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Abstract

We demonstrate that heat inhibits learning and that school air-conditioning may mitigate
this effect. Student fixed effects models using 10 million PSAT-retakers show hotter school days
in years before the test reduce scores, with extreme heat being particularly damaging. Week-
end and summer temperature has little impact, suggesting heat directly disrupts learning time.
New nationwide, school-level measures of air-conditioning penetration suggest patterns con-
sistent with such infrastructure largely offsetting heat’s effects. Without air-conditioning, a 1◦F
hotter school year reduces that year’s learning by one percent. Hot school days disproportion-
ately impact minority students, accounting for roughly five percent of the racial achievement
gap.
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1 Introduction

Hotter countries tend to be poorer, with each 1◦F increase in average temperature associated with

4.5 percent lower GDP per capita (Dell et al., 2009). Students in hotter places also tend to exhibit

lower levels of standardized achievement for any given age or grade. Across countries, a 1◦F

increase in average annual temperature is associated with 0.02 standard deviation lower math

scores for 15-year-olds taking the 2012 Programme for International Student Assessment (PISA),

as shown in the top panel of Figure 1. Within the United States, students in the hottest decile of the

county-level climate distribution score on average 0.12 standard deviations worse on 3rd through

8th grade math tests, as seen in the bottom panel of that figure. Our primary contributions are to

show that part of the cross-sectional relationship between temperature and academic achievement

is causal, that heat’s cumulative learning impacts may be mitigated by school air-conditioning,

and that differential heat exposure and learning impacts of heat account for a non-trivial portion

of racial achievement gaps in the US.

Why might cumulative heat exposure reduce human capital accumulation? The contempo-

rary US context of this study makes less relevant channels often studied in less developed set-

tings, such as: health and disease burden (Bleakley, 2010; Cho, 2017); agricultural income and

the opportunity costs of schooling (Shah and Steinberg, 2017); or institutional norms and political

stability more broadly (Acemoglu et al., 2001; Dell et al., 2012; Hsiang et al., 2013). We provide

evidence consistent with the possibility that, in the US, heat most likely affects learning directly

by altering human physiology and cognition. Even moderately elevated temperatures can im-

pair decision-making and cause substantial discomfort, and short-term impacts of heat on cogni-

tion have been extensively documented in laboratory settings (Mackworth, 1946; Seppanen et al.,

2006). Hot classrooms may thus reduce the effectiveness of instructional time through physiolog-

ical impacts on both students and teachers, making it harder for both to focus and accomplish

a given set of learning tasks. In cases of extreme heat, school days may be canceled or students

dismissed early, directly reducing the amount of instructional time.

To estimate the causal impact of cumulative heat exposure on human capital accumulation, we

link local daily weather data to test scores of 10 million American students from the high school

classes of 2001-14 who took at least twice the PSAT, a nationally standardized exam designed
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to assess students’ cumulative learning in high school.1 We also construct the first nationwide

measures of school level air-conditioning penetration in the United States by surveying students

and guidance counselors across the country about heat-related conditions in approximately 12,000

high schools. Student fixed effects regressions identify the impact of heat exposure during the

prior school year by leveraging within-student variation in temperature over multiple test takes.

Our identification strategy relies on the premise that variation in temperature over successive

school years for a given student is uncorrelated with unobserved determinants of learning. We

provide evidence consistent with that assumption, showing that selection into test-taking and

retaking is not endogenous to temperature, even when controlling for regional trends in warming

and secular changes in school quality or student composition.

We then generate three primary findings about the impact of heat on human capital accumu-

lation. First, cumulative heat exposure reduces the rate of learning. A 1◦F hotter school year in

the year prior to the test lowers scores by approximately 0.2 percent of a standard deviation, or

slightly less than one percent of an average student’s learning gain over a school year.2 Extreme

heat is particularly damaging. Relative to school days with temperatures in the 60s (◦F), each ad-

ditional school day with temperature in the 90s (◦F) reduces achievement by one-sixth of a percent

of year’s worth of learning. A day above 100 (◦F) has an effect that is up to 50 percent larger. These

effects are precisely estimated, are robust to controlling for test-day weather, and are not predicted

by heat exposure in the year following the test. Only school-day exposure to higher temperatures

affects test scores. Hot summers and weekends have little impact on achievement and controlling

for such exposure does not shrink the magnitude of impact of hot school days. This suggests that

heat’s disruption of instructional time is responsible for the observed drop in test scores. That our

effects are robust to controlling for heat-driven labor market shocks and pollution levels suggests

that economic and health-related channels observed in other settings are likely not of first-order

importance in this context (Cho, 2017; Garg et al., 2017).

Importantly, these learning effects appear to be cumulative and persistent beyond just the year

prior to the test. Hot school days two, three and four years prior to the test also lower scores,

so that the cumulative effect of elevated temperature over multiple school years is substantially

1The PSAT is designed to be a test of knowledge and not of general intelligence or IQ.
2On average, students score 0.3 standard deviations higher on their second PSAT take than their first PSAT taken

one year prior.
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larger than that of a single school year. This suggests that any compensatory investments made

by students, parents, or teachers in response to such heat shocks do not fully offset their impacts.

Heat-related disruptions thus appear to reduce the rate of human capital accumulation over time.

The implied magnitudes are non-trivial, particularly when considering predicted effects of cli-

mate change. For the average student, a sustained increase in temperature of 3.6◦F (2◦C) lowers

achievement gains by two percent of a standard deviation, or approximately seven percent of an

average year’s worth of learning. This is despite relatively high average levels of income and

air-conditioning in the United States compared to most other countries.

Our study shows that cumulative heat exposure can reduce the rate of human capital accu-

mulation, and thus speaks to a longstanding debate on the relationship between geography and

economic development (Acemoglu et al., 2001; Rodrik et al., 2004; Dell et al., 2012). A growing

literature shows consistent evidence that the short-term impact of heat on exam days reduces

cognitive performance but has not determined whether such effects are transitory or permanent

reductions in the stock of human capital (Graff Zivin et al., 2017; Park, 2017). Studies that provide

evidence of medium-term impacts have occured in contexts where heat’s direct physiological ef-

fects are hard to distinguish from other channels such as agricultural output or health status (Cho,

2017; Garg et al., 2017). The only other paper that precisely identifies the impact of cumulative heat

exposure on human capital accumulation is Isen et al. (2017), which focuses on in utero exposure

and thus identifies a very different channel from the learning channel we study here. Our results

are consistent with a longstanding lab-based literature documenting adverse cognitive impacts of

hot temperature, the long-run implications of which have not previously been tested in real-world

learning environments.

Our second major finding is evidence consistent with the possibility that school air-conditioning

mitigates the impacts of heat on learning. We generate the first nationwide, school-specific air

conditioning penetration rates, based on survey questions sent to students and high school coun-

selors. We then show that, in the cross section, school air-conditioning penetration reported in

2016 is strongly related to heterogeneity in heat’s effects, such that hot school days reduce learn-

ing by one-fifth as much in fully air-conditioned schools as in schools with no air conditioning.

To better identify the mitigating effect of school air-conditioning, we use a triple-difference strat-

egy that combines our within-student comparisons with within-school changes over time in re-
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ported air-conditioning status. This approach reveals that later cohorts in schools that increased

air-conditioning penetration experienced reduced heat-related learning impacts relative to ear-

lier cohorts in those same schools and relative to cohort differences across schools that did not

increase air-conditioning penetration. Both variation in the cross section and over time are thus

consistent with the hypothesis that school air-conditioning reduces the negative impacts of hot

school days. Our estimates, if taken as causal and combined with estimates of the achievement-

earnings relationship from Chetty et al. (2011), suggest that in hot areas such as Houston, TX, the

present value of air-conditioning is approximately $2.1 million per year for each 1,000 student

high school. Global climate change means however that the private return to air-conditioning will

increase by approximately $500,000 per school by 2040-2050 for the median US school, according

to our back-of-the-envelope calculations.3

That school air-conditioning may improve learning speaks directly to a recent literature show-

ing that school resources can have positive impacts on educational achievement (Jackson et al.,

2015; Lafortune et al., 2018). Existing studies that focus on school infrastructure funding generally

estimate the impact of broad funding packages and not targeted upgrades to specific school facili-

ties (Cellini et al., 2010).4 Two recent studies finding positive achievement impacts of school infras-

tructure investment generally are consistent with the positive impacts of school air-conditioning

we document. A comprehensive school construction project in New Haven, CT that included

installation of air-conditioning in schools that lacked it raised reading scores by 15 percent of a

standard deviation (Neilson and Zimmerman, 2014). Major school building and renovation ef-

forts in the Los Angeles Unified School District raised reading and math scores between five and

10 percent of a standard deviation, most likely due to “reduced distractions from inadequate heat-

ing, cooling, or other aspects of the physical environment” (Lafortune and Schonholzer, 2017).

The lack of achievement impact from school infrastructure investment in Texas is consistent with

our data suggesting most schools in that state were likely air-conditioned to begin with (Martorell

et al., 2016). Our paper is the first to attempt to isolate the impact of school air-conditioning from

3Episodes of acute heat exposure are becoming more frequent in many parts of the world, and are predicted to
increase at an accelerating rate (Stocker, 2014). Importantly, much of this warming will occur in places and during
times of year that do not currently feature such temperature extremes, meaning that many local institutional arrange-
ments – whether in terms of the timing of examinations or policies regarding protective built infrastructure (e.g. air-
conditioning) – might not be efficiently adapted to new expected climate distributions.

