ(C(u)) + (1 ≠ fi)U Õ(C(d)) + fiU

ÕÕ(C(u))Q(P ≠ X(u)) + (1 ≠ fi)U ÕÕ(C(d))Q(P ≠ X(d)).

Since ”
”Q(LHS of Eq. (A.9)) < 0 ’(P, Q) œ R2

Ø0, agent i’s supply curve is decreasing in P if
”

”P (LHS of Eq. (A.9)) < 0. For the here considered utility function, this is the case whenever

c1 <

1 ≠ fi

fi

–e

–C(d) (–Q(P ≠ X(d)) ≠ 1) .

Together with Eq. (A.8), this implies that for high enough prices, i.e., if

P > X(d) +
1 + fi

1≠fi –e

≠–(C≠C(d))

–Q

,

seller i’s supply curve can be locally decreasing in P . This completes the proof.

Proof of Proposition 2. Here I prove the case if the ambiguity-averse agent i, i.e., –i >

1
/2, is

a seller. In the case of a buyer, the analogous reasoning applies. Relying on the identities in

Eq. (1), any agent i’s utility from consumption according to the –-maxmin in Eq. (2) can be

rewritten as (neglecting the subscript i)

U(C(Ê)) = – min
fiœC

!
E

#
U(fi)

$"
+ (1 ≠ –) max

fiœC

!
E

#
U(fi)

$"

= –

A

fi U

A

µ +
Û

1 ≠ fi

fi

‡

B

+ (1 ≠ fi) U

3
µ ≠

Ú
fi

1 ≠ fi

‡

4B

+ (1 ≠ –)
A

fi U

A

µ +
Ú

1 ≠ fi

fi

‡

B

+ (1 ≠ fi) U

A

µ ≠
Û

fi

1 ≠ fi

‡

BB

,

where fi = arg min
fiœC

E

#
U(fi)

$
(fi = arg max

fiœC
E

#
U(fi)

$
) and µ (µ) and ‡ (‡) denote expected

consumption and standard deviation of consumption according to fi (fi). For Q ”= ‚
Q, i.e., for
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strictly positive ‡ and ‡, it directly follows from U ’s strict concavity that

U(C(Ê)) < –U(µ) + (1 ≠ –)U(µ) < U(–µ + (1 ≠ –)µ).

Eq. (A.3) and Eq. (A.4) imply

–µ + (1 ≠ –)µ = –

1
fi ((S ≠ Q)X(u) + (B + QP ) + I(u)) +

(1 ≠ fi) ((S ≠ Q)X(d) + (B + QP ) + I(d))
2

+ (1 ≠ –)
1
fi ((S ≠ Q)X(u) + (B + QP ) + I(u)) +

(1 ≠ fi) ((S ≠ Q)X(d) + (B + QP ) + I(d))
2

= ... terms indep. from Q ... + Q

1
P ≠

1
–E

fi[X] + (1 ≠ –)Efi[X]
22

.

Hence, if P = –E

fi[X] + (1 ≠ –)Efi[X], denoted by Â
P hereafter, the linear combination of

expected consumption (for constant fi and fi) does not change for di�erent quantities of shares

sold. Therefore, for Â
P , it is optimal for the seller to exactly sell ‚

Q share and get the constant

utility U(–µ + (1 ≠ –)µ) = U(–µ) = U((1 ≠ –)µ).

In general, it holds that

U(C(Ê)) = –

1
fiU(C(u))

2
+ (1 ≠ fi)U(C(d))

2

+ (1 ≠ –)
1
fiU(C(u)) + (1 ≠ fi)U(C(d))

2
,

and, for any given price, the corresponding FOC reads

”U
”Q

= –

1
fiU

Õ(C(u))(P ≠ X(u)) + (1 ≠ fi)U Õ(C(d))(P ≠ X(d))
2

+ (1 ≠ –)
1
fiU

Õ(C(u))(P ≠ X(u)) + (1 ≠ fi)U Õ(C(d))(P ≠ X(d))
2

= 0. (A.10)

As shown, for Â
P , it is optimal to sell ‚

Q shares. Hence, the question now is, for what prices it is

optimal to sell less (more) than ‚
Q? Or, put di�erently, starting from Â

P per share, below (above)

which price does it become beneficial to sell less (more) than ‚
Q shares?

