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This Talk is Based on

ACS Boragan Aruoba, Pablo Cuba-Borda, and F. Schorfheide (2018): “Solution and Estimation
of Approximately Piecewise-Linear DSGE Models,” research in progress.

HS Ed Herbst and F. Schorfheide (2018): “Tempered Particle Filtering,” Journal of
Econometrics, forthcoming.
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Introduction

@ Nonlinear State-Space Model
Measurement Eq. @ y; = V(s;, t;0) + vy, up ~ Fy(-;0)
State Transition : sy = ®(si_1,€1;0), € ~ F(;0).

@ Objects of interest:

o Estimates of states: p(st|Y1:,0)

o Likelihood function: p(Y1:7|0) = [1._, p(ye| Yi:t—1,6).
@ Construct numerical approximation by particle filtering (sequential Monte Carlo).

o In DSGE models with occasionally-binding constraints one can often approximate
®(-) by a piecewise linear function.
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Particle Filtering — Idea

o Represent distribution p(s;| Y1) by swarm of particles {s!, WJ M, such that

M

1 H i SLLN CLT
o S (W KT Bl () Vi
j=1
o Iteration t, given {s/_,, W{71}jl\i1
@ Mutation: Draw & ~ gi(5|s/_,).
@ Correction: Compute incremental weights and update/normalize weights

) AR ) . o
W = MP(%\?&@L WY o wiW_,.
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© Selection: Resampling.
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Implementations

@ Recall: incremental weights

, AR ,
id = PE) 1)

gt(gt‘si—l

e Bootstrap particle filter (BSPF): gi(3:|s]_;) = p(3:|s]_,).

Conditionally-optimal particle filter (COPF): gt(§t\s{_1) x p(yt|§t)p(§t|s{_1).

e (...)
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Example 1: Linearized Smets-Wouters Model

BS (M = 400, 000) versus CO (M = 4,000)
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Notes: Density estimates of A; = In p(Y|0) — In p(Y|) based on Ny, = 100. Solid densities summarize results
for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO)

particle filter.
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Example 2: Linearized Small-Scale NK DSGE Model

Log Standard Dev of Log-Likelihood Increments
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Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter

(M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based
on Nyun = 100 runs of the filters.
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[HS] A Generic Approach

o “Tempered Particle Filter”

o Construct a sequence “bridge distributions” with inflated measurement errors.

o Traverse these bridge distributions with “static” Sequential Monte Carlo method (Chopin,
2002).

@ This PF has much better statistical properties than the naive bootstrap PF, at little
computational cost.

@ Unlike other versions of the PF, this algorithm is self-tuning and does not require the
researcher to manually construct proposal densities.

@ Some related concurrent work in statistics literature:
Godsill and Clapp (2001), Johansen (2016)
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[HS] The Key Idea

@ Define

pu(yelsen8) o ¢z/2|zu(9)|1/2exp{ (Ve — V(s £:0))

N~

<055 O~ Vs t0)

where:

¢1<¢2<~~~<¢N¢:1~

@ Bridge posteriors given s;_1:

Pn(Selye, Se—1.0) o< pa(yelse, 0)p(se|se—1,0).

@ Bridge posteriors given Yi.;:

pn(5t|Y1:t) :/pn(5t|yt75t—17g)p(st—1|yl:t—1)d5t—l-
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An lllustration [HS]: pn(s¢|Yi:t), n=1,..., N,.

F. Schorfheide Tempered and Conditionally-Optimal Particle Filtering



[HS] Algorithm Overview

@ For each time period t, we embed a “static’” SMC sampler used for parameter estimation
[Chopin (2002), (...), Herbst and Schorfheide (2014, 2015), (...)]:

Iterate over n =1,..., Ny:

o Goal: approximate bridge distributions p,(y:|Y1.t—1) and pn(se| Ya:t).

Correction step: change particle weights (importance sampling)
o Selection step: equalize particle weights (resampling of particles)

o Mutation step: change particle values (based on Markov transition kernel generated with
Metropolis-Hastings algorithm)
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[HS] Log-Likelihood Approx. Errors: Linearized Smets-Wouters Model

BSPF TPF
Number of Particles M 40,000 2,000 2,800
Target Ineff. Ratio r* 2 3
High Posterior Density: 8 = 6™
MSE(A) 63,882 1,164 1,135
T Ny 1 6 5
Average Run Time (sec) 3 3 3
Low Posterior Density: 6 = 6’
MSE(A) 69,613 1,490 1,994
T 1 Ny 1 6 5
Average Run Time (sec) 3 3 3
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[ACS] Conditionally-Optimal Filtering for Piecewise-Linear Approximations

@ Not possible to directly sample from CO proposal in general nonlinear models.

@ However, it can be done in piece-wise linear approximations.
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[ACS] A Small-Scale Model

@ Households:

i clr-1 HYFL/m M
E s t+s _ t+s + vV < t+s )
‘ [;6 < 1-7 XHl +1/n M PtisAt+s

@ Production of intermediate good j:

. 2
Vi) = HG), AGU) = ( o f(lf(i.) - 7-7) Yi(i).

@ Resource constraint: (g; is a generic demand shock):

1
GHAGHG =Y:, G = (1 - ) Ye, logg: = (1—pg)logg™ +pgloggi1+0gcq:

8t

@ Monetary Policy:

) 1—pr
R; = max {1, |:I’7T* (E) 1} Rf’?lef"’ff}
7T*
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[ACS] Approximate Solution

N

o State variables: X = (eg, &, R_1).

@ Policy functions:

T f(X) =2
y o= H(X)=?
e Equilibrium conditions:
FX) = 0
h(X) > 0

@ Construct approximate solution by making policy functions piecewise linear and continuous

(PLC).
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ation (Baseline Model): PLC vs. Linear

Interest Rate Inflation
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ation (Richer Model): PLC vs. Linear vs. Nonlinear

Decision Rule Comparison: Fully Nonlinear vs PLC (d)
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[ACS] Filtering
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Conclusion

@ Structural macroeconometrics faces many computational challenges:

e model solution,
o likelihood computation

o Posterior sampling or maximization of extremum estimator objective function.

@ Potential shortcuts to keep computations fast and feasible:

o less accurate model solution
e cruder state extraction / likelihood approximation

o non-likelihood-based parametrization of the model.

@ In this talk: Slightly less accurate solution enables efficient evaluation of likelihood
function.
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