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Motivation



Motivation

The foreign or domestic Euler equation is given by

E [Mf Rf ] = 1 = E [MdRd ]

In complete markets and with consumption SDFs

X = ln(Mf /Md)

= γ (∆cd −∆cf )

Many puzzles:

1. Volatility puzzle: σ(x) << γσ(∆cd −∆cf ) [Brandt et al. ’06].

2. Cyclicality puzzle: corr(x ,∆cd −∆cf ) ≈ 0 [Backus & Smith ’93].

3. Forward premium anomaly [Hansen & Hodrick ’80, Fama ’84]:

E [x ]− (rf 0 − rd0) >> 0 ⇐⇒ rf 0 − rd0 << 0 .

Systematic deviations from UIP, not explained by cross-sectional

differences in consumption volatility.
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What can we do?

We can change SDF Mi in complete markets:

• Long-run risk (Colacito & Croce (2011, 2013, etc.)), habit

(Verdelhan (2010) & Stathopoulos (2017)), rare disasters (Farhi and

Gabaix (2016)), etc.

We can introduce some incompleteness:

• Corsetti, Dedola, & Leduc (2008), Benigno & Thoenissen (2008),

Lustig & Verdelhan (2016), Favilukis & Garlappi (2017)

Or we can bring in some form of market segmentation/limited

participation:

• Chien, Lustig, & Naknoi (2015), Dou & Verdelhan (2015), Gabaix &

Maggiori (2016).
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What we do

• Let the data choose the “optimal” SDF using asset prices in an

incomplete markets setting.

• Only condition we impose is no-arbitrage.

• Look at different degrees of market segmentation by varying the

menu of assets foreign and domestic investors can trade.

We then ask

• What are the properties of these SDFs? → Highly correlated

permanent SDF components

• What does market segmentation buy us? → More realistic SDFs

(less volatile)

• Can we link our SDFs to observables? → Financial intermediary

wealth/VaR constraints
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Theory



Complete Markets and Symmetry

• When markets are complete, domestic and foreign SDFs are uniquely

defined.

• In integrated markets, the Euler pricing restrictions uniquely pin

down the exchange rate return as the ratio between foreign and

domestic SDFs:

X = Mf /Md ,

i.e. the asset market view holds.

• International financial markets are called symmetric whenever

span(Rd) = span(Rf X ), where span(Rd) (span(Rf X )) is the linear

span of portfolio returns generated by domestic returns (foreign

returns converted in domestic currency).
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Degrees of Financial Market Integration

Rf 0 Rf∞ Rf 1Rd1 Rd∞ Rd0
−→
1/X

←−
X

Full Symmetry = No Market Segmentation

Domestic Tradable Returns Foreign Tradable Returns
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Degrees of Financial Market Integration

Rf 0 Rf∞ Rf 1Rd1 Rd∞ Rd0
−→
1/X

←−
X

Asymmetry = Segmented Long-Term Bond and Stock Markets

Domestic Tradable Returns Foreign Tradable Returns
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Minimum Dispersion SDFs in Incomplete Markets

• Suppose markets are incomplete.

• Return vector Ri = (Ri0, . . . ,RiKi )
′ with risk-free rate Ri0

for market i = d , f .

• For fixed α ∈ R, the minimum dispersion SDF Mi solves:

Mi (α) := arg min
Mi

log E [(Mi/E [Mi ])
α]

α(α− 1)
,

s.t. E [MiRi ] = 1 ; Mi > 0 .

(1)

→ Different choices of α correspond to different dispersion measures.
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Closed-Form Minimum Dispersion SDFs

Proposition 1

The minimum dispersion SDF is given in closed-form by

M?
i (α) = R

−1/(1−α)
λ∗
i

/E [R
−α/(1−α)
λ∗
i

] , (2)

where optimal return Rλ∗
i

=
∑Ki

k=1 λ
∗
ikRik + (1−

∑Ki

k=1 λ
∗
ik)Ri0 solves the

(dual) maximization problem

Rλ∗
i

= arg max
λi

−
log E

[
R
α/(α−1)
λi

]
α

,

s.t. Rλi > 0 .

(3)

• Simple empirical estimation with method of moments.