4A notable exception is (Stafford, 2015), who provides evidence that mold remediation and ventilation improve-
ments had positive impacts on performance in 66 Texas elementary schools.
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other aspects of school infrastructure. These results also highlight the fact that small reduced form

impacts of heat in developed countries may mask large biological and welfare impacts, underscor-

ing the importance of taking adaptations such as air-conditioning into account when studying the

relationship between climatic variables and economic outcomes (Graff Zivin and Neidell, 2014;

Deschenes et al., 2017).

Our third and final result is that the temperature environment in which learning occurs ap-

pears to be a meaningful contributor to racial and geographic achievement gaps. Black and His-

panic students’ learning is roughly three times as inhibited by the prior school year’s heat com-

pared to the learning of White students. We estimate that between three and seven percent of the

gap in PSAT scores between White students and Black and Hispanic students can be explained

by differences in the temperature environment experienced by students in each group. These dis-

parities appear to be driven both by school-level investments, such as differential air-conditioning

penetration, as well as the geographic distribution of racial minorities whereby Black and Hispanic

students overwhelmingly reside in hotter locations than White students. This is consistent with

the theory of residential sorting, which suggests that lower income individuals are more likely

to sort into areas with lower levels of environmental amenities and local public goods (Tiebout,

1956; Roback, 1982; Banzhaf and Walsh, 2008). We also find that historically cool places experi-

ence much larger impacts per unit of warming. This suggests that, without high average levels

of adaptation in the South, the North-South achievement gap would be even larger than it is cur-

rently. Minority students appear, however, less likely to have school air-conditioning even in a

given historical climate.

That heat has larger impacts on Black and Hispanic students and accounts for a non-trivial pro-

portion of the racial achievement gap are facts not documented previously in the vast literature on

racial disparities in educational outcomes (Jencks and Phillips, 2011; Duncan and Murnane, 2011;

Fryer Jr, 2011). Most empirical analyses in this literature have focused on social factors such as

teacher quality, racial bias, or neighborhood culture, and have more rarely explored disparities in

the physical environment. “Environmental factors” in this literature often explicitly or implicitly

refer to the social environment or use the term to denote non-genetic factors. The few studies

that assess the impact of physical environmental factors on achievement are either non-identified

cross-sectional analyses (Durán-Narucki, 2008) or assess short-run outcomes such as cognitive
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performance during a hot period (Mackworth, 1946; Seppanen et al., 2006; Park, 2017). A substan-

tial proportion of the variation in achievement remains unexplained by traditional socioeconomic

variables (Reardon et al., 2017). Our findings suggest that the physical factors such as temper-

ature and the built environment may play a larger role in explaining disparities in achievement

than previously realized.

2 Data and Empirical Strategy

2.1 Data

We combine three primary data sources on test scores, temperature and school air-conditioning.

Test score data come from the College Board, which administers the PSAT exam to millions of

American high school students annually. The PSAT consists primarily of a reading and a math

section.5 The test is offered once a year roughly during the third week of October and most stu-

dents first take it in 10th or 11th grade, though some start as early as 9th grade.6 Students take

and can retake the PSAT for a variety of reasons, including preparation for the SAT college en-

trance exam, qualification for National Merit Scholarships, and provision of information about

their college readiness to them and their schools. The PSAT has multiple advantages over other

tests used to study the impact of heat on cognitive skills, including: the test is given once a year

on a fixed date with advanced registration required, limiting the scope of endogenous taking or

timing decisions; proctoring is nationally harmonized and the test is centrally graded, limiting

potential for endogenous score manipulation of any sort (Dee et al., 2016; Park, 2017); and the

test is designed to assess cumulative progress on skills learned during secondary school, rather

than generalized intelligence, making it arguably better-suited for assessing the effects of formal

schooling. We have test scores and dates from all takes for the universe of PSAT-takers from the

intended high school classes of 2001-2014. Our primary outcome is a student’s combined math

and reading score, standardized by test administration. The student-level data also contains ba-

5A writing section has been added in more recent years. Basic scientific concepts and history are assessed as part of
the reading comprehension section.

6We use the PSAT rather than the SAT for two reasons. First, the SAT is offered at seven different times of the
year, making it harder to assign easily comparable measures of long-term heat exposure to a given exam take. Second,
the PSAT is taken by roughly twice as many students as the SAT because the latter is taken in later grades by a more
college-oriented and thus selected set of takers.
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sic demographic information such as gender, race, parental education, and residential zip code,

which we use to assign students zip code level mean incomes as reported by the Internal Rev-

enue Service. High school identifiers allow us to link students to testing locations and to other

school-level characteristics.

Daily temperature data come from the National Oceanic and Atmospheric Administration’s

Daily Global Historical Climatology Network, which includes station-level data for thousands of

weather stations across the United States. We focus on the subset of nearly 3,000 weather stations

with daily temperature data available for at least 95 percent of the days from 1996 to 2014, the time

period covering potential test-taking dates of our sample. Doing so allows us to assign each high

school to a single, stable weather station over the entire time period, which avoids endogeneity

concerns driven by the possibility that stations coming online or going offline are somehow corre-

lated with local population growth, economic conditions or temperatures conditions in ways that

might contaminate our estimates (Auffhammer and Mansur, 2014). We impute the small propor-

tion of missing daily observations with those from the nearest stations with non-missing data. We

assign each high school to the nearest weather station, resulting in an average distance of 9.7 miles

between a student’s test site and weather station being used to measure temperature at that site.

We construct two primary measures of cumulative heat exposure experienced by a student: the

average daily maximum temperature and the number of days that temperature exceeded a given

multiple of 10◦F in the 365 days prior to the test.7 We use daily maximum temperature because

schooling occurs during the daytime when such temperatures usually occur.8 We focus particu-

larly on temperature experienced on school days, treating summer and weekend temperatures as

separate sources of variation.9 We also use the weather stations to construct test date temperature,

rain and snowfall, as well as cumulative rain and snowfall exposure over the year prior to the test,

7Focusing on the prior year implies that the measured heat exposure occurred prior to a given PSAT administration
but after the most recent one before that. Because of slight annual variation in the timing of the PSAT, we exclude the
third week of October from these measures to guarantee no overlap between PSAT administrations and the constructed
measure of heat exposure. The year prior to the test take thus runs from late October of the preceding year to mid-
October of the current year.

8We note that it is possible for nighttime heat to affect learning through disrupted sleep as well. To the extent that
daytime high and nighttime low temperatures are correlated, it is possible that our estimates may include some impacts
due to disrupted sleep, though the results on weekend days versus weekdays is suggestive of effects driven primarily
by instructional time, as we discuss below.

9No comprehensive national data set of school calendars covering this time period exists, so we assign to each
student a likely school start and end date based on the calendar of the largest school district in that student’s state, as
seen in Figure A.1. We then divide the year into three periods: school days, the summer, and weekends or national
holidays.
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which help account for potential independent effects of such precipitation (Goodman, 2014).

School-level air-conditioning data do not exist at the national level and very rarely exist at the

state and local level. We generate measures of school-level air-conditioning penetration through

a survey the College Board regularly administers by e-mail to all SAT takers and to high school

guidance counselors registered to administer PSAT or other exams. In 2016, we added to the sur-

vey the statement “On hot days, classrooms get too hot.” Respondents could choose “Never”,

“Some of the time”, “Most of the time”, or “All the time”.10 We received valid responses from

students in nearly 12,000 schools enrolling 87 percent of our sample’s PSAT-takers. To construct

school-level measures from individual responses, we assign the four possible responses a value of

0, 1
3 , 2

3 , and 1, then average across all students within a school. We interpret this measure as the

fraction of a school’s classrooms with adequately functioning or sufficiently frequently activated

air-conditioning. This measure of school air-conditioning penetration has the advantage of being

reported by the students themselves and of being based on the largest set of responses to our ques-

tions about air-conditioning. It has the disadvantage of measuring air-conditioning penetration at

a single point in time and thus may correlate with other unobserved school-level factors.

A different measure of school air-conditioning penetration comes from our addition to the

survey of two questions posed to high school guidance counselors: “How many of your school’s

classrooms have air-conditioning?” and “Ten years ago, how many of your school’s classrooms

had air-conditioning?” Guidance counselors could respond with “None”, “Fewer than half”,

“About half”, “More than half”, and “All”. To construct school-level measures, we assign these

possible responses a value of 0, 1
4 , 1

2 , 3
4 , and 1, then average across all guidance counselors within

a school. This measure has the disadvantage that we received responses from guidance coun-

selors in only about 2,000 high schools. It has the advantage, however, of directly asking about

air-conditioning and of allowing us to measure air-conditioning penetration at two points in time

instead of one. Variation in air-conditioning penetration over time is more plausibly exogenous

than cross-sectional measures, helping us construct stronger causal claims about the impact of

school air-conditioning in offsetting heat’s impacts. Air conditioning upgrades may nonetheless

be correlated with other school improvements that protect against high temperatures.

