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Introduction

» the workhorse model in demand estimation for differentiated
products: BLP random coefficient (RC) logit model
> really neat idea to solve the price endogeneity problem with rich
preference heterogeneity (represented by RCs)
» standard BLP estimator: nested fixed-point GMM
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Introduction

» the workhorse model in demand estimation for differentiated
products: BLP random coefficient (RC) logit model
> really neat idea to solve the price endogeneity problem with rich
preference heterogeneity (represented by RCs)
» standard BLP estimator: nested fixed-point GMM

» in this paper, we propose an alternative two-step estimator for
the model
> obtain estimates of fixed coefficients with little computational costs
» allow nonparametric specification of RCs
> obtain new results on some theoretical issues
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Setup

» in this presentation, for expositional simplicity, we consider a
single market with J + 1 competing products {0, 1, ..., J}, where
0 refers to the “outside option”
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» mean utility: §; = o+ X;yj/a’ +&5,00 =0and § = (61,...,07)
> heterogeneity: random coefficients v; ~ F (-), €55 i.i.d. type ]
extreme value

aggregating individual optimal choices = aggregate demand
(market share) system

S5 = O'j((S,XQ;F)

exp ((Sj + XéJUi)
_ / ] AP (), Y (1)
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Setup

in this presentation, for expositional simplicity, we consider a
single market with J + 1 competing products {0, 1, ..., J}, where
0 refers to the “outside option”

standard random utility model
U5 = 5j + XQJ-’Ui + €45

» mean utility: §; = o+ X;yj/a’ +&5,00 =0and § = (61,...,07)
> heterogeneity: random coefficients v; ~ F (-), €55 i.i.d. type ]
extreme value

aggregating individual optimal choices = aggregate demand
(market share) system

S5 = O'j((S,XQ;F)

exp ((Sj + XéJUi)
_ / ] AP (), Y (1)
14> i pexp <5k + X27k,vi)

we want to estimate § = (o, 8, F') using aggregate data
(85, X1,5, X2,5)
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The BLP Idea

» invert the demand system (1) (see Berry (1994) and Berry,
Gandhi, and Haile (2013))

§;=0;"(s,X2; F), Vj
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The BLP Idea

» invert the demand system (1) (see Berry (1994) and Berry,
Gandhi, and Haile (2013))

05 =0y (5: Xo; F), Vj
» impose IV assumption E [{;| Z;] =0

» construct a GMM estimator, with a parametric I (e.g., normal)

J
. 1 ’ 1 ’
argmin ||~ Ele [aj (s,Xg;F)—oz—lejB]
j:
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Challenges

> the inverse demand 0;1 (-) must be solved numerically (i.e., BLP

contraction mapping)
» computational issues have aroused research interests, e.g., Knittel
and Metaxoglou (2012), Dubé, Fox, and Su (2012), Lee and Seo
(2015)

4/22



Challenges
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» computational issues have aroused research interests, e.g., Knittel
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(2015)

» many endogenous variables (s is J-dimensional), in addition to
endogenous product characteristics (Berry and Haile (2014))

E|o;" (s, X3, F) —a — XLJﬂ‘ ZJ} =0
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Challenges

> the inverse demand 0;1 (-) must be solved numerically (i.e., BLP
contraction mapping)
» computational issues have aroused research interests, e.g., Knittel
and Metaxoglou (2012), Dubé, Fox, and Su (2012), Lee and Seo

(2015)

» many endogenous variables (s is J-dimensional), in addition to
endogenous product characteristics (Berry and Haile (2014))
E|o;" (s, X3, F) —a — Xiﬁﬂ‘ ZJ} =0

» nontrivial interdependence of (X, ;, X5 ;) across j (Berry, Linton,
and Pakes (2004))
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Our Approach: Transform to Partial Linear Form

> exploit a separability property of the random coefficient logit
model

’

exp (6]- +X2ij) exp X2] )

5 ; (v) = exp (6;)- dF (v)
1+ > exp (5k+X2yk ) 1+Zk , exp 5k+X2k )
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Our Approach: Transform to Partial Linear Form

> exploit a separability property of the random coefficient logit
model

’

exp (6]- +X2ij) exp X27 )

5 ; (v) = exp (6;)- dF (v)
1+ > exp (5k+X2,k ) 1+Zk , exp 5k+X2k )

» taking log on both sides of demand equation,

log (s;) = a + Xi,]ﬂ + 4y (Xa,;)+¢&;5,

where

B exp (Xéij)
¥y (Xa,;) = log / . ——dF (v)
14> exp (5k + X2,kv)
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Normalization

» normalize by the outside share
oz (22 ) =t X164+ 00 (Xa) 4
where
PR E.

