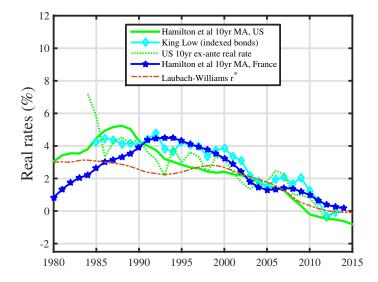
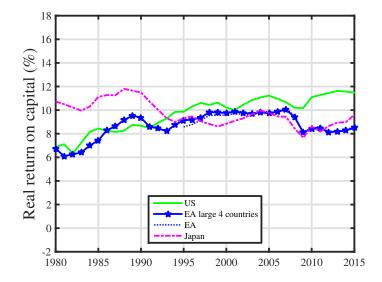
Why Have Interest Rates Fallen Far Below the Return on Capital


> Magali Marx Banque de France Benoît Mojon Banque de France François R. Velde Federal Reserve Bank of Chicago


AEA, Interest Rates and Real Activity, 5 January

The opinions herein do not necessarily represent those of the Banque de France, the Federal Reserve Bank of Chicago, or the Federal Reserve System.

The decrease of real interest rates

Which does not reflect the evolution of capital return

The usual suspects

- Low rates have been loosely tied to "secular stagnation"
- A number of potential explanations have been cited:
 - productivity slowdown
 - changing demographics (population slowdown, increased longevity)
 - change in the price of investment goods
 - tightening of borrowing constraint
 - shortage of safe assets
 - rising inequality

- quantitative assessment of the various factors cited
- embed them in a single, tractable model
- explain both the evolution of capital return and risk-free rate
 - this means having risk, and attitudes toward risk, in the model

Related literature

- low rates: King and Low (2014); Hamilton et al. (2016); Holston et al. (2016); Del Negro et al. (2017)
- safe assets: Coeurdacier et al. (2015); Caballero et al. (2008); Caballero and Farhi (2014)
- deleveraging: Eggertsson and Krugman (2012); Korinek and Simsek (2016); Farhi and Werning (2013)
- secular stagnation: Bean et al. (2015); Rachel and Smith (2015); Ferrero et al. (2017); Borio et al. (2016, 2017)
- demographics: Carvalho et al. (2016); Gagnon et al. (2016)
- risk: Kozlowski et al. (2015); Hall (2016)
- return on capital: Caballero et al. (2017)

The Model

- add risk to Eggertsson and Mehrotra (2014) and Coeurdacier et al. (2015).
- time is discrete, infinite
- 3-period OLG structure (y, m, o)
 - population N_t, growth rate g_L
- recursive preferences with Epstein-Zin-Weil utility function
- capital and labor (supplied inelastically), age-specific productivities $(e^{y}, 1, 0)$
- output $Y = K^{\alpha} (AL)^{1-\alpha}$
 - productivity A: trend growth g_A + shock with variance σ (only source of risk)
 - growth in price of investment g_l

Preferences

Epstein and Zin (1989)-Weil (1990) recursive preferences:

$$V_{t} = U(c_{t}, E_{t}V_{t+1}) = \left(c_{t}^{1-\rho} + \beta \left((E_{t}V_{t+1}^{1-\gamma})^{\frac{1}{1-\gamma}} \right)^{1-\rho} \right)^{\frac{1}{1-\rho}}$$

$$V_{t} = U(c_{t}, E_{t}V_{t+1}) = \left(c_{t}^{1-\rho} + \beta \left((E_{t}V_{t+1}^{1-\gamma})^{\frac{1}{1-\gamma}} \right)^{1-\rho} \right)^{\frac{1}{1-\rho}}$$

CES functional form applied to

- time: $(c_t^{1-\rho} + \beta (\cdot_{t+1})^{1-\rho})^{\frac{1}{1-\rho}}$
 - ρ: inverse of intertemporal elasticity of substitution
- risk: $(E_t V_{t+1}^{1-\gamma})^{\frac{1}{1-\gamma}}$
 - γ: risk aversion
- when $\rho = \gamma$
 - standard time-additive preferences
 - tension between
 - \star high γ required to match asset pricing
 - \star low ho required to match consumption growth with interest rates

