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Abstract

Centralized school assignment algorithms employ non-lottery tie-breakers like test scores,
randomly assigned lottery numbers, or both. The New York City public high school match
illustrates the latter, using test scores, grades, and interviews to rank applicants to screened
schools, combined with lottery tie-breaking at unscreened schools. We show how to identify
causal effects of school attendance in such settings. Our approach generalizes regression
discontinuity designs to allow for multiple treatments and multiple running variables, some
of which are randomly assigned. Lotteries generate assignment risk at screened as well as
unscreened schools. These results are used to assess the predictive value of New York City’s
school report cards. Grade A schools improve SAT math scores and increase the likelihood
of graduating, though by less than OLS estimates suggest. Grade A attendance also boosts
measures of college and career readiness. Estimation strategies that exploit the combination
of lottery and non-lottery risk increase precision markedly. Grade A effects are similar when
identified by screened and unscreened (lottery) tie-breakers and for screened and lottery
schools. Selection bias in OLS estimates is egregious for Grade A screened schools.
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1 Introduction

Large urban school districts increasingly use sophisticated matching mechanisms to assign their
seats. In addition to producing fair and transparent admissions decisions, centralized assignment
schemes offer a unique resource for research and accountability: the data they generate can
be used to construct causal estimates of school value-added. This research dividend arises
from the tie-breaking embedded in centralized matching. A commonly used school matching
scheme, deferred acceptance (DA), takes as input information on applicant preferences and
school priorities. In settings where slots are scarce, tie-breaking variables distinguish between
applicants who have the same preferences and are subject to the same priorities. Holding
preferences and priorities fixed, stochastic tie-breakers become a source of quasi-experimental
variation in school assignment.

Many districts break ties with a single random variable, often described as a “lottery num-
ber’.’ Abdulkadiroğlu, Angrist, Narita and Pathak (2017b) show that lottery tie-breaking assigns
students to schools as in a stratified randomized trial. That is, conditional on preferences and
priorities, admission offers generated by such systems are randomly assigned and therefore in-
dependent of potential outcomes. In practice, however, preferences and priorities, which we call
applicant type, are too finely distributed for full non-parametric conditioning to be useful. The
key to a feasible DA-based research design is the DA propensity score, defined as the proba-
bility of school assignment conditional on preferences and priorities. In a match with lottery
tie-breaking, conditioning on the scalar DA propensity score is sufficient to make assignment
ignorable, that is, independent of potential outcomes. Moreover, because the DA propensity
score for a market with lottery tie-breaking depends on only a few school-level cutoffs, the score
distribution is much coarser than the distribution of types.

We turn here to the problem of crafting research designs from a broad class of assignment
mechanisms in which the tie-breaking variable is non-random and potentially correlated with
unobserved potential outcomes. Non-random tie-breaking, used for school assignment in Boston,
Chicago, and New York City, raises important challenges for causal inference in matching mar-
kets.1 Most importantly, seat assignment under non-random tie-breaking is no longer ignorable
conditional on type. Exam schools, for instance, select students with higher test scores, and these
high-scoring students can be expected to do well no matter where they go to school. In regres-
sion discontinuity (RD) parlance, the running variable used to distinguish between applicants
of the same type is a source of omitted variables bias (OVB).

Other barriers to causal inference in this setting are raised by the fact that the propensity
score in a general tie-breaking scenario depends on the unknown distribution of tie-breakers

1Non-lottery tie-breaking embedded in centralized assignment schemes has been used in econometric research
on schools in Chile (Hastings, Neilson and Zimmerman, 2013; Zimmerman, forthcoming), Italy (Fort, Ichino and
Zanella, 2016), Ghana (Ajayi, 2014), Kenya (Lucas and Mbiti, 2014), Norway (Kirkeboen, Leuven and Mogstad,
2016), Romania (Pop-Eleches and Urquiola, 2013), Trinidad and Tobago (Jackson, 2010, 2012; Beuermann, Jack-
son and Sierra, 2016), and the U.S. (Abdulkadiroğlu, Angrist and Pathak, 2014; Dobbie and Fryer, 2014; Barrow,
Sartain and de la Torre, 2016). These studies treat different schools and tie-breakers in isolation, without exploit-
ing centralized assignment. Other related work considers estimation methods in regression discontinuity designs
with multiple assignment variables and multiple cutoffs (Papay, Willett and Murnane, 2011; Zajonc, 2012; Wong,
Steiner and Cook, 2013; Cattaneo, Titiunik, Vazquez-Bare and Keele, 2016).



for each applicant type. This means that the propensity score under general tie-breaking may
be no coarser than the underlying type distribution. Moreover, with an unknown distribution
of tie-breakers, we cannot easily estimate the propensity score by simulation. These problems
are solved here by integrating the non-parametric RD framework introduced by Hahn, Todd
and Van der Klaauw (2001) with the large-market matching used to study random tie-breaking
in Abdulkadiroğlu et al. (2017b).2 Our results provide an easily-implemented framework for a
wide variety of assignment schemes with multiple cutoffs and multiple running variables, some
of which may be randomly assigned.3

The research value of a matching market with general tie-breaking is demonstrated through
an investigation of value-added by New York City (NYC) high schools. Specifically, we exploit
variation generated by the NYC high school match, which uses a DA mechanism that integrates
distinct non-lottery “screened school” tie-breaking with a common lottery tie-breaker to assign
9th graders to high schools. NYC screened schools use an entrance exam or other criteria to rank
applicants instead of ranking by lottery. The quasi-experimental assignment variation generated
by this system is used here to answer questions about school quality.

Our results show that attendance at one of New York’s “Grade A schools” boosts SAT
math scores modestly and may have a small effect on high school graduation. These effects
are smaller than the corresponding ordinary least squares (OLS) estimates of Grade A value-
added. Grade A attendance also boosts measures of college and career readiness. The practical
utility of our approach is seen in the markedly increased precision of estimates that exploit all
sources of risk. We also address concerns that RD effects identified solely for applicants closed
to screened school cutoffs might be idiosyncratic: estimates identified by lottery risk alone differ
little from estimates that exploit screening. Finally, motivated by the ongoing debate over
screened admissions policies in public schools, we contrast Grade A effects estimated separately
for screened and lottery schools. These are also similar. OLS estimates showing a large Grade
A screened school advantage are especially misleading.

2 School Choice Experiments

School assignment problems are defined by a set of applicants, schools, and school capacities.
Applicants have preferences over schools while schools have priorities over applicants. For ex-
ample, schools may prioritize applicants who live nearby or with currently enrolled siblings. Let
s = 0, 1, ..., S index schools, where s = 0 represents an outside option. The letter I denotes a set
of applicants, indexed by i. I may be finite or, in our large-market model, a continuum, with
applicants indexed by values in the unit interval. Seating is constrained by a capacity vector,
q = (q0, q1, q2, ..., qS), where qs is defined as the proportion of I that can be seated at school s.
We assume q0 = 1.

2We also build upon the “local random assignment” interpretation of nonparametric RD, discussed by Frölich
(2007); Cattaneo, Frandsen and Titiunik (2015); Cattaneo, Titiunik and Vazquez-Bare (2017); Frandsen (2017)
and Sekhon and Titiunik (2017). See Lee and Lemieux (2010) for a survey of RD methods.

3Large-market results for the special case of serial dictatorship with a single non-random tie-breaker are
sketched in Abdulkadiroğlu, Angrist, Narita, Pathak, and Zarate (2017a).
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Applicant i’s preferences over schools constitute a partial ordering, �i, where a �i b means
that i prefers school a to school b. Each applicant is also granted a priority at every school.
Let ρis ∈ {1, ...,K,∞} denote applicant i’s priority at school s, where ρis < ρjs means school
s prioritizes i over j. For instance, ρis = 1 might encode the fact that applicant i has sibling
priority at school s, while ρis = 2 encodes neighborhood priority, and ρis = 3 for everyone else.
We use ρis = ∞ to indicate that i is ineligible for school s. Many applicants share priorities at
a given school, in which case ρis = ρjs for some i 6= j. The vector ρi = (ρi1, ..., ρiS) records
applicant i’s priorities at each school.

Applicant type is defined as θi = (�i,ρi), that is, the combination of an applicant’s prefer-
ences and priorities at all schools. We say that an applicant of type θ has preferences �θ and
priorities ρθ. Θ denotes the set of possible types. A mechanism is a set of rules determining as-
signment as a function of type and a set of tie-breaking variables that schools use to discriminate
between applicants of the same type.

In our framework, tie-breakers and priorities are distinct because the latter are fixed, while
the former are modeled as random variables. Resampling tie-breakers makes the mechanisms
of interest to us stochastic: the assignment distribution generated by any stochastic mechanism
is induced by the distribution of tie-breakers. In particular, stochastic mechanisms generate a
probability or “risk” of assignment for each applicant to each school. Assignment risk is created
by repeatedly drawing tie-breakers from each applicant’s tie-breaker distribution and re-running
the match, fixing other market features.

Tie-breakers may be uniformly distributed lottery numbers, in which case they’re distributed
independently of type, or variables like entrance exam scores, that depend on type. With lottery
tie-breaking, the relevant distribution is a permutation distribution under which all applicant
orderings are equally likely. Tie-breakers overlap with the concept of a running variable in
simple RD-style research designs. We prefer “tie-breaker” because this terminology highlights
the role played by multiple running variables in centralized matching. As is typical of RD, non-
lottery tie-breakers in school choice are not uniformly distributed, and may depend on applicant
characteristics like race or potential outcomes, as well as on type.

To describe assignment risk more formally, consider first a market with a single continuously
distributed tie-breaker common to all schools, denoted Ri for applicant i. Although Ri is not
necessarily uniform, we assume that it’s scaled (preserving position or rank) to be distributed
over [0, 1], with continuously differentiable cumulative distribution function F i

R (an assumption
we maintain throughout). These common support and smoothness assumptions notwithstand-
ing, tie-breakers may be correlated with type, so that Ri and Rj for applicants i and j are not
necessarily identically or uniformly distributed, though they’re assumed to be independent of
one another. We assume that sets of applicants of the form {i|a < ri ≤ b} (where ri is the
realized value of Ri and a and b are constants) are measurable.4

By the law of iterated expectations, the probability type θ applicants have a running variable
below any value r is FR(r|θ) ≡ E[F i

R(r)|θi = θ], where F i
R(r) is F i

R evaluated at r and the
4A sufficient condition for this measurability assumption is that the mapping from i ∈ [0, 1] to ri ∈ [0, 1] is left

continuous (Aliprantis and Border, 2006). This sufficient condition is satisfied by reordering applicants by their
tie-breaker realizations.

3



expectation is assumed to exist. To be concrete, suppose that the running variable is a test
score. Suppose also that type θ0 applicants do exceptionally well on tests and therefore have
running variable values drawn from a distribution with higher mean than the score distribution
for type θ1. This implies FR(r|θ0) 6= FR(r|θ1). By contrast, when Ri is a lottery number
drawn independently from the same distribution for all applicants, FR(r|θ) = F i

R(r) = r for
any r ∈ [0, 1] and for all i and θ. Although lottery tie-breaking is important, many real-world
markets diverge from this.

2.1 OVB from Type and Tie-Breakers

Suppose we’d like to estimate the causal effect of attendance at school s on the likelihood of
high school graduation. Under centralized assignment, offers of a seat at s are determined solely
by type and tie-breakers. These variables are therefore the only confounding factors that might
compromise causal inference. Provided we can eliminate OVB from these two sources, the offers
generated by centralized assignment become powerful instrumental variables that identify causal
effects of school attendance.

It’s useful to begin with strategies that eliminate OVB from type. Even in a market with
lottery tie-breaking, students who list schools differently are likely to have different potential
outcomes (many applicants prefer a neighborhood school, for example). On the other hand, since
lottery tie-breakers are independent of potential outcomes, type is the only source of OVB in this
case. Full-type conditioning therefore eliminates OVB in markets with lottery tie-breaking. In
practice, however, matching markets typically have many types (almost as many as applicants
in some cases), rendering full-type conditioning impractical. We therefore exploit the fact that
the OVB induced by correlation between type and school offers is controlled by conditioning on
a scalar function of type, the propensity score.5

To formalize the argument for propensity score conditioning in analyses of school choice, let
Di(s) indicate whether applicant i is offered a seat at school s. The propensity score for school
assignment is the conditional probability of assignment to s, which can be written

ps(θ) = E[Di(s)|θi = θ].

The expectation here is computed using the distribution of tie-breakers. The probability ps(θ)
quantifies the “risk” of assignment to s faced by an applicant of type θ in repeated executions
of a match, drawing tie-breakers anew each time; empirical models that control for ps(θ) are
likewise said to “control for risk.”

Now, let Wi be any random variable independent of lottery numbers. This includes potential
outcomes as well as applicant demographic characteristics. Lottery tie-breaking implies

P [Di(s) = 1|θi = θ,Wi] = E[Di(s) = 1|θi = θ] = ps(θ), (1)

where P [Di(s) = 1|·] is the conditional relative frequency of assignment to s determined by all
possible lottery draws for subsets of applicants. Iterating expectations over type, (1) yields

P [Di(s) = 1|ps(θ) = p,Wi] = p. (2)
5Use of propensity score conditioning to control OVB originates with Rosenbaum and Rubin (1983).
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In other words, control for risk makes assignment independent of Wi, eliminating OVB. This
conditional independence (CI) relation means that in school choice markets with lottery tie-
breaking, empirical strategies that control for risk identify causal effects.

Equation (2) provides a valuable foundation for causal inference. With lottery tie-breaking,
ps(θ) is typically a function of a few key cutoffs. This coarseness makes score-conditioning
preferable to full type conditioning. With non-lottery tie-breaking, however, control for the
propensity score fails to eliminate all sources of OVB: the tie-breaker itself is an omitted variable.
Moreover, it no longer need be true that ps(θ) has support coarser than θ. And, with unknown
tie-breaker distributions, ps(θ) is hard to estimate reliably. These problems are solved here by
(a) using a theoretical propensity score to isolate the set of cutoffs that generate assignment
risk; (b) focusing on applicants near these cutoffs. In a limit computed by shrinking bandwidths
around relevant cutoffs, applicants have constant non-degenerate risk even when tie-breakers are
variables like test scores that are correlated with potential outcomes, and for which distributions
are unknown and fully dependent on type.

We illustrate this fundamental result in a simple scenario with three screened schools, A,
B, and C, each of which uses a common non-lottery tie-breaker, a test score, say, to select
applicants. Let Ri denote the tie-breaker. The assignment mechanism in this example is serial
dictatorship (SD), with applicants ordered by the tie-breaker.

SD, a version of DA without priorities, works like this:

Order applicants by tie-breaker. Proceeding in order, offer each applicant his or her
most preferred school with seats remaining.

Like any mechanism in the DA family (defined below), SD generates a set of randomization
cutoffs, denoted τs for school s. For any school s that ends up full, cutoff τs is given by the
tie-breaker of the last student offered a seat at s. Otherwise, τs = 1. Finite-market cutoffs are
typically random, that is, they depend on the distribution of lottery draws. In large “continuum”
markets, however, cutoffs are constant, a result that motivates our use of the continuum model.6

Suppose applicants differ in their preferences over B and C, but all list A first and there are
more applicants than seats at A (imagine this is a prestigious selective school). This market has
applicants of two types, those who list B second and those who list C second. With everyone
listing A first, SD assigns A to any applicant with Ri below the school-A randomization cutoff,
τA. The propensity score for assignment to school A is therefore

pA(θ) = E[1(Ri ≤ τA)|θ] = FR(τA|θ).

This simple score nevertheless depends on the unknown distribution FR(τA|θ), itself a func-
tion of θ. Type is therefore a source of omitted variables bias; applicants preferring B to C might
live in better neighborhoods and have higher test scores, for example. It’s also clear that any
applicant who does well on tests is more likely to be offered a seat at A. Nevertheless, Proposi-
tion 1 below shows that for applicants in a δ-neighborhood of τA, assignment risk converges to
0.5 as δ goes to zero, and equals 0 or 1 otherwise.

6Abdulkadiroğlu et al. (2017b) explores alternative justifications of the continuum model.

5



The “local risk” of qualification at A is formalized by partitioning the support of tie-breaker
Ri into intervals around τA. Given bandwidth δ, these intervals are encoded by

tiA(δ) =


n if Ri > τA + δ

a if Ri < τA − δ

c if Ri ∈ [τA − δ, τA + δ].

(3)

To establish the conditional independence properties of local risk, let Wi be any applicant
characteristic, like demographic characteristics and potential outcomes, that’s unchanged by
school assignment. This includes tie-breakers other than the one in use at school s.7 Proposition
1 shows that for all applicant types and conditional on Wi, local risk is constant at 0.5 or
degenerate:

Proposition 1. Assume that τA is fixed. Let FR(·|θ, w) = E[F i
R(·)|θi = θ,Wi = w] and note

that FR(·|θ, w) is differentiable at τA for every θ and w by virtue of continuous differentiability
of F i

R(r). We also assume that F ′
R(τA|θ, w) 6= 0. Then, for t ∈ {n, a, c}, all θ, and all w,

lim
δ→0

E[1(Ri ≤ τA)|θi = θ, tiA(δ) = t,Wi = w] = ψA(θ, t),

where

ψA(θ, t) =


0 if t = n

1 if t = a

0.5 if t = c.

(4)

Proposition 1 is a restatement of results in Frölich (2007), which shows that limiting qualifi-
cation risk at a single cutoff is constant at one-half, and in an unpublished draft of Frandsen
(2017), which shows something similar for an asymmetric bandwidth. These earlier results omit
conditioning variables and degenerate cases; for reference, our version is proved in the appendix.

The arguments of function ψA(θ, t) include applicant type because risk in more complicated
matches (and for applicants who list A below first in this simple example) depends on type.
Our formulation of Proposition 1 highlights the fact that risk is independent of confounding
variables, potential outcomes, and other tie-breakers. The latter property helps us describe risk
concisely in models with multiple tie-breakers. Proposition 1 can also be rewritten to show local
conditional independence given the propensity score, a result stated below as a corollary:

Corollary 1 (Local Conditional Independence). Let Di(A) = 1(Ri ≤ τA). Then,

lim
δ→0

P [Di(A) = 1|θi = θ, tiA(δ) = t,Wi = w,ψA(θ, t) = p] = p

for p ∈ {0, 0.5, 1}.

This follows by observing that

P [Di(A) = 1|θi = θ, tiA(δ) = t,Wi = w,ψA(θ, t)] = P [Di(A) = 1|θi = θ; tiA(δ) = t,Wi = w],

7Let Wi = W0i(1−Di(s)) +W1iDi(s), where W0i is the potential value of Wi revealed when Di(s) = 0, and
W1i is the potential value revealed when Di(s) = 1. Then Wi is unchanged by school assignment when W0i = W1i

for all i. Covariates unchanged by school assignment are independent of lottery tie-breakers.
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and then taking the limit of the right hand side. In this simple example, to know t is to know p,
but the conditional independence described in the corollary carries over to elaborate matches.

