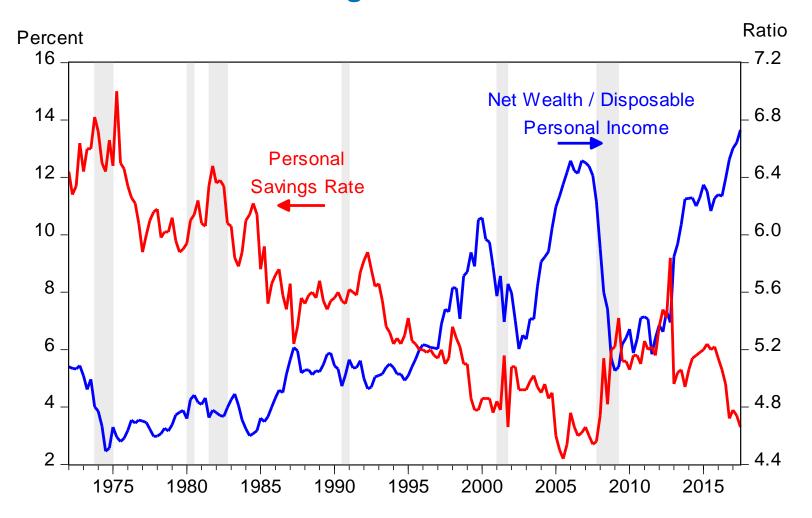
## Wealth Effects (Plural) and U.S. Consumer Spending\*

John Duca, Federal Reserve Bank of Dallas & Oberlin College John Muellbauer, Oxford University & INET Anthony Murphy, Federal Reserve Bank of Dallas

December 2017

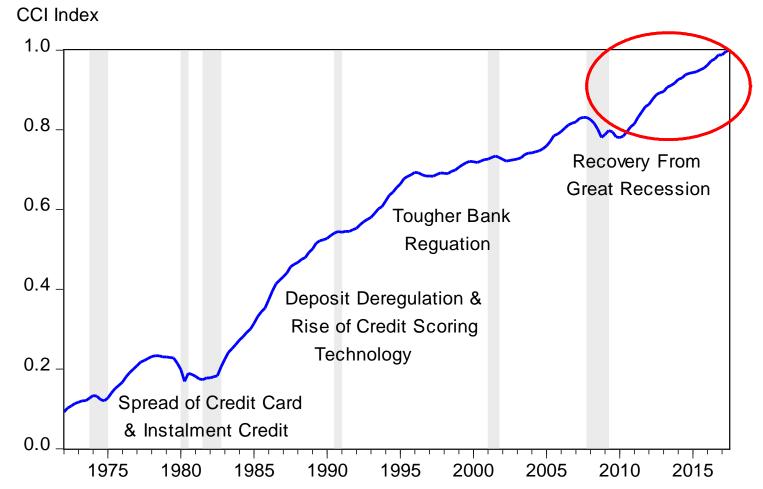
<sup>\*</sup> Corresponding author: <u>anthony.murphy@dal.frb.org</u>. The views expressed are those of the authors, and are not necessarily those of the Federal Reserve Bank of Dallas or of the Federal Reserve System.

## Introduction


• Conventional models, in which long-run consumption depends on wealth, interest rates and permanent income, cannot account for:

Secular decline in the saving rate from late 1970s to 2007

➤ The behavior of consumption and savings since then.


- Need to account for the evolving credit market architecture of U.S. household finance in order to do so
- Identify and quantify two important financial innovations contributing to household financial accelerators:
  - Changing consumer credit standards
  - Changing liquidity of housing wealth, the "housing wealth" (collateral) effect
- Estimated wealth effects differ by asset:
  - > Approx. 8% for liquid assets minus consumer and mortgage debt
  - > Approx. 1.5% for stocks and other illiquid financial assets
  - Housing collateral: Rising from about 1% in early 1980's to over 3¾% in the mid 2000's; Falls to under 2% in 2015; About 2¼% in mid-2017

## Figure 1: Wealth-to-Income Ratio Alone Cannot Account for Saving Rate Trends



3

## Figure 2: Consumer Credit Availability Contributed to Recovery from Great Recession



Notes: Consumer Credit Index (CCI) derived from cumulated exogenous component of the responses to the Senior Loan Officer Opinion Survey response to willingness to make consumer installment loan question.

