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with time-varying transition probabilities. We introduce a quantitative framework, called
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1 Introduction

Dynamic stochastic economic models are normally built on the assumption of stationary envi-
ronment, namely, it is assumed that the economy�s fundamentals such as preferences, technolo-
gies and laws of motions for exogenous variables do not change over time. Such models have
stationary solutions in which optimal value and decision functions depend on the current state
but not on time. This framework is convenient for applied work since time-invariant solutions
are relatively easy to construct.
At the same time, real-world economies constantly evolve over time, experiencing population

growth, technological progress, trends in tastes and habits, policy regime changes, evolution of
social and political institutions, etc. Modeling such time-dependent features of the data would
require us to assume that some parameters of economic models change over time, following
deterministic and or stochastic trends. Some parameters changes can be modeled in a way that
is consistent with an assumption of stationary environment. In particular, labor augmenting
technological progress is a well-known example of a parameter drift (i.e., a gradual change in
parameters) that leads to balanced growth and stationary solutions; see King, Plosser and Re-
bello (1988) for necessary conditions for the existence of a balanced growth path. Furthermore,
Markov switching models are a well-known example of a parameter shift (i.e., a drastic change
in parameters) that can be analyzed in a stationary context, e.g., Davig and Leeper (2007,
2009).
However, many interesting nostationary models do not admit stationary representations.

First, parameter drifts generally lead to unbalanced growth characterized by time-varying value
and decision functions. For example, growth is unbalanced under (i) investement-speci�c techni-
cal change used in the analysis of capital-skill complementarity of Krusell, Ohanian, Ríos-Rull
and Violante�s (2000); (ii) capital-augmenting progress assumed in the analysis of directed
technical change of Acemoglu (2002, 2003); (iii) time trends in the volatility of output and
labor-income shares documented by Mc Connel and Pérez-Quiros (2000), and Karabarbounis
and Brent (2014), respectively, etc. Second, parameter shifts also produce time-dependent value
and decision functions if they are anticipated. Examples of economically relevant parameters
shifts that lead to anticipatory e¤ects are deterministic seasonals (e.g., Barsky andMiron, 1989),
accession of new members to the European Union (e.g., Maliar and Maliar, 2008), presiden-
tial elections with predictable outcomes, credible policy announcements, anticipated legislative
changes, etc.
In the paper, we relax the restriction of stationary environment, and we consider a class

of in�nite-horizon dynamic stochastic economies in which preferences, technology and laws of
motion for exogenous variables can change from one period to another. We assume that the
model�s parameters (or exogenous variables) can follow both deterministic and stochastic trends:
the former trends take the form of anticipated shifts and drifts, and the latter trends take the
form of Markov process with time-varying transition probabilities. The models from this class
are nonstationary, and their optimal value and decision functions are time-dependent.1

Numerical methods that are used for stationary in�nite-horizon models are not suitable

1Markov stochastic processes can be nonstationary even if all parameters and transition probabilities are
time-invariant, for example, unit root and explosive processes are nonstationary. We do not explicitly study this
kind of nonstationary processes but focus on nonstationarity that happens because the economic environment
changes over time.
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for analyzing nonstationary models. Indeed, in the stationary case, we construct value and
decision functions to satisfy the following �xed point property: if we insert an optimal function
into the right side of the Bellman or Euler equations, we obtain the same function in the left
side. This is not true in the nonstationary case: if environment changes between today and
tomorrow, today�s optimal value and decision functions will di¤er from tomorrow�s ones. To
solve a nonstationary model, we need to construct not just one optimal value and decision
functions but an in�nitely long sequence (path) of such functions, with a separate function for
each period of time.
We introduce a simple and tractable framework, called extended function path (EFP), for

constructing a time path of the optimal value and decision functions in nonstationary in�nite-
horizon models. In particular, it can be used for calibrating, solving, simulating and estimating
such models. EFP builds on a combination of backward iteration and turnpike analysis, specif-
ically, it approximates an in�nite-horizon economy with a truncated �nite-horizon economy
which we solve by backward iteration. EFP consists of two steps: First, we assume that in
some remote period T , the economy becomes stationary and we construct the usual station-
ary Markov solution (this can be done by using any conventional solution method). Second,
given the obtained terminal condition, we iterate backward on Bellman or Euler equation to
construct a sequence of optimal value and decision functions; this can be done by using time
iteration.2 By construction, EFP delivers a sequence (path) of functions that makes it possible
to accurately simulate the economy�s path for any sequence of shocks and not just for one �xed
sequence of shocks, as is done under the assumption of perfect foresight.
We provide theoretical foundations of the EFP framework in the context of the stylized

neoclassical growth model. First, we show an existence theorem that establishes conditions
under which a path of optimal value and decisions functions produced by EFP exists and is
unique and Markov. We show that in the studied class of models, time-dependency takes a
particular tractable form, namely, the optimal choices follow a Markov process with deter-
ministic time trends and time-varying transition probabilities. Second, we prove a turnpike
theorem that shows a uniform convergence of a truncated �nite-horizon economy to the corre-
sponding in�nite-horizon nonstationary economy. This results implies that EFP is capable of
approximating a solution to a nonstationary in�nite-horizon model with an arbitrary degree of
precision.
In our numerical examples, we demonstrate how to use EFP to analyze a collection of chal-

lenging nonstationary applications with parameters shifts and drifts. They include: (i) capital
augmenting technological progress that leads to unbalanced growth; (ii) a combination of antic-
ipated and unanticipated technological shocks; (iii) periodic anticipated seasonal adjustments;
(iv) parameter drifts; (v) deterministic and stochastic trends in volatility of shocks; as well as
(vi) an unbalanced growth model that is calibrated and estimated using data on the U.S. econ-
omy. In all these applications, optimal value and decision functions nontrivially change from
one period to another, so that conventional solution methods for stationary models cannot be
applied. Examples of the MATLAB code are provided on webpages of the authors.
Although our numerical examples are limited to problems with few state variables, we

2Time iteration is commonly used in the context of dynamic programing methods, as well as some Euler
equation methods (e.g., Coleman, 1991, Malin, Krueger and Kubler, 2011). Also, the backward type of iteration
is used for solving �nite-horizon life-cycle models (e.g., Krueger and Kubler (2004, 2006) and Hasanhodzic and
Kotliko¤ (2013).
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implement EFP in a way that makes it tractable in large-scale applications. In particular,
we use sparse grids, nonproduct monomial integration and relatively inexpensive Gauss-Jacobi
�xed-point iteration; see Maliar and Maliar (2014) for a survey of these and other techniques
suitable for problems with high dimensionality. Furthermore, to speed up convergence of the
�nite-horizon solution to the in�nite-horizon one, we choose the terminal condition of the �nite-
horizon economy as closed as possible to a T -period solution of the in�nite-horizon economy,
whereas standard turnpike analysis assumes a zero-capital terminal condition. Finally, to avoid
the need of a numerical solver, we implement �xed-point iteration on the whole economy path
at once, as in Fair and Taylor (1984), instead of conventional time-iteration.
Turnpike results on asymptotic convergence of �nite-horizon to in�nite-horizon economies

date back to the seminal papers of Brock (1971) and McKenzie (1976) who analyzed stationary
economies. There are also papers that show turnpike theorems for economies with time-varying
fundamentals like ours; see Majumdar and Zilcha (1987), Mitra and Nyarko (1991) and Joshi
(1997). However, this literature focuses exclusively on existence theorems and never attempts
to propose a tractable way of constructing numerical solutions to nonstationary models.
The main novelty of the present paper consists in showing how the earlier turnpike theo-

rems can be e¤ectively combined with familiar backward iteration to analyze a challenging and
empirically-relevant class of in�nite-horizon nonstationary economic models that are either not
studied in the literature yet or studied under some simplifying assumptions. Nonetheless, our
simple (almost obvious) EFP framework has an important value-added in terms of applications
that can be analyzed quantitatively. First of all, a large body of real business cycle literature
focuses on one speci�c parameter drift, namely, labor augmenting technological progresses. In
turn, here, we solve models with any type of technological progresses (capital, Hicks neutral,
investment-speci�c), as well as any other parameter drifts (e.g., drifts in a depreciation rate,
discount factor, utility-function parameters, etc.). Furthermore, the existing methods for an-
alyzing parameter shifts focus either on unanticipated shifts such as Markov switching (e.g.,
Davig and Leeper, 2007, 2009) or on anticipated shocks of a �xed horizon (e.g., Schmitt-Grohé
and Uribe, 2012). In contrast, we show how to handle any combination of unanticipated and
anticipated shocks of any periodicity and duration in a fully nonlinear manner.3 Finally, there
is a literature on stochastic volatility that studies e¤ects of uncertainty on business cycle �uc-
tuations by assuming that volatility of shocks follows a stationary Markov process such as
a �rst-order autoregressive process or recurring Markov regime switches (e.g., Bloom, 2009,
Fernández-Villaverde and Rubio-Ramírez, 2010, and Fernández-Villaverde, Guerrón-Quintana
and Rubio-Ramírez, 2010). In turn, we are able to analyze models in which volatility has both
stochastic and deterministic components.
Moreover, the EFP framework is a novel tool for policy modeling in stochastic economies:

it allows to analyze time-dependent policies, and thus, complements the mainstream of the
literature that focuses on state-dependent policies. In the time-dependent case, a policy maker
commits to adopt a new policy on a certain date, independently of the economy�s state (e.g., to

3Seasonal adjustments are a special case of anticipated parameter shifts. In the literature, they are analyzed
either by constructing periodic optimal decision rules with spectral density transformations (e.g., Hansent and
Sargent, 1993, 2013) or by solving for season-speci�c time-invariant decision rules using linearization around a
seasonally-varying steady state (e.g., Christiano and Todd, 2002). EFP provides a simple and general alternative
to these methods and allows us to analyze seasonal �uctuations in a fully non-linear context; it treats seasonal
�uctuations just like any other combination of anticipated and unanticipated shocks.
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raise the interest rate on a certain future date), whereas in the state-dependent case, a policy
maker commits to adopt a new policy when economy reaches a certain state, independently of
the date (e.g., to raise the interest rate when certain economic conditions are met). Both of
these cases are empirically relevant and can be of interest in applications.
Two clarifying comments on the relation between time- and state-dependent models are in

order. First, in principle, it is always possible to convert our time-dependent economy into a
state-dependent economy by enlarging the state space, and in particular, we can add a variable
"time" to the set of state variables. However, such "enlarged" models are not yet studied and it
is unknown whether they are tractable or not. Second, nonstationary models with anticipated
parameter shifts cannot be either reduced to or approximated by Markov switching models
because regime changes come at random in such models and thus, no anticipatory e¤ects that
are emphasized by our analysis are ever observed.
Numerical analysis of nonstationary models in economics is originated from two earlier pa-

pers: one is by Lipton, Poterba, Sachs and Summers (1980), and the other is by Fair and Taylor
(1983). The former uses shooting methods to characterize an optimal path of a deterministic
economy. The latter introduces an extended path (EP) method for constructing an optimal
path of the economy with uncertainty. The key contribution of Fair and Taylor (1983) analysis
is the introduction of a certainty equivalence method for approximating expectation functions.
Other path solving methods had been developed in subsequent economic literature; see, e.g.,
Chen (1999), Judd (2002), Grüne, Semmler and Stieler (2013), Cagliarini and Kulish (2013); see
also Atolia and Bu¢ e (2009 a,b) for a careful discussion of shooting methods.4 A shortcoming
of the certainty-equivalence approach of Fair and Taylor (1983) is that it can be insu¢ ciently
accurate in some applications. Adjemian and Juillard (2013) propose a stochastic extended
path method that approximates expectation functions more accurately by constructing and
averaging multiple paths. Krusell and Smith (2015) develop a related numerical method that
combines approximate aggregation and perturbation of distributions along the transition path
in a climate change model. In contrast, to path-solving methods, EFP deals with uncertainty
in a way which is typical for global nonlinear solution methods, namely, it constructs state-
contingent decision functions using deterministic integration methods, and it can accurately
solve nonlinear stochastic models in which the certainty equivalence approach is either not
applicable or leads to inaccurate solutions.
The rest of the paper is as follows: In Section 2, we de�ne a class of nonstationary Markov

models. In Section 3, we introduce EFP and provide its theoretical foundations. In Section 4,
we describe the relation of EFP to existing literature. In Section 5, we assess the performance
of EFP in a nonstationary test model with a balanced growth path. In Section 6, we show
how to use EFP for analyzing anticipated parameter shifts and drifts. In Section 7, we solve a
collection of challeging nonstationary applications. Finally, in Section 8, we conclude.

4There is also literature that studies a transition between two aggregate steady states in heterogeneous-agent
economies by constructing a deterministic transition path for aggregate quantities and prices; see Conesa and
Krueger (1999). Our framework exploits the same idea but we analyze a transition between two stochastic
steady states by constructing a transition path of decision functions.
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2 A class of nonstationary Markov economies

We analyze a class of in�nite-horizon, nonlinear dynamic economic models in which the model�s
parameters (interpreted as exogenous variables) change over time. The parameters changes take
forms of anticipated shifts and drifts, as well as unanticipated Markov shocks with time-varying
transition probabilities. The constructed class of models is nonstationary because the optimal
decision and value functions are time dependent. Our goal is to develop a tractable framework
for constructing numerical solutions to such nonstationary models.

2.1 A nonstationary optimization problem

We consider a nonstationary stochastic growth model in which preferences, technology and laws
of motion for exogenous variables change over time. The representative agent solves

max
fct;kt+1g1t=0

E0

" 1X
t=0

�tut (ct)

#
(1)

s.t. ct + kt+1 = (1� �) kt + ft (kt; zt) , (2)

zt+1 = 't (zt; "t+1) , (3)

where ct � 0 and kt � 0 denote consumption and capital, respectively; initial condition (k0; z0)
is given; ut : R+ ! R and ft : R2+ ! R+ and 't : R2 ! R are possibly time-dependent utility
function, production functions and law of motion for exogenous variable zt, respectively; the
sequence of ut, ft and 't for t � 0 is known to the agent in period t = 0; "t+1 is i.i.d; � 2 (0; 1)
is the discount factor; � 2 [0; 1] is the depreciation rate; and Et [�] is an operator of expectation,
conditional on a t-period information set.

Stationary models. A well-known special case of the general setup (1)�(3) is a stationary
Markov model in which ut � u, ft � f and 't � '. Such a model has a stationary Markov
solution in which the value function V (kt; zt) and decision functions kt+1 = K (kt; zt) and
ct = C (kt; zt) are both state-contingent and time-invariant functions; see, e.g., Stokey and
Lucas with Prescott (1989, p. 391).

Nonstationary models. In a general case, a solution to the model (1)�(3) is nonstationary.
The decision functions of endogenous variables ct and kt+1 could be time-dependent for two
reasons: �rst, because ut and ft change over time; and second, because 't and consequently,
transition probabilities of exogenous variable zt change over time.

Remark 1. For presentational convenience, we assume that only zt is a random variable
following a Markov process with possibly time-varying transition probabilities, while the other
model�s parameters evolve in a deterministic manner, i.e., the sequence of ut, ft and 't for all
t � 0 is fully anticipated. However, the framework we develop can be used to solve models in
which �, �, as well as the parameters of ut, ft and 't, are all random variables following both
deterministic and stochastic trends. In particular, in Section 6, we consider a model in which
� follows a Markov process with time-varying transition probabilities.
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2.2 Assumptions about exogenous variable

The mainstream of related literature, including real business cycle literature, either focuses on
a class of models in which exogenous variables are both stationary and Markov or it imposes
restrictions, derived by King et al. (1988), that make it possible to convert a nonstationary
model into stationary one as is in the case of balanced growth.
In (3), we maintain the assumption of Markov process, however, we relax the restriction of

stationarity, namely, we allow for the case when transition probabilities of zt change over time.
In Appendix A0, we provide a formal description of our stochastic environment and de�ne
stationary and Markov processes using measure-theory notation. Our exposition is standard
and closely follows Stokey and Lucas with Prescott (1989), Santos (1999) and Stachurski (2009).
Below, we show a simple example that illustrates the notion of random processes that will be
used in our analysis for modeling exogenous variables.

Example 1. Consider a �rst-order autoregressive process

zt+1 = �tzt + �t"t+1, (4)

where "t+1 � N (0; 1) and (�0; �1; :::) and (�0; �1; :::) are given at t = 0.

