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Introduction



Motivation

Panel models in microeconometrics typically include fixed effects
to control for unobserved heterogeneity.

Fixed effects models are pervasive in applied econometrics.

In nonlinear panel models with small T :

1. Identification of common parameters is model-specific
2. If they are identified, partial effects may not be
3. If they are, they are restricted to be time-invariant

We identify common parameters and time-varying partial effects in a
large class of models.



Model
We study the fixed effects linear transformation (FELT) model:

Yit = ht (αi + Xitβ − Uit) , (1)

Uit |αi ,Xi
d= F (u|αi ,Xi ), (2)

where

I transformation function ht is
I known, parametrized, or unknown
I time-varying
I weakly monotone

I dependent variable Yit can be continuous or discrete
I fixed effects: correlation αi with Xi is unrestricted
I error terms Uit can be logistic or nonparametric



Because ht can have flat parts and jumps, this model nests many
panel models that are important for empirical practice:

I linear ht(x) = x + λt
I binary choice ht = 1{x ≥ λt}
I ordered choice ht =

∑
j 1{x ≥ γjt}

I censored regression
I duration models
I (Box-Cox) transformation models
I nonlinear DiD
I . . .

and we consider their extensions to time-varying link functions



Contributions

1. Identification of common parameters (β, ht)
I general solution to the incidental parameter problem

2. Identification of distribution of counterfactual outcomes
I yields a menu of partial effects
I distribution of counterfactual outcomes in nonlinear DiD

3. Estimation of β and ht
I
√
n−consistent and AN

I Exception: nonparametric U and discrete Y

Our results require two time periods T = 2.



Literature

Incidental parameter problem

I model specific solutions (Chamberlain, 1980; Hausman et al.,
1984; long list)

I parametric models (Lancaster, 2002; Bonhomme, 2012)
I continuous outcomes via Kotlarski’s lemma (Evdokimov, 2011;

Freyberger, 2017)
I random effects/large-T (Arellano and Alvarez, 2003; Hahn and

Kuersteiner, 2004; long list

Our solution: nonparametric (ht ,F ), T = 2, fixed effects.



Partial effects in panel models

I Linear model with random coefficients:
I Chamberlain, 1992; Graham, Hahn, Powell, 2009; Graham and

Powell, 2012

I Nonlinear models, using time homogeneity
I Chernozhukov et al., 2013: discrete outcomes
I Hoderlein and White, 2012; Chernozhukov et al., 2015:

continuous outcomes

I Nonlinear models, ID entire structure
I Altonji and Matzkin, 2005: exchangeability, time invariance
I Evdokimov, 2011; Freyberger, 2017: stronger conditions on the

error term and unobserved heterogeneity, and T ≥ 3.

Our solution: Nonlinear models with discrete/continuous
outcomes, time-varying transformation function, using only T = 2.
We do not need the entire structure for partial effects.



Transformation models

I Cross-sectional transformation models (Horowitz, 1996; Chen,
2002; Chiappori, Komunjer, Kristensen, 2015)

I Closest papers on panel transformation model:

time var. weak mono. β ht
Abrevaya (1999)

√
×

√
×

Abrevaya (2000) ×
√ √

×
This paper

√ √ √ √

I Extended to allow for censoring (Khan and Tamer, 2007; Chen,
2010).

Our contribution: identification of ht and partial effects.



Identification of common parameters



Model

Drop the i subscripts, and set T = 2. Then FELT has:

Y ∗t = α + Xtβ − Ut , (3)
Yt = ht(Y ∗t ), (4)
Ut |α,X ∼ Ft(u|α,X ), (5)

where Y ∗t is the latent outcome variable at time t.

Going forward, denote

I the supports of Yt , Y ∗t , Xt by Y ⊆ R,Y* = R, and X ⊆ RK ,
I Y = (Y ′1,Y ′2)

′
,

I X = (X ′1,X ′2)
′
.



First result: identification of the common parameters

(β, h1, h2).

Key assumption:

Assumption 1. [Weak monotonicity] For each t, the
transformation function ht : Y* → Y is unknown, non-decreasing,
and right continuous.



Proof sketch

Step 1. For an arbitrary pair (y1, y2) ∈ Y2, β and

h−2 (y2)− h−1 (y1)

are identified.



In the fixed effects binary choice model:
Yit = 1{αi + Xitβ − Uit ≥ γt},

(β, γ2 − γ1) are identified.