## **State Space Model of Consumption and Refinancing**

- We use a credit augmented consumption function
- We consider forward looking consumers who are aware of their intertemporal budget constraint
- We do not assume a representative agent with rational expectations etc. as in most Euler equations
- In standard life-cycle, permanent income model consumption *C* is proportional to permanent income  $Y^{p}$  and wealth *W*, which implies:  $\ln C_{t} = \alpha_{0} + \ln Y_{t} + \gamma W_{t-1} / Y_{t} + \ln(Y_{t}^{p} / Y_{t}) + u_{t}$

where Y is labor and transfer income

• Adding expected income growth and intertemporal substitution yields:

$$\ln C_{t} = \alpha_{0} - \alpha_{1}r_{t} + \ln Y_{t} + \gamma W_{t-1}/Y_{t} + E_{t}\ln(Y_{t}^{P}/Y_{t}) + u_{t}$$

• Partial adjustment dynamics arise by adding habits, rational inattention etc.  $\Delta \ln C_t = \lambda (\ln C_t^* - \ln C_{t-1}) + u_t$ 

$$=\lambda\{\alpha_{0}-\alpha_{1}r_{t}+\ln Y_{t}-\ln C_{t-1}+\gamma W_{t-1}/Y_{t}+E_{t}\ln(Y_{t}^{P}/Y_{t})\}+u_{t}$$

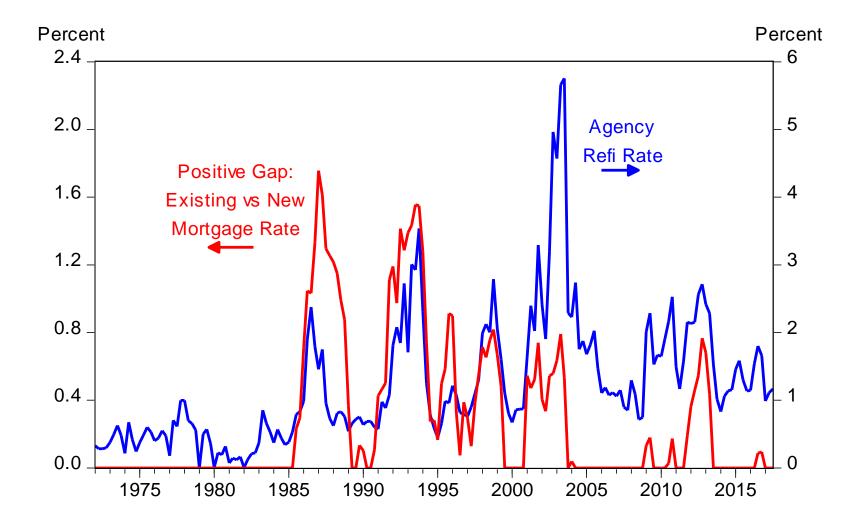
## **Credit Augmented Consumption Function (Cont'd)**

- Add measure of consumer credit conditions (CCI)
- Disaggregate wealth into net liquid assets (NLA = liquid assets consumer & mortgage debt), net illiquid financial assets (NIFA) and gross housing wealth (HSG)
- Allow variable liquidity of housing wealth (HLI)
- Add uncertainty and other credit constraint effects:

 $\Delta \ln C_{t} = \lambda \{ \alpha_{0} + (\ln Y_{t} - \ln C_{t-1}) + \alpha_{1} r_{t-1} + \alpha_{2} C C I_{t-1} + \alpha_{3} \ln (\widehat{Y}_{t+1}^{p} / Y_{t})$ +  $\gamma_{1} N L A_{t-1} / Y_{t} + \gamma_{2} N I F A_{t-1} / Y_{t} + \gamma_{3} H S G_{t-1} / Y_{t} + H L I_{t} \times H S G_{t-1} / Y_{t} \}$ +  $\beta_{1} \Delta u r_{t} + \beta_{2} \Delta i_{t} + \ldots + u_{t}$ 

where *ur* is the unemployment rate, *i* is the nominal interest rate

- The unobserved liquidity of housing wealth state variable evolves as  $HLI_t = HLI_{t-1} + \varepsilon_t$ , where  $\varepsilon_t$  is a white noise, normal innovation
- Use state space model of permanent income with 10 year horizon à la Friedman (1956,1963), Deaton (1991, 1992) and Carroll (2001), and a high 5% discount rate à la Skinner (1988), Zeldes (1989), Kimball (1990) and Carroll (1997, 2001)


## **Mortgage Refinancing Equation**

• *HLI* also appears in refi equations which helps us pin down the housing liquidity effect:

