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The Term Structure of Credit Spreads with

Dynamic Debt Issuance and Incomplete Information

December 14, 2018

Abstract

We investigate credit spreads and capital structure dynamics in a model in which man-
agement has private information regarding firm value and is able to issue both equity and
debt to service existing debt. Rather than choosing to default, managers of investment-
grade (IG) firms who receive bad private signals conceal this information by servicing
existing debt via new debt issuance. As such, firms with IG-commensurate spreads have
zero jump-to-default risk (and hence, command zero jump-to-default premium), at least
until their debt capacity is fully utilized and spreads have increased to “fallen angel”
status. These predictions match observation well.
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“How did you go bankrupt?”

“Two ways. Gradually, then suddenly.”

– Ernest Hemingway, The Sun Also Rises

1 Introduction

Most empirical studies of corporate bond yields report evidence of a “credit spread

puzzle” in that it is difficult to explain observed spreads between corporate bond yields

and Treasury yields in terms of expected losses and standard measures of risk. This

credit spread puzzle is most striking for short-maturity investment-grade (IG) debt,

since historical default rates for these bonds are extremely low. Several explanations for

the credit spread puzzle have been suggested in the literature, including: (i) illiquidity

premia, (ii) tax asymmetry (i.e., corporate bonds, but not Treasuries, are subject to state

taxation) and (iii) jump-to-default (or credit-event) premia. This paper argues both

theoretically and empirically that portfolio strategies which hold only investment-grade

debt (that is, strategies that sell bonds once their spreads have increased to “fallen-angel”

status) are subject to negligible jump-to-default risk, and hence command negligible

jump-to-default premia. As such, short-maturity IG spreads must be mostly due to

other channels.

The notion of jump-to-default (or credit-event) risk arises naturally in reduced-

form models of default (e.g., Duffie and Singleton (1997); Jarrow, Lando, and Turnbull

(1997)), in which default is modeled as an unpredictable jump event. If a sufficiently

large premium is attributed to jump-to-default risk, then short-maturity spreads can

be “explained” through this channel. In their seminal paper, Duffie and Lando (2001)

(DL) provide an economic justification for reduced-form models. In particular, they

investigate the optimal behavior of a manager of a firm that can issue only equity to

service debt in place. They show that if this manager receives a sufficiently bad private

signal, then it will be in the best interest of shareholders for the manager to declare

default, rather than have them continue to service debt payments. From an outsider’s

information set, such a default will appear as an unexpected jump-to-default, which can

be characterized by a default intensity process similar to those specified by reduced form

models.



In this paper, we build on the insights of Duffie and Lando (2001) by investigating

a framework in which a manager with private information can issue new debt to service

existing debt, at least until the firm exhausts its debt capacity.1 In contrast to DL, our

model predicts that IG firms will never jump to default due to a bad private signal,

because the manager of an IG firm will maximize shareholders’ value by concealing

this bad signal, and issuing new debt to service debt in place. Indeed, our framework

generates a prediction nearly opposite to that of DL: whereas in the DL framework,

firms can jump-to-default even if the underlying asset value dynamics follows a diffusion

process, in our setting, IG firms would not jump-to-default (at least, not immediately)

even if the true asset value (known only to the manager) jumped below the default

boundary. The implication of our model is that the relatively large spreads on short-

maturity IG debt over risk-free securities cannot be explained by jump-to-default premia

due to asymmetric information, and therefore other channels (e.g., asymmetric taxes,

illiquidity, jumps in asset value due to public information) are needed to explain these

large spreads. A jump to default due to asymmetric information is possible in our setting

only after a firm exhausts its debt capacity.

To illustrate the implications of our model, we estimate empirical default rates as a

function of both the firm’s spread and its rating. In contrast to DL, which predicts

a relatively flat term structure of default probabilities for horizons up to one year,

our model better matches empirical observation in that the vast majority of IG firms

that default within one year do so near the end of the year – that is, these firms first

tend to diffuse toward “fallen angel” status prior to defaulting. As such, a portfolio

consisting only of bonds with spreads that are commensurate with IG status is subject

to virtually zero jump-to-default risk and, therefore, should not command a significant

jump-to-default premium. Only after a firm drops to fallen angel status does jump-to-

default become a possibility through the mechanism proposed by DL. This prediction

is consistent with the empirical findings of Davydenko, Strebulaev, and Zhao (2013),

who report that the default event of speculative-grade debt is associated with significant

losses in firm value, consistent with the notion that the default event was indeed a

1Debt capacity is taken exogenously in our model. Chernov, Schmid, and Schneider (2017) build a
macrofinance model to study U.S. sovereign CDS spreads and show that endogenous debt capacity can
result from fiscal default, that is, the inability of a government to raise current taxes without reducing
future tax revenues (“Laffer curve” effect).
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surprise based on public information.2

Our paper contributes to two strands of literature. The first is the extensive body of

work that studies structural models of capital structure choice and leverage dynamics.3

Unlike most papers in this literature, we allow for informational asymmetry between the

manager and creditors. In our structural model, creditors are aware of the manager’s

information advantage, and price it rationally into the firms’ claims.

The second strand of literature to which we contribute investigates credit spreads in

reduced-form frameworks. In particular, we build on the body of work that focuses on

decomposing credit spreads into components of expected loss, risk premia, liquidity pre-

mia and taxes.4 In this literature, there is considerable disagreement on the magnitude

of the jump-to-default premium. For example, Driessen (2005) estimates the ratio of

risk-neutral to actual default intensity to be λQ/λP = 2.3, and infers a 31 bps spread due

to the jump channel.5 These estimates, however, are determined from residuals after all

other market prices of risk are measured, and do not reflect how proxies of their pricing

kernel covary with bond returns at jumps events. In contrast, Bai, Collin-Dufresne,

Goldstein, and Helwege (2015) argue that, if jump-risk is priced due to a contagious

response,6 then the ratio λQ/λP has an upper bound of approximately 1.1; hence, they

conclude that spreads due to this channel cannot be much above expected losses. In

our paper, we claim that λP is itself very small for IG firms. In particular, we find that

historical one-year default rates over-estimate the jump-to-default intensity faced by an

investment strategy that holds only IG corporate bonds.7

2Clark and Weinstein (1983), Lang and Stulz (1992) and Warner (1977) also report significant loss
of equity and debt value at the time of bankruptcy announcement.

3An incomplete list of contributions to this literature includes Merton (1974); Leland (1994); Gold-
stein, Ju, and Leland (2001); Hennessy and Whited (2007); Abel (2016, 2017); DeMarzo and He (2017);
Admati, DeMarzo, Hellwig, and Pfleiderer (2017). Our work is also related to the previous literature
that models firms’ earnings, or assets, with complete information via jump-diffusion processes (e.g.,
Zhou (2001); Gorbenko and Strebulaev (2010)). These specifications, however, do not give rise to a
stochastic intensity for default unless the only variation in asset levels is through jumps.

4See, e.g., Elton, Gruber, Agrawal, and Mann (2001), Longstaff, Mithal, and Neis (2005), Chen,
Lesmond, and Wei (2007), Feldhütter and Schaefer (2017), and Culp, Nozawa, and Veronesi (2015).

5Similar results are reported by Saita (2006) and Berndt, Douglas, Duffie, Ferguson, and Schranz
(2009).

6Note, however, that Bai et al (2015) do not consider the possibility of simultaneous default of a
finite fraction of the economy.

7Our paper is also related to the vast literature that studies voluntary disclosure of managerial
information (e.g., Shin (2003)), and the roll-over of short-maturity debt, market runs, and market
freezes (e.g., Diamond and Dybvig (1983), Acharya, Gale, and Yorulmazer (2011), He and Xiong (2012),
Schroth, Suarez, and Taylor (2014), Dang, Gorton, and Holmström (2015), and Carré (2016)).
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The combination of dynamic debt issuance and the presence of information asym-

metry between the manager and creditors provides a framework that nests most of the

models studied by the extant literature. We exploit this generality to compare the im-

plications of our model for optimal capital structure choice, credit spreads, and default

frequencies with this literature. Specifically, by restricting the manager to issue only

equity after date-0, our setting reverts back to Duffie and Lando (2001). If we assume

that manager and creditors are equally informed, we obtain a model of optimal capi-

tal structure dynamics with complete information (e.g., Fischer, Heinkel, and Zechner

(1989); Goldstein, Ju, and Leland (2001); Hennessy and Whited (2007); DeMarzo and

He (2017)). By removing both the ability to issue debt and the presence of informational

asymmetry, we recover a version of the Leland (1994) model.

Our analysis is most relevant for IG spreads of short-maturity debt where the “credit

spread puzzle” is most prevalent. Indeed, a growing literature8 argues that IG spreads for

maturities greater than a few years can be explained by combining pricing kernels that

capture time varying Sharpe ratios over the business cycle with models that match the

empirically observed clustering of defaults during recessions. In contrast, we show that

incomplete information combined with debt issuance lowers short-term credit spreads

of IG firms. Hence, our findings “deepen” the credit spread puzzle for IG firms at short

maturities.

The rest of the paper is organized as follows. In Section 2, we present stylized facts

on investment grade companies that motivate our analysis. Section 3 builds a model of

corporate debt issuance and default decisions in the presence of asymmetric information

between the manager and creditors. In Section 4 we present the implications of our

model for optimal capital structure decisions and derive model-implied credit spreads

and default rates. Section 5 concludes. Proofs are in Appendix A, while further details

concerning the empirical analysis and the numerical solution of the model are in an

Online Appendix.

8See, for example, Chen, Collin-Dufresne, and Goldstein (2009), Bhamra, Kuehn, and Strebulaev
(2010), Chen (2010), and Gomes and Schmid (2018).
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2 Stylized facts

Here we discuss a few stylized facts about the corporate bond market that provide

empirical foundations for our research.

Fact 1: IG companies dominate the bond market. Figure 1 tracks the percentage

of investment-grade (IG) firms over time and compares it to the proportions of higher-

and lower-quality speculative grade companies (labeled B and C).9 Investment-grade

companies are the majority among the firms with bonds monitored by credit rating

agencies. The proportion is highest in the early part of the sample period, and fluctuates

around 50% starting from the early 1990s. Higher-quality speculative grade companies

make up the second largest group, while C-rated companies comprise less than 10% of

the market.

Related, a large fraction of IG firms are net issuers of corporate debt. For instance,

using the Mergent Fixed Income Security Database (FISD), Greenwood and Hanson

(2013) document that on average 68% of all debt issuance in the period 1983–2008 are

originated by IG firms. Using Moody’s Bond Surveys, they show that 89% of all debt

issuance in the 1926–1982 period originates from IG firms.

Fact 2: Firms with IG status rarely default. Table 1 shows average annualized

default rates for companies in the IG, B, and C groups. Panels A and B concentrate

on firms classified based on credit ratings issued by rating agencies over the periods

1985-2014 and 2001-2014. It is evident that defaults by IG firms are extremely rare.

Panel A shows that on average only 0.11% of IG companies file for bankruptcy within

a year of being assigned an IG classification. Defaults over the first month are even less

frequent, with an annualized rate of 0.06%.

The likelihood of a default for an IG firm is even lower when we use market-based

information to rate companies. Agencies do not continuously update their ratings to

fully reflect the information available to market participants. Hence, we consider an

alternative classification of firms into the same three creditworthiness groups that is

based on CDS data (Appendix B). At horizons from one to three months, we find IG

default rates that are virtually zero. In particular, we find a point estimate for the

9Appendix A explains how we classify firms in the three categories, IG, B, and C.
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annualized rate equal to 0.01%, and statistically insignificant (Table 1, Panel C).

Overall, this evidence shows that defaults by investment grade firms rarely come as a

total surprise to market participants. Indeed, even for higher-quality speculative grade

firms, there is limited support for jumps-to-default. Rather, it is mostly the lowest-rated

firms that file for bankruptcy. Even so, the fact that asset values (i.e., debt and equity)

typically jump at the default event suggests that default does come at least as a partial

surprise to market participants, providing empirical support for the Duffie-Lando (2001)

mechanism. At the one-month horizon, the average default rate for C companies can

exceed an annualized rate of 15% (Table 1, Panel A); beyond the first month, default

rates for firms in the C group decline progressively but remain elevated. 10

Even if we restrict our attention to firms that held IG status for at least one of the 12

months preceding the default event, we find that the great majority of these companies

exhibit a considerable run-up in credit spreads for many months before they default.

This provides investors with a signal that the credit worthiness of such companies has

deteriorated below IG well before their bankruptcy. Figure 2 shows the difference be-

tween the average CDS premium on those firms and the CDX-IG index. This spread is

very small 12 months prior to bankruptcy and then increases in the ensuing months as

the firms drop out of the IG group and approach bankruptcy. This evidence suggests

that an investment policy that (1) holds bonds issued by firms in the IG category, and

(2) unwinds these positions when the firm loses IG status, faces virtually zero default

risk. Hence, the jump-to-default premium for this portfolio should be negligible.11

3 Model

To explain the stylized facts of the previous section, we develop a model of corporate debt

issuance and default decisions in the presence of asymmetric information. As in Duffie

and Lando (2001) (DL hereafter) we assume that firms’ creditors have less information

10It is likely that CDS trading declines when the company is close to distress and the contract is
in the money. In contrast, credit agencies are likely to update their ratings more frequently when
conditions for a company deteriorate. Hence, since CDSs are less traded when default risk is high, it
is not surprising that empirical default rates for companies assigned a C label based on CDS-implied
rating underestimates the default rate obtained when companies are classified based on credit ratings
(Table 1, Panel C vs. Panels A and B).