We distinguish the following cases:

i). Markov process. Since the conditional probability distribution zt+1 � N (�tzt; �
2
t ) depends

only on the most recent past zt = zt and is independent of history (zt; :::; z0), the process is
Markov.

ii). Nonstationary transitions. If �t and �t change over time, then the distribution N (�tzt; �
2
t )

depends not only on the current state zt = zt but also on a speci�c period t, so that transition
probabilities are not stationary, and as a result, the process is nonstationary (in particular, it
does not have time-invariant unconditional probability measure). This is the case we consider
in the paper; we assume j�tj < 1 for all t.

iii). Stationary process. If �t = � and �t = � for all t, then the conditional probability
distribution N (�zt; �

2) depends only on state zt = zt but not on time, so that the transitions
are stationary. If, in addition, j�j < 1, then we have the familiar stationary process.

iv). Unit root and explosive processes. The case of j�tj = 1 for all t corresponds to a unit
root process, which is nonstationary even if �t = � for all t; and j�tj > 1 for all t leads to an
explosive process. Unit root and explosive processes are not explicitly studied in the paper,
although our analysis is still valid under these processes if the boundedness assumption A3 of
the next section is satis�ed. �

Remark 2. Mitra and Nyarko (1991) refer to a class of Markov processes with nonstationary
transition probabilities of type ii) as semi-Markov processes because of their certain similarity
to Lévy�s (1954) generalization of the Markov renewal process for the case of random arrival
times; see Jansen and Manca (2006) for a review of applications of semi-Markov processes in
statistics, operation research and other �elds.
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2.3 Assumptions about the utility and production functions

We make standard (strong) assumptions about the utility and production functions that ensure
the existence, uniqueness and interiority of a solution. Concerning the utility function ut, we
assume that for each t � 0:

Assumption 1. (Utility function). a) ut is twice continuously di¤erentiable on R+; b) u0t > 0,
i.e., ut is strictly increasing on R+, where u0t � @ut

@c
; c) u00t < 0, i.e., ut is strictly concave on R+,

where u00t � @2ut
@c2
; and d) ut satis�es the Inada conditions lim

c!0
u0t (c) = +1 and lim

c!1
u0t (c) = 0.

Concerning the production function ft, we assume that for each t � 0:

Assumption 2. (Production function). a) ft is twice continuously di¤erentiable on R2+, b)
f 0t (k; z) > 0 for all k 2 R+ and z 2 R+, where f 0t � @ft

@k
, c) f 00t (k; z) � 0 for all k 2 R+

and z 2 R+, where f 00t � @2ft
@k2
; and d) ft satis�es the Inada conditions lim

k!0
f 0t (k; z) = +1 and

lim
k!1

f 0t (k; z) = 0 for all z 2 R+.

We need one more assumption. Let us de�ne a pure capital accumulation process fkmaxt g1t=0 by
assuming ct = 0 for all t in (2) which for each history ht = (z0; :::; zt), leads to

kmaxt+1 = ft (k
max
t ; zt) , (5)

where kmax0 � k0. We impose an additional joint boundedness restriction on preferences and
technology by using the constructed process (5):

Assumption 3. (Objective function). E0
�P1

t=0 �
tut (k

max
t )

�
<1.

This assumption insures that the objective function (1) is bounded so that its maximum exists.
In particular, Assumption 3 holds either (i) when ut is bounded from above for all t, i.e.,
ut (c) < 1 for any c � 0 or (ii) when ft is bounded from above for all t, i.e., ft (k; zt) < 1
for any k � 0 and zt 2 Zt. However, it also holds for economies with nonvanishing growth and
unbounded utility and production functions as long as ut (kmaxt ) does not grow too fast so that
the product �tut (kmaxt ) still declines at a su¢ ciently high rate and the objective function (1)
converges to a �nite limit.

2.4 Optimal program

De�nition 1 (Feasible program). A feasible program for the economy (1)�(3) is a pair of
adapted (t-measurable) processes fct; ktg1t=0 such that given initial condition k0, they satisfy
ct � 0, kt � 0 and (2) for each possible history h1 = ("0; "1:::).

We denote by =1 a set of all feasible programs from given initial capital k0. We next introduce
the concept of solution to the model.
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De�nition 2 (Optimal program). A feasible program fc1t ; k1t g
1
t=0 2 =1 is called optimal if

E0

" 1X
t=0

�t fut (c1t )� ut (ct)g
#
� 0 (6)

for every feasible process fct; ktg1t=0 2 =1.

Stochastic models with time-varying fundamentals are studied in Majumdar and Zilcha (1987),
Mitra and Nyarko (1991) and Joshi (1997), among others. The existence results for this class of
models have been established in the literature for a general measurable stochastic environment
without imposing the restriction of Markov process (3). In particular, this literature shows that,
under Assumptions 1-3, there exists an optimal program fc1t ; k1t g

1
t=0 2 =1 in the economy

(1), (2), and it is both interior and unique; see Theorem 4.1 in Mitra and Nyarko (1991) and
see Theorem 7 in Majumdar and Zilcha (1987). The results of this literature apply to us as
well.

Remark 3. The existence of the optimal program in the economy (1)�(3) can be shown even
under weaker assumptions. For example, Mitra and Nyarko (1991) use a joint boundedness
restriction on preferences and technology (the so-called Condition E) that is less restrictive than
our Assumption 3; Joshi (1997) characterizes the optimal programs in nonconvex economies by
relaxing our Assumptions A2c and A2d, etc.

While the previous literature establishes the existence and uniqueness results for the constructed
class of nonstationary models under very general assumptions, it does not o¤er a practical
approach to constructing time-dependent solutions in applications. In contrast, we distinguish
a tractable class of nonstationary models satisfying the Markov property (3) for which the
solutions can be conveniently characterized in applications, both analytically and numerically.

3 Extended function path framework

We introduce an extended function path (EFP) framework for approximating an optimal pro-
gram in the in�nite-horizon nonstationary Markov economy (1)�(3). In Section 3.1, we present
the EFP framework, and in Section 3.2, we develop its theoretical foundations.

3.1 Introducing extended function path framework

Characterizing an optimal program in the nonstationary in�nite-horizon model (1)�(3) requires
to construct an in�nite sequence of time-varying value and decision functions. While it is not
generally possible to accurately approximate an in�nite sequence of functions, we will be able to
accurately approximate a given number of elements of such a sequence. For example, our EFP
framework can approximate the capital decision functions K1; :::; K100 during the �rst � = 100
periods with a given degree of precision.
The key idea of our EFP framework is to approximate an in�nite-horizon nonstationary

economy by using a truncated �nite-horizon economy. Formally, this procedure is described
below.
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Algorithm 1: Extended function path (EFP).

Step 0. Initialization. Choose some T � � and assume that for t � T , the economy
becomes stationary, i.e., ut = u, ft = f and 't = ' for all t � T .

Step 1. Construct a stationary Markov solution for t � T , i.e., �nd a stationary
capital function K satisfying:
u0(c) = �E [u0(c0)(1� � + f 0 (k0; ' (z; "0)))]
c = (1� �) k + f (k; z)� k0
c0 = (1� �) k0 + f (k0; ' (z; "0))� k00
k0 = K (k; z) and k00 = K (k0; ' (z; "0)).

Step 2. Construct a path for capital policy functions (K0; :::; KT ) that matches
the terminal condition KT � K and satis�es for t = 0; :::T � 1:
u0t(ct) = �Et

�
u0t+1(ct+1)(1� � + f 0t+1 (kt+1; 't (zt; "t+1)))

�
ct = (1� �) kt + ft (kt; zt)� kt+1
ct+1 = (1� �) kt+1 + ft+1 (kt+1; 't (zt; "t+1))� kt+2
kt+1 = Kt (kt; zt) and kt+2 = Kt+1 (kt+1; 't (zt; "t+1)) :

The �rst � functions (K0; :::; K� ) constitute an approximate solution and
the remaining T � � functions (K�+1; :::; KT ) are discarded.

There are two steps: First, we assume that in some remote period T , the economy becomes
stationary, i.e., the fundamentals do not change any more, ut = u, ft = f and 't = ' for
all t � T . We call this economy a T -period stationary economy. The convenient feature of
the T -period stationary economy is that its optimal program is simple to characterize. Indeed,
since the economy (1)�(3) becomes stationary at T , the optimal program is stationary Markov
for t � T , and the usual stationary Markov equilibrium can be constructed by using any
conventional solution method. Second, given the terminal condition, produced by the T -period
stationary economy, we can use backward induction (also known as time iteration), to construct
a path for value and decision functions for t = 0; :::; T � 1 that satisfy T � 1 Euler equations.
Namely, given the capital function KT , we use the Euler equation to compute the capital
function KT�1 at T � 1; given KT�1, we use it to compute KT�2; and we proceed until the
entire path (KT ; :::; K0) is constructed. In the next section, we show that under our assumptions
A1-A3, the path of functions produced by EFP exists, is unique and can approximate arbitrary
well the time-varying decision functions of the corresponding nonstationary model.
Let us show a graphical illustration to the solution produced by EFP. To implement EFP,

we use a combination of three techniques. First, to approximate decision functions, we use
Smolyak (sparse) grids. Second, to approximate expectation functions, we use a nonproduct
monomial integration rule. Finally, to solve for coe¢ cients of the policy functions, we use a
Gauss-Jacobi method, which is a derivative-free �xed-point-iteration method in line with Fair
and Taylor (1983). Further implementation details are described in Section 5 and Appendix
B.5

5In the paper, we focus on a version of EFP that constructs global nonlinear approximations. A similar
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In Figure 1, we illustrate a sequence of functions (a function path) produced by EFP for
a version of the model (1)�(3) with exogenous labor augmenting technological progress (the
model�s parameterization and implementation details are described in Section 5).

Figure 1. Function path, produced by EFP, for a growth model with technological progress

We plot the capital functions for periods 1, 20 and 40, (i.e., k2 = K1 (k1; z1), k21 = K20 (k20; z20)
and k41 = K40 (k40; z40)) which we approximate using Smolyak (sparse) grids. In Step 1 of
the algorithm, we construct the capital function K40 by assuming that the economy becomes
stationary in period T = 40; and in Step 2, we construct a path of the capital functions that
(K1; :::K39) that matches the corresponding terminal function K40. The Smolyak grids are
shown by stars in the horizontal kt� zt plane. The domain for capital (on which Smolyak grids
are constructed) and the range of the constructed capital function grow at the rate of labor
augmenting technological progress.
Finally, let us explain the choice of the name extended function path for the framework we

propose. Extended path (EP) method of Fair and Taylor (1983) constructs a path of variables
for larger time horizon T than the number of periods � for which an approximate solution is
actually needed. As we will see, by taking a su¢ ciently large T , we can ensure that our today�s

path of decision functions can be constructed using local perturbation techniques. The conventional EP method
of Fair and Taylor (1983) is incorporated in the dynare software platform, and possibly, a perturbation-based
version of EFP can be included there as well; for a description of the dynare platform, see the manual of
Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).
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decision functions accurately approximate the corresponding functions in the in�nite-horizon
economy independently of how we choose the terminal condition. In this respect, the EFP
and EP frameworks are similar. In turn, the wording path versus function path highlights the
key di¤erence between the EP and EFP methods: the former constructs a path for variables
(by using certainty equivalence), whereas the latter constructs a path for decision functions
(by using more accurate integration methods such as Monte Carlo, Gauss-Hermite quadrature
and monomials methods). As a result, EFP can also accurately solve those models in which
EP is insu¢ ciently accurate. Another important di¤erence between EFP and EP is that EFP
produces a sequence of functions that makes it possible to simulate the model for any sequence
of exogenous shocks, while EP produces a solution that is valid only for one �xed sequence of
shocks. In Appendix C, we discuss the relation between EFP and EP in more details.

3.2 Theoretical foundations of the EFP framework

We now develop theoretical foundations of the EFP framework. We prove two results: Theorem
1 shows that the optimal program in the T -period stationary economy is given by a Markov
process with possibly time-varying transition probabilities; and Theorem 2 shows that the op-
timal program of the T -period stationary economy uniformly converges to the optimal program
of the original nonstationary Markov economy (1)�(3) as T increases.

Theorem 1 (Optimal program of the T -period stationary economy). In the T -period stationary
economy (1)�(3), the optimal program is given by a Markov process with possibly time-varying
transition probabilities.

Proof. Under Assumptions 1-3, �rst-order conditions (FOCs) are necessary for optimality. We
will show that FOCs are also su¢ cient both to identify the optimal program and to establish
its Markov structure. Our proof is constructive: it relies on backward induction and includes
two steps that correspond to Steps 1 and 2 of Algorithm 1, respectively.
Step 1. At T , the economy becomes stationary and remains stationary forever, i.e., ut � u,

ft � f and 't � ' for all t � T . Thus, the model�s equations and decision functions are time
invariant for t � T . It is well known that under Assumptions 1-3, there is a unique stationary
Markov capital function K that satis�es the optimality conditions that are listed in Step 1 of
Algorithm 1; see, e.g., Stokey and Lucas with Prescott (1989, p. 391).
Step 2. Given the constructed T -period capital function KT � K, we de�ne the capital

functions KT�1; :::; K0 in previous periods by using backward induction. As a �rst step, we
write the Euler equation for period T � 1,

u0T�1(cT�1) = �ET�1 [u
0
T (cT )(1� � + f 0T (kT ; zT ))] , (7)

where cT�1 and cT are related to kT and kT+1 in periods T and T � 1 by

cT�1 = (1� �) kT�1 + fT�1 (kT�1; zT�1)� kT , (8)

cT = (1� �) kT + fT (kT ; zT )� kT+1: (9)

By assumption (3), zT follows a Markov process, i.e., zT = 'T (zT�1; "). Furthermore, by
construction of the decision function K in Step 1, we have that kT+1 = KT (kT ; zT ) is a Markov
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decision function. By substituting these two results into (7)�(9), we obtain a functional equation
that de�nes kT for each possible state (kT�1; zT�1). The existence and uniqueness of the solution
to this functional equation under our assumptions is established in the previous literature; see
Theorem 4.1 in Mitra and Nyarko (1991) and Theorem 7 in Majumdar and Zilcha (1987).
Therefore, capital choices at period T � 1 are described by a state-contingent function kT =
KT�1 (kT�1; zT�1), i.e., capital choices today are independent of history that leads to the current
state. However, the constructed decision functions depend on the parameters of the utility and
production functions and the law of motions for shocks in periods T � 1 and T , and it is not
generally true that KT�1 6= KT . By proceeding iteratively backward, we construct a sequence
of state-contingent and time-dependent capital functions KT�1 (kT�1; zT�1) ; :::; K0 (k0; z0) that
satis�es (7)�(9) for t = 0; :::; T �1 and that matches terminal function KT (kT ; zT ). Hence, kt+1
follows a Markov process with possibly time-varying transition probabilities. �

Remark 4. We analyze a variant of EFP that constructs time-dependent capital functions
(K0; :::; K� ) that satisfy the Euler equation. Similarly, we can formulate a variant of EFP that
constructs time-dependent value functions (V0; :::; V� ) by iterating on the Bellman equation.
First, we solve for VT = VT+1 = V for the T -period stationary economy and then we solve for
a path (VT�1; :::; V0) that satis�es the sequence of the Bellman equations for t = 0; :::; T and
that meets the terminal condition VT of the T -period stationary economy. This extension is
straightforward.

We next show that the optimal program of the constructed T -period stationary economy approx-
imates arbitrary well the optimal program of the nonstationary economy (1)�(3) as T increases.
Our analysis is related to the literature that shows asymptotic convergence of the optimal pro-
gram of the �nite horizon economy to that of the in�nite horizon economy; see Brock (1971)
and McKenzie (1976) for early contributions, and see Majumdar and Zilcha (1987), Mitra and
Nyarko (1991) and Joshi (1997) for the convergence results for economies with time-varying
fundamentals like ours. This kind of convergence results is referred to as turnpike theorems.

Turnpike means a highway. The name turnpike theorem emphasizes the idea that a highway
is often the fastest route between two points even if it is not a direct route. Speci�cally, when
we drive to some remote destination (e.g., a small town), we often get on a highway as soon
as possible, stay on the highway as long as possible and get o¤ highway as close as possible to
our �nal destination.6 In Figure 2, we show that the same kind of behavior is observed in our
model if we interpret the in�nite-horizon and �nite-horizon economies as a turnpike and our
�nal destination, respectively.

