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Abstract

In many scientific fields, including economics, biology, and meteorology, high di-
mensional matrix-variate data are routinely collected over time. To incorporate the
structural interrelations between columns and rows and to achieve significant dimen-
sion reduction when dealing with high-dimensional matrix-variate time series, Wang
et al. (2017) proposed a matrix factor model that is shown to be effective in analyzing
such data. In this paper, we establish a general framework for incorporating domain
or prior knowledge induced linear constraints in the matrix-variate factor model. The
constraints can be used to achieve parsimony in parameterization, to facilitate inter-
pretation of the latent matrix factor, and to target specific factors of interest based on
domain theories. Fully utilizing the constraints results in more efficient and accurate
modeling, inference, dimension reduction as well as a clear and better interpretation
of the results. In this paper, constrained, multi-term, and partially constrained factor
models for matrix-variate time series are developed, with efficient estimation procedures
and their asymptotic properties. We show that the convergence rates of the constrained
factor loading matrices are much faster than those of the conventional matrix factor
analysis under many situations. Simulation studies are carried out to demonstrate
performance of the proposed method and the associated asymptotic properties. We
demonstrate the proposed model with three applications, where the constrained matrix
factor models outperform their unconstrained counterparts in the power of variance
explanation under the out-of-sample 10-fold cross-validation setting.

Keywords: Constrained eigen-analysis; Convergence in L2-norm; Dimension reduction; Fac-
tor model, Matrix-variate time series.
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1 Introduction

High-dimensional matrix-variate time series have been widely observed nowadays in a va-

riety of scientific fields including economics, meteorology, and ecology. For example, the

World Bank and the International Monetary Fund collect and publish macroeconomic data

of more than thirty variables spanning over one hundred years and over two hundred coun-

tries covering a variety of demographic, social, political, and economic topics. These data

neatly form a matrix-variate time series with rows representing the countries and columns

representing various macroeconomic indices. Typical factor analysis of such data either

converts the matrix into a vector or modeling the row or column vectors separately (See

Chamberlain (1983), Chamberlain & Rothschild (1983), Bai (2003), Bai & Ng (2002), Bai

& Ng (2007), Forni et al. (2000), Forni et al. (2004), Pan & Yao (2008), Lam et al. (2011),

and Lam & Yao (2012)). However, the components of matrix-variates are dependent among

rows and columns with a well-defined structure. Vectorizing a matrix-valued response, or

modeling the row or column vectors separately may overlook some intrinsic dependency

and fail to capture the matrix structure. Wang et al. (2017) propose a matrix factor model

that maintains and utilizes the matrix structure of the data to achieve significant dimension

reduction.

However, in factor analysis of matrix time series and many other types of high-dimensional

data, the problem of factor interpretations is of paramount importance. Even more impor-

tant, in many practical applications, is the problem of obtaining specific latent factors

related to certain domain theories, and with the aid of these specific factors further pre-

dicting future values of interest. For example, financial researchers may be interested in

extracting the latent factors of level, slope, and curvatures of the interest-rate yield curve

and predicting future equity prices based on those factors (Diebold et al. (2005), Diebold

et al. (2006), Rudebusch & Wu (2008), and Bansal et al. (2014)).

In many applications, relevant prior or domain knowledge is available or data themselves

exhibit certain specific structure. Additional covariates may also have been measured. For

example, in business and economic forecasting, sector or group information of variables

under study is often available. Such a-priori information can be incorporated to improve the

accuracy and inference of the analysis and to produce more parsimonious and interpretable

factors. In other cases, the existing domain knowledge may intrigue researchers’ interest in

some specific factors. The theories and prior experience may provide guidance for specifying

the measurable variables related to the specific factors of interest. It is then desirable

to constrain the dimension of the factor representation in order to obtain effectively an

adequate representation of the collected variables.
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To address these important issues and practical needs, we extend the matrix factor

model of Wang et al. (2017) to incorporate natural constraints among the column and row

variables. Incorporating a-priori information in parameter estimation has been widely used

in statistical analysis, such as the constrained maximum likelihood estimation, constrained

least squares, and penalized least squares. Constrained maximum likelihood estimation

with the parameter space defined by linear or smooth nonlinear constraints have been ex-

plored in the literature. Hathaway (1985) applies the constrained maximum likelihood

estimation to the problem of mixture normal distributions and shows that the constrained

estimation avoids the problems of singularities and spurious maximizers facing an uncon-

strained estimation. Geyer (1991) proposes a general approach applicable to many models

specified by constraints on the parameter space and illustrates his approach with a con-

strained logistic regression of the incidence of Down’s syndrome on maternal age. Penalty

methods have also been customarily used to enforce constraints in statistical models in-

cluding generalized linear models, generalized estimating equations, proportional hazards

models, and M-estimators. See, for example, Frank & Friedman (1993), Tibshirani (1996),

Liu et al. (2007), Fan & Li (2001), Zou (2006), and Zhang & Lu (2007). The results of these

articles show that including the soft constraints as penalizing term enhances the prediction

accuracy and improves the interpretation of the resulting statistical model.

For factor models of time series, Tsai & Tsay (2010) and Tsai et al. (2016) impose

constraints, constructed by some empirical procedures, that incorporate the inherent data

structure, to both the classical and approximate factor models. Their results show that the

constraints are useful tools to obtain parsimonious econometric models for forecasting, to

simplify the interpretations of common factors, and to reduce the dimension. Motivated

by similar concerns, we consider constrained, multi-term, and partially constrained factor

models for high-dimensional matrix-variate time series. Our methods differs from Tsai &

Tsay (2010) in several aspects. First, we deal with matrix factor model and thus have the

flexibility to impose row and column constraints. The interaction between the row and

column constraints are explored. Second, we adopt a different set of assumptions for factor

model defined in Lam et al. (2011) and Lam & Yao (2012). The matrix-variate time series is

decomposed into two parts: a dynamic part driven by a lower-dimensional factor time series

and a static part consisting of matrix white noises. Since the white-noise series exhibits

no dynamic correlations, the decomposition is unique in the sense that both the dimension

of the factor process and the factor loading space are identifiable for a given finite sample

size.

The rest of the paper is organized as follows. Section 2 introduces the constrained,

multi-term, and partially constrained matrix-variate factor models. Section 3 presents
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estimation procedures for constrained and partially constrained factor models with different

constraints. Section 4 investigates theoretical properties of the estimates. Section 5 presents

some simulation results whereas Section 6 contains three applications. Section 7 concludes.

All proofs are in the Appendix.

2 The Constrained Matrix Factor Model

For consistency in notation, we adopt the following conventions. A bold capital letter A

represents a matrix, a bold lower letter a represents a column vector, and a lower letter a

represents a scalar. The j-th column vector and the k-th row vector of the matrix A are

denoted by A·j and Ak·, respectively.

Let {Y t}t=1,...,T be a matrix-variate time series, where Y t is a p1 × p2 matrix, that is

Y t = (Y·1,t, · · · , Y·p2,t) =


Y ′1·,t

...

Y ′p1·,t

 =


y11,t · · · y1p2,t

...
. . .

...

yp11,t · · · yp1p2,t

 .

Wang et al. (2017) propose a factor model for Y t as

Y t = ΛF tΓ
′ +U t, t = 1, 2, . . . , T, (1)

where F t is a k1×k2 unobserved matrix-variate time series of common fundamental factors,

Λ is a p1×k1 row loading matrix, Γ is a p2×k2 column loading matrix, and U t is a p1×p2

matrix of random errors.

In Model (1), we assume that vec(U t) ∼ WN(0,Σe) and is independent of the factor

process vec(F t). That is, {U t}t=1,...,T is a white noise matrix-variate time series and the

common fundamental factors F t drive all dynamics and co-movement of Y t. Λ and Γ reflect

the importance of common factors and their interactions. Wang et al. (2017) provide several

interpretations of the loading matrices Λ and Γ. Essentially, Λ (Γ) can be viewed as the

row (column) loading matrix that reflects how each row (column) in Y t depends on the

factor matrix F t. The interaction between the row and column is introduced through the

multiplication of these terms.

The definition of common factors in Model (1) is similar to that of Lam et al. (2011).

This decomposition facilitates model identification in finite samples and simplifies the pro-

cedure of model identification and statistical inference. However, under the definition, both

the “common factors” defined in the traditional factor models and the serially correlated

idiosyncratic components will be identified as factors. This poses challenges to the interpre-

tation of the estimated factors, which are usually of special interest in many applications.
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Moreover, when the dimensions p1 and p2 are sufficiently large, interpretation of the es-

timated common factors F̂ t becomes difficult because of the uncertainty and dependence

involved in the estimates of the loading matrices Λ and Γ.

To mitigate th aforementioned difficulties and, more importantly, to incorporate natural

and known constraints among the column and row variables, we consider the following

constrained and partially constrained matrix factor models.

A constrained matrix factor model can be written as

Y t = HRRF tC
′H ′C +U t, (2)

where HR and HC are pre-specified full column-rank p1 × m1 and p2 × m2 constraint

matrices, respectively, and R and C are m1 × k1 row loading matrix and m2 × k2 column

loading matrix, respectively. For meaningful constraints, we assume k1 ≤ m1 << p1 and

k2 ≤ m2 << p2. Compared with the matrix factor model in (1), we set Λ = HRR and

Γ = HCC with HR and HC given. The number of parameters in the left loading matrix

R is m1k1, smaller than p1k1 of the unconstrained model. The number of parameters in

the column loading matrix C also decreases from p2k2 to m2k2. The constraint matrices

HR and HC can be constructed based on prior or domain knowledge of the variables.

For example, if HR consists of orthogonal binary vectors, it represents a classification or

grouping of the rows of the observed matrix.

Consider a simplified model with only row constraints Y t = HRRF tC
′ +U t. If

HR =

[
1 · · · 1 0 · · · 0

0 . . . 0 1 . . . 1

]′
, (3)

we are effectively imposing the constraint that there are two groups of row variables (say

countries) in which the ’row’ behavior of each variable in a group is the same. Specifically,

the model becomes

Y
(1)
t = R1F tC

′ +U
(1)
t and Y

(2)
t = R2F tC

′ +U
(2)
t

where Y
(1)
t consists of the first p

(1)
1 rows of Y t – all the countries in the first group,

and Y
(2)
t consists of the rest of the rows in the second group. In this case, R1 is a 1 ×

k1 row vector that is common to all rows in the first group Y
(1)
t . Comparing to the

general matrix factor model (2), the constrained model imposes the constraint that the

loading matrix Λ have the form Λ = [R′1 · · ·R′1R′2 · · ·R′2]′. The countries within the same

group have the same row loadings. Note that the two groups still share the same factor

matrix F t and the same column loading matrix C. The two groups related to the global

common factor F t differently. The smaller loading matrix R of dimension 2×m1, instead
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of the unconstrained p1×m1 loading matrix, provides a much simpler interpretation. More

complicated constraints can be used. See Appendix A for an illustration of some constraint

matrices.

If there are two “distinct” sets of constraints and the factors corresponding to these two

sets do not interact, Model (2) can be extended to a multiple-term matrix factor model as

Y t = HR1R1F 1tC
′
1H
′
C1

+HR2R2F 2tC
′
2H
′
C2

+U t. (4)

For example, countries can be grouped according to their geographic locations, such as

European and Asian countries, and also grouped according to their economic characteristics,

such as natural resource based and manufacture based economies, and the corresponding

factors may not interact with each other.

Note that (4) can be rewritten as (2), with HR =
[
HR1 , HR2

]
, HC =

[
HC1 , HC2

]
,

R =

[
R1 0

0 R2

]
,C =

[
C1 0

0 C2

]
, and F t =

[
F 1t 0

0 F 2t

]
.

Hence (4) is a special case of (2) with the strong assumption that the factor matrix is block

diagonal. Such a simplification can greatly increase the interpretation of the model.

Remark 1. The pre-specified constraint matrices HR1 and HR2 do not have to be orthog-

onal. Neither does the pair HC1 and HC2 . This is so because of the assumption of low

dimensionality of the latent matrix factors. Estimation procedures of Section 3.3 are able to

identify the loading matrices and the latent matrix factors if the transformed observations

still contain adequate information on the latent matrix factors. The rates of convergence

will change as a result of information loss from the estimation procedure to deal with the

nonorthogonality of HR1 and HR2 . Since we can always transform non-orthogonal con-

straint matrices to some orthogonal constraint matrices, we shall focus on the case when

HR1 and HR2 (or HC1 and HC2) are orthogonal.

In many applications, prior or domain knowledge may not be sufficiently comprehensive

or may only provide a partial specification of the constraint matrices. In the above example,

it is possible that the countries within a group react to one set of factors the same way,

but differently to another set of factors. In such cases, a partially constrained factor model

would be more appropriate. Specifically, a partially constrained matrix factor model can be

written as

Y t =
[
HR1R1 Λ2

] [F 11,t F 12,t

F 21,t F 22,t

][
C ′1H

′
C1

Γ′2

]
+U t,

where HR1 , R1, HC1 and C1 are defined similarly as those in (4). F ij,t’s are common ma-

trix factors corresponding to the interactions of the row and column loading space spanned
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by the columns of HR and HC and their complements, Λ2 is p1 × q1 row loading matrix

and Γ2 is a p2×q2 column loading matrix. Again, we have q1 < p1 and q2 < p2. We further

assume that vec(F ij,t)’s are independent with vec(U t). H ′R1
Λ2 = 0 and H ′C1

Γ2 = 0,

because all the row loadings that are in the space of HR1 and all the column loadings that

are in the space of HC1 could be absorbed into the first parts of loading matrices. Thus,

we could explicitly rewrite the model as

Y t =
[
HR1R1 HR2R2

] [F 11,t F 12,t

F 21,t F 22,t

][
C ′1H

′
C1

C ′2H
′
C2

]
+U t, (5)

where HR2 is a p1 × (p1 − m1) constraint matrix satisfying H ′R1
HR2 = 0, HC2 is a

p2× (p2−m2) constraint matrix satisfying H ′C1
HC2 = 0, R2 is (p1−m1)× q1 row loading

matrix, and C2 is a (p2 −m2)× q2 column loading matrix.

In the special case when F 21,t = 0 and F 12,t = 0, model (5) can be further simplified

as

Y t = HR1R1F 11,tC
′
1H
′
C1

+HR2R2F 22,tC
′
2H
′
C2

+U t. (6)

Model (6) is different from the multi-term model of (4) in that the matrix HR2 in (5) is

induced from HR1 while HR2 in (4) is an informative constraint, with a lower dimension.

In the special case when HC1 = Ip1 (there is no column constraint), model (5) becomes

Y t =
[
HR1R1 HR2R2

] [F 1,t

F 2,t

]
C ′ +U t,

where F 1,t = [F 11,t,F 12,t] and F 2,t = [F 21,t,F 22,t]. The left loading matrix still spans

the entire p1 dimensional space, but the first part of loading matrix R1 has a clearer

interpretation.

The partially constrained matrix factor model (5) incorporates partial information HR1

and HC1 in the unconstrained model (1) without ignoring the possible remainders. If we

include all four matrix factors in the four subspaces divided by the interactions of HR1

and HC1 and their complements, the number of parameters in (5) is the same as that

in the unconstrained model (1). However, as shown by the theorems in Section 4, the

rates of convergence are much faster than those of the unconstrained matrix factor model.

Furthermore, in most applications, inclusion of only two matrix-factor terms is adequate in

explaining high percentage of variability, as exemplified by the three applications in Section

6.

The benefits of partially constrained matrix factor models are two-folds. Firstly, it is

capable of picking up, from the complement space of HR and HC , the factors that are

unknown to researchers. In this case, the dimensions of F 22,t are typically much smaller
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than those of F 11,t even though the loading matrices R2 and C2 still have large numbers

of rows (p1 − m1) and columns (p2 − m2), respectively, since the constraint part should

have accommodated the main and key common factors. The spirit is similar to the two-

step estimation of Lam & Yao (2012) in which one fits a second-stage factor model to the

residuals obtained by subtracting the common part of the first-stage factor model.