11Note that jump-to-default-risk is conceptually different from the risk that jump intensities increase
in reduced-form models. Driessen (2005) estimates only moderate market prices of risk for exposure to
shocks to jump intensities.
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than does management. However, two main features distinguish our model from DL.

First, we allow firms to issue both debt and equity, a feature motivated by the fact

that a large fraction of IG firms are net issuers of corporate debt. Second, we model

asymmetric information by assuming that creditors can continuously observe the value

of the firm’s assets with a delay. This feature reflects the fact that it takes time for

market participants to acquire the accounting information needed to accurately value a

firm’s assets.

3.1 Setup

Following Leland (1994), we assume that the unlevered firm value Vt follows a geometric

Brownian motion under the risk neutral measure Q, that is,

dVt
Vt

= r dt+ σ dBQ
t
, (1)

where r and σ denote the constant risk-free rate and asset volatility, and dBQ
t

denotes

the increment of a standard Brownian motion under Q. Defining vt ≡ lnVt and using

Itô’s lemma, we have

dvt = mdt+ σ dBQ
t
, where m ≡ r − σ2

2
. (2)

Insiders can observe the asset value Vt in real time, whereas creditors can observe Vt

only with a time lag L. That is, at time t, creditors know only V
(t−L)

. We define the

lagged asset value observed by creditors as

V̂t ≡ V
(t−L)

and v̂t ≡ v
(t−L)

. (3)

Any default is observed immediately by both insiders and outside creditors.

After choosing an initial financing mix of debt and equity at time zero, we assume that

firms can issue debt until the time in which they exhaust their “debt issuing capacity”

at a future time t∗. After this time, the firm is forced to either issue equity to service

the debt-in-place, or choose to default. Figure 3 provides an illustration of the model

timeline. There are four relevant time regimes:

1. Regime 1: 0 ≤ t < t∗. In this regime, firms have the capacity to raise new debt to

service debt-in-place. Total debt outstanding at time t promises a perpetual and

7



constant coupon payment, Ct , until the firm declares bankruptcy. Because equity

holders do not need to infuse money into the firm, there is no reason for them to

choose to default during this time regime. Therefore, this interval is characterized

by a zero default intensity (and hence, command zero default-risk premia). We

refer to firms in this regime as “Investment-Grade” firms.

2. Regime 2: t = t∗− . At this point in time, the firm reaches debt capacity. Be-

cause the firm can no longer issue debt, if its asset value (which is known only

by the manager) falls below the default threshold (the value of which is publicly

known), then the firm immediately defaults. Rather than a default intensity, this

regime/instant of time is associated with a finite probability of default.

3. Regime 3: t∗ ≤ t < t∗ + L. Firms can no longer issue debt and may default.

Absent default, creditors infer that the firm’s assets must have remained above the

default threshold over the time interval [t∗, t] (the duration of which is less than

L). As we show below, in this regime, the default intensity depends on both lagged

asset value v̂t and the time interval since the firm reached debt capacity, (t− t∗).

4. Regime 4: t ≥ t∗ + L. Firms can no longer issue debt and may default. Absent

default, creditors infer that the firm’s assets must have remained above the default

threshold over the time interval [t − L, t] of length L. As we show below, in this

regime, the default intensity depends only on lagged asset value v̂t , independent

of time.

To solve for the value of debt and equity under the information set of creditors, we first

need to derive the optimal default boundary chosen by management, and then solve for

the value of firm’s securities backward in time, starting from Regime 4.

3.2 Shareholders’ optimal default policy

Recall that, in our framework, it is in the shareholder’s best interest for management to

avoid default prior to the firm’s debt capacity being exhausted (i.e., t < t∗). Hence, to

determine the optimal default policy, we consider equity valuation at times after debt

capacity is reached (i.e., t > t∗). In this regime, shareholders are committed to pay a

continuous coupon C = C
t∗ to outstanding debt-holders. We assume that the tax rate

is θ, and that coupon payments are tax deductible as long as the firm remains solvent.
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As demonstrated below, the coupon level C = C
t∗ will be endogenously determined as

a function of both the evolution of firm value, and the firm’s debt capacity.

As shown in Leland (1994), in this setting there exists a constant default threshold

V
B

such that it is in the shareholders’ bests interests that management default on the

debt and declare bankruptcy the first time asset value falls below V
B

. Define S(Vt) as the

value of equity when the outstanding debt consists of a perpetual continuous coupon C.

To determine the default boundary V
B

, note that for asset values Vt above this default

boundary, the equity claim satisfies:

S (Vt) = −(1− θ)C dt+ e−r dt EQ
t

[
S(V

t+dt
)
]
. (4)

Intuitively, shareholders must pay out-of-pocket the after-tax coupon payment (1 −
θ)C dt, and own the claim to S

(
V
t+dt

)
. Applying Itô’s lemma to (4), we obtain that the

equity value must satisfies the following ordinary differential equation

0 = −(1− θ)C − rS + rV S
V

+
σ2

2
V 2S

V V
, (5)

subject to the boundary conditions

lim
Vt→∞

S(Vt) = Vt −
(1− θ)C

r
, (6)

lim
Vt→VB

S(Vt) = 0, (7)

∂

∂Vt
S(Vt)

∣∣∣∣
Vt=VB

= 0. (8)

Condition (6) implies that, as asset value goes to infinity, the equity value converges to

the default-free value. Condition (7) imposes that, at the default boundary, the equity

value goes to zero. Condition (8) is the smooth pasting condition that guarantees the

default decision is optimal for shareholders.

The solution of (5), subject to the boundary conditions (6)–(8), is given by

S(Vt) = Vt −
(1− θ)C

r
−
(
Vt
V
B

)− 2r
σ2
[
V
B
− (1− θ)C

r

]
, (9)

where

V
B

=
C

β
, with β ≡ 2r + σ2

2(1− θ)
. (10)
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Because all the parameters are common knowledge to all claim-holders, the default

threshold (10) is known to both creditors and shareholders. However, whereas insiders

observe firm value Vt at date t, creditors observe only the lagged value V̂t = V
(t−L)

. An

important scaling feature that we will use below is that the optimal default boundary

V
B

is linear in the size of the coupon C.

3.3 Debt valuation

To determine the value of debt from the creditors’ perspective, we proceed by assuming

that the default boundary (10) corresponds to a generic value of the cumulative coupon

C, whose value C
t∗ is discussed below. For convenience, we let v

B
≡ ln(V

B
) and define

the processes yt and ŷt as:

yt ≡ vt − vB , and ŷt ≡ y
(t−L)

= v̂t − vB . (11)

Debt-holders know the location of the default boundary v
B

, and that equity holders will

default the first time τ
d
≥ t∗ in which vt falls below v

B
.12 Formally

τ
d

= inf{t ≥ t∗ : vt ≤ v
B
}. (12)

In the event of default, debt-holders receive a fraction (1− α) of the firm’s assets.

Let us denote by Dt ≡ D(ŷt , t, Ct ,1{τd>t}) the market value of firm’s debt as assessed

by creditors. Debt value for a firm that is not in default at time t depends on the

lagged asset value ŷt , the time t, and the cumulative coupon level Ct . In general, we

can express the value Dt recursively as the sum of the coupon payment flow and the

discounted expected value of future debt, that is

Dt =



Ct dt+ e−r dt EQ
t

[(
Ct

C
t+dt

)
D
t+dt

∣∣∣∣ Ft] if t < t∗ (13a)

EQ
t

[
D
t∗1{yt∗>0} + (1− α)evB+y

t∗1{y
t∗<0}

∣∣∣ Ft] , if t = t∗−(13b)

C
t∗ dt+ e−r dt EQ

t

[
D
t+dt

1{τ
d
>(t+dt)} + (1− α)evB 1{τ

d
∈(t,t+dt)}

∣∣ Ft] , if t > t∗ (13c)

where the 1{τ
d
>t} indicates that default has not occurred by time t, and Ft is the in-

formation set of outsiders, which is described below for each regime. Expression (13a)

12We note that, if firm value drops below v
B

at dates (t < t∗), default will not occur, as the manager
will keep this private information secret, and new debt issuances will service debt in place.
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shows that, because the firm issues debt before time t∗, existing debt-holders claims

are diluted. The quantity
(

Ct
C
t+dt

)
D
t+dt

represents the time-(t+ dt) debt value accruing

to time-t debt-holders. Note that there is no default before t∗, and thus, the default

intensity is zero for dates (t < t∗). Expression (13b) defines the debt value at time t∗− ,

just as the firm reaches debt capacity, and equals the probability-weighted sum of: (i)

the value of debt at time t∗ if the firm survives, and (ii) the recovery value, otherwise.

Expression (13c) differs from (13a) along two dimensions: (i) the firm is no longer is-

suing debt, and hence existing debt-holders are not diluted; (ii) the firm defaults if vt

reaches v
B

within the next interval dt, in which case debt-holders receive the recovery

value (1− α)evB .

To solve for the bond price, we work backwards in time, starting with the time

interval t ≥ t∗ (which is similar in spirit to Duffie and Lando (2001)). We further break

this regime into two separate sub intervals, depending on whether t ∈ [t∗, t∗ + L) or

t ∈ [t∗ + L,∞). In the next subsection we formally characterize the solution for each

time regime.

3.3.1 Debt value in Regime 4, t ∈ [t∗ + L,∞)

If default has not yet occurred by date t ∈ [t∗+L,∞), then debt-holders, aware that the

firm had previously exhausted its debt capacity at date t∗, infer that the value of the

firm’s assets must have remained above the threshold level v
B

during the time interval

(t∗, t):

min
s∈[t∗,t]

{vs} > v
B
. (14)

Also at time t, debt-holders know the lagged asset value v̂t = v
(t−L)

. Now, because the

unlevered firm value process is one-factor Markov, it follows that the information inferred

from equation (14) over the interval (t∗, (t− L)) is redundant. Hence, the debt-holders’

useful information set in this regime is

Ft =

{
v̂t = v

(t−L)
; min
s∈[t−L,t]

{vs} > v
B

}
, t ≥ t∗ + L. (15)

The following proposition shows that the information set characterized by equation (15)

generates a time invariant setting in which the price of debt and the default intensity de-

pend only on surivival up to date-t and the lagged firm value v̂t = v
(t−L)

(or equivalently,

11



ŷt = v̂t − vB).

Proposition 1 For dates t ≥ (t∗ + L), the price of debt DC
4

(1{τ
d
>t}, ŷt = y

(t−L)
) with

claim to coupon C is time invariant, and given by the sum of two components:

DC
4

(1{τ
d
>t}, y(t−L)

) = D4,1(1{τ
d
>t}, y(t−L)

) +D4,2(1{τ
d
>t}, y(t−L)

), (16)

where

1. D4,1(1{τ
d
>t}, y(t−L)

) is the present value of claims to coupon subject to no default

D4,1(1{τ
d
>t}, y(t−L)

) = C

∫ ∞
t

dT DT
4,1

(1{τ
d
>t}, y(t−L)

), (17)

with DT
4,1

(1{τ
d
>t}, y(t−L)

) the date-t price of a claim that pays $1 at date-T if and

only if τ
d
> T obtained in (A.9), and

2. D4,2(1{τ
d
>t}, y(t−L)

) equals the claim to recovery (1− α)V
B

at the default event:

D4,2(1{τ
d
>t}, y(t−L)

) = (1− α)V
B

∫ ∞
t

dT DT
4,2

(1{τ
d
>t}, y(t−L)

) (18)

with DT
4,2

(1{τ
d
>t}, y(t−L)

) the date-t price of a claim that pays $1 at date-T if and

only if τ
d

= T derived in (A.11).

In the proof of the proposition, we show that the bond price in Regime 4 has no

explicit time dependence, and is function only of the state vector (1{τ
d
>t}, y(t−L)

).

Corollary 1 Consistent with Duffie and Lando (2001), the default intensity λQ
4,d

(ŷt)

satisfies

λQ
4,d

(ŷt) =
σ2

2

∂

∂yt
πQ

4
(yt |τd > t, ŷt)

∣∣∣∣
yt=0

=
ŷt√

2πσ2L3

 e−( 1
2σ2L

)(ŷt+mL)
2

πQ
4

(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

)
 1{ŷt>0}, (19)

where the conditional density πQ
4

(yt|τd > t, ŷt) is defined in equation (A.1) of Lemma 1.
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Note, however, that the bond price DC
4

does not satisfy the standard pricing ODE:

0 6= C −
(
r + λQ

4,d
(ŷt)
)
D4 +mDC

4,ŷ
+
σ2

2
DC

4,ŷŷ
+ (1− α)evBλQ

4
(ŷt). (20)

This is because the expected growth rate of dy conditional upon the information set of

outsiders is larger than the unconditional growth rate m:13

µ
ŷ
(ŷt) ≡

(
1

dt

)
EQ
[
dy

(t−L)

∣∣∣ y(t−L)
, τ

d
> (t− L)

]
> m. (21)

Indeed, we find that

lim
ŷ⇒0

µ
ŷ
(ŷt) = ∞

lim
ŷ⇒0

DC
4,ŷ

(ŷt) = 0, (22)

but that the product
(
µ
ŷ
(ŷt)D

C
4,ŷ

(ŷt)
)

remains finite in the limit.