Budget constraints

- young borrow from middle-aged up to a fraction θ of their t+1 labor income
 - we focus on equilibria where this binds
 - no other frictions (e.g., price stickiness)
- middle-aged lend to young, buy capital from old, invest
- old collect returns, sell depreciated capital

$$c_t^{y} = b_{t+1}^{y} + w_t e_t^{y}$$

$$b_{t+1}^{y} \le \theta_t E_t(w_{t+1}/R_{t+1})$$

$$c_{t+1}^{m} - b_{t+2}^{m} + p_{t+1}^{k} k_{t+2}^{m} = w_{t+1} - R_{t+1} b_{t+1}^{y}$$

$$c_{t+2}^{o} = (p_{t+2}^{k}(1-\delta) + r_{t+2}^{k}) k_{t+2}^{m} - R_{t+2} b_{t+2}^{m}$$

market-clearing:

$$g_{L,t}b_{t+1}^{y} + b_{t+1}^{m} = 0$$

Production

$$Y_{t} = (N_{t-2}k_{t}^{m})^{\alpha} \left[A_{t}(e_{t}^{y}N_{t} + N_{t-1})\right]^{1-\alpha}$$

N_{t-2}k^m_t: capital (chosen by current old in the previous period)
 e^y_t N_t + N_{t-1}: labor (of young and middle-aged)
 Competitive factor markets:

$$w_t = (1-\alpha)A_t^{1-\alpha}k_t^{\alpha}$$
$$r_t^k = \alpha A_t^{1-\alpha}k_t^{\alpha-1}$$

both written in terms of the capital/labor ratio k_t defined as

$$k_{t} \equiv \frac{N_{t-2}k_{t}^{m}}{e_{t}^{y}N_{t}+N_{t-1}} = \frac{k_{t}^{m}}{g_{L,t-1}(1+e_{t}^{y}g_{L,t})}$$

Solution strategy

- only the middle-aged have an intertemporal problem
 - how much to save
 - in what form: bonds or capital
- write the middle-aged's Euler equation and substitute equilibrium quantities
 - quantity of bonds determined by young's constraint
 - Euler equation also relates risk-free rate R and return to capital R^k
- we derive a law of motion expressed in terms of R or equivalently k

Solution strategy (2)

Middle-aged FOCs:

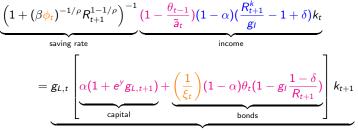
$$(c_t^m)^{-\rho} = \beta \left[E_t (c_{t+1}^o)^{1-\gamma} \right]^{\frac{\gamma-\rho}{1-\gamma}} E_t \left[(c_{t+1}^o)^{-\gamma} R_{t+1}^k \right]$$

$$(c_t^m)^{-\rho} = \beta \left[E_t (c_{t+1}^o)^{1-\gamma} \right]^{\frac{\gamma-\rho}{1-\gamma}} E_t \left[(c_{t+1}^o)^{-\gamma} \right] R_{t+1}.$$

Define $R_{t+1}^m = \alpha_t R_t^k + (1 - \alpha_t) R_{t+1}$ and express budget constraints as

$$W_t = Y_t - c_t^m$$
$$c_{t+1}^o = R_{t+1}^m W_t.$$

Portfolio choice: set α_t so that


$$E_t(R_{t+1}^{m-\gamma})R_{t+1} = E_t\left(R_{t+1}^{m-\gamma}R_{t+1}^k\right)$$

Saving decision:

$$Y_t = \left(1 + \left(\beta\phi_t R_{t+1}^{1-\rho}\right)^{-\frac{1}{\rho}}\right) W_t$$

Then use market clearing to express Y_t , W_t , R_{t+1}^m in term of the aggregate capital stock

Law of motion

investments

- overlapping generations
 - saving only done out of labor income
- borrowing constraint
 - disappears if $\theta = 0$, $e^y = 0$
- risk
 - ϕ_t : precautionary saving, acts like discount factor distortion (≤ 1)
 - $1/\xi_t$: portfolio choice

Risk terms

The factors ϕ_t and ξ_t are

$$\xi_t = \frac{\mathbb{E}_t(u_{t+1}^{-\gamma}\tilde{a}_{t+1})}{\mathbb{E}_t(u_{t+1}^{-\gamma})}$$

$$\phi_t = \left[\mathbb{E}_t u_{t+1}^{1-\gamma}\right]^{(\gamma-\rho)/(1-\gamma)} \mathbb{E}_t u_{t+1}^{-\gamma} v_t^{\rho}$$

with

$$u_{t+1} \equiv \alpha (1 + e^{y} g_{L,t+1}) \tilde{a}_{t+1} + (1 - \alpha) \theta_{t}$$
$$\tilde{a}_{t+1} \equiv \frac{A_{t+1}^{1 - \alpha}}{\mathbb{E}_{t} A_{t+1}^{1 - \alpha}}.$$

only functions of (moments of) the exogenous process A_{t+1}

• when $\delta \neq 1$, ϕ_t involves R_{t+1} as well

to account for risk in a tractable way, we appeal to the concept of "risky steady state":