The second benefit is that the partially constrained matrix factor model is able to

identify matrix factors whose dimensions are completely explained by the pre-specified

constraint matrices. Specifically, F 11,t represents the factor matrix with row and column

factors affecting the observed matrix-variate in the way as specified by the constraints HR

and HC completely. Consider the multinational macroeconomic index example. If HR is

built from the country classification information, how the rows in F 11,t affect the obser-

vations can be completely explained by the country groups instead of individual countries

and the row factors in F 11,t have a clearer interpretation related to the classification. In

many practical applications, researchers are interested in obtaining specific latent factors

related to some domain theories and use these specific factors to predict future values of

interest as guided by domain theories. For example, in the yield curve example of Appendix

A, economic theory implies that the level, slope, and curvature factors affect the observa-

tions in the way specified by, for example, HR = [h1,h2,h3], where h1 = (1, 1, 1, 1, 1)′,

bh2 = (1, 1, 0,−1,−1)′, and h3 = (−1, 0, 2, 0,−1). Then the estimation method in Section

3 is capable of isolating HR1R1F 11,tC
′
1H
′
C1

and correctly estimating the loadings and

the specified level, slope, and curvature factors in the constrained spaces. Thus, the con-

strained factor model can serve as a method to identify and isolate specific factors suggested

by domain theories or prior knowledge.

3 Estimation Procedure

Similar to all factor models, identification issue exits in the constrained matrix-variate

factor model (2). Let O1 and O2 be two invertible matrices of size k1 × k1 and k2 × k2.

Then the triples (R,F t,C) and (RO1,O
−1
1 F tO

−1
2 ,O2C) are equivalent under Model (2).

We may assume that the columns of R and C are orthonormal, that is, R′R = Ik1 and

C ′C = Ik2 , where Id denotes the d × d identity matrix. Even with these constraints, R,

F t and C are not uniquely determined in (2), as aforementioned replacement is still valid

for any orthonormal O. However, the column spaces of the loading matrices R and C are

uniquely determined. Hence, in the following sections, we focus on the estimation of the

column spaces of R and C. We denote the row and column factor loading spaces byM(R)

andM(C), respectively. For simplicity, we suppress the matrix column space notation and
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use the matrix notation directly.

3.1 Orthogonal Constraints

We start with the estimation of the constrained matrix-variate factor model (2). The

approach follows the ideas of Tsai & Tsay (2010) and Wang et al. (2017). In what follows,

we illustrate the estimation procedure for the column space of R. The column space of C

can be obtained similarly from the transpose of Y t’s.

Suppose we have orthogonal constraints H ′RHR = Im1 and H ′CHC = Im2 . Define the

transformation Xt = H ′RY tHC . It follows from (2) that

Xt = RF tC
′ +Et, t = 1, 2, . . . , T, (7)

where Et = H ′RU tHC .

This transformation projects the observed matrix time series into the constrained space.

For example, if HR is the orthonormal matrix corresponding to the group constraint in

(3), then H
′
RY t is a 2× p2 matrix, with the first row being the normalized average of the

rows of Y t in the first group and the second row being that in the second group. Such

an operation conveniently incorporates the constraints while reduces the dimension of data

matrix from p1 × p2 to m1 ×m2, making the analysis more efficient.

Since Et remains a white noise process, the estimation method in Wang et al. (2017)

directly applies to the transformed m1 × m2 matrix time series Xt in model (7). For

completeness, we outline briefly the procedure. See Wang et al. (2017) for details.

To facilitate the estimation, we use the QR decomposition R = Q1W 1 and C = Q2W 2

to normalize the loading matrices, so that model (7) can be re-expressed as

Xt = RF tC
′ +Et = Q1ZtQ

′
2 +Et, t = 1, 2, . . . , T, (8)

where Zt = W 1F tW
′
2, Q′1Q1 = Im1 and Q′2Q2 = Im2 .

We assume that both F t and Et are zero mean and thus E(Xt,·j) = 0. Let h be a

positive integer. For i, j = 1, 2, . . . ,m2, define

Ωzq,ij(h) =
1

T − h

T−h∑
t=1

Cov(ZtQ2,i·,Zt+hQ2,j·), and (9)

Ωx,ij(h) =
1

T − h

T−h∑
t=1

Cov(Xt,·i, Xt+h,·j), (10)

which can be interpreted as the auto-cross-covariance matrices at lag h between column i

and column j of {ZtQ
′
2}t=1,··· ,T and {Xt}t=1,··· ,T , respectively. For h > 0, both terms do

not involve Et due to the whiteness condition.
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For a fixed h0 ≥ 1 satisfying Condition 2 in Section 4, define

M =

h0∑
h=1

m2∑
i=1

m2∑
j=1

Ωx,ij(h)Ωx,ij(h)′ = Q1


h0∑
h=1

m2∑
i=1

m2∑
j=1

Ωzq,ij(h)Ωzq,ij(h)′

Q′1. (11)

Under Condition 2 the column space of M is the same as that of Q1, and the columns

of the factor loading matrix Q1 can be obtained as the k1 orthogonal eigenvectors of the

matrix M corresponding to its k1 non-zero eigenvalues arranged in the descending order.

Suppose we have centered the transformed observations {Xt}t=1,...,T , then for h ≥ 1 and a

prescribed positive integer h0, define the sample version of M in (11) as the following

M̂ =

h0∑
h=1

m2∑
i=1

m2∑
j=1

Ω̂x,ij(h)Ω̂x,ij(h)′, where Ω̂x,ij(h) =
1

T − h

T−h∑
t=1

Xt,·iX
′
t+h,·j . (12)

A natural estimator for Q1 is Q̂1 =
{
q̂1, · · · , q̂k1

}
, where q̂i is an eigenvector of M̂ ,

corresponding to its i-th largest eigenvalue. Consequently, we estimate the normalized

factors and residuals, respectively, by Ẑt = Q̂
′
1XtQ̂2 and Û t = Y t − ĤRQ̂1ẐtQ̂

′
2Ĥ
′
C .

The above estimation procedure assumes that the number of row factors k1 is known.

To determine k1, Wang et al. (2017) used the eigenvalue ratio-based estimator of Lam &

Yao (2012). Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m1 ≥ 0 be the ordered eigenvalues of M̂ . The ratio-based

estimator for k1 is defined as

k̂1 = arg min
1≤j≤K

λ̂j+1

λ̂j
,

where k1 ≤ K ≤ p1 is an integer. In practice we may take K = p1/2.

Although the estimation procedure on the transformed series Xt is exactly the same as

that of Wang et al. (2017), the asymptotic properties of the estimator is different due to

the transformation, as shown in Section 4.

3.2 Nonorthogonal Constraints

If the constraint matrix HR (or HC) is not orthogonal, we can perform column orthog-

onalization and standardization, similar to that in Tsai & Tsay (2010). Specifically, we

obtain

HR = ΘRKR,

where ΘR is an orthonormal matrix and KR is a m1 ×m1 upper triangular matrix with

nonzero diagonal elements. HC = ΘCKC can be obtained in the same way.

Letting Xt = Θ′RY tΘC , R∗ = KRR and C∗ = KCC, we have

Xt = R∗F tC
∗′ +Et, t = 1, 2, . . . , T, (13)
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where Et = Θ′RU tΘC . Since Et remains a white noise process, we apply the same estima-

tion method in Section 3.1 to obtain the estimates R̂
∗

and Ĉ
∗
. The estimates of R and C

are R̂ = K−1
R R̂

∗
and Ĉ = K−1

C Ĉ
∗
. Note that KR and KC are invertible lower triangular

matrices.

3.3 Multi-term Constrained Matrix Factor Model

Without loss of generality, we assume that both row and column constraint matrices are

orthogonal matrices. If HR1 and HR2 (or HC1 and HC2) are orthogonal, we obtain, for

t = 1, 2, . . . , T ,

H ′R1
Y tHC1 = R1F 1,tC

′
1 +H ′R1

U tHC1 ,

H ′R2
Y tHC2 = R2F 2,tC

′
2 +H ′R2

U tHC2 ,

where H ′R1
U tHC1 and H ′R2

U tHC2 are white noises. The estimators of R̂1, Ĉ1, F̂ 1,t, R̂2,

Ĉ2 and F̂ 2,t can be obtained by applying the estimation procedure described in Section 3.1

to H ′R1
Y tHC1 and H ′R2

Y tHC2 , respectively.

Remark 2. For multi-term constrained model (4), HR1 and HR2 (or HC1 and HC2)

may not necessarily be orthogonal. Under this situation, we illustrate the estimation pro-

cedure for the column loadings, while the row loading estimators for R̂1 and R̂2 can be

obtained from the same procedure applied to the transpose of Y t. Define projection ma-

trices PH⊥
R1

= I −HR1H
′
R1

and PH⊥
R2

= I −HR2H
′
R2

, which represent the projec-

tions onto the spaces perpendicular to the column spaces of HR1 and HR2 , respectively.

Left multiplying equations (4) by PH⊥
R2

and PH⊥
R1

, respectively, and taking transpose

of the resulting matrices, we have Y ′tPH⊥
R2

= HC1C1F
′
1,tR

′
1H
′
R1
PH⊥

R2

+U ′tPH⊥
R2

and

Y ′tPH⊥
R1

= HC2C2F
′
2,tR

′
2H
′
R2
PH⊥

R1

+ U ′tPH⊥
R1

, where PH⊥
R2

U t and PH⊥
R1

U t are

white noises. The column loading estimators Ĉ1 and Ĉ2 can be obtained by applying the

procedure described in Section 3.1 to H ′C1
Y ′tPH⊥

R2

and H ′C2
Y ′tPH⊥

R1

, respectively. Note

that the p1 ×m1 matrix PH⊥
R2

HR1 is no longer full rank or orthonormal. However, the

row and column loading spaces and latent factors can be fully recovered if the dimension of

the reduced constrained loading spaces still larger than the dimensions of the latent factor

spaces. However, the rates of convergence will change. For example, the rate of convergence

of Ĉ1 will depend on ‖PH⊥
R2

HR1R1‖22 instead of ‖HR1R1‖22.

3.4 Partially Constrained Matrix Factor Model

For the partially constrained matrix factor model (5), we assume that H ′R1
HR2 = 0 and

H ′C1
HC2 = 0. Define the transformation X

(lk)
t = H ′RlY tHCk for l, k = 1, 2. Then the
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transformed data follow the structure,

X
(lk)
t = RlF lk,tC

′
k +E

(lk)
t , l, k = 1, 2,

where E
(lk)
t = H ′RlU tHCk remains white noise processes.

Let M (lk) represent the M matrix defined in (11) for each X
(lk)
t , l, k = 1, 2. Define

M (l·) =
∑2

k=1M
(lk) for l = 1, 2, then

M (l·) = Q
(l)
1


2∑

k=1

h0∑
h=1

m2∑
i=1

m2∑
j=1

Ω
(lk)
zq,ij(h)Ω

(lk)
zq,ij(h)′

Q(l)′

1 , l = 1, 2, (14)

has the same column space as that of Rl, for l = 1, 2, respectively.

The estimators of R̂l, l = 1, 2, can be obtained by applying eigen-decomposition on the

sample version of M (l·) defined similarly to (12). Ck, k = 1, 2, can be obtained by using

the same procedure on the transposes of X
(lk)
t for l, k = 1, 2. In the special case of model

(6) if F 21,t = 0 and F 12,t = 0, the above estimation is essentially the same procedure as

those described in Section 3.1 applying to X
(ll)
t for l = 1, 2.

This procedure effectively projects the observed matrix time series Y t into four orthog-

onal subspaces, based on the constraints obtained from the domain knowledge or some

empirical procedure. Because X
(lk)
t , l, k = 1, 2 are orthogonal, they can be analyzed sep-

arately. In our setting, we divide a p1 × p1 row loading matrix space into two orthogonal

p1 × m1 and p1 × (p1 − m1) subspaces. The estimation procedure for the partially con-

strained model ensures the structural requirement that X
(l1)
t and X

(l2)
t share the same

row loading matrix for the same l without sacrificing the dimension reduction benefit from

column space division. More generally, we could divide the space of loading matrix into

more than two parts to accommodate each application. Under this partially constrained

model, the orthogonality assumption between F lk,t, l, k = 1, 2 is not important as all are

latent variables.

Remark 3. In situations when the prior or domain knowledge captures most major factors,

we know further that mi grows slower than pi and the row (column) factor strength of F 11,t

is no weaker than that of F 22,t. Improved estimators of R̂l, l = 1, 2, can be obtained by

applying eigen-decomposition on the sample version of M (l1) defined similarly to (12).

Improved estimators of Ĉk, k = 1, 2, can be obtained by using the same procedure on the

transposes of X
(1k)
t for k = 1, 2. Here, the estimation procedure discards the noisy part in

(14) and results in improved estimators.
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4 Theoretical Properties

In this section, we present the rates of convergence for the estimators under the setting that

p1, p2, m1, m2 and T all go to infinity while k1 and k2 are fixed and the factor structure

does not change over time. Note that the factor decomposition (2) is practically useful only

when k1 << p1 or k2 << p2.

The asymptotic convergence rates are significantly different from those in Wang et al.

(2017) due to the constraints. The results reveal more clearly the impact of the constraints

on signals and noises and the interaction between them. We only consider the case of the

orthogonal constrained model (2). Asymptotic properties of nonorthogonal, multi-term,

and partially constrained matrix factor model are trivial extensions.

Several regularity conditions (Conditions 1 to 5) are listed in the Appendix. They are

similar to those in Wang et al. (2017) and are used to derive the limiting behavior of (12)

towards its population version. The following condition requires some discussion.

Condition 6. Factor Strength. There exist constants δ1 and δ2 in [0, 1] such that

‖HRR‖22 � p
1−δ1
1 � ‖HRR‖2min and ‖HCC‖22 � p

1−δ2
2 � ‖HCC‖2min.

Since only Y t is observed in model (2), how well we can recover the factor F t from Y t

depends on the ‘factor strength’ reflected by the coefficients in the row and column factor

loading matrices HRR and HCC. For example, in the case of HRR = 0 or HCC = 0,

Y t carries no information on F t. In the following, we assume ‖F t‖ does not change as p1,

p2, m1, and m2 change.

The rates δ1 and δ2 in Condition 6 are called the strength for the row factors and the

column factors, respectively. If δ1 = 0, the corresponding row factors are called strong

factors because the case includes situation where each element of the row loading matrix is

O(1), implying that the factors have impacts on the majority of p1 vector time series. The

amount of information that observed process Y t carries about the strong factors increases

at the same rate as the number of observations or the amount of noise increases. If δ1 > 0,

the row factors are weak, which means the information contained in Y t about the factors

grows more slowly than the noises introduced as p1 increases. The smaller the δ′s, the

stronger the factors. In the strong factor case, the loading matrix is dense. See Lam et al.

(2011) for further discussions.

If we restrictHR to be orthonormal, ||HRR||22 = ||R||22 � p
1−δ1
1 and there is an interplay

between HR and R as p1 increases. In order for HR to remain orthonormal, when p1

increases, each element ofHR decreases at the rate of p
−1/2
1 . At the same time, each element

of R on average increases
√
p1−δ1

1 /m1. The column factor loading ||HCC||22 behaves in the
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same way. As p1 and p2 increase, each element of the transformed error Et remains a

growth rate of 1 under Condition 3, but the dimension of Et is m1 × m2 which grows

at a slower rate than p1 × p2. The factor strength is defined in terms of the observed

dimension p1 and p2 and the overall loading matrices HRR and HCC, but clearly how

m1 and m2 increase with p1, p2 is also important because it controls the signal-noise ratio

in the constrained model. For example, if mi/pi = ci < 1, i = 1, 2, that is, the number

of members in each group is fixed, then ||R||22||C||22 � m1−δ1
1 m1−δ2

2 /c1−δ1
1 c1−δ2

2 , compared

to ||Et||22 � m1m2. If mi = pαii , αi < 1, i = 1, 2, then ||R||22||C||22 � m
(1−δ1)/α1

1 m
(1−δ2)/α2

2

compared to ||Et||22 � m1m2. Since ci < 1 and αi < 1, the signal-noise ratio is larger than

m−δ11 m−δ22 , which is the signal-noise ratio of a unconstrained matrix factor model when

p1 = m1 and p2 = m2.

We have the following theorems for the constrained matrix factor model. Asymptotic

properties for the multi-term and the partially constrained matrix factor models are similar

and can be derived easily.

Theorem 1. Under Conditions 1-6 and m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), as m1, p1, m2,

p2, and T go to ∞, it holds that

‖Q̂1 −Q1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
,

‖Q̂2 −Q2‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
.