Compare the outcome equation for FELT:

Yit = ht (αi + Xitβ − Uit)



For each time period t, pick a point yt on the vertical axis, and set

Dt = 1{Yt ≥ yt}.

This transformed outcome follows a FE binary choice model:

Dt = 1{Yt ≥ yt}
= 1{ht(α + Xtβ − Ut) ≥ yt}
= 1{α + Xtβ − Ut ≥ h−t (yt)},

where h−t denotes the generalized inverse of ht .



Identification of (β, h−2 (y2)− h−1 (y1)) follows by modifying existing
results for binary choice. End of step 1.



Step 2. Use 1 normalization to fix h−1 (y0) = 0. (Don’t need one in
other time periods.)

Consider all pairs {(y0, y2), y2 ∈ Y} to trace out

h−2 (y2) = h−2 (y2)− 0 = h−2 (y2)− h−1 (y0).



















Step 3. Recall the normalization h−1 (y0) = 0.

h−1 (y1) = h−1 (y1)− h−1 (y0)
= (h−1 (y1)− h−2 (y ′0)) + (h−2 (y ′0)− h−1 (y0))

and both terms were identified in step 1. Trace out h−1 by
considering the pairs {(y1, y ′0), y1 ∈ Y}.

The functions ht are identified from h−t because of monotonicity.
End of proof sketch.



Nonparametric errors

We provide identification and estimation results for two non-nested
cases:

1. Non-parametric errors (a la Manski)
2. Logistic errors (a la Chamberlain)



The assumptions on the error terms and regressors in the first model
are as in Manski (1987).

Assumption 2. (i) F1(u|α,X ) = F2(u|α,X ) ≡ F (u|α,X ) for all
(α,X ); (ii) The support of F (u|α,X ) is R for all (α,X ) .

Define W = (∆X ,−1).

Assumption 3. [Covariates] (i) The distribution of ∆X is such that
at least one component of ∆X has positive Lebesgue density on R
conditional on all the other components of ∆X with probability one.
The corresponding component of β is non-zero; (ii) The support of
W is not contained in any proper linear subspace of RK+1.



We also require the following two normalizations.

Assumption 4. [Normalization-β] For any (y1, y2) ∈ Y2,

θ (y1, y2) ∈ Θ = B × R, where B =
{
β : β ∈ RK , ‖β‖ = 1

}
.

Assumption 5. [Normalization-h1] For some y0 ∈ Y, h−1 (y0) = 0.



Recall that W = (∆X ,−1). Denote its associated coefficient under
transformation (y1, y2) by θ(y1, y2) = (β, h−2 (y2)− h−1 (y1)).

Theorem 1. Suppose that (Y ,X ) follows the FELT model, and let
the distribution of (Y ,X ) be observed. Let Assumptions 1, 2, 3,
and 4 hold. Then, for an arbitrary pair (y1, y2) ∈ Y2, θ (y1, y2) is
identified. With Assumption 5, the transformation functions h1 (·)
and h2 (·) are identified.



Proof step 1

For an arbitrary y ∈ Y, define the binary random variable

Dt (y) ≡ 1 {Yt ≥ y} .

Lemma 1. Suppose that (Y ,X ) follows the FELT model equations.
Let Assumptions 1 and 2 hold. Then for all (y1, y2) ∈ Y2,

med (D2 (y2)− D1 (y1) |X , D1 (y1) + D2 (y2) = 1)

= sgn
(

∆Xβ −
(

(h−2 (y2)− h−1 (y1))
))

≡ sgn (W θ (y1, y2)) ,

where ∆X ≡ X2 − X1.



Proof Lemma 1. Abbreviate Dt = Dt(yt), and define
D ≡ D1 + D2 and D = (D1,D2).

Note that

P(Dt = 1|X , α) = P(Yt ≥ yt |X , α)
= P(α + Xtβ − Ut ≥ h−t (yt)|X , α)
= F (α + Xtβ − h−t (yt)|X , α).

Then . . .



med
(
D2 − D1|X , D = 1

)
= sgn

(
P
(
D = (0, 1) |X , D = 1

)
− P

(
D = (1, 0) |X , D = 1

))
= sgn

P
(
D = (0, 1) , D = 1|X

)
P(D = 1|X )

−
P
(
D = (1, 0) , D = 1|X

)
P(D = 1|X )


= sgn

(
P
(
D = (0, 1) , D = 1|X

)
− P

(
D = (1, 0) , D = 1|X

))
= sgn (P (D = (0, 1) |X )− P (D = (1, 0) |X ))
= sgn (P (D2 = 1|X )− P (D1 = 1|X ))

= sgn
(

∆Xβ −
(
h−2 (y2)− h−1 (y1)

))
.