• Various minimum dispersion SDF bounds in incomplete markets.
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Examples

1. Minimum variance SDF (α = 2): tightest upper bound on the

maximal Sharpe ratio and single tradable minimum dispersion SDF:

Mi (2) = Rλ∗
i
/E (R2

λ∗
i
) .

2. Minimum entropy SDF (α = 0): optimal growth portfolio and

single numéraire invariant minimum dispersion SDF:

Mi (0) = R−1λ∗
i
.
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Numéraire Invariance in Incomplete Markets

Remember that in symmetric and complete markets

X = Mf /Md

But what about incomplete markets?

Backus, Foresi and Telmer (2001)

posit that in this case:

X = (Mf /Md) exp(η)

We show

Proposition 2

Let international financial markets be symmetric but incomplete and

αd = αf =: α. It then follows:

(i) The asset market view of exchange rates holds with respect to

minimum entropy SDFs (α = 0): X = M∗f (0)/M∗d (0).

(ii) The asset market view of exchange rates does not hold with respect

to minimum dispersion SDFs different from minimum entropy SDFs:

X 6= M∗f (α)/M∗d (α) for α 6= 0.
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SDF Components

• We factorize SDFs into permanent and transitory components:

Mi = MP
i M

T
i .

• In line with Alvarez and Jermann (2005), we identify the permanent

component with the normalization: E [MP
i ] = 1.

• The transitory component is the inverse of the return of the infinite

maturity bond: MT
i := 1/Ri,∞.

• Exchange rate changes are now determined by:

X =
Mf

Md
exp(η) =

MP
f

MP
d

Rd,∞

Rf ,∞
exp(η).
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Why Market Segmentation?

X = Mf /Md

• Asset market view forces SDFs to be very highly correlated.

• We show that this holds under symmetry both in complete and

incomplete markets!

⇒ Market incompleteness does not help us to lower the co-movement of

SDFs internationally!

• Market segmentation buys us less volatile SDFs which can

co-move less.
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Empirical Analysis



Data

1. Real monthly returns, from Jan 1975 to Dec 2015:

• Ri0 (1M LIBOR), Ri∞ (10Y gov. bond return) and

Ri1 (MSCI country index stock return).

• 1 domestic currency (USD) and

7 foreign currencies (GBP, CHF, JPY, EUR, AUD, CAD, NZD).

• Exchange rate returns X in terms of USD prices of foreign currencies.

2. Allow investors to trade all assets (full symmetry) and only

short-term bond (asymmetry = segmented long-term bond and

equity markets).

• FS: Ri = (Ri0,Ri1,Ri∞,Re
i0,R

e
i∞,Re

i1)
′, where Re

dk,t+1 := Rfk,t+1Xt+1

(Re
fk,t+1 := Rdk,t+1(1/Xt+1)), k = {0,∞, 1}.

• AS: Rd = (Rd0,Rd1,Rd∞,Re
d0)

′, where Re
d0,t+1 := Rf 0,t+1Xt+1 and

Rf = (Rf 0,Rf 1,Rf∞,Re
f 0)

′, where Re
f 0,t+1 := Rd0,t+1(1/Xt+1).
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Full Symmetry

Rf 0 Rf∞ Rf 1Rd1 Rd∞ Rd0
−→
1/X

←−
X

15



Properties of SDFs

US UK US CH US JP US EU US AU US CA US NZ

E[Mi ] 0.982 0.973 0.982 0.990 0.982 0.991 0.982 0.980 0.982 0.966 0.982 0.973 0.982 0.956

Std(Mi ) 0.841 0.872 0.979 0.926 0.740 0.694 0.690 0.681 0.919 0.951 0.726 0.720 0.639 0.557

corr(Mi ,Mj) 0.992 0.989 0.989 0.985 0.992 0.994 0.981

• Standard deviation of SDFs is large and clearly exceeds maximum

Sharpe ratio in each country.