3.3.2 Debt value in Regime 3, t ∈ [t∗, (t∗ + L))

Using as input the value of debt DC
4

(ŷ
(t∗+L)

= y
t∗ ,1{τd>(t∗+L)}) identified in the previous

section, we now determine the value of debt at earlier dates t ∈ [t∗, t∗ + L), which we

refer to as Regime 3. An important special case is the price of debt at t∗, which will be

used as an input to determine bond prices in earlier regimes. As such, in this section,

we focus on this case, leaving the more general case to Appendix B.

Note that during Regime 3, assuming default has not occurred by date-t, outsiders

know only lagged firm value v̂t = v
(t−L)

(or equivalently, y
(t−L)

= (v
(t−L)

− v
B

)), and

that firm value has remained above the default boundary from dates s ∈ (t∗, t). In

particular, it is possible that there existed dates (s < t∗) for which firm value was below

the default threshold (i.e., vs < v
B

), but that, because management concealed this low

13To understand this result intuitively, consider a gambler with initial wealth W
0

who wagers each
period (of duration ∆t) a bet of size $

√
∆t on a fair coin for N =

(
T
∆t

)
periods, and who must

stop gambling if she ever becomes bankrupt. That is, each bet pays off +$
√

∆t (−$
√

∆t) if the coin
flip returns “Heads” (“Tails”). If we are told only that the gambler never went bankrupt, then the
conditional probability that the first coin flip was “Heads” is higher than 50%. Moreover, this probability
increases the lower is W

0
. Indeed, for the special case W

0
=
√

∆t, the conditional probability that the
first coin flip was heads equals 100% (because, had it been tails, the gambler would have gone bankrupt

immediately), and the conditional expected change in wealth per period is µ
ŷ
(ŷ

t
) =

(√
∆t

∆t

)
=
(

1√
∆t

)
,

which explodes in the continuous time limit.
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firm value by issuing new debt to service existing debt, default did not occur under these

circumstances. The debt-holders information structure in this regime is thus:

Ft =

{
v̂t = v

(t−L)
; min
s∈[t∗,t]

{vs} > v
B

}
, ∀ t ∈ (t∗, (t∗ + L)) . (23)

In particular, for the special case t = t∗, we have

F
t∗ =

{
v̂
t∗ = v

(t∗−L)
; v

t∗ > v
B

}
. (24)

For convenience, we will use interchangeably (v
t∗ > v

B
) and (τ

d
> t∗). Hence, this infor-

mation set can be equivalently expressed as:

F
t∗ =

{
ŷ
t∗ = y

(t∗−L)
; τ

d
> t∗

}
. (25)

Comparing to the information set in equation (15), we note that bondholders have

less information in Regime 3 than in Regime 4, in that, in Regime-4, the agent knows

that firm value remained above the default boundary for the time interval L. In contrast,

for the special case (t = t∗), bondholders know only that firm value is above the default

boundary at a single instant (t∗). In Appendix B, we show that the price of debt and

the default intensity depend both on ŷt and date-t, in contrast to its time-independent

values derived for Regime 4 debt prices in Proposition 1. Here, however, we focus only

on the pricing of debt at date t∗.

Proposition 2 The date-t∗ value of debt in Regime 3, DC
3

(t∗,1{τ
d
>t∗}, y(t∗−L)

), with

claim to coupon C, is the sum of three components:

1. For dates T ∈ (t∗, (t∗+L)), the claim to coupon payment C dT at date-T if default

has not yet occurred (i.e., τ
d
> T ), given by

D3,1(t∗,1{τ
d
>t∗}, y(t∗−L)

) = C

∫ (t∗+L)

t∗
dT DT

3,1
(t∗,1{τ

d
>t∗}, y(t∗−L)

), (26)

where the date-t∗-price DT
3,1

(t∗,1{τ
d
>t∗}, y(t∗−L)

) of a claim that pays $1 at date-T

if and only if τd > T is derived in equation (A.24);

2. For dates T ∈ (t∗, (t∗ +L)), the claim to recovery if default occurs at date-T (i.e.,

τ
d

= T ), given by

D3,2(t∗,1{τ
d
>t∗}, y(t∗−L)

) = (1− α)V
B

∫ (t∗+L)

t∗
dT DT

3,2
(t∗,1{τ

d
>t∗}, y(t∗−L)

),(27)

14



where the date-t∗-price DT
3,2

(t∗,1{τ
d
>t∗}, y(t∗−L)

) of a claim that pays $1 at date-T

if and only if τd = T is derived in equation (A.26); and

3. The claim D3,3(t∗,1{τ
d
>t∗}, y(t∗−L)

) to the bond value D4(y
t∗ , τd > (t∗+L)) if default

occurs later than (t∗ + L) (i.e., τ
d
> (t∗ + L)), derived in equation (A.28).

Hence, the time-t∗ value of the debt in Region 3 is given by

DC
3

(t∗,1{τ
d
>t∗}, y(t∗−L)

) =

D3,1(t∗,1{τ
d
>t∗}, y(t∗−L)

) +D3,2(t∗,1{τ
d
>t∗}, y(t∗−L)

) +D3,3(t∗,1{τ
d
>t∗}, y(t∗−L)

). (28)

Consistent with DL, the default intensity λQ
3,d

(t∗, y
(t∗−L)

, τ
d
> t∗) satisfies

λQ
3,d

(t∗, y
(t∗−L)

, τ
d
> t∗) =

σ2

2

∂

∂yt
π3(y

t∗ |y(t∗−L)
, τ

d
> t∗)

∣∣∣∣
yt=0

=

(
1

2

) (y
(t∗−L)

+mL
)

√
2πσ2L3

e−( 1
2σ2L

)
(
y
(t∗−L)

+mL
)2

N
(
y
(t∗−L)

+mL
√
σ2L

)
 . (29)

In Appendix B we derive the value of the debt for each date t ∈ (t∗, t∗ + L).

3.3.3 Debt value in Regime 2, t = t∗−

The instant t∗ at which the firm exhausts its debt capacity is defined as the first time the

ratio of the cumulative coupon level Ct to the lagged unlevered firm value V̂t reaches a

threshold Ψ that has been exogenously specified in the covenants of all previously issued

bonds. Formally,

t∗ = inf

{
t :

Ct

V̂t
= Ψ

}
. (30)

For all dates t < t∗, the only information debt-holders receive about the firm is

(i) the amount of debt outstanding, which is characterized by the level of coupon Ct ,

and (ii) the lagged unlevered firm value V̂t = V
(t−L)

, that is,

Ft =
{
v̂t = v

(t−L)
;Ct

}
, t ≤ t∗. (31)

Because the unlevered firm dynamics follow a diffusion process, under the information

set (31) the event in which debt capacity is exhausted is therefore predictable by both

debt-holders and the manager.
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Given the process (2) for the unlevered log asset value, at time t∗, the probability

density of the current value y
t∗ = v

t∗ − vB , conditional on the lagged value ŷ
t∗ = y

(t∗−L)

is normal with mean (ŷ
t∗ +mL) and volatility σ

√
L, that is,

π (y
t∗ |ŷt∗ ) =

1√
2πσ2L

e−( 1
2σ2L

)[yt∗−(ŷ
t∗+mL)]

2

. (32)

It follows that the probability of a time-t∗ default equals the probability that y
t∗ < 0, or

π2 (τ
d

= t∗|ŷ
t∗ ) =

∫ 0

−∞
π (y

t∗ |ŷt∗ ) dyt∗ = N

(
−ŷ

t∗ −mL√
σ2L

)
, (33)

and the probability of survival is

π2 (τ
d
> t∗|ŷ

t∗ ) = N

(
ŷ
t∗ +mL√
σ2L

)
. (34)

From the recursive pricing equation (13b), the debt value at t∗ is a sum of two terms:

(i) the expected value of debt D3(t∗, ŷ
t∗ ) if no default occurs at t∗ and (ii) an expectation

of recovery in the event of default. Using the above conditional probabilities we can then

write the value of debt D
t∗−

= D2(ŷ
t∗ , t

∗, C
t∗ ) as follows:

D2(ŷ
t∗ , t

∗, C
t∗ ) = EQ

t

[
D
t∗1{yt∗>0} + (1− α)evB+y

t∗1{yt∗<0}

∣∣∣ ŷt∗]
= π2 (τ

d
> t∗|ŷ

t∗ ) D3(ŷ
t∗ , t

∗, C
t∗ ) +

∫ 0

−∞

1√
2πσ2L

e−( 1
2σ2L

)[yt∗−(ŷ
t∗+mL)]

2

(1− α)evB+y
t∗ dy

t∗

= N

(
ŷ
t∗ +mL√
σ2L

)
D3(ŷ

t∗ , t
∗, C

t∗ ) + (1− α) evB+ŷ
t∗+(m+σ2

2
)L N

(
−
ŷ
t∗ + (m+ σ2)L√

σ2L

)
,(35)

where the debt value D3(ŷ
t∗ , t

∗, C
t∗ ) is obtained in Proposition 2 and the last equality

uses the expressions from the densities (33) and (34).

3.3.4 Debt value in Regime 1, t ∈ [0, t∗)

At time 0, the firm issues a perpetuity with promised cash flows comprised of a contin-

uous coupon C0 dt until it optimally decides to default at time τ
d
, where C0 determines

the initial capital structure as discussed in Section 3.6 below.

Because the firm does not generate any intermediate cash flows, we assume it contin-

uously issues new pari-passu debt in order to service the debt-in-place until it exhausts
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its debt capacity at time t∗. Because shareholders are not required to contribute fresh

cash to the firm (i.e., no equity issuances) it is optimal for them to avoid default for any

t < t∗. Therefore, the default intensity is zero in this regime. After exhausting debt

capacity, we assume that covenants restrict any future debt issuances, that is, for dates

t > t∗, the firm has to either issue new equity to service debt-in-place or default.

The dynamics dCt for the size of the coupon payment is determined endogenously

by identifying how much future cash flow must be promised to new bondholders in order

to entice them to service the current debt due. Define by D1(ŷt , Ct) the value of all debt

in-place at date t prior to receiving the coupon payment.14 At date t, the firm needs

to raise Ct dt. However, due to tax-deductibility of interest on debt, a fraction θCt dt

is covered by the government, where θ is the effective tax rate. Hence, the firm needs

to raise only (1 − θ)Ct dt to service the old debt. The present value of the new debt

issuance must then equal (1 − θ)Ct dt. Because all debt is pari passu, the fraction of

debt owned by the new owners, determined at date t, is

πnew =

(
C
t+dt
− Ct

C
t+dt

)
, (36)

whereas the fraction of debt owned by previous owners is

π
old

=

(
Ct

C
t+dt

)
. (37)

It follows that C
t+dt

, and hence, the dynamics dCt , can be determined by equating the

value of the new debt claim to the amount new debt-holders pay for this claim:

(1− θ)Ct dt = [D1(ŷt , Ct)− Ct dt]

(
C
t+dt
− Ct

C
t+dt

)
. (38)

Using the fact that C
t+dt

= Ct + dCt , as dt→ 0 equation (38) simplifies to

dCt = (1− θ)
(

C2
t

D1(ŷt , Ct)

)
dt, (39)

which specifies the coupon dynamics in terms of the bond price D1 .

14Note that, in continuous-time, the value of debt is the same before and after coupon payment, since
the coupon payment is linear in dt.
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To determine the bond price D1(ŷt) recall that, from the recursive pricing equa-

tion (13a), we have

D1(ŷt , Ct) = Ct dt+ e−r dt EQ
t

[(
Ct

C
t+dt

)
D1(ŷ

t+dt
, C

t+dt
)

]
. (40)

The above equation states that the present value of the debt-in-place at date t is equal

to the value of the coupon, Ct dt, and the fraction π
old

=
(

Ct
C
t+dt

)
of next period’s debt

claim, whose date-t present value is determined by risk-neutral discounting. Applying

Itô’s lemma to equation (40) we obtain that the value of the debt for t < t∗ solves the

PDE15

0 = Ct −
(
r + (1− θ)Ct

D1

)
D1 + (1− θ)

(
C2

D1

)
D

1,C
+mD

1,ŷ
+
σ2

2
D

1,ŷŷ

= −rD1 + θCt + (1− θ)
(
C2
t

D1

)
D

1,C
+mD

1,ŷ
+
σ2

2
D

1,ŷŷ
, (41)

subject to the boundary conditions:

lim
ŷt→∞

D1(ŷt , Ct) =
Ct

r
, (42)

lim
ŷt→log

(
Ct

ΨV
B

)D1(ŷt , Ct) = D2(ŷt , t, Ct) (43)

lim
Ct→0

D1(ŷt , Ct) =
Ct

r
, (44)

where D2(ŷ
t∗ , t

∗, C
t∗ ) is defined in (35), and where lim

(
ŷt → log

(
Ct

ΨV
B

))
is equivalent

to lim (t→ t∗).

