THE CUTOFF STRUCTURE OF TOP TRADING CYCLES IN SCHOOL CHOICE

Jacob Leshno & Irene Lo (Columbia University)

TOPTRADING CYCLES FOR SCHOOL CHOICE

- School Choice: Assigning students to schools
 - Allow students to choose schools
 - Account for siblings, neighborhood status
- ► Top Trading Cycles (TTC) is an attractive mechanism
 - Pareto efficient and strategy-proof for students
 - Policy lever: school priorities can guide the allocation
- ► But TTC is rarely used
 - Difficult to assess how changes in input (priorities and preferences)
 affect the TTC allocation

THE CUTOFF STRUCTURE OF TTC

- Characterizing the TTC assignment
 - ► TTC assignment given by n^2 admissions cutoffs
- Calculating the TTC cutoffs
 - Solve for sequential trade by looking at trade balance equations
 - ► TTC cutoffs are solutions to a differential equation
- Structure of the TTC assignment
 - Comparative statics
 - Welfare comparisons with other school choice mechanisms
 - Designing TTC priorities

RELATED LITERATURE

- School choice theory and practice
 - Abdulkadiroğlu & Sönmez (2003)
 - Abdulkadiroğlu, Pathak, Roth, Sönmez (2005), Abdulkadiroğlu,
 Pathak, Roth (2009), Pathak & Shi (2017), Pathak & Sönmez (2013)
- Cutoff representations of school choice mechanisms
 - Abdulkadiroğlu, Angrist, Narita, Pathak (2017), Agarwal & Somaini (2017), Kapor, Neilson, Zimmerman (2016)
 - Azevedo & Leshno (2016), Ashlagi & Shi (2015)
- Characterizations of TTC mechanism
 - Shapley & Scarf (1973), attributed to David Gale
 - Abdulkadiroğlu, Che & Tercieux (2010), Morrill (2013),
 Abdulkadiroğlu et al.(2017), Dur & Morrill (2017)

School Priorities		
1	2	3
S_1	s_2	s_5
S_2	S_4	<i>S</i> ₇
S_3	s_6	S_9
:	:	:
S_7	S_1	S_1

Step I:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

Step I:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

Step 1:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

Step *k*:

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

Step *k*:

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

Step *k*:

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

CHARACTERIZING THE TTC ASSIGNMENT

SCHOOL CHOICE MODEL

- Finite number of students $\theta = (>^{\theta}, r^{\theta})$
 - Student θ has preferences $>^{\theta}$ over schools
 - $r_c^{\theta} \in [0,1]$ is the rank of student θ at school c (percentile in c's priority list)
- Finite number of schools c
 - School c can admit q_c students
 - \rightarrow $>^c$ a strict ranking over students

SCHOOL CHOICE VISUALIZATION

Student θ_1

- prefers I to 2
- highly ranked at I
- highly ranked at 2

Student θ_2

- prefers 2 to 1
- · highly ranked at I
- poorly ranked at 2

EXAMPLE

Rank at school 1

- 2/3 students prefer school 1
- Ranks are uniformly i.i.d. across schools
- $q_1 = q_2$

EXAMPLE – TTC ASSIGNMENT

Rank at school 1

- Assigned to school 1
- Assigned to school 2
- Unassigned

EXAMPLE – TTC ASSIGNMENT

Rank at school 1

- Assigned to school 1
- Assigned to school 2
- Unassigned

TTC ASSIGNMENT VIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\{p_h^c\}$ where:

• Each student θ has a budget set

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^{c}\}$$

Students assigned to their favorite school in their budget set

$$\mu(\theta) = \max_{>\theta} (B(\mathbf{p}, \theta))$$

Interpretation: p_b^c is the minimal priority at school b that allows trading a seat at school b for a seat at school c