Remark 4. In the unconstrained case, Wang et al. (2017) obtained the rate of pδ11 p
δ2
2 T
−1/2.

The difference between the two models is of the order of m1m2
p1p2

.

The rate of convergence in Theorem 1 depends on the relative growth rate of m1m2 and

p1−δ1
1 p1−δ2

2 . We achieve ‖Q̂i−Qi‖2 = Op
(
T−1/2

)
not only in the strong factor case but also

in the weak factor case (i.e. δ > 0) so long as m1m2 increases at a slower rate than or equal

to that of p1−δ1
1 p1−δ2

2 , e.g. m1m2 ∼ Op(p
1−δ1
1 p1−δ2

2 ). The improvement on the convergence

rate for the weak factor case results from the fact that the constraints effectively reduce

the dimension of the data matrix from p1 × p2 to m1 ×m2 whereas the error magnitude

remains the same.

For fixed dimensions of the constrained row and column loading spaces m1 and m2, we

have more and more observations in each group and the convergence rate is pδ1−1
1 pδ2−1

2 T−1/2.

Here, increases in p1 or p2 improve the convergence rate. This is because, if constraints are

properly specified, the additional information introduced from increasing p1 or p2 will accrue

and translate into the transformed signal part in (7), while the transformed noise part does
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not accumulate. In a sense, constraints allow signals to pass through while filtering out the

noises.

If m1 = pα1
1 and m2 = pα2

2 , the rate is pδ1+α1−1
1 pδ2+α2−1

2 T−1/2, and we achieve a better

rate than that of the unconstrained case if α1 < 1 or α2 < 1. If m1 = c1p1 and m2 = c2p2,

that is, the dimensions of the constrained loading spaces increase with p’s linearly, then the

rate is the same as that of the unconstrained model.

Remark 5. The strengths of row factors and column factors δ1 and δ2 determine the

convergence rate jointly. An increase in the strength of row factors is able to improve the

estimation of the column factors loading space and vice versa.

Theorem 2. Under Conditions 1-6, and if m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1) and the M

matrix has k1 distinct positive eigenvalues, then the eigenvalues {λ̂1, . . . , λ̂m1} of M̂ , sorted

by the descending order, satisfy

|λ̂j − λj | = Op

(
max

(
p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2

)
· T−1/2

)
, for j = 1, 2, . . . , k1,

|λ̂j | = Op

(
max

(
p2−2δ1

1 p2−2δ2
2 , m2

1m
2
2

)
· T−1

)
, for j = k1 + 1, . . . ,m1,

where λ1 > λ2 > · · · > λm1 are the eigenvalues of M .

Theorem 2 shows that the estimators for the nonzero eigenvalues of M converge more

slowly than those for the zero eigenvalues. This provides the theoretical support for the

ratio-based estimator of the number of factors described in Section 3.1, similar to that

in Lam et al. (2011). The assumption that M has k1 distinct positive eigenvalues is not

essential, yet it substantially simplifies the presentation and the proof of the convergence

properties.

In the cases of strong factors or wake factors with m1m2 ∼ op(p
1−δ1
1 p1−δ2

2 ), our result

is the same as that of Wang et al. (2017). When the factors are weak and p1−δ1
1 p1−δ2

2 ∼
Op(m1m2), the gap between the convergence rates of nonzero and zero eigenvalues of M is

larger in the constrained case.

Let St be the dynamic signal part of Y t, i.e. St = HRRF tC
′H ′C = HRQ1ZtQ

′
2H
′
C .

From the discussion in Section 3.1, St can be estimated by

Ŝt = HRQ̂1ẐtQ̂
′
2H
′
C .

Some theoretical properties of Ŝt are given below:

Theorem 3. Under Conditions 1-6 and m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), we have

1
√
p1p2
‖Ŝt − St‖2 = Op

(
max

(
p
−δ1/2
1 p

−δ2/2
2 , m1p

−1+δ1/2
1 m2p

−1+δ2/2
2

)
· 1√

T
+

1
√
p1p2

)
.
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When m1m2 ∼ op(p
1−δ1
1 p1−δ2

2 ), the rate in Theorem 3 becomes 1√
p1p2
‖Ŝt − St‖2 =

Op

(
p
−δ1/2
1 p

−δ2/2
2 T−1/2 + p

−1/2
1 p

−1/2
2

)
and increases in p1 and p2 improve the convergence

rate. In other cases, we get 1√
p1p2
‖Ŝt−St‖2 = Op

(
m1p

−1+δ1/2
1 m2p

−1+δ2/2
2 T−1/2 + p

−1/2
1 p

−1/2
2

)
.

And so long as m1m2 increases slower than p1p2 does, we get a faster convergence rate than

that of the unconstrained model in Wang et al. (2017). Note that the estimation of the

loading spaces are consistent with fixed p1 and p2 in Theorem 1. But the consistency of

the signal estimate requires p1, p2 →∞.

As noted in Section 3, the row and column factor loading matrices Λ = HRR and

Γ = HCC are only identifiable up to a linear space spanned by its columns. Following

Lam et al. (2011) and Wang et al. (2017), we adopt the discrepancy measure used by Chang

et al. (2015): for two orthogonal matrices O1 and O2 of size p × q1 and p × q2, then the

difference between the two linear spaces M(O1) and M(O2) is measured by

D(M(O1),M(O2)) =

(
1− 1

max(q1, q2)
tr
(
O1O

′
1O2O

′
2

))1/2

. (15)

Clearly, D(M(O1),M(O2)) assumes values in [0,1]. It equals to 0 if and only if

M(O1) = M(O2) and equals to 1 if and only if M(O1) ⊥ M(O2). If O1 and O2 are

vectors, (15) is the cosine similarity measure. The following Theorem 4 shows that the

error in estimating loading spaces goes to zero as p1, p2 and T go to infinity and the

convergence rate is of the same order as that for estimated Λ and Γ.

Theorem 4. Under Conditions 1-6 and if m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), then

D(M(Λ̂),M(Λ)) = D(M(Γ̂),M(Γ))

= Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
.

Asymptotic theories for estimators of nonorthogonal, multi-term constrained factors

model are trivial extensions of the above properties for the orthogonal constrained model.

5 Simulation

In this section, we use simulation to study the performance of the estimation methods

of Section 3 in finite samples. We also compare the results with those of unconstrained

models. We employ data generating models under orthogonal full and partial constraints,

respectively. In the simulation, we use the Student-t distribution with 5 degrees of freedom

to generate the entries in the disturbances U t. Using Gaussian noise shows similar results.
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5.1 Case 1. Orthogonal Constraints

In this case, the observed data Y t’s are generated according to Model (2),

Y t = HRRF tC
′H ′C +U t, t = 1, . . . , T,

under the following simulation design.

The latent factor process F t is of dimension k1×k2 = 3×2. The entries of F t follow k1k2

independent AR(1) processes with Gaussian white noise N (0, 1) innovations. Specifically,

vec(F t) = ΦF vec(F t−1)+εt with ΦF = diag(−0.5, 0.6, 0.8,−0.4, 0.7, 0.3). The dimensions

of the constrained row and column loading spaces are m1 = 12 and m2 = 3, respectively.

Hence, R is 12 × 3 and C is 3 × 2. The entries of R and C are independently sampled

from the uniform distribution U(−p−δi/2i

√
mi/pi, p

−δi/2
i

√
mi/pi) for i = 1, 2, respectively,

so that the condition on the factor strength is satisfied. The disturbance U t = Ψ1/2Ξt

is a white noise process, where the elements of Ξt are independent random variables of

Student-t distribution with five degrees of freedom and the matrix Ψ1/2 is chosen so that

U t has a Kronecker product covariance structure cov(vec(U t)) = Γ2 ⊗ Γ1, where Γ1 and

Γ2 are of size p1 × p1 and p2 × p2 respectively. For Γ1 and Γ2, the diagonal elements are 1

and the off-diagonal elements are 0.2.

The effects of factor strength are investigated by varying factor strength parameter

(δ1, δ2) among (0, 0), (0.5, 0), (0.5, 0.5). For each pair of δi’s, the dimensions (p1, p2) are

chosen to be (20, 20), (20, 40), (40, 20) and (40, 40). The sample sizes T are 0.5p1p2, p1p2,

1.5p1p2 and 2p1p2. For each combination of the parameters, we use 500 realizations. And

we use h0 = 1 for all simulations. Estimation error ofM(Q̂i) is defined as D(Q̂i,Qi), where

the distance D is defined in (15).

The row constraint matrix HR is a p1 × 12 orthogonal matrix. For p1 = 20, HR is

assumed to be a block diagonal matrix I4⊗D, where Ik is the identify matrix of dimension

k and D = [d1,d2,d3] is a 5×3 matrix with d′1 = (1, 1, 1, 1, 1)/
√

5, d′2 = (−1,−1, 0, 1, 1)/2,

d′3 = (−1, 0, 2, 0,−1)/
√

6. These three dj vectors can be viewed as the level, slope and

curvature, respectively, of a group of five variables. Therefore, the 20 rows are divided into

4 groups of size 5. When we increase p1 to 40 while keeping m1 = 12 fixed, we double

the length of each vector in the columns of D, using d′1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)/
√

10,

d′2 = (−1,−1,−1,−1, 0, 0, 1, 1, 1, 1)/
√

8 and d′3 = (−1,−1, 0, 0, 2, 2, 0, 0,−1,−1)/
√

12.

The column constraint matrix HC is a p2 × 3 orthogonal matrix. For p2 = 20, the

three columns of HC are generated as hc,1 = [17/
√

7,07,06]′, hc,2 = [07,17/
√

7,06]′,

hc,3 = [07,07,16/
√

6]′, where 0k denotes a k-dimensional zero row vector. The constraints

represent a 3-group classification. The 20 columns are divided into 3 groups of size 7, 7
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and 6 respectively. In increasing p2 to 40 while keeping m2 = 3 fixed, we double the length

of each vector in the columns defined above.

Table 1 shows the performance of estimating the true number of factors. We compare

the total number of estimated factors k̂ = k̂1k̂2 with the true value k = k1k2 = 6. The

subscripts c and u denote results from the constrained model (2) and unconstrained model

(1), respectively. fc and fu denote the relative frequency of correctly estimating the true

number of factors k. From the table, we make the following observations. First, when the

row and column factors are strong, i.e. (δ1, δ2) = (0, 0), both constrained and unconstrained

models can estimate accurately the number of factors, but the constrained models fare

better when the sample size is small. Second, if the strength of the row factors is weak, but

the strength of the column factors is strong, i.e. (δ1, δ2) = (0.5, 0), the unconstrained models

fail to estimate the number of factors, but the constrained models continue to perform well.

Furthermore, as expected, the performance of the constrained models improves with the

sample size. Finally, if the strength of the row and columns factors is weak, i.e. (δ1, δ2) =

(0.5, 0.5), both models encounter difficulties in estimating the correct number of factors for

the sample sizes used. This is not surprising as weak signals are hard to detect in general.

T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2

δ1 δ2 p1 p2 fu fc fu fc fu fc fu fc

0 0

20 20 0.29 0.95 0.77 1 0.95 1 0.99 1

20 40 0.77 1 0.99 1 1 1 1 1

40 20 0.81 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1

0.5 0

20 20 0 0.2 0 0.49 0 0.78 0 0.92

20 40 0 0.68 0 0.96 0 0.99 0 1

40 20 0 0.37 0 0.78 0 0.92 0 0.97

40 40 0 0.86 0 0.98 0 0.99 0 1

0.5 0.5

20 20 0 0.05 0 0.02 0 0.02 0 0.01

20 40 0 0.03 0 0.02 0 0.01 0 0

40 20 0 0.05 0 0.01 0 0 0 0.01

40 40 0 0.05 0 0 0 0.01 0 0.04

Table 1: Relative frequencies of correctly estimating the number of factors k in the case of

orthogonal constraints.

Figure 1 shows the box-plots of the estimation errors in estimating the loading spaces of

Q = Q2 ⊗Q1 using the correct number of factors. The gray boxes are for the constrained

models. From the plots, it is seen that when both row and column factors are strong, i.e.
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(δ1, δ2) = (0, 0), and the number of factors is properly estimated, the mean and standard

deviation of the estimation errors D(Q̂,Q) are small for both models, but the constrained

model has a smaller mean estimation error. When row factors are weak, i.e. (δ1, δ2) =

(0.5, 0), and the number of factors is given, the estimation error of constrained models

remains small whereas that of the unconstrained models is substantially larger.

Table 2 shows the mean and standard deviations of the estimation errors D(Q̂i,Qi) for

row (i = 1) and column (i = 2) loading spaces separately for the constrained model (2).

Column loading spaces are estimated with higher accuracy because the number of column

constraints (p1 − m1) is larger than the number of row constraints (p2 − m2). From the

table, we see that (a), as expected, the mean of estimation errors decreases as the sample

size increases and (b) the mean of estimation errors is inversely proportional to the strength

of row factors.

T = 0.5p1p2 T = 1.5p1p2 T = 1p1p2 T = 2p1p2
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Figure 1: Box-plots of the estimation accuracy measured by D(Q̂,Q) for the case of or-

thogonal constraints. Gray boxes represent the constrained model. The results are based

on 500 iterations. See Table 14 in Appendix D for plotted values.

To investigate the performance of estimation under different choices of h0, which is

the number of lags used in (11), we change the underlying generating model of vec(F t)

to a VAR(2) process without the lag-1 term, vec(F t) = ΦF vec(F t−2) + εt. Here we only

consider the strong factor setting with δ1 = δ2 = 0 and use the sample size T = 2p1p2 for

each combination of p1 and p2. All the other parameters are the same as those in Section

5.1. Table 3 presents the simulation results. Since vec(F t), and hence vec(Y t), has zero

auto-covariance matrix at lag 1, M̂ under h0 = 1 contains no information on the signal,
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T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2

δ1 δ2 p1 p2 D(Q̂1, Q1) D(Q̂2, Q2) D(Q̂1, Q1) D(Q̂2, Q2) D(Q̂1, Q1) D(Q̂2, Q2) D(Q̂1, Q1) D(Q̂2, Q2)

0 0

20 20 0.71(0.18) 0.13(0.07) 0.51(0.13) 0.09(0.05) 0.41(0.09) 0.07(0.04) 0.35(0.07) 0.06(0.03)

20 40 0.46(0.11) 0.08(0.04) 0.32(0.07) 0.05(0.03) 0.27(0.06) 0.04(0.02) 0.23(0.05) 0.04(0.02)

40 20 0.40(0.12) 0.07(0.04) 0.28(0.07) 0.05(0.03) 0.23(0.06) 0.04(0.02) 0.19(0.05) 0.04(0.02)

40 40 0.26(0.07) 0.04(0.02) 0.18(0.04) 0.03(0.02) 0.14(0.04) 0.03(0.01) 0.13(0.03) 0.02(0.01)

0.5 0

20 20 1.84(0.75) 0.5(0.23) 1.23(0.35) 0.30(0.15) 0.95(0.23) 0.22(0.11) 0.81(0.18) 0.17(0.09)

20 40 1.08(0.30) 0.26(0.13) 0.74(0.18) 0.15(0.08) 0.61(0.14) 0.12(0.06) 0.52(0.12) 0.10(0.05)

40 20 1.18(0.45) 0.28(0.15) 0.78(0.23) 0.17(0.09) 0.64(0.18) 0.13(0.07) 0.54(0.14) 0.11(0.06)

40 40 0.71(0.21) 0.14(0.08) 0.48(0.13) 0.09(0.05) 0.39(0.1) 0.07(0.04) 0.35(0.09) 0.06(0.03)

0.5 0.5

20 20 5.84(0.62) 2.04(0.53) 5.35(0.75) 1.63(0.42) 4.68(1.17) 1.33(0.34) 4.20(1.31) 1.13(0.32)

20 40 5.62(0.68) 1.98(0.40) 4.75(1.13) 1.47(0.30) 3.96(1.33) 1.18(0.27) 3.32(1.35) 0.97(0.24)

40 20 5.53(0.61) 1.52(0.50) 4.68(1.25) 1.00(0.37) 3.64(1.46) 0.76(0.30) 2.87(1.42) 0.61(0.25)

40 40 5.01(1.01) 1.32(0.38) 3.64(1.47) 0.84(0.29) 2.62(1.46) 0.61(0.20) 1.98(1.14) 0.49(0.19)

Table 2: Means and standard deviations (in parentheses) of the estimation accuracy mea-

sured by D(Q̂,Q) for constrained factor models. The case of orthogonal constraints is used.