Since when selling ‚
Q shares C(u) = C(d), Eq. (A.10) yields

”U
”Q

----
Q= ‚Q

= 0 … P = Â
P .

I denote by Â
P ( ‚

Q ¿) = L ( Â
P ( ‚

Q ø) = U) the lowest (highest) price for which the seller prefers

to sell ‚
Q shares. Because fi < fi whenever the seller considers to sell less than ‚

Q, and fi > fi

whenever she thinks about selling more than ‚
Q, it follows that L < U .
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Therefore, in summary, seller i’s supply curve is constant over the closed subset [L, U ] µ P

and the di�erence U ≠L becomes larger as her C becomes wider and/or as – æ 1. This completes

the proof.

Proof of Proposition 3. Whenever there is a nonzero mass of ambiguity-averse agent whose sup-

ply (demand) curves do not go through the benchmark equilibrium (E[X], ‚
Q), they draw average

supply (demand) away from the latter. Given the result in Proposition 2, this clearly occurs if

either

L > E[X] or U < E[X]. (A.11)

For ambiguity-averse agents, L is always strictly smaller than U , hence, the two cases in

Eq. (A.11) are mutually exclusive.

I begin with the first inequality in Eq. (A.11). For any ambiguity-averse seller i it holds that

(neglecting the subscript i)

L = –E

fi[X] + (1 ≠ –)Efi[X],

where – >

1
/2 and fi < fi since L denotes the lower price limit below which she prefers to sell

less than ‚
Q shares. Thus, denoting by fiM the midpoint and by 2� the length of the seller’s set

of priors,29 the inequality L > E[X] can be written as

E[X] < L

E[X] < – ((fiM ≠ �)X(u) + (1 ≠ (fiM ≠ �))X(d))

+ (1 ≠ –) ((fiM + �)X(u) + (1 ≠ (fiM + �))X(d))

fiX(u) + (1 ≠ fi)X(d) < fi

Õ
X(u) + (1 ≠ fi

Õ)X(d), (A.12)

where fi

Õ := fiM ≠ �(2– ≠ 1). By the analogous argument and relying on the same notation, it

follows that the second inequality in Eq. (A.11) is equivalent to

E[X] > U

fiX(u) + (1 ≠ fi)X(d) > fi

ÕÕ
X(u) + (1 ≠ fi

ÕÕ)X(d), (A.13)

whereas now fi

ÕÕ := fiM + �(2– ≠ 1).

Together, Eq. (A.12) and Eq. (A.13) imply that

L < E[X] < U … fi

Õ
< fi < fi

ÕÕ
, (A.14)

29 Alternatively, for a discrete set of priors, 2# refers to the di!erence max( C) ≠ min(C).
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where fi

Õ
< fi

ÕÕ because – >

1
/2. Hence, whenever fi ”œ B as defined in Eq. (4), the seller’s supply

curve draws average supply away from the benchmark equilibrium. Because of perfect symmetry,

the same condition simultaneously holds for any ambiguity-averse buyer. This completes the

proof.

Proof of Proposition 4. I first prove (ii). Eq. (5) can be written as (neglecting the subscript i)

U(C(Ê)) = 1
fi ≠ fi

⁄ fi

fi
„

!
E

#
U(fĩ)

$"
dfĩ.

For any given price, the FOC with respect to Q reads

”U
”Q

= 1
fi ≠ fi

⁄ fi

fi
„

Õ !
E

#
U(fĩ)

$" 3
fĩ

ˆ

ˆQ

U(C(u)) + (1 ≠ fĩ) ˆ

ˆQ

U(C(d))
4

dfĩ = 0. (A.15)

Eq. (A.3) and Eq. (A.4) imply

1
fi ≠ fi

⁄ fi

fi
„

Õ !
E

#
U(fĩ)

$" 1
fĩU

Õ(C(u))(P ≠ X(u)) + (1 ≠ fĩ)U Õ(C(d))(P ≠ X(d))
2
dfĩ = 0.