Corollary 1 formalizes the idea of “local random assignment” suggested by Cattaneo et al.
(2015, 2017) and Sekhon and Titiunik (2017). As noted by Sekhon and Titiunik (2017), most
theoretical work on nonparametric RD identification relies on continuity of conditional expec-
tation functions for potential outcomes rather than restrictions on the assignment mechanism.
Here, random assignment is a consequence of the fact that, given continuous differentiability of
the running variable distribution function, the running variable density is approximately uniform
in small enough neighborhoods around the cutoff.8

Proposition 1 is a key building block for more elaborate statements of risk. The limiting
nature of this theoretical result raises the question of whether Proposition 1 and its corollary have
an operational, empirical counterpart. We demonstrate the empirical conditional independence
property stated in the corollary by evaluating qualification risk for a particular school in windows
of various sizes around this school’s cutoff (we say an applicant is empirically qualified at school
s when he or she clears τs, without regard to school assignment).

Figure 1 describes qualification risk (rates) for applicants to one of NYC’s most selective
screened schools, Townsend Harris (TH). The top panel of the figure compares the probability
of clearing the TH cutoff for two applicant types, those who list TH first and those who list it
lower.9 As can be seen in the left pair of bars in the top panel, applicants who list TH first tend
to be high achievers and are therefore more likely than others to qualify for a seat at TH.

In a sample of applicants near the TH cutoff, qualification rates for the two types are closer.
Specifically, for the sample of TH applicants with running variable values inside an Imbens and
Kalyanaraman (2012) (IK) bandwidth around the cutoff, qualification rates differ by only a few
points. Moreover, cutting the window width in half and then in half again leads to further
convergence in qualification rates, with rates in both of these narrower groups remarkably close
to 0.5. This is the convergence in assignment rates predicted by Proposition 1.

The middle and bottom panels of Figure 1 document qualification rate equalization near
cutoffs for groups of TH applicants defined by baseline scores rather than by type. The leftmost
pair of bars compares all TH applicants in the upper and lower quartiles of the baseline math
and ELA (reading) score distributions, without regard to cutoff proximity. Not surprisingly,
applicants with high baseline math scores are far more likely to qualify for a seat at TH than
are applicants with low baseline math scores. The qualification gap by baseline scores narrows
for applicants with tie-breaker values in an IK bandwidth, however, and again approaches 0.5
for both groups as the window width is halved and then halved again.

It’s noteworthy that the IK bandwidth in this case is insufficiently narrow to equalize quali-
fication rates across baseline score groups. In practice, most RD applications use a data-driven

8The smoothness conditions behind Proposition 1 allow running variable distributions to have holes and spikes
as long as these are away from the cutoff. In practice, NYC screened school tie-breakers are positions defined
as a function of underlying variables like exam scores. Although scaling to positions masks gaps in underlying
tie-breaker distributions, this should not be a problem if it does not lead to spikes near cutoffs. We discusses
running variable continuity in the application section, below.

9Although TH runs only one program, it has a new cutoff each year. Qualified applicants in the figure clear
the cutoff for the year they apply.
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bandwidth combined with local linear regression to minimize bias. Our empirical strategy like-
wise uses an IK bandwidth to compute locally regression-adjusted comparisons that also condi-
tion on the score. As in Robins (2000) and Okui, Small, Tan and Robins (2012), this strategy
amounts to a doubly-robust propensity score and regression-based estimator. We control for
theoretical propensity scores, while also regression-adjusting for running variable effects in case
score control is imperfect. The covariate balance tests and robustness checks reported below
suggest this approach works well.

2.2 Risk in Serial Dictatorship

Our TH example illustrates local risk. But real school matching problems involves many cutoffs
and a rich variety of types. We explain real-world risk determination in two steps. First, as in
Abdulkadiroğlu, Che and Yasuda (2015) and Azevedo and Leshno (2016), we employ a large-
market model with a unit continuum of applicants to characterize global assignment risk. The
continuum can be interpreted as the limit of a sequence that repeatedly doubles the number of
applicants of each type while doubling each school’s capacity. In the continuum, randomization
cutoffs are fixed, that is, cutoffs are the same across repeated executions of the match with tie-
breakers re-drawn each time. As in Abdulkadiroğlu et al. (2017b), the continuum model reveals
which randomization cutoffs matter for each applicant facing risk at school s. Having identified
which of these cutoffs are relevant for risk determination, we evaluate risk for applicants with
running variables close to them.

This strategy is outlined first for a realistic version of SD with many schools and types.
In SD, applicants seated at school s qualify there and are (necessarily) disqualified at schools
they like better. The building blocks for risk at school s are therefore (a) the cutoff at s and
(b) cutoffs at schools preferred to s. The latter are characterized by a quantity we call most
informative disqualification (MID), which tells us how the tie-breaker distribution among type
θ applicants to s is truncated by offers at schools θ prefers to s. Formally, let Θs denote the set
of applicant types who list s and let

Bθs = {s′ ∈ S | s′ �θ s} for θ ∈ Θs (5)

denote the set of schools type θ prefers to s. For each type and school, MIDθs is a function of
randomization cutoffs at schools in Bθs, specifically:

MIDθs ≡

{
0 if Bθs = ∅
max{τb | b ∈ Bθs} otherwise.

(6)

MIDθs is zero when school s is listed first since all who list s first compete for a seat there.
The second line reflects the fact that an applicant who lists s second is seated there only when
disqualified at the school they’ve listed first, while applicants who list s third are seated there
when disqualified at their first and second choices, and so on. Moreover, anyone who fails to
clear cutoff τb is surely disqualified at schools with lower (less forgiving) cutoffs. For example,
applicants who fail to qualify at a school with a cutoff of 0.5 are disqualified at schools with
cutoffs below 0.5. We can therefore quantify the truncation induced by disqualification at schools
preferred to s by recording the most forgiving cutoff among them.
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Type θ cannot be seated as s when MIDθs > τs because those qualified at s can do better
(they qualify at the school that determines MIDθs). This scenario is sketched in the top panel
of Figure 2. Assignment risk when MIDθs ≤ τs is the probability that

MIDθs < Ri ≤ τs,

an event sketched in the middle panel of Figure 2. We summarize these facts in the following
proposition, which is implied by a more general result for DA derived in the next section.

Proposition 2 (Global Score in Serial Dictatorship). Consider a serial dictatorship in a con-
tinuum market. For all s and θ ∈ Θs, we have:

ps(θ) = max {0, FR(τs|θ)− FR(MIDθs|θ)} .

SD assignment risk, which is positive only when when the randomization cutoff at s exceeds
MIDθs, is given by the size of the group with Ri between MIDθs and τs. This is

FR(τs|θ)− FR(MIDθs).

With lottery tie-breaking (and a uniformly distributed lottery number), the SD risk formula
simplifies to τs −MIDθs. With non-random tie-breaking, the SD propensity score depends on
the conditional distribution function, FR(·|θ), evaluated at τs and MIDθs.

Proposition 2 leaves us with three empirical challenges not encountered in markets with
lottery tie-breaking. First, with non-random tie-breakers like test scores, conditional running
variable distributions, FR(.|θ), are likely to depend on θ, so the score in Proposition 2 need
not have coarser support than does θ. This is in spite of the fact many applicants with differ-
ent values of θ share the same MIDθs. Second, FR(.|θ) is typically unknown. This precludes
straightforward computation of the propensity score by repeatedly sampling from FR(.|θ). Fi-
nally, while control for the propensity score eliminates confounding from type, assignments are
a function of running variables as well as type, and non-lottery running variables are likely to
be correlated with potential outcomes.

As in the simple example in the previous section, we address these challenges by evaluating
risk for applicants close to cutoffs. Proposition 2 identifies the relevant cutoffs in markets with
many schools and types. As before, intervals around each cutoff are encoded by relation (3),
but now replacing tiA(δ) with tis(δ) for each school, s. We collect the set of these for all schools
in the vector

Ti(δ) = [ti1(δ), ..., tis(δ), ..., tiS(δ)]
′.

The following is a consequence of Theorem 1 in the next section, which characterizes local risk
for any DA match.

Proposition 3 (Local Score in Serial Dictatorship). Consider a serial dictatorship in a contin-
uum market. Assume that cutoffs τs are distinct. For each s ∈ S and θ ∈ Θs in this match such
that MIDθs 6= 0, suppose MIDθs = τs′ for s′ 6= s. For T = [t1, ..., ts, ..., tS ]

′ ∈ {n, a, c}S, all
δ > 0, and all w,

P [Di(s) = 1|θi = θ, Ti(δ) = T,Wi = w] = 0 if τs′ > τs.
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Otherwise,

lim
δ→0

P [Di(s) = 1|θi = θ, Ti(δ) = T,Wi = w] =


0 if ts = n or ts′ = a

1 if ts = a and ts′ = n

0.5 if ts = c or ts′ = c

When MIDθs = 0, ts′ = n and risk is determined by ts alone.

Like Proposition 1 and its corollary, Proposition 3 establishes a key conditional independence
result: limiting SD assignment risk depends only on tie-breaker proximity to the cutoff at s and to
MIDθs; risk is otherwise unrelated to applicant characteristics.10 Panel C in Figure 2 interprets
this result. Type θ applicants with tie-breakers near either MIDθs or the cutoff at s face risk of
one-half. This fact is an extension of Proposition 1, applied here to the pair of cutoffs driving
SD risk for each type. Applicants with ts = a and ts′ = n have tie-breakers strictly between
MIDθs and τs, meaning they’re disqualified at s′ but qualified at s. Finally, applicants with
ts = n or ts′ = a cannot be seated at s, either because they’re disqualified there or because they
qualify at s′.

In the empirical (as opposed to theoretical) world, almost all applicants necessarily have tie-
breaker values that are strictly above or below any particular randomization cutoff. We treat
applicants with tie-breakers close to either MIDθs or the cutoff at s differently because it is
these applicants for whom qualification is (almost) randomly assigned.

3 The DA Score with General Tie-Breaking

SD is a version of DA without priorities. Student-proposing DA, which nests all school choice
mechanisms in wide use, works like this:

Each applicant proposes to his most preferred school. Each school ranks these pro-
posals, first by priority then by tie-breaker within priority groups, provisionally ad-
mitting the highest-ranked applicants in this order up to its capacity. Other appli-
cants are rejected.

Each rejected applicant proposes to his next most preferred school. Each school ranks
these new proposals together with applicants admitted provisionally in the previous
round, first by priority and then by tie-breaker. From this pool, the school again
provisionally admits those ranked highest up to capacity, rejecting the rest.

The algorithm terminates when there are no new proposals (some applicants may
remain unassigned).

With multiple tie-breakers, different schools may rank applicants differently, but the DA
algorithm is otherwise unchanged. For example, NYC runs a centralized DA match for most of
its high schools, a match that includes a diverse set of screened schools (Abdulkadiroğlu, Pathak
and Roth, 2005, 2009). These schools rank applicant proposals using (mostly) school-specific

10Abdulkadiroğlu et al. (2017a) reference a version of Proposition 3 in a brief analysis of Chicago exam schools.
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tie-breakers derived from interviews, auditions, or GPA in earlier grades, as well as test scores. A
few screened-school tie-breakers are shared by multiple programs. The NYC match also includes
many “unscreened schools” that use a common lottery tie-breaker.11

Formal analysis of markets with general tie-breaking requires notation to keep track of the
tie-breakers. Let v ∈ {0, 1, ..., V } index tie-breakers and let {Sv : v ∈ {0, 1, ..., V }} be a partition
of schools such that Sv is the set of schools using tie-breaker v. Schools s and s′ use the same
tie-breaker if and only if s, s′ ∈ Sv for some v. The random variable Riv denotes applicant i’s
tie-breaker at schools in Sv. For any v and students i 6= j, tie-breakers Riv and Rjv are assumed
to be independent when both exist, though not necessarily identically distributed. Likewise, for
v 6= v′, tie-breakers Riv and Riv′ are initially assumed to be independent, an assumption relaxed
below.12

Define the function v(s) to be the index of the tie-breaker used at school s. By definition,
s ∈ Sv(s). We adopt the convention that v = 0 identifies the lottery tie-breaker, so S0 denotes
the set of lottery schools.

With a continuum of applicants, DA assignment risk depends on priorities as well as on tie-
breakers and cutoffs. We therefore combine applicants’ priority status and tie-breaking variables
into a single number for each school, called applicant position at school s:

πis = ρis +Riv(s).

Since the difference between any two priorities is at least 1 and tie-breaking variables are between
0 and 1, applicant position at s is a lexicographic ordering, first by priority then by tie-breaker.
We also generalize cutoffs to incorporate priorities; these DA cutoffs are denoted ξs. For any s
that ends up full, ξs is given by the position of the last student offered a seat at s. Otherwise,
ξs = K + 1.

Our characterization of large-market DA with general tie-breakers follows from the large
market model in Abdulkadiroğlu et al. (2017b), replacing position as function of a single tie-
breaker (ρis +Ri) with the tie-breaker-specific πis defined above.

In the large-market model, DA sets the cutoff to K + 1 at any school that remains unfilled
and offers a seat at s to any applicant listing s who has

πis ≤ ξs and πib > ξb for all b �i s. (7)

This is a consequence of the fact that the student-proposing DA mechanism is stable. In partic-
ular, if I’m seated at s but I prefer b, I must be qualified at s and not have been offered a seat
at b. Moreover, since DA offers at b are made in order of position, the fact that I wasn’t offered
a seat at b means I’m disqualified there.

Condition (7) nests our characterization of assignments under SD, since we can set ρis = 0

for all applicants and use a single tie-breaker to determine position. Statement (7) then amounts
11The NYC high school match omits charter schools and specialized (exam) schools like Stuyvesant. NYC

charter schools make individual offers. The specialized sector runs a separate DA match.
12Real-world tie-breakers, including those in New York City, are often coded as ranks that may be correlated

across applicants, even when the underlying criteria being ranked are independent. For example, in a sample of
two, only one can be first. Such dependence vanishes as the number of applicants grows, as we show in Appendix
B. Running variable positions therefore satisfy our independence assumption in a continuum market.
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to saying that Ri ≤ τs and Ri > MIDθs for applicants with θi = θ. In finite markets, cutoffs
ξs are stochastic, varying from tie-breaker draw to tie-breaker draw in repeated executions of
the match. In large (continuum) markets, however, ξs is fixed. Equation (7) therefore yields a
characterization of assignment risk determined by fixed cutoffs and priorities and the distribution
of stochastic tie-breakers.

Our characterization of DA assignment risk covers all mechanisms in the DA class. Assign-
ments using mechanisms in this class can be computed by student-proposing DA, possibly with
applicant priorities replaced by φ(θi), where φ : Θ → N|S| is a function of actual priorities. The
DA class includes student- and school-proposing DA, serial dictatorship, and the immediate
acceptance (Boston) mechanism. This class omits TTC, which need not satisfy equation (7).13

After any transformation needed to facilitate DA computation, applicant position at school s is

πis = φs(θi) +Riv(s).

The propensity score can then be computed using this transformed position data. In what
follows, we ignore this step, continuing to denote priorities by ρis.

The propensity score for DA uses the notion of marginal priority at school s, denoted ρs
and defined as int(ξs), that is, the integer part of the DA cutoff. Applicants for whom seats
are rationed by tie-breakers have priority ρs. Conditional on rejection by all more preferred
schools, applicants to s are assigned s with certainty if ρis < ρs, that is, if they clear marginal
priority. Applicants with ρis > ρs have no chance of finding a seat at s. Applicants for whom
ρis = ρs are marginal: these applicants are seated at s when their running variable values fall
below randomization cutoff τs, which can now be written as the decimal part of the DA cutoff:

τs = ξs − ρs = frac(ξs).

When ρis = ρs,
πis ≤ ξs ⇔ Riv(s) ≤ τs.

Again, this covers SD, since ρis can be fixed at zero for everyone.
These observations motivate a partition of the set of applicant types. Specifically, partition

Θs, the set of applicant types who list s, according to:

i) Θn
s = {θ ∈ Θs | ρθs > ρs}, (never seated)

ii) Θa
s = {θ ∈ Θs | ρθs < ρs}, (always seated)

iii) Θc
s = {θ ∈ Θs | ρθs = ρs}. (conditionally seated)

13Under TTC, equation (7) need not be satisfied for all matching problems. But the DA class includes China’s
parallel mechanisms (Chen and Kesten, 2017), England’s first-preference-first mechanisms (Pathak and Sönmez,
2013), and the Taiwan mechanism (Dur, Pathak, Song and Sönmez, 2018). In large markets satisfying regularity
conditions that imply a unique stable matching, the DA class includes school-proposing as well as applicant-
proposing DA (these conditions are spelled out in Azevedo and Leshno (2016)). For serial dictatorship, φ(θ) =
(0, ..., 0) for all θ ∈ Θ. For immediate acceptance, φs(θi) < φs(θj) if i ranks s ahead of j, and φs(θi) < φs(θj) if
and only if i and j rank s the same and ρis < ρjs (Ergin and Sönmez, 2006).

12



Never seated applicants have worse-than-marginal priority at s, so no one in this group is assigned
to s. Always seated applicants clear marginal priority at s. Some of these applicants may end
up seated at a school they prefer to s, but they’re assigned s for sure if they fail to find a seat
at any school they’ve listed more highly. Finally, conditionally seated applicants are marginal
at s. These applicants are assigned s when not assigned a higher choice and when they draw a
tie-breaker that clears the randomization cutoff at s. Under SD, all applicants are in Θc

s.

3.1 Global DA Risk

Let F i
v(r) denote the CDF of Riv evaluated at r and define

Fv(r|θ) = E[F i
v(r)|θi = θ]. (8)

This is the fraction of type θ applicants with tie-breaker v below r (set to zero when type θ lists
no schools using tie-breaker v). We again assume running variables have support [0, 1]. As with
a single tie-breaker, distributions of normalized Riv depend on type.

With multiple tie-breakers, qualification at higher-listed choices may truncate the distribu-
tion of any or all Riv. We therefore define running-variable-specific MIDs for each Sv. To this
end, partition Bθs into disjoint sets denoted by

Bv
θs = Bθs ∩ Sv,

for each v. This partition is used to construct tie-breaker-specific MIDs:

MIDv
θs =


0 if θ ∈ Θn

b for all b ∈ Bv
θs or if Bv

θs = ∅
1 if θ ∈ Θa

b for some b ∈ Bv
θs

max{τb | b ∈ Bv
θs and θ ∈ Θc

b} otherwise

This extends MIDθs defined in (6) in two ways. In addition to capturing tie-breaker specificity,
MIDv

θs allows for complete truncation of Riv when θ clears marginal priority at a school in Bv
θs.