Finally, we supplement our three primary data sources with additional data on residential air-

10Respondents were also allowed to choose “I don’t know.” We coded such answers as missing.
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conditioning, local economic conditions and pollution levels. We construct county-by-year data

on residential air-conditioning penetration by combining county-level residential air-conditioning

penetration estimates from the 1980 decennial census with data on changes in such penetration

over time by census region from the Energy Information Agencies Residential Energy Consump-

tion surveys.11 We estimate county-level economic conditions by constructing the logarithm of

annual payroll per capita from the U.S. Census Bureau’s County Business Patterns, focusing on

sectors that the National Institute of Occupational Safety and Health categorizes as being highly

exposed to weather (namely: construction, mining, transportation, manufacturing, agriculture

and utilities). Based on evidence of the adverse impact of hot days on highly exposed sector pay-

roll, we use this measure to control for local economic shocks driven by annual fluctuations in heat

(Deryugina and Hsiang, 2014; Behrer and Park, 2017). Similarly to our temperature measures, we

construct both cumulative and test date measures of exposure to major air pollutants (ozone, sul-

fur dioxide, nitrogen dioxide, carbon monoxide, and PM10 particulate matter) using data from

the Environmental Protection Agency’s Ambient Air Monitoring network. Previous research sug-

gests that such pollutants can affect student absenteeism and performance, at least in the short

run (Currie et al., 2009; Ebenstein et al., 2016), though there is relatively less evidence regarding

the impact of longer-term exposures.

2.2 Summary Statistics

As shown in Table 1, the starting sample comprises over 38 million test scores from 27 million

students in the high school classes of 2001 to 2014, who took the PSAT as early as October of 1998

and as late as October of 2012.12 Because our primary identification strategy relies on within-

student variation in heat exposure for identification, we focus on the subset of 21 million scores

from the nearly 10 million students who took the PSAT at least twice.13 Those retakers are slightly

more advantaged than the general pool of PSAT takers, living in higher income zip codes, more

11We use the reported penetration rates in 1980 as a basis and then extrapolate based on the region-level growth
rate of total air-conditioning penetration recorded by RECS, which provide penetration rates by region from 1980 to
2009 with a two or three-year frequency. We linearly interpolate growth rates for the missing years and assign counties
their corresponding regional growth rate. Using this growth rate and the observed penetration rate in 1980 we create a
measure of penetration in every county in each year from 1980 to 2011. We top-code penetration at 100 percent.

12We exclude a very small number of observations of PSATs taken during October of 12th grade.
13In our sample, 85 percent of students take the PSAT twice and 15 percent take it three times, the maximum given

testing opportunities in 9th, 10th and 11th grades.
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likely to have mothers with college degrees, and with first PSAT scores 0.14 standard deviations

about the national average. Importantly, retakers seem geographically similar to the general pool

of SAT takers. Both groups experience school days with mean temperature in the mid 60s◦F in

the year prior to the test, with an average of 12 school days above 90◦F. Maps of takers and retak-

ers locations also suggest that both groups have similar geographic distributions in line with the

population distribution across the United States.14 On average, PSAT takers and retakers report

that nearly 60 percent of their classrooms are adequately air-conditioned, with closer to 80 percent

likely to have air-conditioning at home. Dividing the retaking sample by race and by income re-

veals that black and Hispanic students and lower income students score lower on the PSAT than

their white and higher income counterparts.

The raw data suggest a strong negative relationship between cumulative heat exposure and

academic achievement. Figure 2 maps average PSAT performance by county. On average, South-

ern counties have substantially lower test scores than do Northern counties. This tracks closely

with differences in heat exposure by geography, as seen in Figure 3. In Florida and southern

Texas, the average school day experienced by a student is above 80◦F, compared to an average

school day temperature in the 50s◦F in much of the Northern U.S. Southern students in many

counties experience 30 or more school days above 90◦F, compared to fewer than 10 such days in

nearly all Northern counties. The existence of such a strong North-South temperature gradient

and test score gradient could be causal or could be driven by other important regional differences.

Our goal is disentangle the impact of heat from such other factors.

2.3 Empirical Approach

To do so, we exploit the fact that for students who take the PSAT multiple times, differences

across takes in prior year heat exposure are likely uncorrelated with differences in other factors

that might affect academic achievement. We thus ask whether students score lower immediately

following a hotter year relative to their own score immediately following a cooler school year

and, if so, we argue that heat is the only factor that can explain such a difference in outcomes. We

14See Figure A.2.
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implement this identification strategy with student fixed effects regressions of the following form:

Scoreiscyn = βHeatsy + ηi + γcyn + εisycn (1)

Here, Score denotes the standardized PSAT math and reading score for student i in high school

s, high school class c, taking the test in October of year y for the nth time. Inclusion of student

fixed effects η implies that identification comes from within-student comparisons of heat exposure

and test score differences over multiple takes.15 We define cumulative heat exposure Heat as the

average maximum temperature experienced during school days in the year prior to the test, for all

students in high school s taking the test in year y. In that case, the coefficient of interest β can be

interpreted as the standard deviation impact on a student’s test score of experiencing a one degree

F hotter school year on average. High school class by test year by take number fixed effects γ

flexibly control for a variety of potential confounds, including differential selection into test-taking

across high school classes, differential difficulty of the test across test dates, and differential test

performance based on past number of test takes. We cluster standard errors by weather station,

the level of variation in our treatment variable.

We also use a specification that replaces this single heat exposure measure with a vector of

counts of the number of school days falling into various temperature bins:

Scoreiscyn = β1DaysAbove100sy + β2DaysIn90ssy + β3DaysIn80ssy + β4DaysIn70ssy

+β5DaysBelow60sy + ηi + γcyn + εisycn

(2)

In this specification, the coefficient on days in the 90s can be interpreted as the impact of experi-

encing one more very hot school day, relative to a school day with temperature in the 60s. This

specification allows us to study non-linearities in the effect of school year temperature.16 Identifi-

cation therefore relies on both spatial variation in heat exposure, as previously shown in Figure 3,

15We use student fixed effects rather than high school fixed effects because the latter approach depends on the as-
sumption that selection into PSAT-taking at the school level does not vary over time in ways correlated with heat
exposure. This assumption fails empirically because, over the time period in question, PSAT taking expands to a wider
set of students and moreso in regions of the country that are differentially affected by longer-term warming trends. The
student fixed effects approach avoids this selection margin entirely.

16We do not find strong evidence that cold weather affects learning in our sample, hence our focus on the upper end
of the temperature distribution.
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as well as temporal variation in heat exposure.17 To understand the magnitude of such identifying

variation, we compute the residual from regressing heat exposure on the aforementioned student

and class-year-take fixed effects. The distribution of such residuals suggests that a one standard

deviation increase in mean school day temperature is about 1◦F, while a one standard deviation

increase in the number of schools day above 90◦F is about three days.

One potential threat to identification comes from the possibility that cumulative heat exposure

drives selection into taking the PSAT for the first time or choosing to retake it. To test for selection

into taking the PSAT the first time, we collapse the data by high school and regress the number

of first-time test-takers (as well as its logarithm) on high school fixed effects and cohort by test

date fixed effects. We see no evidence that within-school fluctuations in annual heat exposure af-

fects the number of test takers and can rule out economically meaningful effect sizes. We then run

similar student-level regressions using the demographic characteristics of first-time test-takers as

outcomes. The results rule out meaningful impacts of heat exposure on the observable compo-

sition of the test-taking population, particularly when controlling for differential heat trends by

state.18 Finally, we ask whether heat in the year prior to the first take or in the year following

the first take affects the probability that a student retakes the PSAT. We again find no evidence of

such selection, with point estimates suggesting a 1◦F hotter school year increases the probability

of retaking by 0.05 percentage points and confidence intervals that rule out effects larger than 0.15

percentage points.19 In total, these results suggest little evidence of endogenous selection into

test-taking or retaking as a result of cumulative heat exposure.

3 The Impact of Cumulative Heat Exposure

3.1 Prior Year Impacts

On average in the U.S., experiencing a 1◦F hotter school year lowers academic achievement by

0.002 standard deviations, a result that is very precisely estimated and robust to a variety of con-

trols for potential confounding factors. Table 2 shows these results. The first column of panel

A contains the baseline specification described in equation 3, where the test score outcome is

17See Figure A.3 for annual variation in average school day temperatures.
18See Table A.1 for detailed estimates.
19See Table A.2 for detailed estimates.
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measured in hundredths of a standard deviation. The coefficient is highly statistically significant

and precise enough to rule out effects smaller than 0.001 standard deviations. The magnitude of

these impacts is small enough to have been missed by previous studies with less precision but

large enough to imply non-trivial cumulative effects of temperature on learning. For example,

the average gain in PSAT score performance between 10th and 11th grade is about 0.3 standard

deviations, implying that a 1◦F hotter school year reduces learning by close to one percent of the

expected gains over that year. As we will see below, learning impacts are even larger for certain

demographic subgroups and in the absence of air-conditioning.

That students score lower following hotter years relative to their own scores following cooler

years does not appear to be driven by other channels potentially correlated with heat in the school

year leading up the exam, as seen in the next four columns of Table 2. Controlling for total snow-

fall and rainfall in the prior year and for temperature and precipitation on the day of the exam

has nearly no effect on the point estimate. This suggests that we are not mistakenly attributing to

cumulative heat exposure effects that are actually driven by cumulative precipitation exposure or

by contemporaneous heat exposure. Similarly, controlling for both cumulative and contempora-

neous pollution exposure leaves our estimate nearly unchanged, implying that we are measuring

the direct impact of heat and not of pollutants such as ozone that may be more common on hot

days.