1+ZI{=1 cxp(5k+Xé,kv)

J y dF(v)

1+Zg:1 exp(6k+X;,kU)

V5 (X2;) = s (Xa,5) — ¥ (0) = log
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Normalization

» normalize by the outside share
oz (22 ) =t X164+ 00 (Xa) 4
where
PR E.

1+Zg=1 cxp(5k+Xé,kv)

J y dF(v)

1+Zg:1 exp(5k+X;,kv)

V5 (X2;) = s (Xa,5) — ¥ (0) = log

» now we have a partial linear form, except that 1) ;(-) is a random
function
> we treat the limit of 1 ;(-), ¢ (-), as an unknown function and apply
sieve approximation as J — oo
» comparing to simple logit, we can see that random coefficients
imply the nonlinear terms of z2 ;
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A Two-Step Semi-Nonparametric Estimator

» first step: estimate («, 3,) in the partial linear model

> approximate v by a linear sieve ¢y, ,(X2;) = ZI;;J bepe(Xa,j),
where {p; (-) : £ =1, ..., k1,s} are basis functions

> sieve GMM based on E [¢;]Z;] = 0 & E [¢; - I/ (z;)] = 0, where
I¢/ (-) is a ¢s-dimensional vector of basis functions
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A Two-Step Semi-Nonparametric Estimator

» first step: estimate («, 3,) in the partial linear model

> approximate ¢ by a linear sieve ¥r, ;(X2,;) = ZI;;J bepe(Xa,j),
where {p; (-) : £ =1, ..., k1,s} are basis functions

> sieve GMM based on E [¢;]Z;] = 0 & E [¢; - I/ (z;)] = 0, where
I¢/ (-) is a ¢s-dimensional vector of basis functions

» second step: estimate I’ nonparametrically via sieve MD

exp(sj-‘,-X;,jv) 2

1+ZZ:1 exp(5k+X;1k’u)

) dFkZJ (v)

J

dFk2,J (’U)

J
1 .
arg F{nin 7 E log (z—;) — log

k2,0 < j=1

1
1+, eXP(Sk‘i’Xé'kU

»bi=a+X 1 jB + ¢ is obtained from the first stage estimation
> Fy, , is sieve approximation to F
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Remarks

» computationally lighter than standard BLP nested fixed point
GMM estimator
» no fixed-point computation and the estimates of fixed coefficients

(e, B) could be obtained with little computational cost, similar to
Salanie and Wolak (2016)
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Remarks

» computationally lighter than standard BLP nested fixed point
GMM estimator

» no fixed-point computation and the estimates of fixed coefficients
(e, B) could be obtained with little computational cost, similar to
Salanie and Wolak (2016)

> the “many endogenous variable” does not show up in our
estimation equation

£y /
log <S(J)> =a+ Xl’jﬂ + w (XQJ’) + fj
> the endogeneity issue has been “taken care of” automatically

because ¥ (-) — ¥(-) as J = oo
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Remarks (Cont’d)

» relaxing the parametric assumptions on RCs can be important:
the shape of RC determines the substitution patterns, i.e.,
cross-product elasticities
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cross-product elasticities

» result: under very mild assumptions, normal RCs imply that all
the cross-product elasticities vanishes at the same rate O (J )
asJ — oo

> the vanishing cross-elasticities means that “local competition”
disappears, which may not be realistic (effectively “IIA property”)

> intuition: the tail of normal RC is too thin to offset the effects of the
logit error
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Remarks (Cont’d)

» relaxing the parametric assumptions on RCs can be important:
the shape of RC determines the substitution patterns, i.e.,
cross-product elasticities

» result: under very mild assumptions, normal RCs imply that all
the cross-product elasticities vanishes at the same rate O (J )
asJ — oo

> the vanishing cross-elasticities means that “local competition”
disappears, which may not be realistic (effectively “IIA property”)

> intuition: the tail of normal RC is too thin to offset the effects of the
logit error

» thus, flexible/nonparametric RCs are important for generating
realistic substitution patterns
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Data Structure and Asymptotic Framework

» data structure: a large cross-section of products in a single
market

» practically relevant: national market (e.g., BLP auto data); products
defined at disaggregate level, e.g., scanner data/online shopping
data at SKU level

> theoretically, it is useful to understand identification/estimation
issues within a single market, as Berry, Linton, and Pakes (2004)
and Armstrong (2016)
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Data Structure and Asymptotic Framework

» data structure: a large cross-section of products in a single
market

» practically relevant: national market (e.g., BLP auto data); products
defined at disaggregate level, e.g., scanner data/online shopping
data at SKU level

> theoretically, it is useful to understand identification/estimation
issues within a single market, as Berry, Linton, and Pakes (2004)
and Armstrong (2016)

» major challenge: product characteristics {X; : j =1, ..., J} are
interdependent in a non-trivial way due to firm's strategic
interactions (e.g., price/advertising strategies)
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Key Assumptions

Assumption

For each J, there exists a o-field C such that, conditional on C,
{(X;,Z;):j=1,..., J} are independent across j.

