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Motivation

I However, point forecasts are still common
I Historic reasons
I Convenience
I Complex computer models

I Point forecasts without directive contain ambiguous
information
(Manski, 2016; Elliott and Timmermann, 2008; Engelberg
et al., 2009; Gneiting, 2011)

I How can we conceptualize and estimate the directive?

I Elliott et al. (2005) and Patton and Timmermann (2007)
propose to estimate the underlying loss function
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Summary

I In this paper, we consider the situation of an unknown
directive

I We propose a setting in which point forecasts are derived as
functionals (i.e., point summaries) from predictive
distributions

I We show how to identify the functional based on forecast and
realization alone

I We propose a GMM-estimator for state-dependent quantile
(expectile) forecasts

I We find that the Federal Reserves’ GDP forecasts are
quantiles that depend on the current growth level
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Setting

I A forecaster predicts the random variable Yt based on
information Ft

I Common interpretation of a point forecast Xt :

Xt = E[Yt |Ft ]

I Let α : P 7→ R be some functional (Horowitz and Manski,
2006)

Definition
We call Xt an optimal α-forecast, if it holds that

Xt = α(Yt |Ft).
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Identification

I For an optimal mean-forecast there exist identifying moment
conditions:

X = E[Y |F ] ⇐⇒ E[(Y − X )W ] = 0 for all W ∈ F .

I We show that, for well-behaved α, there exists an
identification function Vα, such that

X = α(Y |F) ⇐⇒ E[Vα(X ,Y ) ·W ] = 0 for all W ∈ F .

(Proof: Steinwart et al. (2014) + Gneiting et al. (2007))
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Loss functions

I Previous work (Elliott et al., 2005; Patton and Timmermann,
2007) defined optimal point forecasts with loss functions
L(x , y) by

X = arg min
x∈R

E[L(x ,Y )|F ]. (1)

I Defines a functional

I There exist many loss functions (Gneiting, 2011; Ehm et al.,
2016) for one functional
⇒ It is impossible to identify the loss function.



Outline

Setting

Identification

Parametric estimation

Application

MCS

Discussion



State-dependent quantile forecasts

I The τ -quantile functional qτ (P) is unique solution x to
P((−∞, x ]) = τ

I Identifying moment condition

X = qτ (Y |F) ⇐⇒ E[1(Y ≤ x)− τ |F ] = 0.

I We assume an optimal quantile-forecast with levels described
by the specification model m(z , θ0),

X = qm(Z ,θ0)(Y |F).

specification name model Θ
constant m(z , θ) = θ (0, 1)
break m(z , θ) = 1(z > tb)θ1 + 1(z ≤ tb)θ2 (0, 1)2

linear m(z , θ) = Ψ(θ1 + z · θ2) [a, b]2

periodic m(z , θ) = Ψ(θ1 + θ2 sin(2πz/θ3)) [a, b]3
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GMM-Estimation

I X = qm(Z ,θ0)(Y |F) implies

E[(1(Y ≤ X )−m(Z , θ0)) ·W ] = 0.

I Empirical mean is
gT (θ) := 1

T

∑T
t=1(1(yt ≤ xt)−m(zt , θ)) · wt .

I The standard GMM-estimator is obtained by

θ̂T = arg min
θ∈Θ

gT (θ)′Ŝ−1
T gT (θ).

If m is continuous, there exists an Ft-measurable instrumental
variable Wt such that

θ̂T
P−→ θ0.
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Testing optimality

I Test of overidentifying restrictions (Hansen, 1982): If the
forecast is optimal, it holds that

JT (θ̂T )
D−→ χ2

q−p, as T →∞,

where JT (θ) := TgT (θ)′ŜT (θ)−1gT (θ).

I If X is optimal with respect to F , than it is also optimal with
respect to any smaller information set.

I We can test hypothesis H0:

There exists a θ ∈ Θ such that X = qm(z,θ)(Y |F) with σ(w) ⊂ F .
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Application: GDP forecast

I Consider the Greenbook GDP growth forecasts of the Federal
Reserve

I quarterly real GDP growth rate forecasts over the period 1968
to 2011 (T = 172 observations)

I standard tests of optimality based on the mean functional
reject the optimality of the forecast (Patton and Timmermann,
2007)

I We interpret the forecasts as a state-dependent quantile

m(zt , θ) = m(xt , θ) = Ψ(θ1 + xt · θ2).
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MCS

I Data-generating process:

Yt = 1
2Yt−1 + σtεt for t = 1, 2, . . . ,T ,

σ2
t = .1 + .8σ2

t−1 + .1σ2
t−1ε

2
t−1,

εt
iid∼ N (0, 1).

I Generate on each data set optimal forecasts and different
optimality tests



Constant quantile forecast

I A fully informed 1-step ahead forecast

xt = 1
2Yt−1 − 1

4σt .

I A 2-step ahead forecast

xt = 1
4Yt−2 + 1.15σ2

t−1 + .1

I We apply optimality tests of linear specification models for
I quantiles,
I expectiles,
I and the spline test of Patton and Timmermann (2007)

with normal and with lagged instruments.
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Different state-dependent forecasts

I We generated three optimal state-dependent forecasts
I a quantile forecast that depends linearly on the current time

series value (linear)
I one that is subject to periodic deviations (periodic)
I one that is exposed to a break at half the sample size (break)

I To each forecast we apply a test of optimality based on the
linear, periodic and break specification model.
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forecast model test model

linear periodic break
linear 0.059 1.000 1.000
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linear periodic break
linear 0.092 0.643 0.784

periodic 0.844 0.076 0.619
break 0.673 0.373 0.087
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Discussion

I Functionals are identifiable with point forecasts and
observations alone

I State-dependent quantiles/expectiles can be used to interpret
point forecasts coherently

I Applications possible in
I comparison of point and probability forecasts
I backtesting of risk measures
I creating density forecasts from multiple point forecasts

Connection to Mincer-Zarnowitz
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Connection to Mincer-Zarnowitz test

I Procedure of Mincer-Zarnowitz optimality test

1. OLS regression Y = β0 + β1X + u
2. Test H0: β0 = 0 ∧ β1 = 1

I Mincer-Zarnowitz test is equivalent to

1. Assume optimal forecast

X = β0 + β1E[Y |X ]

2. Derive identification function

E[(β0 + β1X − Y )|F ] = 0

3. Apply GMM-estimator with instruments W = (1,X )
4. Test H0: β0 = 0 ∧ β1 = 1

discussion
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