- exogenous trends as in the data
- productivity shock is assumed i.i.d.
- in the law of motion, \tilde{a}_t set at its mean, \tilde{a}_{t+1} is stochastic
- agents take into account the uncertainty

Risk and borrowing constraint

When $\delta = 1$, $\rho < 1$:

$$\begin{split} \phi_t &\simeq 1 + \frac{1}{2}\gamma(1-\rho)\frac{\alpha^2(1+e^yg_L)^2}{(\alpha(1+e^yg_L)+(1-\alpha)\theta)^2}\sigma^2\\ \frac{1}{\xi_t} &\simeq 1 + \gamma\frac{\alpha(1+e^yg_L)}{\alpha(1+e^yg_L)+(1-\alpha)\theta}\sigma^2 \end{split}$$

Risky steady-state:

$$g_{A}g_{I}^{-\frac{1}{1-\alpha}} = (1+(\phi\beta)^{-\frac{1}{\rho}}R^{1-\frac{1}{\rho}})^{-1} \left[\frac{1-\alpha}{\alpha g_{L}}\frac{R}{g_{I}}\right] \frac{\alpha(1-\theta)}{\alpha(1+e^{y}g_{L})\xi+(1-\alpha)\theta}$$
$$R^{k} = \frac{R}{\xi}$$

Long run determinants

of the bond interest rate r and the return on capital r^{K}

 $\delta = 1$, $\rho = 1$:

- Observable factors
 - productivity growth g_A
 - evolution of working age population g_L
 - trend in investment price g_l
- Unobservable factors
 - borrowing constraint θ
 - variance of the shock on the trend of productivity σ .

Long run determinants

of the bond interest rate r and the return on capital r^{K}

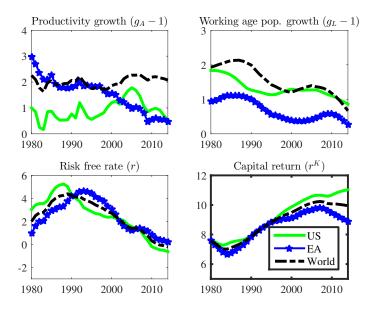
 $\delta = 1$, $\rho = 1$:

- Observable factors
 - productivity growth g_A
 - evolution of working age population g_L
 - trend in investment price g_l
- Unobservable factors
 - borrowing constraint θ
 - variance of the shock on the trend of productivity σ .

$$r = \bar{r} + (g_L - 1) + (g_A - 1) - \frac{\alpha}{1 - \alpha}(g_I - 1) + c\theta + \gamma u(\theta|_{\sigma}, \sigma^2)$$

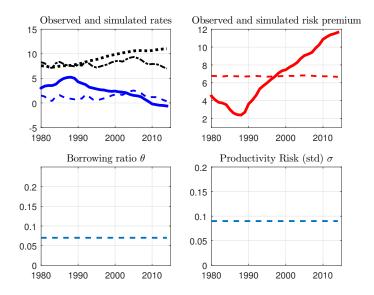
$$r^{\kappa} = r + \gamma v(\theta|_{\sigma}, \sigma^2)$$

The wedge between *r* and *r^K* is only affected by θ and σ

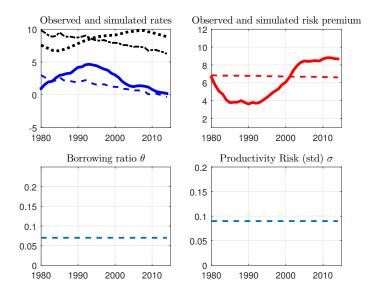

Empirical strategy

- our targets are the risk-free rate and the return on capital
- we segregate the usual suspects into
 - the observables: productivity, demographics, price of investment
 - the "less observables": borrowing constraint, productivity risk
- Three steps:
 - **()** input the observables, set θ and σ constant to match the levels of the targets
 - 2 input the observables, compute θ to match the risk-free rate, keep σ constant
 - \bullet input the observables, compute σ to match the risk-free rate, keep θ constant
 - ${f 0}$ input the observables, compute heta and σ to match both targets
- repeat for US and Euro area (and the world)
- then stare at the pictures...
- caveats
 - we interpret the generations loosely (10-year averages)
 - risk-free rates before the 1980s are less meaningful (financial repression etc), so we focus on 1990s to present