 $refi_{t} = \phi_{1}refi_{t-1} + \phi_{2}HLI_{t} + z'_{t}\delta + HLI_{t} \times z'_{t}\delta + v_{t}$   $z'_{t}\delta \equiv \delta_{0} + \delta_{1}PosGap_{t-1} + \delta_{2}PosGap_{t-2} + \delta_{3}Payback_{t} + \delta_{4}Low_{t} + \delta_{5}\Delta MortForeclose_{t-1}$ where *refi* is share of agency mortgages that are refinanced

- *HLI* is positively related to the ability (willingness) to refinance, and negatively to the cost of refinancing
- As *HLI*  $\uparrow$ , so does *refi* and the response of *refi* to interest rate gaps etc.
- Inter alia, the  $z'_t \delta$  term captures the incentive to refinance:
  - > PosGap = outstanding minus new mortgage rate gap (if positive)
  - Low = 30 quarter mortgage rate low 0/1 indicator
  - Payback = captures end of mortgage refinancing booms interaction of number of mortgage rate lows in the 8 prior quarters and an indicator if prior quarter marked an interest rate low but current quarter is not
  - > *MortForeclose* = Percent of mortgages entering foreclosure

## Figure 3: Refi Response to Mortgage Interest Rate Differentials Varies Over Time



### **Housing Wealth vs Housing Collateral Effects**

- In stylized Classical model (perfect capital markets, dynastic Ricardian households), house prices have a small negative effect on non-housing consumption
- Positive estimated housing 'wealth' effect in U.S. data may arise from:
  - Non-rational expectations
  - Non-dynastic family behavior little evidence of stronger housing wealth effect for older households
  - Omitted future income expectations, because permanent income not current income matters
  - Credit constraints (more important for young and altered by financial innovations)
- *HLI* allows for a collateral role for housing to affect consumption, so  $HLI_t \times HSG_{t-1}/Y_t$  matters, not  $HSG_{t-1}/Y_t$

# Table 1: State Space Model of Consumption and Mortgage Refinancing Consumption Function:

$$\Delta \ln C_{t} = \lambda \{ \alpha_{0} + (\ln Y_{t} - \ln C_{t-1}) + \alpha_{1} r_{t-1} + \alpha_{2} CCI_{t-1} + \alpha_{3} \ln(\widehat{Y_{t+1}^{p}}/Y_{t}) + \gamma_{1} NLA_{t-1}/Y_{t} + \gamma_{2} IFA_{t-1}/Y_{t} + \gamma_{3} HSG_{t-1}/Y_{t} + HLI_{t} \times HSG_{t-1}/Y_{t} \} + \beta_{1} \Delta ur_{t} + \beta_{2} \Delta i_{t} + \beta_{3} CrControls_{t} + u_{t} \qquad u_{t} \sim N(0, \sigma_{u}^{2}) \}$$

**Refinancing Equation:** 

$$\begin{aligned} refi_{t} &= \phi_{1} refi_{t-1} + \phi_{2} HLI_{t} + z_{t}'\delta + HLI_{t} \times z_{t}'\delta + v_{t} \qquad v_{t} \sim N(0, \sigma_{v}^{2}) \\ z_{t}'\delta &\equiv \delta_{0} + \delta_{1} PosGap_{t-1} + \delta_{2} PosGap_{t-2} + \delta_{3} Payback_{t} + \delta_{4} Low_{t} \\ &+ \delta_{5} \Delta MortForeclose_{t-1} \end{aligned}$$

State Equation for Liquidity ("mpc") of Housing Wealth:

$$HLI_{t} = HLI_{t-1} + \varepsilon_{t} \quad \varepsilon_{t} \sim NID(0, \sigma_{\varepsilon}^{2})$$

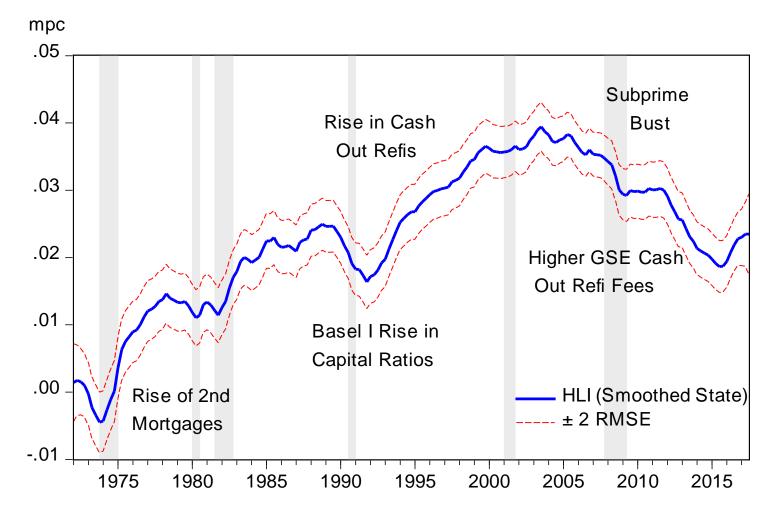
#### Table 2: Parameter Estimates (1972 q1 - 2017 q2)