6Turnpike theorems, in which initial-period decisions are insensitive to terminal conditions, are classi�ed as
early turnpike theorem in the literature; there are also medium and late turnpike theorems corresponding for
di¤erent variations in the initial and terminal conditions; see McKenzie (1976) and Joshi (1997) for discussion.
We do not analyze these turnpike theorems since they are not directly related to our EFP framework.
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Figure 2. Convergence of the optimal program of T -period stationary economy

Let us again consider a version of the model with labor augmenting technological progress
described in Section 5); we �x the same initial condition and realization of shocks in all exper-
iments; k1t denotes the true solution to the in�nite-horizon nonstationary model (1)�(3), and
kL, kT , k0 and k00 denote the corresponding solutions to the �nite-horizon models characterized
by di¤erent terminal conditions. We see that the optimal program of the T -period station-
ary economy

�
kTt
	
follows for a long time the optimal program of the nonstationary economy

fk1t g (turnpike) and it gets o¤ the turnpike only at the end in order to meet a given terminal
condition (i.e. the �nal destination).
We also make the following important observation. While the path of the T -period sta-

tionary economy converges to that of the nonstationary economy under all terminal conditions
considered, the convergence is faster under terminal conditions �0 and �00, that are located rel-
atively close to the true T -period capital of the nonstationary economy fk1T g, than under a
zero terminal condition that is located farther away from the true solution. In particular, it is
clear that a zero-capital terminal condition, commonly used in the turnpike literature, is not
an e¢ cient choice for approximating an in�nite horizon nonstationary economy with growth.
Indeed, in the in�nite-horizon economy, capital continues to grow, while in the �nite horizon
economy, capital needs to turn down near the terminal date to meet a zero-capital terminal
condition, which slows down the convergence.
While the speed of convergence plays no role in the asymptotic convergence theorems es-

tablished in the turnpike literature, it plays an important role in the accuracy and speed of
numerical solution methods developed in the present paper. To attain the fastest possible con-
vergence, we must choose the terminal condition

�
kTT
	
of the T -period stationary economy as

close as possible to the T -period capital stock of the in�nite-horizon nonstationary economy
fk1T g. To this purpose, we provide a version of the turnpike theorem that holds for an arbitrary
terminal condition, while the existing theorems for economies with time varying fundamentals
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are shown for a zero-capital terminal conditions; see Majumdar and Zilcha (1987), Mitra and
Nyarko (1991) and Joshi (1997).
To show our turnpike theorem, we �x some initial condition (k0; z0) and consider any history

h1 = ("0; "1:::). We then construct the productivity levels fztgTt=0 using (3) and use the sequence
of capital functions of the T -period stationary economy K0 (k0; z0) ; :::; KT (kT ; zT ) to generate
the optimal program

�
cTt ; k

T
t

	T
t=0

such that

kTt+1 = Kt

�
kTt ; zt

�
, (10)

where kT0 = k0, and cTt satis�es the budget constraint (2) for all t � 0. Then, we have the
following result.

Theorem 2 (Turnpike theorem): For any real number " > 0 and any natural number � , there
exists a threshold terminal date T ("; �) such that for any T � T ("; �), we have��k1t � kTt �� < ", for all t � � , (11)

where fc1t ; k1t g
1
t=0 2 =1 is the optimal program in the nonstationary economy (1)�(3), and�

cTt ; k
T
t

	T
t=0

is the optimal program (10) in the T -period stationary economy.

Proof. The proof is shown in Appendix A4, and it relies on three lemmas presented in Ap-
pendices A1-A3. In Appendix A1, we construct a limit program of a �nite horizon economy
with a terminal condition kT = 0; this construction is standard in the turnpike analysis, see
Majumdar and Zilcha (1987), Mitra and Nyarko (1991), Joshi (1997), and it is shown for the
sake of completeness. In Appendix A2, we prove a new result about convergence of the optimal
program of the T -period stationary economy with arbitrary terminal capital stock kTT to the
limiting program of the �nite horizon economy with a zero terminal condition kT = 0. Finally,
in Appendix A3, we show that the limit program of the �nite horizon economy with a zero
terminal condition kT = 0 is also an optimal program for the in�nite horizon nonstationary
economy (1)�(3); in the proof, we also follow the previous turnpike literature. Thus, our main
theoretical contribution is contained in Appendix A2. �

The convergence is uniform: Our turnpike theorem states that for all T � T ("; �), the con-
structed nonstationary Markov approximation

�
kTt
	
is guaranteed to be within a given "-

accuracy range of the true solution fk1t g during the initial � periods for any history of shocks
h1 = ("0; "1:::) (for periods t > � , our approximation may become insu¢ ciently accurate and
exit the "-accuracy range). For example, in Figure 1, the trajectories with a zero-capital ter-
minal condition deviate dramatically from the in�nite-horizon solution when we approach the
terminal date.

Remark 5. The property, which is essential for our analysis, is that the optimal decision
functions are Markov at T . In our baseline implementation of EFP, we attain this property by
constructing a supplementary T -period stationary economy in which preferences, technology
and laws of motion for exogenous variables do not change starting from t = T , i.e., ut = uT ,
ft = fT and 't = 'T for all t � T . Instead, we can use any other assumptions that lead
to Markov decision functions at T , for example, we can assume that the economy switches
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to balanced growth with a stationary Markov representation at T or that it arrives at a zero
capital stock at T with the corresponding trivial Markov solution kt = 0 for all t � T . Also, we
can construct a T -period Markov decision function K (k; z) without specifying the underlying
economic model that generates this terminal condition. Our turnpike theorem implies that the
decision functions in initial periods are insensitive to a speci�c terminal condition provided that
the time horizon T is su¢ ciently large.

4 Relation of EFP to the literature

In the previous section, we discussed a relation of EFP to early theoretical literature that
establishes existence and turnpike theorems for nonstationary models. The key di¤erence of our
analysis from that literature is that we provide a tractable framework for constructing numerical
solutions, while the early literature is purely existential. We now focus on the relation of EFP
to two other streams of the literature: one that develops path-solving numerical methods for
nonstationary models and the other that constructs decision functions for stationary models.

4.1 Methods solving for path in nonstationary models

Numerical analysis of nonstationary models in economics is dated back to the work of Lipton,
Poterba, Sachs and Summers (1980) and Fair and Taylor (1983). The former paper applies
shooting methods to characterize transition path of deterministic economy, and the latter paper
introduces an extended path (EP) method for constructing transition path of economy with
uncertainty. Both papers explicitly state that path solving methods can be used in the context of
nonstationary problems (although they do not provide any numerical nonstationary examples).
In particular, Lipton, Poterba, Sachs and Summers (1980, p.2) say "... we allow for a possibility
that F [model�s equations] may be time dependent (i.e., non-autonomous)". Fair and Taylor
(1983) also use time dependent notation for the model�s equations. We provide a detailed
description of the shooting and extended path methods in Appendix C.
Other path-solving methods in the literature include a continuous time analysis of Chen

(1999); a parametric path method of Judd (2002) that approximates a deterministic path
using a family of polynomial functions; an EP method using a Newton-style solver of Heer
and Maußner (2010); a framework for analyzing time-dependent linear rational expectation
models of Cagliarini and Kulish (2013); and a nonlinear predictive control method for value
function iteration of Grüne, Semmler and Stieler (2013). Applications of path methods in
economics are numerous, e.g., Chen, Imrohoro¼glu and Imrohoro¼glu (2006), Bodenstein, Erceg
and Guerrieri (2009), Coibion, Gorodnichenko and Wieland (2011), Braun and Körber (2011)
and Hansen and Imrohoro¼glu (2013). There is also literature that uses path-solving methods
for the analysis of heterogeneous agent models, in particular, Conesa and Krueger (1999) show
how to solve life-cycle models in which the aggregate economy�s path is deterministic but
there is idiosyncratic uncertainty; see also Krueger and Ludwig (2007). Finally, Krusell and
Smith (2015) develop a related numerical method that combines approximate aggregation and
perturbation of distributions to solve for a transition path in a multi-region climate change
model.
Adjemian and Juillard (2013) propose a stochastic extended path method that improves on

certainty equivalence approach of the baseline Fair and Taylor�s (1983) method. They construct
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and analyze a tree of all possible future paths for exogenous state variables. Although the num-
ber of tree branches and paths grows exponentially with the path length, the authors propose a
clever way of reducing the cost by restricting attention to paths that have highest probability of
occurrence. However, the implementation of this method is nontrivial, in particular, in models
with multiple state variables.
EFP di¤ers from the above literature both in the object it constructs and in the way it

deals with uncertainty. Namely, EFP constructs a sequence of Markov state-contingent decision
functions that include stochastic shocks as one of the arguments rather than solving for a path
for variables under �xed sequences of shocks. In this respect, EFP is similar to conventional
solution methods that construct decision functions for stationary Markov models. Since EFP
produces decision functions, the simulation of the solutions is cheap under any sequence of
shocks, in contrast to path solving methods in which the solution and simulation steps are
combined together so that the model must be separately solved for each new sequence of shocks.

4.2 Methods solving for decision functions in stationary models

Conventional methods for constructing stationary Markov solutions are not directly applicable
to analyzing nonstationary applications. However, the techniques used in the context of conven-
tional methods can be used as ingredients of EFP. First, to construct decision functions, we can
use a variety of grids, integration rules, approximation methods, iteration schemes, etc. that
are used by conventional solution methods. Second, to construct a function path, we can use
any numerical method that can solve a system of nonlinear equations, including Newton-style
solvers as well as Gauss-Siedel or Gauss-Jacobi iteration. Since EFP constructs not just one set
of decision functions but a possibly long sequence of such functions, the computational expense
can be high. To make EFP tractable not only in small-scale but also in large-scale applications,
we use numerical techniques whose cost does not rapidly increase with the dimensionality of the
problem, including sparse, simulated, cluster and epsilon-distinguishable-set grids; nonproduct
monomial and simulation based integration methods; and derivative-free solvers; see Maliar
and Maliar (2014) for a survey of techniques that are designed for dealing with large-scale
applications.
There are three groups of methods for stationary problems that EFP is particularly close

to. First, EFP is related to methods that construct decision functions in �nite-horizon prob-
lems such as life-cycle models studied in Krueger and Kubler (2004, 2006) and Hasanhodzic
and Kotliko¤ (2013). The decision functions in such models change from one generation to
another, and the sequence of the generation-speci�c decision functions resembles a function
path constructed by EFP; see Ríos-Rull (1999) and Nishiyama and Smetters (2014) for re-
views of the literature on life-cycle economies. Also, backward-style iteration is commonly used
for constructing numerical solutions to stationary dynamic economic models, in particular, it is
used under conventional dynamic programing approaches, as well as some Euler equation meth-
ods, e.g., Coleman (1991), Mirman, Morand and Re¤ett (2008), Malin, Krueger and Kubler
(2011). Our key novelty relative to this literature is to show that the familiar backward iteration
method, combined with the turnpike analysis, can be used to analyze a class of in�nite-horizon
nonstationary models that is not yet well studied in the literature.
Second, EFP is related to the literature on balanced growth. However, this class of models

is very limited; for example, models with labor augmenting technological progress are generally
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consistent with a balanced growth path but not models with either capital augmenting or
Hicks neutral technological progress; see King, Plosser and Rebello (1988) for restrictions on
preferences and technology that are consistent with a balanced growth path. There are examples
of constructing a balanced growth path in some models that do not satisfy the restrictions in
King, Plosser and Rebello (1988) but they are also limited.7

Finally, EFP is related to the literature that incorporates certain kinds of nonstation-
arity by augmenting the economic models to include additional state variables. In partic-
ular, Bloom (2009), Fernández-Villaverde and Rubio-Ramírez (2010), Fernández-Villaverde,
Guerrón-Quintana and Rubio-Ramírez (2010), among others, argue that the behavior of real-
world economies is a¤ected by degrees of uncertainty and introduce models with stochastic
volatility. Furthermore, Davig and Leeper (2009), Farmer, Waggoner and Zha (2011), Foerster,
Rubio-Ramírez, Waggoner and Zha (2013) and Zhong (2015), among others, advocate periodic
unanticipated changes in regimes. Finally, a recent paper of Schmitt-Grohé and Uribe (2012)
proposes a quantitative framework that allows for anticipated exogenous shocks of a �xed pe-
riodicity and length. The key di¤erence of our analysis from this literature in that we allow
for time-dependence of the model, while the above literature expands the state space of time-
invariant models. As a result, the EFP framework can handle any combination of unanticipated
and anticipated shocks of any periodicity and duration.

5 Assessing EFP accuracy in a test model with balanced
growth

In this section, we assess the quality of EFP approximations in a version of the model (1)�(3)
with labor augmenting technological progress and balanced growth. We choose this model as a
test application because in this special case, a nonstationary model that can be converted into
stationary model and can be accurately solved by using conventional solution methods, so that
we have a high-quality benchmark solution for comparison. We parameterize the model (1)�(3)
by Cobb-Douglas utility and production functions,

ut (c) =
c1�


1� 
 ; and ft (k; z) = zk
�A1��t ; (12)

where � 2 (�1; 1), � 2 (0;1), and At = A0g
t
A represents labor augmenting technological

progress with an exogenous constant growth rate gA � 1; and the productivity level in (3)
follows ln zt+1 = � ln zt + �"t+1, where "t+1 � N (0; 1), � 2 (�1; 1) and � 2 (0;1).

5.1 Methodology of numerical analysis

In this section, we describe the methodology of our numerical analysis and outline some imple-
mentation details.

7One example is the paper of Maliar and Maliar (2004) which shows the existence of a balanced growth path
in a model with endogenous growth and cycles by removing a common stochastic trend representing randomly
arriving technological innovations. Another example is Maliar and Maliar (2010) who construct a balanced
growth path in a model with capital-skill complementarity and several types of technical progress by imposing
additional restrictions on the growth rates of variables.
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Four solution methods We solve the nonstationary growth model (1)�(3), (12) by using
four alternative solution methods which we call exact, EFP, Fair and Taylor and naive solution
methods.

i). Exact solution method. Under the assumptions in (12), the nonstationary model (1)�(3)
is consistent with balanced growth and can be converted into a stationary model; see King,
Plosser and Rebelo (1988). We �rst accurately solve the stationary model by using a conven-
tional projection method, speci�cally, we use a Smolyak projection method in line with Krueger
and Kubler (2004) and Judd, Maliar, Maliar and Valero (2014). We then recover a solution to
the original nonstationary model; see Appendix D for details. The resulting numerical solution
is very accurate, namely, the unit-free maximum residuals in the model�s equations of order
10�6 on a stochastic simulation of 10,000 observations. We refer to this numerical solution as
exact, and we use it as a benchmark for comparison with other numerical solutions.

ii). EFP solution method. EFP solves a nonstationary model directly, without converting
it into stationary, by following the steps outlined in Algorithm 1 of Section 3.1; see Appendix B
for implementation details. The solution produced by EFP for this model is shown in Figures
1 and 2.

iii). Fair and Taylor (1983) solution method. Fair and Taylor�s (1983) method also solves
a nonstationary model directly, without converting it into stationary. It constructs a path for
the model�s variables (not functions!) under one given sequence of shocks by using the certainty
equivalence approach for approximating expectation functions. The implementation of Fair and
Taylor�s (1983) method is described in Appendix C.

iv). Naive solution method. A naive method replaces a nonstationary model with a sequence of
stationary models and solves such models one by one, independently of one another. Similar to
EFP, the naive method constructs a path of decision functions for t = 0; :::; T but it di¤ers from
EFP in that it neglects the connections between the decision functions in di¤erent time peri-
ods. A comparison of the EFP and naive solutions will allow us to appreciate the importance
of anticipatory e¤ects.

Growth path for the EFP method The implementation details of these solution methods
are described in Appendices B, C and D. Here, we focus on one important implementation
issue, namely, how to construct a sequence of grids for t = 0; :::; T on which a sequence (path)
of the EFP decision functions will be approximated. In a stationary model, we typically center
the grid in the deterministic steady state. However, in a nonstationary model, a steady state
does not exist. To address this case, we de�ne an analogue of steady state as a path for the
model�s variables that solves an otherwise equivalent deterministic model when shocks are shut
down. We refer to such a solution as a growth path, and we denote it by a superscript "�". For
example, in Figure 1, we show a growth path for capital k�1, k

�
20 and k

�
40 for periods 1, 20 and

40, respectively; see the centers of Smolyak grids in a (kt; zt) plane. In the special case of the
balanced growth model (12), the growth path can be constructed analytically. Namely, in the

stationary economy, the steady state capital is given by k�0 � A0
�
g
A � � + ��

��

�1=(��1)
, and in
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the growing economy, it evolves as k�t = k
�
0g
t
A for t = 1; :::; T . In unbalanced growth models,

the growth path must be in general constructed numerically; see Section 7.1 for an example
and discussion.

Parameterization, software and hardware For all experiments, we �x � = 0:36, � = 0:99,
� = 0:025 and � = 0:95. The remaining parameters are set in the benchmark case at 
 = 5,
�" = 0:03, gA = 1:01 and T = 200 but we vary these parameters across experiments. For all
simulations, we use the same initial condition and the same sequence of productivity shocks
for all methods considered. Our code is written in MATLAB 2013a, and we use a desktop
computer with Intel(R) Core(TM) i7-2600 CPU (3.40 GHz) with RAM 12GB.