MIDv
θs and the partition of Θs by priority status determine global DA risk with general

tie-breakers:

Proposition 4 (Global Score with General Tie-breaking). Consider continuum DA with multi-
ple tie-breakers indexed by v, distributed independently of one another according to Fv(r|θ). For
all s and θ in this match,

ps(θ) =
0 if θ ∈ Θn

s∏
v(1− Fv(MIDv

θs|θ)) if θ ∈ Θa
s∏

v 6=v(s)(1− Fv(MIDv
θs|θ))×max

{
0, Fv(s)(τs|θ)− Fv(s)(MID

v(s)
θs |θ)

}
if θ ∈ Θc

s

where Fv(s)(τs|θ) = τs and Fv(s)(MID
v(s)
θs |θ) =MID0

θs when v(s) = 0.

Proposition 4, which generalizes an earlier multiple lottery tie-breaker result in Abdulka-
diroğlu et al. (2017b), covers three sorts of applicants, corresponding to the partition of Θs.
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First, applicants with less-than-marginal priority at s have no chance have being seated there.
The second line of the theorem reflects the likelihood of qualification at schools preferred to
s among applicants surely seated at s when they can’t do better. Since running variables are
assumed independent, the probability of not doing better than s is described by a product over
tie-breakers,

∏
v(1− Fv(MIDv

θs|θ)). If type θ is sure to do better than s, then MIDv
θs = 1 and

risk at s is zero.
Finally, risk for applicants in Θc

s multiplies the term∏
v 6=v(s)

(1− Fv(MIDv
θs|θ))

by
max

{
0, Fv(s)(τs|θ)− Fv(s)(MID

v(s)
θs |θ)

}
.

The first of these is the probability of failing to improve on s by virtue of being seated at schools
using a tie-breaker other than v(s). The second parallels assignment risk in single-tie-breaker
SD: to be seated at s, applicants in Θc

s must have Riv(s) between MID
v(s)
θs and τs.

Proposition 4 allows for single tie-breaking, lottery tie-breaking, or a mix of non-lottery and
lottery tie-breakers as in the NYC high school match. With a single tie-breaker, the risk formula
simplifies, omitting product terms over v:

Corollary 2 (Abdulkadiroğlu et al. (2017b)). Consider a continuum DA match using a single
tie-breaker, Ri, distributed according to FR(r|θ) for type θ. For all s and θ in this market, we
have:

ps(θ) =


0 if θ ∈ Θn

s ,

1− FR(MIDθs|θ) if θ ∈ Θa
s ,

(1− FR(MIDθs|θ))×max

{
0,
FR(τs|θ)− FR(MIDθs|θ)

1− FR(MIDθs|θ)

}
if θ ∈ Θc

s,

where ps(θ) = 0 when MIDθs = 1 and θ ∈ Θc
s, and MIDθs is as defined in Section 2.2, applied

to a single tie-breaker.

Common lottery tie-breaking for all schools further simplifies the DA propensity score. When
v(s) = 0 for all s, FR(MIDθs) = MIDθs and FR(τs|θ) = τs, as in the Denver match analyzed
by Abdulkadiroğlu et al. (2017b). In this case, the DA propensity score is a function only of
MIDθs and the partition of Θs into applicants that are never, always, and conditionally seated.
This contrasts with the scores in Proposition 2 and Proposition 4, which depend on the unknown
and unrestricted conditional distributions of tie-breakers given type (FR(τs|θ) and FR(MIDθs|θ)
with a single tie-breaker; Fv(τs|θ) and Fv(MIDθs|θ) with general tie-breakers). We therefore
turn again to local risk to isolate offers that are independent of type and potential outcomes.
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3.2 DA Goes Local

Under general DA, local risk is defined only in marginal priority groups. We therefore modify
the set of tis variables to be

tis(δ) =


n if θ ∈ Θn

s or, if v(s) 6= 0, θ ∈ Θc
s and Riv(s) > τs + δ

a if θ ∈ Θa
s or, if v(s) 6= 0, θ ∈ Θc

s and Riv(s) < τs − δ

c if θ ∈ Θc
s and, if v(s) 6= 0, Riv(s) ∈ [τs − δ, τs + δ]

for each applicant and school. These are collected in a vector,

Ti(δ) = [ti1(δ), ..., tis(δ), ..., tiS(δ)]
′.

This expands the classification of applicants to school s into tis(δ) = a, n, or c by including
those who fail to clear marginal priority at s in group n and including those who clear marginal
priority at s in group a.

The local DA propensity score is defined as a function of type and cutoff proximity, as
summarized by Ti(δ):

ψs(θ, T ) = lim
δ→0

E[Di(s)|θi = θ, Ti(δ) = T ],

for T = [t1, ..., ts, ..., tS ]
′ ∈ {n, a, c}S . This describes assignment risk for applicants with tie-

breaker values above, below, and near cutoffs for any and all schools in the match. We again
require that all tie-breaker distributions be continuously differentiable at randomization cutoffs
and that these cutoffs be distinct:

Assumption 1. (a) For every v and for r = τ1, ..., τS , F
i
v(r|e) is continuously differentiable

with F i′
v (r|e) > 0 given any event e of the form that θi = θ,Riu > ru for u = 1, ..., v− 1, and Ri

is contained by a closed ball containing r. (b) τs 6= τs′ for any schools s 6= s′ with τs 6= 0 and
τs′ 6= 0.

This set-up yields a compact and useful characterization of local assignment risk in continuum
DA with general tie-breaking:

Theorem 1 (Local Score with General Tie-breaking). Consider continuum DA with multiple
tie-breakers indexed by v, distributed according to Fv(r|θ), and suppose Assumption 1 holds. For
all s ∈ S, θ ∈ Θs, T = [t1, ..., ts, ..., tS ]

′ ∈ {n, a, c}S, and all w, we have

lim
δ→0

E[Di(s)|θi = θ, Ti(δ) = T,Wi = w] = ψs(θ, T ),

where ψs(θ, T ) = 0 if (a) ts = n; or (b) tb = a for some b ∈ Bθs. Otherwise,

ψs(θ, T ) =


0.5ms(θ,T )(1−MID0

θs) if ts = a

0.5ms(θ,T )max
{
0, τs −MID0

θs

}
if ts = c and v(s) = 0

0.51+ms(θ,T )(1−MID0
θs) if ts = c and v(s) > 0.

(9)

where ms(θ, T ) = |{v > 0 : for some b ∈ Bv
θs,MIDv

θs = τb and tb = c}|.
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The local DA score for type θ applicants is determined in part by the screened schools θ
prefers to s. Relevant screened schools are those at which applicants to s are in the marginal
priority group with a tie-breaker close to randomization cutoffs. The variable ms(θ, T ) counts
the number of tie-breakers involved in such close encounters. As expressed in equation (4) for the
single-school case, applicants drawing screened school tie-breakers close to τb for some b ∈ Bv

θs

face multiplicative risk of 0.5.
Theorem 1 starts with a scenario where applicants to s are either sure to do better or are

never seated at s and therefore face no risk there. In this case, we need not worry about
whether s is a screened or lottery school. In other scenarios, where applicants fail to improve
on s, risk at any lottery s is determined in part by truncation of the lottery tie-breaker at
more preferred lottery schools and by possible qualification at more preferred screened schools,
where qualification risk is 0.5. These sources of risk combine to produce the second line of (9).
Similarly, risk at any screened s is determined by possible qualification at more preferred schools
(lottery and screened) plus an additional 0.5 risk term for those marginal at s. This explains
the addition of 1 to the exponent in the third line of equation (9).

This theorem also yields a general conditional independence relation, similar to Corollary 1:

lim
δ→0

P [Di(s) = 1|θi = θ, Ti(δ) = T,Wi = w,ψs(θ, T ) = p] = p, (10)

for p ∈ [0, 1]. In other words, fixing ψs(θ, T ), DA-generated offers are independent of type and
any Wi that’s unaffected by treatment. Local conditional independence allows us to eliminate
OVB by conditioning on ψs(θ, T ). Moreover, ψs(θ, T ) is typically far coarser than the underlying
type distribution. Appendix A illustrates risk calculations based on Theorem 1 for a number of
simple examples.

Isolating Lottery Risk

An important implication of Theorem 1 is that lottery schools create assignment risk at screened
schools for applicants with tie-breaker values away from screened school cutoffs. We isolate this
lottery risk with the aid of the following applicant classifier:

`is =


n if tis(0) = n

a if tis(0) = a or if tis(0) = c and v(s) > 0

c if tis(0) = c and v(s) = 0.

(11)

Classification variable `is sets δ = 0, effectively turning screened-school tie-breakers into priori-
ties. As with the tis, collect the group of `is in a vector,

Li = [`i1, ..., `is, ..., `iS ]
′,

and define
λs(θ, L) = E[Di(s)|θi = θ, Li = L],

for L = [`1, ..., `s, ..., `S ]
′ ∈ {n, a, c}S . Note that, having fixed δ = 0, we no longer need be

concerned with limiting risk. Then,
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λs(θ, L) =


0 if `s = n or if `b = a for some b ∈ Bθs

(1−MID0
θs) if `s = a

max
{
0, τs −MID0

θs

}
if `s = c.

(12)

The second line of (12) describes non-degenerate lottery risk at screened schools. Lotteries
create risk at screened schools because students who list lottery schools ahead of screened schools
need not qualify for lottery-based admission; this happens with probability 1−MID0

θs. There is
“less risk” generated by lotteries than general risk because λs(θ, L) is more likely than ψs(θ, T ) to
equal zero or one, especially for screened schools.14 Still, lottery risk may be enough to evaluate
both screened and lottery schools in a match where applicants list schools of both types. This is
worth highlighting because evidence on screened school effects generated by lottery risk comes
partly from applicants with tie-breakers far from cutoffs. We explore this idea in the empirical
application, below.

3.3 Estimating the Local Score

A sample analog of the theoretical local DA score described by Theorem 1 is shown here to
converge uniformly to the corresponding local score for a finite market, in an asymptotic sequence
that increases market size with a shrinking bandwidth. Our empirical application establishes
the relevance of this asymptotic result by showing that applicant characteristics are balanced
by offer status conditional on estimates of the local propensity score.

The sequence used to study the estimated score increases the size of a random sample of
N applicants. We refer to sampled applicants by the order in which they’re sampled, that is,
by i ∈ {1, 2, ..., N}. The applicant sample is augmented with information on applicant type
and large-market school capacities, {qs}, which give the proportion of the market that can be
seated at s. Each applicant is associated with an individual tie-breaker distribution, F i

v(r),
as described above. We observe a realized tie-breaker value for each applicant, but not the
underlying distribution.

Now, fix the number of seats at school s in each sampled finite market to be the integer part
of Nqs and run DA with these applicants and schools. We consider the limiting behavior of an
estimator that uses the resulting MIDv

θs, τs, and marginal priorities generated by this single
realization. Also, given a bandwidth δN > 0, we determine tis(δN ) for each i and s. This is used
to compute

m̂Ns(θ, T ) = |{v > 0 :MIDv
θs = τb and tib(δN ) = c for some b ∈ Bv

θs}|.

Our propensity score estimator is constructed from plugging these ingredients into the for-
mula in Theorem 1. If tis(δN ) = n or tib(δN ) = a for some b ∈ Bθs, then

ψ̂Ns(θ, T ; δN ) = 0.

14The third line of (12) describes lottery risk at lottery schools.
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Otherwise,

ψ̂Ns(θ, T ; δN ) =


0.5m̂Ns(θ,T )(1−MID0

θs) if tis(δN ) = a

0.5m̂Ns(θ,T )max
{
0, τs −MID0

θs

}
if tis(δN ) = c, v(s) = 0

0.51+m̂Ns(θ,T )(1−MID0
θs) if tis(δN ) = c, v(s) 6= 0.

Note that τs, MID0
θs, and m̂Ns(θ, T ) in this expression are sample quantities.

As a theoretical benchmark for the large-sample performance of ψ̂Ns(θ, T ; δN ), we define the
true local score for the finite market of size N . This is

ψNs(θ, T ) = lim
δ→0

EN [Di(s)|θi = θ, Ti(δ) = T ],

where EN is the expectation induced by the set of running variable distributions {F i
v(r); i =

1, 2, ..., N} for applicants in the finite market. This quantity fixes the distribution of types and
the vector of proportional school capacities, as well as market size. ψNs(θ, T ) is the limit of the
average of Di(s) across infinitely many tie-breaker draws in ever-narrowing windows near cutoffs
in a match governed by these parameters. Because tie-breaker distributions are assumed to have
continuous density in the neighborhood of any cutoff, the population average assignment rate is
well-defined for any positive δ.

We’re interested in the gap between the estimator ψ̂Ns(θ, T ; δN ) and the true local score
ψNs(θ, T ) as N grows and δN shrinks. We can show that ψ̂Ns(θ, T ; δN ) described above converges
uniformly to ψNs(θ, T ) in such a sequence. This result uses a regularity condition:

Assumption 2. (Rich support) Let s1i identify applicant i’s first choice school. In the continuum
market, for every school s and every priority ρ held by a positive mass of applicants at s, the
proportion of applicants with s1i = s and ρis = ρ is also positive.

This says that for each priority group at school s represented among applicants in the continuum,
some applicants list s first.

Uniform convergence of ψ̂Ns(θ, T ; δN ) is formalized below:

Theorem 2 (Consistency of the DA Local Score). In the asymptotic sequence described above
and maintaining Assumptions 1 and 2, the estimated local propensity score ψ̂Ns(θ, T ; δN ) is a
consistent estimator of ψNs(θ, T ) in the following sense: For any δN such that δN → 0 and
NδN → ∞ as N → ∞,

sup
θ∈Θ,s∈S,T∈{n,c,a}S

|ψ̂Ns(θ, T ; δN )− ψNs(θ, T )|
p−→ 0,

as N → ∞.

Proof. The proof uses lemmas established in the appendix. The first lemma shows that the
vector of DA cutoffs computed for the sampled market, ξ̂N , converges to the vector of cutoffs in
the continuum, that is,

ξ̂N
a.s.−→ ξ,
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where ξ denotes the vector of continuum cutoffs. This result implies that the estimated score
converges to the large-market local score as market size grows and bandwidth shrinks. Specifi-
cally, for all θ ∈ Θ, s ∈ S, and T ∈ {n, c, a}S , we have

ψ̂Ns(θ, T ; δN )
a.s.−→ ψs(θ, T )

as N → ∞ and δN → 0.
The second lemma shows that the true finite market score with a fixed bandwidth, defined as

ψNs(θ, T ; δN ) ≡ EN [Di(s)|θi = θ, Ti(δN ) = T ], also converges to ψs(θ, T ) as market size grows
and bandwidth shrinks. That is, for all θ ∈ Θ, s ∈ S, T ∈ {n, c, a}S , and δN such that δN → 0

and NδN → ∞ as N → ∞,
ψNs(θ, T ; δN )

p−→ ψs(θ, T )

as N → ∞.
Finally, the definitions of ψNs(θ, T ; δN ) and ψNs(θ, T ) imply that |ψNs(θ, T ; δN )−ψNs(θ, T )|

a.s.−→
0 as δN → 0. Combining these results shows that for all θ ∈ Θ, s ∈ S, and T , as N → ∞ and
δN → 0 with NδN → ∞, we have

|ψ̂Ns(θ, T ; δN )− ψNs(θ, T )|

=|ψ̂Ns(θ, T ; δN )− ψNs(θ, T ; δN ) + ψNs(θ, T ; δN )− ψNs(θ, T )|

≤|ψ̂Ns(θ, T ; δN )− ψNs(θ, T ; δN )|+ |ψNs(θ, T ; δN )− ψNs(θ, T )|
p−→|ψs(θ, T )− ψs(θ, T )|+ 0

=0.

This yields the theorem since Θ, S, and {n, c, a}S are finite.

Theorem 2 justifies our use of the formula in Theorem 1 to eliminate OVB in empirical work
estimating school attendance effects.

4 A Brief Report on NYC Report Cards

Since the 2003-04 school year, the NYC Department of Education (DOE) has used DA to assign
rising ninth graders to high schools. Each applicant for a ninth grade seat can list up to twelve
programs. All traditional public high schools participate in the match, but charter schools and
NYC’s exam schools have separate admissions procedures.15

The NYC match is structured like the match described in Section 3: lottery schools use
a common randomly assigned tie-breaker, while screened schools use a variety of non-lottery
tie-breaking variables. Screened school tie-breakers are mostly distinct, with one for each school

15Some special needs students are also matched separately. The centralized NYC high school match is detailed
in Abdulkadiroğlu et al. (2005, 2009). Abdulkadiroğlu et al. (2014) describe NYC exam school admissions.
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or program, though some screened programs share a tie-breaker. In any case, our theoretical
framework accommodates all of NYC’s many tie-breaking protocols.16

Many high schools in the match host multiple programs, and each program can set its own
priorities. Within priority groups, programs ration seats in one of two ways. Three types of
programs rank applicants systematically. These include screened programs, which order appli-
cants based on academic grades and previous attendance records, audition programs that order
applicants using interviews or other qualitative assessments, and half of the seats in educational
option (Ed-Opt) programs. Our analysis refers to programs of all three types as “screened" since
all use some sort of non-lottery tie-breaker.

Programs that are not screened break ties using a common lottery tie-breaker. The group
of lottery programs includes unscreened programs that admit students randomly, limited un-
screened programs that admit randomly but give priority to students who attend information
sessions, and the unscreened half of capacity at Ed-Opt programs. Our analysis uses Theorem
1 to compute propensity scores for programs rather than schools since programs are the unit of
assignment.17 But since the match yields a single offer, we can sum program propensity scores to
produce school-level scores and then sum again for groups of schools. The score for attendance
at any screened Grade A school, for example, is the sum of the scores for all screened Grade A
schools in the match. For our purposes, a lottery school is a school hosting any lottery program;
other schools are screened.18

In 2007, the NYC DOE launched a school accountability system that graded schools from
A to F. This mirrors similar accountability systems in Florida and other states. NYC’s school
grades were determined by achievement levels and, especially, achievement growth, as well as by
survey- and attendance-based features of the school environment. Growth looked at credit ac-
cumulation, Regents test completion and pass rates; performance measures were derived mostly
from four- and six-year graduation rates. Some schools were ungraded. Figure 3 reproduces a
sample letter-graded school progress report.19

The 2007 grading system was controversial. Proponents applauded the integration of multiple
measures of school quality while opponents objected to high-stakes consequences of low school
grades, such as school closure or consolidation. Rockoff and Turner (2011) provide a partial
validation of the system by showing that low grades seem to have sparked school improvement.
In 2014, the DOE replaced the 2007 scheme with school quality measures that place less weight
on test scores and more on curriculum characteristics and subjective assessments of teaching

16NYC screened school tie-breakers are defined for all applicants who list a school on their preference form,
and are reported as an integer reflecting raw tie-breaker order in this group. We scale these so as to lie in (0, 1]

by transforming raw tie-breaking realizations Riv into [Riv − minj Rjv + 1]/[maxj Rjv − minj Rjv + 1] for each
tie-breaker v. This transformation produces a positive cutoff at s when only one applicant is seated at s and a
cutoff of 1 when all applicants who list s are seated there.

