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Over the past half century, gender gaps 

have narrowed along many dimensions, 

including college enrollment, labor force 

participation, and earnings (Goldin, 2014). 

However, sizable gender gaps remain 

elsewhere; an example that has received 

considerable attention is women’s 

underrepresentation in science, technology, 

engineering, and mathematics (STEM). 

Studies have investigated various factors 

affecting female participation in academic 

fields, such as discrimination, differential 

preferences, math intensity, and ability beliefs 

(e.g., Ceci et al., 2014, and Leslie et al., 2015). 

In this paper, we explore a new factor — 

collaboration — to explain variation in female 

representation across fields and over time.  

Our focus on collaboration stems from 

research suggesting that the norms of and 

approaches to collaboration differ across 

genders.  In particular, men and women 

exhibit, on average, different preferences for 

teamwork (Kuhn and Villeval, 2015), which, 

in academic settings, manifests itself in 

measurable differences between genders in the 

number of collaborators and network size 

(Bozeman and Gaughan, 2011). These 

differences suggest that, as the extent of 

collaboration in academia changes over time, 

the forces influencing the gender gap may also 

change.  However, as far as we know, no 

study directly examines the relationship 

between collaboration and female 

representation. 

Collaboration, as measured by 

coauthorship, has increased markedly in 

recent decades, with the mean number of 

authors per article published in peer-reviewed 

scientific journals increasing from 2.4 in 1975 

to 5.4 in 2014.  That said, it is not obvious 

whether the effect of increased collaboration 

should be an increase or a decrease in female 

representation, as there are mechanisms that 

work in both directions.1  This is the question 

we empirically examine in this paper.  

 
1 For example, some studies (e.g., Kuhn and Villeval, 2015; Niederle 
and Vesterlund, 2011) find that women are more likely than men to 
prefer working in teams or less competitive environments, which 
suggests that the increase in collaboration may raise female 
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We collect data on the female share of 

new Ph.D. recipients in the United States and 

the average number of authors per article 

published in each year and academic field 

since 1975.  We find that, after controlling for 

field and year fixed effects, one additional 

author on the average published paper is 

associated with an increase of 2.5 percentage 

points in the female share. This estimate 

suggests that the variation in collaboration 

across fields in 2014 can account for 25 

percent of the variation in female share that 

year, and the increased collaboration from 

1975 to 2014 can account for 31 percent of the 

increased female share. Our findings are 

robust to analyzing fields within STEM and 

non-STEM fields separately and to using 

alternative collaboration measures.  Moreover, 

we also explore the relationship between 

collaboration and racial minority shares, 

finding a consistent, though less robust, 

relationship. We discuss implications below. 

Finally, our findings are relevant for the 

important policy debate about how to improve 

female representation in academic fields — 

and STEM fields in particular. Policy makers 

may consider incentives, such as funding 

opportunities, to promote collaboration in 

academia, which could reduce the gender gap. 

                                                                            
representation.  On the other hand, increased collaboration could 
negatively affect females if they are less likely to be included on 
teams (see, e.g., Sheltzer and Smith, 2014). 

I. Data and Methodology 

We compile a dataset with measures of 

female representation and collaboration across 

the entire academic spectrum, including both 

STEM and non-STEM fields, from 1975 to 

2014.   Using annual data from the National 

Science Foundation’s (NSF) Survey of 

Doctorate Recipients, we measure female 

representation as the share of women among 

new U.S. doctorate recipients. We measure 

collaboration by the mean number of authors 

per article published in a given year and 

academic field, using data from Thomson 

Reuters’ Web of Science (WoS).  The 

resulting longitudinal dataset covers 30 

academic fields for every fifth year from 1975 

to 2010, as well as 2014.2 

We use the following panel regression 

model to measure the relationship between the 

degree of collaboration in a field and its 

female representation:  

(1)   𝑌𝑌𝑓𝑓𝑓𝑓 = ∝ +𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓 +

𝛿𝛿𝑓𝑓 + 𝜃𝜃𝑡𝑡 + 𝜀𝜀𝑓𝑓𝑓𝑓, 

where 𝑌𝑌𝑓𝑓𝑓𝑓  is the female share of Ph.D. 

recipients in field 𝑓𝑓  and year 𝑡𝑡 , 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓  is the average number of 

authors per article, and  𝜀𝜀𝑓𝑓𝑓𝑓  is an error term. 

