Multi-dimensional Reasoning in Games: Framework, Equilibrium and Applications*

Ayala Arad

Coller School of Management, Tel Aviv University
and

Ariel Rubinstein

School of Economics, Tel Aviv University and

Department of Economics, New York University

Abstract

We develop a framework for analyzing multi-dimensional reasoning in strategic interactions,
motivated by the following experimental findings: (a) in games with a large and complex space of
strategies, players tend to think in terms of strategy characteristics rather than the strategies
themselves, and (b) in choosing between strategies with a number of characteristics, players
consider one characteristic at a time. The solution concept captures Nash-like stability of a
choice of features of strategies rather than of strategies. The concept is applied to a number of
economic interactions, where stable modes of behavior are identified.
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1. Introduction

The starting point of this paper is the recognition that in games in which the space of strategies is
large and complex players deliberate over the space of characteristics of strategies rather than
over the strategies themselves (Arad and Rubinstein (2012) and Harstad and Selten (2013,
2016)).

Arad and Rubinstein (2012) studied a version of the Colonel Blotto game and demonstrated the
prevalence of multi-dimensional reasoning, i.e. thinking in terms of dimensions of strategies
rather than strategies per se. In this game, each player (in the role of a colonel) allocates 120
troops across 6 battlefields ordered in a line. We argued that the main dimensions considered by
the subjects were: (i) the number of reinforced battlefields, i.e. those with more than 20 troops,
(i) the location of the reinforced battlefields (for example, the outer vs. the inner battlefields), and
(iiif) the choice of the unit digit in the number of troops on each battlefield: for example, whether to
allocate 0, 1, or 2 on a battlefield that the player is prepared to abandon. Arad and Penczynski
(2016) investigated the Blotto game as well as multi-object auctions (all-pay and winner-pay)
using an experimental protocol that allows eliciting the subjects’ strategic considerations:
subjects played in teams and were allowed to communicate before making a final decision. The
analysis of the text messages revealed that almost all of the subjects thought in terms of
properties of strategies, rather than strategies per se.

These findings suggest that in complex games, one should look for regularity in the
combination of chosen characteristics of strategies rather than in the particular strategies played.
To formally capture such a notion of stability requires a new modeling approach. We suggest
such an approach below.

In the proposed model, each player classifies the strategies along a number of dimensions. He
makes a decision in each dimension based on the profile of characteristics (not strategies) that
he believes each of the other players will choose. Once he has decided on the desirable
characteristics of his strategy, he picks a strategy that has them all.

This two-stage process is a common real-life phenomenon. It is often the case that decision
makers first decide on the principles of their plan of action and only then fill in the details
necessary to implement the plan.

For simplicity, we confine the analysis to symmetric two-player strategic interactions. The
model, which we call an edited game, extends the standard model of a game by including a
specification of an array of dimensions. Each strategy has a value in each dimension. The set of
all strategies is partitioned by the values they receive in the various dimensions. A cell is a set of
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strategies which share values in all dimensions. A candidate for equilibrium in our proposed
solution concept is a cell. A cell is unstable if changing one characteristic (i.e. the value in one
dimension) while keeping the others fixed is desirable, in the sense that there is a strategy which
differs in its characteristics from those in the cell only in that one dimension and which performs
better against the uniform distribution over the strategies in the cell.

We seek an equilibrium concept that is stable in the sense of Nash equilibrium, that is: given
that players think that other players behave according to the equilibrium mode of behavior, they
don’t have a reason to deviate. Like Nash equilibrium, such a solution fits situations in which
players have accumulated experience in playing the game and have settled on a particular mode
of behavior.

The proposed solution concept, which we call MD-equilibrium, is a cell that is not unstable in
the aforementioned sense. In other words, the cell contains an optimal strategy against the cell
from among all those that do not differ from the cell in more than one dimension. Note that the
definition of an MD-equilibrium does not rule out the possibility that there are better strategies
which differ in more than one dimension from the strategies in the cell. If there are no such
strategies, then we refer to the MD-equilibrium as global.

Thus, an MD-equilibrium provides only a rough prediction: it does not specify which strategies
will be chosen but rather points to a collection of strategies that share a profile of characteristics,
one for each dimension.

Example: Consider the following edited "settlements" game. There are two players and five
territories ordered on a line and labeled from left to right as 1,2,3,4,5. A player chooses either
one territory or a pair of adjacent territories to settle in (that is, each player chooses one of the
following nine possibilities: 1, 2, 3, 4, 5, 12, 23, 34, 45). In the case that the territories chosen by
the two players coincide or overlap, there is a clash and neither of them gets to keep any
territories. In the case that the choices don’t coincide or overlap, each keeps the territory or
territories he chose. The utility of holding one territory is 2 and the utility of holding two territories
is 3.

In describing the edited game, suppose that each player has in mind two dimensions: the
number of territories he settles in (i.e. one or two) and whether or not he settles in the middle
territory (number 3). The following matrix presents the classification of the strategies in the edited
game: each column corresponds to a value in the first dimension while each row corresponds to
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a value in the second.

one two
center 3 23,34
not center | 1,2,4,5 | 12,45

Let us first see why (one,not center), for instance, is not an MD-equilibrium. Any strategy in this
cell obtains an expected payoff of 3/2 when playing against the uniform distribution over the cell,
whereas the strategy 3 in (one,center) obtains a payoff of 2 with certainty. The only
MD-equilibrium is (two,not center) where each strategy obtains an expected payoff of 3/2 when
playing against the cell. This is not a global MD-equilibrium since the strategy 3 in (one,center)
would obtain a higher payoff of 2.

Note that the MD-equilibrium is different from all Nash equilibria of the game. Any mixed
strategy Nash equilibrium which contains in its support the strategies 12 and 45 also assigns
positive probability to the strategy 3 (assigning probability 1/7 to the strategy 3 and 3/7 to each of
the strategies 12 and 45 is a Nash equilibrium with expected payoff of 12/7).

It is worth emphasizing again that the MD-equilibrium concept involves the stability of
characteristics of strategies rather than of the strategies themselves. When applying the model to
an economic interaction, the modeler must specify the dimensions and their possible values,
either based on empirical evidence or by using his sense of the natural language used to
organize the strategy space.

The MD-equilibrium is of course sensitive to the specification of the dimensions, which is a
positive feature of the model in our view. The way that a game is perceived by the players is an
important part of the description of the strategic situation. How strategies are organized by
dimensions might indeed affect behavior. The current model makes it possible to examine how
different perceptions lead to different equilibria.

Note that the modeler’s choice of dimensions is subjective in the same manner that the choice
of any other component of a game model is subjective. In modeling any strategic interaction, the
modeler wishes to include only the relevant players and the relevant set of alternatives and
capture in the payoff function only the aspects most significant to the players. This requires that
the modeler activate his judgement and his common sense and that he be familiar with the
situation. The choice of dimensions is simply an additional element in the players’ strategic
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reasoning that needs to be specified. When choosing this extra component, one can also turn to
empirical evidence. We believe that there are some regularities in the dimensions perceived by
players. This view is supported by Arad and Penczynski (2016)'s experimental findings,
according to which people have in mind similar dimensions in different resource allocation games
The applied economist who believes that players have in mind a particular set of dimensions
can use the solution concept to "predict" or explain the choice of certain types of strategies that
share common features, without committing himself to a prediction of specific pure or mixed
strategies. We find the MD-equilibrium therefore to be an attractive equilibrium concept,
especially in the case of games with a large number of strategies that do not have a pure Nash
equilibrium and in which the mixed strategy equilibrium is complicated (as in the Blotto game,
multi-object auctions and the two-dimensional Hotelling game analyzed in this paper).

In what follows, we present the formal model and solution concept and apply it to a number of
economic interactions. In each example, we specify an edited game that contains a specific array
of dimensions. We do not claim that our choice of the dimensions is necessarily the correct one;
we simply find it to be reasonable. For the purpose of illustrating the richness of the model, we
intentionally choose different types of specifications for the dimensions and their values in the
three main examples.

At the end of the paper, we extend the model to asymmetric games, discuss a concept of
mixed MD-equilibrium and prove some existence results.

2. The model and the equilibrium concept

2.1 The model

The basic component of the model is a symmetric two-player game (S,u) where S is each
player’s action set and u(s,s’) is a player’s payoff if he chooses s when his opponent chooses s'.
Assume that the set S is finite or that the function u is continuous.

The restriction of the analysis to two-player symmetric games is done for the sake of focusing
on the conceptual issues. In Section 6 we provide an n-player asymmetric version of the solution
concept.

We depart from the standard model by adding a description of the players’ perception of the
space of the strategies. We have in mind that a player thinks about the strategies in terms of K
dimensions. Each strategy receives a value in each of the dimensions. A profile of values - one in
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each dimension - fits a set of strategies that share this combination. A player deliberates over the
space of the vectors of dimensional values rather than on the space of the strategies. This leads
to the following definition:

Definition: An edited symmetric game is a tuple < S,u, (Dk)«-1..x > Where (S,u) is a symmetric
game and each Dy is a function that assigns to every strategy s a value D(5s).