3.4 Creditors’ valuation of equity

Let Ŝt ≡ Ŝt(ŷt , Ct ,1{τ
d
>t}) be the equity value conditional on the creditors’ informa-

tion set, and St ≡ St(yt , Ct ,1{τ
d
>t}) be the equity value conditional on the manager’s

information set. The equity value Ŝt can be expressed recursively as follows:

15Note that C
t+dt

= Ct + dCt = Ct + (1 − θ)C
2

t

Dt
dt by equation (39). Hence, it follows that

Ct

C
t+dt

=

1

1+(1−θ) Ct
Dt
dt

=
[
1− (1− θ)Ct

Dt
dt
]
.

18



Ŝt =


EQ
t

[
e−r(t

∗−t)Ŝ
t∗ |Ft

]
if t < t∗ (45a)∫ ∞

0

St(yt , Ct∗ ,1{τ
d
>t}) π

Q (yt , t|ŷt , τd > t) dyt if t ≥ t∗ , (45b)

where St in (45b) is the solution to equations (9)–(10) of the ODE (5) with boundary

conditions (6)–(7). The following proposition characterizes the equity value Ŝt for t ≥ t∗.

Proposition 3 The equity value Ŝ
t∗ is

Ŝ
t∗ = eŷt∗+v

B

{
emL+σ2L

2 N

[
log
(
β

Ψ

)
+mL+ σ2L
√
σ2L

]
− (1− θ)Ψ

r
N

[
log
(
β

Ψ

)
+mL

√
σ2L

]

−
(
β

Ψ

)− 2r
σ2
(

Ψ

β
− (1− θ)Ψ

r

)
erL N

[
log
(
β

Ψ

)
+mL− 2rL
√
σ2L

]}
. (46)

The equity value Ŝt for t > t∗ is

Ŝt =


∫ ∞

0

π3(yt | τd > t, ŷt)S(yt , Ct∗ ) dyt , if t∗ < t < t∗ + L (47a)∫ ∞
0

π4(yt|τd > t, ŷt)S(yt , Ct∗ ) dyt , if t ≥ t∗ + L , (47b)

where π3(yt | τd > t, ŷt) is given in equation (A.4), π4(yt |τd > t, ŷt) is given in equa-

tion (A.1) and St(yt , Ct∗ ) is the solution (9)–(10) of the ODE (5) with boundary condi-

tions (6)–(7).

With the value of Ŝ
t∗ obtained in equation (46), we can determine the outsiders’

valuation of equity Ŝt for t < t∗ by solving the expectation in equation (45a). Intuitively,

this expectation captures the fact that there are no cash flows for equity over the interval

t ∈ (0, t∗) and hence, the equity value is given by its risk-neutral discounted value at

t = t∗. To solve this expectation we note that e−rtŜ(ŷt , Ct) = EQ
t

[
e−rt

∗
Ŝ
t∗

]
is a Q-

martingale. Applying Itô’s lemma and using the coupon dynamics (39) we obtain that

Ŝt satisfies the PDE

0 = −rŜ +mŜ
ŷ

+
σ2

2
Ŝ
ŷŷ

+ Ŝ
C

(1− θ)
(

C2

D(ŷ, C)

)
, (48)
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with boundary conditions

lim
ŷt→ŷt∗

Ŝt(ŷt , Ct) = Ŝ
t∗ (49)

lim
ŷt→∞

Ŝt(ŷt , Ct) = e(ŷt+vB+mL+σ2

2
L) − (1− θ)Ct

r
, (50)

lim
Ct→0

Ŝt(ŷt , Ct) = e(ŷt+vB+mL+σ2

2
L) − (1− θ)Ct

r
, (51)

where Ŝ
t∗ is given in equation (46).

3.5 Scaling property

The valuation expressions for debt and equity that we have obtained above exhibit an

important scaling property. From equation (10), the default boundary is V
B

= C
t∗/β.

Hence, the state variable ŷt = log(V̂t/VB) is unaffected if the lagged asset value V̂t and

cumulative coupon C
t∗ are scaled by a constant factor. From the characterization of

debt values for t ≥ t∗ in Propositions 1, 2, and equation (13b), we note that the debt

values are linear in the coupon level C, that is

Dt(ŷt , t, C) = C ×Dt(ŷt , t, 1), t ≥ t∗. (52)

The following proposition shows that the value of debt and equity at any time t ≤ t∗

are homogeneous of degree one in the state vector
(
Ct , V̂t

)
. This allows us to reduce

the dimensionality of the problem, and express (scaled) debt and equity as a function

only of the debt-to-assets ratio Ψt ≡ Ct/V̂t . It is convenient to rewrite the value of debt

using V̂t as a state variable instead of ŷt . We therefore define D∗(V̂t , Ct) = D(ŷt , Ct).

We claim:

Proposition 4 Let V̂t be the lagged asset value (1), V
B

the default boundary (10) for a

generic cumulative coupon C
t∗ and Ψt = Ct/V̂t the debt-to-assets ratio. Then the debt

value D∗(V̂t , Ct) for t < t∗ is

D∗(V̂t , Ct) = V̂t G (Ψt) , (53)

where G(Ψt) solves the PDE

θΨ− rG+ (1− θ)Ψ2GΨ

G
+ r (G−ΨG

Ψ
) +

σ2

2
Ψ2G

ΨΨ
= 0, (54)
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subject to the boundary conditions

G(0) = 0 (55)

G(Ψ) = ΨD2

(
log

(
β

Ψ

)
, t∗, 1

)
, (56)

where Ψ = C
t∗/V̂t∗ is the debt capacity constraint in equation (30), and D2(ŷ

t∗ , t
∗, C

t∗ )

is defined in (35).

Note that the boundary condition (56) implies that the bond value G(Ψt) does not

depend on the actual level of coupon C
t∗ . This is an implication of the scaling prop-

erty (52) and of the definitions of maximum debt capacity (30), V̂
t∗ = C

t∗/Ψ, and

default boundary (10), V
B

=
(
C
t∗
β

)
. Using these definitions in ŷ

t∗ ≡ log
(
V̂
t∗
V
B

)
, we

obtain ŷ
t∗ = log

(
β

Ψ

)
, as in equation (56).

A similar scaling property also holds for the value of equity Ŝt(ŷt , Ct) defined in

equations (45a)–(45b). Just as we did for debt, it is convenient to rewrite the value

of equity using V̂t as a state variable instead of ŷt . We therefore define Ŝ∗(V̂t , Ct) =

Ŝ(ŷt , Ct). We claim:

Proposition 5 Let V̂t be the lagged asset value (1), V
B

the default boundary (10) for a

generic cumulative coupon C
t∗ and Ψt =

(
Ct
V̂t

)
the debt-to-assets ratio. Then the equity

value Ŝ∗(V̂t , Ct) for t ≤ t∗ can be expressed as:

Ŝ∗
(
V̂t , Ct

)
= V̂t H (Ψt) , (57)

where H(Ψt) solves the ODE

−rΨH
Ψ

+
σ2

2
Ψ2H

ΨΨ
+

H
Ψ

G(Ψ)
(1− θ)Ψ2 = 0, (58)

subject to the boundary conditions

H(Ψ) = emL+σ2L
2 N

[
log
(
β

Ψ

)
+mL+ σ2L
√
σ2L

]
− (1− θ)Ψ

r
N

[
log
(
β

Ψ

)
+mL

√
σ2L

]

−
(
β

Ψ

)− 2r
σ2
(

Ψ

β
− (1− θ)Ψ

r

)
erL N

[
log
(
β

Ψ

)
+mL− 2rL
√
σ2L

]
(59)

H(0) = emL+σ2

2
L. (60)
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Here, we have defined Ψ =
(
C
t∗

V̂
t∗

)
as the credit constraint in equation (30), and G(Ψt) =(

D∗(V̂t , Ct)/V̂t

)
is defined in Proposition 4.

The boundary condition (59) follows directly from equation (46) in Proposition 3.

3.6 Optimal capital structure and debt dynamics

We use Propositions 4 and 5 to solve for the firm’s optimal capital structure at time 0.

For tractability, we assume that the manager does not have an informational advantage

at this time and that, like the creditors, she observes only the lagged unlevered asset

value V̂0 = V−L .

To determine the firm’s optimal capital structure, we exploit the scaling property of

the problem and, without loss of generality, set V̂0 = 1 in Propositions 4 and 5. This

implies Ψ0 = C0 , D0 = G(Ψ0) and Ŝ0 = H(Ψ0). The firm value is then G(Ψ0) +H(Ψ0),

and therefore the optimal capital structure Ψopt

0
at time 0 is given by:

Ψopt

0
= arg max

Ψ0

{G(Ψ0) +H(Ψ0)} . (61)

Note that choosing the initial capital structure Ψopt

0
is equivalent to selecting an initial

coupon level Copt

0
for a firm with asset size V̂0 . In general, the initial coupon will be

Copt

0
= Ψopt

0
V̂0 .

After choosing its initial capital structure, the firm continuously issues debt at a rate

dCt given by equation (39), until it exhausts its debt capacity. Applying Itô’s lemma to

Ψt ≡
(
Ct/V̂t

)
we obtain the following dynamics for Ψt :

dΨt =

[
(1− θ)

Ψ2
t

G(Ψt)
− (r − σ2)Ψt

]
dt− σΨt dB

Q
t
, Ψ0 = Ψopt

0
= Copt

0
. (62)

By construction, at the random time t∗, Ψ
t∗ = Ψ, where Ψ is an exogenous parameter

representing a firm’s debt capacity. At any prior time (t ≤ t∗), the cumulative coupon

Ct for a firm of size V̂0 = 1 is given by

C(V̂0=1)
t

= Ψt V̂
(V̂0=1)
t

, (63)

where V̂
(V̂0=1)
t is the lagged value of assets at time (t − L), V

t−L obtained from the

dynamics (1) with initial condition V
(−L)

= 1. Because of the scaling property discussed
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in Section 3.5, the cumulative coupon of a firm with initial asset size V̂0 = ν is simply

ν × C(V̂0=1)
t .

4 Results

There are two defining features of our model that, taken together, set it apart from

previous contributions. First, we allow for information asymmetry between the firm’s

manager and creditors. Second, the firm continues to issue debt until it reaches its debt

capacity. It is useful to organize the discussion of our model’s implications along these

two elements, so as to more easily draw a comparison with the previous literature.

The key model coefficients associated with information asymmetry and debt issuance

are L and Ψ. In the baseline case, we assume that it takes creditors six months to learn

the true value of the firm’s assets, i.e., they observe V with a L = 0.5 delay. Furthermore,

we use Ψ to generate a leverage at time t∗ of approximately 75%, in line with leverage

values of firms that recently transitioned to “fallen angel” status.

Other special cases are also relevant. For instance, when (L = 0, Ψ = C0), the

manager and creditors share the same information set, and the firm is permitted to

issue debt only at time 0. This case is similar to the Leland (1994) setting. Another

special case is (L > 0, Ψ = C0)—which is closely related to the economy of Duffie

and Lando (2001) in which a better-informed manager chooses the optimal mix of debt

and equity at time zero, but is prevented from issuing debt in the future. Finally, the

case in which (L = 0, Ψ > C0) falls within the literature on optimal capital structure

dynamics with complete information (e.g., Goldstein, Ju, and Leland (2001), Hennessy

and Whited (2007), DeMarzo and He (2017)).

Table 2 reports the rest of the model coefficients for the baseline calibration. We

normalize the total coupon payment at one, C
t∗ = 1. The risk-neutral asset dynamics

in equation (1) are governed by a 0.5% riskfree rate16 and 30% volatility per year. In

the model, the capital structure choice is driven by the trade-off between debt tax shield

and bankruptcy cost. In this respect, we assume that corporate profits are taxed at a

θ = 25% rate, while the bankruptcy cost parameter is set to α = 0.4.

16In a more general setting in which the firm has a constant payout ratio δ, the risk-neutral drift of
firm value is (r − δ) rather than r in our paper. Our calibration choice of r = 0.5% reflects this.
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4.1 Capital structure

Figure 4 shows the optimal firm capital structure at time t = 0 as a function of the

information lag L. The blue line, labeled ‘BGG’, portrays the solution for our model,

computed as in Section 3.6. The red line shows similar results for a firm that is restricted

to issue equity at time t = 0 only, i.e., Ψ = C0 . We label this case as “Duffie-Lando”.