• Correlation among SDFs is almost perfect.
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Std(Mi ) 0.841 0.872 0.979 0.926 0.740 0.694 0.690 0.681 0.919 0.951 0.726 0.720 0.639 0.557

Std(MT
i ) 0.120 0.122 0.120 0.061 0.120 0.091 0.120 0.068 0.120 0.107 0.120 0.111 0.120 0.091

Std(MP
i ) 0.917 0.948 1.048 0.951 0.814 0.707 0.774 0.725 1.029 1.065 0.823 0.827 0.681 0.625

corr(MT
i ,MP

i ) -0.454 -0.498 -0.407 -0.233 -0.519 -0.155 -0.549 -0.502 -0.411 -0.636 -0.506 -0.607 -0.317 -0.634

corr(Mi ,Mj) 0.992 0.989 0.989 0.985 0.992 0.994 0.981

• Standard deviation of SDFs is large and clearly exceeds maximum

Sharpe ratio in each country.

• Correlation among SDFs is almost perfect.

• In line with Alvarez and Jermann (2005), variability of SDFs is

dominated by the permanent component.
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The Three Puzzles

• By construction, all risk premia are matched and in particular,

currency risk premia are perfectly matched.

UIP violation X

• The large SDF comovement is related to the low volatility puzzle of

Brandt, Cochrane, and Santa-Clara (2006).

• Recall that

Xt+1
Rf∞,t+1

Rd∞,t+1
=

MP
f ,t+1

MP
d,t+1

exp(ηt+1)

• The low volatility of the LHS is obtained if

1. wedges and permanent component ratios are not too volatile

2. wedges and permanent component ratios are strongly negatively

correlated

3. a combination of 1. and 2.
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Wedge Summary Statistics (Unrestricted Trading)

Minimum Variance

E[η] Std(η) Sk(η) K(η)

UK -0.007 0.059 -0.259 11.62

CH -0.019 0.120 -6.146 68.40

JP -0.009 0.083 -4.483 36.18

EU 0.000 0.064 -1.130 11.47

AU 0.005 0.075 2.110 24.82

CA -0.001 0.034 -0.538 5.772

NZ -0.031 0.216 -15.61 268.3

⇒ Wedge dispersion is clearly smaller than SDF volatility.
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Correlation of Permanent Components

UK CH JP EU AU CA NZ

α = 0 0.972∗∗∗ 0.984∗∗∗ 0.981∗∗∗ 0.978∗∗∗ 0.987∗∗∗ 0.976∗∗∗ 0.968∗∗∗

[0.019] [0.007] [0.004] [0.007] [0.006] [0.005] [0.006]

α = 2 0.968∗∗∗ 0.982∗∗∗ 0.977∗∗∗ 0.974∗∗∗ 0.98∗∗∗ 0.973∗∗∗ 0.965∗∗∗

[0.009] [0.003] [0.004] [0.006] [0.005] [0.004] [0.005]

• Almost perfect correlation among permanent components.

• Minimum dispersion SDFs are highly correlated and disperse due to

their highly correlated and disperse permanent components.

• Low volatility driven by high correlation of permanent components:

Low vol puzzle X
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Backus and Smith (1993) Puzzle

mf ,t+1 −md,t+1 = δ + βxt+1 + ut+1,

mU
f ,t+1 −mU

d,t+1 = δU + βUxt+1 + uUt+1, U = T ,P,

US/UK

α = 0 α = 2

β 1.000∗∗∗ 1.022∗∗∗

[0.000] [0.0261]

βP 1.085∗∗∗ 1.065∗∗∗

[0.068] [0.0742]

βT -0.084 -0.084

[0.068] [0.068]

⇒ Estimates for permanent component basically = 1 but estimates for

transitory component zero and insignificant.

Backus & Smith puzzle X
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Three Puzzles Summary

Three puzzles can be jointly addressed in an economy with unrestricted

trading

• Martingale components are highly volatile and almost perfectly

correlated while

• Differences in transitory components are uncorrelated with changes

in real exchange rate.

• BUT...

CHF EUR GBP JPY USD AUD CAD NZD
0

0.5

1
SR
Disp
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Segmented Long-Term Bond and Stock Markets

Rf 0 Rf∞ Rf 1Rd1 Rd∞ Rd0
−→
1/X
←−
X

22



Trading in Short-Term Bonds Only

• To lower SDF dispersion, we allow investors to trade only short-term

bonds internationally.

• Currency risk premia are still matched.