Controlling for county-level payroll in industries highly exposed to weather conditions also

does little to our point estimate, suggesting that cumulative heat exposure is not operating through

the channel of family income or local economic conditions.20 The robustness of our estimate

to controls for state-specific time trends suggests we are not picking up spurious correlations

driven by subtle geographic differences in warming trends that may be correlated with other lo-

cal changes in selection into or preparation for PSAT-taking or retaking.21 Regardless of which

of the aforementioned controls are included, the estimated impact of a 1◦F hotter school year,

which represents a roughly one standard deviation change in cumulative heat exposure, is never

substantially different from 0.002 standard deviations.

Given that the mean distance between weather stations and high schools in our data is a little

20This is perhaps unsurprising given the developed country context but contrasts with research in developing coun-
tries that shows agricultural yield shocks driving schooling outcomes (Garg et al., 2017; Shah and Steinberg, 2017).

21The estimates are also robust to using quadratic or cubic trends instead of linear trends.
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less than 10 miles, the cumulative heat exposure we assign to each student may be mismeasured,

particularly for students farthest away from weather stations. The final column of Table 2 lim-

its the sample to high schools within five miles of a weather station, for which we assume that

measurement error is less of an issue. For students whose high schools are particularly close to

weather stations, the impact of cumulative heat exposure on academic achievement is about 25

percent larger than for the sample as a whole. This is consistent with the possibility that measure-

ment error in our treatment variable is generating downward bias in our estimates, though it is

also consistent with the possibility of heterogeneous treatment effects correlated with factors that

make weather stations more likely to be online near schools.

In addition to estimating the impact of generally hotter school years, we also show that very

hot days are particularly damaging to student achievement. Panel B of Table 2 shows the specifica-

tion in which we measure cumulative heat exposure by counts of school days falling into various

temperature bins. Replacing a school day in the 60s with a hotter school day lowers achievement,

with the extent of that damage increasing roughly linearly with temperature above 70◦F. Consis-

tent with our baseline specification, these estimated magnitudes also imply that a one standard

deviation increase in heat exposure, or over three additional days above 90◦F, lower achievement

by 0.002 standard deviations. Cold days, those below 60◦F, appear to have little impact on achieve-

ment. Figure 4 shows these point estimates with further disaggregation of colder school days and,

consistent with laboratory studies on cognition and recent studies on labor supply and mortal-

ity, shows damage that increases with temperature starting around 70◦F. Estimated impact of hot

days are, like those for mean heat, robust to controls for cumulative precipitation and pollution,

test day weather and pollution, local economic conditions and state-specific trends.

Heat’s cumulative impact on academic achievement is not driven by one particular subject, in

contrast to findings focusing on short-run cognitive impacts (Graff Zivin et al., 2017; Garg et al.,

2017). Both math and reading scores drop by similar magnitudes for a given level of additional

heat exposure.22 The effect is also not driven by one particular test take. Heat prior to a first test

take has relatively similar negative effects on achievement as heat prior to second take, although

there is some evidence that heat’s learning impact, if anything, increases with take number.23 This

22See Table A.3 for details.
23See Table A.4 for details.
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eliminates the possibility that our results are driven by differential selection into retaking based

on correlations between heat exposure, first take performance and students’ belief about whether

their first scores reflect their true abilities. It also makes unlikely the possibility that our results are

driven by subtle warming trends over time. Using future temperature shocks as a placebo test also

yields results consistent with our interpretation of these impacts as causal. Controlling for mean

school day temperatures in the years one, two and three years after the exam does little to change

our estimated impact of cumulative heat exposure and the coefficients on future temperature are

much closer to zero than our main effect and never statistically significant.24 This makes it less

likely our results are a statistical artifact driven by spurious correlations between temperature and

test scores.

3.2 Productivity of Instructional Time

One indication that cumulative heat exposure affects achievement by directly lowering the pro-

ductivity of instructional time comes from examining the impact of heat on three mutually ex-

clusive sets of days in the year prior to the test: school days, weekends and national holidays

during the school year, and summer days. The first two columns of Table 3 contrast our baseline

specification to one in which we control for heat on summer days. Two important facts emerge.

First, controlling for summer heat has little effect on our estimated impacts of school day heat.

Second, the impact of summer heat on academic achievement is very small and statistically in-

distinguishable from zero. That summer heat has no impact on academic achievement seems to

rule out potential channels such as student health or local economic conditions given that such

channels should be affected by summer heat as well as school day heat. Controlling for school

year weekend and holiday heat somewhat increases our main effects and we see no evidence that

such heat lowers student achievement, again suggesting that the role of time in school is critical

to understanding the relationship between heat exposure and human capital accumulation.25

One further test yields results consistent with our interpretation that heat exposure interferes

with actual learning. In column 4 of Table 3, we break heat exposure into three time periods

24See Table A.5 for details.
25The impact of weekend and holiday heat is, if anything, slightly positive. The pattern of coefficients suggests that

this may be driven by strong correlations between school day and weekend heat. There is more independent variation
between school year and summer heat than there is between weekday and weekend heat within the school year.
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corresponding to distance in time to the test: post-summer school days (the roughly two months

just prior to the PSAT), summer days (roughly three to five months prior to the PSAT), and pre-

summer days (roughly six to twelve months prior to the PSAT). Summer heat again has little clear

impact on achievement while both pre- and post-summer heat have large negative impacts. That

the damage from pre-summer heat is as large as or larger than the impact of post-summer heat

suggests that heat operates not just through periods where students might be “cramming” for a

test. Instead, heat appears to affect cumulative learning over a longer time frame.

3.3 Persistent and Cumulative Impacts

To provide evidence about the impacts of heat exposure farther back in time than the prior school

year, we augment our regression specifications 3 and 2 with temperature measures from school

days in the years starting two, three, four and five years prior to each exam take. Equation 3

becomes:

Scoreiscyn = β1Heat1Y earAgosy + β2Heat2Y earsAgosy + β3Heat3Y earsAgosy

+β4Heat4Y earsAgosy + β5Heat5Y earsAgosy + ηi + γcyn + εisycn

(3)

This accomplishes two things. First, our estimates of prior year heat exposure from Equations 3

and 2 are downward biased if such effects persist beyond one year, and controlling for further

lagged measures of temperature should help eliminate that downward bias. Failing to control

for dynamic effects can cause our student fixed effects approach to understate the impact of heat

because that approach implicitly assumes complete decay of effects of after one year, so that heat

before the first take affects only the first take and not the second take itself. Second, the estimated

impacts of earlier years’ heat exposure allows us to more accurately estimate longer run impacts

of exposure to different temperature environments. For example, the sum of the coefficients β1

through β5 estimates the test score impact of a one degree increase in the average temperature

over a student’s five prior school years.

Table 4 shows these estimates, with coefficients for individual years shown in each column and

the sum of those coefficients shown at the bottom of each column. Two important facts emerge.

First, controlling for earlier heat exposure increases our estimates of the impact of prior year heat
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by 20 to 40 percent, suggesting that such estimates may have been downward biased by our base-

line specification’s identifying assumption that prior year heat’s impact fades out entirely after

that year. Second, we see fairly clear evidence that heat up to four years prior affects test scores.

This evidence is clearer with respect to the impact of hot days than the impact of average temper-

ature but is present in the point estimates of both. We see no evidence that heat five years prior

has impacts on test scores and tests of further lags (not shown here) also show no clear impact.

We take the cumulative impact over the past four years as our favored estimate of cumulative

impacts for two reasons. First, because five year and further lags have little apparent impact on

test scores, cumulative impacts tend to level off after four years. Second, we are estimating lagged

heat exposure based on the high school a student is enrolled in at the time of taking the PSAT.

Because we do not know where a student attended primary school, going back much further

in time likely increases the measurement error of our treatment variable. We therefore take the

four-year cumulative impact as a lower bound on the total impact but one that our best estimates

suggest is likely not far from the truth. The cumulative impact of increased heat exposure over

multiple years is thus three to five times larger than the impact of just the prior year’s heat. Our

estimates suggest that a 1◦F increase in the average temperature of the past four school years leads

to about a 0.006 standard deviation decrease in test scores, or 2 percent of the typical increase in

PSAT scores over a single school year. Experiencing one additional day above 90◦F in each of

those four years would reduce scores by beween 0.002 and 0.003 standard deviations, or 1 percent

of a typical school year’s PSAT increase.

4 School Air-conditioning as a Defensive Investment

4.1 Descriptive Analysis

Adaptive responses and defensive investments are important for understanding the welfare im-

plications of environmental shocks, particularly in the long run (Graff Zivin and Neidell, 2013;

Kahn, 2016; Deschenes et al., 2017). School air-conditioning represents one potential investment.26

26Teachers and parents seem to value school air-conditioning, judging by recent labor disputes and community peti-
tions. During a major teacher strike in Chicago in 2012, “Timetable for air-conditioning” was one of four major contract
demands, with an agreement to provide universal air-conditioning eventually reached in 2016. Parents and teachers in
a number of major school districts such as New York City, Los Angeles, and Denver have have recently signed petitions
asking districts to upgrade air-conditioning equipment. See: http://www.denverpost.com/2011/09/08/heat-related-
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To explore its role in mitigating the effects of heat exposure, we first provide descriptive analysis

of the prevalence of school air-conditioning across the U.S.

Figure 5 shows county-level averages of school air-conditioning penetration as measured by

the extent to which students (panel A) and guidance counselors (panel B) report that “On hot days,

classrooms get too hot.” The resulting map is roughly the inverse of an average temperature map.