» the interdependence of (X, Z;) across j are captured by the
“common shock” C

» in the paper, we provide more primitive/verifiable conditions
and compare with Berry, Linton, and Pakes (2004)’s approach in
handling the interdependence
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Key Assumptions

Assumption

For each J, there exists a o-field C such that, conditional on C,
{(X;,Z;):j=1,..., J} are independent across j.

» the interdependence of (X, Z;) across j are captured by the
“common shock” C

» in the paper, we provide more primitive/verifiable conditions
and compare with Berry, Linton, and Pakes (2004)’s approach in
handling the interdependence

Assumption
The unobserved product characteristics £; are independent across j
conditional on {Z;};_, and satisfy E[¢;|Z;] = 0 a.s.

» identical to the standard assumptions imposed on the
unobserved characteristic £ as in Berry, Linton, and Pakes (2004)
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Asymptotic Results

> first stage: suppose that the above assumptions, standard
identification assumption for partial linear IV models, as well as
appropriate LLN and CLT results hold, we have

Vv ( P ) —a N (0.1),
B-B

where V; achieves the semi-parametric efficiency bound in the

limit.
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Asymptotic Results

> first stage: suppose that the above assumptions, standard
identification assumption for partial linear IV models, as well as
appropriate LLN and CLT results hold, we have

Vv L2 ( g:g ) —4N(0,1),

where V; achieves the semi-parametric efficiency bound in the
limit.
» second stage: sieve MLE with generated regressor (see Newey
(1994))
» consistency: dop (ﬁiz, F) 2 0, where dpp (-, ) is the

Lévy-Prokhorov metric
» similar to the idea in Fox, Kim and Yang (2016)
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Monte Carlo Simulations: DGP

> a single market with J inside products
> exogenous characteristic: X; ~ U [0, Z]
» unobserved characteristic: £; ~ N (0, .5%)
» endogenous price/marginal cost:
pj =me; =nX;+7W; +&+¢
> exogenous cost shifter W; ~ U [0,w] and a shock {; ~ N (O, .12)
> assumed market structure: single-product firms, perfect competition
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Monte Carlo Simulations: DGP

> a single market with J inside products
> exogenous characteristic: X; ~ U [0, Z]
» unobserved characteristic: £; ~ N (0, .5%)
» endogenous price/marginal cost:
pj =me; =nX;+7W; +&+¢
> exogenous cost shifter W; ~ U [0,w] and a shock {; ~ N (O, .12)
> assumed market structure: single-product firms, perfect competition

» market share is generated via simulation

XR: exp (0; + v;p;)

— 1+ 37, exp (8 + vipk)

» mean utility: 6; = a+ X;8+ ¢, and o ~ U [-12,—8] isa
“common shock”
» random coefficient: v; ~ F with R draws
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Estimation: Implementation Details

> first stage: two-stage (sieve) GMM
> sieve approximation t, : cubic splines/power series
> instrument function (of  and w): cubic splines/power series
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Estimation: Implementation Details

> first stage: two-stage (sieve) GMM
> sieve approximation t, : cubic splines/power series
> instrument function (of  and w): cubic splines/power series

» second stage: sieve MD with F approximated by Fj, ,
> sieve I: generate random draws from Fg, ,, as suggested by
Fosgerau and Mabit (2013)

> draw u ~ U[0, 1] and stick into cubic splines/power series
> in effect, this strategy approximates the inverse CDF '~}
» sieve II: approximate F' by the probability weights on a grid of v, as
suggested by Train (2016)
> pre-specify a grid of v: v1,...,vg
> weight on each grid point v, is a logit probability
exp [%2“, (’Us)]

— 17, wherep kg s isa linear sieve to be estimated
2f—q exp Wk21](vt)
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Results: F'is Normal

Table: Monte Carlo Results: Fixed Coefficients

J =50 100 200 400

SN RtMSE .0610 .0396  .0268 .0179
Bias -0039  -0011 -0012 4.58E-4

p BLD RtMSE .0499 0352 .0246 .0172
Bias -0047 -0019 -0024 -3.97E-4

SN RtMSE .0946 .0629  .0429 .0297
Bias -0052  -0015 -.0018 5.63E-4

@ BLP RtMSE .0567 .0401  .0284 .0208

Bias -6.79E-4 -0012 -0013  -.0013
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Results: F'is Normal