Model calibration and data sources


Parameters		
T	length of period (years)	10
β	discount factor	0.98^{T}
α	capital share	0.28
γ	risk aversion	100
ρ	inverse of IES	0.8
$\rho \\ \delta$	capital depreciation rate	0.1 * <i>T</i>
e ^y	relative productivity of young	0.3
Factors		
gL,t	growth rate of population 20-64	US, EA (France), China, Japan: OECD
gi,t	investment price growth	DiCecio (2009)
gA,t	productivity growth	US: Fernald (2012), Euro: NAWM model
Rt	real interest rate	US: Hamilton et al. (2016), France
R_t^k	return on capital	US, EA: our calculations à la
	-	Gomme et al. (2015)
ã _t	productivity shock	$\ln(\tilde{a})$ is a i.i.d. $N(-\sigma^2/2, \sigma^2)$
Free parameters		
θ	borrowing constraint on young	
σ^2	variance of \tilde{a}_t	

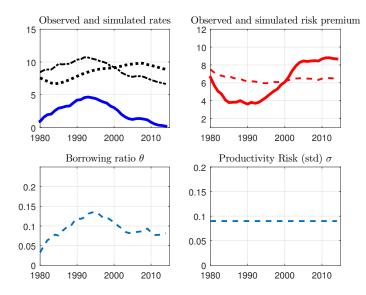
The inputs


Impact of observable factors, in the US

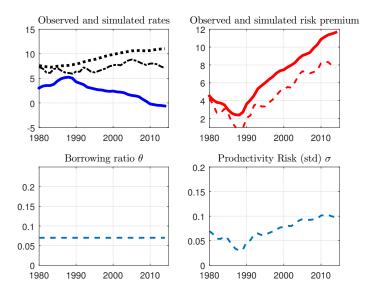
Observable factors explain about 1.4% from 1992 to 2014

Impact of observable factors, in the EA

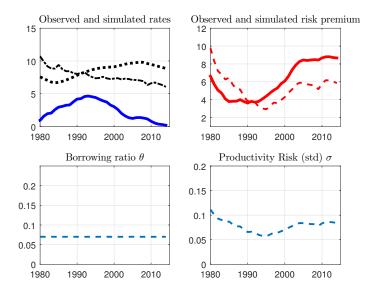
Observable factors explain about 1.8% from 1992 to 2014


Impact of the borrowing constraint, in the US.

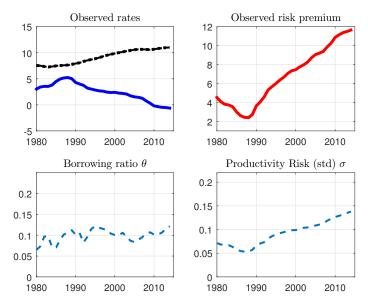
A tighter constraint can account for the fall in the risk-free rate and 0.8% increase of the risk premium


Impact of the borrowing constraint, in the EA.

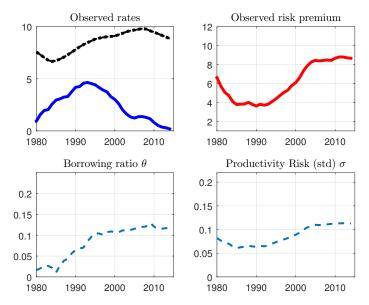
A tighter constraint can account for the fall in the risk-free rate and 0.7% increase of the risk premium


Impact of risk, in the US.

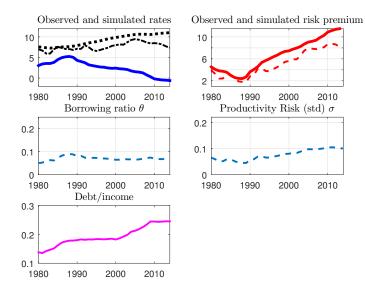
A higher risk perception can account for the fall in the risk-free rate and the increase in the risk premium


Impact of risk, in the EA.