For Q = ‚
Q the agent bears no consumption risk, i.e., C(u) = C(d) ’fĩ and E[U ] ‹‹ fĩ. At

Q = ‚
Q, Eq. (A.15) therefore becomes

1
fi ≠ fi

⁄ fi

fi
fĩ(P ≠ X(u)) + (1 ≠ fĩ)(P ≠ X(d))dfĩ = 0 …

1
fi ≠ fi

⁄ fi

fi
Pdfĩ = 1

fi ≠ fi

⁄ fi

fi
fĩX(u) + (1 ≠ fĩ)X(d)dfĩ …

P = 1
2

fi

2 ≠ fi

2

fi ≠ fi

X(u) +
A

1 ≠ 1
2

fi

2 ≠ fi

2

fi ≠ fi

B

X(d) …

P = fi ≠ fi

2 X(u) +
3

1 ≠ fi ≠ fi

2

4
X(d). (A.16)

Hence, any seller’s (buyer’s) supply (demand) curve only goes through the benchmark equilib-

rium ( ‚
Q, E[X]), if the RHS of Eq. (A.16) equals the stock’s expected dividend, i.e.,

fi ≠ fi

2 X(u) +
3

1 ≠ fi ≠ fi

2

4
X(d) = E[X] … fi = fi + fi

2 .

Thus, whenever fi does not correspond to the midpoint of her set of priors [fi, fi], she induces

mispricing and suboptimal risk sharing of complex risks.

I hereafter prove (i) for the case where the considered nonzero mass of agents are sellers. In

the case of buyers, the analogous reasoning applies. For a given seller i and price P per share,

let Q

ı
i (P ) denote the number of shares satisfying Eq. (A.15). Taking the first order derivative
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of the second integrand in Eq. (A.15) with respect to fĩ yields (neglecting again the subscript i)

ˆ

ˆfĩ

1
fĩU

Õ(C(u))(P ≠ X(u)) + (1 ≠ fĩ)U Õ(C(d))(P ≠ X(d))
2

=

U

Õ(C(u))
¸ ˚˙ ˝

>0

(P ≠ X(u)) ≠ U

Õ(C(d))
¸ ˚˙ ˝

>0

(P ≠ X(d)) < 0, (A.17)

i.e., is always strictly negative for X(d) Æ P Æ X(u).

Regarding the first integrand in Eq. (A.15), there are three di�erent cases. First, if seller i

is ambiguity-neutral, i.e., if „

Õ(·) is a positive constant, only the second integrand is relevant for

determining the optimal number of shares to be sold at P , hereafter denoted by Q

ı
N (P ). Second,

if seller i is ambiguity-averse, i.e., if „

Õ(·) is a decreasing function, then the first integrand becomes

relevant for determining Q

ı
A(P ). Third, if she is ambiguity-loving, her increasing function „

Õ(·)

conversely a�ects Q

ı
L(P ).

Because Eq. (A.17) strictly decreases at a constant rate over [fi, fi], Eq. (A.15) can only hold

for Q

ı
N (P ), if the second integrand changes its sign between fi and fi. For Q <

‚
Q, it holds that

ˆ

ˆfĩ

E

#
U(fĩ)

$
= U(C(u)) ≠ U(C(d)) > 0 ’Q <

‚
Q,

i.e., whenever seller i is ambiguity-averse, the first integrand in Eq. (A.15) is a strictly decreasing

function over [fi, fi]. Hence, for Q

ı
A(P ) the second integrand in Eq. (A.15) needs to switch its

sign for a smaller fĩ œ [fi, fi], relative to Q

ı
N (P ), in order to satisfy the first order condition.