Parameters 𝛿𝛿𝑓𝑓  and  𝜃𝜃𝑡𝑡  capture field and time 
 

2 See details in the Online Appendix. 
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fixed effects, respectively, while 𝛽𝛽  measures 

the extent to which an additional coauthor per 

article can account for the variation in female 

representation across time and fields.   

We note that using longitudinal data, 

rather than solely cross-sectional data as is 

typical in the literature, is advantageous.  It 

enables us to account for the possibility that 

some fields innately attract more women than 

others and allows us to investigate important 

changes in female share over time. Indeed, a 

significant portion (between 30 and 50 

percent) of the cross-sectional variation in 

female share in 2014 comes from differential 

growth rates in female share over the past 40 

years.3 

II. Graphical Examination and Results  

We begin by plotting the underlying data. 

Figure 1 shows the relationship between the 

change in female share and the change in 

coauthorship for each academic field from 

1975 to 2014. 4  We estimate the linear 

relationship between the change in female 

share and the change in the amount of 

coauthorship for all fields (solid line) and 

 
3 Table S1 in the Online Appendix reports the necessary data for 

this variance decomposition: namely, measures of collaboration and 
female share by academic field in both 1975 and 2014. 

4  Because three of our fields are missing some information in 
1975, Figure 1 plots data for 27 fields. The three omitted fields 
include (1) computer and information sciences, (2) political science, 
and (3) electrical, electronics, and communications engineering.  

separately for STEM (dotted line) and non-

STEM (dashed line) fields.  In all cases, we 

find a positive relationship, statistically 

significant at the 5 percent level. 

Panel A of Table 1 reports estimates of 𝛽𝛽 

for all fields and separately for STEM and 

non-STEM fields. For all fields (column 1), 

one additional author on the average published 

paper is associated with an increase of 2.5 

percentage points in the female share. This 

positive relationship also holds when we 

estimate the regression model using STEM 

and non-STEM fields separately. Columns (2) 

and (3) show that one additional author on the 

average published paper is associated with an 

increase of 3.7 percentage points in the female 

share among STEM fields and 6.0 percentage 

points among non-STEM fields, respectively.5 

To gauge the quantitative importance of 

collaboration, we calculate the share of 

variation in female representation that may be 

accounted for by collaboration. In 2014, the 

difference between the maximum and 

minimum field female shares was 57.2 

percentage points, while the corresponding 

difference for coauthorship was 5.7. The 

 
5 The average of these two effects is not the same as the result in 

column (1) because the regression specification corresponding to 
column (1) assumes that the time effects are the same across both 
STEM and non-STEM fields. That is, if our model allowed for 
differing time effects for STEM and non-STEM fields, the estimated 
coefficient would be the same as the (weighted) average of the 
coefficients in columns (2) and (3). 
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variation in collaboration can thus account for 

about 25 percent of the variation in female 

share (5.7 * 2.51 / 57.2). A similar calculation 

made over time suggests that increased 

collaboration can account for 31 percent of the 

increased female share. In sum, not only are 

coauthorship and female share positively 

correlated, but the variation in coauthorship 

may account for a sizable portion of the 

variation in female share across academic 

fields. 

III. Discussion 

Our finding of a positive relationship 

between coauthorship and female share raises 

additional questions that are likely to be of 

interest to practitioners who wish to increase 

female representation in their fields. For 

example, what are the mechanisms through 

which these two variables are linked? And are 

some types of collaboration more effective at 

promoting female representation than others? 

Although our data do not allow for direct 

answers to these questions, we conduct some 

additional exercises that provide hints. 

We first explore whether female 

representation is more closely related to 

collaboration within or across institutions. 

Working in the same institution facilitates 

regular face-to-face interactions, which may 

be particularly important for senior 

researchers collaborating with junior 

researchers. From our WoS data, we calculate 

two additional collaboration measures: the 

average number of institutions and average 

number of authors per institution.6 The former 

captures across-institution collaboration, and 

the latter captures the within variety. Panel B 

of Table 1 shows that an increase in the 

number of institutions is associated with a 

higher female share, whereas Panel C 

indicates that an increase in the number of 

authors per institution show no correlation. 7 

Our finding thus suggests that face-to-face 

interaction and vertical collaboration, as 

measured by within-institution coauthorship, 

may not be particularly important for female 

representation.  