5.2 Comparison results for four solution methods

In the left panel of Figure 3, we plot the growing time-series solutions for the four solution
methods, as well as the (steady state) growth path for capital. In the right panel, we display
the time series solutions after detrending the growth path.
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Figure 3. Comparison of the solution methods for the test model with balanced growth

As is evident from both panels, the EFP solution and the exact solution are visually indis-
tinguishable except at the end of the time horizon �the last 10-15 periods. The di¤erence at
the end between the EFP and exact solutions are a consequence of di¤erent terminal conditions
used: in the former case, we assume that the economy becomes stationary (i.e., stops growing)
at T , whereas in the latter case, the growth continues forever. If we use the same terminal con-
dition for the EFP as the exact solution at T , then the EFP solution would be indistinguishable
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from the exact solution everywhere in the �gure. However, Fair and Taylor�s (1983) and naive
methods are far less accurate; they produce solutions that are systematically lower than the
exact solution everywhere in the �gure; and the naive solution is the least accurate of all.
We next evaluate the accuracy of the four constructed solutions numerically. We �rst

simulate each of the four solutions 100 times and we then compute the mean and maximum
absolute di¤erences in log 10 units between the exact solution and the remaining three solutions
across 100 simulations for the intervals [0; 50], [0; 100], [0; 150], [0; 175], and [0; 200]. This kind
of statistics shows how the accuracy of numerical solutions deteriorates, as we move closer to
the terminal period. The accuracy results are reported n Table 1, as well as the time needed
for computing and simulating 100 solutions of length T (in seconds). We observe that in most

Table 1: Comparison of four solution methods.

Fair-Taylor (1983) Naive EFP method EFP method
method, � = 1 method � = 1 � = 200

Terminal Steady Steady - Balanced T -period Balanced T -period
condition state state growth stationary growth stationary

T 200 400 200 200 200 400 200 200 400

Mean errors across t periods in log10 units
t 2 [0; 50] -1.60 -1.60 -1.36 -7.30 -6.97 -7.15 -7.23 -6.75 -7.01
t 2 [0; 100] -1.42 -1.42 -1.19 -7.06 -6.81 -6.98 -7.03 -6.19 -6.81
t 2 [0; 150] -1.34 -1.35 -1.11 -6.96 -6.73 -6.91 -6.94 -5.47 -6.73
t 2 [0; 175] -1.32 -1.32 -1.09 -6.93 -6.71 -6.89 -6.91 -5.09 -6.70
t 2 [0; 200] -1.30 -1.31 -1.07 -6.91 -6.69 -6.87 -6.90 -4.70 -6.68

Maximum errors across t periods in log10 units
t 2 [0; 50] -1.29 -1.29 -1.04 -6.83 -6.63 -6.81 -6.82 -6.01 -6.42
t 2 [0; 100] -1.18 -1.18 -0.92 -6.69 -6.42 -6.68 -6.68 -4.39 -5.99
t 2 [0; 150] -1.14 -1.14 -0.89 -6.66 -6.39 -6.67 -6.66 -2.89 -5.98
t 2 [0; 175] -1.14 -1.13 -0.89 -6.66 -6.40 -6.66 -6.66 -2.10 -5.98
t 2 [0; 200] -1.14 -1.13 -0.89 -6.66 -6.37 -6.66 -6.66 -1.45 -5.92

Running time, in seconds
Solution 1.2(+4) 6.1(+4) 28.9 216.5 8.6(+3) 1.9(+4) 104.9 99.1 225.9
Simulation - - 2.6 2.6 2.6 5.8 2.6 2.8 5.7
Total 1.2(+4) 6.1(+4) 31.5 219.2 8.6(+3) 1.9(+4) 107.6 101.9 231.6

Notes: "Mean errors" and "Maximum errors" are, respectively, mean and maximum unit-free absolute di¤erence

between the exact solution for capital and the solution delivered by a method in the column. The di¤erence

between the solutions is computed across 100 simulations.

implementations, the approximation errors of EFP do not exceed 10�6 = 0:0001%, while the
errors produced by Fair and Taylor�s (1983) and naive methods can be as large as 10�1:6 � 2:5%
and 10�0:89 � 12%. We explain these �ndings below in more details.

5.2.1 EFP method

In Table 1, we provide the results under three alternative implementations of EFP that illustrate
how the properties of the EFP solutions depend on the choices of the terminal condition, KT ,



time horizon T and parameter � .

The role of the terminal condition: better terminal condition gives more accurate
solutions. EFP requires us to specify a terminal condition in the form of T -period decision
functions. What terminal condition do we choose? Again, for a special case of the balanced
growth model, it is possible to infer the "exact" terminal condition from the solution to the
stationary model; see Appendix D for details (this terminal condition is referred to as "balanced
growth" terminal condition in Table 1). If we use the exact balanced-growth terminal condition,
the EFP approximation is very accurate everywhere independently of � and T , namely, the
di¤erence between the exact and EFP solutions is less than 10�6 = 0:0001%.
However, a stationary representation of the model and the exact terminal condition are

generally unknown. To assess the role of the terminal condition in the accuracy of the EFP
solutions, we also implement EFP by using a solution to the T -period stationary model as a
terminal condition (this terminal condition is referred to as "T -period stationary" in Table 1).
We observe that with this terminal condition, the accuracy critically depends on the choice of
� and T .

The choice of � : a trade-o¤ between accuracy and cost. We analyze two di¤erent
values of � such as � = 1 and � = 200. Under � = 1, EFP constructs a path of function in
the same way as Fair and Taylor�s (1983) method constructs a path of variables. First, given
the terminal capital function KT , EFP solves for decision functions for t = 0; :::; T � 1, stores
K0 and discards the rest of the functions. Next, given KT+1, EFP solves for decision functions
for t = 1; :::; T , stores K1 and discards the rest of the functions. It proceeds forward until the
function path of a desired length is constructed.
As we see from the table, the EFP method with � = 1 is very accurate independently of

T and a speci�c terminal condition used, namely, the EFP and exact solutions again di¤er by
less than 10�6 = 0:0001%. This result illustrates the implication of the turnpike theorem that
the e¤ect of any terminal condition on the very �rst element of the path � = 1 is negligible if
the time horizon T is su¢ ciently large.
A shortcoming of the version of EFP with � = 1 is its high computational expense: the

running time under T = 200 and T = 400 is 15 and 30 minutes, respectively. The cost is
high because we need to entirely recompute a sequence of decision functions each time when
we extend the path by one period ahead. E¤ectively, we implement EFP T times and not just
once, which is costly.

The choice of T : making EFP cheap. Our turnpike theorem suggests a cheaper version
of EFP in which we construct a longer path (i.e., we use � > 1) but we do it just once; the
results for this version of the EFP method are provided in the last three columns of Table 1. For
� = 200, the terminal condition plays a critical role in the accuracy of solutions near the tail.
Namely, if we use the terminal condition from the T -period stationary economy, and consider
T = 200, than the approximation errors near the tail reach 10�1:45 � 4%.
However, the approximation errors can be dramatically reduced by increasing the time

horizon T , as shows the last column of Table 1. Namely, if we construct a path of length
T = 400, however, use only the �rst � = 200 decision functions and discrard the remaining
path, the solution for the �rst � = 200 periods is almost as accurate as that produced under
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� = 1. This is true even if we use the terminal condition from the T -period stationary economy
that is far away from the exact terminal condition. Importantly, the construction of a longer
path is relatively inexpensive: the running time increases from about 2 minutes to 4 minutes
when we increase the time horizon from T = 200 to T = 400, respectively.

5.2.2 Fair and Taylor�s (1983) method

As Table 1 shows, EFP improves upon Fair and Taylor�s (1983) method in both accuracy and
speed. Fair and Taylor�s (1983) method has relatively low accuracy (namely, approximation
errors of 10�1:6 � 2:5%) because the certainty equivalence approach does not produce su¢ -
ciently accurate approximation to conditional expectations under the given parameterization.
A comparison of T = 200 and T = 400 shows that the accuracy cannot be increased by in-
creasing the time horizon. Fair and Taylor�s (1983) method is more accurate with a smaller
variance of shocks and /or smaller degrees of nonlinearities. For example, in the model with

 = 1, �" = 0:01, gA = 1:01 and T = 200, the di¤erence between the exact solution and Fair
and Taylor�s (1983) solutions is around 0:1% (this experiment is not reported).
The high cost of Fair and Taylor�s (1983) method is explained by two factors. First, � = 1

is the only possible choice for Fair and Taylor�s (1983) method. To solve for variables of period
t = 0, this method assumes that productivity shocks are all zeros starting from period t = 1, so
that the path for t = 1; :::; T has no meaning other than helping to approximate the variables of
period t = 0. In contrast, EFP can use any � as long as the the resulting solution is su¢ ciently
accurate, which reduces the cost.
Second, for Fair and Taylor�s (1983) method, the cost of simulating the model is very high

because the solution and simulation steps are combined together: in order to produce a new
simulation, it is necessary to entirely recompute the solution under a di¤erent sequence of
shocks. In contrast, for EFP, the simulation cost is very low: we construct a path of decision
functions just once, and we can use the constructed functions to produce as many simulations as
we need under di¤erent sequences of shocks. For example, the time that EFP needs to compute
a solution and simulate it 100 times is about 2 and 4 minutes for T = 200 and T = 400,
respectively, while the corresponding times for Fair and Taylor�s (1983) method are 20 and 60
minutes, respectively.

5.2.3 Naive method

For the naive method, we report the solution only for T = 200 since neither time horizon nor
terminal condition are relevant for this method. The performance of the naive method is poor:
the di¤erence between the exact and naive solutions can be as large as 10�0:89 � 12%. The naive
solution is so inaccurate because the naive method neglects anticipatory e¤ects. In each time
period t, this method computes a stationary solution under the assumption that technology will
remain at the levels At = A0gtA and At+1 = A0g

t+1
A forever, meanwhile the true nonstationary

economy continues to grow. Since the naive agent is "unaware" about the future permanent
productivity growth, the expectations of such an agent are systematically more pessimistic
than those of the agent who is aware of future productivity growth. It was pointed out by
Cooley, Leroy and Raymon (1984) that naive-style solution methods are logically inconsistent
and contradict to rational expectation paradigm: agents are unaware about a possibility of
parameter changes when they solve their optimization problems, however, they are confronted
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with parameter changes in simulations. Our analysis suggests that naive solutions are particu-
larly inaccurate in growing economies. We conclude that approximating expectation functions
accurately is critical for constructing accurate solutions to nonstationary growth models.

5.2.4 Sensitivity analysis

On the basis of the results in Table 1, we advocate the version of EFP that constructs a
su¢ ciently long path � > 1 by using T � � . We assess the accuracy and cost of this preferred
EFP version by using � = 200 and T = 400 under several alternative parameterizations for
f
; �"; gAg such that 
 2 f0:1; 1; 5; 10g, �" 2 f0:01; 0:03g and gA 2 f1; 1:01; 1:05g. As a terminal
condition, we use decision rules produced by the T -period stationary economy. These sensitivity
results are provided in Table 2 of Appendix E.
The accuracy and cost of EFP in these experiments are similar to those reported in Table

1 for the benchmark parameterization. The di¤erence between the exact and EFP solutions
varies from 10�7 = 0:00001% to 10�6 = 0:0001% and the running time varies from 155 to
306 seconds. The exception is the model with a low degree of risk aversion 
 = 0:1 for which
the running time increases to 842 seconds. (We �nd that with a low degree of risk aversion,
the convergence of EFP is more fragile, so that we had to use a larger degree of damping for
iteration, decreasing thus the speed of convergence). Overall, our sensitivity results show that
the EFP method can solve nonstationary growth models both accurately and reliably in a wide
range of the model�s parameters at a relatively low cost.

6 Modeling anticipated parameter shifts and drifts

In this section, we show how to use the EFP framework for modeling anticipated parameter
shifts and drifts. For comparison, we also show naive solutions in which agents fail to take
anticipatory e¤ects into consideration.

6.1 A nonstationary model with a parameter shift

Parameter shifts (also referred to as regime switches) are drastic changes in the model�s para-
meters. Parameter shifts can be either anticipated or not by the agents. Our analysis will focus
on anticipated parameter shifts.

6.1.1 Literature on parameter shifts

The case of unanticipated regime switches is well studied. The literature assumes that regimes
come at random with some probabilities, and it uses the same random process for regime
switches for simulation; see Sims and Zha (2006), Davig and Leeper (2007, 2009), Farmer,
Waggoner, and Zha (2011), Foerster, Rubio-Ramírez, Waggoner and Zha (2013) and Zhong
(2015), among others. Such a framework addresses the shortcomings of naive solution methods
and provides a logically consistent way of modeling unanticipated regime switches.
However, there are real-world situations in which regime switches are anticipated by agents,

for example, presidential elections with predictable outcomes, credible policy announcements,
anticipated legislative changes, deterministic seasonals. The idea that anticipated shocks play
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an important role in business cycle �uctuations goes back to Pigou (1927); and it is also
advocated in, e.g., Cochrane (1994), Beaudry and Portier (2006), and Schmitt-Grohé and Uribe
(2012). An empirically relevant example of an anticipated shock is an accession of new members
to the European Union that was announced many years in advance and that resulted in large
anticipatory in�ows of foreign direct investments; see Garmel, Maliar and Maliar (2008) for a
quantitative analysis of the EU accession in a three-country general equilibrium model.
The case of anticipated regime switches is more challenging to analyze, unless the environ-

ment is fully deterministic. Here, the optimal decision rules change from one period to another
driven by anticipatory e¤ects. Schmitt-Grohé and Uribe (2012) propose a perturbation-based
computational approach that allows us to deal with anticipated parameter shifts of a �xed
time horizons in the context of stationary Markov models (e.g., shocks that happen each fourth
or eight periods). In turn, EFP allows us to handle any combination of unanticipated and
anticipated shocks of any periodicity and duration in a fully nonlinear manner.

6.1.2 EFP versus naive solutions with parameter shifts

We consider a version of the model (1)�(3), (12) in which the technology level At can take two
values, A = 1 (low) and �A = 1:2 (high). A special case of this setup is a model in which A and
�A are unanticipated and randomly drawn from a given probability distribution. Such a model
has a stationary Markov solution that can be studied using the approaches described in the
literature on regime switches, e.g., Davig and Leeper (2007, 2009).
In contrast, we focus on the case when the regime switches are anticipated by the agent

from the beginning. As an example, we consider a scenario when the economy starts with A
at t = 0, switches to �A at t0 = 250 and then switches back to A at t00 = 550, for example, the
U.K. joined the EU in 1973 and existed in 2016. We show the technology pro�le in the upper
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panel of Figure 4.
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Figure 4. EFP versus naive solutions in the model with parameter shifts

We parameterize this model by T = 900, 
 = 1, � = 0:36, � = 0:99, � = 0:025, � = 0:95, �" =
0:01. In simulation, we set zt = 1 for all t to make the anticipatory e¤ects more pronounced.
For a naive agent, regime switches are unexpected. We construct two stationary naive

solutions under A and �A. The naive agent follows the �rst solution until the �rst switch at
t0 = 250, then the agent follows the second solution until the second switch at t00 = 550 and
�nally, the agent goes back to the �rst solution for the rest of the simulation. In contrast,
a rational agent is assumed to anticipate regime switches. We use EFP to solve the utility-
maximization problem at t = 0 given the technology pro�le.
Remarkably, under the EFP solution, we observe a strong anticipatory e¤ect: about 50

periods before the switch from A and �A takes place, the agent starts gradually increasing
her consumption and decreasing her capital stock in order to bring some part of the bene�ts
from future technological progress to present. When a technology switch actually occurs, it
has only a minor e¤ect on consumption. (The tendencies reverse when there is a switch from
�A to A). In contrast, consumption-smoothing anticipatory e¤ects are absent for the naive
solution. Here, unexpected technology shocks lead to large jumps in consumption in the exact
moment of technology switches. The di¤erence in the solutions is quantitatively signi�cant
under our empirically plausible parameter choice. In the Appendix F, we plot the simulated
solution by considering both deterministic switches in the level of technology and stochastic
productivity shocks that follow an AR(1) process (32); see Figure 10. Anticipatory e¤ects are
well pronounced in those experiments as well.
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6.2 A nonstationary model with a parameter drift

Parameter drifts (time trends) are gradual changes in the model�s parameters. Like parameter
shifts, parameter drifts can be either anticipated or not by the agents. Our analysis will again
focus on anticipated parameter drifts.

6.2.1 Literature on parameter drifts

There is ample evidence on parameter drifts, see, e.g., Clarida, Galí and Gertler (2000), Lu-
bick and Schorfheide (2004), Cogley and Sargent (2005), Goodfriend and King (2009). Also,
Galí (2006) argues that regime changes with gradual policy variations are empirically rele-
vant. Again, the literature focuses primarily on the case of unanticipated drifts by assuming
that the model�s parameters follow a stationary autoregressive process; see, e.g., Fernández-
Villaverde and Rubio-Ramírez (2007), Fernández-Villaverde, Guerrón-Quintana and Rubio-
Ramírez (2010).
However, there are empirically relevant parameter drifts that are anticipated, in particular,

population growth and di¤erent types of technological progress. Labor augmenting technolog-
ical progress is a well-known example of a parameter drift that leads to balanced growth and
stationary solutions; see King, Plosser and Rebello (1988). However, parameters drifts gener-
ally lead to unbalanced growth in which optimal the decision rules nontrivially change from
one period to another. Below, we use EFP to analyze a parameter drift that includes both
deterministic and stochastic trends.