17Seats for Ed-Opt programs are split into halves, one of which screens applicants using a single non-lottery
tie-breaker while the other uses the common lottery number. These groups are further subdivided as described
in the appendix.

18Some NYC high schools sort applicants on a coarse screening tie-breaker that allows ties, while breaking these
ties using the common lottery number. Schools of this type are treated as lottery schools, adding priority groups
defined by values of the screened tie-breaker.

19Walcott (January 2012) details the NYC grading methodology used in this period.
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quality. The relative merits of the old and new systems continue to be debated.
We showcase the use of general tie-breaking for impact evaluation by estimating effects

of being assigned to a Grade A school. This analysis uses application data from the 2011-
12, 2012-13 and 2013-14 school years. Our sample includes first-time applicants seeking 9th
grade seats, who submit preferences over programs in the main round of the NYC high school
match. Data include school capacities and priorities, lottery numbers, and screened school tie-
breakers, information that allows us to replicate the match. Our replication is nevertheless
imperfect, perhaps due to mistakes in the recording of tie-breakers. Among other problems,
we see occasional gaps in the lists that show how schools order their applicants, while some
applicants appear to share a position at a given school. Our online appendix details the manner
in which these and other problems related to match replication are addressed.

Students at Grade A schools have higher average SAT scores and higher graduation rates
than do students at other schools. Differences in graduation rates across schools feature in
media accounts of socioeconomic differences in NYC high school match results (see, e.g., Harris
and Fessenden (2017) and Disare (2017)). Grade A students are also more likely than students
attending other schools to be deemed “college- and career-prepared” or “college-ready”.20 These
and other school characteristics are documented in Table 1. Achievement gaps between screened
and lottery Grade A schools are especially large. This likely reflects selection bias induced by
test-based screening.

Screened Grade A schools have a majority white or Asian student body, the only group of
schools described in the table to do so. These schools are also over-represented in Manhattan,
a borough that includes most of New York’s wealthiest neighborhoods (though average family
income is higher on Staten Island). Variables like spending and teacher experience are broadly
similar across school types, while screened Grade A schools are somewhat larger than the rest.

Table 2 describes the nearly 153,000 eighth graders with non-missing baseline (application-
year) covariates applying for ninth grade seats in fall 2012, 2013 and 2014. Roughly 130,000 list
a Grade A school on their application form and a little over a third of these are offered a Grade
A seat. The difference between total 9th grade enrollment (about 183,000) and the number of
match participants is accounted for by groups of special education students outside the main
match, direct-to-charter enrollment, and a few schools that straddle 9th grade. Applicants in
the match have baseline (6th grade) scores above the overall district mean (baseline scores are
standardized to the population of test-takers). As can be seen by comparing columns 2 and 3
in Table 2, however, the average characteristics of Grade A applicants are generally like those
of the entire applicant population.

The statistics in column 4 of Table 2 show that applicants enrolled in a Grade A school
(among schools participating in the match) are somewhat less likely to be black and have higher
baseline scores than the total applicant pool. Here too, these gaps likely reflect selection bias at
screened Grade A schools. Most of those attending a Grade A school were offered a seat there,
and most ranked a Grade A school first. Grade A students are about twice as likely to go to a
lottery school as to a screened school.

20These composite variables are determined as a function of Regents and AP scores, course grades, vocational
or arts certification, and college admissions tests.
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Enthusiasm for Grade A schools is far from universal: just under half of all applicants in the
match list a Grade A school first. Around 31,000 Grade A applicants have non-degenerate risk
of Grade A assignment, that is, an estimated ψ̂Ns(θ, T ; δN ) strictly between 0 and 1, conditional
on which there’s variation in offer status. Applicants at risk of Grade A assignment, described in
column 5 of Table 2, have baseline scores and demographic characteristics much like those of the
sample enrolled at a Grade A school. The ratio of screened to lottery enrollment among those
with Grade A risk is also similar to the corresponding ratio in the sample of enrolled students
(compare 33.4/16.6 in the former group to 71.9/28.5 in the latter).

All Grade A schools in the match have applicants exposed to non-degenerate assignment risk
in at least one cohort. The y-axis in Figure 4 shows the number of applicants to each Grade
A school added to the added-risk sample by consideration of general risk instead of lottery
risk. This is plotted against the number of applicants subject only to lottery risk on the x-
axis. Applicants are said to have lottery risk when their estimated λs(θ, L), the formula for risk
when non-lottery tie-breakers are treated as priorities, is strictly between 0 and 1. Orange and
blue circles plot numbers of applicants at risk for each lottery and screened Grade A school,
respectively, where circle sizes are scaled by school capacity.

Figure 4 shows that the sample size gains yielded by consideration of general risk are both
broad (that is, appearing for many schools) and large. Moreover, as can be seen from the points
plotted near the y-axis, many schools with no applicants subject to lottery risk (mostly screened
schools) have applicants with general risk. At the same time, blue circles away from the y-axis
show that many screened schools have applicants subject to lottery risk.

The balancing property of propensity score conditioning is documented in Table 3, which
reports raw and score-controlled differences in covariate means for applicants who do and don’t
receive Grade A offers. Score-controlled differences are estimated in the following setup. Let
D1i be a dummy indicating Grade A school offers and let d1i(x) be a dummy indicating p̂1i = x,
where x indexes values the score might take. Likewise, let D0i indicate offers at ungraded
schools and let d0i(x) be a dummy indicating p̂0i = x. Estimated propensity scores for Grade A
and ungraded schools offers, denoted p̂1i and p̂0i, are computed by summing estimated scores for
Grade A and ungraded schools, respectively. We control for ungraded school offers to ensure that
estimated Grade A effects compare schools with high and low grades, omitting the ungraded.21

Let Wi be any applicant covariate measured before assignment, including features of θi.
Balance tests are estimates of parameter γ1 in

Wi = γ1D1i + γ0D0i +
∑
x

α1(x)d1i(x) +
∑
x

α0(x)d0i(x) + h(Ri) + νi, (13)

with local linear control for the running variable parameterized as

h(Ri) =
∑

s∈S\S0

ω1sais + kis[ω2s + ω3s(Riv(s) − τs) + ω4s(Riv(s) − τs)1(Riv(s) > τs)], (14)

where Ri ≡ [Ri0, ..., RiV ]
′ is the vector of tie-breakers, S\S0 is the set of screened programs, ais

indicates whether applicant i applied to program s, and kis = ais × 1(ξs − δs < Riv(s) < ξs + δs)

21Ungraded schools are mostly new or have insufficient data to determine a grade.
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indicates applicants in a bandwidth of size δs around cutoff ξs. Parameters in (13) and (14) vary
by application cohort. The sample is limited to applicants with non-degenerate Grade A offer
risk. Bandwidths are estimated as suggested by Imbens and Kalyanaraman (2012), separately
for each program, for the set of applicants in the relevant marginal priority group.22

As can be seen in column 2 of Table 3, applicants offered a Grade A seat are much more likely
to have listed a Grade A school first, and listed more Grade A schools than did other applicants.
Minority and free-lunch-eligible applicants are less likely to be offered a Grade A seat, while
those offered a Grade A seat have much higher baselines scores, with gaps in the range of 0.3
and 0.4 standard deviations in favor of those offered. These raw differences notwithstanding,
our theoretical results suggest that estimates of γ1 in equation (13) should be close to zero.
This is borne out by the estimates reported in column 4 of the table, which shows small, mostly
insignificant differences in covariates by offer status when estimated using equation (13).

Table 3 also documents balance for applicants subject to lottery risk. In particular, column 5
reports estimates of γ1 from a version of equation (13) estimated using the lottery risk propensity
score, λs(θ, L), to define risk sets. Conditioning on lottery risk reduces the estimation sample to
those with an estimated λs(θ, L) strictly between 0 and 1. Here too, we see only small differences
in covariate means, most of which are not significantly different from zero. This is perhaps less
impressive than the balance documented in column 4 since lottery risk is randomly assigned.
Still, the estimates in columns 4 and 5 of Table 3 establish the empirical relevance of both the
large-market framework and the notion of limiting local risk underlying the theoretical results
in Section 3.

The encouraging balance results in Table 3 are especially noteworthy in view of Figure
1, which shows that an IK bandwidth is insufficiently narrow to drive the propensity score for
qualification at Townsend Harris to the theoretical limit of one-half. Running variable control via
local linear regression mitigates this approximation error. Our local linear regression estimation
strategy, which combines saturated control for the propensity score with linear running variable
control can be seen as a “doubly robust” score-based estimator of the sort suggested by Robins
(2000) and Okui et al. (2012), the latter in an IV context. Even if the local score is poorly
approximated, running variable controls minimizes omitted variable bias from non-lottery tie-
breakers. At the same time, the theoretical score tells us which tie-breakers are important and
for whom.

Causal effects of school attendance on test scores are estimated by 2SLS, using offer dummies
as instruments for years of exposure to schools of a particular type. Exposure variables are
denoted C1i and C0i for Grade A and ungraded schools, respectively. Effects on graduation
outcomes are estimated by replacing years of exposure with dummies for ninth grade enrollment.
The causal effects of interest are 2SLS estimates of parameter β1 in

Yi = β1C1i + β0C0i +
∑
x

α21(x)d1i(x) +
∑
x

α20(x)d0i(x) + g(Ri) + ηi, (15)

22Bandwidths are also computed separately for each outcome variable; we use the smallest of these for each
program.

23



with associated first stage equations,

C1i = γ11D1i + γ10D0i +
∑
x

α11(x)d1i(x) +
∑
x

α10(x)d0i(x) + h1(Ri) + ν1i (16)

C0i = γ01D1i + γ00D0i +
∑
x

α01(x)d1i(x) +
∑
x

α00(x)d0i(x) + h0(Ri) + ν0i.

Running variable control functions in these equations, denoted h1(Ri), h2(Ri), and g(Ri), are
analogous to (14). Risk set dummies d1i(x) and d0i(x) are included as in equation (13). Reported
results are from specifications that also control for baseline math and English scores; free lunch,
special education, and English language learner indicators, and for gender and race dummies
(estimates without these controls are similar, though less precise). The three applicant cohorts
in our sample are stacked, so all parameters except β1, β0, γ11, γ10, γ01, and γ00 are interacted
with cohort.

Theorems 1 and 2 imply that grade A and ungraded school offers are locally and asymp-
totically independent of potential outcomes conditional on estimates of the relevant local score.
Given an exclusion restriction, the conditional random assignment of school offers supports a
causal interpretation of the 2SLS estimates, β̂1 and β̂0, as capturing the effect of attendance
at different sorts of schools. The exclusion restriction in this case means that Grade A and
ungraded school offers have no effect on outcomes other than by boosting time spent at Grade
A and ungraded schools.

This exclusion restriction fails when Grade A and ungraded school offers change school
quality by moving applicants between schools of different quality within the Grade A or another
sector. In other words, Grade A and ungraded school offers might change the type of school
attended on margins other than a school’s grade. We therefore explore multi-sector models that
distinguish causal effects of attendance at different types of Grade A schools. Estimates of these
multi-sector models are discussed following the discussion of overall Grade A effects.

OLS estimates of Grade A effects, reported as a benchmark in the second column of Table
4, show Grade A attendance is associated with higher SAT scores, graduation rates, and college
and career readiness. The OLS estimates in Table 4 are constructed by fitting equation (15),
without propensity score controls or instrumenting, in a sample that includes all participants in
the high school match without regard to offer risk, though limited to applicants with the relevant
outcomes. OLS estimates of SAT gains are around 6 points on a base of 473-4. Graduation
gains are similarly modest at around 4 points, but effects on college and career readiness are
substantial, running 8-10 points on a base rate around 40.

First stage effects of Grade A offers on Grade A enrollment, computed by estimating equation
(16) and reported in Panel A of Table 4, show that offers of a Grade A seat boost Grade A
enrollment by 1.8-1.9 years between the time of application and SAT test-taking. Grade A offers
boost the likelihood of any Grade A enrollment by about 65 percentage points. This can be
compared with Grade A enrollment rates around 18 percent among those not offered a Grade
A seat in the match.

In contrast with the OLS estimates in column 2, the 2SLS estimates in column 4 of Table
4 suggest that most of the SAT gains associated with Grade A attendance reflect selection
bias. The 2SLS estimate of an effect on SAT math is only around 2.4, though marginally
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significantly different from zero with a standard error of 0.8. The corresponding 2SLS estimate
of reading gains is even smaller and not significantly different from zero, though estimated with
similar precision.The 2SLS estimate for graduation shows a marginally significant gain of 3
points. The estimated standard error of 0.013 associated with the graduation estimate seems
especially noteworthy, as this means our research design has the power to uncover even modest
improvements.23

The strongest Grade A effects appear for indicators of college and career preparedness and
college readiness. These two indicators, detailed in our online appendix, measure various sorts of
achievement and certification milestones, and contribute to the determination of school grades.
OLS estimates show gains around 10 points on a base of 42 for college and career preparedness.
Similarly, OLS estimates suggest Grade A schools boost college readiness by around 8 points
on a base of 37. 2SLS estimates are remarkably close to these and estimated with a level of
precision about like that of the graduation estimates.

As explaining in Section 3.2, lottery risk alone can be used to identify Grade A effects for
applicants in the NYC match, including those attending screened schools. Estimates identified
by lottery risk, reported in column 5 of Table 4, are computed using a 2SLS set-up that replaces
general risk controls with saturated control for λs(θ, L) in the sample with non-degenerate lottery
risk. These “lottery-only” results are remarkably similar to the 2SLS estimates generated by
combining all sources of risk. This finding suggests that applicants subject to screened-school
risk are not particularly unusual, at least as far as Grade A treatment effects go. On the other
hand, the move from lottery to general risk yields a valuable precision gain. For example, the
standard error on the graduation effect falls from 0.018 using only lottery risk to 0.013 using
general risk.

NYC education policy discussions often revolve around access to screened schools. This
longstanding policy interest, along with concerns about within-sector changes in school quality
that might violate our 2SLS exclusion restrictions, motivates an analysis that distinguishes
screened from lottery Grade A effects.

The multi-sector estimates reported in Table 5 are from models that include separate en-
dogenous variables for screened Grade A schools and for lottery Grade A schools, along with
a third endogenous variable for the ungraded sector. Instruments for this just-identified set-up
are two dummies indicating each sort of Grade A offer, as well as a dummy indicating ungraded
school offers. 2SLS models include separate saturated propensity score controls for each Grade
A school sector offer, as well as for the risk of an ungraded school offer. These multi-sector esti-
mates are computed in a sample limited to applicants at risk of assignment to either a screened
or lottery Grade A school.

OLS estimates again provide an interesting benchmark. As can be seen in the first two
columns of Table 5, screened Grade A students appear to reap a large SAT advantage even
after controlling for baseline achievement and other covariates. In particular, OLS estimates of
Grade A effects for schools in the screened sector are on the order of 13-16 points. At the same

23Appendix Table B1 shows little difference in follow-up rates between applicants who are and aren’t offered a
Grade A seat. The 2SLS estimates in Table 4 are therefore unlikely to be compromised by differential attrition
associated with Grade A offers.
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time, Grade A lottery schools appear to generate achievement gains around only one point. By
contrast, 2SLS estimates of multi-sector models, reported in columns 3 and 4 of Table 5, show
equally modest SAT effects for Grade A schools in both sectors. These range from 2-3 points
for math, with smaller estimates for reading that are not significantly different from zero. This
suggests that OLS estimates of the screened school advantage are driven in part by selection
bias.

2SLS estimates also suggest that both screened and unscreened Grade A schools boost grad-
uation rates somewhat, showing marginally significant gains ranging from 0.047 for screened
schools to 0.025 for lottery schools. But estimated Grade A effects on college and career pre-
paredness and college readiness in column 3 and 4 are consistently larger than estimated effects
on other outcomes. This may in part reflect the fact that Grade A schools are more likely than
other schools to offer the sort of advanced courses that go into the college and career-related
composites. Across all outcomes, the 2SLS estimates for screened and lottery schools in columns
3 and 4 are similar.

Paralleling the estimates reported in the last column of Table 4, the estimates in columns
5 and 6 of Table 5 use lottery risk alone to identify Grade A effects. Lottery risk is again
defined by λs(θ, L). In this case, however, λs(θ, L) is computed separately for offers of seats
at screened and unscreened Grade A schools. Importantly, the lottery-risk analysis generates
estimates of screened school effects for screened school applicants with tie-breaker values away
from screened-school cutoffs. The experiment implicit in this scenario arises from disqualification
at more preferred lottery schools for applicants to screened schools. We can also compare the
statistical precision of estimation strategies that exploit lottery and general risk, for effects of
enrollment at Grade A schools with different admissions regimes.

Perhaps surprisingly, lottery variation alone is sufficient to capture a reasonably precise
screened school effect, with standard errors below 3 points for the estimated effects on SAT
scores reported in column 5. Although the 2SLS estimates in this case are not significantly
different from zero, they’re not far from the corresponding general risk effects. It’s also worth
noting that standard errors below 3 are small enough to allow detection of SAT gains under
one-tenth of a standard deviation (the standard deviation of an SAT score is around 100). It
seems fair to say, therefore, that SAT effects identified using lottery risk alone are informative.

The graduation effects identified by lottery risk are small and not significantly different from
zero for either type of school. But these estimates are not statistically distinguishable from
the corresponding effects identified by general risk. Lottery-risk estimates of effects on college
and career preparedness are larger than the corresponding estimates identified by general risk
(compare, for example, 0.17 in column 5 to 0.09 in column 3). Again, however, differences by
risk source for both composite outcomes are not statistically significantly different from zero.

Estimates that distinguish screened from lottery schools highlight the research value of
screened school tie-breaking. For example, lottery risk alone generates an SAT math effect
of lottery school attendance with a standard error around 0.89 (shown in column 6). This stan-
dard error falls to 0.76 (in column 4) when the lottery school effect is estimated using general
risk, a precision gain equivalent to that yielded by increasing sample size by one-third. By
contrast, the corresponding precision gain for estimates of screened school effects is dramatic:
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a standard error of 2.85 using lottery risk falls to 1.24 using general risk, a gain that otherwise
requires around five times as much data. Similar precision gains from the use of general risk to
identify screened schools effects are seen for other outcomes in the table. Although lottery risk
can be used to generate useful estimates of screened school effects, the most powerful tool for
evaluation of NYC schools exploits all sources of risk.