We next expand our analysis to consider 

how collaboration interacts with the share of 

minority groups other than women. To the 

extent that the relationship between 

collaboration and female share is driven by a 

greater demand for diversity in more 

collaborative fields, we would expect to find 

similar patterns between collaboration and 

racial/ethnic minorities. Because information 

on race/ethnicity is only available for Ph.D. 

 
6 See the Online Appendix for detailed information on how to 

construct the sample and variables. 
7 Although the coefficient estimates in Panel C of Table 1 are 

much higher than those in Panel B, the number of institutions varies 
much less than the number of authors. Thus, the two measures 
account for similar amounts of the variation in female share 
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recipients who are U.S. citizens or permanent 

residents, we first redo our primary empirical 

analysis on this sample.8 As shown in Panel A 

of Table 2, the relationship between 

coauthorship and female representation is 

qualitatively unchanged. Panels B and C show 

that collaboration is positively associated with 

the share of blacks and Asian Americans, 

although the statistical relationship is not as 

strong as the one we find for female share. For 

the estimates that are statistically significant, 

we calculate the fraction of the variation in 

representation that can be attributed to 

collaboration.  In 2014, collaboration accounts 

for 26 percent of the variation in Black share 

across all fields, 76 percent of Black share 

variation across non-STEM fields, and 65 

percent of Asian share variation across STEM 

fields.  

In contrast, Hispanic share (Panel D) is 

not well accounted for by collaboration. We 

do not have sufficient data to identify the 

factors that drive these differences across 

minority groups. It could be that, to the extent 

increased collaboration increases demand for 

diversity, this increased demand does not 

uniformly apply to all minorities.  

Alternatively, some minority groups may find 

 
8The Online Appendix describes the construction of this sample. 

collaborative environments more appealing 

than do others. 

IV. Conclusion 

Using panel data for 30 academic fields 

from 1975 to 2014, we find that academic 

fields in which coauthorship has expanded 

more rapidly over the past 40 years have also 

experienced faster growth in female 

representation. One plausible mechanism 

through which collaboration may increase 

female share is that women are more likely to 

collaborate than their male counterparts 

(Bozeman and Gaughan, 2011), so as 

coauthorship becomes the norm, women 

engage in collaborative projects relatively 

more than do men. To the extent that such 

interactions contribute to success in academia, 

as suggested by McDowell et al. (2006) and 

Blau et al. (2010), this effect leads to higher 

female retention in collaborative fields.  At 

any rate, future research is needed to more 

fully explore the mechanisms underlying the 

observed relationship.  

Our findings suggest that those 

policies/initiatives that focus on increasing 

interactions between minorities (with respect 

to gender and race) and others in their fields 

may be beneficial.  Policies of this type 

include public funding that supports 

mentoring for female scientists and provides 
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opportunities for collaborative efforts (e.g., 

the support by the Committee on the Status of 

Women in the Economics Profession 

[CSWEP] in economics), as well as private, 

grassroots initiatives (e.g., Leanin.org) that 

seek to create safe and collaborative 

environments in which women may thrive.  
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FIGURE 1. CHANGE IN COAUTHORSHIP AND FEMALE SHARE OF PHD RECIPIENTS FROM 1975 TO 2014 

Note: This figure shows the relationship between the change in coauthorship and that in the female share of Ph.D. recipients from 1975 to 2014. 
The lines represent OLS estimates of the relationship across academic fields using all fields (solid line), STEM fields (red-dashed line), and non-
STEM fields (blue-dotted line), respectively.  The regression coefficient (standard error) for the various samples is 3.5 (1.6) for all, 6.6 (2.6) for 
STEM, and 8.3 (2.5) for non-STEM fields.  

 
TABLE 1— FEMALE SHARE AND COLLABORATION 

 
 
 

All 
(1) 

STEM 
(2) 

Non-STEM 
(3) 

Panel A. Mean authors 2.508*** 3.656*** 5.972*** 
 [0.811] [1.285] [1.330] 
Panel B. Mean institutions  11.060*** 16.210*** 16.640*** 
 [2.449] [4.758] [3.038] 
Panel C. Mean authors per institution  -0.184 0.999* -1.925** 
  [0.495] [0.543] [0.744] 
Number of observations 266 141 125 
Notes: Additional control variables include year dummies (total of 8), NSF-field specific dummies (total of 29), and a constant. 

Heteroskedasticity robust standard errors are reported in brackets. 

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level. 