• SDF dispersion drops considerably between 40% (Switzerland) and

50% (New Zealand).

• Deviation from AMV implies more volatile wedge

Minimum Entropy Minimum Variance

E[η] Std(η) Sk(η) K(η) E[η] Std(η) Sk(η) K(η)

UK 0.003 0.636 -0.646 13.55 0.042 0.814 1.074 9.239

CH -0.006 0.682 -0.367 6.270 -0.021 0.826 -0.019 3.724

JP -0.123 0.545 1.446 8.938 -0.149 0.612 -0.259 5.417

EU -0.048 0.439 0.265 4.026 -0.059 0.517 -0.554 5.011

AU 0.104 0.581 -0.181 5.573 0.129 0.716 1.051 6.714

CA -0.036 0.490 0.148 9.963 -0.040 0.561 0.305 5.082

NZ -0.020 0.413 0.362 4.556 -0.029 0.442 0.178 3.834
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What does market segmentation buy us?
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Financial Intermediary Wealth



Intermediation in the FX Market

• Market for FX is highly intermediated and concentrated.

rank bank mrkt share cumulative

1 Citibank 10.74%

2 JP Morgan 10.34% 21.08%

3 UBS 7.56% 28.64%

4 Bank of America 6.73% 35.37%

5 Deutsche Bank 5.68% 41.05%

6 HSBC 4.99% 46.04%

7 Barclays 4.69% 50.73%

8 Goldman Sachs 4.43% 55.16%

9 Standard Chartered 4.26% 59.42%

10 BNP Paribas 3.73% 63.15%

• Is also concentrated across currencies: the first two most traded pairs

(USDEUR & USDJPY) account for 40% of the total market share.
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SDFs and Financial Intermediary Wealth
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Financial Intermediaries in Segmented Markets

Simplified version of Gabaix and Maggiori (2016).

FINANCIER

HOUSEHOLD CH HOUSEHOLD US

trade in goods

trade in bonds

trade in bonds
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Intermediary SDF

• Intermediary maximizes her wealth subject to a Value-at-Risk

constraint:

max
Qt

Et [Vt+1]

s.t. Pt(Vt+1 ≤ −εt) ≤ ct ,
(4)

where εt is the Value-at-Risk of next period financier’s wealth for

confidence level ct .

• In this case, the intermediary SDF is linear in wealth.

• We can run linear regressions to test this relationship in the data.
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SDFs and Financial Intermediary Wealth

Mt+1 = α + βk ∆intermediary wealtht+1 + βv ∆VIXt+1 + εt+1

USDGBP USDCHF USDJPY USDEUR USDAUD USDCAD USDNZD

α 1.550∗∗∗ 2.086∗∗∗ 0.744∗∗∗ 1.169∗∗∗ 1.116∗∗∗ 0.697∗∗∗ 0.799

(11.08) (8.57) (3.27) (7.59) (4.15) (5.48) (1.44)

βk −0.949∗∗∗ −1.587∗∗∗ -0.054 −0.437∗∗∗ -0.559 -0.153 -0.101

(-6.31) (-5.63) (-0.12) (-2.43) (-1.60) (-0.72) (-0.12)

βv 0.395∗∗∗ 0.497∗∗∗ 0.306∗∗∗ 0.264∗∗ 0.438∗∗∗ 0.450∗∗∗ 0.298∗∗∗

(5.43) (3.03) (5.17) (2.36) (2.96) (5.25) (3.56)

R-Squared 0.46 0.35 0.09 0.24 0.20 0.31 0.04

• SDFs load negatively on intermediary wealth

• SDFs load positively on VIX
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Conclusion

• The three exchange rate puzzles are addressed by SDFs with high

permanent components when short-term bonds are internationally

tradable.

• However, under perfect symmetry, this comes at the cost of highly

disperse SDFs. Market segmentation lowers the dispersion.

• Successful models should therefore consist of two ingredients:

1. Large and positively correlated martingale components

2. Mild market segmentation.

• Models that incorporate financial intermediaries seem promising.