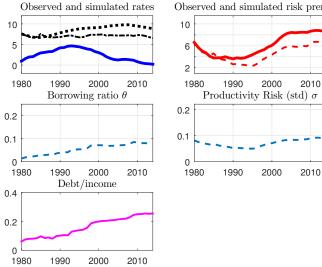
A higher risk perception can account for the fall in the risk-free rate and the increase in the risk premium

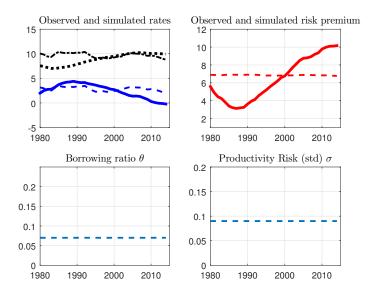

Impact of risk and the borrowing constraint, in the US.

With higher risk perception data are consistent with non decreasing debts

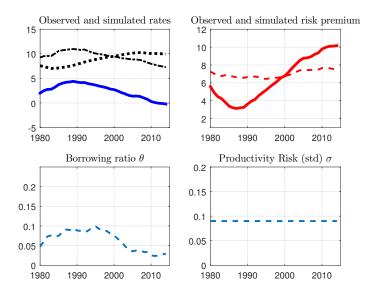


Impact of risk and the borrowing constraint, in the EA.

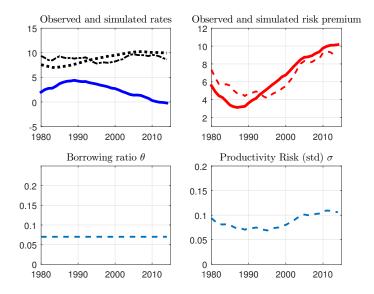

With higher risk perception data are consistent with non decreasing debts


Borrowing constraint and risk, in the US.

Borrowing constraint and risk, in the EA.

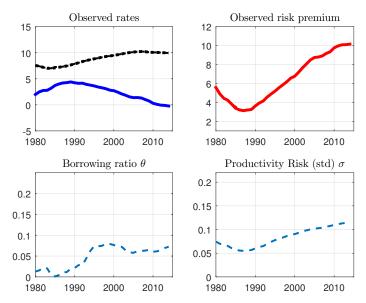


Global perspective Impact of observable factors



Global perspective

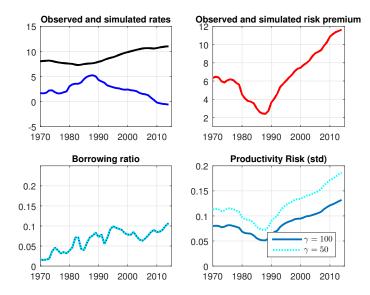
Impact of the borrowing constraint



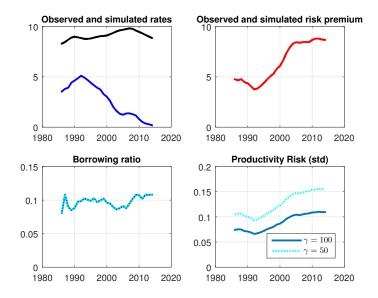
Global perspective Impact of risk

Global perspective

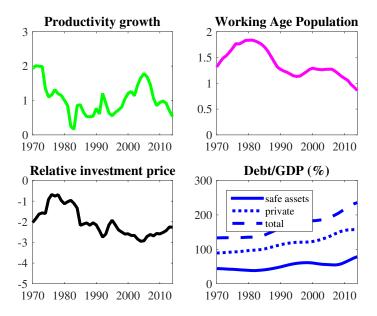
Impact of risk and the borrowing constraint

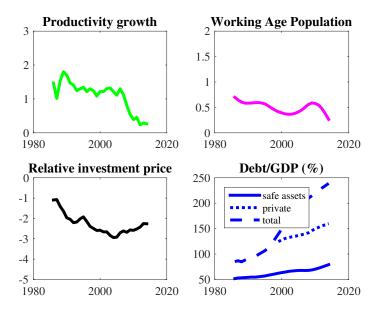


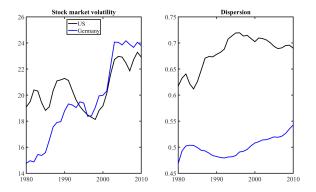
Conclusion


- usual suspects aren't enough
 - deleveraging story
- increased (perception of) risk can account for the patterns
 - but it's a residual
- extensions on
 - Iongevity
 - increasing capital share
 - inequality (through a bequest motive)
- more work to be done on exogenous supply of safe assets

Additional slides


Sensitivity to γ (US)


Sensitivity to γ (EA)


The inputs for the US

The inputs for the EA

Measures of uncertainty

Source : Bachmann et al. (2012), dispersion index is based on survey expectations data (disagreement and forecast errors).