Taking the first order derivative of the second integrand in Eq. (A.15) with respect to Q

yields

ˆ

ˆQ

1
fĩU

Õ(C(u))(P ≠ X(u)) + (1 ≠ fĩ)U Õ(C(d))(P ≠ X(d))
2

=

fĩ U

ÕÕ(C(u))
¸ ˚˙ ˝

<0

(P ≠ X(u))2 + (1 ≠ fĩ) U

ÕÕ(C(d))
¸ ˚˙ ˝

<0

(P ≠ X(d))2
< 0,

i.e., is always strictly negative for any risk-averse seller. It therefore follows that Q

ı
A(P ) >

Q

ı
N (P ), i.e., that Q

ı
A(P ) is closer to ‚

Q than Q

ı
N (P ). Since, for any ambiguity-loving seller,

the first integrand in Eq. (A.15) then is a strictly increasing function over [fi, fi], the analogous

reasoning implies Q

ı
L(P ) < Q

ı
N (P ). Thus, the distance between ‚

Q and Q

ı
L(P ) is larger than

between Q

ı
N (P ) and ‚

Q. Finally, the symmetric argument for Q

ı(P ) >

‚
Q yields Q

ı
A(P ) <

Q

ı
N (P ) < Q

ı
L(P ). This completes the proof.

57



Appendix B: Determining ! in the Presence of Complex Risks

Starting point is the SDE of the geometric Brownian motion in Figure 5, i.e.,

dSt = 10%Stdt + 32%StdWt,

where Wt is a standard Brownian motion. Applying Itō to f := ln(St) yields

S2 = exp
IA

10% ≠ 32%2

2

B

+ 32%(W2 ≠ W1)
J

.

Hence,

P(S2 Ø 1.05) = P
3

W2 ≠ W1 Æ
A

ln(1.05) ≠ 10% + 32%2

2

B
1

32%
¸ ˚˙ ˝

¥0

4
.

Recalling that the increment W2 ≠ W1 has a standard normal distribution,30 it follows that

P(S2Ø1.05) corresponds to 1
/2.31

Appendix C: Adjustment of average supply and demand curves

according to subjective beliefs

For a given case, I denote by ĒS [X] sellers’ average point estimate of the risky asset’s expected

payo� under complex risks. In order to account for deviations of ĒS [X] from E[X], the follow-

ing linear transformation is applied to the predefined price vector used to elicit sellers’ supply

functions:

adj(P ) =

Y
_]

_[

P ≠ (ĒS [X] ≠ E[X]) P ≠X(d)
øES [X]≠X(d)

, for X(d) Æ P < ĒS [X]

P ≠ (ĒS [X] ≠ E[X]) X(u)≠P
X(u)≠ øES [X]

, for ĒS [X] Æ P Æ X(u).

Furthermore, let Q̄S denote the linearly interpolated average supply curve and Q̄S,adj the

corresponding curve plotted against adj(P ) instead of P . It then still holds that Q̄S,adj spans

from X(d) to X(u), but simultaneously that Q̄S,adj(E[X]) = Q̄S(ĒS [X]). The exact same linear

transformation with ĒB[X] instead of ĒS [X], with B for buyers, is also used to adjust average

demand curves under complex risks.

30 This information was provided as part of the instructions.
31 Strictly speaking, it holds that P(S2 Ø1.05) = 0.49999. Linearly approximating ln(1.05) by 0.05 implies

P(S2 Ø1.05) = 0.50150.
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Appendix D: Additional Tables and Figures

Table D.1. Regression analysis for nonnegative ambiguity aversion

Dependent variable
M1 M2 M1 M2

Constant 3.954a 0.736a 2.943 0.939b

(0.563) (0.118) (2.190) (0.392)
Complexity (dummy) 0.238 -0.199b -0.452 -0.232b

(0.770) (0.084) (0.702) (0.102)
Ambiguity (dummy) 0.517 0.213 0.926 0.181

(1.208) (0.185) (1.225) (0.196)
RA (risk aversion) 7.721a -0.091 6.931a -0.137

(2.224) (0.347) (2.230) (0.344)
AA (ambig. aversion) ◊ Complexity 3.384 -0.542b 0.096 -0.345