Students and counselors are much less likely to report hot classrooms in the hotter regions of the

country and much more likely to report hot classrooms in cooler regions. Students in the North-

east, for example, report that heat interferes with learning on the majority of hot days. Students

in the South report heat interfering with learning on only about one-fourth of hot days.

Because this reporting may partly reflect the extent to which students and counselors are ac-

customed to heat, rather than actual air-conditioning status, we ask guidance counselors directly

about the fraction of classrooms with air-conditioning. That map, in panel A of Figure 6, looks

quite similar to the map of hot classrooms. According to guidance counselors, nearly all class-

rooms in the South have air-conditioning while the majority of classrooms in the Northeast lack it.

We therefore interpret student reports of hot classrooms as a measure of air-conditioning penetra-

tion. These various measures are the first we know of to provide national school-level estimates

of air-conditioning status. We also note, as seen in panel B of Figure 6, that both home and school

AC seem to vary substantially by region, with lower penetration rates particularly in more moun-

tainous regions of the country.

4.2 School Air-conditioning as Potential Mitigator

We use two approaches to assess whether school air-conditioning can offset heat’s adverse impact

on learning. First, we interact the cross-sectional measure of air-conditioning penetration reported

by students with our heat exposure measure and add it to our baseline specification. This regres-

sion has the form:

Scoreiscyn = αHeatsy + βHeatsy ∗ SchoolACs + ηi + γcyn + εisycn (4)

illnesses-spur-petition-for-sept-school-start-in-denver/.
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The coefficientα now has the interpretation of the impact of heat on a school with no air-conditioning,

while β represents the predicted difference between that impact and the impact on a fully air-

conditioned school.

This analysis, if taken as causal, suggests that school air-conditioning almost fully offsets the

impacts of cumulative heat exposure. In column 1 of Table 5, the main coefficient implies that,

for students in schools with no air-conditioning, a 1◦F hotter school year lowers achievement

by 0.0032 standard deviations. The interaction coefficient suggests that, in fully air-conditioned

schools, this effect is 0.0025 standard deviations smaller. For the average student, school air-

conditioning thus appears to offset 73 percent of the learning impact of hot school days. This

interaction coefficient may represent the causal impact of school air-conditioning but it may also

be picking up effects of other factors correlated in the cross-section with a school’s air-conditioning

status.

To allow for this possibility, we add to equation 4 four more terms in which heat exposure is

interacted with county-level home air-conditioning rates, as well as mean school year tempera-

ture, zip code income, and the racial composition of a school’s PSAT takers.27 The results of this

augmented specification are shown in column 2 of Table 5. The topmost coefficient now suggests

that, for a student with neither school nor home air-conditioning, a 1◦F hotter school year lowers

achievement by 0.0057 standard deviations. School air-conditioning and home air-conditioning re-

spectively offset 40 and 57 percent of this effect, implying that a student with access to both would

see little negative impact of heat exposure. That the magnitude of the school air-conditioning

coefficient does not change substantially with the addition of these controls implies that omitted

variable bias from such sources is unlikely to explain the observed effect.

We make one further attempt to isolate the impact of school air-conditioning. To do so, we

use the change over time in penetration rates implied by differences in counselors’ reports about

their schools’ air-conditioning status in 2016 versus 10 years before that. We assign to students a

variable SchoolACchange, which represents their high school cohort’s change in air-conditioning

penetration rate relative to 2006 implied by the counselors’ answers. Cohorts from 2006 and earlier

are assigned a value of zero and more recent cohorts are assigned a change linearly interpolated

27We use sample-demeaned versions of the latter three variables so that coefficients can be interpreted as impacts on
schools with average temperatures, income and racial composition.
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from the counselors two responses. We then run the following specification:

Scoreiscyn = βHeatsy ∗ SchoolACchangesc ∗HSClassi + δHeatsy ∗ SchoolACchangesc

+ µHeatsy ∗HSClassi + νHeatsy + ηi + γcyn + εisycn (5)

Here, HSClass is a continuous measure of a student’s cohort. In effect, the coefficient β from this

triple-difference approach estimates whether schools that have installed additional air-conditioning

over time see the impact of heat shrink across cohorts, relative to schools that have not added air-

conditioning.

The results in column 3 of Table 5 suggest that this is the case. The coefficient on the triple

interaction term is positive and highly statistically significant, implying that later cohorts do see

smaller impacts of heat in schools that improved air-conditioning penetration, relative to schools

that did not. This conclusion is unchanged when we control for additional interactions with

home air-conditioning, local temperature, local income, and school racial composition. This pro-

vides additional evidence consistent with the possibility that school air-conditioning mitigates

the impacts of heat exposure. The main threat to validity here is that a school’s adoption of air-

conditioning correlates with other unobserved changes over time in that school that might also

mitigate the impacts of heat (e.g. more tree cover, improved ventilation). Though possible, it

seems likely that changes in school air-conditioning penetration are more exogenous than cross-

sectional variation in such penetration. That both approaches yield consistent results suggests

school air-conditioning may mitigate a substantial portion of the learning impacts of heat expo-

sure.

To provide a back-of-the-envelope estimate of the monetized value of air-conditioning, we ap-

ply previous estimates of the relationship between test scores and later life earnings from Chetty

et al. (2011). That paper finds that having a teacher who raises test scores by 0.1 standard devia-

tions results in a net present value of $8,500 in future increased earnings for current 16 year olds.28

28Chetty et al. (2011) compute a $7,000 net present value in increased earnings for the typical 12 year old student in
their sample. We apply their five percent discount rate to generate the $8,500 figure for the typical 16 year old student
taking the PSAT. An important assumption we make by using these estimates is that the achievement gains due to a
better teacher result in later life impacts that are equivalent in magnitude to those associated with having a climate-
controlled learning environment. For instance, if teachers impart valuable non-cognitive skills but air-conditioning
does not, these estimates would be overstated.
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Our estimates in Table 5 suggest that school air-conditioning offsets about 0.0025 standard devi-

ations in learning damage for each 1◦F increase in temperature. This translates into a net present

value of $212 in recovered future earnings per student, per 1◦F increase in temperature, and per

year that heat is potentially damaging learning. In a city like Houston, where the average school

day is approximately 80◦F and thus 10◦F above the point where heat’s impact on learning first

appears, the present value of school air-conditioning is approximately $2,120 per year for each

student, $53,000 per year for each 25 student classroom, or $2.1 million per year for each 1,000

student high school. Put differently, the extent to which school air-conditioning would offset the

earnings loss driven by the 5◦F increase predicted by climate change models is $1,060 per student,

$26,500 per classroom, or just over $1 million per high school. Although these are rough esti-

mates, benefit values of this order of magnitude imply that school infrastructure improvements

may more than justify their costs. For example, in 2017, New York City public schools allocated

$28 million to install air-conditioning in 11,000 classrooms, which comes to approximately $2,500

per classroom.

5 Heat and Achievement Gaps

5.1 Inequality in School Air-conditioning

We next document racial and income gaps in school air-conditioning penetration rates. To do so,

we regress the student-generated measure of school air-conditioning penetration on an indicator

for being black or Hispanic (relative to being white) and separately on an indicator for being in

the lower half of the ZIP code income distribution (within cooler and hotter halves of the country

to account for temperature differences). We also control for a quartic in school-level mean school

year temperature experienced over the sample time period.29 As panel A of Table 6 shows, black

and Hispanic students report 1.7 percentage point (9 percent of a standard deviation) lower rates

of school air-conditioning penetration relative to white students, while lower income students

report 2.8 percentage point (15 percent of a standard deviation) lower rates than higher income

students. These disparities appear somewhat stronger in cooler areas of the country than in hotter

29In these regressions, we limit the sample to one observation per student and use all PSAT takers to get a more
representative picture of national patterns.
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areas, defined by dividing schools into those below and above the national median school year

temperature.

Panel B of Table 6 also measures gaps in school air-conditioning penetration, instead using as

an outcome an indicator having “inadequate” school air-conditioning. We define schools with in-

adequate air-conditioning as those where the average student responded that classrooms get too

hot on hot days “Most of the time” or “All the time”. Black and Hispanic students are 1.6 per-

centage points more likely than white students to be in schools with inadequate air-conditioning.

Lower income students are 6.2 percentage points more likely to be in schools with inadequate

air-conditioning than their higher income counterparts. These disparities are again substantially

larger in cooler areas of the country than in hotter areas. Figure 7 further shows that racial gaps in

school air-conditioning access are not explained purely by ZIP code level income differences.

5.2 Heterogeneous Impacts of Heat

Heat exposure has heterogeneous impacts by race, income, and geography, which we show in

Table 7.30 As panel A shows, the impact of prior year heat on black and Hispanic students is three

times larger than the impact on white students. The impact of prior year heat on students in lower

income ZIP codes is twice as large as on those from higher income ZIP codes. The last two columns

of Table 7 split the sample into high schools with below and above national median school year

temperatures. Even though cooler areas of the country are less likely to experience extreme heat,

students in these areas seem to experience more learning disruption per unit of extreme heat,

consistent with lower average levels of defensive investments. Each school day above 90◦F has

more than three times the negative impact on test scores in cooler areas than in hotter areas. Panel

B shows cumulative impacts measured by adding coefficients from the previous four years of

heat exposure. Experiencing 1◦F hotter school years over the past four years has a nearly 80

percent larger impact on black and Hispanic students than on white students. The impact of

one additional day above 90◦F in each of the preceding four school years has a 40 percent larger

impact on black and Hispanic students than on white students. Interestingly, four-year cumulative

impacts of heat exposure do not appear to vary by ZIP code income as much as one-year impacts.