Each k stands for a "dimension". The symbol dx denotes a generic value of the k'th dimension.
The notation d = (dk)«-1..x is used for the set of strategies s for which Dy(s) = dx for all k. We call
such a set a cell. Note that each function Dy partitions the strategies by their Dy-value and the set
of all cells is the join of all partitions. Denote by u(s,C) the expected utility when playing the
strategy s against the uniform distribution over the cell C.

We assume here that all players edit the strategy space identically. In Section 6 the model is
extended to a situation in which players can have different perceptions of the strategy space.

2.2 The solution concept

We seek a definition of the stability of a mode of behavior that is described in terms of a cell,
i.e. a vector of K values, one for each dimension. We look for a concept similar to that of Nash
equilibrium but which will be defined on the space of vectors of characteristics rather than on the
space of strategies. In order to do so we require a concept analogous to that of a best response
in a standard game.

Definition: The value d; is a proper response in the k'th dimension to the cell d, denoted by
di € PRk(d), if the cell (d—,d§) contains a best response to the uniform distribution over d, when
restricted to strategies in Ue, (d—,ex) = {S | Di(s) = d, for any | = k}.

The definition of a proper response captures a key assumption of the model. A player
considers one dimension at a time, while keeping the characteristics in the other K-1
dimensions fixed. A player views the value I¢ as a proper response in the ki dimension to a cell d
if from among all strategies which share with d all characteristics besides that in the k™
dimension, a best response strategy to the uniform distribution over d has Iy as its k™
characteristic. We view the existence of such an optimal strategy as a justification for defining Ik
as a proper response to d in the k™ dimension.

This definition is a particular formalization of the proper response mode of reasoning. We
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believe that in real life players often use heuristics in the process of proper response reasoning
and do not necessarily implement the exact calculations behind the formal definition of a proper
response. Thus, the definition can be viewed as a reasonable approximation of the natural
reasoning process in complex settings. In some instances, a transparent consideration lies
behind the proper response operator and persuades us (without calculating it explicitly) that the
best response to a cell must be in a particular cell. In what follows we will emphasize that the
concept of proper response often captures intuitive considerations which also guide us in
characterizing the MD-equilibrium.

We now arrive at the definition of the solution concept called Multi Dimensional equilibrium:

Definition: An MD-equilibrium of the edited symmetric game < S,u, (Dk)k-1..x > is a non-empty
cell d* = (d¥) such that di € PRx(d*) for all k.

Thus, a candidate for MD-equilibrium is a cell, i.e. a vector that specifies a value in each
dimension. A player considers the dimensions one at a time and finds each value di to be a
proper response to the equilibrium cell. We view the combination of values that characterize the
cell as a "stable norm of behavior" analogous to the standard symmetric Nash equilibrium
strategy.

An equivalent definition of the MD-equilibrium is a cell d* = (dy) satisfying that there is a
strategy in the cell that maximizes u(s,d*) over {s| Di(s) = dj for all k except for at most one}
(namely, the set of strategies with values that differ from the cell values in only one dimension).
In other words, a player considers using only strategies that share with the equilibrium cell all the
dimensions but one. In an MD-equilibrium, a player does not find any such strategy to be better
than all the others in the cell when playing against the uniform distribution over the cell.

We envision that, using the concept of proper response, a player decides over the cell only.
The concept is silent about what brings a player to play a particular strategy in the equilibrium
cell. In particular, it does not imply that the strategies in the equilibrium cell are chosen with equal
probability. The uniformity is used only for approximating the players proper response reasoning
process.

The concept of MD-equilibrium is a mix of categorical thinking and dimensional thinking, but
one can think about the two issues separately. Thus, one can focus only on dimensional thinking
by applying the MD-equilibrium concept to "product games" where each strategy is a vector, a
player decides on each component separately but each cell is a single strategy (see Section 6).
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Alternatively, we might wish to focus only on categorical thinking and allow a player to reason in
terms of characteristics of a strategy though he does so simultaneously for all dimensions. In that
case, we can apply the following definition:

Definition: An MD-equilibrium is global if the equilibrium cell contains a strategy that is a best
response to the uniform distribution over the cell from among all strategies in S. In other words,
an MD-equilibrium is not global if some strategy which differs from it in at least two dimensions, is
a better response to the uniform distribution on the MD-equilibrium cell than all strategies in the
cell itself.

2.3 Comments about the model and the solution concept

(i) We view the solution concept as the specification of a stable type of strategy, a type which is
expressible as a profile of characteristics. A type can be described also as the set of strategies
which have all those characteristics. However, intuitively, the stability of the norm of behavior is
stated in the language of the dimensions.

(i) The proper response operator captures the justification used by a player for following the
equilibrium. A player evaluates the equilibrium cell according to the maximal expected utility he
can obtain if he chooses a strategy in it and the strategy is played against some arbitrary strategy
in that cell. Two players’ expectations may often be inconsistent with the payoffs they would
achieve if both chose a best response strategy against the uniform distribution over the cell.

(iii) In the economic examples that follow, we show that an MD-equilibrium exists. However, as
in the case of a pure Nash equilibrium, an MD-equilibrium does not always exist. In section 6, we
present an existence theorem for super-modular games where the strategies are classified along
a unique dimension. We also suggest a mixed strategy version of the solution concept and prove
the existence of a mixed strategy MD-equilibrium in any finite edited game with a unique
dimension.

Some of the ingredients of the MD-equilibrium concept are shared by other economic
concepts. In particular:

(1) There are several game-theoretic models in which the solution concept is a set of strategies
rather than a single strategy. In particular, see Basu and Weibull (1991) who (adjusted for the
symmetric case) search for minimal sets of strategies for which all best responses to any belief
on the set are inside the set (see also the discussion in Myerson and Weibull (2015), p. 950).

(2) Previous examples of categorical beliefs (i.e. players’ beliefs that are framed in terms of
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categories rather than strategies) include numerous models with analogy-based reasoning due to
Philippe Jehiel (see for example, Jehiel (2005)) as well as Piccione and Rubinstein (2003).

(3) A player in our model can be thought of as a team in the sense of Marschak and Radner
(1972), such that all members share the same target and each is responsible for choosing one
characteristic of the team’s decision. A manager collects these choices and makes a decision
that is consistent with the chosen array of characteristics.

(4) In his proper response calculation, a player assumes a uniform distribution over the
strategies in the cell. This is an application of the widely used "principle of indifference", which
goes back centuries to Jacob Bernoulli and Pierre Simon Laplace.

3. Colonel Blotto: Reasoning on the number of reinforced battlefields and their location

In this section, we apply the solution concept to a variant of the famous Colonel Blotto game
which originally appeared in Borel (1921). In this variant there are two generals and each has N
troops at his disposal. (For simplicity we confine ourselves to values of N that are multiplies of 6.)
Each general allocates his troops among three battlefields denoted 1,2 and 3 (we refer to field 2

as the center and to fields 1 and 3 as the edges). The set of strategies for each general is

(N+2)!

S = {(x1,X2,X3)| Xi is @ non-negative integer and Z Nl

= N}. The set contains

o123 X strategies.

When a player uses a strategy x = (Xi,X2,X3) against a strategy y = (y1,Y2,Y3) he scores one
point in field i if x; > y;, half a point if x; = y; and 0 otherwise. His score is the sum of the points he
scores in the three fields. A match between two strategies can yield only one of three scores: 2:1
(a win), 1.5:1.5 (a draw), 1:2 (a loss). Each general wishes to maximize his expected number of
points.

The Blotto game has received widespread attention due to its interpretation in the Political
Economics literature as a game between two presidential candidates who allocate their limited
budgets among campaigns in the “battlefield” states (see, for example, Brams (1978)). Myerson
(1993) suggested an alternative interpretation of the Blotto game as a vote-buying game. The
game can be also interpreted as an R&D race between two firms who compete by allocating their
limited resources among a number of projects.

As mentioned in the Introduction, experimental evidence indicates that the Blotto game triggers
multi-dimensional reasoning. In particular, the vast majority of players choose their strategy after
deliberating on the number of fields in which to concentrate their resources. We define the
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number of reinforced fields as the first dimension in the edited game.

Experimental results suggest that participants take into account the order of the battlefields.
Therefore, the second dimension is defined as the ordering of the troops allocated among the
three battlefields. In other words, does the player assign the troops in increasing order, in
decreasing order or not according to any of the two orderings.

Formally, the edited game involves the following two dimensions:

(i) The number of fields (1,2 or 3) in which the player reinforces his troops, where field i is
reinforced in x if X; > N/3.

(i) The order of the troop assignments: this dimension receives the value " ™ if the
assignments are in increasing order (x; < X, < x3 with at least one strict inequality); "™\" if the
assignments are in decreasing (x; > X, > x3 with at least one strict inequality). Otherwise, it gets
the value "other".

To illustrate, following is the classification of the 28 strategies for the case of N = 6 (the
notation abc stands for the strategy (a,b,c)):

Ist dimension

2nd dimension 1 2 3
decreasing \, | 411,510,600 321,330,420 -
increasing /' | 006,015,114 024,033,123 —
other 051,060,105 | 042,132,204,213,231 | 222
141,150,501 240,303,312,402

The cell (1,\), for example, is not an MD-equilibrium since other is a proper response in the
second dimension to (1,\): the best strategy against (1, within the cell is (4,1,1) (which
achieves one win and two draws against the three strategies in (1,\,) while (0,5,1) € (1,other)
does better with two wins and one draw. Intuitively, abandoning the first field, reinforcing the
second and placing a positive number of troops on the third guarantees scoring a point on the
second field and often scoring a point on the third, which is the weakest of the (1,) strategies.