EXAMPLE – ASSIGNMENT VIA CUTOFFS

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^{c}\}$$

- Budget set {1,2}
- Budget set {2}

EXAMPLE – ASSIGNMENT VIA CUTOFFS

 $B_1(\theta, \boldsymbol{p})$: Budget set from rank at school 1

$$B(p, \theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^{c}\}$$

- Budget set {1,2}
- Budget set {2}

EXAMPLE – ASSIGNMENT VIA CUTOFFS

$$\mu(\theta) = \max_{>\theta} (B(p, \theta))$$

- Assigned to school 1
- Assigned to school 2
- Unassigned

GENERAL STRUCTURE OF CUTOFFS

There is a renaming of the schools such that

Each student's budget set is

$$C^{(\ell)} = \{\ell, \dots, n\}$$

The cutoffs are ordered

$$p_c^1 \ge p_c^2 \ge \dots \ge p_c^c = p_c^d$$

for all c < d

$$p_c^c$$
 p_c^{c-1} p_c^2 p_c^1 $\mathcal{C}^{(2)}$ $\mathcal{C}^{(1)}$ $\mathcal{C}^{(2)}$

CALCULATING TTC CUTOFFS

CONTINUUM MODEL

- ▶ Finite number of schools $c \in C = \{1, ..., n\}$
 - School c can admit a mass q_c of students

- Measure η specifying a distribution of a continuous mass of students
 - A student $\theta \in \Theta$ is given by $\theta = (>^{\theta}, r^{\theta})$
 - Student θ has preferences $>^{\theta}$ over schools
 - $r_c^{\theta} \in [0,1]$ is the student's rank at school c (percentile in c priority list)

TTC ASSIGNMENT VIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\{p_h^c\}$ where:

• Each student θ has a budget set

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^{c}\}$$

Students assigned to their favorite school in their budget set

$$\mu(\theta) = \max_{>\theta} (B(\mathbf{p}, \theta))$$

Cutoffs p_b^c are the solutions to a differential equation

CALCULATING TTC CUTOFFS

Theorem.

The TTC cutoffs $\{p_b^c\}$ are given by

$$p_b^c = \gamma_b(t^{(c)})$$

where γ satisfies the marginal trade balance equations

$$\sum_{a \in C} \gamma_a'(t) H_a^c(\gamma(t)) = \sum_{a \in C} \gamma_c'(t) H_c^a(\gamma(t)) \ \forall t, c.$$

 $H_b^c(x)$ is the marginal density of students who have rank $\leq x$, are top ranked at school b and most prefer school c.

TRADE BALANCE EQUATIONS

$$\begin{cases}
\text{Students} \\
\text{assigned to } c \\
\text{by time } t
\end{cases} =
\begin{cases}
\text{Students} \\
\text{who traded } c \\
\text{by time } t
\end{cases}$$
for all times t .

- Necessary condition for aggregate trade
- Equivalent to the differential equation $\gamma'(t) = d(\gamma(t))$, where $\gamma_c(t)$ is the rank of students pointed to by school c at time t.
- \triangleright γ is the TTC path

$$\gamma_2'(t)(density\ of\ 1 > 2) = \gamma_1'(t)(density\ of\ 2 > 1)$$

$$\gamma_2'(t)(density\ of\ 1 > 2) = \gamma_1'(t)(density\ of\ 2 > 1)$$

CAPACITY EQUATIONS

Stopping times $t^{(c)}$

$$t^{(c)} = min \left\{ t: \# \begin{cases} \text{Students} \\ \text{assigned to } c \\ \text{by time } t \end{cases} \ge q_c \right\}$$

- Necessary condition for market clearing
- Equivalent to equations involving $\gamma(t^{(c)})$

CALCULATING TTC CUTOFFS

Theorem.

The TTC assignment is given by computing cutoffs $\{p_b^c\}$

$$p_b^c = \gamma_b(t^{(c)})$$

where γ satisfies the marginal trade balance equations, and assigning students to their favorite school in their budget set

$$B(p,\theta) = \{c \mid \exists b \text{ s.t. } r_b^{\theta} \ge p_b^{c}\}$$
$$\mu(\theta) = \max_{>\theta} (B(p,\theta)).$$

- Closed form solutions, comparative statics
- Admissions probabilities

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1 = q_2$

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1=q_2$

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1=q_2$

• Marginal trade balance equations given valid gradient:

$$\gamma'(t) = d(\gamma(t))$$

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1=q_2$

• TTC path γ with initial condition $\gamma(0) = 1$ and satisfying $\sum_{a \in C} \gamma_a'(t) H_a^c(\gamma(t)) = \sum_{a \in C} \gamma_c'(t) H_c^a(\gamma(t))$