Remainder of the proof of Step 1 is similar to Manski (1985). The
proof of the other steps are as in the proof sketch.



Logistic errors

Replace the previous assumptions on (U1,U2,X ) by

Assumption 6. [Logit] (i)

F1(u|α,X ) = F2 (u|α,X ) = Λ (u) = exp (u)
1 + exp (u) ,

and U1 and U2 are independent; (ii) E (W ′W ) is invertible.

This obtains a logit version of the previous result:

Theorem 3. Suppose that (Y ,X ) follow the FELT model
equations, and let the distribution of (Y ,X ) be observed. Let
Assumptions 1 and 6 hold. Then θ (y1, y2) is identified for any
(y1, y2) ∈ Y2. With Assumption 5, the transformation functions
h1 (·) and h2 (·) are identified.



Proof:

First, the following Lemma establishes that D̄ = D1(y1) + D2(y2) is
sufficient for the fixed effect.

Lemma 2. Suppose that (Y ,X ) follows the FELT model equations.
Let Assumptions 1 and 6 hold. Then for all (y1, y2) ∈ Y2,

P(D2(y2) = 1|D = 1,X , α) = Λ(∆Xβ − (h−2 (y2)− h−1 (y1))
≡ Λ(W θ(y1, y2)).

Proof Lemma 2 modifies those for FE BC logit.



1. Denote

p(X , y1, y2) ≡ P(D2(y2) = 1|D = 1,X )

and note that it is identified from the distribution of (Y ,X ).
2. Identification of θ(y1, y2) follows from manipulating the

expression in Lemma 2 and invertibility of E (W ′W ):

θ(y1, y2) = [E (W ′W )]−1E (W ′Λ−1(p(X , y1, y2))).

3. Identification of (h1, h2) is as in the nonparametric case.

End of proof.



So far. . .

We have set up a general class of panel models with

Yt = ht(α + Xtβ − Ut)

and obtained identification of (β, h1, h2) under two distinct sets of
assumptions on the errors.



Identification of time-varying partial effects



Problem
Fixed effects and partial effects don’t mix well.
Example. In the FE binary choice model,

Yit = 0⇒ αi + Xitβ − Uit < λt .



Identification of (β, λt) does not pin down the magnitude of the
effect of X , because αi or its (conditional) distribution is not
identified with T = 2.



Solution

We show that identification of the common parameters (β, ht) is
sufficient for (partial) identification of the distribution of
counterfactual outcomes

P(Yt(x) ≤ y |X ),

where
Yt(x) = ht(α + xβ − Ut).



Intuition behind formal result.

First, assume invertibility of ht . The observed outcome can be
turned into the latent variable which can be turned into a
counterfactual outcome:

Yit(x) = ht(α + xβ − Ut)
= ht(α + Xitβ − Ut + (x − Xit)β)
= ht(h−1

t (Yit) + (x − Xit)β)



Second, if ht is not invertible (discrete or censored outcomes),
we can still obtain bounds:

Yit(x) ≥ ht(h−t (Yit) + (x − Xit)β),
Yit(x) ≤ ht(h+

t (Yit) + (x − Xit)β),

where h+ denotes the right-inverse.





Third, observations from other time periods are informative:

Yit(x) = ht(α + xβ − Uit)
d= ht(α + xβ − Uis)
= ht(α + Xisβ − Uis + (x − Xis)β)
= ht(h−1

s (Yis) + (x − Xis)β),

where d= denotes equality in distribution conditional on Xi .

This is particularly useful when outcomes are discrete, since
Yit ∈ {minY,maxY} leads to uninformative bounds.



Result

Corollary 1. Let the conditions of Theorem 1 or 3 hold. Then, for
s, t ∈ {1, 2} ,

max
s

Ls (x , y ;β, hs , ht)

≤ P (Yt (x) ≤ y |X = x)
≤ min

s
Us (x , y ;β, hs , ht) ,

where

Ls (x , y ;β, hs , ht) ≡ P
(
Ys ≤ hs

(
h−t (y) + (Xs − x)β

)∣∣X = x
)
,

Us (x , y ;β, hs , ht) ≡ P
(
Ys ≤ hs

(
h+

t (y) + (Xs − x)β
)∣∣X = x

)
.



Proof.

