THE CUTOFF STRUCTURE OF TOP TRADING CYCLES IN SCHOOL CHOICE

Jacob Leshno \& Irene Lo (Columbia University)

ASSA Annual Meeting, Philadelphia PA, January 2018

TOPTRADING CYCLES FOR SCHOOL CHOICE

- School Choice: Assigning students to schools
- Allow students to choose schools
- Account for siblings, neighborhood status
- Top Trading Cycles (TTC) is an attractive mechanism
- Pareto efficient and strategy-proof for students
- Policy lever: school priorities can guide the allocation
- But TTC is rarely used
- Difficult to assess how changes in input (priorities and preferences) affect the TTC allocation

THE CUTOFF STRUCTURE OFTTC

- Characterizing the TTC assignment
- TTC assignment given by n^{2} admissions cutoffs
- Calculating the TTC cutoffs
- Solve for sequential trade by looking at trade balance equations
- TTC cutoffs are solutions to a differential equation
- Structure of the TTC assignment
- Comparative statics
- Welfare comparisons with other school choice mechanisms
- Designing TTC priorities

RELATED LITERATURE

- School choice - theory and practice
- Abdulkadiroğlu \& Sönmez (2003)
- Abdulkadiroğlu, Pathak, Roth, Sönmez (2005),Abdulkadiroğlu, Pathak, Roth (2009), Pathak \& Shi (20I7), Pathak \& Sönmez (20I3)
- Cutoff representations of school choice mechanisms
- Abdulkadiroğlu,Angrist, Narita, Pathak (20I7),Agarwal \& Somaini (20I7), Kapor, Neilson, Zimmerman (2016)
- Azevedo \& Leshno (2016), Ashlagi \& Shi (2015)
- Characterizations of TTC mechanism
- Shapley \& Scarf (1973), attributed to David Gale
- Abdulkadiroğlu, Che \& Tercieux (20I0), Morrill (2013), Abdulkadiroğlu et al.(2017), Dur \& Morrill (2017)

THETTC ALGORITHM

School Priorities		
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
s_{1}	s_{2}	s_{5}
s_{2}	s_{4}	s_{7}
s_{3}	s_{6}	s_{9}
\vdots	\vdots	\vdots
s_{7}	s_{1}	s_{1}

Step I:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

THETTC ALGORITHM

School Priorities

Step I:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

THETTC ALGORITHM

School Priorities	
$1 \rightarrow 2$	3
${ }_{s_{1}}{ }^{\text {d }}$	${ }_{5} \rightarrow 3$
$s_{2} \quad s_{4}$	S_{7}
$s_{3} \quad s_{6}$	S_{8}
$\vdots \quad \vdots$	\vdots
$s_{7} \quad s_{1}$	s_{1}

Step I:

- Schools point to their favorite student
- Students point to their favorite school
- Choose a cycle, assign included students to their favorite school.

THETTC ALGORITHM

School Priorities

Step k :

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

THETTC ALGORITHM

School Priorities		
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$s_{1} \rightarrow \mathbf{2}$	$s_{2} \rightarrow \mathbf{1}$	s_{5}
s_{2}	s_{4}	s_{7}
s_{3}	s_{6}	s_{8}
\vdots	\vdots	\vdots
s_{7}	s_{1}	s_{1}

Step k :

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

THETTC ALGORITHM

School Priorities

Step k :

- Schools point to their favorite remaining student
- Students point to their favorite remaining school
- Choose a cycle, assign included students to their favorite school.

CHARACTERIZING THE TTC ASSIGNMENT

SCHOOL CHOICE MODEL

- Finite number of students $\theta=\left(\succ^{\theta}, r^{\theta}\right)$
- Student θ has preferences $>^{\theta}$ over schools
- $r_{c}^{\theta} \in[0,1]$ is the rank of student θ at school c (percentile in c's priority list)
- Finite number of schools c
- School c can admit q_{c} students
- \succ^{c} a strict ranking over students

SCHOOL CHOICE VISUALIZATION

Student θ_{1}

- prefers I to 2
- highly ranked at I
- highly ranked at 2

Student θ_{2}

- prefers 2 to I
- highly ranked at I
- poorly ranked at 2

EXAMPLE

Rank at school 1

- 2/3 students prefer school 1
- Ranks are uniformly i.i.d. across schools
${ }^{-} q_{1}=q_{2}$