EXAMPLE: CALCULATING TTC CUTOFFS

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_1=q_2$

- TTC path γ indicates the run of TTC
- Cutoffs p are the points at which schools reach capacity

EXAMPLE: CALCULATING TTC CUTOFFS

Valid gradient

$$d(x) = -\begin{bmatrix} \frac{x_1}{x_1 + 2x_2} & \frac{2x_2}{x_1 + 2x_2} \end{bmatrix}$$
 (d(·) balances marginal densities)

► TTC path

$$\gamma(t) = \left(t^{1/3}, t^{2/3}\right) \qquad (\gamma'(t) = d(\gamma(t)))$$

► TTC cutoffs

$$p^{1} = \left((1 - 3q_{1})^{1/3}, \left((1 - 3q_{1})^{2/3} \right) \right) \quad (p_{b}^{c} = \gamma_{b}(t^{(c)}))$$

TRADE BALANCE IS SUFFICIENT

- Trade balance of gradient is mathematically equivalent to stationarity of a Markov chain
 - ▶ schools ⇔ states
 - transition probability $p_{bc} \Leftrightarrow$ mass of students b points to, who want c
 - ► trade balance ⇔ stationarity
- Unique solution within each communicating class
- Different solutions yield the same allocation
 - Multiplicity only because of disjoint trade cycles
 - Different paths clear the same cycles at different rates

CONTINUUM TTC GENERALIZES DISCRETE TTC

► Trade Balance Uniquely Determines the Allocation

 Differential equation and TTC path may not be unique, but all give the same allocation

Consistent with Discrete TTC

- Can naturally embed discrete TTC in the continuum model
- The continuum embedding gives the same allocation as TTC in the discrete model

Convergence

If two distributions of students have full support and total variation distance ε , then the TTC allocations differ on a set of students of measure $O(\varepsilon|\mathcal{C}|^2)$.

APPLICATIONS

COMPARATIVE STATICS

Effect of marginal increase in desirability of school 2

COMPARATIVE STATICS - WELFARE

n schools, MNL utility model (McFadden 1973):

Student preferences given by MNL utility model:

$$\mathbf{u_s}(c) = \delta_c + \varepsilon_{sc}$$
 quality idiosyncratic match value

- $ightharpoonup \delta_c$ is invested quality, $\varepsilon_{ heta c}$ is mean 0 random EV iid
- Random priority, independent for each school
- Constraints on total quality
- ▶ What are the welfare maximizing quality levels $\sum_c \delta_c \leq N$?

COMPARATIVE STATICS - WELFARE

Effects of increasing school quality on student welfare: (under MNL model, for n=2 and $\delta_1/q_1>\delta_2/q_2$)

$$\frac{dSW}{d\delta_1} = q_1 - q_1 e^{\delta_2 - \delta_1} \ln(1 + e^{\delta_1 - \delta_2})$$
Direct Indirect effect from

changes in budget sets

- Directly improves welfare of those who stay at the school
- Indirectly affects welfare through changing the allocation

effect

TTC WELFARE GIVEN n=2, $\delta_1+\delta_2=2$

COMPARING TTC & DA, $q_1 = q_2 = \frac{3}{8}$

COMPARING TTC & DA, $q_1 = \frac{1}{2}, q_2 = \frac{1}{4}$

DESIGNING TTC PRIORITIES

- Symmetric economy with two schools
 - Equal capacities
 - Student equally likely to prefer either
 - priorities are uniformly random iid
- Consider changing the ranking of students with

$$r_c^{\theta} \ge m$$
 for both $c = 1,2$

TTC PRIORITIES ARE "BOSSY"

- The change affects the allocation of other students
- Changed students have the same assignment

CONCLUSIONS

- Cutoff description of TTC
 - $\rightarrow n^2$ admissions cutoffs
- Tractable framework for analyzing TTC
 - Trade balance equations
 - TTC cutoffs are a solution to a differential equation
 - Can give closed form expressions
- Structure of the TTC assignment
 - Equalizing school popularity leads to more efficient sorting on horizontal preferences
 - Welfare comparisons
 - TTC priorities are "bossy"

Thank you!