The cell (2,0ther) is a (global) MD-equilibrium. Several strategies, including (3,0,3) € (2,other),
are optimal against (2, other) and achieve an expected score of 1.72 (4 wins and 5 draws). This is
higher than the score of any strategy outside the set, which at most achieves an expected score
of 1.56 (for example, (0,2,4) yields 4 wins, 2 draws and 3 losses).

Page 10



Proposition 1: In the edited Blotto game with 3 battlefields and N as a multiple of 6,
(2,other) is the only MD-equilibrium and is global.

Proof: See Appendix.

The proof can be demonstrated intuitively by means of the proper responses in the two
dimensions.

Note that "other" is the union of two equally sized classes of strategies: the "peak N" strategies
(x2 > x1,X3) and the "sink U" strategies (x2 < Xi,X3).

PR, (2,other) = 2: The strategy (N/2,0,N/2) € (2,other) scores approximately 2 points against
any strategy in (2,n) and on average about 1.5 points against the strategies in (2,U). Thus, on
average it scores about 1.75 points against (2,other). On the other hand, a strategy in (1,N)
scores only 1 point against the strategies in (2,U) and thus on average will not score more than
1.5 points. A strategy in (1,U) with a peak assignment in field 1, scores only one point against
one-quarter of the strategies in (2,other), which has reinforced fields in fields 2 and 3, and thus
on average cannot score more than 1.75 points.

PR,(2,other) = other: A strategy (xi,X2,X3) € (2,\,) will obtain approximately the same result as
(x1,X3,X2) € (2,0ther) against (2,U) but will do worse against peak strategies since they waste a
medium-size assignment against the peak assignment of the peak strategies.

PR, (1,other) + 1: If a player believes that his opponent is concentrating his troops on one field,
then splitting his troops among all three fields, ((3,other)) will yield a win with certainty.

PR, (3,other) + 3: Concentrating on the two edges and sacrificing the center ((2,other)) will win
against the strategy that splits the troops equally among the three fields.

PR2(2, ) =+, A player can find a peak strategy with a medium-size assignment on the first
field and a high assignment on the second, while sacrificing the third field ((2, other)). This will win
against most strategies of increasing order. Similarly, PR2(2,\) #\.

PR,(1, ) =+ since (1,other) includes a pick strategy that abandons the third field, always
wins the second and has a good chance of winning the first. Similarly, PR (1,\) #\..

Comparison to Nash equilibrium: The equilibrium of the Blotto game’s continuous version
was characterized by Roberson (2006), while that of the discrete case was characterized by Hart
(2008). Both concluded that in equilibrium, players treat the battlefields symmetrically and the
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marginal distribution of the troops among the battlefields is essentially uniform in the interval
[0,2N/3]. The MD-equilibrium cell is very different from the support of the mixed strategy Nash
equilibrium. In addition to the order dimension, all of the strategies in the MD-equilibrium cell
have two reinforced fields while in Nash equilibrium the expected number of reinforced fields is
1.5.

Discussion: We believe that the only reasonable type of prediction in such a game is a coarse
description of behavior. Proposition 2 suggests that the following coarse rule of behavior is
stable: Reinforce two battlefields and do not monotonically order the three single-field
assignments. The cell (2,other) appears to be immune to deviations when applying intuitive
coarse thinking, which is supported by fine calculations.

Interestingly, the MD-equilibrium in this game is in the spirit of the most sophisticated strategies
observed in Arad and Rubinstein (2012)'s experiment of the one-shot Blotto game: the most
successful strategies reinforced two-thirds of the battlefields and did not use monotonic ordering.

4. A Three-object all-pay auction: Thinking in terms of categorical (high/low) bids

The following game is inspired by Rosenthal and Szentes (2003). There are three objects up for
sale and two bidders. The bidders are expected-payoff maximizers and each receives a payoff M
if he wins any two of the objects. No additional benefit is obtained from winning a third object and
there is no benefit from winning only one object. Each bidder is allowed to make three bids. He
pays what he bids for an object regardless of whether his is the winning bid. For each object, the
highest bid wins and a tie is broken randomly. In the case that no one bids on an object, each
bidder receives the object with probability 1/2.

A strategy is a triple of three non-negative integers, each between 0 and T where T is an even
number. We denote a strategy of three bids by x = (x;,x2,X3). However, we have in mind a
situation in which the objects are not naturally ordered and a player does not distinguish between
one strategy and another that permutes the bids.

For simplicity, we exclude (0,0,0) from the set of strategies and focus on parameters of the
model (i.e. M and T) for which the equilibrium expected payoff is non-negative.

The game has two main interpretations: that of a multi-object auction conducted by a
government where the bidders’ interest in one object depends on the availability of another (such
as in the case of oil leases and spectrum licenses); and that of an election game in which each of

Page 12



two candidates seeks to win a majority of districts and the votes a candidate receives in each
district depend on the relative investment of the two candidates in the district. We believe that in
such circumstances even sophisticated players think in terms of categories. For example, a
player in the election game might decide on the number of districts in which he will spend his
campaign funds and the relative amounts he will spend in those districts (high amounts in all
districts, low amounts in all districts or a mix of low amounts in some districts and high amounts
in others). Experimental evidence for multi-object auctions suggests that both these dimensions -
the number of objects to bid on and the relative size of the bids - are frequently considered by
players (Arad and Penczynski (2016)).

We are interested in constructing an edited game that can be used to determine whether there
are stable descriptions of behavior in which: (i) players choose whether to bid on all the objects
or only on a partial set of objects (without explicitly deciding on which objects), and (ii) players
decide whether to place an high or low bid on each object (without deciding on the exact size of
each bid). Thus, we specify the dimensions as follows:

(i) The number of positive bids, which can take a value of either 1,2 or 3.

(i) The mix of high and low bids (among the positive bids). We divide the set of non-zero bids
into Low = {1,...,T/2} and High = {T/2+1,...,T}. It is assumed that this dimension can receive
three values: "L" (all positive bids are in Low), "mix" (at least one high and one low bid) and "H"
(all positive bids are in High).

Thus, for example, in the case of T =4 the strategies (1,4,4) and (2,3,1) are in (3, mix),
(1,2,0) € (2,L) and (0,0,4) € (1,H).

We now characterize the MD-equilibria for a range of parameters in which: (1) the prize is large
enough to justify choosing the highest possible bid on two objects for some beliefs, and (2) small
enough such that it is not always beneficial for a player to increase his bid by one unit if this has
a positive effect on the probability of winning. Thus, in this domain a player faces a trade-off
between decreasing the costs of the bids and increasing the probability of winning the prize.

Proposition 2: In the edited 3-object two-bidder simultaneous all-pay auction with
2T < M < T?/2, the cells (3,mix) and (2,H) are the only MD-equilibria. The cells are

A2 > Mo 3T (that is, unless M/T is around 3).

non-global unless —= > <

Proof: We focus here on the intuitive strategic considerations and direct the reader to the
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appendix for further details.

Notation: For a cell C and a strategy x = (X1,X2,X3), denote by W(x,C) the probability that the
strategy wins M against the uniform distribution over C. The marginal increase in the probability
of winning M by adding one unit of investment to the first component of the strategy is denoted
by A(X,C) = W((X; + 1,X2,%3),C) — W((X1,X2,X3),C). The three components are symmetric and thus
the calculation of the marginals on one component is valid for the others as well. A player’s
expected payoff from playing x against the uniform distribution over C s

ux,C) = Wx,C)M - > Xi. Let probc(statement about a strategy x) denote the proportion of

i=1,2,3
strategies in C satisfying the statement.
The following Lemma provides an explicit expression for A((x1,X2,X3),C):

Lemma 1: For a cell C and a strategy (x;,X2,X3):

A((X1,X2,X3),C) = probc(y: € {Xi,X1 + 1} and (y2 = X2 or y3 = X3))/4+probc(y; € {X; + 1,x;} and
eithery, > x, and x5 > ys ory, < X, and x3 < y3)/2.

Proof: See appendix.

A strategy is said to be an edge strategy if all of its positive components are on the edges of
the categories Low and High, that is within the set {1,T/2,T/2+ 1,T}. Let edge(C) be the set of
edge strategies in C. Lemma 1 implies Lemma 2 which states that the maximization of the
expected payoff over cell C; below, while playing against the uniform distribution on a cell C,,
has a solution on the edge of C;.

Lemma 2: For any two cells C; and C,, the maximization maxs.c, W(s,C,) has a solution in
edge(C)).

Proof: Consider three values t,t + 1,t + 2 belonging to the same category, either Low or High.
The events presented in the above table for x; =t and x; =t+ 1 have the same probability.
Thus, by Lemma 1, A(t+1,X2,X3),C) = A((t,x2,X3),C). Therefore, the maximization
maxsec, W(s,C,) must have a solution that is an edge strategy.

The following three claims show that only (2,H) and (3, mix) are MD-equilibria:

Claim 1: All the cells besides (2,H) and (3, mix) are not MD-equilibria.
The following are intuitive considerations which show those cells unstable.
PR;(1,L) # 1: The strategy (1,1,1) € (3,L) always wins against (1,L) with almost no cost; in
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contrast a strategy in (1,L) wins with probability of at most 7/12 against (1,L).