The cumulative effects of a 1◦F increase in school year temperatures is nearly twice as high in
30We find no evidence of heterogeneity by student gender.
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cooler areas, while the cumulative impact of each year having an additional day above 90◦F is five

times larger in cooler areas.

That the achievement of minority and lower income students suffers more from heat expo-

sure is consistent with minority households and high-minority schools having fewer resources

to make defensive investments, either ex ante or ex post (Graff Zivin and Neidell, 2013; Kahn,

2016). Wealthier students may be able to compensate for lost learning time by getting additional

instruction from their parents or private tutors. Such students may also be more likely to attend

schools where teachers have better capacity to compensate for lost learning time by adjusting

lesson plans or adding more instructional time to the day.31 A simpler explanation for this hetero-

geneity is that minority and lower income students have less access to school conditioning, as we

have shown, and home air-conditioning, both of which help offset the negative impacts of heat,

though it appears that minorities and low income students also tend to live in historically hotter

climates which appear to feature other effective adaptations.

The estimates in Table 7 allow us to compute the fraction of the racial achievement gap that

is driven by a combination of the heterogeneous impacts of heat by race and racial differences in

heat exposure. To do this, we ask how much larger racial achievement gaps are than they would

be if all students always experienced school day temperatures that appear optimal for learning

(i.e. those in the 60s). Our estimates suggest that total exposure to days above 90◦F lowers black

and Hispanic students’ achievement by 0.043 standard deviations (-0.00277 standard deviations

per additional day above 90◦F * 15.7 days above 90◦F). For white students, the comparable effect

is 0.021 standard deviations (-0.00197 standard deviations per additional day above 90◦F * 10.06

days above 90◦F). This means that extremely hot days widen the racial achievement gap by ap-

proximately 0.022 standard deviations, or about three percent of the 0.8 standard deviation gap

in PSAT performance between black and Hispanic students and white students. If we also ac-

count for the cumulative impacts of school days between 70 and 90◦F, then excess heat accounts

for about seven percent of the racial achievement gap.32 The physical environment students are

31Both research and media reports suggest teachers are aware of the adverse impacts of heat on student performance
and make efforts to offset some of those impacts ex post. Park (2017) finds that New York City teachers selectively
boosted grades of students who experienced hot exam sittings and scored just below pass/fail cutoffs.

32Though the estimated impacts of school days between 70 and 90◦F are smaller and noisier than those from days
above 90◦F, the cumulative coefficient on such days for black and Hispanic students is -0.0004 standard deviations and
they experience nearly 84 such days a year. The estimated impact of such days on white students is zero (out to four
decimal places).

23



exposed to, as measured by school day temperatures, thus accounts for a small but non-trivial

portion of the racial achievement gap.

6 Conclusion

We provide the first evidence that cumulative heat exposure inhibits cognitive skill development

and that defensive investments such as school air-conditioning may mitigate this effect. Our find-

ings imply that the physiological impacts of heat directly interfere with learning. This work high-

lights the understudied role that students’ and teachers’ physical environments play in generating

educational outcomes. It also highlights the extent to which disparities in such physical environ-

ments contribute to inequality in educational outcomes such as the racial achievement gap. The

results allow us to estimate the value of one potential public investment, school air-conditioning,

that may help reduce such gaps.

Evidence that heat exposure affects human capital accumulation points to a potential under-

studied channel through which heat may affect macroeconomic growth. A variety of recent papers

have documented clear connections between country-level temperature fluctuations and growth

but the mechanisms explaining that connection have remained a matter of speculation (Dell et al.,

2012; Burke et al., 2015). Hypothesized channels include the negative impacts of heat on physical

health and on labor productivity, particularly for physically intensive occupations (Hsiang, 2010;

Heal and Park, 2016). Our evidence suggests that heat not only interferes with the physical capa-

bilities of a nation’s workforce but also with its cognitive capacities, and most crucially the rate at

which valuable skills are accrued by the workforce over time.

Understanding the causal relationship between cumulative heat exposure and learning is of

heightened policy relevance given accelerating warming in most parts of the world, and given that

the overwhelming majority of the world’s population does not yet have access to air-conditioning

(Davis and Gertler, 2015). Based on current estimates of projected warming in the U.S., we engage

in the following thought experiment: By 2050, how much heat-related learning disruption can we

expect for the average high school student, relative to a student attending high school in 2010?

Median climate change scenarios for the contiguous United States predict average warming of

roughly 5◦F by 2050. To generate a summary measure of the impact of climate change on future
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learning, we take the average treatment effect in degree F terms from above (0.006 standard devi-

ations) and multiply by the extent of predicted mid-century warming (5◦F), yielding an estimate

of 0.03 standard deviation lower achievement, or approximately 10 percent of the average learn-

ing achieved in a given school year. Without further investments in school infrastructure, climate

change would likely also result in a further widening of current racial achievement gaps.33

Further questions about the impact of heat on learning remain. The average American stu-

dent experiences approximately 12 school days above 90◦F per year, whereas the average Indian

student experiences over 100 such days annually. What portion of the achievement gap between

hot and cool countries is explained by the direct impact of heat exposure on learning documented

here? Do these impacts on cognitive skill and learning have longer-term impacts on students’

economic outcomes, affecting rates of economic mobility and convergence? Other than school

air-conditioning, what alternative investments or actions can be taken to mitigate the impacts of

heat on learning? While it is possible that individuals in hotter climates are better acclimated

and thus experience reduced sensitivity per unit of heat exposure, given much lower levels of

air-conditioning and the potential for other correlated health or nutritional impacts, we speculate

that our estimates represent a conservative appraisal of the inhibiting influence of a hotter climate

on human capital development. We hope future work addresses such questions.

33These calculations do not account for potential non-linearities in the damage function for temperatures outside
the range of historical experience, such as days above 110◦F. It is important to note that these back-of-the-envelope
estimates do not account for heterogeneity in warming or air-conditioning penetration patterns across regions, or for
the costs of installing air-conditioning, both of which are likely to be important determinants of net welfare impacts.
They also do not account for potential migration responses.
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Figure 1: Climate and Achievement Across Geographies
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Notes: The above figure shows a scatterplot of mean 2012 PISA (panel A) or SEDA (panel B) math
scores and average annual temperature by country or U.S. county. Average annual temperatures
are measured over the period 1980-2011. Panel B shows a binned percentile plot of standardized
3rd-8th grade math scores (2009-2013) by percentile of the county-level average temperature dis-
tribution, with scores standardized by subject, grade and year as in Fahle et al. (2017). Also shown
is a fitted line and slope coefficient from a bivariate regression of scores on temperatures, using
heteroskedasticity robust standard errors.
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Figure 2: Spatial Distribution of PSAT Z-Scores

Notes: The above figure shows county-level average standardized PSAT scores from the high
school classes of 2001-14.
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Figure 3: Spatial Variation in Prior Year Temperature

Notes: The above figure shows the mean daily maximum temperature (panel A) and number of
days above 90◦F (panel B) experienced by students on school days in the 365 days prior to taking
the PSAT, by county. The sample consists of all PSAT-takers from the high school classes of 2001-
14, whose PSATs were taken between 1997 and 2012.
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Figure 4: Cumulative Hot Days and Test Performance
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Notes: Shown above are coefficients from a regression of hundredths of a standard deviation in
PSAT total (math plus reading) scores on the number of school days within a given temperature
range during the 365 days preceding the PSAT take. The regression includes student fixed effects
and fixed effects for each combination of cohort, test date and take number. Heteroskedasticity
robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 *** p<.01).
The sample comprises all students from the high school classes of 2001-14 who took the PSAT
more than once.
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Figure 5: Hot Classrooms

Notes: The above figure shows by county the mean fraction of classrooms reported as “too hot”
on hot days by students (panel A) and guidance counselors (panel B). Both measures are derived
from student or counselor responses to a survey administered by the College Board. The sam-
ple consists of all PSAT-takers from the high school classes of 2001-14, whose PSATs were taken
between 1997 and 2012.
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Figure 6: School and Home Air-conditioning

Notes: The above figure shows by county the mean fraction of classrooms (panel A) and homes
(panel B) lacking air-conditioning. Classroom measures are derived from guidance counselor re-
sponses to a survey administered by the College Board. Home measures are derived from the
1980 Census and the 1993-2015 quadrennial Residential Energy Consumption Surveys. The sam-
ple consists of all PSAT-takers from the high school classes of 2001-14, whose PSATs were taken
between 1997 and 2012.
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Figure 7: School Air-conditioning by Percent Black or Hispanic
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Notes: The above figure is a binned percentile plot of high school air-conditioning penetration
rates as implied by student survey responses, by percentile of the school-level percent black or
Hispanic distribution. It plots residual variation after controlling for average daily maximum
temperature by school and average income by zip code between 1997 and 2012.
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Table 1: Summary Statistics

PSAT Retakers

All All Black or Lower Higher
takers retakers Hispanic White income income

(1) (2) (3) (4) (5) (6)