All numbers in the table are 10 times the true numbers for clear presentation. The results

are based on 500 simulations.

and, as expected, both the constrained and unconstrained models fail to correctly estimate

the number of factors and the loading space. On the other hand, both models are able to

correctly estimate the number of factors when h0 > 1 with the constrained model faring

better. The fact that h0 = 2, 3, 4 give very similar results shows that the choice of h0 does

not affect the performance much so long as at least one non-zero auto-covariance matrix

is included in the calculation. In practice, one can select h0 by examining the sample

cross-correlation matrices of Y t.

5.2 Case 2. Partial Orthogonal Constraints

In this case, the observed data Y t’s are generated using Model (5),

Y t = HRR1F tC
′
1H
′
C +LRR2GtC

′
2L
′
C +U t, t = 1, . . . , T.

Parameter settings of the first part HRR1F tC
′
1H
′
C are the same as those in Case 1. The

latent factor process Gt is of dimension q1 × q2 = 5 × 4. The entries of Gt follow q1q2

independent AR(1) processes with Gaussian white noise N (0, 1) innovations, vec(Gt) =

ΦG vec(Gt−1)+εt with ΦG being a diagonal matrix with entries (−0.7, 0.5,−0.2, 0.9, 0.1, 0.4,

0.6,−0.5, 0.7, 0.7,−0.4, 0.4, 0.4,−0.6,−0.6, 0.6,−0.5,−0.3, 0.2,−0.4). The row loading ma-

trix LRR2 is a 20 × 5 orthogonal matrix, satisfying H ′RLR = 0. The column loading

matrix LCC2 is a 20× 4 orthogonal matrix, satisfying H ′CLC = 0. The entries of R2 and

C2 are random draws from the uniform distribution between −p−ηi/2i

√
pi/(pi −mi) and
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p1 p2 h0 = 1 h0 = 2 h0 = 3 h0 = 4

fc

20 20 0.12 1.00 1.00 1.00

20 40 0.16 1.00 1.00 1.00

40 20 0.12 1.00 1.00 1.00

40 40 0.22 1.00 1.00 1.00

fu

20 20 0.00 0.89 0.58 0.43

20 40 0.00 1.00 1.00 0.95

40 20 0.00 1.00 1.00 0.97

40 40 0.00 1.00 1.00 1.00

Dc(Q̂,Q)

20 20 2.83(1.13) 0.36(0.07) 0.37(0.07) 0.38(0.08)

20 40 2.69(1.15) 0.23(0.05) 0.23(0.05) 0.24(0.05)

40 20 2.54(1.21) 0.20(0.05) 0.20(0.05) 0.21(0.06)

40 40 2.31(1.17) 0.13(0.03) 0.13(0.03) 0.14(0.04)

Du(Q̂,Q)

20 20 4.37(1.29) 0.51(0.07) 0.53(0.07) 0.53(0.08)

20 40 4.30(1.30) 0.34(0.04) 0.35(0.04) 0.35(0.04)

40 20 4.36(1.31) 0.36(0.04) 0.37(0.04) 0.37(0.05)

40 40 4.34(1.34) 0.24(0.02) 0.24(0.03) 0.25(0.03)

Table 3: Performance of estimation under different choices of h0 when vec(F t) =

ΦF vec(F t−2) + εt. Metrics reported are relative frequencies of correctly estimating k,

means and standard deviations (in parentheses) of the estimation accuracy measured by

D(Q̂,Q). Means and standard deviations are multiplied by 10 for ease in presentation.

p
−ηi/2
i

√
pi/(pi −mi) for i = 1, 2, respectively, so that the conditions on factor strength are

satisfied. Factor strength is controlled by the δi’s.

Model (5) could be written in the following form:

Y t = (HRR1 LRR2)

(
F t 0

0 Gt

)(
C ′1H

′
C

C ′2L
′
C

)
+U t, t = 1, . . . , T.

In this form, the true number of factors is k0 = (k1+r1)(k2+r2) and the true loading matrix

is (HCC1 LCC2) ⊗ (HRR1 LRR2). Table 4 shows the frequency of correctly estimating

k0 based on 500 iterations. In the table, fu denotes the frequency of correctly estimating k0

for unconstrained model. f1 and f2 denote the same frequency metric for the first matrix

factor F t and second matrix factor Gt of the constrained model. The number of factors in

F t is estimated with a higher accuracy because the dimension of constrained loading space

for F t is m1m2 = 36, which is smaller than that for Gt, (p1 −m1)(p2 −m2) = 136. The
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result again confirms the theoretical results in Section 4. Note that Table 4 only contains

selected combinations of factor strength parameters δi’s (i = 1, . . . 4). The results of all

combinations of factor strength are given in Table 15 in Appendix D.

Figure 2 and Figure 3 present box-plots of estimation errors under weak and strong

factors from 500 simulations, respectively. Again, the results show that the constrained

approach efficiently improves the estimation accuracy. The performance of constrained

model is good even in the case of weak factors. Moreover, with stronger signals and larger

sample sizes, both approaches increase their estimation accuracy.

T = 0.5 ∗ p1 ∗ p2 T = p1 ∗ p2 T = 1.5 ∗ p1 ∗ p2 T = 2 ∗ p1 ∗ p2

δ1 δ2 δ3 δ4 p1 p2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2

0 0 0 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0.01 1.00 0

20 40 0 1.00 0 0 1.00 0 0.03 1.00 0 0.19 1.00 0

40 20 0.15 0.99 1.00 0.81 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

40 40 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 0 0.5 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0 1.00 0

20 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0

40 20 0 0.99 0.54 0 1.00 0.84 0 1.00 0.97 0 1.00 1.00

40 40 0 1.00 0.98 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00

0.5 0.5 0.5 0.5

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0

20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0

40 20 0 0.06 0 0 0.01 0 0 0 0 0 0 0

40 40 0 0.06 0 0 0 0 0 0 0 0 0.03 0

Table 4: Relative frequencies of correctly estimating the number of factors for partially

constrained factor models. Full tables including all combinations are presented in Table 15

in Appendix D.

6 Applications

In this section, we demonstrate the advantages of using constrained matrix-variate factor

models with three applications. In practice, the number of common factors (k1, k2) and the

dimensions of constrained row and column loading spaces (m1, m2) must be pre-specified in

order to determine an appropriate constrained factor model. The numbers of factors (k1, k2)

can be determined by any existing methods, such as those in Lam & Yao (2012) and Wang

et al. (2017). For any given (k1, k2), the the dimensions of constrained row and column

loading spaces (m1,m2) can be determined by either (a) prior or substantive knowledge or

(b) an empirical procedure. The results show that even simple grouping information can

substantially increase the accuracy in estimation.
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Figure 2: The strong factors case. Box-plots of the estimation accuracy measured by

D(Q̂,Q) for partially constrained factor models. The gray boxes are for the constrained

approach. The results are based on 500 realizations. See Table 16 in Appendix D for the

plotted values.
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Figure 3: The weak factors case. Box-plots of the estimation accuracy measured byD(Q̂,Q)

for partially constrained factor models. The gray boxes are for the constrained approach.

The results are based on 500 realizations. See Table 16 in Appendix D for the plotted

values.
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6.1 Example 1: Multinational Macroeconomic Indices

We apply the constrained and partially constrained factor models to the macroeconomic

indices dataset collected from OECD. The dataset contains 10 quarterly macroeconomic

indices of 14 countries from 1990.Q2 to 2016.Q4 for107 quarters. Thus, we have T =

107 and p1 × p2 = 14 × 10 matrix-valued time series. The countries include developed

economies from North American, European, and Oceania. The indices cover four major

groups, namely production, consumer price, money market, and international trade. Each

raw time series is transformed by taking the first or second difference or logarithm to satisfy

the mixing condition in Condition 4. Countries, detailed descriptions of the dataset, and

transformation procedures are given in Tables 12 and 13 of Appendix C.

We first fit an unconstrained matrix factor model which generates estimators of the

row loading matrix and the column loading matrix. In the row loading matrix, each row

represents a country by its factor loadings for all common row factors, whereas, in the

column loading matrix, each row represents a macroeconomic index by its factor loadings

for all common column factors. A hierarchical clustering algorithm is employed to cluster

countries and macroeconomic indices based on their representations in the common row

and column factor spaces, respectively. Figure 4 shows the hierarchical clustering results.

Therefor, we construct the row and column constraint matrices based on the clustering

results. It seems that the row constraint matrix divides countries into 6 groups: (i) United

States and Canada; (ii) New Zealand and Australia; (iii) Norway; (iv) Ireland, Denmark,

and United Kingdom; (v) Finland and Sweden; (vi) France, Netherlands, Austria, and

Germany. The grouping more or less follows geographical partition with Norway different

from all others due to its rich oil production and other distinct economic characteristics.

The column constraint matrix divide macroeconomic indices into 5 categories: (i) GDP,

production of total industry excluding construction, and production of total manufacturing

; (ii) long-term government bond yields and 3-month interbank rates and yields; (iii) total

CPI and CPI of Food; (iv) CPI of Energy; (v) total exports value and total imports value

in goods. Again, the grouping agrees with common economic knowledge.

Table 5 shows estimates of the row and column loading matrices for constrained and

unconstrained 4× 4 factor models. The loading matrices are normalized so that the norm

of each column is one. They are also varimax-rotated to reveal a clear structure. The

values shown are the rounded values of the estimates multiplied by 10 for ease in display.

From the table, both the row and column loading matrices exhibit similar patterns between

unconstrained and constrained models, partially validating the constraints while simplifying

the analysis.
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Figure 4: Macroeconomic series: Clustering loading matrices

Table 6 provides the estimates under the same setting as that of Table 5 but without

any rotation. From the table, it is seen that except for the first common factors of the

row loading matrices there exist some difference in the estimated loading matrices between

unconstrained and constrained factor models. The results of constrained models convey

more clearly the following observations. Consider the row factors. The first row common

factor represents the status of global economy as it is a weighted average of all the countries

under study. The remaining three row common factors mark certain differences between

country groups. For the column factors, the first column common factor is dominated

by the price index and interest rates; The second column common factor is mainly the

production and international trade; The remaining two column common factors represent

interaction between price indices, interest rates, productions, and international trade.

Table 7 compares the out-of-sample performance of unconstrained, constrained, and

partially constrained factor models using a 10-fold cross validation (CV) for models with

different number of factors. Residual sum of squares (RSS), their ratios to the total sum of

squares (RSS/TSS), and the number of parameters are means of the 10-fold CV. Clearly,

the constrained factor model uses far fewer parameters in the loading matrices yet achieves

slightly better results than the unconstrained model. Using the same number of parameters,

the partially constrained model is able to reduce markedly the RSS over the unconstrained

model.

In this particular application, the constrained matrix factor model with the specified
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Model Loading Row USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU

Runc,rot R̂′rot

1 7 7 1 1 -1 -2 -1 0 1 0 0 0 0 -1

2 0 1 -2 -1 1 1 1 2 4 3 4 4 4 4

3 2 -1 5 5 1 5 3 2 -1 1 1 0 0 0

4 -1 1 1 2 9 -3 0 0 0 1 -1 1 0 0

Rcon,rot R̂′rotH
′
R

1 6 6 0 0 0 2 2 2 -1 -1 0 0 0 0

2 -1 -1 0 0 0 3 3 3 4 4 3 3 3 3

3 0 0 7 7 0 1 1 1 1 1 -1 -1 -1 -1

4 0 0 0 0 10 0 0 0 1 1 0 0 0 0

Model Loading Row CPI:Food CPI:Tot CPI:Ener IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im

Cunc,rot Ĉ ′rot

1 6 7 3 -1 1 0 0 -1 -1 0

2 -2 1 4 1 -1 0 0 0 6 6

3 0 0 1 8 6 -1 0 1 0 0

4 1 -1 0 0 0 6 6 5 0 0

Ccon,rot Ĉ ′rotH
′
C

1 7 7 0 0 0 0 0 0 0 0

2 0 0 6 0 0 0 0 0 6 6

3 0 0 0 7 7 0 0 0 0 0

4 0 0 -2 0 0 6 6 6 1 1

Table 5: Estimations of row and column loading matrices (varimax rotated) of constrained

and unconstrained matrix factor models for multinational macroeconomic indices. The

loadings matrix are multiplied by 10 and roundedto integers for ease in display.

constraint matrices seems appropriate and plausible. If incorrect structures (constraint

matrices) are imposed on the model, then the constrained model may become inappropriate.

As we can see from the next example, a single orthogonal constraint actually hurts the

performance. In cases like this, we need a second or a third constraint to achieve satisfactory

performance. Nevertheless, the results from the constrained model are better than those

from the unconstrained model.

6.2 Example 2: Company Financials

In this application, we investigate the constrained matrix-variate factor models for the time

series of 16 quarterly financial measurements of 200 companies from 2006.Q1 to 2015.Q4

for 40 observations. Appendix E contains the descriptions of variables used along with

their definitions, the 200 companies and their corresponding industry group and sector in-

formation. Data are arranged in matrix-variate time series format. At each t, we observe a

16×200 matrix, whose rows represent financial variables and columns represent companies.

Thus we have T = 40, p1 = 16 and p2 = 200. The total number of time series is 3, 200.

Following the convention in eigenanalysis, we standardize the individual series before ap-

plying factor analysis. This data set was used in Wang et al. (2017) for an unconstrained
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Model Loading Row USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU

Runc R̂′

1 3 2 2 2 2 2 3 3 3 3 3 3 3 3

2 4 2 5 5 1 0 1 0 -3 -1 -2 -2 -2 -3

3 3 6 -2 -2 4 -5 -3 -1 1 0 -1 1 0 0

4 -4 -3 0 2 8 -1 1 0 -1 1 0 1 0 0

Rcon R̂′H ′R

1 1 1 2 2 2 3 3 3 4 4 3 3 3 3

2 5 5 3 3 4 0 0 0 -2 -2 -2 -2 -2 -2

3 -1 -1 5 5 -6 0 0 0 0 0 -1 -1 -1 -1

4 -4 -4 3 3 6 -2 -2 -2 1 1 -1 -1 -1 -1

Model Loading Row CPI:Food CPI:Ener CPI:Tot IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im

Cunc Ĉ ′

1 1 4 2 4 3 3 3 3 4 4

2 5 3 6 -1 1 -3 -4 -4 0 0

3 5 -1 2 -1 1 4 4 3 -4 -4

4 0 -1 -2 7 5 -2 -2 0 -3 -3

Ccon Ĉ ′H ′C

1 6 -2 6 4 4 0 0 0 -2 -2

2 0 0 0 3 3 5 5 5 3 3

3 -3 3 -3 5 5 -3 -3 -3 1 1

4 3 5 3 -1 -1 -2 -2 -2 5 5

Table 6: Estimations of row and column loading matrices of constrained and unconstrained

matrix factor models for multinational macroeconomic indices. No rotation is used. The

loadings matrix are multiplied by 10 and rounded to integers for ease in display.

matrix factor model.

The column constraint matrix HC is constructed based on the industrial classification

of Bloomberg. The 200 companies are classified into 51 industrial groups, such as biotech-

nology, oil & gas, computer, among others. Thus the dimension of HC is 200 × 51. Since

we do not have adequate prior knowledge on corporate financials, we do no impose any

constraint on the row loading matrix. Thus, in this application, we use HR = I16.