Formalize the intuition above, at the population level. For
s, t ∈ {1, 2} ,

P (Yt (x) ≤ y |α,X ) = P (ht (α + xβ − Ut) ≤ y |α,X )
d= P (ht (α + xβ − Us) ≤ y |α,X )
≥ P

(
α + xβ − Us ≤ h−t (y)

∣∣α,X)
= P

(
α + Xsβ − Us ≤ h−t (y) + (Xs − x)β

∣∣α,X)
= P

(
Ys ≤ hs

(
h−t (y) + (Xs − x)β

)∣∣α,X) .
Complete the proof by

1. obtaining the upper bound using the right inverse,
2. integrating out wrt α|X
3. taking the minimum/maximum across s, conditional on X .



Remarks:

1. Bounds are more informative for larger |Y|
2. Bounds are more informative for larger T
3. Counterfactual distributions lead to results for

P
(
Yt (x) ≤ y |X ∈ X

)
,

marginal effects, or . . .
4. Useful in a difference-in-differences setting



Estimation



Overview

Errors Outcome Estimator Rate

Logistic composite CMLE
√
n

Nonparametric continuous two-step rank
√
n

Nonparametric discrete maximum score n1/3

1. Results are uniform over compact subsets.
2. Results: see paper.
3. We recommend composite CMLE for applied practice, and

use it in the simulations below.



The CMLE is

θ̂n (y1, y2) = argmaxθ∈RK+1
1
n

n∑
i=1

li (θ, y1, y2) ,

based on the conditional log-likelihood contribution li (θ, y1, y2):

Di (y1, y2) [Di2(y2) ln Λ (Wiθ) + (1− Di2(y2)) ln (1− Λ (Wiθ))] ,

with information matrix J(y1, y2).

Theorem 7. Under the identification conditions for logit FELT and
a random sampling assumption

√
n
(
θ̂ (y1, y2)− θ0 (y1, y2)

) d→ N
(
0, J−1 (y1, y2)

)
as n→∞.



For discrete outcomes, the CMLEs can be combined into estimators
for (β, h1, h2). For continuous outcomes, we need a functional
CLT.

Assumption 9. (i) E ‖∆Xi‖2+ε <∞ for some ε > 0; (ii) the
conditional density fYt (y |∆Xi = x) , t = 1, 2, exists, and it is
bounded and uniformly continuous in y , uniformly in x over the
support of ∆Xi ; (iii) ht is continuous for each t = 1, 2.

Theorem 8. Assume that the conditions for Theorem 7 hold, and
let Assumption 8 hold. Then

√
n
(
θ̂ (·)− θ (·)

)
⇒ z (·) in `∞

([
y , y

]2)
as n→∞ where z (·) is a Gaussian process with covariance
function Σ

(
y1, y2, y

′
1, y

′
2

)
.



With that result in hand, we analyze the behavior of the composite
CMLE, which maximizes:

l̃i
(
β, h−2 (·) , h−1 (·)

)
=
∫

[y ,y]

∫
[y ,y]

w (y1, y2) li (θ, y1, y2) dy1dy2,

which imposes the equality constrainst.

I See paper for details.
I w = 1 works well!



Nonlinear DiD



Literature

Few papers on nonlinear difference-in-differences:

I Discrete and continuous outcomes: Athey and Imbens
(2006) - CiC

I Continuous outcomes: Bonhomme and Sauder (2011) and
D’Haultfoeuille et al. (2015).

I Quantile difference-in-differences: Callaway and Li (2017).



Our contribution

Identification:

I distribution of counterfactual outcomes of treated
I accommodates both continuous and discrete outcomes
I extends CiC to continuous outcomes with censoring, and to

discrete outcomes with fixed effects
I applies to panel data only

Estimation:

I easy to implement
I
√
n−consistent and asymptotically normal

I trivial to include regressors



Model

Standard setup

I Before (t = 1) and after (t = 2)
I Treated (S1 = 0,S2 = 1) and control (S1 = S2 = 0)
I Potential outcomes

I in absence of treatment: Yt(0)
I under treatment: Yt(1)

I Observed outcome: Yt = StYt(1) + (1− St)Yt(0)



Control outcomes follow FELT.

Yt (0) = ht (α + Xtβ − Ut (0))

Ut (0)|α,X d= F

Parameter of interest:

Distribution of the counterfactual outcome for the treated,

τ (y ;X ) = P (Y2 (0) ≤ y |X ,S1 = 0,S2 = 1) .

Can be turned into ATT.