5 Summary and Next Steps

The spread of centralized school matching opens new horizons for impact evaluation. The
research potential of such markets is extended here by marrying the conditional random assign-
ment generated by lottery tie-breaking with RD variation at screened schools. The propensity
score for DA with mixed multiple tie-breakers combines all sources of quasi-experimental vari-
ation in such a match. Our analysis also shows how markets with general tie-breakers can be
used to study treatment effects at screened schools for applicants with tie-breakers away from
screened-school cutoffs. This addresses concerns, often raised in an RD context, that causal
effects identified for applicants local to cutoffs need not be relevant for the general population.

Our analysis of NYC school report cards suggests Grade A schools generate some gains for
their students, boosting Math SAT scores and graduation rates by a few points. OLS estimates,
by contrast, show considerably larger effects of Grade A attendance. Grade A screened schools
enroll some of the city’s highest achievers, but large OLS achievement gains from attendance at
Grade A screened schools appear to be an artifact of selection bias. Concerns about access to such
schools (expressed, for example, in Harris and Fessenden (2017)) may therefore be overblown. On
the other hand, Grade A attendance convincingly increases the district’s composite indicators of
college and college and career preparedness and college readiness. These results probably reflect
the greater availability of the advanced courses that contribute to the composites in Grade A
schools.

On the methodological side, the NYC analysis illustrates the possible precision gains yielded
by research strategies that exploit general risk. Because different risk sources affect screened
and lottery school access differently, the exclusion restriction in this context turns in part on a
common effects assumption. It’s therefore worth asking whether screened and lottery schools
should indeed be treated as having the same effect. Our analysis supports the idea that lottery
and screened Grade A schools can be pooled and treated as a homogeneous sector with a common
average causal effect.

In on ongoing work, Angrist, Pathak, Rokkanen and Zarate (2017) deploy the methods
developed here to study of Chicago’s exam schools. Further afield, our theoretical framework
may be applicable to an analysis of causal effects of medical residency assignments. The US
National Residency Matching Program assigns medical school graduates to hospitals using a
version of DA with non-lottery tie-breakers (Roth and Peranson, 1999). This match can be
leveraged to answer questions about the effects of alternative medical internships, such as the
value of experience in high-volume or university-affliliated hospitals. Our framework may also
be useful to study the effects of resources allocated by some auction mechanisms.

Our provisional agenda for further research also includes an investigation of econometric
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implementation strategies, such as bandwidth selection. Zajonc (2012) and Papay et al. (2011)
propose procedures for joint bandwidth selection in RD designs with multiple running vari-
ables. Multivariate procedures may have better properties than our one-size-fits-all approach.
The relative statistical performance of 2SLS and semiparametric estimators likewise warrants
investigation, as does the development of propensity score estimators that compute the score
by simulation. Finally, inference on treatment effects in the application reported here relies on
conventional large sample reasoning of the sort widely applied in empirical RD applications. It
seems natural to consider permutation or randomization inference along the lines suggested by
Canay and Kamat (2017) and Cattaneo et al. (2015, 2017), and optimal inference and estimation
strategies such as those recently introduced by Armstrong and Kolesár (2018) and Imbens and
Wager (2018).
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Figure 1: Qualification Rates Near the TH Cutoff
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Notes: Bars show pooled qualification rates for applicants to Townsend Harris. The first panel shows qualification
rates separately for applicants ranking the program as first choice and for applicants ranking it second or lower.
The second and third panel show qualification rates separately for groups of applicants with baseline math and
ELA scores in the upper and lower quartiles of the applicant score distribution. Qualification is defined as
clearing the relevant program cutoff. The figure aggregates data for the cohorts 2011/12, 2012/13 and 2013/14.
Bandwidths are 0.055 and 0.388, respectively, for a running variable between 0-1. Baseline scores are from 7th
grade.



Figure 2: Visualizing Risk under Serial Dictatorship
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Notes: This figure illustrates risk under serial dictatorship. Ri is the tie-breaker. MIDθs is the most forgiving
cutoff at schools preferred to s and τs is the cutoff at s.



Figure 3: 2011/12 Progress Report for East Side Community School
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College and Career Readiness measures how well students are prepared for life 
after high school on the basis of passing advanced courses, meeting English and 
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*See p. 7 for more details on Peer Index.
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Figure 4: Sample size gains relative to lottery risk
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Notes: This figure plots increases in the number of applicants with non-degenerate risk of assignment at indi-
vidual schools, ordered by the number of applicants who have risk when screened school admission is treated as
determined solely by priorities. The number of applicants added measures the number of additional students at
risk when risk is determined by running variable variation in a bandwidth around screened school cutoffs as well
as by lottery risk. Circle sizes plot school capacity. Declines in risk are not shown.



All Screened Lottery
(1) (2) (3) (4) (5) 

SAT Math (200-800) 531 606 481 464 440
SAT Reading (200-800) 522 587 479 465 449
Graduation 0.75 0.89 0.68 0.59 0.38
College- and career-prepared 0.65 0.84 0.54 0.39 0.27
College-ready 0.59 0.82 0.45 0.34 0.24

White or Asian students 0.43 0.59 0.32 0.26 0.15
Special Education 0.12 0.06 0.16 0.17 0.27
Free or Reduced Price Lunch 0.68 0.55 0.76 0.77 0.75
In Manhattan 0.27 0.49 0.12 0.16 0.28
Number of grade 9 students 420 430 414 413 86
Number of grade 12 students 374 413 348 351 53
High school size 1596 1700 1527 1509 426
Inexperienced teachers 0.11 0.10 0.12 0.11 0.28
Advanced degree teachers 0.53 0.59 0.49 0.50 0.30
New school 0.00 0.00 0.01 0.00 0.21

School-year observations 355 119 236 694 715
Notes. This table reports weighted average characteristics of school-year observations. Specialized
and charter high schools admit applicants in a separate match and are considered screened and lottery
schools, respectively. Panel A reports outcomes for cohorts enrolled in ninth grade in 2012-13, 2013-
14 and 2014-15, and Panel B school characteristics in 2012-13, 2013-14 and 2014-15 by type of
school. A screened school is any school without lottery programs. Graduation outcomes condition on
ninth grade enrollment in the year following the match and are available for the first and second
cohort only. Inexperienced teachers have 3 or fewer years of experience and advanced degree teachers
a Masters or higher degree.

Table 1.  New York High School Characteristics
Grade A schools Grade B-F 

Schools
Ungraded 
Schools

Panel A. Average Performance Levels

Panel B. School Characteristics



General Lottery
(1) (2) (3) (4) (5) (6) (7) 

Black 30.7 20.1 29.1 29.3 22.9 22.5 26.9
Hispanic 40.2 33.7 38.9 39.3 38.2 40.1 48.5
Female 49.2 53.1 51.5 52.5 54.0 51.3 49.2
Special education 19.0 5.6 7.6 7.3 6.4 6.0 8.4
English language learners 7.5 4.4 6.0 5.7 5.2 5.0 7.2
Free lunch 78.6 70 77.3 77.2 73.6 75.6 80.2

Math (standardized) 0.056 0.528 0.207 0.233 0.334 0.333 0.033
English (standardized) 0.022 0.466 0.168 0.196 0.288 0.274 0.003

Grade A school 81.8 29.4 34.6 87.2 47.2 42.6
Grade A screened school 28.5 9.9 11.7 26.5 12.9 1.8
Grade A lottery school 53.3 19.5 22.9 60.6 34.3 40.8

Listed Grade A first 82.6 47.3 55.6 84.4 78.1 77.3

Grade A school 30.9 100 32.7 37.6 100 49.7 43.2
Grade A screened school 11.6 39.8 13.2 15.0 28.4 16.6 3.3
Grade A lottery school 19.4 60.5 19.7 22.8 71.9 33.4 40.0

Students 182,249 48,985 153,107 130,160 40,301 30,760 18,814
Schools 603 174 569 567 159 532 512
School-year observations 1672 352 1584 1562 319 1420 1354

Demographics

Baseline scores

Offer rates

9th grade enrollment

Notes. This table describes the population of NYC students. Column 1 and 2 show statistics for students enrolled in ninth
grade in the 2012-13, 2013-14 and 2014-15 school years with non-missing demographics and baseline test scores.
Columns 3 to 7 show statistics for ninth grade applicants, who participated in the NYC high school match one year earlier.
A match A school is a grade A school that participates in the main NYC high school match. Students are said to have risk
when they have a propensity score strictly between zero and one and they're in a score cell with variation in Grade A
school offers. Baseline scores are from sixth grade and demographics from eighth grade.

Any 
Grade A

All All

Table 2. Student Characteristics

Listed 
Match A

Enrolled in 
Match A

At Risk at Match A
Ninth grade students Eighth grade applicants in main match 



(1) (2) (3) (4) (5) 

Grade A listed first 0.393       0.483*** 0.761   0.009*     0.015**
(0.002) (0.005) (0.006)

# of screened Grade A 1.11       0.534*** 1.20 0.005 -0.032
   schools listed (0.011) (0.006) (0.022)
# of lottery Grade A 1.69       0.227*** 2.10 -0.014 -0.023 
   schools listed (0.008) (0.017) (0.024)

Black 0.339      -0.131*** 0.230 -0.002 -0.000 
(0.003) (0.006) (0.008)

Hispanic 0.405      -0.055*** 0.402 0.004 0.002 
(0.003) (0.007) (0.009)

Female 0.527 0.003 0.517 0.003 -0.012
(0.003) (0.008) (0.009)

Special education 0.078       -0.018*** 0.063 -0.005 -0.007
(0.001) (0.004) (0.005)

English language learners 0.075       -0.017*** 0.064 0.003 0.001
(0.001) (0.004) (0.005)

Free lunch 0.846      -0.091*** 0.818  -0.006  -0.006
(0.002) (0.006) (0.007)

Baseline scores
Math (standardized) 0.110       0.379*** 0.285 0.005 -0.011

(0.005) (0.010) (0.013)
English (standardized) 0.081       0.349*** 0.220 0.007 0.012

(0.006) (0.012) (0.013)

N 129,720 30,673 18,743

Panel A. Application Covariates

Panel B. Baseline Covariates

Notes. This table reports balance statistics, computed by regressing covariates on dummies indicating a Grade A offer
and an ungraded school offer, controlling for saturated Grade A and ungraded school propensity scores (columns (4)
and (5)), and running variable controls (column (4)). Lottery risk in column (5) is computed by treating screened-school
tie-breakers as priorities. The sample is limited to applicants with non-missing demographics and baseline test scores.
Robust standard errors are in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%

Table 3. Statistical Tests for Balance
All Applicants Grade A Applicants at Risk

Non-offered 
mean 

Non-offered 
mean 

General 
risk

Lottery 
risk



General 
risk

Lottery
risk

(1) (2) (3) (4) (5) 

SAT outcomes 0.448     1.79***     1.87***
(years of exposure) (0.023) (0.027)

0.178       0.636***       0.661***
(ever enrolled) (0.008) (0.010)

474     6.48*** 515   2.26**   2.17**
(200-800) (106) (0.152) (109) (0.718) (0.880)

473     5.42*** 510 0.726 0.770
(200-800) (93) (0.138) (93) (0.658) (0.801)

N 124,989 22,899 12,752

0.697       0.037*** 0.793     0.030** 0.022
(0.003) (0.013) (0.018)

0.422       0.104*** 0.587       0.096***       0.137***
(0.003) (0.015) (0.020)

0.367       0.075*** 0.542       0.056***     0.053**
(0.003) (0.014) (0.018)

N 121,074 19,150 11,200

Table 4. Grade A School 2SLS Estimates
All applicants  Applicants at risk 

Non-
Enrolled

Mean
OLS

Non-
Offered 
Mean

2SLS

Graduated

College- and Career-
prepared

College-ready

Notes. This table reports estimates of the effects of Grade A high school enrollment. 2SLS
estimates are from models with dummies for Grade A and ungraded schools treated as
endogenous, limiting the sample to students with Grade A assignment risk. OLS estimates are
from models that omit propensity score controls and include all students in the three match
cohorts. All models include controls for baseline math and English scores, free lunch status,
SPED and ELL status, gender, and race/ethnicity indicators. Estimates in column 4 are from
models that include running variable controls. Non-offered means are for the general risk
sample. Robust standard errors are in parenthesis for estimates and standard deviations for non-
offered means. * significant at 10%; ** significant at 5%; *** significant at 1%

Panel A. First Stage Estimates

Binary outcomes

Panel B. Second Stage Estimates
SAT Math

SAT Reading



(1) (2) (3) (4) (5) (6) 
SAT Math 15.6***     1.27***     2.98**   2.42** 2.01   2.12**
(200-800) (0.228) (0.168) (1.24) (0.759) (2.85) (0.887)

p-value

SAT Reading 13.2***       0.979*** 1.61 0.653 -0.810 0.702
(200-800) (0.209) (0.153) (1.14) (0.698) (2.68) (0.807)

p-value
N

Graduated       0.040***       0.036***     0.047**   0.025* -0.017  0.025
(0.003) (0.003) (0.018) (0.015) (0.056) (0.019)

p-value

College- and Career-       0.143***       0.087***       0.085***       0.102***     0.166**        0.138***
prepared (0.004) (0.003) (0.021) (0.016) (0.070) (0.020)

p-value

College-ready       0.143***       0.044***       0.105***     0.042** 0.019      0.051**
(0.004) (0.003) (0.021) (0.015) (0.067) (0.019)

p-value
N 

Table 5. Multi-Sector Grade A 2SLS Estimates

OLS Applicants at risk
General risk Lottery risk

Screened
Grade A

Lottery
Grade A

Screened
Grade A

Lottery
Grade A

Screened
Grade A

Lottery
Grade A

0.662 0.970

0.420 0.566
124,989 24,899 13,062

0.458 0.688

0.266 0.461

0.005 0.638

Notes. This table reports 2SLS second stage estimates of models that separately identify Grade A effects at screened and
lottery schools, treating both as well as ungraded schools as endogenous. The sample is limited to students with either Grade
A lottery or Grade A screened assignment risk. OLS models omit propensity score controls and include all students in the
three match cohorts. All models include baseline covariate controls. (3) and (4) include running variable controls. Robust
standard errors in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%

121,074 20,542 11,448



A Illustrating Lottery and Screening Risk

Table A1 illustrates Theorem 1 for three applicants, highlighting the distinction between lottery
and general risk, that is, the risk created by the combination of lottery and screened school tie-
breaking. The first example shows how lotteries create risk at both lottery and screened schools.
Example 1 concerns an applicant who lists three schools, only the first of which is a lottery
school. At first choice school A, 80% of those in the marginal priority group are admitted, so
τA = 0.8 (lottery school cutoffs are shown in the first column). School A is listed first, so this
applicant’s MID0

θA = 0 (reported in column 3), and the propensity score characterizing lottery
risk (reported in column 4) is also 0.8. There is no other source of risk at A for this applicant.

At second choice school B, MID0
θB = 0.8 because τA = 0.8. But this applicant faces no

risk at B because her priority places her among the never seated, that is, tiB(δ) = n for small
small enough δ (type classifications for lottery risk appear in column 2). Finally, at third choice
school C, this applicant is always seated, that is, tiC(δ) = a. Since the applicant’s MID0

θC is
determined by the cutoff at A, the probability of being assigned C is 1 −MID0

θC = 0.2. Here
too, lottery risk captures all the action. This example shows how lotteries create screened school
risk even for applicants with screened running variable values far from cutoffs. This presents an
interesting contrast with the RD scenarios considered by Hahn et al. (2001) and related work,
where RD methods identify treatment effects local to cutoffs.

The second example shows how non-lottery tie-breaking creates risk for applicants who face
no lottery risk. At first choice school D, a screened school, the applicant is in the marginal priority
group, and near the school D cutoff, that is tiD(δ) = c for i such that Ri ∈ [τD−δ, τD+δ], which
generates a propensity score of 0.5 (type classification for the general risk scenario appears in
column 5). In this case, however, the applicant faces no lottery risk because in the lottery-only
scenario, he’s in Θn

D (seen in column 2) with a running variable value assumed to be above the
cutoff. Consequently, the lottery risk propensity score for assignment to school D is zero. This
applicant’s second choice, school E, is a lottery school, but the applicant is never seated there
since his priority is too low, placing him in Θn

E . The school E propensity score is therefore zero
no matter how risk is calculated. The applicant’s third choice, school F, is also a lottery school,
where the applicant has high enough priority to be in Θa

E . The applicant’s lottery risk at this
school therefore reflects his certainty of finding a seat at F.

When the risk generated by screening at school D is taken into account, we see that the
second applicant’s mF (θ, T ) = |{D}| = 1. Note also that MID0

θF = 0 because the set of more
preferred schools contains one screened school that uses a tie-breaker other than v(s) and one
lottery school, at which the applicant was not competitive. As can be seen in column 7, the
propensity score for general risk of assignment to F is therefore:

λF (θ, T ) = 0.5mF (θ,T )(1−MID0
θF ) = 0.5× (1− 0) = 0.5.

Importantly, assignment risk at schools D and F emerge from screening in spite of the fact that
lottery risk is degenerate at each of this applicant’s three choices.

The third example shows how screening and lottery risk interact. First choice school G is
a screened school at which Applicant 3 is in Θc

G (in the classification scheme for general risk).
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Allowing for screened school risk, the school G propensity score is therefore 0.5. To isolate
lottery risk at G, we’ve placed the applicant in Θa

G, assuming his running variable at this school
is below the school G cutoff (as can be seen in column 2). When screening variables are treated
as priorities, this applicant is surely seated at G, creating a propensity score for lottery risk at
school G equal to 1.

Second choice school H is a lottery school. Looking only at lottery risk, the applicant’s
MID0

θH = 1, since he’s always seated at his first choice. The applicant’s lottery propensity
score is therefore zero at H and all lower-listed choices. The propensity score for overall risk at
H is also zero because we’ve assumed the applicant fails to clear marginal priority at this school.
By contrast, this applicant is in the marginal priority group at his third choice, lottery school I.
The school I lottery cutoff is 0.6. At school I, we have mI(θ, T ) = |{G}| = 1, and MID0

θI = 0.
The propensity score for assignment to I is therefore:

λI(θ, T ) = 0.5mI(θ,T )(τI −MID0
θI) = 0.5× (0.6− 0) = 0.3.

Fourth choice school J is a lottery school with cutoff τJ = 0.8. Note that MID0
θJ = 0.6

because τI = 0.6 and because I, a lottery school where the applicant is conditionally seated, is
listed ahead of J. Screening risk at G also implies mJ(θ, T ) = |{G}| = 1. The propensity score
for general risk is therefore:

λJ(θ, T ) = 0.5mJ (θ,T )(τJ −MID0
θJ) = 0.5× (0.8− 0.6) = 0.1.

Finally, last-listed school K is screened. The applicant is assumed to clear marginal priority
at K, so any risk there must be generated by rejection at higher listed choices. Note that
MID0

θK = 0.8 because τJ = 0.8 is the most forgiving cutoff at lottery schools listed ahead of K.
Since mK(θ, T ) = |{G}| = 1, the propensity score for general risk at K is therefore

λK(θ, T ) = 0.5mK(θ,T )(1−MID0
θK) = 0.5× (1− 0.8) = 0.1.