We apply the unconstrained model (1), the orthogonal constrained model (7), and the

partial constrained model (5) to the data set. Table 8 shows the average residual sum

of squares (RSS) and their ratios to the total sum of squares (TSS) from a 10-fold CV

for models with different number of factors. Again, it is clear, from the table, that the

constrained matrix factor models use fewer number of parameters in loading matrices and

achieve similar results. If we use the same number of parameters in the loading matrices,

variances explained by the constrained matrix factor models are much larger than those of

the unconstrained ones, indicating the impact of over-parameterization. This application

with 3, 200 tmie series is typical in high-dimensional time series. The number of parameters

involved is usually huge in a unconstrained model. Via the example, we showed that

constrained matrix factor models can largely reduce the number of parameters while keeping
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Model # Factor 1 # Factor 2 RSS RSS/TSS # Parameters

Full (6,5) 570.50 0.449 134

Constrained (6,5) 560.31 0.442 61

Partial (6,5) (6,5) 454.41 0.358 134

Full (5,5) 613.26 0.482 120

Constrained (5,5) 604.63 0.477 55

Partial (5,5) (5,5) 516.27 0.407 120

Full (4,5) 658.15 0.517 106

Constrained (4,5) 649.85 0.512 49

Partial (4,5) (4,5) 576.94 0.454 106

Full (4,4) 729.46 0.573 96

Constrained (4,4) 721.96 0.568 44

Partial (4,4) (4,4) 657.13 0.517 96

Full (3,4) 787.80 0.620 82

Constrained (3,4) 768.64 0.605 38

Partial (3,4) (3,4) 719.46 0.567 82

Full (3,3) 868.43 0.684 72

Constrained (3,3) 852.76 0.671 33

Partial (3,3) (3,3) 813.16 0.640 72

Table 7: Results of 10-fold CV of out-of-sample performance for the multinational macroe-

conomic indices. The numbers shown are average over the cross validation, where RSS and

TSS stand for residual and total sum of squares, respectively.

the same explanation power.

6.3 Example 3: Fama-French 10 by 10 Series

Finally, we investigate constrained matrix-variate factor models for the monthly market-

adjusted return series of Fama-French 10 × 10 portfolios from January 1964 to December

2015 for total 624 months and overall 62, 400 observations. The portfolios are the intersec-

tions of 10 portfolios formed by size (market equity, ME) and 10 portfolios formed by the

ratio of book equity to market equity (BE/ME). Thus, we have T = 624 and p1×p2 = 10×10

matrix time series. The series are constructed by subtracting the monthly excess market

returns from each of the original portfolio returns obtained from French (2017), so they are

free of the market impact.

Using an unconstrained matrix factor model, Wang et al. (2017) carried out a clustering

analysis on the ME and BE/ME loading matrices after rotation. Their results suggest

HR = [hr1,hr2,hr3], where hr1 = [1(5)/
√

5,0(5)], hr2 = [0(5),1(4)/2, 0], and hr3 =

[0(9), 1]. Therefore, ME factors are classified into three groups of smallest 5 ME’s, middle

4 ME’s, and the largest ME, respectively. For cases when we need 4 row constraints,
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Model # Factor 1 # Factor 2 RSS RSS/SST # parameters

(4,10) 8140.32 0.869 2064

(4,12) 7990.04 0.853 2464Full

(4,19) 7587.11 0.810 3864

Constrained (4,10) 8062.63 0.861 574

(4,10) (4,2) 7969.83 0.851 936
Partial

(4,10) (4,9) 7623.25 0.814 1979

(4, 20) 7539.68 0.805 4064

(4, 27) 7261.49 0.775 5464Full

(4, 39) 6872.18 0.734 7864

Constrained (4, 20) 7646.70 0.816 1084

(4, 20) (4,7) 7292.06 0.779 2191
Partial

(4, 20) (4,19) 6815.96 0.728 3979

(5,10) 8012.10 0.855 2080

(5,12) 7849.34 0.838 2480Full

(5,19) 7420.04 0.792 3880

Constrained (5,10) 7942.95 0.848 590

(5,10) (5,2) 7849.40 0.838 968
Partial

(5,10) (5,9) 7472.10 0.798 2011

(5,20) 7368.63 0.787 7960

(5,23) 7250.73 0.774 4680Full

(5,39) 6641.13 0.709 7880

Constrained (5,20) 7489.20 0.800 1100

(5,20) (5,3) 7357.80 0.786 1627
Partial

(5,20) (5,19) 6595.03 0.704 4011

(5,30) 6960.70 0.743 6080

(5,34) 6813.93 0.727 6880Full

(5,59) 5988.15 0.639 11880

Constrained (5,30) 7184.53 0.767 1610

(5,30) (5,4) 6997.21 0.747 2286
Partial

(5,30) (5,29) 5936.64 0.634 6011

Table 8: Summary of 10-fold CV of out-of-sample analysis for the corporate financials of 16

series for each of 200 companies. The numbers shown are average over the cross validation

and RSS and TSS denote, respectively, the residual and total sum of squares.

we redefine hr2 = [0(5),1(3)/
√

3,0(2)] and add a fourth column hr4 = [0(8), 1, 0]. For

column constraints, HC = [hc1,hc2,hc3], where hc1 = [1,0(9)], hc2 = [0,1(3)/
√

3,0(6)],

hc3 = [0(4),1(6)]. Therefore, BE/ME factors are divided into three groups of the smallest

BE/ME’s, middle 3 BE/ME’s, and the 6 largest BE/ME, respectively. For cases when we

need 4 column constraints, we redefine hc3 = [0(4),1(4)/2,0(2)] and add a fourth column

hc4 = [0(8),1(2)].

Table 9 shows the estimates of the loading matrices for the constrained and uncon-
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strained 2 × 2-factor models. The loading matrices are VARIMAX roated for ease in

interpretation and normalized so that the norm of each column is one. From the table,

the loading matrices exhibit similar patterns, but those of the constrained model convey

the following observations more clearly. Consider the row factors, the first factor represents

the difference between the average of the 5 smallest ME group and the weighted average

of the remaining portfolio whereas the second factor is mainly the average of the medium

4 ME portfolios. For the column loading matrix, the first factor is a weighted average of

the smallest BE/ME portfolio and the middle three portfolios. The second factor marks

the difference between the smallest BE/ME portfolio from a weighted average of the two

remaining groups. Finally, it is interesting to see that the constrained model uses only

16 parameters, yet it can reveal information similar to the unconstrained model that em-

ploys 40 parameters. This latter result demonstrates the power of using constrained factor

models.

Model Loading Column Rotated Estimated Loadings

Ru

R̂′
1 0.43 0.46 0.44 0.43 0.33 0.16 0.05 -0.02 -0.20 -0.23

2 -0.01 -0.01 -0.05 0.09 0.18 0.39 0.39 0.62 0.51 0.16

R̂′H ′R
1 0.44 0.44 0.44 0.44 0.44 -0.04 -0.04 -0.04 -0.04 -0.15

2 0.04 0.04 0.04 0.04 0.04 0.50 0.50 0.50 0.50 0.06

Cu

Ĉ ′
1 0.70 0.48 0.37 0.30 0.14 0.07 0.05 -0.05 -0.09 0.15

2 0.29 -0.07 -0.10 -0.23 -0.30 -0.32 -0.34 -0.44 -0.48 -0.34

Ĉ ′H ′C
1 0.78 0.36 0.36 0.36 0 0 0 0 0 0

2 0.24 -0.18 -0.18 -0.18 -0.37 -0.37 -0.37 -0.37 -0.37 -0.37

Table 9: Estimates of the loading matrices of constrained and unconstrained matrix factor

modes for Fama-French 10×10 portfolio returns. The loading matrices are varimax rotated

and normalized for ease in comparison.

Table 10 compares the out-of-sample performance of unconstrained and constrained

matrix factor models using a 10-fold cross-validation (CV) for models with different number

of factors. The table contains the average of the residual sum of squares (RSS), their ratios

to the total sum of squares (RSS/TSS), and the number of parameters used in the 10-fold

CV study. In this case, the prediction RSS of the constrained model is slightly larger than

that of the unconstrained one with the same number of factors, which may results from

the misspecification of the constrained matrices. Testing the adequacy of the constrained

matrix is an important research topic that will be addressed in future research. On the

other hand, the constrained model still has much less number of parameters than the

unconstrained model.
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Model # Factor 1 # Factor 2 RSS RSS/SST # Parameters

(3,3) 3064.40 0.500 60

(3,4) 2905.79 0.474 70Full

(3,6) 2644.59 0.431 90

Constrained (3,3) 3115.16 0.508 24

(3,3) (3,3) 2819.06 0.460 60
Partial

(3,3) (1,1) 3079.79 0.502 36

(3,2) 3316.55 0.541 50
Full

(3,4) 2905.79 0.474 70

Constrained (3,2) 3361.03 0.548 18

(3,2) (3,2) 3169.79 0.517 50
Partial

(3,2) (1,1) 3323.25 0.542 31

(2,3) 3269.50 0.533 50

(2,4) 3152.63 0.514 60Full

(2,6) 2976.18 0.431 90

Constrained (2,3) 3372.79 0.550 18

(2,3) (2,3) 3154.36 0.514 50
Partial

(2,3) (1,2) 3296.73 0.538 37

(2,2) 3473.32 0.567 40

(2,3) 3269.50 0.533 50Full

(2,4) 3152.63 0.514 60

Constrained (2,2) 3535.56 0.577 16

(2,2) (2,2) 3415.25 0.557 40
Partial

(2,2) (2,1) 3486.15 0.569 33

Table 10: Performance of out-of-sample 10-fold CV of constrained and unconstrained factor

models using Fama-French 10×10 portfolio return series, where RSS and RSS/TSS denote,

respectively, the residual and total sum of squares.

7 Summary

This paper established a general framework for incorporating domain or prior knowledge

induced linear constraints in the matrix factor model. We developed efficient estimation

procedures for multi-term and partially constrained matrix factor models as well as the

constrained model. Constraints can be used to achieve parsimony in parameterization,

to facilitate factor interpretation, and to target specific factors indicated by the domain

theories. We derived asymptotic theorems justifying the benefits of imposing constraints.

Simulation results confirmed the advantages of constrained matrix factor model over the

unconstrained one in finite samples. Finally, we illustrated the applications of constrained

matrix factor models with three real data sets, where the constrained factor models out-

perform their unconstrained counterparts in explaining the variabilities of the data using
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out-of-sample 10-fold cross validation and in factor interpretation.
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Appendix A Constraint Matrices

We first consider covariate-induced constraint matrices, using only dummy variables.

Constrained matrix factor model based on continuous variables is out of the scope of this

article. As an illustration we consider a tiny data set of corporate financial matrix-valued

time series and constraint matrices for companies (rows). Suppose we have 8 companies,

which can be grouped according to their industrial classification (Tech and Retail) and also

their market capitalization (Large and Medium). The two groups form 2× 2 combinations

as shown below,

Market Cap

1. Large 2. Medium

Industry
1. Tech Apple, Microsoft Brocade, FireEye

2. Retail Walmart, Target JC Penny, Kohl’s

Industry Market Cap

Apple 1 1

Microsoft 1 1

Brocade 1 2

FireEye 1 2

Walmart 2 1

Target 2 1

JC Penny 2 2

Kohl’s 2 2

Constraint matrix H
(1)
R in Table 11 utilizes only industrial classification. To combine

both industrial classification and market cap information, we first consider an additive

model constraint on the 8 × k1 (k1 ≤ 3) loading matrix Λ in model (1). The additive

model constraint means that the i-th row of Λ, that is, the loadings of k1 row factors

on the i-th variable, must have the form λi · = uj · + vl ·, where the i-th variable falls

in group (Industryj ,MarketCapl), k1-dimensional vectors uj · and vl · are the loadings

of k1 row factors on the j-th market cap group and l-th industrial group, respectively.

The most obvious way to express the additive model constraint is to use row constraints

H
(2)
R in Table 11. Then, in the constrained matrix factor model (2), HR = H

(2)
R and

R = (u1 ·,u2 ·,v1 ·,v2 ·)
′.

35



1

1

1

H
(1)
R =

1

1

1

1

1

1 1

1 1

1 1

H
(2)
R =

1 1

1 1

1 1

1 1

1 1

1 1 1

1 1 1

1 1 -1

H
(3)
R =

1 1 -1

1 1 -1

1 1 -1

1 1 1

1 1 1

Table 11: Illustration of constraint matrices constructed from grouping information by

additive model.

Further, we consider the constraint incorporating an interaction term between industry

and market cap grouping information. Now the i-th row of Λ has the form λi · = uj · +

vl ·+αj,lw, where w is the k1-dimensional interaction vector containing loadings of k1 row

factors and αij is the interaction term determined by uj · and vl · jointly. For example,

αj,l =

1 if j = l = 1 or 2,

−1 if j = 1, l = 2 or vice versa.

In this case, for the constrained matrix factor model (2), HR = H
(3)
R and

R = (u1 ·,u2 ·,v1 ·,v2 ·,w)′. Note that H
(2)
R and H

(3)
R here are not full column rank and can

be reduced to a full column rank matrix satisfying the requirement in Section 3. But the

presentations of H
(2)
R and H

(3)
R are sufficient to illustrate the ideas of constructing complex

constraint matrices.

To illustrate a theory-induced constraint matrix, we consider the yield curve latent

factors model. Nelson & Siegel (1987) propose the Nelson-Siegel representation of the yield

curve using a variation of the three-component exponential approximation to the cross-

section of yields at any moment in time,

y(τ) = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
,

where y(τ) denotes the set of zero-coupon yields and τ denotes time to maturity.

Diebold & Li (2006) and Diebold et al. (2006) interpret the Nelson-Siegel representation

as a dynamic latent factor model where β1, β2, and β3 are time-varying latent factors that

capture the level (L), slope (S), and curvature (C) of the yield curve at each period t, while

the terms that multiply the factors are respective factor loadings, that is

y(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
.
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The factor Lt may be interpreted as the overall level of the yield curve since its loading

is equal for all maturities. The factor St, representing the slope of the yield curve, has

a maximum loading (equal to 1) at the shortest maturity and then monotonically decays

through zero as maturities increase. And the factor Ct has a loading that is 0 at the shortest

maturity, increases to an intermediate maturity and then falls back to 0 as maturities

increase. Hence, St and Ct capture the short-end and medium-term latent components of

the yield curve. The coefficient λ controls the rate of decay of the loading of Ct and the

maturity where St has maximum loading.

Multinational yield curve can be represented as a matrix time series {Y t}t=1,...,T , where

rows of Y t represent time to maturity and columns of Y t denotes countries. To capture

the characteristics of loading matrix specific to the level, slope, and curvature factors,

we could set row loading constraint matrix to, for example, HR = [h1,h2,h3], where

h1 = (1, 1, 1, 1, 1)′, bh2 = (1, 1, 0,−1,−1)′ and h3 = (−1, 0, 2, 0,−1). In Section 5, we try

to mimic multinational yield curve and generate our samples from this type of constraints.

Appendix B Proofs

In what follows, let ‖A‖1, ‖A‖2 and ‖A‖F denote the L1, spectral, and Frobenius norms

of the matrix A, respectively. They are defined as ‖A‖1 = maxi
∑

j |Aij |, ‖A‖2 =√
λmax(A′A), and ‖A‖F =

√
tr(A′A). Note that for a vector a, both ‖a‖2 and ‖a‖F

are equal to the Euclidean norm. ‖A‖min denotes the positive square root of the minimal

eigenvalue of A′A or AA′, whichever is a smaller matrix. When A is a square matrix, we

denote by tr(A), λmax(A) and λmax(A) the trace, maximum and minimum eigenvalues of

the matrix A, respectively. For two sequences aN and bN , we write aN � bN if aN = O(bN )

and bN = O(aN ).

We define the following notation. For h ≥ 0, let Σf,u(h) = Cov(vec(F t), vec(U t+h)),

Σ̃f,u(h) =
1

T − h

T−h∑
t=1

vec(F t)vec(U t+h)′, and Σ̃y(h) =
1

T − h

T−h∑
t=1

vec(Y t)vec(Y t+h)′.

The auto-covariance matrices of Σu,f (h), Σf (h), Σu(h) and their sample versions are de-

fined in a similar manner. The following regularity and factor strength conditions are

needed.

Condition 1. No linear combination of the components of F t is white noise.

Condition 2. There exists at least one h = 1, . . . , h0, where h0 ≥ 1 is a positive integer,

such that
∑m2

i=1

∑m2
j=1 Ωzq,ij(h)Ωzq,ij(h)′ in equation (9) is of full rank.
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Condition 1 is natural, as all the white noise linear combinations of F t should be

absorbed into U t, which ensures that there exists at least one h ≥ 1 for which Ωzq,ij(h) is

full-ranked. Condition 2 further ensures that M has k1 positive eigenvalues.

Condition 3. For h ≥ 0, the maximum eigenvalue of Σf,u(h) and Σu remains bounded

as T , p1 and p2 increase to infinity.

In model (2), HRRF tC
′H ′C can be viewed as the signal part of the observation Y t,

and U t as the noise. Condition 3 requires two things. First, each element of Σu remains

bounded as p1 and p2 increase to infinity. Thus each noise component does not goes to

infinity so that the signals are not obscured by the noises. Second, as dimensions increase,

the covariance matrix of noises does not have information concentrated in a few directions.