In our baseline calibration (L = 0.5), the optimal initial leverage is 31.73%, compared

to 40.40% in the Duffie-Lando case. In our model, the firm continues to borrow after

time 0 to service debt in place, and its leverage increases to 77.33% by the time the

credit constraint becomes binding at time t∗. Hence, while the ability to issue debt

guarantees that default cannot occur in the “short term” (i.e., prior to t∗), compared

to a firm in which the level of outstanding debt is fixed (as in DL), these future debt

issuances significantly increase the probability of default at longer maturities. This in

turn makes it optimal for the firm to choose a lower initial leverage in our framework

compared to that of DL.

Furthermore, Figure 4 shows that as the information asymmetry between the man-

ager and creditors increases, the firm issues less debt initially. For instance, when cred-

itors observe the value of the assets with a one-year delay, optimal initial leverage de-

creases to 31.16% in our model; a similar drop occurs in Duffie-Lando, where optimal

initial leverage is 39.73%. At the other extreme, when L→ 0, both manager and cred-

itors observe the true value of the assets without a lag. In this case, the Duffie-Lando

case collapses into the Leland model, with initial optimal leverage peaking at 41.35%.

In our model, the ability to issue additional debt in the future increases the riskiness of

the initial debt in place, which in turn causes the optimal initial leverage to be lower

(32.30%).

Next, we illustrate the sensitivity of the firm’s optimal initial capital structure to

the credit constraint coefficient Ψ. The left panels of Figures 5 report both the optimal

leverage at time 0 (the triangles) and debt capacity leverage at time-t∗ (the stars) as a

function of Ψ when information asymmetry is (i) low (L = 0.01, top panel), (ii) medium

(L = 0.5, center), and (iii) high (L = 1, bottom). In all cases, we find that the optimal

initial leverage ratio is a decreasing function of Ψ. Intuitively, this occurs because,

when Ψ is decreased, original debtholders know that the firm’s debt capacity will be

exhausted at lower levels of leverage, which in turn decreases the probability of default
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at “medium” maturities. This reduction in default rates will increase the value of the

original debt issuance, which in turn will increase the optimal initial leverage chosen

by the manager. As Ψ drops further to approach C0 , initial leverage converges to the

Duffie-Lando capital structure solution that we discussed in the previous paragraph.

In the right panels, we show how the degree of information asymmetry, captured by

varying the lag parameter L, interacts with the credit constraint in determining a firm’s

financing decisions. Both at time 0 and t∗, a larger information lag between creditors

and the manager increases the cost of debt issuance, and therefore reduces optimal initial

leverage.

4.2 Term structure of credit spreads

We use the pricing formulas for perpetual debt, derived in Section 3, to simulate model-

implied default times as detailed in the Online Appendix. We then compute the term-

structure of defaultable bond spreads as in Duffie and Lando (2001). Specifically, in each

simulated path for asset values, we price a defaultable zero coupon bond with maturity T

whose payoff at maturity is either $1, if there is no default, or a recovery value of $(1−α)

if default occurs at any time τd ≤ T . Figure 6 shows the model-implied credit spreads

curve as a function of the information lag L. In the baseline case, we identify a typical

investment-grade company with credit spreads of about 65 bps at the five-year horizon.

We find such firm to have leverage of 32% at time 0; to facilitate comparisons with the

other cases, when we change L we also adjust the initial amount of debt issued to keep

leverage at the same level. As the information lag L increases, debt becomes riskier

and credit spreads go up. However, in all cases short-maturity credit spreads remain

very low. This is because in our model IG companies are subject to negligible jump-

to-default risk; hence, they command little or no jump-to-default premium, consistent

with the stylized facts discussed in Section 2.

Figures 7 and 8 document the sensitivity of credit spreads to changes in Ψ and σ

when keeping initial leverage at the same 32% level. As Ψ increases, firms arrive at

t∗ with a larger stock of debt. Hence, creditors expect the firm to reach its default

boundary sooner than in the baseline case, and therefore price debt lower. Even in this

case, however, the impact of a higher Ψ is mostly visible in longer-dated spreads. In

contrast, short-maturity debt largely remains safe, as the IG company can avoid default
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at short horizons by accessing its available debt capacity. A similar pattern is evident in

Figure 8: as asset volatility increases, debt becomes riskier and spreads go up. However,

the increase is mostly visible at longer maturities, while short-term IG spreads stay low.

In contrast, Figure 9 shows model-implied spreads for a fallen-angel company that

has reached a leverage of 80%. In the complete information case (L ≈ 0), spreads are

small and close to zero at short maturities. As the degree of asymmetric information

between managers and creditors increases, spreads rise considerably. For instance, an

information lag of L = 1 year produces spreads of 750 basis points at the one-month

horizon. This happens because after the firm reaches its debt capacity at time t∗, it

behaves similar to a firm described by the Duffie-Lando economy. In particular, as

leverage increases jumps to default are likely and priced in the firm’s debt.

4.3 Default rates

Table 3 shows model-implied expected default rates for firms in different credit-rating

groups. We simulate a sample of 10,000 firms, and track each of them until their eventual

default (details on the simulation scheme are in the Online Appendix). For each firm and

at each point of its simulated life span, we record the time to the company’s default and

use the firm’s leverage as a proxy for credit worthiness. In particular, we assign firms

with leverage no higher than 65% to the IG group. Companies with leverage between

65% and 75% are in the B group, while the rest are given a C label. We then compute

the proportion of the firms in a rating group that default at various time horizons, and

report the annualized default rate in the table.

Model-implied default rates are close to the empirical estimates in Table 1. Just

as in the data, IG companies hardly ever go bankrupt; at short horizons, default rates

are virtually zero and they increase progressively over time. Failures remain infrequent

among B firms, though in this case the annualized default rate exceeds 2% at the 9–12

months horizon. Firms in the C category behave instead in a way that is consistent with

the possibility of jumps to defaults. At the one-month horizon, the annualized default

rate is approximately 15%, a number that matches closely empirical default rates for

companies that are rated C by the three main rating agencies. Beyond the first month,

default rates decline progressively, though they remain elevated, like we have have found

in the data.
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5 Conclusion

We provide theoretical and empirical support for the notion that IG firms face virtually

zero jump-to-default risk, and therefore their short-maturity bonds command virtually

zero jump-to-default premium. We develop a model in which the manager has superior

information about the value of the firm’s assets relative to creditors, and can access the

debt markets if the firm’s debt capacity has not been fully utilized. In this framework,

a manager of an IG firm will maximize shareholder value by concealing any bad private

signal and servicing existing debt via additional borrowing. This strategy permits IG

firms to avoid jumping to default, at least until their debt capacity has been used up

and the firm has dropped down to “fallen angel” status with speculative-grade spreads.

Creditors are aware of the manager’s information advantage and price it rationally into

the firms’ claims. Since firms with IG-level spreads do not face jump-to-default risk,

their bond yields do not command a jump-to-default premium.

By allowing for dynamic debt issuance, our model extends the seminal work of Duffie

and Lando (2001) in a way that greatly helps to characterize the way a vast portion of

corporate bond issuers fund themselves. We acknowledge, however, that our analysis

abstracts from some important features of credit markets. For instance, shareholders

in our model do not receive any cash dividend payout, and the only reason for issuing

debt is to repay debt in place. Adding a dividend payout will accelerate the time in

which debt capacity is exhausted but will not qualitatively alter the key insights from

our analysis. Further, in our model, firms continue to issue debt until its debt capacity

has been fully utilized. In reality, conditions might improve after a firm reaches its debt

capacity. For instance, the asset value could grow significantly to bring leverage down

back to IG level, thus allowing the firm to tap into the bond market again. We can allow

for this possibility in our model, however at significant costs in the computations and

exposition.

We note that our framework generates a prediction nearly opposite to DL. By pre-

cluding the manager from issuing debt after date 0, DL show that firms can jump-

to-default due to asymmetric information even if the underlying asset value dynamics

follows a diffusion process. In contrast, by allowing the manager of IG firms to issue

debt, we show that, in the presence of asymmetric information, such firms will not jump

to default even if the underlying asset value dynamics follows a jump process. A jump to
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default due to asymmetric information is possible in our setting only when firms become

“fallen angels.” The implication of our model is that the relatively large spreads on

short-maturity IG debt over risk-free securities cannot be explained by jump-to-default

premia due to asymmetric information, and therefore implies that other channels (e.g.,

asymmetric taxes, illiquidity, rare disasters) are needed to explain these large spreads.
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A Appendix: Proofs

Lemma 1 The density πQ
4

(yt|τd > t, y
(t−L)

), t ≥ t∗ + L is given by

πQ
4

(yt |τd > t, y
(t−L)

) =
πQ(yt , τd > t|y

(t−L)
, τ

d
> (t− L))

πQ
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

) , (A.1)

where the numerator and denominator are

πQ(yt , τd > t|y
(t−L)

, τ
d
> (t− L)) = 1{yt>0} 1{y

(t−L)
>0} × (A.2)

1√
2πσ2L

exp

{( −1
2σ2L

) [
yt − y(t−L)

−mL
]2
}

−e−
2y(t−L)m

σ2 1√
2πσ2L

exp

{( −1
2σ2L

) [
yt + y

(t−L)
−mL

]2
}


πQ
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

)
=

[
N

(
ŷt +mL√

σ2L

)
− e−

2ŷtm

σ2 N

(
−ŷt +mL√

σ2L

)]
1{ŷt>0},(A.3)

and N(·) denotes the cumulative standard normal distribution.

Proof. From Proposition 8.1, p. 11 in Harrison (1985) the density πQ(yt , τd > t|y
(t−L)

, τ
d
>

(t−L)) in the numerator of (A.1) is characterized by the “free solution” minus an “image

solution” whose initial location (−ŷt ≡ −y(t−L)
) is the same distance from the default

boundary as is the actual initial location, that is, (ŷt ≡ y
(t−L)

). Hence, the numerator

of (A.1) is given by

πQ(yt , τd > t|y
(t−L)

, τ
d
> (t− L)) = 1{yt>0} 1{y

(t−L)
>0} ×

1√
2πσ2L

exp

{( −1
2σ2L

) [
yt − y(t−L)

−mL
]2
}

−e−
2y(t−L)m

σ2 1√
2πσ2L

exp

{( −1
2σ2L

) [
yt + y

(t−L)
−mL

]2
}


By integrating over yt we obtain the denominator of (A.1), that is,

πQ
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

)
=

[
N

(
ŷt +mL√

σ2L

)
− e−

2ŷtm

σ2 N

(
−ŷt +mL√

σ2L

)]
1{ŷt>0},

where N(·) denotes the cumulative standard normal density.
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Lemma 2 The density πQ
3

(yt|τd > t, y
(t−L)

) , t ∈ (t∗, t∗ + L) is given by

πQ
3

(yt |τd > t, y
(t−L)

) =
πQ(yt , τd > t|y

(t−L)
, τ

d
> (t− L))

πQ
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

) , (A.4)

where the numerator and denominator are
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, τ
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Proof. By definition

π3(yt, τd > t | ŷt) ≡ π(yt,min{ys} > 0 ∀s ∈ (t∗, t) | ŷt)

=

∫ ∞
−∞

π(yt∗ , yt,min{ys} > 0 ∀s ∈ (t∗, t) | ŷt) dyt∗
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e
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1
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dyt∗ , (A.7)

where the third line holds because, when conditioning on (yt∗ , ŷt), yt∗ is a sufficient

statistic.
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By integrating the joint density (A.7) over yt ∈ (0,∞), we find

π3(τd > t | ŷt) ≡ π(min{ys} > 0 ∀s ∈ (t∗, t) | ŷt)

=

∫ ∞
0
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e
−
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1
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]}
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Proof of Proposition 1

Let us define DT
4,1

(1{yt>0}, y(t−L)
) as the date t price of a claim that pays $1 at date-T if
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where πQ
4

(
yt |τd > t, y

(t−L)

)
is given in (A.1).

It therefore follows that the date-t price of a perpetuity that pays C dT1{τ
d
>T} for

all dates-T is

D4,1(1{τ
d
>t}, y(t−L)

) = C
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d
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Somewhat analogously, let us define DT
4,2

(1{yt>0}, y(t−L)
) as the date-t price of a claim

31



that pays $1 at date-T if and only if τ
d

= T . Its value is obtained as follows
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where δ(·) denotes the Dirac’s delta function. Finally, the claim to (1−α)V
B

at the time

of default equals
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Therefore, the claim to debt in Regime 4 is the sum:
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) = D4,1(1{τ
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Note that by change of variables s = (T − t), it becomes clear that the bond price

in Regime 4 has no explicit time dependence, and is function only of the state vector

(1{τ
d
>t}, y(t−L)

).

Proof of Corollary 1

We define the risk-neutral default intensity as
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Note that only values of yt = ασ
√
dt contribute to the determination of the default

intensity. To see why this is the case, recall that, from a binomial model, dy = ±σ
√
dt.

Therefore, only if yt is a few standard deviations away from the boundary at date-t is it

possible for default to occur by (t+dt). Changing the integration variables yt = ασ
√
dt,

dyt = dα σ
√
dt, we find
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(It might be surprising that this result is not of order O(dt), but this is because we

are considering only those values of yt = ασ
√
dt that are “very close” to the default

boundary.)