PR;(1,H) £ 1 or PR,(1,H) +# H: There are two candidates for best strategy in (1,H) when
playing against (1,H). The strategy (T,0,0) wins with probability of about 7/12 against (1,H) but
costs T and is inferior to (T/2+1,T/2+1,T/2+ 1) € (3,H) which costs only about T/2 more but
adds 5/12 to the chances of winning. The strategy (T/2 + 1,0,0) is clearly inferior to (1,0,0) € (1,L)
since using the lowest bid in H is a waste against (1,H).

PR:(3,H) + 3: With the expectation that the other player will choose some three high bids, a
player believes that two maximal bids ((2,H)) are sufficient to almost ensure winning the two
objects and saving the cost of one high bid.

PR;(3,L) # 3 or PRy(3,L) # L: If the best response to (3,L) in (3,L) involves only two
assignments of T/2, then the third bid of 1 plays only a small role in determining the probability of
winning and hence should be dropped (a strategy in (2,L)). If the best response to (3,L) in (3,L)
happens to involve three assignments of T/2, then a strategy of the type
(1,T/2+1,T/2+ 1) € (3,mix) guarantees winning with lower costs.

PR2(2,L) # L: The assumption that M > 2T makes (T/2,T/2,0) the best strategy within (2,L)
against the cell. However, in that case a strategy (0,T/2+ 1,T/2+ 1) € (2,H) involves only a small
additional cost and guarantees winning.

PR;(2,mix) = 2: any (1,x2,X3) € (3,mix) is superior to (0,X»,X3) € (2,mix) against (2, mix) since it
increases the probability of winning by at least 1/12 and involves only a negligible additional cost.

Claim 2: The cells (2,H) and (3,mix) are MD-equilibrium. They are non-global unless

312 . M o 3T
1 T 7 T

Proof: The formal proof for (2,H) appears in the appendix. We present here only an intuitive
proof for (3, mix). All statements of the type "a strategy wins against (3, mix) with probability "
should be read as "with probability of approximately «" and the symbol ~ m stands for "m or
m+ 1"

The strategy (1,T,T) wins almost always against strategies in (3,mix) and thus its expected
payoff is about M —2T. We will show that the only edge strategy that does better than (1,T,T)
against (3,mix) is (0,T,T) € (2,H) and hence (3, mix) is a non-global MD-equilibrium.

Any edge strategy that costs 2T + T/2 or more is inferior to (1, T, T) against (3, mix).

The edge strategies that cost 3T/2 are (~ 0,~ T/2,T) and (~ T/2,~ T/2,~ T/2),all of which win
with probability 1/2 against (3, mix) and have an expected payoff of M/2 —3T/2, which is smaller
than M — 2T.
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The edge strategies that cost T are (~ 0,~ T/2,~ T/2), which win with probability 1/6 (against all
strategies in High x Low x Low), and (~ 0,~ 0,T) which always lose. Thus, all these strategies
yield an expected payoff of at most M/6 - T < M — 2T.

Any edge strategy that costs T/2 or less always loses .

Finally, there are two types of edge strategies that cost 2T: Any strategy of the type
(~T/2,~T/2,T) wins with probability 5/6 and thus is inferior to (1,T,T). The strategy
(0,T,T) € (2,H) wins with probability 1 and its payoff evaluation requires a more precise
calculation. It does (slightly) better than (1, T, T) against (3, mix) since

A((0,T,T),(3,mix)) = probgmixn(yr =1land (yo =Torys =T))/4 = @r)

2T-1 2
and M T < 1 for M < T4/2.

Claim 2 states that (2,H) is an MD-equilibrium and that it is not global. The result captures a
natural process of strategic deliberation in which a player who expects his opponent to choose
two high bids, believes that he will almost surely win if he makes two maximal bids. Reducing the
number of bids to one will significantly undermine his chances of winning two objects. Making
three high bids is wasteful since it will increase only marginally his chances of winning and
involves a large additional cost. Making only two bids, with at least one of them low, dramatically
reduces the chances of winning at least two objects.

Comparison to Nash equilibrium: The MD-equilibria (2,H) and (3, mix) are very different in
nature from the mixed strategy Nash equilibrium characterized in Rosenthal and Szentes (2003)
for the continuous case. The Nash equilibrium is a uniform distribution over all strategies that lie
on the surface of a specific tetrahedron and its support includes strategies in all the partition cells
except (1,L) and (1,H).

Discussion: We find that there are two MD-equilibria in this edited game. The first fits a norm
of behavior according to which players bid high for two of the three objects. The other involves
bidding on all three objects but to put in at least one low bid on one object and at least one high
bids on another. The global best response to each of the MD-equilibria lies in the other
equilibrium cell and the expected payoff for maximization against the equilibrium cell is almost
identical, i.e. M —2T. We find the (2,H) MD-equilibrium particularly attractive since it is supported
by more intuitive considerations, whereby eliminating one of the high bids or replacing one of the
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high bids with a low bid reduces total cost but does not justify the significantly diminished
probability of winning.

5. The tennis coach game with costly players: The role of a designated location

The basic game in this example is an extension of Arad (2012)’s tennis coach problem. Two
tennis teams, each managed by a coach, compete on three courts denoted 1,2 and 3. Each
coach recruits his set of players and assigns a single tennis player to each court. Each tennis
player has one of the skill levels 0,1,2,... ,T. Thus, a coach’s strategy is a triple (x;,X2,X3) where
Xj € {0,1,..,T}. When a team x = (Xi,X2,X3) plays against a team y = (y1,Y2,y3) three matches
are played: in court i the tennis player with skill level x; confronts the player with skill level y;. The
team scores a point in each court i where its player is more skilled than his opponent (x; > y;i); it
scores half a point if the two players are equally skilled (xi = yi) and none if x; < y;. A tennis
player of skill level x; costs the coach cx; (where ¢ > 0). Each coach faces a trade-off between
performance and the cost of the players. The trade-off is inserted into the utility function as
follows: u(x,y) = [{ijxi > yi}|+(ilxi = yi}|/2 — ¢ D_xi. Coaches maximize their expected utility.

The game involves a typical contest in which the outcome depends on costly investments
made by the competitors. From a public welfare perspective, the investment would be considered
a waste if the contest is viewed as pointless. The investment might be considered worthwhile if
the public enjoys the contest and their enjoyment increases with the level of investment.

People often view locations asymmetrically even if there is no payoff-relevant difference
between them. In other words, there is often a salient location, the assignment to which is viewed
differently than the assignment to other locations. The standard solution concepts (and
particularly the mixed strategy Nash equilibrium) treat all locations symmetrically. Some
researchers and in particular Bacharach (2006), have developed equilibrium concepts that take
into account framing effects (for example, attraction to salience) in games where players make a
decision involving locations (such as choosing a location or a subset of locations or deciding on
the priority between locations). We construct an edited game in which players perceive one of the
courts as distinct from the others. We formalize this by specifying the values in one of the
dimensions to be whether the coach assigns the strongest tennis player on his team to the
designated court. Evidence that some people consider whether to focus on the center or the side
locations has been found in experiments of related games (see Arad (2012)). We will see that in
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an MD-equilibrium of the edited game, the strongest tennis player on the team will never be
assigned to the designated court.

Formally, the edited game consists of two dimensions:

(i) The sum of the skill levels of the three tennis players. A value in this dimension can be any
integer between 0 and 3T.

(i) Whether to assign the most skilled tennis player to the center court (namely, whether
X2 = max<{X;,Xz,X3}). This dimension can receive one of two values: "strong" (having the most
skilled player on the center court) and "not strong".

To illustrate, the following matrix presents the partition of the strategy space according to the
two dimensions for the case of T = 2:

0 1 2 3 4 5 6
strong | 000 010 020,011,110 120,021,111 022,220,121 | 122,221 | 222
not strong 100,001 | 002,101,200 | 012,201,102,210 | 211,202,112 212

To make the situation non-trivial, we limit the range of c and T as follows:

(i) 1/2 >c: That is, the coach is interested in increasing his expenses by one unit if it
guarantees scoring half a point more.

(i) Tc > 1/2: That is, it is not beneficial for the coach to spend the maximal possible amount in
order to earn half a point more.

The first and main part of proposition 3 states that a cell of the type (Q,strong) is never an
MD-equilibrium. The intuition is as follows: The skill level assigned in this cell to each of the side
courts cannot exceed that assigned to the center court and thus cannot be more than half of the
total skill level. A coach can find a strategy against the cell that is superior to any strategy in the
cell by using a strategy in (Q,not Strong) that abandons the center court and divides the total skill
level as equally as possible between the two side courts. This strategy will score almost 2 points
against (Q, strong) while the maximal score obtained by a strategy in the cell when played against
the cell is closer to 1.5 (though above).This result is independent of the parameters of the game.

Calculating the MD-equilibria among the cells of the form (Q,not strong) depends on the values
of c and T. For some parameters, no MD-equilibrium exists. The second part of proposition 3
states that for values of ¢ around 1/3 the cell (3,not strong) is an MD-equilibrium for all T. In this
range, (3,not strong) is the "most efficient" MD-equilibrium. (The cell (1,not strong) is never an
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MD-equilibrium since 101 € (2,not strong)) outperform all strategies in the cell (that tie with all
strategies in the cell). Similarly, the strategies in cell (2,not strong)) are outperformed by
110 € (2,strong)).