(A) Demographics

Female 0.53 0.55 0.56 0.54 0.56 0.53
White 0.58 0.58 0.00 1.00 0.45 0.69
Black or Hispanic 0.29 0.28 1.00 0.00 0.43 0.16
Mother has B.A. 0.22 0.33 0.18 0.40 0.20 0.44
ZIP code mean income 63.2 69.6 49.4 78.3 38.9 95.6

(B) PSAT scores

Retook PSAT 0.36 1.00 1.00 1.00 1.00 1.00
Total takes 1.42 2.15 2.17 2.14 2.14 2.15
First PSAT z-score -0.00 0.14 -0.49 0.40 -0.15 0.40

(C) Temperature

Mean temperature (◦F) 65.1 65.8 68.8 64.2 65.9 65.6
Days above 90 ◦F 11.9 12.2 15.7 10.6 12.7 11.7

(D) Air conditioning

Classrooms with AC 0.58 0.59 0.60 0.58 0.58 0.60
Homes with AC 0.77 0.80 0.85 0.79 0.77 0.82

N (scores) 38,303,474 21,076,009 6,023,145 12,161,058 9,570,444 11,322,404
N (students) 27,023,119 9,795,654 2,775,607 5,689,371 4,462,169 5,259,910

Notes: Notes: Mean values of key variables are shown. Column 1 includes comprises all students from the high
school classes of 2001-14 who took the PSAT at least once. Column 2 includes only those who took the PSAT more
than once. Columns 3-6 include subgroups of retakers, with columns 5 and 6 respectively including below and
above median ZIP code-level income within below and above median temperature areas.
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Table 2: Prior Year Temperature and PSAT Scores

(1) (2) (3) (4) (5) (6)

(A) Average heat

Mean temperature (◦F) -0.181∗∗∗ -0.211∗∗∗ -0.185∗∗∗ -0.182∗∗∗ -0.176∗∗∗ -0.230∗∗∗

(0.028) (0.036) (0.029) (0.028) (0.027) (0.042)

(B) Hot days

Days above 100 ◦F -0.067∗∗∗ -0.077∗∗∗ -0.075∗∗∗ -0.065∗∗∗ -0.064∗∗∗ -0.098∗∗∗

(0.018) (0.020) (0.017) (0.018) (0.016) (0.033)
Days in 90s (◦F) -0.053∗∗∗ -0.061∗∗∗ -0.059∗∗∗ -0.053∗∗∗ -0.053∗∗∗ -0.064∗∗∗

(0.013) (0.014) (0.013) (0.013) (0.012) (0.018)
Days in 80s (◦F) -0.035∗∗∗ -0.037∗∗∗ -0.039∗∗∗ -0.035∗∗∗ -0.029∗∗∗ -0.046∗∗∗

(0.009) (0.010) (0.009) (0.009) (0.009) (0.013)
Days in 70s (◦F) -0.024∗∗∗ -0.024∗∗∗ -0.026∗∗∗ -0.024∗∗∗ -0.023∗∗∗ -0.020∗

(0.008) (0.008) (0.008) (0.008) (0.008) (0.012)
Days below 60 ◦F 0.010 0.013 0.008 0.010 0.010 0.007

(0.009) (0.009) (0.008) (0.009) (0.007) (0.011)

N 21,046,448 21,046,448 21,046,448 21,046,448 21,046,448 5,378,273

Prior year snow, rain No Yes No No No No
Test day weather No Yes No No No No
Pollution No No Yes No No No
Economic conditions No No No Yes No No
State-specific trends No No No No Yes No
Sensor within 5 miles No No No No No Yes

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05
*** p<.01). Coefficients in each column and panel come from a regression of hundredths of a standard deviation in
PSAT total (math plus reading) scores on the weather measure(s) shown. Temperature is measured with the daily
maximum temperature from school days in the 365 days preceding the PSAT take. All regressions include student
fixed effects and fixed effects for each combination of cohort, test date and take number. Column 2 adds controls for
prior year rainfall and snowfall, as well as test day temperature, rainfall and snowfall. Column 3 controls for prior
year and test day pollution levels (carbon monoxide, ozone, suflur dioxide, nitrogen dioxide and PM10). Column 4
controls for the logarithm of per capita county-level payroll in industries highly exposed to weather. Column 5 adds
state-specific linear time trends. Column 6 limits the sample to high schools within 5 miles of the nearest weather
sensor. The sample comprises all students from the high school classes of 2001-14 who took the PSAT more than once.
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Table 3: Timing of Temperature Shocks

(1) (2) (3) (4)

(A) Mean temperature (◦F)

School days, 1 year prior -0.181∗∗∗ -0.205∗∗∗ -0.270∗∗∗

(0.028) (0.030) (0.043)
Summer days, 1 year prior 0.039 0.047∗

(0.026) (0.026)
Weekend days, 1 year prior 0.114∗∗∗

(0.038)
School days, post-summer -0.061∗∗

(0.025)
School days, pre-summer -0.160∗∗∗

(0.029)

(B) Days above 90 ◦F

School days, 1 year prior -0.056∗∗∗ -0.061∗∗∗ -0.073∗∗∗

(0.012) (0.011) (0.016)
Summer days, 1 year prior 0.016 0.018

(0.011) (0.011)
Weekend days, 1 year prior 0.043

(0.028)
School days, post-summer -0.074∗∗∗

(0.019)
School days, pre-summer -0.074∗∗∗

(0.016)

N 21,046,448 21,046,448 21,046,448 21,046,448

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 ***
p<.01). Coefficients in each column and panel come from a regression of hundredths of a standard deviation in PSAT
total (math plus reading) scores on the weather measure(s) shown. School day temperature is measured with the daily
maximum temperature from school days in the listed 365 day period relative to the PSAT take. Summer temperature
is measured across all days in the summer break preceding the PSAT take. Weekend temperature is measured across
all weekends and national holidays in the 365 days preceding the PSAT take. All regressions include student fixed
effects and fixed effects for each combination of cohort, test date and take number. The sample comprises all students
from the high school classes of 2001-14 who took the PSAT more than once.
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Table 4: Lagged and Cumulative Impacts of Heat Exposure

(1) (2) (3) (4) (5)

(A) Mean temperature (◦F)

1 year prior -0.181∗∗∗ -0.189∗∗∗ -0.185∗∗∗ -0.213∗∗∗ -0.215∗∗∗

(0.028) (0.036) (0.041) (0.044) (0.048)
2 years prior -0.017 -0.010 -0.096 -0.099

(0.036) (0.052) (0.061) (0.071)
3 years prior 0.012 -0.088 -0.093

(0.043) (0.057) (0.080)
4 years prior -0.168∗∗∗ -0.173∗∗

(0.049) (0.076)
5 years prior -0.009

(0.058)

Cumulative impact -0.181∗∗∗ -0.206∗∗∗ -0.182 -0.565∗∗∗ -0.589∗∗

(0.028) (0.066) (0.121) (0.178) (0.296)

(B) Days above 90 ◦F

1 year prior -0.056∗∗∗ -0.066∗∗∗ -0.078∗∗∗ -0.083∗∗∗ -0.080∗∗∗

(0.012) (0.013) (0.014) (0.015) (0.016)
2 years prior -0.031∗∗∗ -0.051∗∗∗ -0.069∗∗∗ -0.061∗∗∗

(0.010) (0.013) (0.018) (0.021)
3 years prior -0.048∗∗∗ -0.072∗∗∗ -0.054∗

(0.014) (0.021) (0.028)
4 years prior -0.043∗∗∗ -0.024

(0.017) (0.025)
5 years prior 0.031

(0.019)

Cumulative impact -0.056∗∗∗ -0.097∗∗∗ -0.178∗∗∗ -0.268∗∗∗ -0.188∗

(0.012) (0.021) (0.034) (0.060) (0.096)

N 21,046,448 21,046,448 21,046,448 21,046,448 21,046,448

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05
*** p<.01). Each coefficient comes from a separate regression of hundredths of a standard deviation in PSAT total
(math plus reading) scores on the weather measure(s) shown. Panel A measures mean temperature using the daily
maximum temperature from school days in the 365 day period starting the given number of years prior to the PSAT
take. Panel B measures the number of such school days above 90 ◦F and controls for the number of days in other
temperature ranges, so that days in the 60s are the reference category. Beneath each column is the cumulative impact
of heat exposure, generated by adding the listed coefficients. All regressions include student fixed effects and fixed
effects for each combination of cohort, test date and take number. The sample comprises all students from the high
school classes of 2001-14 who took the PSAT more than once.
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Table 6: Heterogeneity in School Air Conditioning Access

All Cooler Hotter
schools areas areas

(1) (2) (3)

(A) School AC

Black or Hispanic -0.017∗∗∗ -0.020∗∗∗ -0.016∗∗∗

(0.004) (0.006) (0.005)

Lower income -0.028∗∗∗ -0.034∗∗∗ -0.020∗∗∗

(0.005) (0.008) (0.005)

(B) Inadequate school AC

Black or Hispanic 0.016∗∗∗ 0.022∗ 0.015∗∗

(0.006) (0.012) (0.006)

Lower income 0.062∗∗∗ 0.082∗∗∗ 0.039∗∗∗

(0.008) (0.016) (0.006)