Thank you!
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Appendix



Stochastic Wedges

Corollary 1

In symmetric international financial markets, the AMV holds with respect

to minimum entropy SDFs:

X =
Mf (0)

Md(0)
=

Mf (2)

Md(2)
· Mf (0)/Mf (2)

Md(0)/Md(2)
=:

Mf (2)

Md(2)
· exp (η) ,

with a minimum variance Backus et al. ’01 stochastic wedge given by:

η = ln(Mf (0)/Mf (2))− ln(Md(0)/Md(2)).

• The stochastic wedge captures unspanned exchange rate risks induced by

the component of minimum entropy SDFs that cannot be replicated using

asset returns.

• Exchange rates are larger:

⇒ due to mean-variance trade-off between domestic and foreign

markets.

⇒ due to higher moment trade-off.
31



Summary Statistics

CHF EUR GBP JPY USD AUD CAD NZD

Panel A: Bonds

1M 2.81 4.33 7.39 2.61 5.36 8.25 6.31 6.68

10Y 1.79 2.26 3.23 2.31 1.91 2.19 2.04 3.94

Panel B: Excess stock returns

Mean 7.39 6.89 6.23 3.49 7.08 5.71 5.15 0.84

Std 15.42 20.08 16.99 18.31 15.71 17.76 16.77 18.23

SR 48 34 37 19 45 32 31 5

Panel C: Exchange rates

Mean 2.96 0.03 -0.65 2.85 -0.86 -0.48 0.76

Std 12.12 10.56 10.20 11.32 10.93 6.78 11.92

Panel D: Inflation

Mean 1.76 2.22 4.74 1.57 3.69 4.83 3.71 5.57

Std 1.24 1.60 2.12 1.78 1.28 1.22 1.45 1.71
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Wedge Cyclicality

corr(η,mi ) SE corr(η,mP
i ) SE corr(η,mT

i ) SE

US 0.658∗∗∗ [0.039] 0.651∗∗∗ [0.039] -0.356∗∗∗ [0.049]

UK -0.617∗∗∗ [0.052] -0.602∗∗∗ [0.057] 0.338∗∗∗ [0.053]

US 0.541∗∗∗ [0.026] 0.569∗∗∗ [0.029] -0.431∗∗∗ [0.038]

CH -0.594∗∗∗ [0.051] -0.585∗∗∗ [0.053] 0.077 [0.054]

US 0.728∗∗∗ [0.039] 0.759∗∗∗ [0.042] -0.532∗∗∗ [0.058]

JP -0.201∗∗∗ [0.054] -0.200∗∗∗ [0.056] -0.029 [0.061]

US 0.552∗∗∗ [0.047] 0.546∗∗∗ [0.050] -0.273∗∗∗ [0.058]

EU -0.296∗∗∗ [0.084] -0.324∗∗∗ [0.909] 0.402∗∗∗ [0.052]

US 0.523∗∗∗ [0.031] 0.441∗∗∗ [0.040] 0.278∗∗∗ [0.039]

NZ -0.465∗∗∗ [0.075] -0.508∗∗∗ [0.071] 0.606∗∗∗ [0.057]
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SDF Components

Two issues when decomposing SDFs into transitory and permanent

components:

1. Hansen and Scheinkman (2009): Alvarez and Jermann (2005)

decomposition is not necessarily unique. It is, however, unique when

state variables are stationary. Extensions to semi-martingales in Qin

and Linetsky (2017).

2. Ten-year bond may be a bad approximation for the infinite maturity

bond.

We estimate transitory and permanent components of the

Perron-Frobenius problem. Given the eigenvector ρ and eigenfunction φ,

the permanent and transitory components can be recovered as follows:

MP
t+τ

MP
t

= ρ−τ
Mt+τ

Mt

φ(Xt+τ )

φ(Xt)
,

MT
t+τ

MT
t

= ρτ
φ(Xt)

φ(Xt+τ )
. (5)
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Table 1: Properties of SDFs

components (Nonparametric

estimates)

USDGBP USDCHF USDJPY USDEUR USDAUD USDCAD USDNZD

Std(MP
d ) 0.786 0.970 0.725 0.683 0.907 0.660 0.601

Std(MT
d ) 0.126 0.065 0.057 0.039 0.143 0.140 0.112

All results remain the same when we use non-parametrically estimated

transitory and permanent components.
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