(2.442) (0.259) (2.371) (0.231)
AA ◊ Ambiguity 9.792b -1.233a 7.473 -1.041b

(4.669) (0.472) (4.729) (0.522)
Order ◊ Complexity - - 2.243b 0.000

- - (1.132) (0.114)
Gender - - 1.187 -0.298a

- - (0.908) (0.113)
Controls No No Yes Yes
N 373 518 373 518

Notes: This table reports OLS coe�cient estimates for subjects with nonnegative ambigu-
ity aversion (as indicated by the variable ‘Ambiguity aversion’—see below). The dependent
variables are unconditional measures of local price sensitivity. M1 denotes the cardinality
of consecutive prices for which subjects adopt the perfect hedging strategy, i.e., aiming to
trade ‚

Q shares. M2 measures the average slope of subjects’ supply and demand curves
at their individual point estimates of the risky asset’s expected payo�. ‘Complexity’ and
‘Ambiguity’ are dummy variables indicating trading rounds with complex and ambiguous
risks, respectively. ‘Risk aversion’ measures the normalized di�erence between the simple
lottery’s expected payo� and subjects’ respective certainty equivalents. The first two inter-
action terms control for di�erent e�ects of ‘Ambiguity aversion’ across trading rounds with
simple and complex risks, where ambiguity aversion is measured as the di�erence between
subjects’ certainty equivalents for the simple and the ambiguous lottery. The term ‘Order ◊
Complexity’ interacts the dummy variable ‘Order’, indicating sessions where complex risks
were proceeded by simple risks, with complex trading rounds. ‘Gender’ is a dummy variable
indicating female subjects. ‘Controls’ comprise subjects’ age, their attended university, and
number of completed semesters. Furthermore, ‘Controls’ contain subjects’ self-evaluated
understanding and di�culty level of the assigned task (measured by integers from one to
five) and two additional dummy variables controlling for their familiarity and knowledge
regarding the Brownian motion. Numbers in parenthesis denote robust standard errors
clustered at the subject level. Superscripts a , b, and c indicate statistical significance at the
1%, 5%, and 10%-level, respectively.
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Figure D.1. Example of nonmonotonic supply curve

Notes: Supply curve for seller i with utility function as defined in Remark 1. Parameters:
X(u) = 1.5, X(d) = 0, fi = 1

/10, ‘ = 0, – = 1, C = 3+2fiX(u), Ei = 4, Ii (u) = 0, Ii (d) = 3.
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Figure D.2. Lottery based on urn with simple risks

Notes: This figure shows the lottery based on the urn with simple risks. Whenever the
randomly drawn ball is green, the lottery pays ECU 600 (experimental currency units) and
ECU 300 if it is red. Subjects’ respective certainty equivalents were elicited via Abdellaoui
et al. (2011)’s iterative choice list method.
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Figure D.3. Testing for differences in price sensitivity

Notes: This figure reports the p-values of a Wilcoxon signed-rank test of the di�erences
between average supply (demand) curves for simple and complex risks. Averages are com-
puted across subjects and trading rounds. Average curves for complex risks are adjusted
as described in Appendix C and linearly interpolated to allow for a direct comparison with
simple risks. In the top (bottom) row, average supply (demand) curves are computed across
all sessions. In the left (right) column, averages are computed across trading rounds where
fi is equal to 1

/2 (1
/3). The dotted line indicates a p-value equal to 10%.
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Figure D.4. Testing for price-taking behavior under complex risks

Notes: This figure reports the p-values of a Wilcoxon signed-rank test of the di�erences be-
tween average supply (demand) curves for complex risks under market clearing and random
price draws. Averages are computed across subjects and complex trading rounds. Average
curves are adjusted as described in Appendix C and linearly interpolated to allow for a
direct comparison with simple risks. In the top (bottom) row, average supply (demand)
curves are computed across all sessions. In the left (right) column, averages are computed
across complex trading rounds where fi is equal to 1