This example shows how the interaction between screened and lottery risk takes an applicant
with no lottery risk and exposes him to risk at four out of the five schools he’s listed.24

24The examples in Table A1 have the feature that risk sums to one, because everyone is seated somewhere.
This need not be the case in real markets, where some applicants, typically those who list few schools or list only
schools with very limited capacity, may remain unassigned.
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Name Tie-breaker τ Θ MID0
Propensity 

score Θ MID0
Propensity 

score
(1) (2) (3) (4) (5) (6) (7)

A Lottery 0.8 c 0 0.8 c 0 0.8
B Screened n 0.8 0 n 0.8 0
C Screened a 0.8 0.2 a 0.8 0.2

D Screened n 0 0 c 0 0.5
E Lottery 0.8 n 0 0 n 0 0
F Lottery 0.6 a 0 1 a 0 0.5

G Screened a 0 1 c 0 0.5
H Lottery 0.8 n 1 0 n 0 0
I Lottery 0.6 c 1 0 c 0 0.3
J Lottery 0.8 c 1 0 c 0.6 0.1
K Screened a 1 0 a 0.8 0.1

Applicant 3: Lotteries and Screening Interact to Create Risk

Notes. This table shows how the propensity score is determined for three applicants. Each example
describes the risk faced by a single applicant at each of the schools ranked: applicant 1 ranks schools A,
B, and C in that order. Lottery risk is determined by taking screened school tie-breakers as priorities.
Applicants to screened schools therefore have status a or n at these schools according to whether they
clear the relevant screened tie-breaker cutoff. Column 1 reports randomization cutoffs for schools that
use a lottery tie-breaker. Columns 2 and 5 reports applicant status (always seated [ a ], never seated [ n ], 
and conditionally seated [ c ]) in lottery-only and general risk scenarios. Columns 3 and 6 report the most
informative disqualification for the lottery tie-breaker. MID 0 in column 3 is computed treating
screened-school tie-breakers as priorities.  MID 0  in column 6 looks at screened as well as lottery risk.  

Table A1. Propensity Score Anatomy 
                Schools                   Determinants of lottery risk         Determinants of general risk      

Applicant 1: Lotteries Create Risk at Lottery and Screened Schools

Applicant 2: Screening Creates Risk at Lottery and Screened Schools



B Running Variables Coded as Ranks

An empirical rank transformation of independent running variables can be dependent. This
section shows that running variables transformed into ranks become independent as the number
of students grows to infinity. The assumption of independent running variables therefore holds
for a continuum market as long as raw running variables are independent. Let (X1, X2, . . .) be
a sequence of independent random variables. Define the rank function as follows.

rankN (t) =
1

N

N∑
i=1

1{Xi < t}.

Let

FN (t) =
1

N

N∑
i=1

P (Xi < t).

Proposition 5. For all k, we have∣∣rankN (Xk)− FN (Xk)
∣∣→ 0 a.s.

Thus the process (rankN (Xk) : k ∈ N) converges to the independent sequence (FN (Xk) : k ∈ N)
uniformly in k on a set of measure 1.

Proof of Proposition 5. We prove Proposition 5 using a few lemmas below.

Lemma 1 (Hoeffding’s maximal inequality; Lemma 5.1 in van Handel (2016)). Let A be a finite
subset of RN and write ‖A‖2 = supa∈A ‖a‖2, where || · ||2 is the square root of the sum of squares
(||x||2 ≡

√
x21 + ...+ x2m for any vector x ≡ (x1, ..., xm)). Let X1, . . . , XN be independent,

centered (mean zero) random variables supported on [−1, 1]. Then we have

E sup
a∈A

{
N∑
i=1

aiXi

}
≤ ‖A‖2

√
2 log |A|,

where |A| is the cardinality of set A.

Lemma 2. The expected supremum of the rank process satisfies

E sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(1{Xi < t} − P (Xi < t))

∣∣∣∣∣
}

≤
√

8 log(n+ 1)

n
.

Proof of Lemma 2. Let ft(s) = 1{s < t}. For each k, construct an independent random variable
Yk with the same distribution as Xk. Note that (i) E[ft(Yk)] = P (Xk < t) and (ii) the law of
ft(Xk)− ft(Yk) is symmetric around 0. By Jensen’s inequality, we have

E sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(ft(Xi)− P (Xi < t))

∣∣∣∣∣
}

≤ E sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(ft(Xi)− ft(Yi))

∣∣∣∣∣
}
.
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By symmetry and independence of the summands, their joint distribution does not change if
we multiply each by an independent random variable εk that is uniformly distributed on {±1}.
This gives us

E sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(ft(Xi)− ft(Yi))

∣∣∣∣∣
}

= E sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

εi
(
ft(Xi)− ft(Yi)

)∣∣∣∣∣
}

≤ E

[
sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

εift(Xi)

∣∣∣∣∣
}

+ sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

−εift(Yi)

∣∣∣∣∣
}]

= 2 · E sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

εift(Xi)

∣∣∣∣∣
}

We then have

2 · E sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

εift(Xi)

∣∣∣∣∣
}

= 2 · E

[
E

[
sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

εift(Xi)

∣∣∣∣∣
}∣∣∣∣∣X1, . . . , XN

]]

= 2 · E

[
E

[
sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

εift(X(i))

∣∣∣∣∣
}∣∣∣∣∣X1, . . . , XN

]]
.

Here X(i) refers to the ith smallest element of {X1, . . . , XN}; we use the fact that the inner sum
is invariant to re-ordering. As t ∈ R varies, the vector

ut(X1, . . . , XN ) =
(
1
N ft(X(1)), . . . ,

1
N ft(X(N))

)
takes on at most n+ 1 values, and we always have ||ut||2 ≤ 1/

√
N . This follows from observing

that nut takes values in the set of increasing binary sequences of length N . Applying Lemma 1
to the inner expectation then gives

2 · E

[
E

[
sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

εift(X(i))

∣∣∣∣∣
}∣∣∣∣∣X1, . . . , XN

]]
≤
√

8 log(N + 1)

N
.

Lemma 3. Write

h(X1, . . . , XN ) = sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(1{Xi < t} − P (Xi < t))

∣∣∣∣∣
}
.

Then P
(
|h(X1, . . . , XN )− E[h(X1, . . . , XN )]| > δ) ≤ e−2Nδ2.

Proof of Lemma 3. Note that varying Xi(ω) can change h(ω) by at most 1/n, for all ω in the
sample space. Lemma 3 then follows from McDiarmid’s inequality as stated in van Handel
(2016) (Theorem 3.11).
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Putting together Lemmas 2 and 3, we obtain

P

(
sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(1{Xi < t} − P (Xi < t))

∣∣∣∣∣
}

≥
√

8 log(N + 1)

N
+ δ

)

≤ P

(
sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(1{Xi < t} − P (Xi < t))

∣∣∣∣∣
}

≥ E
[
sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(1{Xi < t} − P (Xi < t))

∣∣∣∣∣
}
] + δ

)
≤ e−2Nδ2

Since the sequence on the right-hand side is summable for any fixed δ, we apply the Borel-Cantelli
lemma to obtain

P

(
lim sup
N→∞

sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(1{Xi < t} − P (Xi < t))

∣∣∣∣∣
}

≥ δ

)
= 0.

Taking δ → 0 gives

lim sup
N→∞

sup
t∈R

{∣∣∣∣∣ 1N
N∑
i=1

(1{Xi < t} − P (Xi < t))

∣∣∣∣∣
}

= 0 a.s.

This implies that∣∣rankN (Xk)− FN (Xk)
∣∣ ≤ sup

t∈R

{∣∣rankN (t)− FN (t)
∣∣} ↓ 0 a.s.,

completing the proof of Proposition 5.

C Proofs

C.1 Proposition 1

When t = n, Ri > τA + δ for any small enough δ > 0, so that 1(Ri ≤ τA) = 0. This implies
limδ→0E[1(Ri ≤ τA)|θi = θ, tiA(δ) = t,Wi = w] = 0. When t = a, Ri < τA − δ for any small
enough δ > 0, so that 1(Ri ≤ τA) = 1. This implies limδ→0E[1(Ri ≤ τA)|θi = θ, tiA(δ) = t,Wi =

w] = 1. Finally, suppose t = c and recall that FR(τA|θ, w) is differentiable for every θ and w

and that F ′
R(τA|θ, w) 6= 0 by Assumption 1(a). We then have:

lim
δ→0

E[1(Ri ≤ τA)|θi = θ, tiA(δ) = c,Wi = w]

= lim
δ→0

P (τA − δ ≤ Ri ≤ τA|θi = θ,Wi = w)

P (τA − δ ≤ Ri ≤ τA + δ|θi = θ,Wi = w)

= lim
δ→0

FR(τA|θ, w)− FR(τA − δ|θ, w)
FR(τA + δ|θ, w)− FR(τA − δ|θ, w)

= lim
δ→0

{FR(τA|θ, w)− FR(τA − δ|θ, w)}/δ
{FR(τA + δ|θ, w)− FR(τA|θ, w)}/δ + {FR(τA|θ, w)− FR(τA − δ|θ, w)}/δ

=
F ′
R(τA|θ, w)

2F ′
R(τA|θ, w)

= 0.5,

where the last equality uses F ′
R(τA|θ, w) 6= 0. The second last equality holds because the limit

of a fraction of functions is the same as the fraction of the limits of the functions as long as the
denominator converges to a nonzero limit. This completes the proof.
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C.2 Proposition 4

We prove Proposition 4 using a strategy similar to that used to prove Theorem 1 in Abdulka-
diroğlu et al. (2017b). Note first that admissions cutoffs ξ in a continuum market are invariant
to tie-breaking outcomes Ri, and bandwidth δ: DA in the continuum depends on Ri’s only
through G(I0), the fraction of applicants in set I0 = {i ∈ I | θi ∈ Θ0, riv ≤ rv for all v} with
various choices of Θ0 and r. In particular, G(I0) doesn’t depend on running variable realizations
in the continuum market since for the empirical CDF of each running variable conditional on
each type, F̂v(·|θ), we always have F̂v(·|θ) = Fv(·|θ) for any v and θ by the Glivenko-Cantelli the-
orem for independent but non-identically distributed random variables (Wellner, 1981). G(I0)
doesn’t depend on reference tie-breaking number r and bandwidth δ either since they affect only
the distribution of a single student i’s tie-breaking number Ri, which has no effect on G(I0) or
cutoffs. As a consequence of the constancy of cutoffs ξ, marginal priority ρs is also constant for
every school s.

Now, consider the propensity score for school s. Applicants who don’t rank s have ps(θ) = 0.
Among those who do rank s, those of type θ ∈ Θn

s have ρθs > ρs. Therefore ps(θ) = 0 for every
θ ∈ Θn

s ∪ (Θ\Θs).

Applicants of type θ ∈ Θa
s ∪ Θc

s may be assigned s̃ ∈ Bθs, where ρθs̃ = ρs̃. For each v, the
proportion of type θ applicants assigned some s̃ ∈ Bv

θs where ρθs̃ = ρs̃ is Fv(MIDv
θs|θ). In other

words, for each v, the probability of not being assigned any s̃ ∈ Bv
θs where ρθs̃ = ρs̃ for a type

θ applicant is 1−Fv(MIDv
θs|θ). Since tie-breakers are assumed to be distributed independently

of one another, the probability of not being assigned any s̃ ∈ Bθs where ρθs̃ = ρs̃ for a type θ
applicant is Πv(1−Fv(MIDv

θs|θ)). Every applicant of type θ ∈ Θa
s who is not assigned a higher

choice is assigned s because ρθs < ρs, and so

ps(θ) = Πv(1− Fv(MIDv
θs|θ)) for all θ ∈ Θa

s .

Finally, consider applicants of type θ ∈ Θc
s who are not assigned a higher choice. The

fraction of applicants θ ∈ Θc
s who are not assigned a higher choice is Πv(1 − Fv(MIDv

θs|θ)).
Also, the values of the tie-breaking variable v(s) of these applicants are larger than MID

v(s)
θs . If

τs < MID
v(s)
θs , then no such applicant is assigned s. If τs ≥MID

v(s)
θs , then the ratio of applicants

that are assigned s within this set is given by Fv(s)(τs|θ)−Fv(s)(MID
v(s)
θs |θ)

1−Fv(s)(MID
v(s)
θs |θ)

. Hence, conditional on
θ ∈ Θc

s and not being assigned a choice higher than s, the probability of being assigned s is

given by max{0, Fv(s)(τs|θ)−Fv(s)(MID
v(s)
θs |θ)

1−Fv(s)(MID
v(s)
θs |θ)

}. Therefore,

ps(θ) =
∏

v 6=v(s)

(1− Fv(MIDv
θs|θ))×max

{
0, Fv(s)(τs|θ)− Fv(s)(MID

v(s)
θs |θ)

}
for all θ ∈ Θc

s.

C.3 Theorem 1

For each δ > 0, let

ψs(θ, T, δ, w) ≡ E[Di(s)|θi = θ, Ti(δ) = T,Wi = w]
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be assignment risk for an applicant with θi = θ, Ti(δ) = T, and characteristics Wi = w. Our
proofs use a lemma that describes this assignment risk in a continuum market with the general
tie-breaking structure in Section 3. Given this continuum market, for each tie-breaker v =
2, ..., V + 1, let e(v) denote the event that θi = θ,Riu > MIDu

θs for u = 1, ..., v − 1, Ti(δ) = T,
and Wi = w. e(1) denotes the event that θi = θ, Ti(δ) = T, and Wi = w. Also, let

Φδ(v) ≡ (
Fv(MIDv

θs|e(v))− Fv(MIDv
θs − δ|e(v))

Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs − δ|e(v))
)1{tb(δ)=c for some b∈Bv

θs} for v > 0

Φδ ≡ (1−MID0
θs)Π

V
v=1Φδ(v)

Φ′
δ ≡ max{0,

Fv(s)(τs|e(V + 1))−max{Fv(s)(MID
v(s)
θs |e(V + 1)), Fv(s)(τs − δ|e(V + 1))}

Fv(s)(τs + δ|e(V + 1))−max{Fv(s)(MID
v(s)
θs |e(V + 1)), Fv(s)(τs − δ|e(V + 1))}

} if v(s) > 0

Φ′
δ ≡ max{0, τs −MID0

θs

1−MID0
θs

} if v(s) = 0

Lemma 4. In the general tie-breaking setting of Section 3, for any fixed δ > 0, we have:

ψs(θ, T, δ, w) =


0 if ts(δ) = n or tb(δ) = a for some b ∈ Bθs,

Φδ otherwise and ts(δ) = a,

Φδ × Φ′
δ otherwise and ts(δ) = c.

Proof of Lemma 4. We start verifying the first line in ψs(θ, T, δ, w). Applicants who don’t list
s have ψs(θ, T, δ, w) = 0. Among those who list s, those of ts(δ) = n have θ ∈ Θn

s or, if v(s) 6=
0, θ ∈ Θc

s and Riv(s) > τs + δ. If θ ∈ Θn
s , then ρθs > ρs so that ψs(θ, T, δ, w) = 0. Even if

θ 6∈ Θn
s , as long as θ ∈ Θc

s and Riv(s) > τs + δ, student i never clear the cutoff at school s so
ψs(θ, T, δ, w) = 0.

To show the remaining cases, take as given that it is not the case that ts(δ) = n or tb(δ) =
a for some b ∈ Bθs. First note that other applicants of tb(δ) 6= a for all b ∈ Bθs and ts(δ) = a

or c may be assigned b ∈ Bθs, where ρθb = ρb. Since the (aggregate) distribution of tie-breaking
variables for type θ students is F̂v(·|θ) = Fv(·|θ), conditional on Ti(δ) = T , the proportion of
type θ applicants not being assigned any b ∈ Bθs where ρθb = ρb is Φδ = (1−MID0

θs)ΠvΦδ(v)

since each Φδ(v) is the probability of not being assigned to any b ∈ Bv
θs. To see why Φδ(v) is the

probability of not being assigned to any b ∈ Bv
θs, first note that if tb(δ) 6= c for all b ∈ Bv

θs, then
tb(δ) = n for all b ∈ Bv

θs so that applicants are never assigned to any b ∈ Bv
θs. Otherwise, i.e.,

if tb(δ) = c for some b ∈ Bv
θs, then applicants are assigned to s if and only if their values of tie-

breaker v clear the cutoff of the school that produces MIDv
θs, where applicants have ts(δ) = c.

This event happens with probability

Fv(MIDv
θs|e(v))− Fv(MIDv

θs − δ|e(v))
Fv(MIDv

θs + δ|e(v))− Fv(MIDv
θs − δ|e(v))

,

implying that Φδ(v) is the probability of not being assigned to any b ∈ Bv
θs.

Given this fact, to see the second line, note that every applicant of type ts(δ) = a who is not
assigned a higher choice is assigned s for sure because ρθs < ρs or ρθs +Riv(s) < ξs. Therefore,
we have

ψs(θ, T, δ, w) = Φδ.
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Finally, consider applicants with ts(δ) = c. The fraction of these who are not assigned a
higher choice is Φδ, as explained above. Also, for tie-breaker v(s), the tie-breaking numbers
of these applicants are larger (worse) than MID

v(s)
θs . If τs < MID

v(s)
θs , then no such applicant

is assigned s. If τs ≥ MID
v(s)
θs , then the ratio of applicants that are assigned s conditional on

τs ≥MID
v(s)
θs is given by

max{0,
Fv(s)(τs|e(V + 1))−max{Fv(s)(MID

v(s)
θs |e(V + 1)), Fv(s)(τs − δ|e(V + 1))}

Fv(s)(τs + δ|e(V + 1))−max{Fv(s)(MID
v(s)
θs |e(V + 1)), Fv(s)(τs − δ|e(V + 1))}

} if v(s) 6= 0

max{0,
τs −MID0

θs

1−MID0
θs

} if v(s) = 0

Hence, conditional on ts(δ) = c and not being assigned a choice higher than s, the probability of
being assigned s is given by Φ′

δ. Therefore, for students with ts(δ) = c, we have ψs(θ, T, δ, w) =

Φδ × Φ′
δ.

Lemma 5. In the general tie-breaking setting of Section 3, for all s, θ, and sufficiently small
δ > 0, we have:

ψs(θ, T, δ, w) =



0 if ts(0) = n or tb(0) = a for some b ∈ Bθs,

Φ∗
δ otherwise and ts(0) = a,

Φ∗
δ×

Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

otherwise and ts(0) = c and v(s) 6= 0.

Φ∗
δ× max{0,

τs −MID0
θs

1−MID0
θs

}

otherwise and ts(0) = c and v(s) = 0.