Proposition 3: In the edited tennis coach game with parameters T and c satisfying 1/2 > ¢
and (3T -1)c > 3/2:

(a) No cell (Q,Strong) is an MD-equilibrium.

(b) If c € (5/16,3/8], then the cell (3,not Strong) is a non-global MD-equilibrium for all T.

Proof: See Appendix.

Comparison to Nash equilibrium: Finally, we compare the MD-equilibrium to the standard
mixed strategy Nash equilibrium. Note that the independence of the payoffs in each court and the
additivity of the costs make it possible to calculate the Nash equilibria of the game using the
equilibria of the game in each single court. Consider the case of T = 2. The strategies in the
auxiliary game are 0,1 and 2 and the payoff matrix is given by:

0 1
0] 12 0
l-c | 12-c —C

2 1-2c|1-2c | 12-2c

In the range of 1/2 > ¢ > 1/4, the auxiliary game has a unique mixed strategy Nash equilibrium
(1 —2c,4c—1,1-2c) and the Nash equilibrium of the entire game will be any mixed strategy that
induces this distribution of values in each of the three courts.

The strategies in the MD-equilibrium cell (3,not Strong) cannot span such a mixed strategy
since none of the strategies in the cell use the skill level of 2 in the center court. Furthermore, for
1/3 > ¢, the Nash equilibrium strategy uses extreme values more than does the MD-equilibrium:
the strength 1 appears in Nash equilibrium with less than half the probability of the appearance of
a skill level within {0,2}, whereas in any mixture of strategies from the MD-equilibrium cell
(3,not strong), the skill level 1 appears with at least half the probability of {0,2}.
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Discussion: Once again, we feel that the MD-equilibrium captures an intuitive consideration
that is missing from the standard Nash equilibrium analysis. Given a decision about the total
budget spent on the team, a coach naturally considers whether or not to follow the convention by
assigning the strongest player to the central court. The convention of assigning the strongest
player to the designated court is not stable since a coach might think that if the other coach
follows the norm, he can achieve almost 2 points without increasing the total cost of his team by
breaking with convention and putting his two strongest player on the edge courts. A stable mode
of behavior must therefore include a norm not to put the strongest tennis player on the
designated court.

6. Variations and extensions

We conclude with three extensions of the analysis: (a) analyzing the edited game when a
strategy is a vector of K numbers and the dimensions are the K components of the vector; (b)
applying the concept of MD-equilibrium to asymmetric games; (c) proving the existence result for
edited asymmetric two-player games with supermodular payoff functions; and (d) proposing an
extension of our concept to a mixed-strategy MD-equilibrium and proving that it always exists in
finite edited games.

a. Product edited games

The concept of MD-equilibrium includes two ingredients that differentiate it from standard Nash
equilibrium:

(i) An MD-equilibrium is a set of strategies which share a specific value in each dimension.

(i) In looking for a best response strategy to a cell, a player considers only strategies that differ
from the cell in at most one dimension.

The second ingredient can be discussed independently of the first for the family of edited
games that we call product edited games. A product edited game is a tuple < S,u, (Dk)-1,.kx > for
which the set of strategies S is a product set S = xy_;_x Sk, u is a payoff function and D(s) = sk.
For product edited games, each cell is a singleton. A symmetric MD-equilibrium for product
games is a strategy such that any deviation of a player in only one dimension (component) is not
profitable. Note that if the payoff function is concave and differentiable, then the lack of profitable
deviations in any dimension implies that other types of possible deviations are not profitable
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either. However, this is not the case for games in which the payoff function is not differentiable.

Note both the similarities and differences between MD-equilibrium in product edited games and
the concept of D-Nash equilibrium of Guney and Richter (2016). According to the latter, players
bear a cost for any switch of strategies and that cost depends on both the strategy being
abandoned by the player and the new strategy he is adopting. In an extreme version of their
concept, players consider deviating to a limited subset of strategies, as in the case of
MD-equilibrium in product edited games.

The following proposition states a simple condition that guarantees the existence of
MD-equilibrium in product edited games:

Proposition 4: If < S,u, (Py)k1.x > is a product edited game where Sy is a closed interval
of real numbers and u(si,..,sk) is a continuous function that is concave in each of it
components, then it has an MD-equilibrium.

Proof: Consider the correspondence T : S -— S defined by

T(S) = Xk=1,.k {Xk € Sk | Xk = arg maxyU((S1,S2,---Sk-1,Y,Sk¢l,--»SK),S)-

All sets in the range of the correspondence are products of closed intervals. By a standard
fixed point argument, the correspondence has a fixed point that is an MD-equilibrium. H

To illustrate a product edited game, consider the following version of a two-dimensional
Hotelling model: Two political candidates are competing for votes. The set of policies S is the unit
square and each policy represents a stand on two public issues. Each voter has an ideal point
h € S and holds a strictly convex preference relation represented by a continuous function u(s,h).
The ideal points are distributed according to F. Each candidate selects a point in S. Voters
maximize their utility, while candidates wish to maximize the number of votes they receive. A
candidate considers each issue separately. This strategic situation can therefore be analyzed as
a product edited game in which the two dimensions are the two issues.

This example is not covered by Proposition 4 since the candidates’ induced payoff functions
are not continuous. However, the following argument, (due to Roemer (2001, ch 6)) proves that
an MD-equilibrium exists. Consider a strategy (si,52). Each voter has a preferred point in
{(s1,y)| y€<[0,1]}. Let m(s;) be the median of those points and define m(s,) similarly. The
function M(s1,s2) = (m(s2),m(s;)) has a fixed point which is an MD-equilibrium by our definition. In
the special case where the marginal distribution of preferred positions on one issue is
independent of the preferred position on the other, the MD-equilibrium is the pair of medians of
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the two marginal distributions. Roemer (2001) also shows that the fixed point of the function M is
generically not a Nash equilibrium of the Hotelling game. This result can be viewed as a proof
that an MD-equilibrium of this product game is generically not global.

b. Asymmetric edited games

The MD-equilibrium introduced in Section 2 for symmetric games can easily be extended to
asymmetry between the players, whether due to differences in their sets of strategies or the
payoff functions in the basic game or differences in the players’ perceptions of the dimensions
that partition the strategy space in the edited game.

An asymmetric edited game is a tuple < S',u’, (D})k-1..k;, >ien  Where N is the set of players, S’
is player i's set of strategies, u' is i’'s payoff function and (D})«1..k; is the collection of player i's
dimensional functions. A cell for player i is a set of all strategies s € S' which share the K; values
(DL(s))1<k<k;, that is, each cell is characterized by the choice of a value in each of the K;
dimensions considered by i. An MD-equilibrium of the edited game is a profile of cells (d*(i))ien
such that for each i, a best response from among {s € S' | Di(s) = d; (i) for all k besides at most
one dimension} to the uniform distribution over x;.i (d*(j)) is in the cell d*(i).

As an example, consider a Blotto game with three battlefields and two players B¢ and Bs.
Player B¢ has 6 troops and B4 has 4. Players have in mind two dimensions:

i) The number of reinforced battlefields, which are battlefields where player Bt deploys at least
| T/3 ] (that is, at least 2 troops for B¢ and at least 1 for B.).

i) The "order" dimension: whether or not the order of the player’s three troop assignments is
monotonic.

Each of the following matrices represents one player’s partition of his strategy space:

Bs 1 2 3
monotonic | 411,510,600 321,330,420 -
006,015,114 024,033,123 -

no order | 051,060,105 | 042,132%,204,213,231 | 222
141,150,501 240,303,312,402
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By 1 2 3
monotonic | 400 3107%,220 211
004 022,013 112
no order | 040 | 202,031,103,130,301 | 121

One of the game’s MD-equilibria is ((3,no order), (1,monotonic)) = ({222},{400,004}), which is
not global because 411 is a better response to {400, 004} for Be.

The only other MD-equilibrium (marked in bold) is ((2,no order), (2, monotonic)), which is global.
The strategy 132 is B¢'s best response to (2, monotonic) with a payoff of 2.128. The structure of
(2,monotonic) for B4 allows B to win all battles in the center by deploying 3 troops there, which
leaves him enough troops to win half of the other battles on the edges. The strategy 310 is B4’s
best response to (2,no order) with a payoff of 1.2778.

Both MD-equilibria are consistent with the intuition that in a stable situation the weaker player
focuses on a smaller number of fields than the stronger one in order to have a chance of winning
at least in those fields despite his overall inferiority. Thus, in MD-equilibrium the weaker player
uses an assignment of at least 2 troops in either one or two fields, whereas the stronger player
assigns at least 2 troops to 2 fields according to all strategies in his MD-equilibrium cell.

The above feature of the MD-equilibrium concept is shared with the game’s field-symmetric
mixed strategy Nash equilibria. Consider the following auxiliary game where B¢'s strategies are
[600],[511],[411], [420], [330], [321], [222] while those of B4 are [400], [310], [220], [211], where
the meaning of [abc] is that all its permutation will be played with equal probability.