Corollary 2. The bounds on the distribution of counterfactual
outcomes are given by:

P
(
Ỹ l

2 (0) ≤ y |X ,S1 = 0, S2 = 1
)

≤τ (y ;X )

≤P
(
Ỹ u

2 (0) ≤ y |X ,S1 = 0, S2 = 1
)

where

Ỹ l
2 (0) ≡ h2

(
h−1 (Y1) + (X2 − X1)β

)
Ỹ u

2 (0) ≡ h2
(
h+

1 (Y1) + (X2 − X1)β
)

Subtract the time period 1 time trend, adjust the covariates, add
the period 2 time trend.



Linear DiD predicts

E (Y2(0)|treated) = E (Y1(0)|treated) + control time trend.



Simulations

Control group. Potential outcomes Yit (0) follow FELT with

h1 (y∗) = y∗

h2 (y∗) = Φ
(y∗ − 1

0.5

)

In particular

Yi1 = Yi1 (0) = αi + Xi1β − Ui1 (0)

Yi2 = Yi2 (0) = Φ
(
αi + Xi2β − Ui2 (0)− 1

0.5

)



I F (u|αi ,Xi ) logistic
I Xit ∼ N (0, 1)
I αi ∼ N (0, 1) + 1

2 (Xi1 + Xi2)
I β = 1
I n = 500,S = 1000.
I Discretize Y: 12 points at quantiles of Yt (for h−1

t )

Result for β̂: bias
(
β̂
)

= 0.01, RMSE
(
β̂
)

= 0.1
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Treatment group

Heterogeneous treatment effects through γi :

Yi1 = Yi1 (0) = αi + Xi1β − Ui1 (0) = h1 (y∗)

Yi2 (0) = Φ
(
αi + Xi2β − Ui2 (0)− 1

σ

)
Yi2 (1) = Φ

(
αi + Xi2β − Ui2 (1) + γi − 1

σ

)
αi ∼ N (µ, 1) + 1

2 (Xi0 + Xi1)

µ = 1 > 0,
σ = 0.5
γi ∼ N (1, 1)



Comparison with linear DiD

I Panel regression for DiD

Yit = αi + δt + Xitβ + τSit + εit

I Design is difficult for linear DiD:
I nonlinearity in h2
I location shift in Y ∗

it (αi has mean µ = 1 > 0)

I Run S = 1000, ncontrol = ntreat = 500.

Results:

I True ATT = 0.1403.
I DID τ̂ = −0.7126
I FELT ÂTT = 0.1412



Design (0): benchmark design described above.

Design (1): as (0) but with 6 points of discretization.

I FELT estimate of h2 worse, increased ATT bias.

Design (2): σ = 0.25 (steeper h2)

I relative performance unchanged.

Design (3): µ = 0 (same cdf of y∗ for treated and control)

I DiD gets the trend despite the (not-so-severe) nonlinearity

Design (4): h2 (y∗) = y∗ (standard DiD framework)

I DiD consistent, and outperforms FELT



Design β ATT
DiD FELT

S 100b rmse true 100b rmse 100b rmse
(0) 1000 1.00 0.10 0.14 -85.00 0.15 0.08 0.03
(1) 1000 1.14 0.10 -85.00 0.15 5.83 0.04
(2) 100 1.75 0.10 -87.00 0.15 0.50 0.03
(3) 100 1.56 0.10 0.15 -2.39 0.15 -0.19 0.03
(4) 100 1.57 0.10 1.00 -1.49 0.13 -3.90 0.18



Conclusion



Conclusion

We consider the class of FELT models with fixed-T and:

I provide a general solution to the incidental parameter
problem.

I existing solutions are model-specific or likelihood-based.

I show identification of distribution of counterfactual
outcomes at time t

I current fixed-T results rely on time-homogeneity.

I extend our results to FELT with RC; apply our results to
nonlinear DiD

I provide estimators, parametric rate and AN
I except for nonparametric discrete



Extensions: Random coefficients
Consider the extension to random coefficients.

Yit = ht(αi + Xitβ + Zitγi − Uit).

Assume that

I ht is invertible
I Uit |αi ,Xit ,Zit ∼ LOG(0, 1)

Then

P(Dit(yt) = 1|D̄i = 1,Xi ,Zi ,∆Zi = 0) = Λ(∆Xiβ−(h−1
2 (y2)−h−1

1 (y1)))

and we can use the tools in this paper to identify ht , β. Then

h−1
t (Yit)− Xitβ = αi + Zitγi − Uit

and we can use the tools in Graham and Powell (2012) to obtain
partial effects.
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