EXAMPLE -TTC ASSIGNMENT

Rank at school 1

Assigned to school 1

Assigned to school 2

Unassigned

EXAMPLE -TTC ASSIGNMENT

Rank at school 1

Assigned to school 1

Assigned to school 2

Unassigned

TTC ASSIGNMENTVIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\left\{p_{b}^{c}\right\}$ where:

- Each student θ has a budget set

$$
B(p, \theta)=\left\{c \mid \exists b \text { s.t. } r_{b}^{\theta} \geq p_{b}^{c}\right\}
$$

- Students assigned to their favorite school in their budget set

$$
\mu(\theta)=\max _{\succ \theta}(B(p, \theta))
$$

Interpretation: p_{b}^{c} is the minimal priority at school b that allows trading a seat at school b for a seat at school c

EXAMPLE - ASSIGNMENTVIA CUTOFFS

$$
B(p, \theta)=\left\{c \mid \exists b \text { s.t. } r_{b}^{\theta} \geq p_{b}^{c}\right\}
$$

Budget set
\{1,2\}

Budget set
\{2\}

EXAMPLE - ASSIGNMENTVIA CUTOFFS

EXAMPLE - ASSIGNMENTVIA CUTOFFS

$$
\mu(\theta)=\max _{\succ \theta}(B(p, \theta))
$$

Assigned to school 1

Assigned to school 2
\square Unassigned

Rank at school 1

GENERAL STRUCTURE OF CUTOFFS

There is a renaming of the schools such that

- Each student's budget set is

$$
C^{(\ell)}=\{\ell, \ldots, n\}
$$

- The cutoffs are ordered

$$
p_{c}^{1} \geq p_{c}^{2} \geq \cdots \geq p_{c}^{c}=p_{c}^{d}
$$

for all $c<d$

CALCULATING TTC CUTOFFS

CONTINUUM MODEL

- Finite number of schools $c \in C=\{1, \ldots, n\}$
- School c can admit a mass q_{c} of students
- Measure η specifying a distribution of a continuous mass of students
- A student $\theta \in \Theta$ is given by $\theta=\left(\succ^{\theta}, r^{\theta}\right)$
- Student θ has preferences $>^{\theta}$ over schools
- $r_{c}^{\theta} \in[0,1]$ is the student's rank at school c (percentile in c priority list)

TTC ASSIGNMENTVIA CUTOFFS

Theorem.

The TTC assignment is given by cutoffs $\left\{p_{b}^{c}\right\}$ where:

- Each student θ has a budget set

$$
B(p, \theta)=\left\{c \mid \exists b \text { s.t. } r_{b}^{\theta} \geq p_{b}^{c}\right\}
$$

- Students assigned to their favorite school in their budget set

$$
\mu(\theta)=\max _{\succ \theta}(B(p, \theta))
$$

Cutoffs p_{b}^{c} are the solutions to a differential equation

CALCULATING TTC CUTOFFS

Theorem.

The TTC cutoffs $\left\{p_{b}^{c}\right\}$ are given by

$$
p_{b}^{c}=\gamma_{b}\left(t^{(c)}\right)
$$

where γ satisfies the marginal trade balance equations

$$
\sum_{a \in C} \gamma_{a}^{\prime}(t) H_{a}^{c}(\gamma(t))=\sum_{a \in C} \gamma_{c}^{\prime}(t) H_{c}^{a}(\gamma(t)) \forall t, c .
$$

$H_{b}^{c}(x)$ is the marginal density of students who have rank $\leq x$, are top ranked at school b and most prefer school c.

TRADE BALANCE EQUATIONS

$\#\left\{\begin{array}{c}\text { Students } \\ \text { assigned to } c \\ \text { by time } t\end{array}\right\}=\#\left\{\begin{array}{c}\text { Students } \\ \text { who traded } c \\ \text { by time } t\end{array}\right\}$
for all times t.