References I

- Bean, S. C., C. Broda, T. Ito, and R. Kroszner (2015): "Low for Long? Causes and Consequences of Persistently Low Interest Rates," Geneva Reports on the World Economy 17, International Center for Monetary and Banking Studies.
- Borio, C., P. Disyatat, M. Juselius, and P. Rungcharoenkitkul (2017): "Why so long for so long, a long term view of real interest rates," mimeo, BIS.
- Borio, C., E. Kharroubi, C. Upper, and F. Zampolli (2016): "Labour reallocation and productivity dynamics: financial causes, real consequences," BIS Working Papers 534, Bank for International Settlements.
- Caballero, R. J. and E. Farhi (2014): "The Safety Trap," Working Paper 19927, NBER.
- Caballero, R. J., E. Farhi, and P.-O. Gourinchas (2008): "An Equilibrium Model of "Global Imbalances" and Low Interest Rates," American Economic Review, 98, 358–93.
- —— (2017): "Rents, Technical Change, and Risk Premia Accounting for Secular Trends in Interest Rates, Returns on Capital, Earning Yields, and Factor Shares." 107, 614–20.
- Carvalho, C., A. Ferrero, and F. Nechio (2016): "Demographics and Real Interest Rates: Inspecting the Mechanism," <u>European Economic Review</u>, 88, 208 – 226, sl: The Post-Crisis Slump.

References II

- Coeurdacier, N., S. Guibaud, and K. Jin (2015): "Credit Constraints and Growth in a Global Economy," American Economic Review, 105, 2838–81.
- Del Negro, M., D. Giannone, M. P. Giannoni, and A. Tambalotti (2017): "Safety, Liquidity, and the Natural Rate of Interest," Staff Report 812, Federal Reserve Bank of New York.
- DiCecio, R. (2009): "Sticky wages and sectoral labor comovement," Journal of Economic Dynamics and Control, 33, 538–553.
- Eggertsson, G. B. and P. Krugman (2012): "Debt, Deleveraging, and the Liquidity Trap: A Fisher-Minsky-Koo Approach," The Quarterly Journal of Economics, 127, 1469–1513.
- Eggertsson, G. B. and N. R. Mehrotra (2014): "A Model of Secular Stagnation," Working Paper 20574, NBER.
- Epstein, L. G. and S. E. Zin (1989): "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica, 57, 937–969.
- Farhi, E. and I. Werning (2013): "A Theory of Macroprudential Policies in the Presence of Nominal Rigidities," Tech. rep., MIT.
- Fernald, J. G. (2012): "A quarterly, utilization-adjusted series on total factor productivity," Working Paper Series 2012-19, Federal Reserve Bank of San Francisco.

References III

- Ferrero, G., M. Gross, and S. Neri (2017): "On secular stagnation and low interest rates: demography matters," Working Paper 2088, European Central Bank.
- Gagnon, E., B. K. Johannsen, and D. López-Salido (2016): "Understanding the New Normal: The Role of Demographics," Finance and Economics Discussion Series 2016-080, Board of Governors of the Federal Reserve System.
- Gomme, P., B. Ravikumar, and P. Rupert (2015): "Secular Stagnation and Returns on Capital," Federal Reserve Bank of St Louis Economic Synopsis, 19.
- Hall, R. E. (2016): "Understanding the Decline in the Safe Real Interest Rate," Working paper 22196, NBER.
- Hamilton, J. D., E. S. Harris, J. Hatzius, and K. D. West (2016): "The Equilibrium Real Funds Rate: Past, Present and Future," IMF Economic Review, 64, 660–707.
- Holston, K., T. Laubach, and J. C. Williams (2016): "Measuring the Natural Rate of Interest: International Trends and Determinants," Working paper 2016-11, Federal Reserve Bank of San Francisco.
- King, M. and D. Low (2014): "Measuring the "World" Real Interest Rate," working paper 19887, NBER.
- Korinek, A. and A. Simsek (2016): "Liquidity Trap and Excessive Leverage," <u>American</u> Economic Review, 106, 699–738.

- Kozlowski, J., L. Veldkamp, and V. Venkateswaran (2015): "The Tail that Wags the Economy: Belief-Driven Business Cycles and Persistent Stagnation," Working Paper 21719, NBER.
- Rachel, L. and T. D. Smith (2015): "Secular Drivers of the Global Real Interest Rate," Staff Working Paper 571, Bank of England.
- Weil, P. (1990): "Nonexpected Utility in Macroeconomics," <u>The Quarterly Journal of</u> Economics, 105, 29–42.