Now, from eq. (A.1), we have

π4(yt = ασ
√
dt|τ

d
> t, y

(t−L)
) =

π(yt = ασ
√
dt, τ

d
> t|y

(t−L)
, τ

d
> (t− L))

π
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

) ,(A.16)

Taylor expanding with respect to yt = ασ
√
dt, and using the fact that the density goes

zero at yt = 0, we get

π(yt = ασ
√
dt|τ

d
> t, y

(t−L)
) =

=
π(yt = 0, τ

d
> t|y

(t−L)
, τ

d
> (t− L)) + ασ

√
dt πy(yt = 0, τ

d
> t|y

(t−L)
, τ

d
> (t− L))

π
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

)
=
ασ
√
dt πy(yt = 0, τ

d
> t|y

(t−L)
, τ

d
> (t− L))

π
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

) . (A.17)
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Combining these results, we find:

λQ
4,d

(1{τ
d
>t}, y(t−L)

) = lim
dt⇒0

(
1

dt

)∫ ∞
0

σ
√
dt dα 2N(−α)

ασ
√
dt πy(yt = 0, τ

d
> t|y

(t−L)
, τ

d
> (t− L))

π
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

)
=

2σ2 πy(yt = 0, τ
d
> t|y

(t−L)
, τ

d
> (t− L))

π
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

)
 ∫ ∞

0

dα αN(−α)

(A.18)

Using integration by parts, can show that∫ ∞
0

dα αN(−α) =
1

4
. (A.19)

Hence,

λQ
4,d

(1{τ
d
>t}, y(t−L)

) =

(
σ2

2

)
∂

∂yt

π(yt = 0, τ
d
> t|y

(t−L)
, τ

d
> (t− L))

π
(
τ
d
> t| y

(t−L)
, τ

d
> (t− L)

)


=

(
σ2

2

)
∂

∂yt
π4(yt |y(t−L)

, τ
d
> t)

∣∣∣∣
yt=0

. (A.20)

Expression (19) for the default intensity follows by differentiation of the above expression.

Proof of Proposition 2

If default has not occurred during Regime-2 at date-t∗, it follows that outsiders infor-

mation set is

F(t∗) =
(
y

(t∗−L)
, y

t∗ > 0
)
. (A.21)

An important probability that we need for pricing the bond in this regime is πQ
3

(
y
t∗ | yt∗ > 0, y

(t∗−L)

)
.

To derive it, we use the identity

π
(
y
t∗ , yt∗ > 0 | y

(t∗−L)

)
= πQ

3

(
y
t∗ | yt∗ > 0, y

(t∗−L)

)
π
(
y
t∗ > 0 | y

(t∗−L)

)
= π

(
y
t∗ > 0 | y

t∗ , y(t∗−L)

)
π
(
y
t∗ | y(t∗−L)

)
. (A.22)
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Combining both RHS of the previous equation, we find

πQ
3

(
y
t∗ | yt∗ > 0, y

(t∗−L)

)

=
π
(
y
t∗ > 0 | y

t∗ , y(t∗−L)

)
π
(
y
t∗ | y(t∗−L)

)
π
(
y
t∗ > 0 | y

(t∗−L)

) (A.23)

= 1{y
t∗>0}

π
(
y
t∗ | y(t∗−L)

)
π
(
y
t∗ > 0 | y

(t∗−L)

)
=

 1{y
t∗>0}

N
(
y
(t∗−L)

+mL
√
σ2L

)
 1√

2πσ2L
exp

[
−
(

1

2σ2L

)(
y
t∗ − y(t∗−L)

−mL
)2
]
.

In Regime 3, the bond has 3 claims: (1) For dates T in the interval T ∈ (t∗, (t∗+L)),

the claim to coupon payment C dT at date-T if default has not yet occurred (i.e., τ
d
> T );

(2) For dates T in the interval T ∈ (t∗, (t∗ + L)), the claim to recovery if default occurs

at date-T (i.e., τ
d

= T ); and (3) the claim to D4(y
t∗ , τd > (t∗+L)) if default occurs later

than (t∗ + L) (i.e., τ
d
> (t∗ + L)). We price each claim separately.

Let us define DT
3,1

(1{y
t∗>0}, y(t∗−L)

) as the date-t∗ price of a claim that pays $1 at

date-T if and only if τ
d
> T (Here, we assume (T > t∗)). Its value is

DT
3,1

(1{y
t∗>0}, y(t∗−L)

) = e−r(T−t
∗) 1{y

t∗>0} EQ
[
1{τ

d
>T}|yt∗ > 0, y

(t∗−L)

]
= e−r(T−t

∗)1{y
t∗>0} π

Q
(
τ
d
> T |y

t∗ > 0, y
(t∗−L)

)
= e−r(T−t

∗)1{y
t∗>0}

∫ ∞
0

dy
t∗ π

Q
(
τ
d
> T, y

t∗ |yt∗ > 0, y
(t∗−L)

)
= e−r(T−t

∗)1{y
t∗>0}

∫ ∞
0

dy
t∗ π

Q (τ
d
> T |y

t∗ ) π
Q
3

(
y
t∗ |yt∗ > 0, y

(t∗−L)

)
= e−r(T−t

∗)1{y
t∗>0}

∫ ∞
0

dy
t∗

[
N

(
y
t∗ +m(T − t∗)√
σ2(T − t∗)

)
− e−

2y
t∗m
σ2 N

(
−y

t∗ +m(T − t∗)√
σ2(T − t∗)

)]

×πQ
3

(
y
t∗ |yt∗ > 0, y

(t∗−L)

)
. (A.24)

It therefore follows that the date-t∗ price of a perpetuity that pays C dT1{τ
d
>T} for all
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dates-T ∈ (t∗, (t∗ + L)) is

D3,1(1{y
t∗>0}, y(t∗−L)

) = C

∫ (t∗+L)

t∗
dT DT

3,1
(1{y

t∗>0}, y(t∗−L)
). (A.25)

Somewhat analogously, let us define DT
3,2

(1{y
t∗>0}, y(t∗−L)

) as the date-t∗ price of a

claim that pays $1 at date-T if and only if τ
d

= T (Here, we assume (T > t∗)). Defining

δ(·) as the Dirac delta function, the value of this claim is

DT
3,2

(1{y
t∗>0}, y(t∗−L)

) =

= e−r(T−t
∗) 1{y

t∗>0} EQ
[
δ(τ

d
= T )|y

t∗ > 0, y
(t∗−L)

]
= e−r(T−t

∗) 1{y
t∗>0} π

Q
(
τ
d

= T |y
t∗ > 0, y

(t∗−L)

)
= e−r(T−t

∗) 1{y
t∗>0}

∫ ∞
0

dy
t∗ π

Q
(
τ
d

= T, y
t∗ |yt∗ > 0, y

(t∗−L)

)
= e−r(T−t

∗) 1{y
t∗>0}

∫ ∞
0

dy
t∗ π

Q (τ
d

= T |y
t∗ ) π

Q
3

(
y
t∗ |yt∗ > 0, y

(t∗−L)

)
= e−r(T−t

∗) 1{y
t∗>0}

∫ ∞
0

dy
t∗ π

Q
3

(
y
t∗ |yt∗ > 0, y

(t∗−L)

)
×

y
t∗√

2πσ2(T − t∗)3
e
−
(

1
2σ2(T−t∗)

)
(yt∗+m(T−t∗))

2

. (A.26)

Hence, the claim to (1− α)V
B

at the time of default equals

D3,2(1{y
t∗>0}, y(t∗−L)

) = (1− α)V
B

∫ (t∗+L)

t∗
dT DT

3,2
(1{y

t∗>0}, y(t∗−L)
). (A.27)

Third, let us define D3,3(1{y
t∗>0}, y(t∗−L)

) as the date-t∗ price of a claim that pays

DC
4

(1{τ
d
>(t∗+L)}, yt∗ ) at date (t∗ + L) if τ

d
> (t∗ + L) .

D3,3(1{y
t∗>0}, y(t∗−L)

) = e−rL 1{y
t∗>0} EQ

[
1{τ

d
>(t∗+L)} D

C
4

(1{τ
d
>(t∗+L)}, yt∗ )|yt∗ > 0, y

(t∗−L)

]
= e−rL1{y

t∗>0}

∫ ∞
0

dy
t∗ π

Q
(
τ
d
> (t∗ + L), y

t∗ | yt∗ > 0, y
(t∗−L)

)
DC

4
(1{τ

d
>(t∗+L)}, yt∗ )

= e−rL1{y
t∗>0}

∫ ∞
0

dy
t∗ π

Q (τ
d
> (t∗ + L) | y

t∗ ) π
Q
3

(
y
t∗ | yt∗ > 0, y

(t∗−L)

)
DC

4
(1{τ

d
>(t∗+L)}, yt∗ )

= e−rL1{y
t∗>0}

∫ ∞
0

dy
t∗ π

Q
3

(
y
t∗ | yt∗ > 0, y

(t∗−L)

)
DC

4
(1{τ

d
>(t∗+L)}, yt∗ )

×
[
N

(
y
t∗ +mL√
σ2L

)
− e−

2y
t∗m
σ2 N

(
−y

t∗ +mL√
σ2L

)]
. (A.28)
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Therefore, the claim to debt in regime 3 is the sum:

DC
3

(1{y
t∗>0}, y(t∗−L)

) = D3,1(1{y
t∗>0}, y(t∗−L)

) +D3,2(1{y
t∗>0}, y(t∗−L)

) +D3,3(1{y
t∗>0}, y(t∗−L)

).

Proof of Proposition 3

To find Ŝt for t < t∗, we first determine

Ŝ(ŷt∗ , Ct∗) = EQ
t∗ [S(yt∗ , Ct∗) | ŷt∗ , Ct∗ ] . (A.29)

Using the fact that, by (8), VB = Ct∗
β

, and by (30), Ct∗

V̂t∗
= Ψ, we obtain

ŷt∗ ≡ log

(
V̂t∗

VB

)
= log

(
β

Ψ

)
. (A.30)

Using (9) and recalling the definition of yt∗ = log
(
Vt∗
VB

)
and ŷt∗ = log

(
V̂t∗
VB

)
, we can

re-write the equity value St under the manager’s information set as follows

S(yt∗ , Ct∗) = eŷt∗+vB 1{yt∗>0}

{(
eyt∗−ŷt∗ − (1− θ)Ψ

r

)
−

e−
2r
σ2 (yt∗−ŷt∗ )

(
β

Ψ

)− 2r
σ2
(

Ψ

β
− (1− θ)Ψ

r

)}
. (A.31)

From (2) we have that the distribution of yt∗ conditional on ŷt∗ , under the risk-neutral

measure Q is

πQ [yt∗ | ŷt∗ ] =
1√

2πσ2L
e−

(yt∗−ŷt∗−mL)2

2σ2L . (A.32)

Therefore the equity value Ŝt∗ under the creditors’ information set is

Ŝ(ŷt∗ , Ct∗) = EQ
t [S(yt∗ , Ct∗)| ŷt∗ ]

= eŷt∗+vB

{
emL+σ2L

2 N

[
log
(
β

Ψ

)
+mL+ σ2L
√
σ2L

]
− (1− θ)Ψ

r
N

[
log
(
β

Ψ

)
+mL

√
σ2L

]

−
(
β

Ψ

)− 2r
σ2
(

Ψ

β
− (1− θ)Ψ

r

)
erL N

[
log
(
β

Ψ

)
+mL− 2rL
√
σ2L

]}
. (A.33)
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To determine the value of equity Ŝt for t > t∗, note that, using the change of variable

eyt =
(
Vt
VB

)
we can write the value of equity St in the manager’s information set (9) as

S(yt) = VBe
yt − (1− θ)C

r
− e

−2ryt
σ2

[
VB −

(1− θ)C
r

]
, (A.34)

The value of equity in the creditors’ information set for t > t∗ is then obtained by

integrating (A.34) over yt after using the conditional densities (A.1), for t ≥ t∗ + L,

and (A.4), for t∗ < t < t∗ + L. This yields

Ŝt =


∫ ∞

0

π3(yt | τd > t, ŷt)S(yt, Ct∗) dyt, if t∗ < t < t∗ + L (A.35a)∫ ∞
0

π(yt|τd > t, ŷt)S(yt, Ct∗) dyt, if t ≥ t∗ + L . (A.35b)

Proof of Proposition 4

Note that if both V̂t and C are scaled by a factor ν, VB = C/β, would also scale by ν,

and therefore ŷt = log(V̂t/VB) would be unaffected by this scaling. This implies that

D3(t∗, ŷt∗) would scale by the factor ν. Plugging these scaled factors into equation (35),

we see that the bond price D2(t∗, ŷt∗) would also scale by the same factor ν. To emphasize

this dependence, we express the debt value as D2(ŷt∗ , t
∗, Ct∗) = Ct∗ × D2(ŷt∗ , t

∗, 1).