[400] | [310] | [220] | [211]
[600] | 5/3 | 4/3 | 43 | 1
[510]| 2 | 10/6 | 1.5 | 4/3
[411] | 13/6 | 2 | 10/6 | 10/6
[420] | 11/6 | 11/6 | 11/6 | 11/6
[330]
[321]
[222]

10/6 | 11/6 | 13/6 2
2 2 2 13/6
2 2 2 15/6

The value of the auxiliary game is 2 and in all MD-equilibria the stronger player uses either
[321] or [222] and the weaker player never uses [211]. Thus, in Nash equilibrium, the stronger
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player spreads his forces over the three fields (and reinforces two of them) while the weaker one
places his troops on either one or two fields.

c. Existence of MD-equilibrium in supermodular games

A simple example of an existence claim (suggested by Michael Richter) relates to edited
asymmetric two-player games with supermodular payoff functions, in which each player has a
one-dimensional space of strategies partitioned into a finite set of intervals.

Proposition 5: Let < S',u',D' >, be an edited game where S' = [m|,M'] c R, and
u(s',s!) is continuous and supermodular (in the sense of Topkins (1979)). Assume that for
each i there is a sequence of points in S\, m' = a) < a! <...< al, = M such that D'(s) = | if
s € Pl = [al ;,a|]. Then, an asymmetric MD-equilibrium exists.

Comment: Note that D' is actually a correspondence in this case since a border point between
two intervals receives two values. This is a straightforward extension of our model and solution
concept.

Proof: By continuity, the best response correspondences BR!' and BR? are well-defined. Define
the proper response correspondence PR!' (and similarly PR?) as |, € PR!(l,) if there is s € P|,
which is a best response to the uniform distribution over P} . Define the maximal proper response
function by MPR!(l,) = I, where |, is the highest index in PR'(l,). We will see that MPR! (and
similarly MPR?) is a non-decreasing function. Suppose it is not. Then, there are pairs |, > |, and
l, < I, such that MPR'(l,) = I; and MPR!(l,) = I,. Therefore, there are a € P| and b € P/, such
that u'(a,Unif(P{)) > u'(b,Unif(P{)) and ul(b,Unif(Pﬁz)) > ul(a,Unif(Pl%z)), violating the
supermodularity of u'. Thus, the maximal proper response function is non-decreasing in the
values attached to the strategies. A well-known result (which is a special case of Tarski’'s fixed

point theorem) guarantees the existence of (I,1.) such that PR!(l.) = I and PR2(l\) = I. and the
cell P{ x P{, is an MD-equilbrium. H

d. A mixed MD-equilibrium

The existence of MD-equilibrium is obviously not guaranteed. However, one can define a
related concept analogous to that of mixed strategy Nash equilibrium which always exists. For
expositional reasons, we make do with defining the extended concept and proving its existence
for finite symmetric edited games.
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Let < S,u,D > be a symmetric edited game with one dimension. Denote by V the values that the
function D can take. We denote the cell of strategies {s | D(s) = v} by v the strategies’ common
value. Thus, the collection {v} ey is a partition of S. Define A = A(V) to be the set of all lotteries on
the set V. For any = € A, define 7 € A(S) to be the mixed strategy in the non-edited game, which
is the following compound lottery: First, the value v is selected with probability z(v). Then, each
strategy s € v is played with equal probability. A symmetric mixed MD-equilibrium is 7 € A
satisfying that every v for which z(v) > 0 contains a best response to 7. Thus, a symmetric mixed
MD-equilibrium is a distribution of categories (e.g. a player chooses a high price with probability
2/3 and a low price with probability 1/3).

Proposition 6: Any symmetric edited game with one dimension < S,u,D > has a
symmetric mixed strategy MD-equilibrium.

Proof: Define a correspondence F : A - Ato be € F(a) if for every v in the support of  there
is a strategy s € v which is a best response to B For every a, the set F(a) is non-empty and
convex. To see that F has a closed graph, consider a sequence (a", ") in the graph of F which
converges to (a, B). If B(v) > 0, then for any n large enough B"(v) > 0. Thus, the cell v contains a

strategy s" that maximizes u(s,@). By the finiteness of S, there is a strategy s* in v that

maximizes u(s,ﬁ) for an infinite number of n’s. Since the function u(s,7) is linear in z, s* also
maximizes u(s,a). Thus, B € F(a) and the graph of F is closed. By Kakutani’'s fixed point
theorem, F has a fixed point which is a mixed MD-equilibrium. Hl

It is straightforward to extend the definition and the proof to asymmetric edited games with one
dimension for each player. Furthermore, it follows that a mixed strategy global MD-equilibrium
always exists, since global MD-equilibrium treats all cells of the strategy space as if they were on
the same dimension.

7. Discussion

The paper introduces a concept of stability, in the spirit of Nash equilibrium, for strategic
situations in which a player’s strategy space is large and complex and players reason in terms of
characteristics of strategies rather than the strategies themselves. A symmetric MD-equilibrium is
a stable mode of behavior in the sense that a player who considers deviating from it by altering
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his choice in one of the dimensions (while keeping the others fixed) will not find a justification for
doing so.

There are two natural directions for continuing our discussion. First, we adopted in the paper a
particular formal definition of proper responsiveness. Replacing our definition with another
definition would yield a different equilibrium concept. Second, rather than following a Nash
equilibrium approach, one can use the framework to formulate non-equilibrium approaches like
k-level reasoning.

The MD-equilibrium provides a prediction of a profile of strategies’ characteristics rather than
the traditional prediction of a distribution of strategies. We find this approach to be particularly
realistic. When asked about their strategy in a complicated strategic interaction, people usually
do not describe a specific pure or mixed strategy. Rather, they tend to make some qualitative
statement that sums up their strategy, such as: "l always bid high", "I concentrate my attention on
only two fields of study", "l cooperate with only a few players" or "I am playing aggressively".

In order to apply the MD-equilibrium concept one has to augment the description of the
situation with a description of the way in which players characterize the strategies. But the
additional information needed should not deter one from using the concept — how players
characterize strategies will affect their behavior and hence we need to understand and integrate
this within the analysis. Once this is done, we have a new tool for explaining the stability of
certain modes of behavior in strategic situations.
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Appendix

Proposition 1: In the edited Blotto game with 3 fields and N which is a multiple of 6,
(2,other) is the only MD-equilibrium and is global.

Proof. Denote by p(x,y) the number of points that a player using the strategy x scores against
the strategy y. Given a cell C, let p(x,C) = Zyec p(x,y). Obviously, comparing two strategies x and

y played against the uniform distribution over C is equivalent to comparing p(x,C) to p(y,C).

Claim 1: All cells besides (2,other) are not MD-equilibria.

(1,\) (and similarly (1,,7)): The strategy (0,2N/3 + 1,N/3 —1) € (1,other) wins against all
strategies in (1,N\,) except for (N/3+2,N/3-1,N/3-1) with which it ties. Any strategy
(X1,X2,X3) € (1, ties with itself and with at least one other strategy in (1,\): either
(X1 + 1,Xxa,x3 = 1) (if x5 > 1), or (x; + 1,Xx2 — 1,0) (if x, > 1 and x3 = 0) or (N—1,1,0) (if X, = x5 = 0).

(2,\) (and similarly (2, /)): The strategy (0,2N/3,N/3) € (2,other) wins against all strategies in
(2,\1), Whereas any strategy in (2,\) ties with itself.

(1,other): The strategy (N/3,N/3,N/3) e (3,other) wins against all the strategies in (1, other).

(3,other): The strategy (N/2,0,N/2) € (2,other) wins against (N/3,N/3,N/3), the only strategy in
(3, other).

Claim 2: The cell (2,0ther) is a (global) MD-equilibrium.

To illustrate, the following table presents the distribution of assignments in the center field and
in an edge field for the case of N =18 (where (2,other) contains 51 strategies). The cell
corresponding to assignment n and field i contains the number of strategies in (2,other) for which
the assignment in field i is n.
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assignment | field 2 | category | field 3 | category
12 2 H, 1 Hs
11 4 H> 2 H;
10 6 H, 3 Hs
9 6 M, 4 Hs
8 4 M, 542 M3
7 2 M, 6+4 M;
6 0 M, 6+6 M3
5 2 L, 1 Ls
4 3 ) 1 Ls
3 4 L, 2 Ls
2 5 ) 2 Ls
1 6 L, 3 Ls
0 7 L, 3 Ls

The pattern of the distributions is generalized in the following table (the explanations refer to six
categories H,,M»,L,,Hs, M3, L3 of pairs (n,i)).

X, = n € | # strategies in (2, other) Explanation
H, | (N/2,2N/3] 2(2N/3-n+1) X1 or X3 is in [N/3,N —n]
My | [N/3,N/2] 2(n—N/3) X1 or X3 isin [N/3,n — 1]
L» [0,N/3) N/3-n+1 edges are reinforced; x; € [N/3,2N/3 —n]
X3 =nE¢€ # strategies in (2,other) Explanation
Hs | [N/2,2N/3] 2N/3-n+1 X1 € [N/3,N —n]
Ms | [N/3,N/2—=1] | N=2n+min{2N/3 —n+ 1,N/3} X2 € [n+1,N-n]or
X2 € [0,N/3-1]N[0,2N/3 —n]
Ls [0,N/3) [N/6 —n/27] N/3 < X; < X2 and x; € [N/3,(N—-n)/2)

To see that (2,other) is a global MD-equilibrium, we need to prove that for each strategy
X ¢ (2,other), there is a strategy y € (2,other) which does at least as well as x against (2, other).