- Necessary condition for aggregate trade
- Equivalent to the differential equation $\gamma^{\prime}(t)=d(\gamma(t))$, where $\gamma_{c}(t)$ is the rank of students pointed to by school c at time t.
- γ is the TTC path

TRADE BALANCE - VISUALIZATION

$\gamma_{c}(t)$: Rank of students pointed to by school c at time t

TRADE BALANCE - VISUALIZATION

$\gamma_{c}(t)$: Rank of students pointed to by school c at time t

TRADE BALANCE - VISUALIZATION

$\gamma_{c}(t)$: Rank of students pointed to by school c at time t

$$
\gamma_{2}^{\prime}(t)(\text { density of } 1 \succ 2)=\gamma_{1}^{\prime}(t)(\text { density of } 2 \succ 1)
$$

Assigned
students

\square| Unassigned |
| :---: |
| students |

1st Offered
2nd students

TRADE BALANCE -VISUALIZATION

$\gamma_{c}(t)$: Rank of students pointed to by school c at time t

$$
\gamma_{2}^{\prime}(t)(\text { density of } 1 \succ 2)=\gamma_{1}^{\prime}(t)(\text { density of } 2 \succ 1)
$$

CAPACITY EQUATIONS

Stopping times $\boldsymbol{t}^{(c)}$

$$
t^{(c)} \quad=\quad \min \left\{t: \#\left\{\begin{array}{c}
\text { Students } \\
\text { assigned to } c \\
\text { by time } t
\end{array}\right\} \geq q_{c}\right\}
$$

- Necessary condition for market clearing
- Equivalent to equations involving $\gamma\left(t^{(c)}\right)$

CALCULATING TTC CUTOFFS

Theorem.

The TTC assignment is given by computing cutoffs $\left\{p_{b}^{c}\right\}$

$$
p_{b}^{c}=\gamma_{b}\left(t^{(c)}\right)
$$

where γ satisfies the marginal trade balance equations, and assigning students to their favorite school in their budget set

$$
\begin{gathered}
B(p, \theta)=\left\{c \mid \exists b \text { s.t. } r_{b}^{\theta} \geq p_{b}^{c}\right\} \\
\mu(\theta)=\max _{>\theta}(B(p, \theta)) .
\end{gathered}
$$

- Closed form solutions, comparative statics
- Admissions probabilities

EXAMPLE: CALCULATING TTC CUTOFFS

2/3 of students prefer school 1, ranks are uniformly i.i.d. across schools, $q_{1}=q_{2}$

EXAMPLE: CALCULATING TTC CUTOFFS

$2 / 3$ of students prefer school 1 , ranks are uniformly i.i.d. across schools, $q_{1}=q_{2}$

EXAMPLE: CALCULATING TTC CUTOFFS

$2 / 3$ of students prefer school 1 , ranks are uniformly i.i.d. across schools, $q_{1}=q_{2}$

- Marginal trade balance equations given valid gradient:

$$
\gamma^{\prime}(t)=d(\gamma(t))
$$

EXAMPLE: CALCULATING TTC CUTOFFS

$2 / 3$ of students prefer school 1 , ranks are uniformly i.i.d. across schools, $q_{1}=q_{2}$

- TTC path γ with initial condition $\gamma(0)=\mathbf{1}$ and satisfying

$$
\sum_{a \in C} \gamma_{a}^{\prime}(t) H_{a}^{c}(\gamma(t))=\sum_{a \in C} \gamma_{c}^{\prime}(t) H_{c}^{a}(\gamma(t))
$$

EXAMPLE: CALCULATING TTC CUTOFFS

$2 / 3$ of students prefer school 1 , ranks are uniformly i.i.d. across schools, $q_{1}=q_{2}$

- TTC path γ indicates the run of TTC
- Cutoffs p are the points at which schools reach capacity

EXAMPLE: CALCULATING TTC CUTOFFS

- Valid gradient

$$
d(x)=-\left[\begin{array}{ll}
\frac{x_{1}}{x_{1}+2 x_{2}} & \frac{2 x_{2}}{x_{1}+2 x_{2}}
\end{array}\right] \quad \begin{array}{r}
(d(\cdot) \text { balances } \\
\text { marginal densities })
\end{array}
$$

- TTC path

$$
\gamma(t)=\left(t^{1 / 3}, t^{2 / 3}\right) \quad\left(\gamma^{\prime}(t)=d(\gamma(t))\right)
$$