Indeed, even though (35) represents the value of debt in Regime 2 for all values of ŷt∗ ,

in fact only one value is relevant, namely, the value for which Ct∗ = ΨV̂t∗ , and thus,

ŷt∗ = log
(
C(t∗)
ΨVB

)
= log

(
β

Ψ

)
. That is, the only value we use below is

D2

(
log

(
β

Ψ

)
, t∗, 1

)
. (A.36)

Expressing the bond value for t < t∗ in (13a) as a function of the asset value,

D(V̂t, Ct), from Itô’s lemma and the law of motion of Vt in (1) and Ct in (39), we have

that D satisfies the following PDE:

0 = Ct −
(
r + (1− θ)Ct

D1

)
D + (1− θ)C

2

D
DC + rV̂ DV̂ +

σ2

2
V̂ 2DV̂ V̂ +Dt

= −rD + θC + (1− θ)C
2

D
DC + rV̂ DV̂ +

σ2

2
V̂ 2DV̂ V̂ , (A.37)
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subject to the boundary conditions

lim
V̂→∞

D(V̂ , C) =
C

r

lim
C/V̂→Ψ

D(V̂ , C) = D2

(
log

(
β

Ψ

)
, t∗, Ct∗

)
. (A.38)

Given the scaling property of debt in Regimes 2–4, we guess a solution of the form:

D(V̂t, Ct) = V̂tG (Ψt) , where Ψt ≡
Ct

V̂t
. (A.39)

The partial derivatives in (A.37) can be expressed as:

DC = GΨ

DV̂ = G−ΨGΨ

DV̂ V̂ =

(
Ψ2

V̂

)
GΨΨ

Dt = V̂ Gt. (A.40)

Substituting into (A.37), and dividing through by V̂ , we see that our guess is self-

consistent and that the PDE reduces to:

0 = θΨ− rG+ (1− θ)Ψ2GΨ

G
+ r (G−ΨGΨ) +

σ2

2
Ψ2GΨΨ. (A.41)

The boundary conditions simplify to:

G(0) =
Ψt

r
(A.42)

G(Ψ) = ΨD2

(
log

(
β

Ψ

)
, t∗, 1

)
. (A.43)

Proof of Proposition 5

Expressing the equity value for t < t∗ in (45a) as a function of the asset value, Ŝ(V̂t, Ct),

from Itô’s lemma and the law of motion of Vt in (1) and Ct in (39), we have that Ŝ

satisfies the following ODE:

0 = −rŜ + rV̂ Ŝ
V̂

+
σ2

2
V̂ 2Ŝ

V̂ V̂
+ Ŝ

C
(1− θ)

(
C2

D(V̂ , C)

)
, (A.44)
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subject to the boundary conditions

lim
C/V̂→Ψ

Ŝ(V̂ , C) = Ŝt∗ (A.45)

lim
V̂→0

D(V̂ , C) = 0, (A.46)

where Ŝt∗ is given in Equation (46) of Proposition 3. Notice that, from (9), the equity

value S(Vt, C) satisfies the scaling property S(Vt, C) = Vt × S(Vt/C, 1). Hence we guess

a solution for equation (A.44) of the form

Ŝ
(
V̂t , Ct

)
≡ V̂t H (Ψt) where Ψt ≡

Ct

V̂t
. (A.47)

Substituting this guess in (A.44)–(A.46) we find that our scaling assumption is correct,

and that H satisfies the ODE:

0 = −rΨH
Ψ

+
σ2

2
Ψ2H

ΨΨ
+

H
Ψ

G(Ψ)
(1− θ)Ψ2, (A.48)

subject to the boundary conditions

H(Ψ) = emL+σ2L
2 N

[
log
(
β

Ψ

)
+mL+ σ2L
√
σ2L

]
− (1− θ)Ψ

r
N

[
log
(
β

Ψ

)
+mL

√
σ2L

]

−
(
β

Ψ

)− 2r
σ2
(

Ψ

β
− (1− θ)Ψ

r

)
erL N

[
log
(
β

Ψ

)
+mL− 2rL
√
σ2L

]
(A.49)

H(0) = 1, (A.50)

B Pricing Bonds in Regime 3 for dates t ∈ (t∗, (t∗+L))

In the text, we focused Regime-3 bond pricing on only the date t = t∗. Here, we identify

bond prices for all dates t ∈ (t∗, (t∗ + L)). We will use interchangeably the terms

mins∈(t∗,t){ys} > 0 and (τ
d
> t).

The claim to debt in regime 3 is the sum of three components: i) For dates T in the

interval T ∈ (t∗, (t∗ + L)), the claim to coupon payment C dT at date-T if default has

not yet occurred (i.e., if τ
d
> T ), ii) For dates T in the interval T ∈ (t∗, (t∗ + L)), the
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claim to recovery if default occurs at date-T (i.e., if τ
d

= T ), and iii) at date (t∗ + L),

the claim to DC
4

(1{τ
d
>(t∗+L)}, yt∗ ) if default has not yet occurred (i.e., if τ

d
> (t∗ + L)):

DC
3

(t,1{τ
d
>t}, y(t−L)

) = D3,1(t,1{τ
d
>t}, y(t−L)

) +D3,2(t,1{τ
d
>t}, y(t−L)

) +D3,3(t,1{τ
d
>t}, y(t−L)

).

The date-t price of a perpetuity that pays C dT1{τ
d
>T} for all dates-T ∈ (t∗, (t∗ +L)) is

D3,1(t,1{τ
d
>t}, y(t−L)

) = C

∫ (t∗+L)

t

dT DT
3,1

(t,1{τ
d
>t}, y(t−L)

), (B.1)

where:

DT
3,1

(t,1{τ
d
>t}, y(t−L)

) = e−r(T−t) 1{τ
d
>t} EQ

[
1{τ

d
>T} | τd > t, y

t−L

]
= e−r(T−t) 1{τ

d
>t} π

Q
[
τ
d
> T | τ

d
> t, y

(t−L)

]
= e−r(T−t) 1{τ

d
>t}

∫ ∞
0

dy
t∗

∫ ∞
0

dyt π
Q
[
τ
d
> T, y

t∗ , yt | τd > t, y
(t−L)

]
= e−r(T−t) 1{τ

d
>t}

∫ ∞
0

dy
t∗

∫ ∞
0

dyt π
Q [τ

d
> T | τ

d
> t, yt ]

×πQ [yt | τd > t, y
t∗ ] π

Q
[
y
t∗ | τd > t, y

(t−L)

]
, (B.2)

and where

πQ [τ
d
> T | τ

d
> t, yt ] =

[
N

(
yt +m(T − t)√

σ2(T − t)

)
− e−

2ytm

σ2 N

(
−yt +m(T − t)√

σ2(T − t)

)]
1{yt>0}

πQ [yt | τd > t, y
t∗ ] =

πQ [yt , τd > t | y
t∗ ]

πQ [τ
d
> t | y

t∗ ]
(B.3)

πQ [yt , τd > t | y
t∗ ] = 1{yt>0} 1{y

t∗>0} × (B.4) 1√
2πσ2(t−t∗)

exp
{( −1

2σ2L

)
[yt − yt∗ −m(t− t∗)]2

}
−e−

2yt∗m
σ2 1√

2πσ2(t−t∗)
exp

{( −1
2σ2L

)
[yt + y

t∗ −m(t− t∗)]2
}
 (B.5)

πQ (τ
d
> t| y

t∗ ) =

[
N

(
y
t∗ +m(t− t∗)√
σ2(t− t∗)

)
− e−

2ŷ
t∗m
σ2 N

(
−y

t∗ +m(t− t∗)√
σ2(t− t∗)

)]
1{y

t∗>0} (B.6)

πQ
[
y
t∗ | τd > t, y

(t−L)

]
=

πQ [τ
d
> t | y

t∗ ] π
Q
[
y
t∗ | y(t−L)

]
∫∞

0
dy

t∗ π
Q [τ

d
> t | y

t∗ ] π
Q
[
y
t∗ | y(t−L)

] . (B.7)
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Second, the date-t price of a perpetuity that pays (1− α)V
B
δ(τ

d
− T ) for all dates-

T ∈ (t∗, (t∗ + L)) is

D3,2(t,1{τ
d
>t}, y(t−L)

) = (1− α)V
B

∫ (t∗+L)

t

dT DT
3,2

(t,1{τ
d
>t}, y(t−L)

), (B.8)
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Table 1: Empirical Defaults Rates. Each month, we classify firms as investment
grade (IG) higher-quality speculative grade (B), and lower-quality speculative-grade
firms (C). In Panels A and B, the classification is based on credit ratings issued by the
three main rating agencies (Moody’s, Standard and Poor’s, and Fitch). In Panel C,
the classification is implied by the price of CDS contracts written on debt issued by the
firms. Panel A shows average annualized default rates from 1985 to 2014 for firms in each
rating category that have defaulted in the next 12 months, while Panels B and C show
default rates for the 2001-2014 period. Heteroskedasticity- and autocorrelation-robust
(Newey-West) standard errors are in parentheses.

Annualized Default Rates
Rating

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

Panel A: Classification based on credit ratings, 1985-2014

IG 0.06 0.07 0.07 0.08 0.11 0.15 0.10
( 0.02) ( 0.03) ( 0.03) ( 0.02) ( 0.03) ( 0.04) ( 0.02)

B 0.20 0.34 0.48 0.63 0.84 1.02 0.71
( 0.05) ( 0.08) ( 0.10) ( 0.13) ( 0.16) ( 0.20) ( 0.13)

C 14.46 13.66 12.54 11.10 9.14 7.47 10.31
( 1.41) ( 1.45) ( 1.21) ( 1.08) ( 0.92) ( 0.75) ( 0.94)

Panel B: Classification based on credit ratings, 2001-2014

IG 0.07 0.09 0.09 0.09 0.12 0.17 0.11
( 0.03) ( 0.04) ( 0.04) ( 0.03) ( 0.04) ( 0.05) ( 0.03)

B 0.21 0.37 0.50 0.58 0.75 0.84 0.63
( 0.07) ( 0.10) ( 0.13) ( 0.15) ( 0.18) ( 0.21) ( 0.15)

C 12.94 12.12 11.03 9.74 7.76 6.18 8.93
( 1.64) ( 1.65) ( 1.34) ( 1.22) ( 0.93) ( 0.73) ( 0.98)

Panel C: Classification based on CDS-implied ratings, 2001-2014

IG 0.01 0.01 0.01 0.04 0.04 0.05 0.03
( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.02) ( 0.02) ( 0.01)

B 0.29 0.35 0.34 0.42 0.51 0.51 0.44
( 0.11) ( 0.12) ( 0.13) ( 0.15) ( 0.19) ( 0.20) ( 0.14)

C 3.30 3.12 3.12 3.05 2.94 2.81 3.00
( 0.91) ( 0.95) ( 0.82) ( 0.80) ( 0.73) ( 0.61) ( 0.60)
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Table 2: Baseline Model Coefficients. Below are the values of the model coefficients
in the baseline calibration.

Parameter Symbol Value

Cumulative coupon at time t∗ Ct∗ 1

Annual risk-free rate r 0.5%

Annual asset volatility σ 0.3

Corporate tax rate θ 0.25

Loss given default α 0.4

Maximum debt capacity Ψ 0.03

Creditors’ information delay (in years) L 0.5

Table 3: Average Model-Implied Default Rates. We simulate a history of 10,000
firms from our model and track them from inception through their default date. For
each firm and at any point in time of the simulations we record the time to default and
classify the observation as investment grade (IG) if the firm’s leverage is below 65%. We
classify as higher-quality speculative grade (B category) firms with leverage between 65%
and 75%. Lower-quality speculative-grade firms (C category) have leverage in excess of
75%. The table shows average default rates across firms in the simulated sample.

Average annualized default rates

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

IG 0.00 0.00 0.00 0.00 0.01 0.02 0.01

B 0.07 0.17 0.31 0.71 1.51 2.41 1.20

C 15.51 15.44 15.32 14.96 14.19 13.23 14.45
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Figure 1: Percentage of Firms by Credit Ratings. The plots show the percentage of
firms in each of the three rating categories: investment grade (the IG category), higher-
quality speculative grade (the B category), and lower-quality speculative grade (the C
category). The sample period goes from 1985 to 2014. Source: Mergent database.
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Figure 2: Average CDS Premium on Investment Grade Firms up to
Bankruptcy. Among the firms that went bankrupt from 2001 to 2014, we classify
as investment grade those that had CDS contracts trading at a premium no higher than
100 basis points of the CDX Investment Grade Index for at least one of the 12 months
preceding the bankruptcy date. The plot shows the average CDS premium, in excess
of the CDX Investment Grade Index, on those investment grade firms in the 12 months
leading up to their bankruptcy.