(17)

where

Φ∗
δ(v) ≡

(
Fv(MIDv

θs + δ|e(v))− Fv(MIDv
θs|e(v))

Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs − δ|e(v))

)1{MIDv
θs=τb and tb=c for some b∈Bv

θs}

Φ∗
δ ≡ (1−MID0

θs)Π
V
v=1Φ

∗
δ(v)

Proof of Lemma 5. The first line follows from Lemma 4 and the fact that ts(0) = n or tb(0) =
a for some b ∈ Bθs imply ts(δ) = n or tb(δ) = a for some b ∈ Bθs for sufficiently small δ > 0.

To get the remaining lines, first note that conditional on ts(0) 6= n and tb(0) 6= a for all b ∈
Bθs, we have Φ∗

δ(v) = Φδ(v) and so Φ∗
δ = Φδ holds for small enough δ. Φ∗

δ therefore provides the
probability of not being assigned to a school preferred to s in the bottom three cases.

The second line is then by the fact that ts(0) = a implies ts(δ) = a for small enough δ > 0.
The third line is by the fact that for small enough δ > 0,

Φ′
δ = max

{
0,

Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

}
=

Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))
,
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where we invoke Assumption 1(b), which implies MIDv
θs 6= τs. The last line directly follows

from Lemma 4.

We use Lemma 5 to derive Theorem 1. We characterize limδ→0 ψs(θ, T, δ, w) and show that it
coincides with ψs(θ, T ) in the main text. In the first case in Lemma 5, ψs(θ, T, δ, w) is constant
(0) for any small enough δ. The constant value is also limδ→0 ψs(θ, T, δ, w) in this case.

To characterize limδ→0 ψs(θ, T, δ, w) in the remaining cases, note that by the differentiability
of Fv(·|e(v)) (recall Assumption 1), L’Hopital’s rule implies:

lim
δ→0

Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))
=

F ′
v(s)(τs|e(V + 1))

2F ′
v(s)(τs|e(V + 1))

= 0.5.

lim
δ→0

Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs|e(v))
Fv(MIDv

θs + δ|e(v))− Fv(MIDv
θs − δ|e(v))

=
F ′
v(MIDv

θs|e(v))
2F ′

v(MIDv
θs|e(v))

= 0.5.

This implies limδ→0Φ
∗
δ(v) = 0.51{MIDv

θs=τb and tb=c for some b∈Bv
θs} since 1{MIDv

θs = τb and tb =

c for some b ∈ Bv
θs} does not depend on δ. So

lim
δ→0

Φ∗
δ = (1−MID0

θs)0.5
ms(θ,T ).

where recall ms(θ, T ) = |{v > 0 :MIDv
θs = τb and tb = c for some b ∈ Bv

θs}|.
Combining these limiting facts with the fact that the limit of a product of functions equals

the product of the limits of the functions, we obtain the following: limδ→0 ψs(θ, T, δ, w) = 0 if
(a) ts = n; or (b) tb = a for some b ∈ Bθs. Otherwise,

lim
δ→0

ψs(θ, T, δ, w) =


0.5ms(θ,T (0))(1−MID0

θs) if ts(0) = a

0.5ms(θ,T (0))max
{
0, τs −MID0

θs

}
if ts(0) = c and v(s) = 0

0.51+ms(θ,T (0))(1−MID0
θs) if ts(0) = c and v(s) > 0.

(18)

This expression coincides with ψs(θ, T ), completing the proof of Theorem 1.

C.4 Theorem 2

Here we prove the following lemmas used in the proof of Theorem 2 in the main text.

Lemma 6. (Cutoff almost sure convergence) ξ̂N
a.s.−→ ξ where ξ denotes the vector of continuum

market cutoffs.

Lemma 7. (Estimated local propensity score almost sure convergence) For all θ ∈ Θ, s ∈ S, and
T ∈ {a, c, n}S, we have ψ̂Ns(θ, T ; δN )

a.s.−→ ψs(θ, T ) as N → ∞ and δN → 0.

Lemma 8. (True bandwidth-specific propensity score almost sure convergence) For all θ ∈
Θ, s ∈ S, T ∈ {a, c, n}S, and δN such that δN → 0 and NδN → ∞ as N → ∞, we have
ψNs(θ, T ; δN )

a.s.−→ ψs(θ, T ) as N → ∞.
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Proof of Lemma 6

Lemma 6 is proved using a strategy similar to that used to prove Lemma 3 in Abdulkadiroğlu
et al. (2017b). Using the Extended Continuous Mapping Theorem (Theorem 19.1 in van der
Vaart (2000)), we first show deterministic convergence of cutoffs to ensure the continuous map-
ping result is applicable.

Modify the definition of G to describe the distribution of running variables as well as types:
For any set of applicant types Θ0 ⊂ Θ and for any numbers r0, r1 ∈ [0, 1]V with r0v < r1v for
all v, define the set of applicants of types in Θ0 with random numbers worse than r0 and better
than r1 as

I(Θ0, r0, r1) = {i ∈ I | θi ∈ Θ0, rv0 < riv ≤ rv1 for all v}.

In a continuum market,

G(I(Θ0, r0, r1)) = E[1{i ∈ I(Θ0, r0, r1)}],

where the expectation is assumed to exist and taken over the running variable distributions. In
a finite market with N applicants,

G(I(Θ0, r0, r1)) =
|I(Θ0, r0, r1)|

N
.

Let G be the set of possible G’s defined above. For any two distributions G and G′, the supnorm
metric is defined by

d(G,G′) = sup
Θ0⊂Θ,r0,r1∈[0,1]V +1

|G(I(Θ0, r0, r1))−G′(I(Θ0, r0, r1))|.

The notation is otherwise as in the text.
Consider a deterministic sequence of economies described by a sequence of distributions

{gN} over applicants, together with associated school capacities, so that for all N , gN ∈ G is a
potential realization produced by randomly drawing N applicants and their running variables
from G. Assume that gN → G in metric space (G, d). Let ξN denote the admissions cutoffs in
gN . Note the ξN is constant because this is the cutoff for a particular realized market gN .

The proof first shows deterministic convergence of cutoffs for any convergent subsequence
of gN . Let {g̃N} be any subsequence of realized economies {gN}. The corresponding cutoffs
are denoted by {ξ̃N}. Let ξ̃ ≡ (ξ̃s) be the limit of ξ̃N . The following two claims establish that
ξ̃N → ξ, the cutoff associated with G.

Claim 1. ξ̃s ≥ ξs for every s ∈ S.

Proof of Claim 1. This is proved by contradiction in three steps. Suppose to the contrary that
ξ̃s < ξs for some s. Let S′ ⊂ S be the set of schools the cutoffs of which are strictly lower under
ξ̃. For any s ∈ S′, define IsN = {i ∈ I|ξ̃Ns < ρis + ris ≤ ξs and i lists s first} where I is the set
of applicants in G, which contains the set of applicants in gN for all N . In other words, IsN are
the set of applicants listing school s first who have an applicant position in between ξ̃Ns and ξs.
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Step (a): We first show that for our subsequence, when the market is large enough, there
must be some applicants who are in IsN . That is, there exists N0 such that for any N > N0,
we have g̃N (IsN ) > 0 for all s ∈ S′.

To see this, we begin by showing that for all s ∈ S′, there exists N0 such that for any
N > N0, we have G(IsN ) > 0. Suppose, to the contrary, that there exists s ∈ S′ such that
for all N0, there exists N > N0 such that G(IsN ) = 0. When we consider the subsequence of
realized economies {g̃N}, we find that

g̃N ({i ∈ Qs(ξN ) such that πθis(ri) ≤ ξs})
= g̃N ({i ∈ Qs(ξN ) such that πθis(ri) ≤ ξ̃Ns}) (19)

+ g̃N ({i ∈ Qs(ξN ) such that ξ̃Ns < πθis(ri) ≤ ξs})
= g̃N ({i ∈ Qs(ξN ) such that πθis(ri) ≤ ξ̃Ns}) (20)
≤ qs (21)

where πθis(ri) ≡ ρθis + ris. Expression (20) follows from Assumptions 1 and 2 by the fol-
lowing reason. (20) does not hold, i.e., g̃N ({i ∈ Qs(ξN ) such that ξ̃Ns < πθis(ri) ≤ ξs}) > 0

only if G({i ∈ I|ξ̃Ns < πθis(ri) ≤ ξs}) > 0. This and Assumptions 1 and 2 imply
G({i ∈ I|ξ̃Ns < πθis(ri) ≤ ξs and i lists s first}) ≡ G(IsN ) > 0, a contradiction to G(IsN ) = 0.

Since g̃N is realized as N iid samples from G, g̃N ({i ∈ I|ξ̃Ns < πθis(ri) ≤ ξs}) = 0.
Expression (21) follows by our definition of DA, which can never assign more applicants to
a school than its capacity for each of the N samples. We obtain our contradiction since ξ̃Ns

violates the definition of DA cutoffs at s in g̃N since expression (21) means it is possible to
increase the cutoff ξ̃Ns to ξs without violating the capacity constraint.

Given that we’ve just shown that for each s ∈ S′, G(IsN ) > 0 for some N , it is possible to
find an N such that G(IsN ) > ε > 0 for some ε > 0. Since gN → G and so g̃N → G, there
exists N0 such that for all N > N0, we have g̃N (IsN ) > G(IsN ) − ε > 0. Since the number
of schools is finite, such N0 can be taken uniformly over all s ∈ S. This completes the
argument for Step (a).

Step (a) allows us to find some N0 such that for any N > N0, g̃N (IsN ) > 0 for all s′ ∈ S′.
Let s̃N ∈ S and t be such that ξ̃t−1

Ns ≥ ξs for all s ∈ S and ξ̃tNs̃N
< ξs̃N , where ξ̃tNs is school

s’s tentative cutoff at round t of the DA algorithm. That is, s̃N is one of the first schools
the cutoff of which falls strictly below ξs̃N under the DA algorithm in g̃N , which happens
in round t of the DA algorithm. Such s̃N and t exist since the choice of N guarantees
g̃N (IsN ) > 0 and so ξ̃Ns < ξs for all s ∈ S′.
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Step (b): We next show that there exist infinitely many values of N such that the associated
s̃N is in S′ and g̃N (IsN ) > 0 for all s ∈ S′. It is because otherwise, by Step (a), there exists
N0 such that for all N > N0, we have s̃N 6∈ S′. Since there are only finitely many schools,
{s̃N} has a subsequence {s̃m} such that s̃m is the same school outside S′ for all m. By
definition of s̃N , ξ̃ms̃m ≤ ξ̃tms̃m

< ξs̃m for all m and so ξ̃s̃m < ξs̃m , a contradiction to s̃m 6∈ S′.
Therefore, we have our desired conclusion of Step (b).
Fix some N such that the associated s̃N is in S′ and g̃N (IsN ) > 0 for all s ∈ S′. Step (b)
guarantees that such N exists. Let ÃNs̃N and As̃N be the sets of applicants assigned s̃N
under g̃N and G, respectively. All applicants in I s̃NN are assigned s̃N in G and rejected by
s̃N in g̃N . Since these applicants list s̃N first, there must exist a positive measure (with
respect to g̃N ) of applicants outside I s̃NN who are assigned s̃N in g̃N and some other school
in G; denote the set of them by ÃNs̃N \ As̃N . g̃N (ÃNs̃N \ As̃N ) > 0 since otherwise, for any
N such that Step (b) applies,

g̃N (ÃNs̃N ) ≤ g̃N (As̃N \ I s̃NN ) = g̃N (As̃N )− g̃N (I s̃NN ),

which by Step (a) converges to something strictly smaller than G(As̃N ) since
g̃N (As̃N ) → G(As̃N ) and g̃N (I s̃NN ) > 0 for all large enough N by Step (a). Note that
G(As̃N ) is weakly smaller than qs̃N . This implies that for large enough N , g̃N (ÃNs̃N ) < qs̃N ,
a contradiction to ÃNs̃N ’s being the set of applicants assigned s̃N at a cutoff strictly smaller
than the largest possible value K + 1. For each i ∈ ÃNs̃N \ As̃N , let si be the school to
which i is assigned under G.

Step (c): To complete the argument for Claim 1, we show that some i ∈ ÃNs̃N \As̃N must
have been rejected by si in some step t̃ ≤ t − 1 of the DA algorithm in g̃N . That is, there
exists i ∈ ÃNs̃N \As̃N and t̃ ≤ t− 1 such that πisi > ξ̃ t̃Nsi

. Suppose to the contrary that for
all i ∈ ÃNs̃N \ As̃N and t̃ ≤ t − 1, we have πisi ≤ ξ̃ t̃Nsi

. Each such applicant i must prefer
si to s̃N because i is assigned si 6= s̃N under G though πis̃N ≤ ξ̃Ns̃N < ξs̃N , where the first
inequality holds because i is assigned s̃N in G̃N while the second inequality does because
s̃N ∈ S′. This implies none of ÃNs̃N \As̃N is rejected by si, applies for s̃, and contributes to
decreasing ξ̃tNs̃N

at least until step t and so ξ̃tNs̃N
< ξs̃N cannot be the case, a contradiction.

Therefore, we have our desired conclusion of Step (c).

Claim 1 can now be established by showing that Step (c) implies there are i ∈ ÃNs̃N \ As̃N

and t̃ ≤ t − 1 such that πisi > ξ̃ t̃Nsi
≥ ξ̃Nsi , where the last inequality is implies by the fact

that in every market, for all s ∈ S and t ≥ 0, we have ξt+1
s ≤ ξts. Also, they are assigned si

in G so that πisi ≤ ξsi . These imply ξsi > ξ̃ t̃Nsi
≥ ξ̃Nsi . That is, the cutoff of si falls below

ξsi in step t̃ ≤ t − 1 < t of the DA algorithm in g̃N . This contradicts the definition of s̃N
and t. Therefore ξ̃s ≥ ξs for all s ∈ S, as desired.

Claim 2. By a similar argument, ξ̃s ≤ ξs for every s ∈ S.

Since ξ̃s ≥ ξs and ξ̃s ≤ ξs for all s, it must be the case that ξ̃N → ξ. The following claim uses
this to show that ξN → ξ.
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Claim 3. If ξ̃N → ξ for every convergent subsequence {ξ̃N} of {ξN}, then ξN → ξ.

Proof of Claim 3. Since {ξN} is bounded in [0,K + 1]|S|, it has a convergent subsequence
by the Bolzano-Weierstrass theorem. Suppose to the contrary that for every convergent
subsequence {ξ̃N}, we have ξ̃N → ξ, but ξN 6→ ξ. Then there exists ε > 0 such that for all
k > 0, there exists Nk > k such that ||ξNk

− ξ|| ≥ ε. Then the subsequence {ξNk
}k ⊂ {ξN}

has a convergent subsequence that does not converge to ξ (since ||ξNk
− ξ|| ≥ ε for all k),

which contradicts the supposition that every convergent subsequence of {ξN} converges to
ξ.

The last step in the proof of Lemma 6 relates this fact to stochastic convergence.

Claim 4. ξN → ξ implies ξ̂N
a.s.−→ ξ

Proof of Claim 4. This proof is based on two off-the-shelf asymptotic results from statistics.
First, let GN be the distribution over I(Θ0, r0, r1)’s generated by randomly drawing N ap-
plicants from G. Note that GN is random since it involves randomly drawing N applicants.
GN

a.s.→ G by the Glivenko-Cantelli theorem for independent but non-identically distributed
random variables (Wellner, 1981). Next, since GN

a.s.→ G and ξN → ξ, the Extended Con-
tinuous Mapping Theorem (Theorem 18.11 in van der Vaart (2000)) implies that ξ̂N

a.s.−→ ξ,
completing the proof of Lemma 6.

Proof of Lemma 7

ψ̂Ns(θ, T ; δN ) is almost everywhere continuous in finite sample cutoffs ξ̂N , finite sample MIDs
(MIDv

θs), and bandwidth δN . Since every MIDv
θs is almost everywhere continuous in finite

sample cutoffs ξ̂N , ψ̂Ns(θ, T ; δN ) is almost everywhere continuous in finite sample cutoffs ξ̂N
and bandwidth δN . Recall δN → 0 by assumption while ξ̂N

a.s.−→ ξ by Lemma 6. Therefore,
by the continuous mapping theorem, as N → ∞, ψ̂Ns(θ, T ; δN ) almost surely converges to
ψ̂Ns(θ, T ; δN ) with ξ replacing ξ̂N , which is ψs(θ, T ).

Proof of Lemma 8

We use the following fact, which is implied by Example 19.29 in van der Vaart (2000).

Lemma 9. Let X be a random variable distributed according to some CDF F over [0, 1]. Let
F (·|X ∈ [x− δ, x+ δ]) be the conditional version of F conditional on X being in a small window
[x − δ, x + δ] where x ∈ [0, 1] and δ ∈ (0, 1]. Let X1, ..., XN be iid draws from F . Let F̂N be
the empirical CDF of X1, ..., XN . Let F̂N (·|X ∈ [x− δ, x+ δ]) be the conditional version of F̂N

conditional on a subset of draws falling in [x− δ, x+ δ], i.e., {Xi|i = 1, ..., n,Xi ∈ [x− δ, x+ δ]}.
Suppose (δN ) is a sequence with δN ↓ 0 and δN × N → ∞. Then F̂N (·|X ∈ [x − δN , x + δN ])

uniformly converges to F (·|X ∈ [x− δN , x+ δN ]), i.e.,

sup
x′∈[0,1]

|F̂N (x′|X ∈ [x− δN , x+ δN ])−F (x′|X ∈ [x− δN , x+ δN ])| →p 0 as N → ∞ and δN → 0.
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Proof of Lemma 9. We first prove the statement for x ∈ (0, 1). Let P be the probability measure
of X and P̂N be the empirical measure of X1, ..., XN . Note that

sup
x′∈[0,1]

|F̂N (x′|X ∈ [x− δN , x+ δN ])− F (x′|X ∈ [x− δN , x+ δN ])|

= sup
t∈[−1,1]

|F̂N (x+ tδN |X ∈ [x− δN , x+ δN ])− F (x+ tδN |X ∈ [x− δN , x+ δN ])|

= sup
t∈[−1,1]

| P̂N [x− δN , x+ tδN ]

P̂N [x− δN , x+ δN ]
− PX [x− δN , x+ tδN ]

PX [x− δN , x+ δN ]
|

=
1

P̂N [x− δN , x+ δN ]PX [x− δN , x+ δN ]

× sup
t∈[−1,1]

|P̂N [x− δN , x+ tδN ]PX [x− δN , x+ δN ]− P̂N [x− δN , x+ δN ]PX [x− δN , x+ tδN ]|

=
1

P̂N [x− δN , x+ δN ]PX [x− δN , x+ δN ]

× sup
t∈[−1,1]

|P̂N [x− δN , x+ tδN ](PX [x− δN , x+ δN ]− P̂N [x− δN , x+ δN ])

+ P̂N [x− δN , x+ δN ](P̂N [x− δN , x+ tδN ]− PX [x− δN , x+ tδN ])|

≤ 1

P̂N [x− δN , x+ δN ]PX [x− δN , x+ δN ]

× { sup
t∈[−1,1]

P̂N [x− δN , x+ tδN ]|P̂N [x− δN , x+ δN ]− PX [x− δN , x+ δN ]|

+ sup
t∈[−1,1]

P̂N [x− δN , x+ δN ]|P̂N [x− δN , x+ tδN ]− PX [x− δN , x+ tδN ]|}

=
1

PX [x− δN , x+ δN ]

× {|P̂N [x− δN , x+ δN ]− PX [x− δN , x+ δN ]|+ sup
t∈[−1,1]

|P̂N [x− δN , x+ tδN ]− PX [x− δN , x+ tδN ]|}

=
AN

PX [x− δN , x+ δN ]
,

where

AN = |P̂N [x−δN , x+δN ]−PX [x−δN , x+δN ]|+ sup
t∈[−1,1]

|P̂N [x−δN , x+tδN ]−PX [x−δN , x+tδN ]|.