- TTC cutoffs

$$
p^{1}=\left(\left(1-3 q_{1}\right)^{1 / 3},\left(\left(1-3 q_{1}\right)^{2 / 3}\right)\right) \quad\left(p_{b}^{c}=\gamma_{b}\left(t^{(c)}\right)\right)
$$

TRADE BALANCE IS SUFFICIENT

- Trade balance of gradient is mathematically equivalent to stationarity of a Markov chain
- schools \Leftrightarrow states
- transition probability $p_{b c} \Leftrightarrow$ mass of students b points to, who want c
- trade balance \Leftrightarrow stationarity
- Unique solution within each communicating class
- Different solutions yield the same allocation
- Multiplicity only because of disjoint trade cycles
- Different paths clear the same cycles at different rates

CONTINUUMTTC GENERALIZES DISCRETETTC

- Trade Balance Uniquely Determines the Allocation
- Differential equation and TTC path may not be unique, but all give the same allocation
- Consistent with Discrete TTC
- Can naturally embed discrete TTC in the continuum model
- The continuum embedding gives the same allocation as TTC in the discrete model
- Convergence
- If two distributions of students have full support and total variation distance ε, then the TTC allocations differ on a set of students of measure $O\left(\varepsilon|C|^{2}\right)$.

APPLICATIONS

COMPARATIVE STATICS

Effect of marginal increase in desirability of school 2

COMPARATIVE STATICS -WELFARE

\boldsymbol{n} schools, MNL utility model (McFadden I973):

- Student preferences given by MNL utility model:

$$
\mathrm{u}_{\mathrm{s}}(c)=\delta_{c}+\varepsilon_{S c}
$$

- δ_{c} is invested quality, $\varepsilon_{\theta c}$ is mean 0 random EV iid
- Random priority, independent for each school
- Constraints on total quality
- What are the welfare maximizing quality levels $\sum_{c} \delta_{c} \leq N$?

COMPARATIVE STATICS -WELFARE

Effects of increasing school quality on student welfare:

 (under MNL model, for $n=2$ and $\delta_{1} / q_{1}>\delta^{\delta} / q_{2}$)$$
\frac{d S W}{d \delta_{1}}=\underbrace{q_{1}}_{\begin{array}{c}
\text { Direct } \\
\text { effect }
\end{array}}-\underbrace{q_{1} e^{\delta_{2}-\delta_{1}} \ln \left(1+e^{\delta_{1}-\delta_{2}}\right)}_{\begin{array}{c}
\text { Indirect effect from } \\
\text { changes in budget sets }
\end{array}}
$$

- Directly improves welfare of those who stay at the school
- Indirectly affects welfare through changing the allocation

TTCWELFARE GIVEN $\mathrm{n}=2, \delta_{1}+\delta_{2}=2$

COMPARING TTC \& DA, $q_{1}=q_{2}=\frac{3}{8}$

	$\delta_{1}=\delta_{2}=1$, OPT	$\delta_{1}=2, \delta_{2}=0$	$\delta_{1}-\delta_{2}$
TTC			
DA	${ }^{(12)}$ ${ }^{(122)}$ ϕ ${ }^{(1)}$ $1+(1 / 3) \ln (2)$ $\underline{1.23 *}$		

COMPARING TTC \& DA, $q_{1}=\frac{1}{2}, q_{2}=\frac{1}{4}$

	$\delta_{1}=\delta_{2}=1$	opt	$\delta_{1}-\delta_{2}$
TTC			
DA			

DESIGNING TTC PRIORITIES

- Symmetric economy with two schools
- Equal capacities
- Student equally likely to prefer either
- priorities are uniformly random iid
- Consider changing the ranking of students with
 $r_{c}^{\theta} \geq m$ for both $c=1,2$

TTC PRIORITIES ARE "BOSSY"

- The change affects the allocation of other students
- Changed students have the same assignment

CONCLUSIONS

- Cutoff description of TTC
- n^{2} admissions cutoffs
- Tractable framework for analyzing TTC
- Trade balance equations
- TTC cutoffs are a solution to a differential equation
- Can give closed form expressions
- Structure of the TTC assignment
- Equalizing school popularity leads to more efficient sorting on horizontal preferences
- Welfare comparisons
- TTC priorities are"bossy"

Thank you!