/2 (1
/3). The dotted line indicates a

p-value equal to 10%.
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Figure D.5. Demand distribution for prices equal to expected payoffs

Notes: This figure shows the number of shares demanded by buyers for prices equal to
(estimated) expected payo�s. The empirical distributions are computed across subjects
and sessions. The left (right) plot contrasts average distributions between simple and
complex trading rounds with fi equal to 1

/2 (1
/3). If, under complex risks, buyers’ point

estimate Ei [X] lies between two elements of the predefined price vector, linearly interpolated
quantities are reported.
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Figure D.6. Demand distribution for prices different from expected payoffs

Notes: This figure shows the number of shares demanded by buyers for prices di�erent from
expected payo�s. The empirical distributions between simple and complex risks are com-
puted across subjects and sessions. In the top (bottom) row, total demands for pries below
(above) Ei [X] are reported. The left (right) column shows average demand distributions
across trading rounds with fi equal to 1

/2 (1
/3).
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Figure D.7. Learning under complex risks

Notes: This figure shows the evolution of the average percentage of dominated trading
strategies (see Figure 14) over the four trading rounds with complex risks (see Table III).
Error bars indicate standard errors of the mean.
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Figure D.8. Distribution for prices equal to expected payoff (reference point)

Notes: This figure shows empirical distributions of supplied and demanded shares at a fixed
price of ECU 75. Percentages are computed across subjects and sessions. For simple risks,
only the trading round with fi equal to 1

/2 is considered. For ambiguous risks, a price of
ECU 75 corresponds to the natural reference point, assuming that subjects believe in a
fifty-fifty likelihood under pure ambiguity.
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Figure D.9. Equilibration variability

Notes: This figure shows bootstrapped standard deviation estimates of market-clearing
prices and quantities for simple and complex risks. Average supply and demand curves
are determined for di�erent resample sizes. For each pair of averaged supply and demand,
linearly interpolated market-clearing prices and quantities are computed. Repeating this
procedure ten thousand times yields the depicted standard deviation estimates of equilib-
rium prices (top row) and quantities (bottom row). The left (right) column shows boot-
strapped moment estimates for trading rounds with fi equal to 1

/2 (1
/3). Error bars indicate

99%-confidence intervals.
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Appendix E: Experimental Instructions

Instructions I/II

Welcome to this experiment at the Department of Banking and Finance, University of Zurich. This

is the first out of 2 instruction sheets. Please read each sheet very carefully. Fully understanding the

instructions will allow you to perform better on the task, thereby earning more money. Raise your hand

if you have any questions or as soon as you have read everything and are ready to continue.

1 Situation

The experiment consists of a sequence of 7 trading rounds. In each trading round the same number

of buyers and sellers are present. You are a seller. Your role will not change throughout the experiment.

At the beginning of every round, you will receive a fresh supply of 4 shares of a given security. During

each round you can sell between 0 and 4 of these shares. The security either pays a dividend per share

equal to 150 or 0. Besides this dividend per share, the security does not pay anything else (no capital

gains). Additionally, you are provided with some non-tradable income: whenever the security happens

to pay a dividend of 150 per share, you receive 0, and if it does not pay anything (dividend of 0),

you receive 300. This additional income does not depend on how many shares you are selling. The

following graph summarizes your holdings at the beginning of every round:

Shares: 4 ⇥
per

sha
re Dividend = 150

per share Dividend = 0

+

Income = 0

Income = 300

You can sell up to 4 shares Non-tradable

Your wealth at the end of each round is the sum of received proceeds from trading, collected dividends,

and additional income. It is not carried over to the subsequent round, this means you always start out

with 4 shares. At the end of every round, the trading outcome, realized dividends, and your respective

wealth are displayed.

2 Trading

Trading happens in 2 phases. First, you have to select how many shares you want to sell in case the

price equals 0, 25, 50, 75, 100, 125, or 150. The computer then linearly fills up your selling quantities

for the remaining 5-unit steps between 0 and 150 (5, 10, 15, ...). Second, you are asked to make further

adjustments until you end up with the exact quantities you want to sell for any given price. Note,

quantities can be entered with up to 2 decimal places of precision.