 
TABLE 2— FEMALE/MINORITY SHARE AND COLLABORATION 

 

 
All 
(1) 

STEM 
(2) 

Non-STEM 
(3) 

Panel A. Female share 3.234*** 3.497** 7.151*** 
 [0.888] [1.443] [1.220] 
Panel B. Black share 0.651** 0.309 1.832*** 
 [0.255] [0.517] [0.490] 
Panel C. Asian American share -0.133 2.158** 0.0853 
 [0.402] [0.878] [0.359] 
Panel D. Hispanic share -0.207 -0.182 0.0748 
 [0.213] [0.340] [0.534] 
Number of observations 266 141 125 
Notes: This analysis used a sample that includes only Ph.D. recipients who are U.S. citizens or permanent residents.  Collaboration is 

measured by mean number of authors.  Additional control variables include year dummies (total of 8), NSF-field specific dummies 

(total of 29), and a constant. Heteroskedasticity robust standard errors are reported in brackets. 

*** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level. 
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Materials and Methods 

Doctorate Recipients by Field of Study: The annual number of doctorate recipients 
by field of study, gender, ethnicity/race, and U.S. citizenship status comes from the 
“Doctorate Recipients from U.S. Universities” reports, which are published annually by 
the National Science Foundation (NSF).1 Because information by field and gender starts 
in 1966, our sample period ranges from 1966 to 2014. Information on ethnicity and race 
is available only from 1973 onward. Mark Fiegener, a project officer in the NSF’s 
National Center for Science and Engineering Statistics, provided us with consistent data 
over this sample period for 34 academic disciplines.2  

For each year and academic discipline, we calculate several variables. “Female 
share” is the number of female doctorates divided by the sum of female and male 
doctorates. We omit doctorates whose gender is missing. “Female share (US)” is the 
female share among doctorates with U.S. citizenship or permanent residency.  We also 
calculate ethnic/racial shares as the number of doctorates of a given ethnicity/race (black, 
Hispanic, or Asian Americans) divided by doctorates whose ethnicity/race is reported. 
These shares are calculated from doctorates who are U.S. citizens or permanent residents. 

Collaboration and Field of Study: We commissioned Thomson Reuters to 
construct a panel data set for us from their Web of Science (WoS) data. Specifically, for 
each of 251 WoS academic categories and every fifth year from 1970 to 2005 and 
annually from 2008 to 2014, Thomson Reuters provided the following variables: mean 
(median) authors per document, mean (median) institutional affiliations per document, 
mean (median) authors per institution per document, and the number of documents. 

We placed a few restrictions on the documents that were included in the sample. 
First, we restricted documents to those classified as “original research,” which includes 
journal articles and book chapters from journal editions. Thus, for example, meeting 
abstracts, editorial material, book reviews, reviews, proceedings papers, and corrections 
were excluded. Second, as a minimal quality requirement, we restricted our sample to 
documents that have received at least one citation. We refer to the resulting set of 
documents as our “full sample.” 

Additional sample restrictions were made to facilitate the analysis of institutional 
affiliation. These restrictions differ before and after 2008 because authors are not directly 

                                                        
1 See National Science Foundation, “S&E Doctorate Awards,” https://www.nsf.gov/statistics/doctorates/.  
2 Data from the NSF’s Survey of Earned Doctorates (SED) is available online, but it is not suitable for our 
purposes. In particular, the WebCASPAR system (https://ncsesdata.nsf.gov/webcaspar/) does not provide 
data on gender, ethnicity, race, or citizenship after 2006. The SED Tabulation Engine 
(https://ncses.norc.org/NSFTabEngine/#WELCOME) performs such tabulations, but currently only from 
2006 to 2012. The NSF provided us with the full range of annual SED data (1966–2014), using the 
classification system of the published tables. Note that the published tables differ somewhat from the online 
(WebCASPAR) data; specifically, 300+ subfields are aggregated into 47 “Detailed Disciplines” in the 
WebCASPAR data but into 34 “Major Fields” in the published tables.  

https://www.nsf.gov/statistics/doctorates/
https://ncsesdata.nsf.gov/webcaspar/
https://ncses.norc.org/NSFTabEngine/#WELCOME
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linked to their institutions in the raw WoS data prior to 2008; rather, all institutions 
affiliated with any of a document’s authors are listed together.  For pre-2008 publications, 
our sample is simply restricted to papers that have at least one institutional affiliation. For 
post-2008 publications, we required documents to have at least one affiliation and also 
have link data (to match the author with the institution). We refer to the set of documents 
that meet these criteria as our “restricted sample.” Thomson Reuters constructed all 
variables — that is, those constructed using the full sample and those that require 
institutional information — for this sample.  