Thus the noise part does not contain any useful information. This is reasonable since all

the common components should be absorbed in the signal.

Condition 4. The vector-valued process vec(F t) is α-mixing. For some γ > 2, the mixing

coefficients satisfy the condition that

∞∑
h=1

α(h)1−2/γ <∞,

where α(h) = sup
τ

sup
A∈Fτ−∞,B∈F∞τ+h

|P (A ∩B)− P (A)P (B)| and Fsτ is the σ-field generated

by {vec(F t) : τ ≤ t ≤ s}.

Condition 5. Let Ft,ij be the ij-th entry of F t. Then, E(|Ft,ij |2γ) ≤ C for any i =

1, . . . , k1, j = 1, . . . , k2 and t = 1, . . . , T , where C is a positive constant and γ is given in

Condition 4. In addition, there exists an integer h satisfying 1 ≤ h ≤ h0 such that Σf (h)

is of rank k = max(k1, k2) and ‖Σf (h)‖2 � O(1) � σk(Σf (h)). For i = 1, . . . , k1 and

j = 1, . . . , k2, 1
T−h

∑T−h
t=1 Cov(Ft,i·, Ft+h,i·) 6= 0 and 1

T−h
∑T−h

t=1 Cov(Ft,·j , Ft+h,·j) 6= 0.

Condition 4 and Condition 5 specify that the latent process {F t}t=1,...,T only needs to

satisfy the mixing condition specified in Condition 4 instead of the stationary condition.

And we make use of the auto-covariance structure of the latent process {F t}t=1,...,T without

assuming any specific model. These two features make our estimation procedure more

attractive and general than the standard principal component analysis.

We focus on the case of orthogonal constraints. Results for the non-orthogonal case and

the partially-constrained case are similar.

The constrained factor model is Y t = HRRF tC
′H ′C+U t. Suppose we have orthogonal

constraints, that is H ′RHR = Im1 and H ′CHC = Im2 , then the transformed m1×m2 data

Xt = H ′RXtHC = RF tC
′+Et, where Et = H ′RU tHC and Et is still white noise process.
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Lemma 1. Under Condition 3, each element of Σe = Cov(vec(E)) is uniformly bounded

as p1 and p2 increase to infinity.

Proof.

Σe = Cov(vec(H ′RU tHC))

= Cov((H ′R ⊗H ′C) · vec(U t))

= (HR ⊗HC)′ ·Σu · (HR ⊗HC).

Let A = HR ⊗HC . Since HR and HC are p1 ×m1 and p2 ×m2 orthogonal matrices

respectively, A is a p1p2 ×m1m2 orthogonal matrix.

Let ei be the i-th element of vec(Et), A·i be the i-th column vector of A for i =

1, . . . ,m1m2, then the diagonal elements of Σe are

V ar(ei) = A′·iΣuA·i ≤ λmax(Σu) for i = 1, . . . ,m1m2.

Condition 3 assumes λmax(Σu) ∼ O(1), hence V ar(e) ∼ O(1) for i = 1, . . . ,m1m2.

And off-diagonal elements of Σe are

Cov(ei, ej) ≤ V ar(ei)
1
2V ar(ej)

1
2 ∼ O(1) for i 6= j, i, j = 1, . . . ,m1m2.

Thus, each element of Σe remains bounded if the maximum eigenvalue of Σe = Cov(vec(E))

is bounded as p1 and p2 increase to infinity.

Lemma 2. Under the assumption that HR and HC are orthogonal. Condition 6 also

ensures that ‖R‖22 � p
1−δ1
1 � ‖R‖2min and ‖C‖22 � p

1−δ1
2 � ‖C‖2min.

Proof. For any orthogonal matrix H, we have ‖HR‖22 = ‖R‖22 and ‖HR‖2min = ‖R‖2min.

And the results follow.

In the following proofs, we work with the transformed model (7), as inXt = RF tC
′+Et

where Xt and Et are m1×m2 matrices, F t is k1×k2 matrix, R is the m1×k1 row loading

matrix, and C is the m2 × k2 column loading matrix for the transformed model.
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We start by defining some quantities used in the proofs. Write

Ωs,ij(h) =
1

T − h

T−h∑
t=1

Cov(RF tCi·,RF t+hCj·),

Ωfc,ij(h) =
1

T − h

T−h∑
t=1

Cov(F tCi·,F t+hCj·),

Ω̂s,ij(h) =
1

T − h

T−h∑
t=1

RF tCi·C
′
j·F
′
t+hR

′,

Ω̂se,ij(h) =
1

T − h

T−h∑
t=1

RF tCi·E
′
t+h,·j ,

Ω̂es,ij(h) =
1

T − h

T−h∑
t=1

Et,·jC
′
i·F
′
t+hR

′,

Ω̂e,ij(h) =
1

T − h

T−h∑
t=1

Et,·jE
′
t+h,·j ,

Ω̂fc,ij(h) =
1

T − h

T−h∑
t=1

F tCi·C
′
j·F
′
t+h.

The following Lemma 3 from Wang et al. (2017) establishes the entry-wise convergence

rate of the covariance matrix estimation of the vectorized latent factor process vec(F t).

Lemma 3. Let Ft,ij denote the ij-th entry of F t. Under Condition 4 and Condition 5, for

any i, k = 1, . . . , k1 and j, l = 1, · · · , k2, we have∣∣∣∣∣ 1

T − h

T−h∑
t=1

(Ft,ijFt+h,kl − Cov(Ft,ijFt+h,kl))

∣∣∣∣∣ = Op(T
−1/2). (16)

Under the matrix-variate factor Model (7), the RF tC
′ is the signal and Et is the noise.

Lemma 4. Under Conditions 1-6, it holds that

m2∑
i=1

m2∑
j=1

‖Ω̂s,ij(h)−Ωs,ij(h)‖22 = Op(p
2−2δ1
1 p2−2δ2

2 T−1), , (17)

m2∑
i=1

m2∑
j=1

‖Ω̂se,ij(h)−Ωse,ij(h)‖22 = Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1), , (18)

m2∑
i=1

m2∑
j=1

, ‖Ω̂es,ij(h)−Ωes,ij(h)‖22 = Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1), , (19)

m2∑
i=1

m2∑
j=1

‖Ω̂e,ij(h)−Ωe,ij(h)‖22 = Op(m
2
1m

2
2T
−1). (20)
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Proof. To prove the convergence rate of Ω̂s,ij(h) in (17), we first establish the convergence

rate of estimating Ωfc,ij(h) = 1
T−h

∑T−h
t=1 Cov(F tCi·,F t+hCj·).

‖Ω̂fc,ij(h)−Ωfc,ij(h)‖22 ≤ ‖Ω̂fc,ij(h)−Ωfc,ij(h)‖2F

=

∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t)) · vec(Ci·C ′j·)
∥∥∥∥2

2

≤
∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2

F

· ‖Ci·‖22 · ‖Cj·‖22. (21)

Hence, we have

m2∑
i=1

m2∑
j=1

‖Ω̂s,ij(h)−Ωs,ij(h)‖22

=

m2∑
i=1

m2∑
j=1

‖R · (Ω̂fc,ij(h)−Ωfc,ij(h)) ·R′‖22

≤ ‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2

F

·

(
m2∑
i=1

‖Ci·‖22

)2

= ‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2

F

· ‖C‖4F

≤ k2
2 ‖R‖42 ·

∥∥∥∥ 1

T − h

T−h∑
t=1

(F t+h ⊗ F t − E(F t+h ⊗ F t))

∥∥∥∥2

F

· ‖C‖42

= Op(p
2−2δ1
1 p2−2δ2

2 T−1).

The first inequality comes from (21) and the last inequality follows from Condition 6 and

Lemma 1.

To prove the convergence rate of covariance between signal at t and noise at t + h in

(18), we first establish the convergence rate of covariance between F tCi· and Et+h,·j .

∥∥∥∥ 1

T − h

T−h∑
t=1

F tCi·E
′
t+h,·j −

1

T − h

T−h∑
t=1

E
(
F tCi·E

′
t+h,·j

)∥∥∥∥2

2

≤
∥∥∥∥ 1

T − h

T−h∑
t=1

vec(F tCi·E
′
t+h,·j)−

1

T − h

T−h∑
t=1

E
(
vec(F tCi·E

′
t+h,·j)

)∥∥∥∥2

2

≤ ‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t)) · vec(Ci·)‖22

≤ ‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t))‖22 · ‖Ci·‖
2
2.
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Hence, we have

m2∑
i=1

m2∑
j=1

‖Ω̂se,ij(h)−Ωse,ij(h)‖22

=

m2∑
i=1

m2∑
j=1

∥∥∥∥ 1

T − h

T−h∑
t=1

RF tCi·E
′
t+h,·j −

1

T − h

T−h∑
t=1

E
(
RF tCi·E

′
t+h,·j

)∥∥∥∥2

2

≤
m2∑
i=1

m2∑
j=1

‖R‖22 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

F tCi·E
′
t+h,·j −

1

T − h

T−h∑
t=1

E
(
F tCi·E

′
t+h,·j

)∥∥∥∥2

2

≤ ‖R‖22 ·
m2∑
i=1

‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t))‖22 ·
m2∑
j=1

‖Ci·‖22

≤ k2‖R‖22 ·
m2∑
i=1

‖ 1

T − h

T−h∑
t=1

(Et+h,·j ⊗ F t − E (Et+h,·j ⊗ F t))‖22 ·
m2∑
j=1

‖C‖22

= Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1).

To prove the convergence rate of covariance between noise at t and signal at t + h in

(19), we use similar arguments and get

m2∑
i=1

m2∑
j=1

‖Ω̂es,ij(h)−Ωes,ij(h)‖22 = Op(m1p
1−δ1
1 m2p

1−δ2
2 T−1/2).

.

And the convergence rate of Ω̂e,ij(h) in (20) is given by

m2∑
i=1

m2∑
j=1

‖Ω̂e,ij(h)−Ωe,ij(h)‖22

=

m2∑
i=1

m2∑
j=1

∥∥∥∥ 1

T − h

T−h∑
t=1

Et,·iE
′
t+h,·j

∥∥∥∥
= Op(m

2
1m

2
2T
−1).

With the four rates established in Lemma 4, we can study the rate of convergence for

the transformed observed covariance matrix Ω̂x,ij(h).

Lemma 5. Under Conditions 1-6, it holds that

m2∑
i=1

m2∑
j=1

‖Ω̂x,ij(h)−Ωx,ij(h)‖22 = Op

(
max(p2−2δ1

1 p2−2δ2
2 , m2

1m
2
2) · T−1

)
. (22)
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Proof. By definition of Ω̂x,ij(h) in Section 3, we can decompose Ω̂x,ij(h) into the following

four parts,

Ω̂x,ij(h) =
1

T − h

T−h∑
t=1

Xt,·iX
′
t+h,·j

=
1

T − h

T−h∑
t=1

(RF tCi· + Et,i·)(RF tCi· + Et+h,j·)
′

= Ω̂s,ij(h) + Ω̂se,ij(h) + Ω̂es,ij(h) + Ω̂e,ij(h).

Thus from Lemma 4, we have

m2∑
i=1

m2∑
j=1

‖Ω̂x,ij(h)−Ωx,ij(h)‖22

≤ 4

m2∑
i=1

m2∑
j=1

(‖Ω̂s,ij(h)−Ωs,ij(h)‖22 + ‖Ω̂se,ij(h)−Ωse,ij(h)‖22

+ ‖Ω̂es,ij(h)−Ωes,ij(h)‖22 + ‖Ω̂e,ij(h)−Ωe,ij(h))‖22

= Op

(
max(p2−2δ1

1 p2−2δ2
2 , m2

1m
2
2) · T−1

)
.

Lemma 6. Under Conditions 1-6 and m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), it holds that

‖M̂ −M‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
. (23)

Proof. By definitions of M in (11) and its sample version M̂ , we have

‖M̂ −M‖2 =

∥∥∥∥ h0∑
h=1

m2∑
i=1

m2∑
j=1

(Ω̂x,ij(h)Ω̂
′
x,ij(h)−Ωx,ij(h)Ω′x,ij(h))

∥∥∥∥
2

≤
h0∑
h=1

m2∑
i=1

m2∑
j=1

(∥∥(Ω̂x,ij(h)−Ωx,ij(h))(Ω̂x,ij(h)−Ωx,ij(h))′
∥∥

2
+ 2
∥∥Ωx,ij(h)

∥∥
2

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥

2

)

=

h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥2

2
+ 2

h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥Ωx,ij(h)
∥∥

2

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥

2
.
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Now we investigate each item in the above formula.

m2∑
i=1

m2∑
j=1

‖Ωx,ij(h)‖22 =

m2∑
i=1

m2∑
j=1

‖RΩfc,ij(h)R′‖22

≤
m2∑
i=1

m2∑
j=1

‖R‖42 · ‖Ωfc,ij(h)‖22

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E(F tCi·C
′
j·F
′
t+h)

∥∥∥∥2

2

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E
(
vec(F tCi·C

′
j·F
′
t+h)

)∥∥∥∥2

2

=

m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t) · vec(Ci·C ′j·)
∥∥∥∥2

2

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2

2

· ‖vec(Ci·C ′j·)‖22

≤
m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2

2

· ‖Ci·C ′j·‖2F

=

m2∑
i=1

m2∑
j=1

‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2

2

· ‖Ci·‖22‖C ′j·‖22

= ‖R‖42 ·
∥∥∥∥ 1

T − h

T−h∑
t=1

E (F t+h ⊗ F t)

∥∥∥∥2

2

·

(
m2∑
i=1

‖Ci·‖22

)2

= Op(p
2−2δ1
1 p2−2δ2

2 ).

From Lemma 5, we have
∑m2

i=1

∑m2
j=1‖Ω̂x,ij(h)−Ωx,ij(h)‖22 = Op

(
max(p2−2δ1

1 p2−2δ2
2 , m2

1m
2
2) · T−1

)
,

then m2∑
i=1

m2∑
j=1

∥∥Ωx,ij(h)
∥∥

2

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥

2

2

≤
m2∑
i=1

m2∑
j=1

∥∥Ωx,ij(h)
∥∥2

2
·
m2∑
i=1

m2∑
j=1

∥∥Ω̂x,ij(h)−Ωx,ij(h)
∥∥2

2

= Op(p
2−2δ1
1 p2−2δ2

2 ) ·Op(max(p2−2δ1
1 p2−2δ2

2 , m2
1m

2
2) · T−1

= Op(max(p4−4δ1
1 p4−4δ2

2 , m2
1p

2−2δ1
1 m2

2p
2−2δ2
2 ) · T−1.

Thus, from the above results, Lemma 5 and the condition thatm1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 =
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op(1), we have

‖M̂ −M‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 , m2

1m
2
2) · T−1

)
+Op

(
max(p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2

)
· T−1/2

= Op

(
max(p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
.

Similar to the proof of Lemma 5 in Wang et al. (2017), we have

Lemma 7. Under Condition 3 and Condition 5, we have

λi(M) � p2−2δ1
1 p2−2δ2

2 , i = 1, 2, . . . , k1,

where λi(M) denotes the i-th largest singular value of M .

Proof of Theorem 1

Proof. By Lemma 3-7, and Lemma 3 in Lam et al. (2011), we have

‖Q̂1 −Q1‖2 ≤
8

λmin(M)
‖M̂ −M‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
.

Proof for ‖Q̂2 −Q2‖2 is similar.

Proof of Theorem 2

Proof. The proof is similar to that of Theorem 1 of Lam & Yao (2012). Let λj and qj be

the j-th largest eigenvalue and eigenvector of M , respectively. The corresponding sample

versions are denoted by λ̂j and q̂j for the matrix M̂ . Let Q1 = (q1, . . . , qk1), B1 =

(qk1+1, . . . , qm1
), Q̂1 = (q̂1, . . . , q̂k1) and B̂1 = (q̂k1+1, . . . , q̂m1

).