6.2.2 EFP versus naive solutions with a parameter drift

We now assume that technology does not switch to a higher/lower level in one period but
increases/decreases gradually. To be speci�c, we assume that technology is at a low level A for
the �rst 200 periods; it increases linearly to a high level A for the next 100 periods; it stays
constant for the following 300 periods; it decreases linearly back to a low level A for the last
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200 periods; and �nally, it stays there for the remaining periods; see Figure 5.
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Figure 5. EFP versus naive solutions in a model with a parameter drift

To calibrate the model, we use the same parameters as in the model with the parameter shift.
In Figure 5, we plot the EFP time-series solution to the model with a parameter drift (see

the middle and lower panels). For comparison, we also provide a naive solution in which the
drift is always unanticipated. To produce the naive solution, we solve a stationary model under
each of 100 levels of technology that occurs during the parameter drift, and we switch from one
stationary naive solution to another after each technology change. Again, to simulate the naive
and EFP solutions, we set zt = 1 for all t for a better visibility of anticipatory e¤ects.
Under the EFP solution, we observe a well-pronounced pattern of consumption smoothing

at the cost of anticipatory adjustments of capital. In particular, the consumption path with an
expected parameter drift is smoother than the one in the naive solution in those places where the
parameter shift begins / ends and we observe the kink. In the Appendix F, we provide a plot of
the simulated solution with both deterministic productivity shifts and stochastic productivity
shocks; see Figure 11. Anticipatory e¤ects are well pronounced in that �gure as well.

7 Numerical analysis of nonstationary and unbalanced
growth applications

We present a collection of numerical examples that illustrate how EFP can be used for calibrat-
ing, solving, estimating and simulating nonstationary models. Our examples include in�nite-
horizon stochastic growth models with unbalanced growth, seasonal adjustments and determin-
istically changing volatility, as well as an example of calibrating and estimating parameters in
an unbalanced growth model using the data on the U.S. economy.
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7.1 Application 1: Unbalanced growth model with a CES produc-
tion function and capital-augmenting technological progress

Real business cycle literature heavily relies on the assumption of labor augmenting technological
progress leading to balanced growth. However, Acemoglu (2002) argues that technical change
is not always directed to the same �xed factors of production but to those factors of production
that give the largest improvement in the e¢ ciency of production.8 One implication of this
argument is that technical change can be directed to either capital or labor depending on the
economy�s state. Furthermore, Acemoglu (2003) explicitly incorporates capital augmenting
technological progress into a deterministic model of endogenous technical change by allowing
for innovations in both capital and labor. Evidence in support of capital augmenting technical
change is provided in, e.g., Klump, Mc Adam and Willman (2007), and León-Ledesma León-
Ledesma, Mc Adam and Wilman (2015).9

Constant elasticity of substitution production function In line with this literature, we
consider the stochastic growth model (1)�(3) with a constant elasticity of substitution (CES)
production function, and we allow for both labor and capital augmenting types of technological
progress

F (kt; `t) = [�(Ak;tkt)
v + (1� �)(A`;t`t)v]1=v ; (13)

where Ak;t = Ak;0g
t
Ak
; A`;t = A`;0g

t
A`
; v � 1; � 2 (0; 1); and gAk and gA` are the rates of

capital and labour augmenting technological progresses, respectively. We assume that labor is
supplied inelastically and normalize it to one `t = 1 for all t, and we denote the corresponding
production function by f(kt) � F (kt; 1).

A growth path for economy with unbalanced growth Our �rst goal is to de�ne a
growth path around which the sequence of EFP grids will be centered. For constructing the
growth path, we shut down uncertainty by assuming that zt = 1 for all t (similar to what we
do in a model with balanced growth) and we rewrite the model�s equations in the way that is
convenient for identifying the growth path.
First, the Euler equation of period t, evaluated on the steady state path, is

1 = �

�
u0(c�t+1)

u0(c�t )
(1� � + f 0

n
�Avk;t+1(k

�
t+1)

v�1 ��(Ak;t+1k�t+1)v + (1� �)Av`;t+1�(1�v)=vo� ;
where c�t and k

�
t are the variables on the growth path. From the last equation, we express k�t+1

as

k�t+1 = (1� �)
1=v A`;t+1
Ak;t+1

"�
(gu0;t+1)

�1 � � + ��
�� � Ak;t+1

�v=(1�v)
� �

#1=v
; (14)

8Namely, endogenous technical change is biased toward a relatively more scarce factor when the elasticity
of substitution is low (because this factor is relatively more expensive); however, it is biased toward a relatively
more abundant factor when the elasticity of substitution is high (because technologies using such a factor have
a larger market).

9There are other empirically relevant types of technological progress that are inconsistent with balanced
growth, for example, investement-speci�c technological progress considered in Krusell, Ohanian, Ríos-Rull and
Violante (2000).
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where gu0;t+1 �
u0(c�t+1)

u0(c�t )
follows from the budget constraints (2) for t and t+ 1:

gu0;t+1 =
u0
h
(1� �) k�t+1 +

�
�(Ak;t+1k

�
t+1)

v + (1� �)Av`;t+1
�1=v � k�t+2i

u0
h
(1� �) k�t +

�
�(Ak;tk�t )

v + (1� �)Av`;t
�1=v � k�t+1i : (15)

Thus, we obtain a system of T �1 equations (14) with T +1 unknowns k�0; :::; k�T+1. This system
does not have a unique solution unless we impose additional restrictions.

Identifying restrictions on initial and terminal conditions There are many possible
ways to impose identifying restrictions on the solution of system (14), (15). In this speci�c
application, we restrict the initial and terminal capital stocks, k�0 and k

�
T+1. Namely, we restrict

k�0 by assuming that the capital growth rate is the same in the �rst two periods
k�1
k�0
=

k�2
k�1
, and we

restrict k�T+1 by assuming such a growth rate is the same in the last two periods
k�T
k�T�1

=
k�T+1
k�T
.

These assumptions pin down the initial and terminal capital stocks on the growth path in terms
of k�1; :::; k

�
T ,

k�0 =
(k�1)

2

k�2
and k�T+1 =

(k�T )
2

k�T�1
: (16)

The model satis�es the assumptions of King, Plosser and Rebelo (1988) if there is only labor
augmenting technological progress, i.e., A`;t grows at a constant, exogenously given rate gA`
and Ak;t = Ak for all t. In this special case, the model has a balanced growth path on which
all variables grow at a constant rate gA` and this is in particular true for initial and terminal
periods, i.e., condition (16) is satis�ed exactly.
In the case of capital augmenting technological progress, the growth rate of endogenous

variables changes over time in an unbalanced manner even if we assume that Ak;t grows at
a constant, exogenously given growth rate gAk and A`;t = A` for all t. By imposing two
additional restrictions in (16), we determine a speci�c sequence k�0; :::; k

�
T+1 satisfying (14), (15).

In our applications, the changes in the growth path had only a minor e¤ect on the resulting
approximations. This is because a speci�c growth path does not identify the solution itself but
only a set of points in which the Smolyak grids are centered. Centering a grid in a slightly
di¤erent point will not signi�cantly a¤ect the properties of solution in a typical application.
The assumption in (16) can be modi�ed if needed.

Results of numerical experiments For numerical experiments, we assume T = 260, 
 = 1,
� = 0:36, � = 0:99, � = 0:025, � = 0:95, �" = 0:01, v = �0:42; the last value is taken in line
with Antrás (2004) who estimated the elasticity of substitution between capital and labor to
be in a range [0:641; 0:892] that corresponds to v 2 [�0:12;�0:56]. We solve two models: the
model with labor augmenting progress parameterized by A`;0 = 1:1130, gA` = 1:00153 and
Ak;0 = gAk = 1 and the model with capital augmenting progress parameterized by Ak;0 = 1,
gAk = 0:9867 and A`;0 = gA` = 1. (The parameters A`;0, gA` , Ak;0, gAk for both models are
chosen to approximately match the initial and terminal capital stocks for time-series solutions
of both models).
Figure 6 plots the time-series solutions of the models with labour and capital augmenting

technological progresses, as well as their growth paths.
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Figure 6: Technological progress in the model with a CES production function

The model with labor augmenting technological progress is well known. There is an exponential
growth path with a constant growth rate and cyclical �uctuations around the growth path.
(In the �gure, the growth path in the model with labor augmenting technological progress is
situated slightly below the linear growth path shown by a solid line). In contrast, the model
with capital augmenting technological progress is not studied yet in the literature (to the best
of our knowledge). Here, we observe a pronounced concave growth pattern indicating that the
rate of return to capital decreases as the economy grows (In the �gure, the growth path in
the model with capital augmenting technological progress is situated above the linear growth
path shown by a solid line). The cyclical properties of both models look similar (provided that
growth is detrended).

7.2 Application 2: Seasonal adjustments

Growth model with seasonal adjustment is another empirically-relevant application that can
be analyzed by using EFP. An important role of seasonal �uctuations in the total variation in
aggregate economic variables is well documented in the literature; see, e.g., Barsky and Miron
(1989). Ignoring seasonality when estimating dynamic stochastic general equilibrium models
may lead to substantial errors in the estimated parameters; see, e.g., Saijo (2013).
Two approaches have been proposed in the literature to model seasonality. Hansen and

Sargent (1993, 2013) characterize seasonality in terms of the spectral density of variables. They
assume that seasonality comes either from exogenous shock processes with spectral peaks at
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seasonal frequencies or from propagation mechanisms determined by preferences and technol-
ogy (e.g., seasonal habit persistence) or from seasonal periodicity in the parameters of the
preferences and technologies; in these cases, the optimal decision rules are periodic. Second,
Christiano and Todd (2002) develop a model in which an investment process is period-speci�c
and requires four quarters to complete; to solve such a model, they linearize the model around
its seasonally varying steady state growth path and solve for four distinct decision rules. Both
of these approaches are developed for linear economies. In contrast, EFP provides a simple and
general alternative to these methods and allows us to analyze seasonal �uctuations in a fully
non-linear context, just like any other nonstationary model with a combination of anticipated
and unanticipated shocks.
As an example, we study a growth model with exogenous shock processes that peaks at

seasonal frequencies in line with Hansen and Sargent (1993, 2013). Speci�cally, we assume that
every forth period, At takes a high value A, and the rest of the periods, it takes a low value A,
which yields the following sequence of technology levels: A;A;A;A;A;A;A;A; :::. For example,
this pattern can be observed in a country on a seacoast in which there is a high productivity
season in summer. In addition to seasonal changes, the agent faces conventional productivity
shocks, so that the resulting path for the productivity level is given by a composition of expected
seasonal changes in At and unexpected stochastic changes in the productivity levels given by a
stationary autoregressive process. The parameters are the same as in the previous model except
that we use 
 = 2, � = 0:97, A = 0:98 and A = 1:06 (these parameters are �xed for expositional
convenience). In Figure 7, we plot time series for productivity, capital and consumption (we
normalize the initial values of all series to one).
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Figure 7. Seasonal adjustments

An interesting �nding in Figure 7 is that the size of seasonal consumption and capital �uctua-
tions is very small compared to the size of seasonal productivity �uctuations. A consumption-
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smoothing agent knows that the seasonal shock is temporary and that it does not pay to react
much on the impact of such a shock. Instead, the agent adjusts her capital and consumption
to take advantage of seasonal productivity growth on average, as permanent consumption hy-
pothesis suggests. A magnitude of seasonal �uctuations in the model�s variables would be far
larger and comparable in size to seasonal productivity �uctuations in a naive solution in which
agents would fail to take into account anticipatory e¤ects (we do not provide the naive solution
to avoid a clutter).

7.3 Application 3: Diminishing volatility

Recent literature on stochastic volatility documents the importance of degree of uncertainty for
business cycle �uctuations; see, e.g., Bloom (2009), Fernández-Villaverde and Rubio-Ramírez
(2010), Fernández-Villaverde, Guerrón-Quintana and Rubio-Ramírez (2010). This literature
assumes that the standard deviation of exogenous shocks either follows a stationary Markov
process or experiences recurringMarkov regime switches with stationary transition probabilities.
In the former case, a regime is an additional state variable, while in the latter case, volatility
is an additional state variable; in both cases, the environment is stationary.
However, there is ample evidence that the volatility of output has a pronounced time trend.

For example, Mc Connel and Pérez-Quiros (2000) document a monotone decline in the volatility
of real GDP growth in the U.S. economy. In turn, Blanchard and Simon (2001) �nd another
pattern: there was a steady decline in the volatility from the 1950s to 1970, then there was
a stationary pattern and �nally, there was another decline in the late 1980s and the 1990s.
Finally, Stock and Watson (2003) document a sharp reduction in volatility in the �rst quarter
of 1984. This kind of evidence cannot be reconciled in a model in which stochastic volatility
follows a stationary Markov process with time-invariant parameters. Here, we show how to
use EFP to analyze economies in which the volatility has both a stochastic and deterministic
components.
We speci�cally consider the standard neoclassical stochastic growth model, modi�ed to

include a diminishing volatility of the productivity shock:

ln zt = � ln zt�1 + �t"t; �t =
B

t��
; "t � N (0; 1) ; (17)

where B is a scaling parameter, and �� is a parameter that governs the volatility of zt. The
standard deviation of the productivity shock B�=t�� decreases over time, reaching zero in the
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limit, limt!1
B�

t��
= 0.
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Figure 8. Diminishing volatility

In our numerical example, we use T = 500, 
 = 1, � = 0:36, � = 0:99, � = 0:025, � = 0:95,
�" = 0:01, B = 1 and �� = 1:05. In Figure 8, we plot a sequence of simulated productivity levels.
Initially, there are large productivity �uctuations but gradually, these �uctuations become
smaller. As expected, �uctuations in capital and consumption also decrease in amplitude in
response to diminishing volatility.

7.4 Application 4: Calibrating an unbalanced growth model with a
parameter drift to unbalanced U.S. data

There is a large body of econometric methods which estimate and calibrate economic models
by constructing numerical solutions explicitly, including a simulated method of moments (e.g.,
Canova (2007)); a Bayesian estimation method (e.g., Smets andWouters (2003), and Del Negro,
Schorfheide, Smets and Wouters (2007)); and a maximum likelihood method (e.g., Fernández-
Villaverde and Rubio-Ramírez (2007)). Normally, the related literature imposes restrictions on
the model that lead to a balanced growth path. However, the real world data are not always
consistent with the assumption of balanced growth, in particular, di¤erent variables might grow
at di¤erent and possibly time-varying rates; see, e.g. Krusell et al. (2000). In this section, we
illustrate how EFP can be used to calibrate and estimate parameters in an unbalanced growth
model by using the data on the U.S. economy.

7.4.1 The model with a depreciation rate drift

We analyze the aggregate time series data on the U.S. economy over the period 1964:Q1 -
2011:Q4 including investment, consumption, output and capital; see Appendix G for a descrip-
tion of the data used. While the constructed data are grossly consistent with Kaldor�s (1961)
hypothesis, we still observe visible di¤erences in growth rates across variables. We do not test
whether or not such di¤erences in growth rates are statistically signi�cant but formulate and es-
timate an unbalanced growth model in which di¤erent variables can grow at di¤ering rates. To
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this purpose, we extend the model (1)�(3) to include time-varying depreciation rate of capital,

max
fct;kt+1gt=0;:::;1

E0

1X
t=0

�tu(ct) (18)

s.t. ct + kt+1 = Atztk�t + (1� dt�t) kt; (19)

ln �t = �� ln �t�1 + "�;t; "�;t � N
�
0; �2"d

�
; (20)

ln zt = �z ln zt�1 + "z;t; "z;t � N
�
0; �2"z

�
; (21)

where dt�t stands for a time-varying depreciation rate with dt being a trend component of
depreciation, dt = d0gtd, and �t being a stochastic shock to depreciation. Our assumption of a
time trend in the depreciation rate is consistent with recent empirical �ndings. In particular,
Karabarbounis and Brent (2014) argue that the aggregate depreciation rate can change over
time because the composition of aggregate capital changes over time even if the depreciation
rates of each type of capital are constant. In turn, shocks to the depreciation rate can result
from economic obsolescence of capital, see e.g., Liu, Waggoner and Zha (2011), Gourio (2012)
and Zhong (2015); in particular, this literature argues that a shock to the capital depreciation
rate plays an important role in accounting for business cycle �uctuations.

7.4.2 Fitted time series

The details of our EFP-based calibration-estimation procedure are described in Appendix G.
Figure 9 presents the simulated time-series solution for capital, output, investment and con-
sumption in comparison with the corresponding time series from the U.S. economy data. To
appreciate the di¤erences in the growth rates, we normalized all four panels to have the same
percentage change in the y axis.
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Figure 9. Matching nonstationary macroeconomic data on the U.S. economy

First, we can visually appreciate nonstationarity in the data: investment grows considerably
faster than the other variables. Second, we can see that with the assumption of the time-varying
depreciation rate, the model (18)�(21) can reproduce the growth rates of all model�s variables.
The main goal of this application is not to advocate the empirical relevance of the time-

varying depreciation rate or some speci�c estimation and calibration techniques. Rather, we
would like to illustrate how estimation and calibration of the parameters can be carried out in
the context of a nested �xed-point problem without assuming stationarity and balanced growth.
Similar to the depreciation rate, we could have made all other parameters time dependent,
including the discount factor �, the share of capital in production � and the parameters of
the process for the productivity level (21). Furthermore, our simple estimation-calibration
technique can be replaced by more sophisticated econometric techniques such as maximum
likelihood, simulated method of moments, etc.