#### **Consumption Function**:

$$\Delta \ln C_{t} = 0.372^{***} \left\{ 0.040 + (\ln Y_{t} - \ln C_{t-1}) - 0.203^{*} r_{t-1} / 100 + 0.057^{*} CCI_{t-1} + 0.266^{**} \ln(\widehat{Y_{t+1}^{p}} / Y_{t}) + 0.079^{***} NLA_{t-1} / Y_{t} + 0.014^{**} IFA_{t-1} / Y_{t} + \widehat{HLI}_{t} \times HSG_{t-1} / Y_{t} \right\}$$
  
$$- 0.198^{***} \Delta ur_{t} / 100 - 0.170^{***} \Delta i_{t} / 100 - 0.010^{***} CrControls_{t} + \hat{u}_{t} \qquad \hat{\sigma}_{u} = 0.0038^{***} \left( \frac{1000}{13.25} + \frac{1000}{13.25} + \frac{1000}{13.25} + \frac{1000}{1000} + \frac{1000$$

#### **Refinancing Equation:**

$$refi_{t} = \underbrace{0.726}_{(18.79)}^{***} refi_{t-1} + \underbrace{0.120}_{(2.95)}^{***} \widehat{HLI}_{t} + z'_{t} \widehat{\delta} + \widehat{HLI}_{t} \times z'_{t} \delta + \widehat{v}_{t} \qquad \hat{v}_{t} = \underbrace{0.0035}_{(22.66)}^{***}$$


$$z'_{t} \delta \equiv \underbrace{(0.715}_{(3.84)}^{***} PosGap_{t-1} - \underbrace{0.748}_{(4.09)}^{***} PosGap_{t-2} - \underbrace{0.138}_{(5.40)}^{***} Payback_{t} + \underbrace{0.641}_{(7.78)}^{***} Low_{t}$$

$$-\underbrace{0.918}_{(1.68)}^{*} \Delta MortForeclose_{t-1})/100$$

**State Equation – Housing Liquidity:** 

$$HLI_{t} = HLI_{t-1} + \varepsilon_{t} \qquad \hat{\sigma}_{\varepsilon} = 0.0019^{***}$$

## Figure 3: Housing Liquidity / "Wealth" Effect Smoothed State Estimates



## **Estimated Wealth Effects**

- Estimated wealth mpcs:
  - ➤ 7.9% for net liquid assets
  - > 1.4% for stocks and illiquid financial assets
- Estimated time varying housing collateral effect:
  - Close to zero in the early 1970's
  - > Approx. 1% in the late 1970's and early 1980's
  - > Jumps in the mid 1990's, peaking at over 3<sup>3</sup>/<sub>4</sub>% in the mid 2000's
  - Falls back to under 2% by 2015
  - ▶ Recovered to about 2¼% in mid-2107
- Overall mpc somewhat smaller, more variable, than conventional 3% figure
- Housing collateral effect not a traditional housing wealth effect, consistent with micro studies, e.g. Hurst and Stafford (2004), Cooper (2009), and Browning, Gortz & Leth-Petersen (2008)
- Estimated housing mpc smaller than in some recent studies e.g., long run 9% mpc in Carroll, Otsuka & Slacalek (2011).