Finally, we construct the institutional affiliation of authors differently before and 
after 2008. Because authors are not linked to their institution before 2008, the number of 
institutions for a document is simply the minimum of the number of authors and listed 
institutions. After 2008, however, we can use linked data to deal with cases in which 
authors have multiple affiliations.3 Because we are interested in whether collaboration 
takes place within or across institutions, we do not want to randomly assign one of the 
author’s institutions to be their primary institution. Instead, we use the following 
algorithm to identify coauthors’ shared institutions, which will produce a lower bound on 
the number of institutions per document. Namely, for each document:  

1. Identify authors with only one affiliation.  
a. List those institutions and set the institution count to the number of 

institutions on that list. 
b. Remove any authors, including multiple-institution authors, who have 

affiliations on that list. 
2. Identify the most frequently occurring affiliation for the remaining authors.  

a. Increment the institution count. 
b. Remove all authors associated with that institution. 

3. Repeat previous step until institutions appear only once. 
4. Add the number of remaining authors (not institutions) to the institution count. 

Combining the Data: We combine the data on doctorate recipients and  
coauthorship to produce a panel data set, which covers 30 academic fields for every fifth 
year from 1975 to 2010, as well 2014, the latest year available. We drop 1970 data 
because the number of journal categories is significantly lower than in other years (229 vs. 
248–251), and even though we have data for every year after 2008, we continue to use 
data from every fifth year for consistency with the earlier part of the sample. Our data set 
includes only 30 NSF academic fields (rather than 34) because we merge all education-
related fields (i.e., education administration, education research, teacher education, 

                                                        
3 By “multiple affiliations,” we mean multiple appointments — for example, UCLA and University of 
Minnesota — and not just parent institutions — for example, the University of California System and 
UCLA. We deal with the latter case by using only the institution that is at the lowest rung, so to speak.  
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teaching fields, and other education). We do this because the education-related WoS 
journal categories do not allow for a clean mapping into separate NSF education fields.  

To aggregate the 251 WoS journal categories into the 30 NSF major fields, we make 
use of NSF detailed subfields, which are listed at 
http://www.nsf.gov/statistics/2016/nsf16300/data/tab16.pdf and assign each journal 
category to an NSF subfield based on our best judgment. With over 300 NSF subfields, 
journal categories and subfields are at a similar level of disaggregation, making the 
mapping straightforward for most categories. The most frequent reason a mapping was 
less than clear-cut was that the journal category could have been classified as either 
biological/biomedical sciences or health sciences. Alternative mappings of these 
categories do not significantly affect our results.  We also omit five WoS categories for 
which the mapping was unclear: Crystallography, Energy & Fuels, Microscopy, 
Nanoscience & Nanotechnology, and Spectroscopy.  

We also drop a few year-by-WoS-category observations that display an exceptionally 
large number of authors because we are concerned that these outliers could mask the 
relationship between average collaboration and the composition of doctorates. For 
example, the mean number of authors per document in “Physics, Particles & Fields” 
jumped from less than 15 in 2010 (and all previous years) to 47 in 2014. This is an 
extreme outlier: across WoS categories and years, the mean and standard deviation of 
authors per document are 3.43 and 2.67, respectively. We drop observations that had a 
mean number of authors per document more than +/− 5 standard deviations from the 
cross-sectional mean (i.e., greater than 17 authors). This removes three observations out 
of 2,259. All three are in 2014: “Astronomy & Astrophysics,” “Physics, Nuclear,” and 
“Physics, Particles & Fields.”  

For each of our 30 academic fields and each year, we construct the weighted average 
of our collaboration statistics (mean authors per article, etc.) across journal categories 
assigned to the field, where the weight is based on the number of documents in the WoS 
category. Specifically, the weight for a WoS category is its number of documents relative 
to the number of documents for all WoS categories in the NSF field. 