45



t* t*+	LFirm	issues	debt	to	service	
existing	debt
Creditors	observe	vt-L
No	default,	zero	default	
intensity

Firm	reaches	max	debt	capacity
Possible	``jump	to	default”

Firm	can	only	issue	equity
Creditors:	
-observe	vt-L
- observe	any	default	immediately

Default	intensity	depends	
on	vt-L and	t-t*	

Firm	can	only	issue	equity
Creditors:	
-observe	vt-L
- observe	any	default	
immediately

Default	intensity	depends	
on	vt-L only	

0

Firm	issues	
optimal	mix	
debt/equity

REGION	1 REGION	3 REGION	4

REGION	2

Figure 3: Model Timeline
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Figure 4: Optimal Capital Structure. The plots show the optimal time-0 capital
structure as a function of the information lag L between creditors and the manager,
where L ranges from 0 to 1 year, 0 ≤ L ≤ 1. The ‘BBG’ line denotes our baseline model
in which the manager can issue debt till borrowing capacity is reached; the ‘Duffie-
Lando’ line corresponds to a firm that can only issue equity to service debt in place.
Parameter values are in Table 2.
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Figure 5: Optimal Capital Structure and Credit Constraints. The plots show the
optimal leverage at times t = 0 and t = t∗ as a function of the credit constraint parameter
Ψ and the information lag L. The left panels show optimal leverage as a function Ψ for
three values of L, L = 0.01, 0.5 and 1 year. The right panels show optimal leverage as
a function of L for three values of Ψ, Ψ = 0.02, 0.03 and 0.04. Parameter values are in
Table 2.
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Figure 6: Credit Spreads and Information Asymmetry. The plots illustrate the
sensitivity of the credit spreads curve to the information gap parameter L. In all cases,
the initial leverage is fixed at 32%, so as to match the typical 65 bps five-year spread of
an investment-grade firm in the baseline BGG model. Parameter values are in Table 2.
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Figure 7: Credit Spreads and Credit Constraints. The plots illustrate the sensi-
tivity of the credit spreads curve to the credit constraint parameter Ψ. In all cases, the
initial leverage is fixed at 32%, so as to match the typical 65 bps five-year spread of an
investment-grade firm in the baseline BGG model. Parameter values are in Table 2.
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Figure 8: Credit Spreads and Assets’ Volatility. The plots illustrate the sensi-
tivity of the credit spreads curve to the asset volatility parameter σ. In all cases, the
initial leverage is fixed at 32%, so as to match the typical 65 bps five-year spread of an
investment-grade firm in the baseline BGG model. Parameter values are in Table 2.

1M 1Y 5Y 10Y 30Y 100Y
0

100

200

300

400

500

600

Figure 9: Credit Spreads for Fallen Angels. The plots shows credit spreads for a
fallen angel company that has reached leverage of 80%. The three lines contrast the
complete information case (L ≈ 0) to the cases in which the information lags between
creditors and the manager are L = 0.5 and L = 1 years. Parameter values are in Table 2.
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Here we provide more details on the data that we use to illustrate the stylized facts

in Section 2.

A Classifying firms based on bond ratings

We collect the entire history of credit ratings given by the three main U.S. rating agencies

(Moody’s Investor Services, Standard & Poor’s Ratings Services, and Fitch Ratings)

from the Mergent database. While Mergent contains ratings going back to the early

part of the 20th century, ratings are limited to a very small number of debt issues

through the mid 1980s. Hence, here we focus on the sample period from 1985 to 2014.

Mergent provides ratings specific to particular bond issues, rather than an overall

company rating. Hence, for a given issuer, each month we collect all ratings awarded

on that month to any of its outstanding bonds and use that information to classify the

company.17 We divide individual bond ratings in three categories: investment grade

(IG), higher-quality speculative grade (B), and lower-quality speculative grade (C and

lower), where the last two categories, B and C, together comprise the universe of spec-

ulative grade ratings. We then assign the company to one of the three categories when

the majority of the company’s bond ratings are in that category. When no fresh ratings

are given by any agency to the outstanding bonds of that company, we classify the firm

based on ratings collected in the previous month. If no new ratings were issued the pre-

vious month, we go further back, up to 12 months. In case no new ratings are available

in the entire 12 month period, we do not classify the firm. This approach mitigates the

problem of classifying companies based on stale ratings.

Figure 1 shows the percentage of firms in each of the three rating categories: invest-

ment grade (the IG category), higher-quality speculative grade (the B category), and

lower-quality speculative grade (the C category). The figure reflects the changing nature

of debt markets and the evolution of the rating agencies’ services. Prior to the 1980s,

rating agencies were mostly focusing on blue chip industrial firms. This is consistent

with a preponderance of IG ratings in the early part of the sample period. Over time,

17We exclude ratings on government agencies’ bonds (e.g., U.S. Treasury, U.S. and foreign agencies,
municipalities).
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financial disintermediation and capital markets development allowed a broader variety of

firms to raise funds in the bond market. Along the way, rating agencies expanded their

coverage of lower-quality issues. These changes are reflected in an increased proportion

of speculative-grade firms. Higher-quality speculative issues display an increasing trend

through the 1990s. The proportion of lower-quality ratings remains mostly stable over

the sample period, but increases during recessions; for instance, the percentage of firms

in the C category peaks in 1991, 2001, and 2009.

To document default rates among rated firms, we obtain the entire history of bankruptcy

filings starting from 1985 (also available through the Mergent database). Each month,

after we classify firms in the three rating categories, we identify those that filed for

bankruptcy over the next 12 months. We record the number of months that have

elapsed between the month of the classification and the bankruptcy date. Then we

count bankruptcies that occurred within the first, second, and third month of the clas-

sification (0-1, 1-2, and 2-3 months), the second, third, and fourth quarters (3-6, 6-9,

and 10-12 months), and the entire year (0-12 months). For ease of comparison across

periods of different length, we annualize all count variables.18

B Classifying firms based on CDS premia

In the previous section, we have classified firms based on credit ratings that are up to

12 months old. Such ratings might not fully reflect the information available to market

participants at the time of the classification. Hence, here we consider an alternative

classification of firms into the same three rating categories that is based on CDS data.

CDS contracts provide insurance in case of credit events that affect the value of

a reference entity (such as the bond issued by a company that files for bankruptcy).

Therefore, CDS premia reflect market participants’ assessment of default risk for the

company that issues the reference bond. The CDS market is generally liquid. Thus,

CDS contract are a useful source of real-time information about a company’s credit

18We multiply the count variables for the 0-1, 1-2, and 2-3 periods by 12, and those for the quarterly
periods by 4.
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worthiness.

To translate CDS premia into a proxy for a company’s credit rating, we compare

the cost of insuring bonds issued by that company with that of insuring portfolios of

investment-grade and high-yield bonds (the CDX-IG and CDX-HY indices constructed

by Markit Financial Information Services). Each month from 2001 to 2014 we aggregate

daily five-year CDS premia from the Markit database into an average monthly CDS

premium.19 Similarly, we compute monthly averages of daily five-year CDX-IG and

CDX-HY premia. If the CDS premia on a firm’s bonds do not exceed the CDX-IG index

by more than 100 basis points (bps), then we classify that firm as investment grade (the

IG category). We use the 100 bps threshold to avoid excluding creditworthy companies

whose CDS premia lie slightly above the CDX-IG level, i.e., the average IG premium.

In unreported results, we find the analysis to be robust to the choice of the threshold

value. In contrast, when CDS premia on a firm’s bonds exceed the CDX-HY premium

we classify that firm as lower-quality speculative grade (the C category). Finally, if

CDS premia lie in between the IG and C thresholds, then we classify the company as

higher-quality speculative grade (the B category).

Figure B.1 shows the proportion of firms in each category based on CDS-implied

ratings. The trading of CDS contracts on IG companies is predominant throughout the

sample period, especially in the early 2000s when the CDS market was in its infancy

and trading concentrated in high-quality big names. Over time, the proportion of CDS

contracts on IG firms fluctuates around a downward trend, with drops in 2001-2002 and

2008-2009 at the depth of two recessions, and peaks during the subsequent recovery

periods.

The proportion of CDS contracts on higher-quality speculative-grade firms generally

increases throughout the sample. Further, CDS trading in the B category exhibits peaks

during recessions and declines in the expansions that follow, a pattern that is the direct

opposite of the fluctuations in the proportion of IG CDS contracts. This is consistent

with both (1) a reshuffling in CDS trading across rating categories over the business

19Prior to analysis, we exclude CDS contracts written on bonds issued by Government and sovereign
entities.
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Figure B.1: Percentage of Firms by CDS-Implied Ratings The plots show the
percentage of firms in each of the three rating categories (IG, B, and C) based on
ratings implied by CDS data. The sample period goes from 2001 to 2014. Source:
Markit databases.

cycle and (2) an increase in CDS premia for IG firms during recessions combined with

a decline in CDS premia of B firms during expansions that shift firms from one rating

category to the other.

Finally, Figure B.1 shows that little high-yield trading takes place in the early years

of the CDS market. That changes over time, with a proportion of CDS contracts on

low-grade speculative firms steadily increasing over the sample period.

Similar to Appendix A, each month we identify firms that filed for bankruptcy within

the following 12 months. We then compute the average annualized default rates within

the first, second, and third month of the classification (0-1, 1-2, and 2-3 months), the

second, third, and fourth quarters (3-6, 6-9, and 10-12 months), and the entire year

(0-12 months).

B.1 Robustness Checks

In the paper, we classify firms in the IG, B, and C rating categories over the period 1985–

2014 using the Mergent dataset. We then compute empirical default rates for companies
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that have experienced bankruptcy within a year of the classification. Here we check the

robustness of our findings using data from the Moody’s Default and Recovery Database.

There are two advantages to this dataset. First, the database spans a longer sample

period starting from 1920. Second, Moody’s reports a default flag that captures not

only bankruptcies but also other credit events such as missed payments beyond the

grace period and debt restructuring that reduces the value of the bondholder claim.

While the Moody’s data go as far back as 1920, we find many early ratings to be

stale. For instance, Table 5 shows that for most IG defaults occurred over 1920–1940

Moody’s did not update the IG rating past the default event. Hence, in Panel B of

Table 4 we compute empirical default rates from 1940 to 2014. The results are similar

to those reported in the paper over the shorter 1985–2014 window relying on the stricter

bankruptcy classification flag. For completeness, panels C and D show results for the

1985–2014 and 2001–2014 windows, which are directly comparable to those reported in

the main text.
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Table 4: Empirical Defaults Rates. Each month, we classify firms as investment
grade (IG), higher-quality speculative grade (B), and lower-quality speculative-grade
firms (C) based on ratings issued by Moody’s Investors’ Services. The panels show aver-
age annualized default rates computed over various periods for firms in each rating cate-
gory that have defaulted in the next 12 months. Heteroskedasticity- and autocorrelation-
robust (Newey-West) standard errors are in parentheses. Source: Moody’s Default and
Recovery Database.

Annualized Default Rates
Rating

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

Panel A: 1920–2014

IG 0.09 0.10 0.11 0.13 0.16 0.18 0.14
( 0.02) ( 0.02) ( 0.02) ( 0.02) ( 0.03) ( 0.03) ( 0.02 )

B 1.56 1.78 1.91 2.11 2.35 2.51 2.18
( 0.24) ( 0.25) ( 0.26) ( 0.28) ( 0.30) ( 0.32) ( 0.27 )

C 8.39 7.58 7.11 6.47 5.58 4.85 6.15
( 1.22) ( 1.11) ( 1.04) ( 0.89) ( 0.73) ( 0.62) ( 0.79 )

Panel B: 1940–2014

IG 0.03 0.04 0.04 0.07 0.08 0.10 0.07
( 0.01) ( 0.01) ( 0.01) ( 0.02) ( 0.02) ( 0.02) ( 0.02 )

B 1.16 1.45 1.61 1.88 2.20 2.41 1.97
( 0.20) ( 0.23) ( 0.25) ( 0.29) ( 0.33) ( 0.36) ( 0.29 )

C 10.33 9.25 8.66 7.81 6.60 5.73 7.39
( 1.62) ( 1.47) ( 1.37) ( 1.17) ( 0.94) ( 0.80) ( 1.02 )
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Table 4, continued

Annualized Default Rates
Rating

0-1M 1-2M 2-3M 3-6M 6-9M 9-12M 0-12M

Panel C: 1985–2014

IG 0.03 0.04 0.05 0.08 0.11 0.13 0.09
( 0.02) ( 0.02) ( 0.02) ( 0.02) ( 0.03) ( 0.03) ( 0.02 )

B 1.30 1.68 1.90 2.24 2.65 2.92 2.36
( 0.23) ( 0.27) ( 0.29) ( 0.33) ( 0.38) ( 0.42) ( 0.33 )

C 14.36 12.85 12.00 10.76 9.11 7.88 10.20
( 1.83) ( 1.66) ( 1.55) ( 1.29) ( 0.99) ( 0.84) ( 1.05 )

Panel D: 2001–2014

IG 0.05 0.06 0.07 0.11 0.14 0.16 0.11
( 0.03) ( 0.03) ( 0.03) ( 0.03) ( 0.04) ( 0.04) ( 0.03 )

B 0.53 0.90 1.07 1.32 1.72 1.98 1.46
( 0.15) ( 0.23) ( 0.27) ( 0.33) ( 0.45) ( 0.50) ( 0.35 )

C 14.33 13.10 12.46 11.36 9.65 8.43 10.68
( 2.26) ( 2.04) ( 1.91) ( 1.58) ( 1.17) ( 0.99) ( 1.26 )
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