Eigenvalues λj, j = 1, . . . , k1

For j = 1, . . . , k1, we have

λ̂j − λj = q̂′jM̂q̂j − q′jMqj = I1 + I2 + I3 + I4 + I5,

where

I1 = (q̂j − qj)′(M̂ −M)q̂j , I2 = (q̂j − qj)′M(q̂j − qj), (24)

I3 = (q̂j − qj)′Mqj , I4 = q′j(M̂ −M)qj , I5 = q′j(M̂ −M)(q̂j − qj). (25)

We have, from Theorem 1,

‖q̂′j − qj‖2 ≤ ‖Q̂1 −Q1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
, for j = 1, . . . , k1.
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And by Lemma 6, ‖M̂ −M‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2

)
· T−1/2.

Also from Lemma 7, we have ‖M‖2 = Op(p
2−2δ1
1 p2−2δ2

2 ).

Then,

‖I1‖2 = ‖(q̂j − qj)′(M̂ −M)q̂j‖2 ≤ ‖q̂j − qj‖2 · ‖M̂ −M‖2 · ‖q̂j‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 ,m2

1m
2
2) · T−1

)
‖I2‖2 = ‖(q̂j − qj)′M(q̂j − qj)‖2 ≤ ‖q̂j − qj‖22 · ‖M‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 ,m2

1m
2
2) · T−1

)
‖I3‖2 = ‖q̂j − qj)′Mqj‖2 ≤ ‖q̂

′
j − qj‖2 · ‖M‖2 · ‖qj‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 ,m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
‖I4‖2 = ‖q′j(M̂ −M)qj‖2 ≤ ‖qj‖2‖M̂ −M‖2‖qj‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
‖I5‖2 = ‖q′j(M̂ −M)(q̂j − qj)‖2 ≤ ‖qj‖2‖M̂ −M‖2‖q̂′j − qj‖2

= Op

(
max(p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
.

Thus, under the condition that m1p
−1+δ1
1 m2p

−1+δ2
2 T−1/2 = op(1), we have

|λ̂j − λj | = Op

(
max(p2−2δ1

1 p2−2δ2
2 , m1p

1−δ1
1 m2p

1−δ2
2 ) · T−1/2

)
, for j = 1, . . . , k1.

Eigenvalues λj, j = k1 + 1, . . . , p1

Similar to proof of Theorem 1 with Lemma 3 in Lam et al. (2011), we have

‖B̂1 −B1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
.

And hence

‖q̂′j−qj‖2 ≤ ‖Q̂1−Q1‖2 = Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
, for j = k1+1, . . . , p1.

Define M̃ =
∑h0

h=1

∑m2
i=1

∑m2
j=1 Ω̂i,j(h)Ω′i,j(h), then

‖M̃ −M‖ =

∥∥∥∥ h0∑
h=1

m2∑
i=1

m2∑
j=1

(
Ω̂ij(h)Ω′ij(h)−Ωij(h)Ω′ij(h)

)∥∥∥∥
2

≤
h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥∥∥(Ω̂ij(h)−Ωij(h)
)∥∥∥∥

2

∥∥Ω′ij(h)
∥∥

2

= Op(max(p2−2δ1
1 p2−2δ2

2 , m1p
1−δ1
1 m2p

1−δ2
2 ) · T−1/2, from Lemma 6.

For j = k1 + 1, . . . , p1, since λj = 0 we have

λ̂j = q̂′jM̂q̂j = K1 +K2 +K3,

where K1 = q̂′j(M̂ − M̃ − M̃
′
+ M)q̂j , K2 = 2q̂′j(M̃ −M)(q̂j − qj) and K3 = (q̂j −

qj)
′M(q̂j − qj).
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Then,

‖K1‖2 =

∥∥∥∥q̂′j h0∑
h=1

m2∑
i=1

m2∑
j=1

(
Ω̂ij(h)Ω̂

′
ij(h)− Ω̂ij(h)Ω′ij(h)−Ωij(h)Ω̂

′
ij(h) + Ωij(h)Ω′ij(h)

)
q̂j

∥∥∥∥
2

=

∥∥∥∥q̂′j h0∑
h=1

m2∑
i=1

m2∑
j=1

(
Ω̂ij(h)−Ωij(h)

)(
Ω̂ij(h)−Ωij(h)

)′
q̂j

∥∥∥∥
2

≤
h0∑
h=1

m2∑
i=1

m2∑
j=1

∥∥∥∥(Ω̂ij(h)−Ωij(h)
)∥∥∥∥2

2

= Op(max(p2−2δ1
1 p2−2δ2

2 , m2
1m

2
2) · T−1)

‖K2‖2 =

∥∥∥∥2q̂′j ·
(
M̃ −M

)
·
(
q̂j − qj

)∥∥∥∥
2

≤ 2

∥∥∥∥M̃ −M
∥∥∥∥

2

· ‖q̂j − qj‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 ,m2

1m
2
2) · T−1

)
‖K3‖2 =

∥∥∥∥(q̂j − qj)′M(q̂j − qj)
∥∥∥∥

2

≤
∥∥∥∥(q̂j − qj)

∥∥∥∥2

2

‖M‖2 = Op

(
max(p2−2δ1

1 p2−2δ2
2 ,m2

1m
2
2) · T−1

)
.

Thus, we have

|λ̂j | = Op

(
max(p2−2δ1

1 p2−2δ2
2 ,m2

1m
2
2) · T−1

)
, for j = 1, . . . , k1.

Proof of Theorem 3

Proof. St is the dynamic signal part of Xt, i.e. St = HRQ1ZtQ
′
2H
′
C . And its estimator

is Ŝt = HRQ̂1Q̂
′
1XtQ̂2Q̂

′
2H
′
C . We have

Ŝt − St = HR

(
Q̂1Q̂

′
1XtQ̂2Q̂

′
2 −Q1ZtQ

′
2

)
H ′C = HR

(
Q̂1Q̂

′
1

(
Q1ZtQ

′
2 +Et

)
Q̂2Q̂

′
2 −Q1ZtQ

′
2

)
H ′C

= HR

(
Q̂1Q̂

′
1Q1ZtQ

′
2(Q̂2Q̂

′
2 −Q2Q

′
2) + (Q̂1Q̂

′
1 −Q1Q

′
1)Q1ZtQ

′
2 + Q̂1Q̂

′
1EtQ̂2Q̂

′
2

)
H ′C

= I1 + I2 + I3.

Since HR and HC are orthogonal matrices, we have

‖I1‖22 =
∥∥HRQ̂1Q̂

′
1Q1ZtQ

′
2(Q̂2Q̂

′
2 −Q2Q

′
2)H ′C

∥∥2

2

≤ ‖Zt‖22
∥∥(Q̂2 −Q2)Q̂

′
2 +Q2(Q̂2 −Q2)′

∥∥2

2

≤ 2‖Zt‖22‖Q̂2 −Q2‖22

Thus by Theorem 1, we have

‖I1‖ = Op

(
p

1/2−δ1/2
1 p

1/2−δ2/2
2

)
·Op

(
max

(
T−1/2,

m1

p1−δ1
1

m2

p1−δ2
2

T−1/2

))
= Op

(
max

(
p

1/2−δ1/2
1 p

1/2−δ2/2
2 , m1p

−1/2+δ1/2
1 m2p

−1/2+δ2/2
2

)
· T−1/2

)
.
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Similarity, we have

‖I2‖2 =
∥∥(Q̂1Q̂

′
1 −Q1Q

′
1)Q1ZtQ

′
2

∥∥
2
≤ 2‖Zt‖2‖Q̂1 −Q1‖2

= Op

(
max

(
p

1/2−δ1/2
1 p

1/2−δ2/2
2 , m1p

−1/2+δ1/2
1 m2p

−1/2+δ2/2
2

)
· T−1/2

)
,

and

‖I3‖2 =
∥∥Q̂1Q̂

′
1EtQ̂2Q̂

′
2

∥∥
2
≤
∥∥Q̂′1EtQ̂2

∥∥
2
≤ ‖(Q̂

′
2 ⊗ Q̂

′
1)vec(Et)‖2 ≤ k1k2‖Σe‖2 = Op(1).

Thus,

‖Ŝt − St‖2 = Op

(
max

(
p

1/2−δ1/2
1 p

1/2−δ2/2
2 , m1p

−1/2+δ1/2
1 m2p

−1/2+δ2/2
2

)
· T−1/2 + 1

)

Proof of Theorem 4

Proof.

D(Q̂i,Qi) =

(
1− 1

ki
Tr
(
Q̂iQ̂

′
iQiQ

′
i

))−1/2

, for i = 1, 2.

From Liu & Chen (2016), D(Q̂i,Qi) = Op

(
‖Q̂i,Qi‖2

)
= Op

(
max

(
T−1/2, m1

p
1−δ1
1

m2

p
1−δ2
2

T−1/2

))
for i = 1, 2. Since D(Λ̂,Λ) = D(Q̂1,Q1) and D(Γ̂,Γ) = D(Q̂2,Q2), the result follows.

Appendix C Multinational Macroeconomic Indices Dataset

Table 12 lists the short name of each series, its mnemonic (the series label used in the

OECD database), the transformation applied to the series, and a brief data description.

All series are from the OECD Database. In the transformation column, ∆ denote the first

difference, ∆ ln denote the first difference of the logarithm. GP denotes the measure of

growth rate last period.
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Short name Mnemonic Tran description

CPI: Food CPGDFD ∆2 ln Consumer Price Index: Food, seasonally adjusted

CPI: Ener CPGREN ∆2 ln Consumer Price Index: Energy, seasonally adjusted

CPI: Tot CPALTT01 ∆2 ln Consumer Price Index: Total, seasonally adjusted

IR: Long IRLT ∆ lv Interest Rates: Long-term gov bond yields

IR: 3-Mon IR3TIB ∆ lv Interest Rates: 3-month Interbank rates and yields

P: TIEC PRINTO01 ∆ ln Production: Total industry excl construction

P: TM PRMNTO01 ∆ ln Production: Total manufacturing

GDP LQRSGPOR ∆ ln GDP: Original (Index 2010 = 1.00, seasonally adjusted)

IT: Ex XTEXVA01 ∆ ln International Trade: Total Exports Value (goods)

IT: Im XTIMVA01 ∆ ln International Trade: Total Imports Value (goods)

Table 12: Data transformations, and variable definitions

Country ISO ALPHA-3 Code Country ISO ALPHA-3 Code

United States of America USA United Kingdom GBR

Canada CAN Finland FIN

New Zealand NZL Sweden SWE

Australia AUS France FRA

Norway NOR Netherlands NLD

Ireland IRL Austria AUT

Denmark DNK Germany DEU

Table 13: Countries and ISO Alpha-3 Codes in Macroeconomic Indices Application
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Appendix D Tables of Simulation Results

T = 0.5 p1 p2 T = p1 p2 T = 1.5 p1 p2 T = 2 p1 p2

δ1 δ2 p1 p2 Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q)

0 0

20 20 1.02(0.2) 0.73(0.18) 0.73(0.12) 0.52(0.13) 0.58(0.08) 0.42(0.09) 0.5(0.07) 0.36(0.07)

20 40 0.67(0.1) 0.47(0.11) 0.47(0.06) 0.33(0.07) 0.39(0.05) 0.27(0.06) 0.33(0.04) 0.23(0.05)

40 20 0.71(0.1) 0.41(0.12) 0.5(0.06) 0.28(0.07) 0.41(0.05) 0.24(0.06) 0.35(0.04) 0.2(0.05)

40 40 0.47(0.06) 0.26(0.07) 0.33(0.03) 0.18(0.04) 0.27(0.03) 0.15(0.04) 0.24(0.02) 0.13(0.03)

0.5 0

20 20 5.64(0.5) 1.92(0.74) 4.94(1.17) 1.27(0.34) 3.34(1.56) 0.98(0.22) 2.09(1.11) 0.83(0.18)

20 40 4.86(1.19) 1.12(0.3) 1.95(1) 0.76(0.18) 1.12(0.28) 0.62(0.14) 0.89(0.17) 0.53(0.12)

40 20 5.82(0.26) 1.23(0.44) 5.33(0.87) 0.8(0.22) 3.46(1.6) 0.66(0.18) 1.73(0.81) 0.55(0.14)

40 40 5.37(0.81) 0.73(0.21) 1.56(0.67) 0.49(0.13) 0.96(0.2) 0.4(0.1) 0.77(0.12) 0.36(0.09)

0.5 0.5

20 20 6.81(0.34) 6.08(0.6) 6.46(0.17) 5.54(0.73) 6.32(0.13) 4.84(1.11) 6.24(0.1) 4.34(1.26)

20 40 6.67(0.3) 5.86(0.66) 6.39(0.15) 4.93(1.08) 6.26(0.08) 4.12(1.28) 6.2(0.05) 3.47(1.3)

40 20 6.71(0.28) 5.69(0.61) 6.4(0.13) 4.78(1.23) 6.27(0.07) 3.73(1.43) 6.2(0.05) 2.94(1.4)

40 40 6.62(0.28) 5.15(0.98) 6.32(0.08) 3.74(1.44) 6.23(0.05) 2.7(1.43) 6.17(0.03) 2.05(1.12)

Table 14: Orthogonal constraints case. Means and standard deviations (in parentheses) of

the estimation accuracy measured by D(Q̂,Q). Du for the unconstrained model 1. Dc for

the constrained model 2. All numbers in the table are 10 times the true numbers for clear

presentation. The results are based on 500 iterations.
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T = 0.5 ∗ p1 ∗ p2 T = p1 ∗ p2 T = 1.5 ∗ p1 ∗ p2 T = 2 ∗ p1 ∗ p2

δ1 δ2 δ3 δ4 p1 p2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2 fu fcon1 fcon2

0 0 0 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0.01 1.00 0

20 40 0 1.00 0 0 1.00 0 0.03 1.00 0 0.19 1.00 0

40 20 0.15 0.99 1.00 0.81 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

40 40 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 0 0.5 0

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0 1.00 0

20 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0

40 20 0 0.99 0.54 0 1.00 0.84 0 1.00 0.97 0 1.00 1.00

40 40 0 1.00 0.98 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00

0 0 0.5 0.5

20 20 0 0.94 0 0 1.00 0 0 1.00 0 0 1.00 0

20 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0

40 20 0 0.99 0 0 1.00 0 0 1.00 0 0 1.00 0

40 40 0 1.00 0 0 1.00 0 0 1.00 0 0 1.00 0

0.5 0 0 0

20 20 0 0.21 0 0 0.53 0 0 0.79 0 0 0.92 0

20 40 0 0.67 0 0 0.97 0 0 1.00 0 0 1.00 0

40 20 0 0.34 1.00 0 0.79 1.00 0 0.92 1.00 0 0.95 1.00

40 40 0 0.87 1.00 0 0.97 1.00 0 0.99 1.00 0 0.99 1.00

0.5 0 0.5 0

20 20 0 0.21 0 0 0.53 0 0 0.79 0 0 0.92 0

20 40 0 0.67 0 0 0.97 0 0 1.00 0 0 1.00 0

40 20 0 0.34 0.54 0 0.79 0.84 0 0.92 0.97 0 0.95 1.00

40 40 0 0.87 0.98 0 0.97 1.00 0 0.99 1.00 0 0.99 1.00

0.5 0 0.5 0.5

20 20 0 0.21 0 0 0.53 0 0 0.79 0 0 0.92 0

20 40 0 0.67 0 0 0.97 0 0 1.00 0 0 1.00 0

40 20 0 0.34 0 0 0.79 0 0 0.92 0 0 0.95 0

40 40 0 0.87 0 0 0.97 0 0 0.99 0 0 0.99 0

0.5 0.5 0 0

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0

20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0

40 20 0 0.06 1.00 0 0.01 1.00 0 0 1.00 0 0 1.00

40 40 0 0.06 1.00 0 0 1.00 0 0 1.00 0 0.03 1.00

0.5 0.5 0.5 0

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0

20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0

40 20 0 0.06 0.54 0 0.01 0.84 0 0 0.97 0 0 1.00

40 40 0 0.06 0.98 0 0 1.00 0 0 1.00 0 0.03 1.00

0.5 0.5 0.5 0.5

20 20 0 0.07 0 0 0.04 0 0 0.01 0 0 0.01 0

20 40 0 0.07 0 0 0.02 0 0 0.01 0 0 0.01 0

40 20 0 0.06 0 0 0.01 0 0 0 0 0 0 0

40 40 0 0.06 0 0 0 0 0 0 0 0 0.03 0

Table 15: Relative frequency of correctly estimating k1
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T = 0.5 ∗ p1 ∗ p2 T = p1 ∗ p2 T = 1.5 ∗ p1 ∗ p2 T = 2 ∗ p1 ∗ p2