Case 1: x has only one reinforced field.

If x has a peak in the center, it will lose against half of the strategies in (2,0Other), which are

Page 30



"sinks", and thus its expected score is no more than 1.5. On the other hand, any set of strategies
contains a strategy that achieves an expected score of at least 1.5 when playing against the set.
Thus, there must be a strategy in (2,other) that is weakly better than x. Otherwise, and without
loss of generality, field 3 is reinforced. When playing against all strategies in (2,other), x scores
as follows: in field 3, at most |(2, other)]; in field 2, less than the sum of entries in category L,; and
in field 1, less than the sum of entries in category L;. The sum of the entries in L; equals the sum
of the entries in H:

ZfN/6—n/21= Z 2(2N/3—=n+1). The sum of entries in M; is 2( Z i). Therefore,

n<N/3 N/2<n<2N/3 i=1,..,N/6

p(x, (2,0ther)) < 2|(2,0ther)|-2( >_ ).

i=1,..,N/6
We will show that p((N/2,0,N/2), (2,0ther)) > p(x,(2,other)). In each edge field, (N/2,0,N/2) wins
a point against any assignment except those in Hj;, where it loses to any assignment in

(N/2 + 1,2N/3] (there are Z 2N/3 —-i+1) = Z i strategies with such assignments) and
i=N/2+1,..,2N/3 i=1,..,N/6

ties with the assignment N/2 (there are N/6 + 1 such strategies in (2,other)). Furthermore, it
scores half a point in the center when playing against an assignment 0 (there are N/3 +1
strategies in (2, other) with 0 in the center). Thus,

P((N/2,0,N/2),(2,0ther)) > 2[|(2,0ther)|~ D i~ (N/6+ 1)/2] + (N/3 +1)/2 =
i=1,..,N/6

2|(2,0then)|-2( > i) -1/2.

i=1,..,N/6

Case 2: x has at least two reinforced fields.

We show that x is inferior to (N/2,0,N/2) € (2,other).

Since x ¢ (2,other), it follows that the center must be reinforced and w.l.o.g. field 3 must also
be, which implies that x, < x3.

Consider a strategy x with x5 < N/2 and therefore x; > 0. The strategy (x; — 1,X2,X3+1) is
superior to x against (2,other) since the minimal marginal gain from adding 1 to field 3 (category
Ms) is larger than the maximal marginal loss from subtracting 1 from field 1 (category Ls). Thus, x
is inferior to a strategy of the type (a,N/2 —a,N/2) € (2, ).

Consider x = (a,N/2 —a,N/2) where a < N/6. The strategy is not superior to (0,N/2,N/2) because
the sequence of marginal gains from increasing the assignment in field 1
(N/6,N/6,N/6 — 1,N/6 — 1,N/6 —2,N/6 — 2....) (category L;) is dominated by the sequence of
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marginal losses from decreasing the assignment in the center (N/3,N/3 —2,N/3 —4,...) (category

M,).
Consider x = (0,N/2,N/2). The strategy (N/2,0,N/2) is superior to x and its advantage is
p((N/2,0,N/2),(2,other)) —p((0,N/2,N/2),(2,0ther)) = Zi=1,“ vel T 172 The number of

assignments in (2, other) that are greater than N/2 in field 2 is twice the number in field 3, which is
ZH e l- The relative advantage of (N/2,0,N/2) over (0,N/2,N/2), since it ties with the 0

assignment (the former strategy ties in the center and the latter ties in the edge), is larger than
the disadvantage that it ties with the N/2 assignment. More formally, the total points scored by
(N/2,0,N/2) in fields 1 and 2 when playing against all strategies in (2,other) is
[\(2,other)]—ZiZL“’N/6 i—(N/6 +1)/2] + [(N/3 +1)/2], while the analogous number of points for
(0,N/2,N/2) is [(N/6)/2] + [|(2, other)|-2 ZEL“M i —(N/3)/2].

Finally, consider a strategy of the type x = (a,N/2-a—-b,N/2+b) where a+b <N/6 (a >0,
b > 0). The gain in field 3 from the extra b in the edge, compared to (a,N/2 —a,N/2), is
[(N/6 + 1) + 2(N/6) +...42(N/6 — b) + (N/6 — b + 1)]/2 (category H3) while the loss in the center from
decreasing the assignment to N/2 — a is at least b. Thus, for all b we have

[(N/6 + 1) +2(N/6) +...42(N/6 —=b) + (N/6 —b+ 1)]/2—b = (N/6 + 1)/2—b— (N/6 —b + 1)/2 + 3¢

i=N/6-b+1

= -b/2 + ZiN:/S/G_bH i <., el Therefore, xis inferior to (N/2,0,N/2).

Proposition 2: For the edited 3-object two-bidder simultaneous all-pay auction with

2T < M < T?/2, the cells (3,mix) and (2,H) are the only MD-equilibria. The cells MD-equilibrium

312 M

(2,H) is not global unless ——— > = > T—”—f] (that is, with the exception of the case in which M/T

is around 3)

Lemma 1: For a cell C and a strategy (X1,X2,X3): A((X1,X2,X3),C) =

probc(y; € {Xi,x; + 1} and (y2 = X2 or y3 = X3))/4+probc(y; € {x; + 1,x;} and either y, > x, and
X3 > Y3 0ry, < X; and X3 < ys)/2.

Proof: The Lemma follows from the following table which classifies all strategies y for which
moving from (X;,X2,X3) to (X; + 1,X2,X3) changes the probability of winning M when playing
againsty.

Page 32



The event prob. of winning M increases | the increase
y1 € {X1,X1 + 1} and... Yi =X yi =X +1
from | to | from to
eithery, > x;and xs >ysory, <xpandxs <ys | 1/2 | 1 0 1/2 1/2
eithery, > x;andys =xsory, =x;andys >x; | 1/4 | 1/2| 0 1/4 1/4
bothy, = x; and y; = X3 172 13/4] 1/4 1/2 1/4
eithery, <x;andys =xsory, =x;andys <x3| 3/4 | 1 | 12 3/4 1/4

Lemma 2: For any two cells C; and C,, the maximization maxs.c, W(s,C,) has a solution in
edge(C)).

Proof: Consider three values t,t + 1,t + 2 belonging to the same category, either Low or High.
The events presented in the above table for x; =t and x; = t+ 1 have the same probability.
Thus, by Lemma 1, A(t+1,X2,%3),C) = A((t,x2,X3),C). Therefore, the maximization
maxsec, W(s,C,) must have a solution that is an edge strategy.

Notice that given the constraints 2T < M < T?/2, the inequality A((X1,X2,X3),C) > # guarantees

that increasing x; by one unit is strictly beneficial when playing against C while the inequality

A((X1,X2,X3),C) < % implies that increasing x; by one unit is strictly harmful.

Claim 1: All cells besides (2,H) and (3, mix) are not MD-equilibria.

Proof:

(1,H): Within (1,H) the optimal strategy against the cell must be either (T,0,0) or (T/2+1,0,0)
and they are inferior to strategies in (2,H) and (1,L), respectively:

u((T2+ 1,72+ 1,72+ 1),(1,H)) =M-2F-3>u((T,0,0),(1,H)) =M(:5--)-Tand

u((1,0,0),(1,H)) = >M—-1>u((T/2+1,0,0),(1,H)) = (55 + )M - -1

(1,L): The strategy (1,1,1) € (3,L) always wins against (1,L) and its payoff of M — 3 is higher
than that of the two edge strategies in (1,L): u((1,0,0),(1,L)) = (-5 + sz)M -1 and
u((7/2,0,0),(1,L)) = (7/12)M - T/2.

(3,H): The strategy (0,T,T) € (2,H) is superior to (T/2 + 1,T/2+ 1,T/2 + 1) because the expected
payoffs of the former are approximately M — 2T and of the latter —%. Furthermore,
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u((0,T,7),(3,H)) = ﬂ-ﬁ#m —2T > u((T,T,T),(3,H)) = ﬂ-ﬁ#m — 3T since T2/2 > M.

It is straightforward to verify that A((T/2+1,72+1,T),(3,H)) > 5 (the strategy
(T/2+1,T/2+1,T) almost always loses in the second bid and wins in the third and hence the
marginal expected gain is on the scale of < 1) and thus (T,T/2 + 1,T) is a better strategy against
(3,H).

The strategy (T/2,T,T) € (3 mix) is superior to (T/2 + 1,T,T) against (3,H) since
MA((T/2,T,T),(3,H)) = M( ) < 1.

2T(T/2)2

(3,L): Parallel arguments to those in the previous case for strategies consisting of bids in the
category High apply to strategies consisting of bids in the category Low: (1,1,1) and (1,1,T/2) are
not best responses to (3,L) and the strategy (0,T/2,T/2) € (2,L) is superior to (1,T/2,T/2). The
other edge strategy (T/2,T/2,T/2) is inferior to (T/2+ 1,T/2+1,1) € (3,mix), which wins M with
certainty and costs less.