Finally, for analysis involving our primary measure of collaboration (i.e., number of 
authors), we use our full sample, so as to avoid differences in sample selection pre- and 
post-2008.4 However, when we analyze the number of institutions and number of authors 
per institution, we must use our restricted sample. This requires care in how we compare 

                                                        
4 Another reason to focus on the full sample is that WoS policy for assigning institutions appears to have 
changed in 1998. Documents have a “reprint/corresponding” address (until recently, just one per document) 
and also “researcher” addresses. The latter are the full address lists from the publication, while the former 
can manifest itself differently in the full text of the article. It appears that, in 1998, publications without 
“researcher” addresses but with a “reprint” address started to have the latter assigned to the former. This led 
to a big increase in our restricted sample and could cause a spurious drop in authors per document. 

http://www.nsf.gov/statistics/2016/nsf16300/data/tab16.pdf
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results across time; specifically, it is one reason we include time-fixed effects in our 
regressions.  

 

Female share and collaboration in the full-sample and restricted sample 
In Table 1 of the main text, we examine the relationship between female share and 
alternative measures of collaboration. As explained in the previous section, the variables 
of “mean institution” and “mean authors per institution” (Panels B and C of Table 1, 
respectively) are constructed using a restricted sample of journal articles, while the 
results for "mean authors" (Panel A) use our full sample. We show here that the use of 
different samples is not drive our results. To do so, we estimate the regression model 
reported in Panel A but use the restricted sample rather than the full sample.  The results 
are reported in Table S2.  Panel A repeats our baseline result (Panel A of the main text's 
Table 1), while Panel B reports the new estimate based on the restricted sample. We see 
that restricting the sample does not significantly alter the results.  

  



6 
 

Table S1: Female Share and Collaboration by NSF Categories 

NSF Category STEM Female share 
(%) Mean authors 

  1975 2014 1975 2014 
 (1) (2) (3) (4) (5) 
Agricultural sciences.; natural 
resources Yes 4.72 48.31 2.22 5.13 

Biological, biomedical sciences Yes 23.05 53.86 2.52 6.36 
Health sciences Yes 30.95 70.02 2.77 6.88 
Chemistry Yes 10.92 38.30 2.65 5.26 
Computer and information 
sciences Yes — 19.72 1.76 3.64 

Geosciences Yes 3.95 41.30 1.97 4.66 
Mathematics Yes 9.50 28.59 1.33 2.49 
Physics and astronomy Yes 5.38 20.11 2.48 5.29 
Anthropology No 35.75 62.62 1.41 3.30 
Economics No 9.61 34.01 1.31 2.45 
Political science No — 44.13 1.21 1.85 
Psychology No 31.73 71.41 1.93 4.06 
Sociology No 30.88 63.42 1.36 2.10 
Other social sciences No 20.53 56.65 1.43 2.95 
Aerospace, aeronautical, and 
astronautical engineering Yes 1.42 14.25 1.88 3.68 

Chemical engineering Yes 1.08 29.77 2.16 4.44 
Civil engineering Yes 1.03 23.82 1.78 3.57 
Electrical, electronics, and 
communication engineering Yes — 16.77 2.16 4.01 

Industrial and manufacturing 
engineering Yes 2.17 29.87 1.88 3.45 

Materials science engineering Yes 3.79 25.60 2.25 5.13 
Mechanical engineering Yes 0.62 14.87 1.84 3.42 
Other engineering Yes 2.06 27.35 2.36 4.93 
Education No 25.30 64.81 1.54 3.33 
Foreign languages and literature No 49.88 63.20 1.03 1.14 
History No 22.32 44.03 1.35 1.48 
Letters No 39.93 57.57 1.02 1.25 
Other humanities No 25.63 45.56 1.08 2.19 
Business management and 
administration No 3.56 42.49 1.51 2.72 

Communication No 30.30 57.94 1.40 2.31 
Non-S&E fields not elsewhere 
classified No 25.55 57.82 2.07 4.46 

 
Notes: “—” indicates that there were less than 10 Ph.D. recipients in the particular field-year pair.  
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Table S2: Female Share and Collaboration 

 All STEM Non-STEM 
 (1) (2) (3) 

Panel A. Mean authors 2.51*** 3.66*** 5.97*** 
 [0.81] [1.29] [1.33] 
Panel B. Mean authors (restricted) 2.17*** 2.90** 4.34*** 
 [0.72] [1.20] [1.02] 
    

Notes: Additional control variables include year dummies (total of 8), NSF-field-specific dummies (total of 
29), and a constant. Heteroskedasticity robust standard errors are reported in brackets.  Significance: * 10 
percent, ** 5 percent, *** 1 percent. 
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