The price determination method of the current round is always displayed in the upper right corner of

your screen. There are two ways how prices are determined. If there is market clearing, the computer

sets the price such that the number of traded shares is maximized. Alternatively, the computer will

choose the price randomly (random price) with equal probabilities across the full list of given prices.

⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤
You will now go through a first practice round. This practice round will not impact your payment.

1
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Instructions II/II

Please read this sheet very carefully. Raise your hand if you have any questions or as soon as you have

read everything and answered the comprehension questions at the end.

3 How Dividends Are Determined

The computer randomly determines whether the security is going to pay a dividend or not. However,

the information about the structure that governs the computer’s random choices varies between trading

rounds. There are 2 di↵erent cases:

1. Urn.—The computer draws 1 ball out of an urn with 30 balls. The balls are either green or red, the

respective composition is revealed at the beginning of the trading round. Whenever the color of the

drawn ball is green, the security pays a dividend equal to 150 per share (and 0 if red).

2. Simulated reference path.—The computer simulates the evolution of a reference path over 2 time

periods, but only the first period will be displayed. Whenever the path ends up above a certain limit,

the security pays a dividend equal to 150 per share (and 0 if the path ends up below this limit). The

only purpose of this path is to determine whether the security pays a dividend or not.

What you will see.—You are provided with a formal description of the reference path St, where the

random component is denoted by Wt. Wt follows a normal distribution with mean equal to 0 and

variance equal to the corresponding change in time. For example, the full description of the path St

could look like this

dSt = 5%Stdt+ 10%StdWt,

where dSt denotes the change of St over the very small (infinitesimal) time change of length dt. Addi-

tionally, you will see a video of the path St between time 0 and the end of period 1:

(a) Beginning of period 1 (b) Middle of period 1 (c) End of period 1

The di↵erence of the random component Wt between the ends of period 1 and 2, W2 � W1, follows

a normal distribution with mean 0 and variance 1. For simplicity, every path is scaled such that S1 = 1.

Based on this information you can assess the probability of the dividend being equal to 150 (! path

ends up in the green region at time 2).

4 List of Lotteries, Questionnaire, and Payment

After the 7 trading rounds, you have to repeatedly choose 1 out of 2 options for 2 lists of lotteries. For

both lists, the computer randomly selects and plays 1 of your chosen options. Finally, you will be asked

1
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to Þll-in a short questionnaire.

Your Þnal payment will be determined as follows:

1. The computer randomly picks 1 out of the 7 trading rounds or 1 of the 2 lottery outcomes with
equal probability ( 1

9 for each). It is therefore critical that you concentrate on every round . You
will be paid either your wealth at the end of the selected trading round or the outcome of the
selected lottery, both in CHF divided by 12.

2. In all rounds with simulated reference paths, you are asked to submit your best guess regarding
the probability of the dividend being equal to 150. If your guess is correct (within +/- 3%), you
earn an additional 3 CHF whenever this round is selected for payment.

5 Comprehension Questions

(1) Assume you have sold4 shares at a price of50 per share, what is your wealth in the 2 scenarios?

per share Dividend = 150 ! Wealth =

per share Dividend = 0 ! Wealth =

(2) Assume you have sold4 shares at a price of150 per share, what is your wealth in the 2 scenarios?

per share Dividend = 150 ! Wealth =

per share Dividend = 0 ! Wealth =

(3) Assume you have sold2 shares at a price of50 per share, what is your wealth in the 2 scenarios?

per share Dividend = 150 ! Wealth =

per share Dividend = 0 ! Wealth =

(4) Does the di!erence between your wealth in the greenand the red scenario depend on...?

! The paid price ! The number of sold shares

(5) What is the di!erence between your wealth in the 2 scenarios, if you exactly sell2 shares?

Di!erence =

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Raise your hand after you have answered the comprehension questions. After double-checking, you will
go through 2 last practice rounds. These practice rounds will not impact your payment.
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