> Why? We control for permanent income and consumer credit availability

## Table 3: Estimated Wealth Effects and Specification of Consumption Function (1972 q1 - 2017 q2)

| Model / Specification                       | MPC   |      |      | Adj.                  | SE x |                |
|---------------------------------------------|-------|------|------|-----------------------|------|----------------|
|                                             | NLA   | NIFA | HSG  | Speed $\hat{\lambda}$ | 100  | R <sup>2</sup> |
| Baseline with W                             |       | 3.0% |      | 0.09                  | 0.58 | 0.23           |
| Disaggregate W into NLA, NIFA, HSG          | 10.2% | 2.3% | 6.6% | 0.11                  | 0.57 | 0.27           |
| Add CCI, $\widehat{HLI}$ and $\Delta ur$    | 8.2%  | 1.4% | ĤLI  | 0.45                  | 0.33 | 0.74           |
| Conventional ARDL in <i>C, Y, W, r, Δur</i> |       | 2.7% |      | 0.03                  | 0.48 | 0.48           |

Notes: W = net wealth, NLA/NIFA/HSG = dis-aggregation of net wealth, CCI = credit conditions index,  $\widehat{HLI}$  = estimated housing liquidity index from 2 equation state space model, ur = unemployment rate. The baseline and autoregressive distributed lag (ARDL) models are:  $\Delta \ln C_t = \lambda \{\alpha_0 + (\ln Y_t - \ln C_{t-1}) + \alpha_1 r_{t-1} + \alpha_2 CCI_{t-1} + \alpha_3 \ln (\widehat{Y_{t+1}^p}/Y_t) + \gamma W_{t-1}/Y_t\} + \beta_2 \Delta i_t + \beta_3 CrControls_t + u_t$ , and  $\Delta \ln C_t = \beta_0 + \beta_1 \Delta \ln C_{t-1} + \beta_2 \Delta \ln C_{t-2} + \beta_3 \Delta \ln Y_t + \beta_4 \Delta \ln Y_{t-1} + \beta_5 (\ln C_{t-1} - \ln Y_{t-1}) + \beta_6 W_{t-1}/Y_{t-1}$ 

 $+\beta_7\Delta ur_t + \beta_7\Delta r_t + \beta_8 CrControls_t + u_t$ 

# Table 4: Changing Credit Conditions and Wealth ImportantDrivers of Changes in Savings Rate

#### Estimated Long Run Effects on Ln C/Y (pps)

| Period Change                                   |                                         | in Credit & | Contribution to Estimated Effects           |                                                     |                                            |                   |  |
|-------------------------------------------------|-----------------------------------------|-------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|-------------------|--|
|                                                 | Actual<br>Change in<br><i>C/Y</i> Ratio |             | Consumer<br>Credit<br>Availability<br>(CCI) | Liquid Assets<br>– (Consumer<br>+ Mortgage<br>Debt) | Stock +<br>Other Net<br>Illiquid<br>Assets | Housing<br>Assets |  |
| Housing & Stock<br>Bubbles 1995q1–2006 q4       | 4.8%                                    | 4.8%        | 0.9%                                        | -4.4%                                               | 2.1%                                       | 6.5%              |  |
| Housing & Financial<br>Crises 2006 q3 - 2009 q2 | -5.4%                                   | -4.7%       | -0.1%                                       | 2.7%                                                | -1.8%                                      | -5.4%             |  |
| <b>Modest Recovery</b><br>2009 q2 – 2012 q4     | 1.7%                                    | 0.8%        | 0.6%                                        | -0.2%                                               | 1.4%                                       | -1.4%             |  |
| <b>Moderate Growth</b><br>2013 q1 – 2017 q2     | 3.5%                                    | 3.3%        | 0.6%                                        | 1.0%                                                | 1.3%                                       | 1.4%              |  |

• The estimated long run effect is:

 $-0.203r_{t-1}/100 + 0.057CCI_{t-1} + 0.266\ln(\widehat{Y_{t+1}^{p}}/Y_{t}) + (0.079NLA_{t-1} + 0.014NIFA_{t-1} + \widehat{HLI}_{t} \times HSG_{t-1})/Y_{t}$ 

• Multiply entries by minus two-thirds to get approx. savings rate effects

## Summary

- Financial innovations and frictions matter, especially in gauging the impact of wealth component and trends in the personal saving rate.
- Important roles for:
  - Changing composition of net wealth
  - > Exogenous changes in supply of consumer credit (CCI)
  - Changing liquidity of housing wealth (state space HLI estimates)
- No single "wealth effect":
  - ► Liquid assets: ≈ 8%
  - ➤ Consumer and mortgage debt: ≈ -8%
  - Stocks & other illiquid financial assets:  $\approx 1\frac{1}{2}\%$
  - ➢ Housing collateral:
    - Rising from ≈1% in early 1980's to over 3¾% in the mid 2000's Falls to under 2% in 2015 and recovers to 2¼% in mid-2107
- In a housing boom, the collateral effect of higher housing wealth first boosts consumption, but the negative debt overhang effects linger after a bust