Table: Monte Carlo Results: Mean of Random Coefficient

Estimator J 50 100 200 400
SN-I RtMSE .0758 .0518 .0385 .0298
Bias .0034 -0039  -0013 -8.92E-4
SN-II RtMSE .0795 .0521 .0360 .0244
Bias -446E-4 -0046 -1.38E-5 .0016
SN-Para RtMSE .0585 .0498 .0461 .0445
Bias -.0258  -.0343  -.0353 -.0380

BLP RtMSE .0478 .0359 .0304 .0261
Bias -0094 -0166  -.0157 -.0175
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Results: F'is Normal

Table: Monte Carlo Results: Std. Dev. of Random Coefficient

Estimator J 50 100 200 400
SN-I RtMSE  .0778 .0569 .0507 .0441
Bias -0090  -.0022 -0033  -.0036
SN-II RtMSE  .1020 0667 .0519 .0426
Bias -.0287  -.0077 -0041  -.0030
SN-Para RtMSE  .0808 .0520 .0380 .0262
Bias -.0049 .0014 577E-4 .0025
BLP RtMSE  .0693 .0459 .0345 .0246

Bias -0030 9.96E-4 4.87E-4 .0010

17/22



Results: F'is Mixed Normal

Table: Monte Carlo Results: Fixed Coefficients

50 100 200 400
SN RtMSE .0580 .0387 .0266 .0178
Bias -.0040 -9.16E-4 -.0013 2.68E-4
RtMSE .0500 .0353 .0246 .0171
B BLP .
Bias -.0043 -.0016 -.0022 -3.10E-4
. RtMSE .0499 .0353 .0246 .0171
BLP-Mis X
Bias -.0047 -.0018 -.0024 -4.83E-4
SN RtMSE .0678 .0451 .0302 .0216
Bias .0019 .0010 .0012 6.39E-4
RtMSE .0563 .0403 .0289 .0211
« BLP .
Bias -.0036 -.0020 -6.23E-4  3.01E-4
. RtMSE .0556 .0400 .0287 .0209
BLP-Mis

Bias -3.17E-4  5.40E-4 6.91E-4 8.25E-4
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Results: F'is Mixed Normal

Table: Monte Carlo Results: Mean of Random Coefficient

Estimator J 50 100 200 400
SN RtMSE  .0542 .0377 .0299  .0217
Bias .0046 -.0028  -.0025 -.0033
SN-IT RtMSE  .0561 .0393 0312 .0223
Bias .0095 -6.02E-4 -.0017 -.0037
SN-Para RtMSE  .0495 .0339 .0265  .0192
Bias .0057 -0022  -.0027 -.0037
BLP RtMSE  .0469 .0336 .0266  .0207
Bias -0036  -0105 -0101 -.0116
BLP-Mis RtMSE  .0456 .0303 0228  .0164

Bias .0047 -.0026  -.0025 -.0043
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Results: F'is Mixed Normal

Table: Monte Carlo Results: Std. Dev. of Random Coefficient

Estimator  J 50 100 200 400
og  ROVMSE 1279 0826 0564 0365
Bias  -0268 -0136 -0134 -.0088

ouq  RIMSE 1303 0877 0640 0412
Bias  -0341 -0215 -0210 -.0130

oNDaa RIMSE 1311 (084 0569 0358
Bias  -0261 -0118 -0110 -.0069

sp  ROVMSE 1216 0807 0577 0391
Bias  -.0200 -.0092 -0091 -.0075

_ RIMSE 3949 4087 4189 4257
BLP-Mis  piis 2598 -2802 -2970  -3064
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Results: F'is Mixed Normal

Figure: Monte Carlo Results: CDF of Random Coefficient
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Revisiting BLP Auto Data

BLP SN
Fixed Coefficient Logit RC-Logit First Step
HP/Weight (log) 1.38 .69 1.56
(.23) (.12) (.20)
Weight (log) 1.77 .02 2.19
(.46) (.35) (.56)
Size (log) 1.05 3.44 2.25
(.58) (.43) (.55)
Dollar per Miles (log) .03 —.31 —1.37
(.12) (.11) (.33)
A/C 1.25 .57 42
(.14) (.08) (.12)
Power Steering .40 17 .27
(.09) (.07) (.10)
Automatic .43 .30 .45
(.08) (.07) (.08)
FWD .16 .22 .44
(.06) (.06) (.08)
Constant —3.63 —3.05 —3.90
(.30) (.46) (1.03)
Random Coefficient Second Step
on Price (Log) Para. 1 1T
Mean —3.77 —2.89 -3.31 -3.24 -3.19
(.23) (.29)
Std. Dev. - .46 .61 44 .36
(.14)
Ave. No. of Prod. per Mkt. 110.85
No. of Mkt. 20
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