8 Conclusion

A class of stationary Markov dynamic models is a dominant framework in the recent economic
literature. The conventional assumption in this literature is that parameter shifts and drifts
come at random and are unanticipated by the agents. With stationary environment, the optimal
value and decision functions depend only on the economy�s state but not on time. In the paper,
we study a more �exible class of models �nonstationary Markov models �in which parameters
are subject to both anticipated and unanticipated shifts and drifts. In our case, the optimal
value and decision functions depend not just on state but also on time. We propose a simple and
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general EFP framework for analyzing time-dependent models which combines a familiar time
iteration method with turnpike theory. Our analysis of time-dependent models complements
the mainstream of the literature on state-dependent models and makes it possible to study
many challenging nonstationary applications that are not studied in the literature yet.
The goal of the present paper is to introduce and illustrate the EFP methodology. Given

this goal, we restrict our attention to a simple context of the optimal growth model. However,
the EFP framework can be used for analyzing many other nonstationary applications that go
far beyond the optimal growth model. In one ongoing project, we apply the EFP framework
to analyze a general equilibrium unbalanced growth model with a CES production function
in line with Krusell, Ohanian, Ríos-Rull and Violante (2000); in another project, we attempt
to reproduce a historical sequence of events during the Great Recession as documented in
Taylor (2012); and �nally, in the other project, we augment a stylized new Keynesian model
(see, e.g., Maliar and Maliar, 2015) to include anticipated regime switches and time-varying
unconventional monetary policies. These are just three examples but many other interesting
and empirically relevant questions can be addressed by using EFP.
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Appendix A. Asymptotic convergence of T -period station-
ary economy to nonstationary economy

In this section, we introduce notation, provide several relevant de�nitions about random processes
and elaborate the proof of Theorem 2 (turnpike theorem) formulated in Section 3.2, speci�cally,
it shows that the optimal program of the T -period stationary economy converges to the optimal
program of the nonstationary economy (1)�(3) as T ! 1. The proof relies on three lemmas
presented in Appendices A1-A3. In Appendix A1, we construct a limit program of a �nite
horizon economy with a terminal condition kT = 0. In Appendix A2, we show that the opti-
mal program of the T -period stationary economy, constructed in Section 3.1, converges to the
same limit program as does the �nite horizon economy with a zero terminal condition kT = 0.
In Appendix A3, we show that the limit program of the �nite horizon economy with a zero
terminal condition kT = 0 is also an optimal program for the in�nite horizon nonstationary
economy (1)�(3). Finally, in Appendix A4, we combine the results of Appendices A1-A3 to
establish the claim of Theorem 2. Our construction relies on mathematical tools developed in
Majumdar and Zilcha (1987), Mitra and Nyarko (1991), Joshi (1997). We use the convention
that equalities and inequalities hold almost everywhere (a.e.) except for a set of measure zero.

Appendix A0. Notation and de�nitions

Our exposition relies on standard measure theory notation; see, e.g., Stokey and Lucas with
Prescott (1989), Santos (1999) and Stachurski (2009). Time is discrete and in�nite, t = 0; 1; :::.
Let (
;F ; P ) be a probability space:

a) 
 = �1t=0
t is a space of sequences " � ("0; "1:::) such that "t 2 
t for all t, where 
t
is a compact metric space endowed with the Borel ���eld Et. Here, 
t is the set of all
possible states of the environment at t and "t 2 
t is the state of the environment at t.

b) F is the ��algebra on 
 generated by cylinder sets of the form �1�=0A� , where A� 2 E�
for all � and A� = 
� for all but �nitely many � .

c) P is the probability measure on (
;F).

We denote by fFtg a �ltration on 
, where Ft is a sub ���eld of F induced by a partial
history up of environment ht = ("0; :::; "t) 2 �t�=0
� up to period t, i.e., Ft is generated by
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cylinder sets of the form �t�=0A� , where A� 2 E� for all � � t and A� = 
� for � > t. In
particular, we have that F0 is the course ���eld f0;
g, and that F1 = F . Furthermore,
if 
 consists of either �nite or countable states, " is called a discrete state process or chain;
otherwise, it is called a continuous state process. Our analysis focuses on continuous state
processes, however, can be generalized to chains with minor modi�cations.
We provide some de�nitions that will be useful for characterizing random processes; these

de�nitions are standard and closely follow Stokey and Lucas with Prescott (1989, Ch. 8.2).

De�nition A1. (Stochastic process). A stochastic process on (
;F ; P ) is an increasing se-
quence of ��algebras F1 � F2 � ::: � F ; a measurable space (Z;Z); and a sequence of functions
zt : 
! Z for t � 0 such that each zt is Ft measurable.

Stationarity is an assumption that is commonly used in economic literature.

De�nition A2. (Stationary process). A stochastic process z on (
;F ; P ) is called stationary
if the unconditional probability measure, given by

Pt+1;:::;t+n (C) = P (f" 2 
 : [zt+1 (") ; :::; zt+n (")] 2 Cg) ; (22)

is independent of t for all C 2 Zn, t � 0 and n � 1.

A related notion is stationary (time-invariant) transition probabilities. Let us denote by
Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) the probability of the event f" 2 
 : [zt+1 (") ; :::; zt+n (")] 2 Cg,
given that the event f" 2 
 : zt = zt (") ; :::; z0 = z0 (")g occurs.

De�nition A3. (Stationary transition probabilities). A stochastic process z on (
;F ; P ) is
said to have stationary transition probabilities if the conditional probabilities

Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) (23)

are independent of t for all C 2 Zn, " 2 
, t � 0 and n � 1.

The assumption of stationary transition probabilities (23) implies the property of stationarity
(22) provided that the corresponding unconditional probability measures exist. However, a
process can be nonstationary even if transition probabilities are stationary, for example, a unit
root process or explosive process is nonstationary; see Stokey and Lucas with Prescott (1989,
Ch 8.2) for a related discussion. This kind of nonstationary processes is not studied explicitly in
the present paper, i.e., we focus on nonstationarity that arises because transition probabilities
change from one period to another.
In general, Pt+1;:::;t+n (C) and Pt+1;:::;t+n (Cj�) depend on the entire history of the events up

to t (i.e., the stochastic process zt is measurable with respect to the sub ���eld Ft). However,
history-dependent processes are di¢ cult to analyze in a general case. It is of interest to dis-
tinguish special cases in which the dependence on history has relatively simple and tractable
form. A well-known case is a class of Markov processes.

De�nition A4. (Markov process). A stochastic process z on (
;F ; P ) is (�rst-order) Markov
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if
Pt+1;:::;t+n (Cjzt = zt; :::; z0 = z0) = Pt+1;:::;t+n (Cjzt = zt) , (24)

for all C 2 Zn, t � 0 and n � 1.

The key property of a Markov process is that it is memoryless, namely, all past history (zt; :::; z0)
is irrelevant for determining the future realizations except of the most recent past zt.

Appendix A1. Limit program of �nite horizon economy with a zero
terminal capital

In this section, we consider a �nite horizon version of the economy (1)�(3) with a given terminal
condition for capital kT . Speci�cally, we assume that the agent solves

max
fct;kt+1gTt=0

E0

"
TX
t=0

�tut (ct)

#
(25)

s.t. (2), (3), (26)

where initial condition (k0; z0) and terminal condition kT are given. We �rst de�ne feasible
programs for the �nite horizon economy.

De�nition A5 (Feasible programs in the �nite horizon economy). A feasible program in the
�nite horizon economy is a pair of adapted (i.e., Ft measurable for all t) processes fct; ktgTt=0
such that given initial condition k0 and any partial history hT = ("0; :::; "T ), they reach a given
terminal condition kT at T , satisfy ct � 0, kt � 0 and (2), (3) for all t = 1; :::T .

In this section, we focus on a �nite horizon economy that reaches a zero terminal condition,
kT = 0, at T . We denote by =T;0 a set of all �nite horizon feasible programs from given initial
capital k0 and any partial history hT � ("0; :::; "T ) that attain given kT = 0 at T . We next
introduce the concept of solution for the �nite horizon model.

De�nition A6 (Optimal program in the �nite horizon model). A feasible �nite horizon programn
cT;0t ; kT;0t

oT
t=0
2 =T;0 is called optimal if

E0

"
TX
t=0

�t
n
ut(c

T;0
t )� ut (ct)

o#
� 0 (A1)

for every feasible process fct; ktgTt=0 2 =T;0.

The existence result for the �nite horizon version of the economy (25), (26) with a zero terminal
condition is established in the literature. Namely, under Assumptions A1-A3, there exists an

optimal program
n
cT;0t ; kT;0t

oT
t=0
2 =T;0 and it is both interior and unique. The existence of the

optimal program can be shown by using either a Bellman equation approach (see Mitra and
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Nyarko (1991), Theorem 3.1) or an Euler equation approach (see Majumdar and Zilcha (1987),
Theorems 1 and 2).

We next show that under terminal condition kT;0T = kT = 0, the optimal program in the �nite
horizon economy (25), (26) has a well-de�ned limit.

Lemma 1. A �nite horizon optimal program
n
cT;0t ; kT;0t

oT
t=0

2 =T;0 with a zero terminal
condition kT;0T = 0 converges to a limit program

�
climt ; k

lim
t

	1
t=0

when T !1, i.e.,

klimt � lim
T!1

kT;0t and climt � lim
T!1

cT;0t , for t = 0; 1; ::: (A2)

Proof. The existence of the limit program follows by three arguments (for any history):
i) Extending time horizon from T to T + 1 increases T -period capital of the �nite horizon

optimal program, i.e., kT+1;0T > kT;0T . To see this, note that the model with time horizon T
has zero (terminal) capital kT;0T = 0 at T . When time horizon is extended from T to T + 1,
the model has zero (terminal) capital kT+1;0T+1 = 0 at T + 1 but it has strictly positive capital
kT+1;0T > 0 at T ; this follows by the Inada conditions�Assumption A1d.
ii) The optimal program for the �nite horizon economy has the following property of

monotonicity with respect to the terminal condition: if fc0t; k0tg
T
t=0 and fc00t ; k00t g

T
t=0 are two op-

timal programs for the �nite horizon economy with terminal conditions �0 < �00, then the
respective optimal capital choices have the same ranking in each period, i.e., k0t � k00t for all
t = 1; :::T . This monotonicity result follows by either Bellman equation programming tech-
niques (see Mitra and Nyarko (1991, Theorem 3.2 and Corollary 3.3)) or Euler equation pro-
gramming techniques (see Majumdar and Zilcha (1987, Theorem 3)) or lattice programming
techniques (see Hopenhayn and Prescott (1992)); see also Joshi (1997, Theorem 1) for general-

izations of these results to nonconvex economies. Hence, the stochastic process
n
kT;0t

oT
t=0
shifts

up (weakly) in a pointwise manner when T increases to T + 1, i.e., kT+1;0t � kT;0t for t � 0.
iii) By construction, the capital program from the optimal program

n
cT;0t ; kT;0t

oT
t=0
is bounded

from above by the capital accumulation process f0; kmaxt gTt=0 de�ned in (5), i.e., k
T;0
t � kmaxt <1

for t � 0. A sequence that is bounded and monotone is known to have a well-de�ned limit.
�

Appendix A2. Limit program of the T -period stationary economy

We now show that the optimal program of the T -period stationary economy, introduced in
Section 3.1, converges to the same limit program (A2) as the optimal program of the �nite
horizon economy (25), (26) with a zero terminal condition. We denote by =T a set of all feasible
�nite horizon programs that attains a terminal condition of the T -period stationary economy.
(We assume the same initial capital (k0; z0) and the same partial history hT � ("0; :::; "T ) as
those �xed for the �nite horizon economy (25), (26)).

Lemma 2. The optimal program of the T -period stationary economy
�
cTt ; k

T
t

	T
t=0

2 =T con-
verges to a unique limit program

�
climt ; k

lim
t

	1
t=0

2 =1 de�ned in (A2) as T ! 1 i.e., for all
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t � 0
klimt � lim

T!1
kTt and climt � lim

T!1
cTt : (A3)

Proof. The proof of the lemma follows by six arguments (for any history).
i). Observe that, by Assumptions A1 and A2, the optimal program of the T -period station-

ary economy has a positive capital stock kTT > 0 at T (since the terminal capital is generated
by the capital decision function of a stationary version of the model), while for the optimal

program
n
cT;0t ; kT;0t

oT
t=0
2 =T;0 of the �nite horizon economy, it is zero by de�nition, kT;0T = 0.

ii). The property of monotonicity with respect to terminal condition implies that if kTT >
kT;0T , then kTt � k

T;0
t for all t = 1; :::; T ; see our discussion in ii). of the proof to Lemma 1.

iii). Let us �x some � 2 f1; :::; Tg. We show that up to period � , the optimal program�
cTt ; k

T
t

	�
t=0

does not give higher expected utility than
n
cT;0t ; kT;0t

o�
t=0
, i.e.,

E0

"
�X
t=0

�t
n
ut
�
cTt
�
� ut(cT;0t )

o#
� 0: (A4)

Toward contradiction, assume that it does, i.e.,

E0

"
�X
t=0

�t
n
ut
�
cTt
�
� ut(cT;0t )

o#
> 0. (A5)

Then, consider a new process fc0t; k0tg
�
t=0 that follows

�
cTt ; k

T
t

	T
t=0

2 =T up to period � � 1
and that drops down at � to match kT;0� of the �nite horizon program

�
cTt ; k

T
t

	T
t=0
2 =T;0, i.e.,

fc0t; k0tg
�
t=0 �

�
cTt ; k

T
t

	��1
t=0

[
�
cT� + k

T
� � kT;0� ; kT;0�

	
. By monotonicity ii). we have kT� � kT;0� � 0,

so that

E0

"
�X
t=0

�t
�
ut (c

0
t)� ut

�
cTt
�	#

=

= E0
�
��
�
ut
�
cT� + k

T
� � kT;0�

�
� ut

�
cT�
�	�

� 0; (A6)

where the last inequality follows by Assumption A1b of strictly increasing ut.

iv). By construction fc0t; k0tg
�
t=0 and

n
cT;0t ; kT;0t

o�
t=0

reach the same capital kT;0� at � . Let us

extend the program fc0t; k0tg
�
t=0 to T by assuming that it follows the process

n
cT;0t ; kT;0t

oT
t=0
from

the period � + 1 up to T , i.e., fc0t; k0tg
T
t=�+1 �

n
cT;0t ; kT;0t

oT
t=�+1

. Then, we have

E0

"
TX
t=0

�t
n
ut (c

0
t)� ut(c

T;0
t )
o#

= E0

"
�X
t=0

�t
n
ut (c

0
t)� ut(c

T;0
t )
o#

� E0

"
�X
t=0

�t
n
ut
�
cTt
�
� ut

�
cT;0t

�o#
> 0; (A7)
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where the last two inequalities follow by result (A6) and assumption (A5), respectively. Thus,
we obtain a contradiction: The constructed program fc0t; k0tg

T
t=0 2 =T;0 is feasible in the �nite

horizon economy with a zero terminal condition, k0T = 0, and it gives strictly higher expected

utility than the optimal program
n
cT;0t ; kT;0t

oT
t=0
2 =T;0 in that economy.

v). Holding � �xed, we compute the limit of (A4) by letting T go to in�nity:

lim
T!1

E0

"
�X
t=0

�t
n
ut
�
cTt
�
� ut(cT;0t )

o#
=

lim
T!1

E0

"
�X
t=0

�tut
�
cTt
�#
� E0

"
�X
t=0

�tut
�
climt
�#
� 0: (A8)

vi). The last inequality implies that for any � � 1, the limit program
�
climt ; k

lim
t

	1
t=0
2 =1 of

the �nite horizon economy
n
cT;0t ; kT;0t

oT
t=0
2 =T;0 with a zero terminal condition kT;0T = 0 gives

at least as high expected utility as the optimal limit program
�
cTt ; k

T
t

	T
t=0
2 =T of the T -period

stationary economy. Since Assumptions A1 and A2 imply that the optimal program is unique,
we conclude that

�
climt ; k

lim
t

	1
t=0
2 =1 de�ned in (A2) is a unique limit of the optimal program�

cTt ; k
T
t

	T
t=0
2 =T of the T -period stationary economy. �

Appendix A3. Convergence of �nite horizon economy to in�nite hori-
zon economy

We now show a connection between the optimal programs of the �nite horizon and in�nite
horizon economies. Namely, we show that the �nite horizon economy (25), (26) with a zero
terminal condition kT;0T = 0 converges to the nonstationary in�nite horizon economy (1)�(3) as
T !1 provided that we �x the same initial condition k0 and partial history hT = ("0; :::; "T )
for both economies.