The above inequality holds by the triangle inequality and the second last equality holds because
supt∈[−1,1] P̂N [x− δN , x+ tδN ] = P̂N [x− δN , x+ δN ].

We show that AN/PX [x− δN , x+ δN ]
p−→ 0. Example 19.29 in van der Vaart (2000) implies

that the sequence of processes {
√
n/δN (P̂N [x− δN , x+ tδN ]−PX [x− δN , x+ tδN ]) : t ∈ [−1, 1]}

converges in distribution to a Gaussian process in the space of bounded functions on [−1, 1] as
N → ∞. We denote this Gaussian process by {Gt : t ∈ [−1, 1]}. We then use the continuous
mapping theorem to obtain √

n/δNAN
d−→ |G1|+ sup

t∈[−1,1]
|Gt|
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as N → ∞. Since {Gt : t ∈ [−1, 1]} has bounded sample paths, it follows that |G1| < ∞ and
supt∈[−1,1] |Gt| < ∞ for sure. By the continuous mapping theorem, under the condition that
NδN → ∞,

(1/δN )AN = (1/
√
NδN )×

√
n/δNAN

d−→ 0× (|G1|+ sup
t∈[−1,1]

|Gt|)

= 0.

This implies that (1/δN )AN
p−→ 0, because for any ε > 0,

Pr(|(1/δN )AN | > ε) = Pr((1/δN )AN < −ε) + Pr((1/δN )AN > ε)

≤ Pr((1/δN )AN ≤ −ε) + 1− Pr((1/δN )AN ≤ ε)

→ Pr(0 ≤ −ε) + 1− Pr(0 ≤ ε)

= 0,

where the convergence holds since (1/δN )AN
d−→ 0. To show that AN/PX [x−δN , x+δN ]

p−→ 0,
it is therefore enough to show that limN→∞(1/δN )PX [x− δN , x+ δN ] > 0. We have

(1/δN )PX [x− δN , x+ δN ] = (1/δN )(FX(x+ δN )− FX(x− δN ))

= (1/δN )(2f(x)δN + o(δN ))

= 2f(x) + o(1)

→ 2f(x)

> 0,

where we use Taylor’s theorem for the second equality and the assumption of f(x) > 0 for the
last inequality.
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We next prove the statement for x = 0. Note that

sup
x′∈[0,1]

|F̂N (x′|X ∈ [−δN , δN ])− F (x′|X ∈ [−δN , δN ])|

= sup
t∈[0,1]

|F̂N (tδN |X ∈ [0, δN ])− F (tδN |X ∈ [0, δN ])|

= sup
t∈[0,1]

| F̂N (tδN )

F̂N (δN )
− FX(tδN )

FX(δN )
|

=
1

F̂N (δN )FX(δN )
sup
t∈[0,1]

|F̂N (tδN )FX(δN )− F̂N (δN )FX(tδN )|

=
1

F̂N (δN )FX(δN )
sup
t∈[0,1]

|F̂N (tδN )(FX(δN )− F̂N (δN )) + F̂N (δN )(F̂N (tδN )− FX(tδN ))|

≤ 1

F̂N (δN )FX(δN )
{ sup
t∈[0,1]

F̂N (tδN )|F̂N (δN )− FX(δN )|+ sup
t∈[0,1]

F̂N (δN )|F̂N (tδN )− FX(tδN )|}

=
1

FX(δN )
{|F̂N (δN )− FX(δN )|+ sup

t∈[0,1]
|F̂N (tδN )− FX(tδN )|}

=
A0

N

FX(δN )
,

where A0
N = |F̂N (δN )−FX(δN )|+ supt∈[0,1] |F̂N (tδN )−FX(tδN )|. By the argument used in the

above proof for x ∈ (0, 1), we have (1/δN )A0
N

p−→ 0. It also follows that

(1/δN )FX(δN ) = (1/δN )(f(0)δN + o(δN ))

= f(0) + o(1)

→ f(0)

> 0.

Thus, A0
N

FX(δN )

p−→ 0, and hence supx′∈[0,1] |F̂N (x′|X ∈ [−δN , δN ])− F (x′|X ∈ [−δN , δN ])| p−→ 0.
The proof for x = 1 follows from the same argument.

Consider any deterministic sequence of economies {gN} such that gN ∈ G for all N and
gN → G in the (G, d) metric space. Let pNs(θ, T ; δN ) be the (finite-market, deterministic)
bandwidth-specific propensity score for a particular gN .

For Lemma 8, it is enough to show deterministic convergence of this finite-market score,
that is, pNs(θ, T ; δN ) → ψs(θ, T ) as gN → G. To see this, let GN be the distribution over
I(Θ0, r0, r1)’s induced by randomly drawing N applicants from G. Note that GN is random
and that GN

a.s.→ G by Wellner (1981)’s Glivenko-Cantelli theorem for independent but non-
identically distributed random variables. GN

a.s.→ G and pNs(θ, T ; δN ) → ψs(θ, T ) allow us to
apply the Extended Continuous Mapping Theorem (Theorem 18.11 in van der Vaart (2000))
to obtain p̃Ns(θ, T ; δN )

a.s.−→ ψs(θ, T ) where p̃Ns(θ, T ; δN ) is the random version of pNs(θ, T ; δN )

defined for GN .
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We prove convergence of pNs(θ, T ; δN ) → ψs(θ, T ) as follows. For simplicity, consider the
case where every school use a common non-random running variable, i.e., v(s) = v(s′) > 0 for
all schools s and s′. Let ξ̃Ns and ξ̃Ns′ be the random cutoffs at s and s′, respectively, in gN , and

τθs ≡ ξs − ρθs,

τθs− ≡ max
s′�θs

{ξs′ − ρθs′},

τ̃Nθs ≡ ξ̃Ns − ρθs,

τ̃Nθs− ≡ max
s′�θs

{ξ̃Ns′ − ρθs′}.

where τθs− = 0 and τ̃Nθs− = 0 when there is no school s′ such that s′ �θ s. We can express
ψs(θ, T ) and pNs(θ, T ; δN ) as follows:

ψs(θ, T ) =


0 if ts2 = a or ts = n

0.5 if ts2 = c or ts = c

1 if ts2 = n and ts = a

pNs(θ, T, δN ) = PN (τ̃Nθs ≥ Ri > τ̃Nθs− |Ti(δN ) = T, θi = θ)

where s1 ≡ argmaxs′�θs{ξ̃Ns′ − ρθs′} and s2 ≡ argmaxs′�θs{ξs′ − ρθs′}. PN is the probability
induced by randomly drawing running variables given gN , and Ri is a random (not realized)
running variable for applicant i.

By Lemma 6, with probability 1, for all ε1 > 0, there exists N1 such that for all N > N1,

|ξ̃Ns′ − ξs′ | < ε1 for all s′,

which implies that with probability 1,

|τ̃Nθs− − τθs− |
=|{ξ̃Ns1 − ρθs1} − {ξs2 − ρθs2}|

<

{
|{ξ̃Ns1 − ρθs1} − ({ξ̃Ns2 − ρθs2}+ ε1)| if ξs2 − ρθs2 ≥ ξ̃Ns1 − ρθs1

|{ξ̃Ns1 − ρθs1} − ({ξ̃Ns2 − ρθs2} − ε1)| if ξs2 − ρθs2 < ξ̃Ns1 − ρθs1

=ε1

where in the first equality, s1 ≡ argmaxs′�θs{ξ̃Ns′ −ρθs′} and s2 ≡ argmaxs′�θs{ξs′ −ρθs′}. The
inequality is by |ξ̃Ns′ − ξs′ | < ε1 for all s′.

For all ε > 0, the above argument when we set ε1 < ε/2 implies that there exists N0 such
that for all N > N0,

pNs(θ, T, δN ) = PN (τ̃Nθs ≥ Ri > τ̃Nθs− |Ti(δN ) = T, θi = θ)

∈ (ψs(θ, T )− ε, ψs(θ, T ) + ε),

where the last inclusion holds by the following reason. Suppose

τθs < τθs− or τθs < rv(s) or rv(s2) < τθs− .
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Lemma 6 guarantees that for large enough N , we have

τNθs < τNθs− or τNθs < rv(s) or rv(s2) < τNθs− .

For small enough δN , therefore, it is never true that τ̃Nθs ≥ Ri > τ̃Nθs− , implying pNs(θ, T, δN ) =

0 = ψs(θ, T ).

Consider another case where
τθs > rv(s) > τθs− .

Lemma 6 guarantees that for large enough N , we have

τNθs > rv(s) > τNθs− .

For small enough δN , therefore, it is always true that τ̃Nθs ≥ Ri > τ̃Nθs− , implying pNs(θ, T, δN ) =

1 = ψs(θ, T ).

Finally, suppose
τθs ≥ τθs− and (τθs = rv(s) or rv(s2) = τθs2).

In this case, for any ε > 0, for large enough N ,

pNs(θ, T, δN ) = PN (τ̃Nθs ≥ Ri > τ̃Nθs− |Ti(δN ) = T, θi = θ)

∈ (P (τθs ≥ Ri > τθs− |Ti(δN ) = T, θi = θ)− ε, P (τθs ≥ Ri > τθs− |Ti(δN ) = T, θi = θ) + ε),

where the inclusion is by Lemmas 6 and 9. The interval shrinks to 0.5 = ψs(θ, T ).
Therefore,

pNs(θ, T, δN ) → ψs(θ, T ),

completing the proof of Lemma 8.
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D Empirical Appendix

D.1 Additional Results

Table B1 reports estimates for differential attrition, computed by estimating the same models
as in the statistical tests for balance presented in table 3. Under general risk, applicants who re-
ceive Grade A school offers have a slightly likelihood to have taken the SAT. Decomposing Grade
A schools into screened and unscreened schools, applicants who receive Grade A lottery school
offers are 2.4 percent more likely to have SAT scores, while offers to Grade A screened schools do
not correspond to a statistically significant difference in the likelihood of having follow-up SAT
scores. A modest difference that seems unlikely to bias the 2SLS Grade A estimates reported in
tables 4 and 5.
Table B2 reports estimates of the effect of enrollment in an ungraded high school that corre-
spond to the models presented in Table 4. As discussed above, estimates that consider general
risk add applicants and schools to the analysis sample. Also for estimates of ungraded school
effects, the move from lottery risk to general risk yields a valuable precision gain, as can be seen
by comparing results reported in columns 4 and 5. For instance, the associated standard error
falls from 0.054 when the graduation effect is estimated using only lottery risk to 0.034 when
estimated by exploiting general risk in Grade A assignment. While the OLS estimates yield a
small positive effect on SAT and a strong negative effects on graduation outcomes, the 2SLS
estimates do not suggest any statistically significant effect of ungraded school attendance.

D.2 Bandwidth Computation and Robustness Checks

Bandwidths are estimated as suggested by Imbens and Kalyanaraman (2012), separately for
each screened program s, where v(s) 6= 0 and ∃ applicants with Rv(s) > τs. The bandwidth
is estimated for the set of applicants who are in the relevant marginal priority group and are
assigned Rv(s) by s. Bandwidths are also computed separately for each outcome variable. We
then use the minimum bandwidth across SAT and graduation outcomes.

To check the robustness of this procedure, we computed several checks that impose restric-
tions on the distribution of running variables and the bandwidth size. Table B3 reports 2SLS
estimates of the effects of Grade A high school enrollment, computed by estimating the same
models as in table 4, imposing several restrictions on the distribution of running variables. Es-
timates in column 3 are from a model that ignores general risk that is generated at screened
programs with four or more duplicate running variable values in the estimated bandwidth, re-
sulting in modest changes in sample and effect size. Estimates in column 4 are from a model
that ignores general risk that is generated at screened programs with a gap in running variable
positions within the estimated bandwidth of four or more, which leads to a somewhat larger drop
in sample size. Columns 5 and 6 combine these restrictions, reducing the sample of applicants
with general risk by 17 and 31 percent, respectively. The restrictions however leave effect size
and precision mostly unchanged.
Table B4 reports 2SLS estimates for several variations of the bandwidth size and computation
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method. Halving the bandwidth size at screened programs reduces the sample of applicants
with general risk by about 20 percent, while doubling of the bandwidth size results in an about
20 percent larger sample. The estimates in column 5 are from regressions that use sixth grade
baseline scores instead of SAT and graduation outcomes when computing the bandwidth. Again,
the variations leave the magnitude of Grade A school effects and precision mostly unchanged.
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Lottery Risk

Any Screened Lottery
(1) (2) (3) (4) (5) 

Took SAT exam 0.761     0.017** -0.002     0.017**     0.021**
(0.007) (0.012) (0.007) (0.008)

N 30,673 10,486 25,841 18,743

0.635 0.003 0.003 0.002 0.003
(0.002) (0.002) (0.002) (0.002)

N 30,673 10,486 25,841 18,743
Notes. This table reports differential attrition estimates, computed by regressing covariates on dummies
indicating a Grade A offer and an ungraded school offer (columns (2)-(5)), controlling for saturated
Grade A and ungraded school propensity scores and running variable controls (columns (2)-(4)).
Robust standard errors are in parenthesis. * significant at 10%; ** significant at 5%; *** significant at
1%

Table B1. Differential Attrition
General Risk

Non-offered 
mean 

Grade A School Any 
Grade A

Has binary outcomes
(Enrolled in ninth grade)



General 
risk

Lottery 
risk

(1) (2) (3) (4) (5) 

SAT 0.308     1.75***     1.67***
(years of exposure) (0.056) (0.075)

0.138       0.597***       0.547***
(ever enrolled) (0.021) (0.028)

470     0.603** 515 2.76 2.02
(200-800) (102) (0.191) (109) (1.87) (2.54)

470       0.761*** 510 1.81 1.15
(200-800) (91) (0.178) (93) (1.79) (2.41)

N 124,989 22,899 12,752

0.611 -0.229*** 0.793   0.062* 0.035
(0.003) (0.034) (0.054)

0.365 -0.114*** 0.587 0.051     0.120**
(0.003) (0.037) (0.057)

0.321 -0.073*** 0.542 0.015 0.001
(0.003) (0.036) (0.054)

N 121,074 19,150 11,200

Table B2. Ungraded School 2SLS Estimates
All applicants  Applicants at risk 

Non-
Enrolled

Mean
OLS

Non-
Offered 
Mean

2SLS

College-ready

Notes. This table reports the estimates of the effect of enrollment in an ungraded high school
produced by the models that generate the Grade A enrollment effects reported in Table 4. Robust
standard errors are in parenthesis. * significant at 10%; ** significant at 5%; *** significant at 1%

Panel A. First Stages

Binary outcomes

Panel B. Second Stages
SAT Math

SAT Reading

Graduated

College- and Career
Prepared



No RV 
Restriction

4+ Duplicates
in BW

4+ Gap
in BW 

4+ Gap or 
4+ Duplicates 

in BW

3+ Gap or 
3+ Duplicates

in BW
(1) (2) (3) (4) (5) (6) 

  2.17**   2.26**   1.97**     2.91***     2.68*** 1.37*
(200-800) (0.880) (0.718) (0.728) (0.750) (0.755) (0.814)

0.770 0.726 0.566 0.919 0.690 0.464
(200-800) (0.801) (0.658) (0.669) (0.687) (0.695) (0.741)

N 12752 22899 21740 20291 19273 16147

0.022     0.030**     0.028**   0.026*   0.025* 0.024
(0.018) (0.013) (0.014) (0.014) (0.015) (0.017)

N 11200 19150 18056 16926 15999 13160
Notes. This table reports 2SLS estimates of the effects of Grade A high school enrollment as in table 4. Estimates in column 2
correspond to the estimates in column 4 in table 4 and impose no restriction on the distribution of running variables. Estimates in
column 3 are from a model that excludes general risk that is created at screened programs with four or more duplicate running
variable values in the bandwidth. Estimates in column 4 are from a model that excludes general risk that is created at screened
programs with a gap in running variable ranks in the bandwidth of four ranks or larger. Estimates in column 5 are from a model
that combines the two restrictions from columns 3 and 4, excluding general risk that is created at screened programs with either
duplicates or a gap. Estimates in column 6 are from a model that applies a stricter version of the restriction in column 5. Estimates
in columns 2 to 6 are from models that include running variable controls. Robust standard errors are in parenthesis. * significant
at 10%; ** significant at 5%; *** significant at 1%

Table B3. Grade A Effects with Running Variable Restrictions

Lottery risk

General risk

SAT Math

SAT Reading

Graduation



Benchmark
Half

Bandwidth
Size

Double
Bandwidth

Size

Using Baseline 
Scores for BW 
Computation

(1) (2) (3) (4) (5) 
  2.17**   2.26**   1.88**   1.88**   2.25**

(200-800) (0.880) (0.718) (0.805) (0.657) (0.734)

0.770 0.726 0.883 -0.087 1.17*
(200-800) (0.801) (0.658) (0.733) (0.607) (0.670)

N 12752 22899 17975 27966 22005

0.022     0.030**   0.028*   0.020*     0.034**
(0.018) (0.013) (0.016) (0.012) (0.014)

N 11200 19150 15251 23110 18398
Notes. This table reports OLS and 2SLS estimates of the effects of Grade A high school enrollment as in 
table 4. Estimates in column 2 correspond to the estimates in column 4 in table 4 and impose no
restriction on the distribution of running variables and estimation of bandwidths. Estimates in column 3
are from a model that halfes the size of the estimated bandwidth at screened programs. Estimates in
column 4 are from a model that doubles the size of the estimated bandwidth. Estimates in column 5 are
from a model where 6th grade baseline math and english test scores were used instead of outcomes to
compute the IK bandwidth. Estimates in columns 2 to 5 are from models that include running variable
controls. Robust standard errors are in parenthesis. * significant at 10%; ** significant at 5%; ***
significant at 1%

Table B4. Grade A Effects with Alternative Bandwidths

Lottery risk

General Risk

SAT Math

SAT Reading

Graduation