N 22,347,878 11,176,342 11,171,536

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 ***
p<.01). Each coefficient comes from a separate regression of school air conditioning penetration rate (panel A) or an
indicator for inadequate air conditioning (panel B) on the listed subgroup indicators. Inadequate air conditioning is
defined as the average student’s response that, on hot days, classrooms are too hot to learn “most of the time” or “all
of the time.” The reference groups in each panel are white students (top row) and higher income ZIP codes (bottom
row). Lower income refers to students living in below median income ZIP codes within hotter and cooler areas. Each
regression controls for a quartic in school-level mean temperatures over the entire time period. Cooler and hotters
areas identify schools whose long-term mean temperatures are below or above the median. The sample comprises
one observation from each PSAT-taker from the high school classes of 2001-14.
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Table 7: Heterogeneity by Race, Income and Geography

Black or Lower Higher Coolest Hottest
Hispanic White income income areas areas

(1) (2) (3) (4) (5) (6)

(A) 1 year prior

Mean temperature (◦F) -0.320∗∗∗ -0.093∗∗∗ -0.217∗∗∗ -0.115∗∗∗ -0.215∗∗∗ -0.170∗∗∗

(0.043) (0.019) (0.034) (0.022) (0.047) (0.047)

Days above 90 ◦F -0.072∗∗∗ -0.027∗∗∗ -0.067∗∗∗ -0.030∗∗∗ -0.082∗∗∗ -0.025∗

(0.015) (0.008) (0.013) (0.010) (0.029) (0.013)

(B) Cumulative impact

Mean temperature (◦F) -0.516∗∗∗ -0.292∗ -0.348∗∗ -0.446∗∗ -1.312∗∗∗ -0.712∗∗∗

(0.217) (0.151) (0.159) (0.180) (0.358) (0.236)

Days above 90 ◦F -0.277∗∗∗ -0.197∗∗∗ -0.222∗∗∗ -0.241∗∗∗ -0.621∗∗∗ -0.122∗

(0.070) (0.054) (0.050) (0.063) (0.168) (0.067)

(C) Average heat

Mean temperature (◦F) 68.8 64.2 65.8 65.8 58.1 73.5
Days above 90 ◦F 15.7 10.6 12.5 11.8 3.9 20.5

N 6,023,145 12,161,058 10,658,547 10,234,301 10,535,013 10,511,435

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 ***
p<.01). Each coefficient comes from a separate regression of hundredths of a standard deviation in PSAT total (math
plus reading) scores on the weather measure(s) shown. The first row in panel A measures mean temperature using
the daily maximum temperature from school days in the 365 days preceding the PSAT take. The second row in panel
A measures the number of such school days above 90 ◦F and controls for the number of days in other temperature
ranges, so that days in the 60s are the reference category. The first and second rows in panel B measure the cumulative
impact of heat by summing lagged coefficients from each of the four years preceding the PSAT take. All regressions
include student fixed effects and fixed effects for each combination of cohort, test date and take number. The sam-
ple comprises all students from the high school classes of 2001-14 who took the PSAT more than once. Columns 3
and 4 contain students living in below and above median ZIP code-level income within below and above median
temperature areas.
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Figure A.1: School Year Calendars by State

Notes: The above figure shows state’s approximate school year start and end dates based on the
largest school district in each state and as of 2016.
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Figure A.2: Spatial Distribution of PSAT Takers

Notes: The above figure shows by county the total number of PSAT takers (panel A) and retakers
(panel B) from the high school classes of 2001-14.
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Figure A.3: Temporal Variation in Prior Year Temperature
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Notes: The above figure shows the mean daily maximum temperature (panel A) and number of
days above 90◦F (panel B) experienced by students on school days in the 365 days prior to taking
the PSAT, by test year. The sample consists of all PSAT-takers from the high school classes of 2001-
14, whose PSATs were taken between 1997 and 2012. Dot size is proportional to the number of
students in each test year. Test year 1997 is excluded due to the small number of observations.
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Figure A.4: Residuals of Prior Year Temperature
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Notes: The above figure shows the distribution of residuals resulting from regressions on student
fixed effects of the mean daily maximum temperature (panel A) and number of days above 90◦F
(panel B) experienced by students on school days in the 365 days prior to taking the PSAT. All
regressions include fixed effects for each combination of cohort, test date and take number. The
figure excludes residuals with magnitude above three (panel A) and 10 (panel B). The standard
deviation of the full set of residuals is shown in each panel.
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Table A.1: Temperature and PSAT-Taking

Black or Mother Father
Takers Ln(takers) Female Hispanic has B.A. has B.A

(1) (2) (3) (4) (5) (6)

(A) Baseline

Mean temperature (◦F) -0.0107 -0.0021 -0.0001 0.0007∗∗∗ 0.0003 0.0003
(0.0902) (0.0017) (0.0001) (0.0002) (0.0003) (0.0003)

(B) State trends

Mean temperature (◦F) -0.0924 -0.0013 0.0001 0.0001 -0.0001 -0.0001
(0.0812) (0.0016) (0.0001) (0.0002) (0.0002) (0.0002)

N 686,977 686,977 27,021,552 27,021,552 27,021,552 27,021,552

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 ***
p<.01). Each coefficient comes from a separate regression of the listed characteristic of PSAT-takers on the average
daily maximum temperature from school days in the 365 days preceding a student’s first PSAT take. All regressions
include fixed effects for each high school and for each combination of cohort and test date. Panel B also includes
state-specific linear time trends. The sample comprises all students from the high school classes of 2001-14 who took
the PSAT at least once.
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Table A.2: Temperature and Retaking

(1) (2) (3) (4) (5)

Prior year temperature (◦F) 0.0005 0.0005 0.0003 -0.0001
(0.0005) (0.0005) (0.0005) (0.0004)

Following year temperature (◦F) 0.0003 0.0003 0.0003 -0.0004
(0.0004) (0.0005) (0.0005) (0.0004)

N 27,021,551 27,021,551 27,021,551 27,021,551 27,021,551

Test day temperature No No No Yes Yes
State-specific time trends No No No No Yes

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05
*** p<.01). Each coefficient comes from a separate regression of the probability of retaking the PSAT on the weather
measure(s) shown. Yearly temperatures are measured with the daily maximum temperature from school days in
the 365 days preceding and following a student’s first PSAT take. All regressions include fixed effects for each high
school, for each combination of gender, race, income and parental education, and for each combination of cohort and
test date. Columns 4 and 5 control for temperature on the day of the first PSAT take. Column 5 includes state-specific
linear time trends. The sample comprises all students from the high school classes of 2001-14 who took the PSAT at
least once.
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Table A.3: Temperature Effects by Test Subject

Math Verbal
(1) (2)

(A) Average heat

Mean temperature (◦F) -0.159∗∗∗ -0.177∗∗∗

(0.034) (0.023)

(B) Hot days

Days above 90 ◦F -0.042∗∗∗ -0.062∗∗∗

(0.014) (0.010)

N 21,046,448 21,046,448

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 ***
p<.01). Coefficients in each column and panel come from a regression of hundredths of a standard deviation in PSAT
math or reading scores on the weather measure shown. Panel A measures temperature with the daily maximum
temperature from school days in the 365 days preceding the PSAT take. Panel B measures the number of such school
days above 90 ◦F. All regressions include student fixed effects and fixed effects for each combination of cohort, test
date and take number. Panel B also controls for the number of days in other temperature ranges, so that days in the
60s are the reference category. The sample comprises all students from the high school classes of 2001-14 who took
the PSAT more than once.
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Table A.4: Heterogeneity by Take Number

(1) (2) (3) (4)

Mean temp. (◦F) -0.152∗∗∗ -0.200∗∗∗ -0.269∗∗∗

(0.034) (0.027) (0.069)
Mean temp. * 1st take -0.152∗∗∗ 0.048∗∗ 0.116

(0.034) (0.021) (0.079)
Mean temp. * 2nd take -0.200∗∗∗ -0.048∗∗ 0.069

(0.027) (0.021) (0.065)
Mean temp. * 3rd take -0.269∗∗∗ -0.116 -0.069

(0.069) (0.079) (0.065)

N 21,046,448 21,046,448 21,046,448 21,046,448

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 ***
p<.01). Coefficients in each column and panel come from a regression of hundredths of a standard deviation in PSAT
total (math plus reading) scores on interactions between take number and the average daily maximum temperature
from school days in the 365 days preceding the PSAT take. All regressions include student fixed effects and fixed
effects for each combination of cohort, test date and take number. The sample comprises all students from the high
school classes of 2001-14 who took the PSAT more than once.
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Table A.5: Future Temperature Shocks

(1) (2) (3) (4) (5)

Mean temp., 1 year prior (◦F) -0.181∗∗∗ -0.229∗∗∗ -0.182∗∗∗ -0.178∗∗∗ -0.228∗∗∗

(0.028) (0.039) (0.028) (0.029) (0.049)
Mean temp., 1 year after (◦F) -0.090∗ -0.092

(0.048) (0.080)
Mean temp., 2 years after (◦F) 0.053 -0.006

(0.032) (0.073)
Mean temp., 3 years after (◦F) -0.037 -0.037

(0.033) (0.051)

N 21,046,448 21,046,448 21,046,448 21,046,448 21,046,448

Notes: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses (* p<.10 ** p<.05 ***
p<.01). Coefficients in each column and panel come from a regression of hundredths of a standard deviation in PSAT
total (math plus reading) scores on the weather measure(s) shown. School day temperature is measured with the
daily maximum temperature from school days in the listed 365 day period relative to the PSAT take. All regressions
include student fixed effects and fixed effects for each combination of cohort, test date and take number. The sample
comprises all students from the high school classes of 2001-14 who took the PSAT more than once.
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