Lemma 3. The limit program
�
climt ; k

lim
t

	1
t=0

is a unique optimal program fc1t ; k1t g
1
t=0 2 =1

in the in�nite horizon nonstationary economy (1)�(3).
Proof. We prove this lemma by contradiction. We use the arguments that are similar to

those used in the proof of Lemma 2.
i). Toward contradiction, assume that

�
climt ; k

lim
t

	1
t=0
is not an optimal program of the in�nite

horizon economy fc1t ; k1t g
1
t=0 2 =1. By de�nition of limit, there exists a real number � > 0

and a subsequence of natural numbers fT1; T2; :::g � f0; 1; :::g such that fc1t ; k1t g
1
t=0 2 =1

gives strictly higher expected utility than the limit program of the �nite horizon economy�
climt ; k

lim
t

	1
t=0
, i.e.,

E0

"
TnX
t=0

�t
�
ut (c

1
t )� ut(climt )

	#
> � for all Tn 2 fT1; T2; :::g . (A9)

ii). Let us �x some Tn 2 fT1; T2; :::g and consider any �nite T � Tn. Assumptions A1
and A2 imply that k1T > 0 while kT;0T = 0 by de�nition of the �nite horizon economy with a
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zero terminal condition. The monotonicity of the optimal program with respect to a terminal
condition implies that if k1T > k

T;0
T , then k1t � k

T;0
t for all t = 1; :::; T ; see our discussion in ii).

of the proof of Lemma 1.
iii). Following the arguments in iii). of the proof of Lemma 2, we can show that up to period

Tn, the optimal program fc1t ; k1t g
Tn
t=0 does not give higher expected utility than

n
cT;0t ; kT;0t

oTn
t=0
,

i.e.,

E0

"
TnX
t=0

�t
n
ut (c

1
t )� ut(c

T;0
t )
o#

� 0 for all Tn. (A10)

iv). Holding Tn �xed, we compute the limit of (A10) by letting T go to in�nity:

lim
T!1

E0

"
TnX
t=0

�t
n
ut (c

1
t )� ut(c

T;0
t )
o#

= E0

"
TnX
t=0

�tut (c
1
t )� �tut

�
climt
�#
� 0 for all Tn. (A11)

However, result (A11) contradicts to our assumption in (A9).
v). We conclude that for any subsequence fT1; T2; :::g � f0; 1; :::g, we have

E0

"
TnX
t=0

�t
�
ut (c

1
t )� ut(climt )

	#
� 0 for all Tn. (A12)

However, under Assumptions A1 and A2, the optimal program fc1t ; k1t g
1
t=0 2 =1 is unique,

and hence, it must be that fc1t ; k1t g
1
t=0 coincides with

�
climt ; k

lim
t

	1
t=0

for all t � 0. �

Appendix A4. Proof to the turnpike theorem

We now combine the results of Lemmas 1-3 together into a turnpike-style theorem to show the
convergence of the optimal program of the T -period stationary economy to that of the in�nite
horizon nonstationary economy. To be speci�c, Lemma 1 shows that the optimal program

of the �nite horizon economy with a zero terminal condition
n
cT;0t ; kT;0t

oT
t=0

2 =T;0 converges
to the limit program

�
climt ; k

lim
t

	1
t=0
. Lemma 2 shows that the optimal program of the T -

period stationary economy
�
cTt ; k

T
t

	T
t=0
also converges to the same limit program

�
climt ; k

lim
t

	1
t=0
.

Finally, Lemma 3 shows that the limit program of the �nite horizon economies
�
climt ; k

lim
t

	1
t=0

is optimal in the nonstationary in�nite horizon economy. Then, it must be the case that the
limit optimal program of the T -period stationary economy

�
cTt ; k

T
t

	T
t=0
is optimal in the in�nite

horizon nonstationary economy. This argument is formalized below.

Proof to Theorem 2 (turnpike theorem). The proof follows by de�nition of limit and Lemmas
1-3. Let us �x a real number " > 0 and a natural number � such that 1 � � <1 and consider
a possible partial history hT = ("0; :::; "T ).
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i). Lemma 1 shows that
n
cT;0t ; kT;0t

oT
t=0
2 =T;0 converges to a limit program

�
climt ; k

lim
t

	1
t=0
as

T !1. Then, de�nition of limit implies that there exists T1 (hT ) > 0 such that
���kT;0t � klimt

��� <
"
3
for t = 0; :::; � .
ii). Lemma 2 implies that the �nite horizon problem of the T -period stationary economy�

cTt ; k
T
t

	T
t=0

also converges to limit program
�
climt ; k

lim
t

	1
t=0

as T ! 1. Then, there exists
T2 (hT ) > 0 such that

��klimt � kTt
�� < "

3
for t = 0; :::; � .

iii). Lemma 3 implies the program
n
cT;0t ; kT;0t

oT
t=0

2 =T;0 converges to the in�nite horizon

optimal program fc1t ; k1t g
1
t=0 as T !1. Then, there exists T3 (hT ) > 0 such that

���kT;0t � k1t
��� <

"
3
for t = 0; :::; � .
iv). Then, the triangular inequality implies

��kTt � k1t �� = ���kTt � klimt + klimt � kT;0t + kT;0t � k1t
���

�
��kTt � klimt ��+ ���klimt � kT;0t

���+ ���kT;0t � k1t
��� < "

3
+
"

3
+
"

3
= ",

for T (hT ) � max fT1 (hT ) ; T2 (hT ) ; T3 (hT )g.
v). Finally, consider all possible partial histories fhTg and de�ne T ("; �) � max

fhT g
T (hT ). By

construction, for any T > T ("; �), the inequality (11) holds. �

Remark A1. Our proof of the turnpike theorem addresses a technical issue that does not arise
in the literature that focuses on �nite horizon economies with a zero terminal condition; see, e.g.,
Majumdar and Zilcha (1987), Mitra and Nyarko (1991) and Joshi (1997). Their construction
relies on the fact that the optimal program of the �nite horizon economy is always pointwise
below the optimal program of the in�nite horizon economy, i.e., kTt � k1t , for t = 1; :::; � , and
it gives strictly higher expected utility up to T than does the in�nite horizon optimal program
(because excess capital can be consumed at terminal period T ). This argument does not directly
applies to our T -period stationary economy: our �nite horizon program can be either below or
above the in�nite horizon program depending on a speci�c T -period terminal condition; see the
experiments with terminal conditions �0 and �00 in Figure 1, respectively. Our proof addresses
this issue by constructing in Lemma 2 a separate limit program for the T -period stationary
economy.

Remark A2. We also proved a similar turnpike theorem for a more general version of the
economy (1)�(3). First, we relax the assumption of Markov structure of the stochastic process
(3) (i.e., we consider a general stochastic environment that satis�es only a weak assumptions
of measurability); and second, we relax the assumption that the terminal condition comes from
the T -period stationary economy (i.e., we consider an arbitrary terminal condition kT ). To save
on space, we do not include this more general turnpike theorem in the paper but limit ourselves
to the nonstationary Markov setup that is actually studied in our numerical experiments.
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Appendix B. Implementation of EFP

In this section, we describe the implementation of the EFP method used to produce the nu-
merical results in the main text.

Algorithm 1 (implementation). Extended function path.

The goal of EFP.
EFP is aimed at approximating a solution of a nonstationary model during the �rst � periods,

i.e., it �nds approximating functions
� bK0; :::; bK�� such that bKt � Kt for t = 1; :::� , where

Kt and bKt are a t-period true capital function and its parametric approximation, respectively.
Step 0. Initialization.
a. Choose time horizon T � � for constructing T -period stationary economy.
b. Construct a deterministic path fz�t g

T
t=0 for exogenous state variable fztg

T
t=0 satisfying

z�t+1 = 't (z
�
t ; Et ["t+1]) for t = 0; ::; T .

c. Construct a deterministic path fk�t g
T
t=0 for endogenous state variable fktg

T
t=0 satisfying

u0t(c
�
t ) = �u

0
t(c

�
t+1)(1� � + f 0t+1

�
k�t+1; z

�
t+1

�
).

c�t + k
�
t+1 = (1� �) k�t + ft (k�t ; z�t ) for t = 0; ::; T .

d. For t = 0; :::; T :
Construct a grid f(km;t; zm;t)gMm=1 centered at (k�t ; z�t ).
Choose integration nodes, "j;t, and weights, !j;t for j = 1; :::; J .
Construct future shocks z0m;j;t = 't (zm;t; "j;t).

e. Write a t-period discretized system of the optimality conditions:

i). u0t(cm;t) = �
JP
j=1

!j;t

h
u0t(c

0
m;j;t)

n
1� � + ft+1

�
k0m;t; z

0
m;j;t

�oi
ii). cm;t + k

0
m;t = (1� �) km;t + ft (km;t; zm;t)

iii). c0m;j;t + k
00
m;j;t = (1� �) k0m;t + ft+1

�
k0m;t; z

0
m;j;t

�
iv). k0m;t = bKt (km;t; zm;t) and k00m;j;t = bKt+1 �k0m;t; z0m;j;t� :

d. Assume that the model becomes stationary at T .

Step 1. Solving the T -period stationary model.
Find bKT = bKT+1 that approximately solves the system i).-iv). on the grid for the T -period
stationary economy fT+1 = fT , uT+1 = uT , 'T+1 = 'T .

Step 2. Solving for a function path for t = 0; 1; :::; T � 1.
a. Construct the function path

� bK0; :::; bKT�1; bKT� that approximately solves the system i).-iv)

for each t = 0; :::; T and that matches the given terminal function bKT constructed in Step 1.
The EFP solution:

Use
� bK0; :::; bK�� as an approximation to (K0; :::;K� ) and discard the remaining T � � functions.

The EFP method is more expensive than conventional solution methods for stationary
models because decision functions must be constructed not just once but for T periods. We
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implement EFP in the way that keeps its cost relatively low: First, to approximate decision
functions, we use a version of the Smolyak (sparse) grid technique. Speci�cally, we use a
version of the Smolyak method that combines a Smolyak grid with ordinary polynomials for
approximating functions o¤ the grid. This method is described in Maliar, Maliar and Judd
(2011) who �nd it to be su¢ ciently accurate in the context of a similar growth model, namely,
unit-free residuals in the model�s equations do not exceed 0.01% on a stochastic simulation
of 10,000 observations). For this version of the Smolyak method, the polynomial coe¢ cients
are overdetermined, for example, in a 2-dimensional case, we have 13 points in a second-level
Smolyak grid, and we have only six coe¢ cients in second-degree ordinary polynomial. Hence,
we identify the coe¢ cients using a least-squares regression; we use an SVD decomposition,
to enhance numerical stability; see Judd, Maliar and Maliar (2011) for a discussion of this
and other numerically stable approximation methods. We do not construct the Smolyak grid
within a hypercube normalized to [�1; 1]2, like do Smolyak methods that rely on Chebyshev
polynomials used in, e.g., Krueger and Kubler (2004) and Judd, Maliar, Maliar and Valero
(2014). Instead, we construct a sequence of Smolyak grids around actual steady state and thus,
the hypercube, in which the Smolyak grid is constructed, grows over time as shown in Figure
1.
Second, to approximate expectation functions, we use Gauss-Hermite quadrature rule with

10 integration nodes. However, a comparison analysis in Judd, Maliar and Maliar (2011) shows
that for models with smooth decision functions like ours, the number of integration nodes
plays only a minor role in the properties of the solution, for example, the results will be the
same up to six digits of precision if instead of ten integration nodes we use just two nodes
or a simple linear monomial rule (a two-node Gauss-Hermite quadrature rule is equivalent to
a linear monomial integration rule for the two-dimensional case). However, simulation-based
Monte-Carlo-style integration methods produce very inaccurate approximations for integrals
and are not considered in this paper; see Judd, Maliar and Maliar (2011) for discussion.
Third, to solve for the coe¢ cients of decision functions, we use a simple derivative-free �xed-

point iteration method in line with Gauss-Jacobi iteration. Let us re-write the Euler equation
i). constructed in the initialization step of the algorithm by pre-multiplying both sides by
t-period capital

bk0m;t = � JX
j=1

"j;t

�
u0t(c

0
m;j;t)

u0t(cm;t)

�
1� � + ft+1

�
k0m;tk

�
t+1; z

0
m;j;tz

�
t+1

�	�
k0m;t: (27)

We use di¤erent notation, k0m;t and bk0m;t, for t-period capital in the left and right side of (27),
respectively, in order to describe our �xed-point iteration method. Namely, we substitute k0m;t
in the right side of (27) and in the constraints ii). and iii). in the initialization step to compute
cm;t and c0m;j;t, respectively, and we obtain a new set of values of the capital function on the

grid bk0m;t in the left side. We iterate on these steps until convergence.
Our approximation functions bKt are ordinary polynomial functions characterized by a time-

dependent vector of parameters bt, i.e., bKt = bK (�; bt). So, operationally, the iteration is
performed not on the grid values k0m;t and bk0m;t but on the coe¢ cients of the approximation
functions. The iteration procedure di¤ers in Steps 1 and 2.
In Step 1, we construct a solution to T -period stationary economy. For iteration i, we �x

some initial vector of coe¢ cients b, compute k0m;T+1 = bK (km;T ; zm;T ; b), �nd cm;T and c0m;j;T
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to satisfy constraints ii) and iii), respectively and �nd bk0m;T+1 from the Euler equation i). We

run a regression of bk0m;T+1 on bK (km;T ; zm;T ; �) in order to re-estimate the coe¢ cients bb and we
compute the coe¢ cients for iteration i+1 as a weighted average, i.e., b(i+1) = (1� �) b(i)+ �bb(i),
where � 2 (0; 1) is a damping parameter (typically, � = 0:05). We use partial updating instead
of full updating � = 1 because �xed-point iteration can be numerically unstable and using
partial updating enhances numerical stability; see Maliar, Maliar and Judd (2011). This kind
of �xed-point iterations are used by numerical methods that solve for equilibrium in conventional
stationary Markov economies; see e.g., Judd, Maliar and Maliar (2011), Judd, Maliar, Maliar
and Valero (2014).
In Step 2, we iterate on the path for the polynomial coe¢ cients using Gauss-Jacobi style

iterations in line with Fair and Taylor (1983). Speci�cally, on iteration j, we take a path for

the coe¢ cients vectors
n
b
(j)
1 ; :::; b

(j)
T

o
, compute the corresponding path for capital quantities

using k0m;t = bKt

�
km;t; zm;t; b

(j)
t

�
, and �nd a path for consumption quantities cm;t and c0m;j;t from

constraints ii) and iii), respectively, for t = 0; :::; T . Substitute these quantities in the right side
of a sequence of Euler equations for t = 0; :::; T to obtain a new path for capital quantities in
the left side of the Euler equation bk0m;t for t = 0; :::; T � 1. Run T � 1 regressions of bk0m;t on
polynomial functional forms bKt (km;t; zm;t; bt) for t = 0; :::; T � 1 to construct a new path for
the coe¢ cients

nbb(j)0 ; :::;bb(j)T�1o. Compute the path of the coe¢ cients for iteration j + 1 as a
weighted average, i.e., b(j+1)t = (1� �) b(j)t + �bb(j)t , t = 0; :::; T � 1, where � 2 (0; 1) is a damping
parameter which we again typically set at � = 0:05. (Observe that this iteration procedure
changes all the coe¢ cients on the path except of the last one b(j)T � b, which is a given terminal
conditions that we computed in Step 1 from T -period stationary economy).
In fact, the problem of constructing a path for function coe¢ cients is similar to the problem

of constructing a path for variables: in both cases, we need to solve a large system of nonlinear
equations. The di¤erence is that under EFP, the arguments of this system are not variables
but parameters of the approximating functions. Instead of Gauss-Jacobi style iteration on
path, we can use Gauss-Siedel �xed-point iteration (shooting), Newton-style solvers or any
other technique that can solve a system of nonlinear equations; see Lipton, Poterba, Sachs and
Summers (1980), Atolia and Bu¢ e (2009a,b), Heer and Maußner (2010), and Grüne, Semmler
and Stieler (2013) for examples of such techniques.