δ1 δ2 δ3 δ4 p1 p2 Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q) Du(Q̂,Q) Dc(Q̂,Q)

0 0 0 0

20 20 1.56(0.87) 0.57(0.1) 0.71(0.16) 0.41(0.06) 0.54(0.09) 0.33(0.04) 0.45(0.07) 0.28(0.04)

20 40 0.71(0.33) 0.38(0.05) 0.4(0.06) 0.27(0.03) 0.32(0.04) 0.22(0.03) 0.27(0.03) 0.19(0.02)

40 20 0.52(0.07) 0.33(0.05) 0.36(0.04) 0.24(0.03) 0.29(0.03) 0.19(0.03) 0.25(0.02) 0.17(0.02)

40 40 0.32(0.04) 0.2(0.04) 0.22(0.02) 0.14(0.02) 0.18(0.02) 0.12(0.02) 0.15(0.01) 0.1(0.02)

0 0 0.5 0

20 20 3.68(0.04) 0.88(0.13) 3.61(0.02) 0.63(0.08) 3.59(0.02) 0.51(0.07) 3.57(0.02) 0.44(0.06)

20 40 3.61(0.02) 0.61(0.06) 3.57(0.01) 0.43(0.04) 3.56(0.01) 0.35(0.03) 3.55(0.02) 0.3(0.03)

40 20 3.65(0.04) 0.57(0.05) 3.58(0.05) 0.42(0.03) 3.43(0.36) 0.35(0.02) 2.78(0.94) 0.3(0.02)

40 40 3.36(0.51) 0.33(0.03) 0.59(0.36) 0.24(0.02) 0.35(0.06) 0.2(0.02) 0.28(0.03) 0.17(0.01)

0 0 0.5 0.5

20 20 5.99(0.36) 1.88(0.51) 5.73(0.38) 1.32(0.29) 5.49(0.45) 1.06(0.19) 5.24(0.49) 0.92(0.17)

20 40 6.67(0.32) 1.42(0.3) 6.42(0.35) 1.02(0.15) 6.24(0.34) 0.83(0.11) 6.06(0.33) 0.72(0.09)

40 20 6.37(0.29) 1.06(0.09) 6.09(0.28) 0.8(0.06) 5.89(0.31) 0.67(0.04) 5.77(0.29) 0.59(0.04)

40 40 6.37(0.3) 0.67(0.04) 5.95(0.29) 0.5(0.03) 5.62(0.34) 0.42(0.02) 5.26(0.46) 0.37(0.02)

0.5 0 0 0

20 20 3.72(0.19) 1.22(0.38) 3.61(0.21) 0.8(0.17) 3.55(0.21) 0.63(0.13) 3.47(0.32) 0.55(0.11)

20 40 3.61(0.17) 0.73(0.17) 3.45(0.33) 0.49(0.1) 3.2(0.59) 0.4(0.08) 2.66(0.9) 0.35(0.06)

40 20 3.73(0.09) 0.78(0.27) 3.64(0.06) 0.52(0.13) 3.59(0.07) 0.41(0.11) 3.56(0.09) 0.36(0.08)

40 40 3.65(0.05) 0.46(0.13) 3.57(0.07) 0.31(0.07) 3.49(0.21) 0.26(0.06) 3.29(0.48) 0.22(0.05)

0.5 0 0.5 0

20 20 3.81(0.07) 1.4(0.34) 3.69(0.04) 0.94(0.16) 3.63(0.03) 0.75(0.12) 3.6(0.04) 0.64(0.11)

20 40 3.67(0.03) 0.87(0.15) 3.6(0.01) 0.6(0.08) 3.57(0.02) 0.49(0.07) 3.54(0.08) 0.42(0.06)

40 20 3.66(0.09) 0.91(0.24) 3.56(0.13) 0.63(0.11) 3.19(0.58) 0.5(0.09) 2.14(0.92) 0.44(0.07)

40 40 3.53(0.18) 0.54(0.11) 2.3(1.01) 0.37(0.06) 0.82(0.34) 0.31(0.06) 0.57(0.11) 0.26(0.05)

0.5 0 0.5 0.5

20 20 4.91(0.48) 2.19(0.51) 4.5(0.48) 1.5(0.28) 4.22(0.4) 1.2(0.18) 3.99(0.27) 1.04(0.17)

20 40 5.69(0.25) 1.56(0.3) 5.45(0.24) 1.11(0.14) 5.23(0.35) 0.9(0.11) 4.85(0.54) 0.78(0.09)

40 20 5.32(0.29) 1.29(0.2) 5.21(0.28) 0.93(0.09) 4.99(0.44) 0.77(0.07) 4.67(0.56) 0.68(0.06)

40 40 5.3(0.15) 0.79(0.09) 4.8(0.55) 0.58(0.05) 3.81(0.33) 0.49(0.04) 3.63(0.03) 0.43(0.03)

0.5 0.5 0 0

20 20 5.13(0.47) 3.76(0.4) 5.05(0.46) 3.36(0.5) 4.88(0.44) 2.97(0.68) 4.73(0.38) 2.59(0.76)

20 40 5.44(0.46) 3.63(0.39) 5.2(0.48) 3.05(0.65) 5.01(0.45) 2.57(0.78) 4.86(0.44) 2.1(0.8)

40 20 5.17(0.4) 3.49(0.39) 4.91(0.33) 2.93(0.77) 4.75(0.33) 2.26(0.93) 4.64(0.3) 1.82(0.89)

40 40 5.46(0.41) 3.19(0.6) 5.17(0.36) 2.31(0.92) 4.91(0.31) 1.66(0.89) 4.75(0.29) 1.28(0.77)

0.5 0.5 0.5 0

20 20 4.59(0.31) 3.82(0.4) 4.33(0.27) 3.39(0.5) 4.15(0.21) 3(0.67) 4.05(0.16) 2.62(0.75)

20 40 4.54(0.34) 3.66(0.39) 4.24(0.25) 3.06(0.64) 4.07(0.18) 2.59(0.78) 3.99(0.15) 2.11(0.79)

40 20 4.3(0.23) 3.52(0.39) 4.05(0.11) 2.95(0.76) 3.94(0.06) 2.29(0.92) 3.88(0.05) 1.84(0.88)

40 40 4.3(0.21) 3.2(0.59) 4.03(0.1) 2.32(0.92) 3.92(0.05) 1.67(0.88) 3.87(0.04) 1.29(0.77)

0.5 0.5 0.5 0.5

20 20 5.05(0.28) 4.17(0.43) 4.57(0.22) 3.59(0.48) 4.33(0.17) 3.15(0.63) 4.19(0.13) 2.75(0.72)

20 40 4.87(0.29) 3.88(0.39) 4.42(0.18) 3.2(0.61) 4.22(0.13) 2.71(0.74) 4.1(0.1) 2.22(0.75)

40 20 4.61(0.19) 3.63(0.37) 4.23(0.11) 3.03(0.73) 4.07(0.06) 2.37(0.88) 3.98(0.06) 1.93(0.85)

40 40 4.25(0.13) 3.25(0.58) 4.01(0.05) 2.37(0.9) 3.91(0.03) 1.72(0.86) 3.86(0.02) 1.34(0.75)

Table 16: Means and standard deviations (in parentheses) of the estimation accuracy mea-

sured by D(Q̂,Q). For ease of presentation, all numbers in this table are the true numbers

multiplied by 10.
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Appendix E Corporate Financial Data Information

Short Name Variable Name Calculation

Profit.M Profit Margin Net Income / Revenue

Oper.M Operating Margin Operating Income / Revenue

EPS Diluted Earing per share from report

Gross.Margin Gross Margin Gross Proitt / Revenue

ROE Return on equity Net Income / Shareholders Equity

ROA Return on assets Net Income / Total Assets

Revenue.PS Revenue Per Share Revenue / Shares Outstanding

LiabilityE.R Liability/Equity Ratio Total Liabilities / Shareholders Equity

AssetE.R Asset/Equity Ratio Total Assets / Shareholders Equity

Earnings.R Basic Earnings Power Ratio EBIT / Total Assets

Payout.R Payout Ratio Dividend Per Share / EPS Basic

Cash.PS Cash Per Share Cash and other / Shares Outstanding

Revenue.G.Q Revenue Growth over last Quarter Revenue / Revenue Last Quarter - 1

Revenue.G.Y Revenue Growth over same Quarter Last Year Revenue / Revenue Last Year - 1

Profit.G.Q Profit Growth over last Quarter Profit / Profit Last Quarter - 1

Profit.G.Y Profit Growth over same Quarter last Year Profit / Profit Last Quarter - 1

Table 17: Variables in coporate financial data

TICKER INDUSTRY GROUP INDUSTRY SECTOR TICKER INDUSTRY GROUP INDUSTRY SECTOR

AAPL Computers Technology KO Beverages Consumer Non-cyclical

ABT Healthcare-Products Consumer Non-cyclical KSU Transportation Industrial

ADM Agriculture Consumer Non-cyclical LEG Home Furnishings Consumer Cyclical

ADP Commercial Services Consumer Non-cyclical LH Healthcare-Services Consumer Non-cyclical

AEP Electric Utilities LLTC Semiconductors Technology

AES Electric Utilities LLY Pharmaceuticals Consumer Non-cyclical

AET Healthcare-Services Consumer Non-cyclical LM Diversified Finan Serv Financial

AME Electrical Compo&Equip Industrial LRCX Semiconductors Technology

AMGN Biotechnology Consumer Non-cyclical MAS Building Materials Industrial

APA Oil&Gas Energy MAT Toys/Games/Hobbies Consumer Cyclical

APC Oil&Gas Energy MHFI Commercial Services Consumer Non-cyclical

APD Chemicals Basic Materials MMC Insurance Financial

APH Electronics Industrial MMM Miscellaneous Manufactur Industrial

ARG Chemicals Basic Materials MO Agriculture Consumer Non-cyclical

AVY Household Products/Wares Consumer Non-cyclical MOS Chemicals Basic Materials

BA Aerospace/Defense Industrial MRK Pharmaceuticals Consumer Non-cyclical

BAX Healthcare-Products Consumer Non-cyclical MRO Oil&Gas Energy

BCR Healthcare-Products Consumer Non-cyclical MSFT Software Technology

BDX Healthcare-Products Consumer Non-cyclical MSI Telecommunications Communications

BEN Diversified Finan Serv Financial MUR Oil&Gas Energy

BHI Oil&Gas Services Energy MYL Pharmaceuticals Consumer Non-cyclical

BLL Packaging&Containers Industrial NBL Oil&Gas Energy

BMY Pharmaceuticals Consumer Non-cyclical NEE Electric Utilities
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CA Software Technology NEM Mining Basic Materials

CAH Pharmaceuticals Consumer Non-cyclical NI Gas Utilities

CAT Machinery-Constr&Mining Industrial NOC Aerospace/Defense Industrial

CCE Beverages Consumer Non-cyclical NSC Transportation Industrial

CHD Household Products/Wares Consumer Non-cyclical NUE Iron/Steel Basic Materials

CL Cosmetics/Personal Care Consumer Non-cyclical NWL Housewares Consumer Cyclical

CLX Household Products/Wares Consumer Non-cyclical OKE Pipelines Energy

CMCSA Media Communications OMC Advertising Communications

CMI Machinery-Diversified Industrial OXY Oil&Gas Energy

CMS Electric Utilities PBI Office/Business Equip Technology

CNP Gas Utilities PCAR Auto Manufacturers Consumer Cyclical

COG Oil&Gas Energy PCG Electric Utilities

COP Oil&Gas Energy PEG Electric Utilities

CSX Transportation Industrial PEP Beverages Consumer Non-cyclical

CTL Telecommunications Communications PFE Pharmaceuticals Consumer Non-cyclical

CVC Media Communications PG Cosmetics/Personal Care Consumer Non-cyclical

CVS Retail Consumer Cyclical PH Miscellaneous Manufactur Industrial

D Electric Utilities PHM Home Builders Consumer Cyclical

DD Chemicals Basic Materials PKI Electronics Industrial

DHR Healthcare-Products Consumer Non-cyclical PNR Miscellaneous Manufactur Industrial

DIS Media Communications PNW Electric Utilities

DOV Miscellaneous Manufactur Industrial PPG Chemicals Basic Materials

DOW Chemicals Basic Materials PPL Electric Utilities

DTE Electric Utilities PSA REITS Financial

DUK Electric Utilities PX Chemicals Basic Materials

DVN Oil&Gas Energy QCOM Semiconductors Technology

ECL Commercial Services Consumer Non-cyclical R Transportation Industrial

ED Electric Utilities RCL Leisure Time Consumer Cyclical

EFX Commercial Services Consumer Non-cyclical RHI Commercial Services Consumer Non-cyclical

EIX Electric Utilities ROK Machinery-Diversified Industrial

EMC Computers Technology ROP Machinery-Diversified Industrial

EMR Electrical Compo&Equip Industrial RRC Oil&Gas Energy

EQT Oil&Gas Energy SBUX Retail Consumer Cyclical

ES Electric Utilities SCG Electric Utilities

ESV Oil&Gas Energy SHW Chemicals Basic Materials

ETN Miscellaneous Manufactur Industrial SLB Oil&Gas Services Energy

ETR Electric Utilities SNA Hand/Machine Tools Industrial

EXC Electric Utilities SO Electric Utilities

EXPD Transportation Industrial SRE Gas Utilities

F Auto Manufacturers Consumer Cyclical STJ Healthcare-Products Consumer Non-cyclical

FAST Distribution/Wholesale Consumer Cyclical SWK Hand/Machine Tools Industrial

FCX Mining Basic Materials SWKS Semiconductors Technology

FLS Machinery-Diversified Industrial SWN Oil&Gas Energy

FMC Chemicals Basic Materials SYK Healthcare-Products Consumer Non-cyclical

FOX Media Communications SYMC Internet Communications

FRT REITS Financial SYY Food Consumer Non-cyclical

GAS Gas Utilities T Telecommunications Communications

GD Aerospace/Defense Industrial TAP Beverages Consumer Non-cyclical

GE Miscellaneous Manufactur Industrial TE Electric Utilities

GILD Biotechnology Consumer Non-cyclical TGNA Media Communications

GLW Electronics Industrial THC Healthcare-Services Consumer Non-cyclical
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GPC Retail Consumer Cyclical TMO Healthcare-Products Consumer Non-cyclical

GT Auto Parts&Equipment Consumer Cyclical TROW Diversified Finan Serv Financial

GWW Distribution/Wholesale Consumer Cyclical TSO Oil&Gas Energy

HAR Home Furnishings Consumer Cyclical TSS Commercial Services Consumer Non-cyclical

HAS Toys/Games/Hobbies Consumer Cyclical TWX Media Communications

HCN REITS Financial TXN Semiconductors Technology

HCP REITS Financial TXT Miscellaneous Manufactur Industrial

HES Oil&Gas Energy TYC Building Materials Industrial

HOG Leisure Time Consumer Cyclical UHS Healthcare-Services Consumer Non-cyclical

HON Electronics Industrial UNH Healthcare-Services Consumer Non-cyclical

HP Oil&Gas Energy UNP Transportation Industrial

HRS Aerospace/Defense Industrial UTX Aerospace/Defense Industrial

HSY Food Consumer Non-cyclical VFC Apparel Consumer Cyclical

IBM Computers Technology VLO Oil&Gas Energy

IFF Chemicals Basic Materials VMC Building Materials Industrial

INTC Semiconductors Technology VZ Telecommunications Communications

IP Forest Products&Paper Basic Materials WDC Computers Technology

IPG Advertising Communications WEC Electric Utilities

IR Miscellaneous Manufactur Industrial WHR Home Furnishings Consumer Cyclical

JBHT Transportation Industrial WM Environmental Control Industrial

JCI Building Materials Industrial WMB Pipelines Energy

JNJ Pharmaceuticals Consumer Non-cyclical WY REITS Financial

K Food Consumer Non-cyclical XEL Electric Utilities

KLAC Semiconductors Technology XLNX Semiconductors Technology

KMB Household Products/Wares Consumer Non-cyclical XOM Oil&Gas Energy

XRAY Healthcare-Products Consumer Non-cyclical

XRX Office/Business Equip Technology

Table 18: Bloomberg’s industry and section information of 200 companies.
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