(2,L): As in step 1 of Claim 1, (T/2,T/2,0) is the best strategy within (2,L) against the cell.
The strategy (T/2 + 1,T/2,0) € (2, mix) does better since A((T/2,T/2,0),(2,L)) = —

(2,mix): We will show that for any | € Low and h € High the strategy (1,1,h) € (3,mix) is
superior to (0,1,h) against (2,mix). The strategy (1,1,h) increases the probability of winning M by
at least 1/12 (since it wins with probability 1 against any strategy in (2,mix) of the form (0,y.,ys)
where y, € High and y; € Low whereas (0,1,h) wins with probability 1/2 against those strategies).
Thus, its expected improvement is at least M/12 — 1 which is positive for T > 6. B

3(T2) s M S 3T

Claim 2: The cell (2,H) is an MD-equilibrium. It is not global unless T =

Proof:
Step 1: The strategy (T,T,0) is an optimal strategy within (2,H) against the cell itself and
achieves an expected payoff of (1-4)M-2T. (Note that the payoff is positive whenever

M > 2T + 3).

For (x1,x2,0) € (2,H), we have A((X1,X2,0),(2,H)) =

probmy(yr € {xi,X; + 1}and y3 = 0)]/4 + probom(yr € {x1 + 1,x1} and
y2=0)2 =4+ +5+3 = +. Since this marginal is greater than -, the strategy (T,T,0) is

optimal within the cell against (2,H).

Page 34



The strategy wins against all strategies in the cell (which contains 3T%/4 strategies), with the
exception of: (i) T + 1 strategies of the type (T,0,y3), (0,T,y3) and (T,T,0), which it wins against
with probability 1/2, and (ii) T -2 strategies in (2,H) of the type (T,y, < T,0) and (y; < T,T,0),

which it wins against with probability 3/4. That is, it wins M with probability
1— (T+1)/2+(T=2)/4
3(3)?

= (1 - +) and its expected payoff against (2,H) is (1 — +)M —2T.

Step 2: The cell (2,H) is an MD-equilibrium.
We wish to verify that no strategy in (1,H), (3,H), (2, mix) or (2,L) achieves an expected payoff
against (2,H) larger than that of (T, T,0).

(1,H): For (x1,0,0) € (1,H), we have A((x1,0,0),(2,H)) = probom(y: € X1+ 1,x;} and (y> =0
or y; = 0)]/4 = -2+ = 2. Thus, the strategy (T,0,0) is optimal in (1,H) against (2,H). The
strategy wins M with probability =1-(1 — 1+ %) = L1, Given the constraints, which imply also that
T > 6, the strategy is inferior to (T,T,0) (TEM -2T > LM -T).

(3,H): By Lemma 2, it is sufficient to show that no strategy in edge(3,H) does better than
(0,T,T) against (2,H).
Any strategy that involves a cost of at least 2T + T/2 is inferior to (0,T,T) since at most it adds

M — T < 0to the expected payoff.

The other edge strategies in (3,H) are (T/2+1,T/2+1,T), which wins only with probability of
about 2/3 but which costs the same as (T,T,0), and (T/2+1,T/2+1,T/2+ 1), which wins with
3(3-D3+d)

3(3)?

probability <ZandM< -3 -3<(1-+HM-2T.
(2,L): No strategy in (2,L) wins M when playing against any strategy in (2,H) and
(1-+)M-2T > -2 given M > 2T.

(2,mix): Placing a bid in Low that is higher than 1 is not optimal when playing against (2,H).
Therefore, an optimal strategy in (2,mix) against (2,H) is of the form (x;,0,1). Now,
A((X1,0,1),(2,H)) = probom(y: € {X1 + 1,x1} and
y2 = 0)]/4+probony(y1 € X1 + L,X1}, y3 = 0)/12 =

++ %+ 33+ = 7 and thus (0,1,T) is an optimal strategy in (2, mix) against (2,H).

This strategy is inferior to (0, T, T) since saving T does not justify the loss of M with probability of

approximately 1/2. Formally, W((0,1,T),(2,H)) = 4 — -L (i.e. it wins against any strategy in (2, H)

L
2 2T
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of the types (0,y2,T), (0,y2,y3 < T), (y1,0,y3 < T), (y1,0,T) and (y1,y2,0) with probabilities 1/4, 1/2,
1, 12, and 0, respectively) and ML - T -1 < I=LM - 2T since 2T < M.
3(T-2) M 3T
T-1 T T-1°

The strategy (1,1, T) € (3,mix) wins M with probability 2/3 against (2,H) and its expected payoff
is about (2/3)M — T, which is greater than M - 2T if 3T > M. The strategy (T,T,1) € (3,mix) costs
one unit more than (T,T,0) and increases the probability of winning against any strategy of the

Step 3: The MD-equilibrium (2,H) is not global unless

form (T,y»,0) or (y;,T,0) by 1/4. The frequency of such strategies in (2,H) is approximately %%
Thus, the approximate expected improvement is 4% — 1 which is positive if M/T > 3. Formally, if
3(T-2)

T-1

u((1,1,7),2,H)) =1 -+)M=-T-2> (1 - 4+)M-2T = u((0,T,T),(2,H)).

> M then

Proposition 3: In the edited tennis coach game with parameters T and c satisfying 1/2 > ¢
and (3T -1)c > 3/2:

(a) No cell (Q,Strong) is an MD-equilibrium.

(b) If c € (5/16,3/8], then the cell (3,not Strong) is a non-global MD-equilibrium for all T.

Proof of Proposition 3:(a) The upper bound on the range of ¢ guarantees the claim for
Q =0,1, 3T — 1 and the lower bound guarantees the claim for 3T.

Let 2 < Q < 3T - 2. Note that the total score in any match between two teams with the same
total skill level is either 1,1.5 or 2.

Let g = min{| Q/2 |, T}. We first show that either a = (q,Q —2g,q) or b = (q,0,+ 1), both of
which are strategies in (Q,not Strong), scores 2 points against all strategies in (Q, Strong) except
for two strategies against which they score 1.5 points.

For even Q or 3T-2 > Q > 2T, the strategy a scores 2 points against all strategies in
(Q,Strong) that do not assign q to a side court (since none of the strategies in this cell assign
more than g to a side court). The strategy a scores 1.5 points against the only two strategies in
(Q, Strong) that assign g to one of the side courts, i.e. (9,9,Q — 2q) and (Q - 29,0,Qq).

For odd Q < 2T, the strategy b always wins in the third court since there is no strategy
z € (Q,Strong) with zz > q+ 1. There are only two strategies in (Q,Strong) in which the tennis
player in court 1 has a skill level g: (q,q+ 1,0) and (q,q,1), and b scores 1.5 points against these
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two strategies and 2 points against all others in (Q, Strong).

It remains to show that every x € (Q,Strong) does worse than one of the strategies
a,b € (Q,no Strong) since it ties against at least two strategies in (Q,Strong) besides x. The
following table specifies pairs of two strategies for every x € (Q,Strong) for which x; < x; (the
case of x5 > x; is symmetric). Note that the strategies identified in the third and fifth rows in the
table are in (Q,no strong) because Q < 3T - 2.

x € (Q,Strong) | strategies in (Q,No_Strong) which tie with x

X1 =X3=0

(laxz - 170)

(09X2 - 15 1)

Xo > X1 =X3>0

(X1 = 1,X2,X3+ 1)

(X] + 1,X2,X3 - 1)

X1 =Xy = X3

(X1 — L,X2 +1,X3)

(X1,X2 + 1,X3 - 1)

T>X2=X1 > X3

(X1 — 1,X2,X3+ 1)

(X1 —1,X2 + 1,X3)

T=X=X1 >X3

(X1 — 1,X2,x3+ 1)

(X1 —2,X2,X3 +2)

Xo > X1 >X%X3>0

(X1 = 1,X2,X3+ 1)

(X],X2 — l,X3 + 1)

(b) Let mi(j) = u((j + 1,x-),(3,not Strong)) —u((j,x-i),(3,not Strong)). Note that m;(j) is
well-defined since it is independent of x_i. Note also that m;(j) = ms(j). Let m; = (m;(0),m;i(1),....)
be the vector of marginals for the i’th court.

For T = 2, the best strategy in (3,not Strong) is 210 which achieves an average score of 1.625.
Any strategy in (3,Strong) scores only 1.5 points against the cell. It is straightforward to verify that
(in this range of ¢) no strategy in (Q,not _strong) does better than 210 against (3,not Strong). The
MD-equilibrium is not global in this range since the strategy 010 € (1,Strong) scores 1 point
against all strategies in the celland 1 — ¢ > 1.625 — 3c.

For T > 3, the cell (3,not Strong) is identical for for every T > 3. The vectors of marginals are
m, = (6/12,2/12,0,0,0...) and m; = m; = (3/12,3/12,3/12,1/12,0,...) which are decreasing
sequences. Thus, the best strategy for Q = 3 against the cell is 210 which achieves an average
score of 10/6. In order to verify that there is no better strategy in any cell (Q,not Strong), note that
c > 1/4 guarantees that adding skill to the side courts is not beneficial. Furthermore, ¢ < 3/8
guarantees that 100 is no better than 210 (since it reduces the average score by 3/4, which is
more than the saving of 2c). Thus, (3,not Strong) is an MD-equilibrium. It is not global since the
strategy 010 is superior to 210 against the equilibrium cell (since the saving of 2c is larger than the
loss of 5/8 on the first court).
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