Appendix C. Path-solving methods for nonstationary mod-
els

We �rst describe the shooting method of Lipton, Poterba, Sachs and Summers (1980) for a
nonstationary deterministic economy, and we then elaborate the extended path (EP) of Fair
and Taylor (1983) for a nonstationary economy with uncertainty.
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Shooting methods To illustrate the class of shooting methods, let us substitute ct and ct+1
from (2) into the Euler equation of (1)�(3) to obtain a second-order di¤erence equation,

u0t((1� �) kt + ft (kt; zt)� kt+1)
= �Et

�
u0t+1((1� �) kt+1 + ft+1 (kt+1; zt+1)� kt+2)(1� � + f 0t+1 (kt+1; zt+1))

�
. (28)

Initial condition (k0; z0) is given. Let us abstract from uncertainty by assuming that zt = 1
for all t, choose a su¢ ciently large T and �x some terminal condition kT+1 (typically, the
literature assumes that the economy arrives in the steady state kT+1 = k�).10 To approximate
the optimal path, we must solve numerically a system of T nonlinear equations (28) with respect
to T unknowns fk1; :::; kTg. It is possible to solve the system (28) by using a Newton-style or
any other numerical solver. However, a more e¢ cient alternative could be numerical methods
that exploit the recursive structure of the system (28) such as shooting methods (Gauss-Siedel
iteration). There are two types of shooting methods: a forward shooting and a backward
shooting. A typical forward shooting method expresses kt+2 in terms of kt and kt+1 using (28)
and constructs a forward path (k1; :::; kT+1); it iterates on k1 until the path reaches a given
terminal condition kT+1 = k�. In turn, a typical reverse shooting method expresses kt in terms
of kt+1 and kt+2 and constructs a backward path fkT ; :::; k0g; it iterates on kT until the path
reaches a given initial condition k0. A shortcoming of shooting methods is that they tend to
produce explosive paths, in particular, forward shooting methods; see Atolia and Bu¢ e (2009
a, b) for a careful discussion and possible treatments of this problem.

Fair and Taylor (1984) method The EPmethod of Fair and Taylor (1983) allows us to solve
nonstationary economic models with uncertainty by approximating expectation functions under
the assumption of certainty equivalence. To see how this method works, consider the system
(28) with uncertainty and as an example, assume that zt+1 follows a possibly nonstationary
Markov process ln (zt+1) = �t ln (zt) + �t"t+1, where the sequences (�0; �1; :::) and (�0; �1; :::)
are deterministically given at t = 0 and "t+1 � N (0; 1). Again, let us choose a su¢ ciently
large T and �x some terminal condition such as kT+1 = k�, so that the turnpike argument
applies. Fair and Taylor (1983) propose to construct a solution path to (28) by setting all
future innovations to their expected values, "1 = "2 = ::: = 0. This produces a path on which
technology evolves as ln (zt+1) = �t ln (zt) gradually converging to z

� = 1 and the models�s
variables gradually converge to the steady state. Note that only the �rst entry k1 of the
constructed path (k1; :::; kT ) is meaningful; the remaining entries (k2; :::; kT ) are obtained under
a supplementary assumption of zero future innovations and they are only needed to accurately
construct k1. Thus, k1 is stored and the rest of the sequence is discarded. By applying the
same procedure to next state (k1; z1), we produce k2, and so on until the path of desired length
� is constructed.
However, certainty equivalence approximation of Fair and Taylor (1983) has its limitations.

It is exact for linear and linearized models, and it can be su¢ ciently accurate for models that
are close to linear; see Cagnon and Taylor (1990), and Love (2010). However, it becomes highly
inaccurate when either volatility and/or the degrees of nonlinearity increase; see our accuracy
evaluations in Section 5.

10The turnpike theorem implies that in initial � periods, the optimal path is insensitive to a speci�c terminal
condition used if � � T .
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Another novelty of the EP method relative to shooting methods is that it iterates on the
economy�s path at once using Gauss-Jacobi iteration. This type of iteration is more stable than
Gauss-Siedel and allows us to avoid explosive behavior. To be speci�c, it guesses the economy�s
path (k1; :::; kT+1), substitute the quantities for t = 1; :::T + 1 it in the right side of T Euler
equations (28), respectively, and obtains a new path (k0; :::; kT ) in the left side of (28); and it
iterates on the path until the convergence is achieved. Finally, Fair and Taylor (1983) propose
a simple procedure for determining T that insures that a speci�c terminal condition used does
not a¤ect the quality of approximation, namely, they suggested to increase T (i.e., extend the
path) until the solution in the initial period(s) becomes insensitive to further increases in T .
We now elaborate the description of the version of Fair and Taylor�s (1983) method used to

produce the results in the main text. We use a slightly di¤erent representation of the optimality
conditions of the model (1)�(3) (we assume � = 1 and u (c) = ln (c) for expository convenience).
The Euler equation and budget constraint, respectively, are:

1

ct
= �Et

�
1

ct+1
(1� � + zt+1f 0(kt+1))

�
;

ct + kt+1 = (1� �) kt + ztf (kt) :

We combine the above two conditions to get

kt+1 = ztf (kt)�
�
Et

�
�zt+1f

0(kt+1))

zt+1f (kt+1)� kt+2

���1
�

ztf (kt)�
zet+1f (kt+1)� kt+2
�zet+1f

0(kt+1))
; (29)

where the path for zet+1is constructed under the certainty equivalence assumption that "t+1 = 0
for all t � 0. Under the conventional AR(1) process for productivity levels (4), this means that
ln zet+1 = � ln z

e
t for all t � 0, or equivalently zet+1 = (zet )

�, where ze0 = z0. To solve for the path
of variables, we use derivative-free iteration in line with Gauss-Jacobi method as in Fair and
Taylor (1983):
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Algorithm 2. Extended path (EP) framework by Fair and Taylor (1983).

The goal of EP framework of Fair and Taylor (1983).
EFP is aimed at approximating a path for variables satisfying the model�s equations during

the �rst � periods, i.e., it �nds bk0; :::;bk� such that 


kt � bkt


 < " for
t = 1; :::� , where " > 0 is target accuracy, k�k is an absolute value, and kt and bkt are the t-period
true capital stocks and their approximation, respectively.

Step 0. Initialization.
a. Fix t = 0 period state (k0; z0).
b. Choose time horizon T � � and terminal condition bkT+1.
c. Construct and �x

�
zet+1

	
t=0;:::;T

such that zet+1 = (z
e
t )
� for all t, where ze0 = z0.

d. Guess an equilibrium path
nbk(1)t o

t=1;:::;T 0
for iteration j = 1.

e. Write a t-period system of the optimality conditions in the form:bkt+1 = zet f �bkt�� zet+1f(bkt+1)�bkt+2
�zet+1f

0(bkt+1)) ;
where bk0 = k0.

Step 1. Solving for a path using Gauss-Jacobi method.

a. Substitute a path
nbk(j)t o

t=1;:::;T 0
into the right side of (29) to �nd

bk(j+1)t+1 = zet f
�bk(j)t �� zet+1f

�bk(j)t+1��bk(j)t+2
�zet+1f

0(bk(j)t+1)) , t = 1; :::; T

b. End iteration if the convergence is achieved
���bk(j+1)t+1 � bk(j)t+1��� < tolerance level.

Otherwise, increase j by 1 and repeat Step 1.

The EP solution:
Use the �rst entry bk1 of the constructed path bk1; :::;bkT as an approximation
to the true solution k1 n period t = 0 and discard the remaining k2; :::; kT values.

In terms of our notations, Fair and Taylor (1983) use � = 1, i.e., they keep only the �rst

element bk1 from the constructed path �bk1; :::;bkT� and disregard the rest of the path; then, they
draw a next period shock z1 and solve for a new path

�bk1; :::;bkT+1� starting from bk1 and ending
in a given bkT+1 and store bk2, again disregarding the rest of the path; and they advance forward
until the path of the given length � is constructed. T is chosen so that further its extensions
do not a¤ect the solution in the initial period of the path. For instance, to �nd a solution bk1,
Fair and Taylor (1983) solve the model several times under T + 1; T + 2; T + 3; ::: and check
that bk1 remains the same (up to a given degree of precision).
As is typical for �xed-point-iteration style methods, Gauss-Jacobi iteration may fail to

converge. To deal with this issue, Fair and Taylor (1983) use damping, namely, they update
the path over iteration only by a small amount k(j+1)t+1 = �k

(j+1)
t+1 + (1� �) k(j)t+1 where � 2 (0; 1)

is a small number close to zero (e.g., 0.01).
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Steps 1a and 1b of Fair and Taylor�s (1983) method are called Type I and Type II iterations
and are analogous to Step 2 of the EFP method when the sequence of the decision functions is
constructed. The extension of path is called Type III iteration and gives the name to Fair and
Taylor (1983) method.
In our examples, we implement Fair and Taylor�s (1983) method using a conventional New-

ton style numerical solver instead of Gauss-Jacobi iteration; a similar implementation is used
in Heer and Maußner (2010). The cost of Fair and Taylor�s (1983) method can depend consid-
erably on a speci�c solver used and can be very high (as we need to solve a system of equations
with hundreds of unknowns numerically). In our simple examples, a Newton-style solver was
su¢ ciently fast and reliable. In more complicated models, we are typically unable to derive
closed-form laws of motion for the state variables, and derivative-free �xed-point iteration ad-
vocated in Fair and Taylor (1983) can be a better alternative.

Appendix D. Solving the test model using the associated
stationary model

We �rst convert the nonstationary model (1)�(3), (12) with labor augmenting technological
progress into a stationary model using the standard change of variables bct = ct=At and bkt =
kt=At. This leads us to the following model

max
fbkt+1;bctg

t=0;:::;1

E0

1X
t=0

(��)t
bc1�
t

1� 
 (30)

s.t. bct + gAbkt+1 = (1� �)bkt + ztbk�t ; (31)

ln zt+1 = �t ln zt + �t"t+1; "t+1 � N (0; 1) ; (32)

where �� � �g1�
A . We solve this stationary model by using the same version of the Smolyak
method that is used within EFP to �nd a solution to T -period stationary economy.
After a solution to the stationary model (30)�(32) is constructed, a solution for nonstation-

ary variables can be recovered by using an inverse transformation ct = bctAt and kt = bktAt.
For the sake of our comparison, we also need to recover the path of nonstationary deci-

sion functions in terms of their parameters. Let us show how this can be done under poly-
nomial approximation of decision functions. Let us assume that a capital policy function
of the stationary model is approximated by complete polynomial of degree L, namely, k̂t+1 =PL

l=0

Pl
m=0 bm+ (l�1)(l+2)

2
+1
k̂mt z

l�m
t , where bi is a polynomial coe¢ cient, i = 0; :::; L+

(L�1)(L+2)
2

+1.

Given that the stationary and nonstationary solutions are related by k̂t+1 = kt+1=
�
A0g

t+1
A

�
, we

have

kt+1 = A0g
t+1
A k̂t+1 = A0g

t+1
A

LX
l=0

lX
m=0

b
m+

(l�1)(l+2)
2

+1
k̂mt z

l�m
t =

A0

LX
l=0

lX
m=0

gA
1�(m�1)tb

m+
(l�1)(l+2)

2
+1
kmt z

l�m
t : (33)
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For example, for �rst-degree polynomial L = 1, we construct the coe¢ cients vector of the
nonstationary model by premultiplying the coe¢ cient vector b � (b0; b1; b2) of the stationary
model by a vector

�
A0g

t+1
A ; A0gA; A0g

t+1
A

�>
, which yields bt+1 �

�
b0A0g

t+1
A ; b1A0gA; b2A0g

t+1
A

�
,

t = 0; :::; T , where T is time horizon (length of simulation in the solution procedure). Note that
a similar relation will hold even if the growth rate gA is time variable.

Appendix E. Sensitivity results for the model with labor
augmenting technological progress

In this appendix, we provide Table 2 which contains the results on accuracy and cost of the
version of the EFP method studied in Section 5. We use � = 200 and T = 400 and consider
several alternative parameterizations for f
; �"; gAg.

Table 2: Sensitivity analysis for the EFP method.

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Models 6 Model 7

 5 5 5 5 0.1 1 10
�� 0.03 0.03 0.03 0.01 0.01 0.01 0.01
gA 1.01 1.00 1.05 1.01 1.01 1.01 1.01

Mean errors across t periods in log10 units
t 2 [0; 50] -7.01 -6.67 -7.34 -7.03 -7.03 -6.61 -7.30
t 2 [0; 100] -6.82 -6.44 -7.25 -6.84 6.92 -6.48 -7.08
t 2 [0; 150] -6.73 -6.33 -7.22 -6.76 -6.89 -6.43 -6.98
t 2 [0; 175] -6.70 -6.29 -7.22 -6.74 -6.87 -6.41 -6.95
t 2 [0; 200] -6.68 -6.26 -7.21 -6.72 -6.87 -6.37 -6.93

Maximum errors across t periods in log10 units
t 2 [0; 50] -6.42 -6.31 -7.13 -6.66 -6.08 -6.24 -6.81
t 2 [0; 100] -5.99 -6.12 -7.05 -6.54 -5.97 -6.18 -6.36
t 2 [0; 150] -5.98 -6.04 -7.05 -6.52 -5.97 -6.18 -6.35
t 2 [0; 175] -5.98 -6.01 -7.05 -6.52 -5.97 -6.13 -6.33
t 2 [0; 200] -5.92 -5.99 -7.05 -6.51 -5.96 -5.88 -6.24

Running time, in seconds
Solution 225.9 150.0 193.0 216.98 836.5 300.7 245.9
Simulation 5.6 5.7 5.8 5.66 5.6 5.6 5.7
Total 231.6 155.7 198.8 222.64 842.1 306.3 251.6

Notes: "Mean errors" and "Maximum errors" are, respectively, mean and maximum unit-free absolute di¤erence

between the exact solution for capital and the solution delivered by EFP under the parameterization in the

column. The di¤erence between the solutions is computed across 100 simulations. The time horizon is T=400,

and the terminal condition is constructed by using the T-period stationary economy in all experiments.



Appendix F. Additional �gures

In Figure 10, we plot the simulated solution to the model with both deterministic technology
switches and stochastic productivity shocks following an AR(1) process (32); this corresponds
to a version of Application 3 with a productivity drift.
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Figure 10. Deterministic technology switches and stochastic productivity shocks

In Figure 11, we provide a plot of simulated solution with both productivity drift and
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stochastic productivity shocks.
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Figure 11. Productivity shifts and stochastic productivity shocks

Appendix G. Implementation details of the calibration-
estimation procedure

In this appendix, we describe implementation details of the calibration-simulation procedure of
Section 7.4.

Time series to match

Our macroeconomic data on the U.S. economy come from the webpages of the Bureau of
Economic Analysis and the Federal Reserve Bank of St. Louis (namely, the data on capital and
investment come from the former data base, while the data on the remaining time series, as well
as that on the implicit price de�ator, come from the latter data base); the sample spans over
the period 1964:Q1 - 2011:Q4. Investment is de�ned as nonresidential and residential private
�xed investment. Consumption is de�ned as a sum of nondurables and services. Capital is
given by a sum of �xed assets and durables; capital series are annual (in contrast to the other
series which are quarterly); we interpolate annual series of capital to get quarterly series using
spline interpolation. Output is obtained as a sum of consumption and investment. We de�ate
the constructed variables with the corresponding implicit price de�ator and we convert them
in per capita terms by dividing them by the series of the total population.
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Calibration and estimation of the model�s parameters

To identify the model�s parameters, we formulate the following set of restrictions:

Atzt =
yt
k�t
; (34)

dt�t =
it
kt
� kt+1 � kt

kt
; (35)

1

�
=

1

T

TX
t=1

c�
t+1
c�
t

�
1� dt+1�t+1 + �At+1zt+1k��1t+1

�
: (36)

We set 
 = 1, and we search for � that matches best the growth rates of variables in the
data. First, given some �, we construct Atzt using (34) , and we estimate the parameters �z;
�2"z , gA in the process for productivity zt = z

�z
t�1 exp("z;t) using a linear regression method. To

identify a growing and cycle components, At and zt, respectively, we assume z0 = 1. Second,
we construct the data on dt�t using (35), and we estimate the parameters ��; �

2
"�
, gd in the

process for productivity �t = �
��
t�1 exp("�;t) using a linear regression. Again, to separate growth

and cycles, dt and �t, respectively, we assume �0 = 1. Finally, we calibrate the discount factor
by using the Euler equation (36).
Our estimation-calibration procedure gives the following values of the parameters: � =

0:9013, �z = 0:9890 , �"z = 0:0054, gA = 1:002, �� = 0:9538 , �"� = 0:0381 and gd = 1:002. We
observe a considerable positive growth rate in the depreciation rate gd = 1:002. Furthermore,
we �nd that the best �t of our criteria for the growth rate is obtained under � = 0:7. This value
for the capital share in output is larger than is typically used in the business cycle literature,
however, it is roughly in line with the recent �nding of Karabarbounis and Neiman (2014) that
labor shares gradually declined over time; the implied gross capital shares reach 0:55.
We know that on the tail, the EFP solution will depend on a speci�c terminal condition

used and may be insu¢ ciently accurate. To deal with this issue, we extrapolate the data for 80
periods forward, using the growth rates that we estimate from the data on consumption, capital,
output, and investment under the assumption of exponential growth. We implement EFP to
match the initial and terminal conditions in the extrapolated data, i.e., we use T = � + 80.
To identify the growth path in our unbalanced growth model, we use assumption (16). We
construct a sequence of growing Smolyak grids. There are three state variables (kt; zt; �t) in this
application and the corresponding second-level Smolyak grid consists of 25 multidimensional
grid points. After we compute the EFP solution, we simulate the model using the sequence of
shocks reconstructed from the data.
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