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Abstract

I propose a semiparametric asset pricing model to measure how consumption and divi-

dend policies depend on unobserved state variables, such as economic uncertainty and risk

aversion. Under a flexible specification of the stochastic discount factor, the state variables

are recovered from cross-sections of asset prices and volatility proxies, and the shape of the

policy functions is identified from the pricing functions. The model leads to closed-form price-

dividend ratios under polynomial approximations of the unknown functions and affine state

variable dynamics. In the empirical application uncertainty and risk aversion are separately

identified from size-sorted stock portfolios exploiting the heterogeneous impact of uncertainty

on dividend policies. I find an asymmetric and convex response in consumption (−) and

dividend growth (+) towards uncertainty shocks, which together with moderate uncertainty

aversion, can generate large leverage effects and divergence between macroeconomic and stock

market volatility.
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1 Introduction

Standard asset pricing models with moderately risk averse households have difficulty reconciling

episodes of highly volatile asset prices with relatively smooth fluctuations in macroeconomic

fundamentals. Over the last two decades, models in which fundamentals and preferences are

jointly affected by unobserved state variables have made substantial progress in rationalizing the

level and dynamics of asset price volatility.1 Many of these models build on the assumption that

variables such as consumption and dividend growth, as well as the marginal utility function of a

representative agent, depend linearly on the state variables. This leads to highly tractable log-

linear stochastic discount factors and valuation ratios. As a result, the variance of asset returns is

proportional to that of the state variables. However, sudden drops in asset prices such as the 1987

Black Monday crash did not coincide with significantly increased production growth volatility,

nor has the recent upswing in political and economic uncertainty triggered much movement on

financial markets. Such observations suggest an important role for nonlinear specifications of the

state-dependency in aggregate growth rates and preferences.

This paper investigates whether nonlinear dependence of consumption and dividend choice on

state variables such as uncertainty and risk aversion helps to reconcile the dynamics of asset prices

and economic fundamentals. In particular, I develop a general class of Markovian asset pricing

models in which the preferred level of consumption and dividends per unit of output are functions

of state variables that are observed by the household and firms, respectively, but unobserved by

the econometrician. This unobservability makes it impossible to directly measure the shape of the

consumption and dividend policy functions. However, given the dynamics of the state variables

and their influence on the stochastic discount factor, the policy functions determine how asset

prices are affected by the state variables. As a result, when the state variables can be uniquely

recovered from asset prices, the policy functions are identified from the state variables’ impact

on asset prices.

The robustness of this approach depends on correct specification of the stochastic discount

factor and the distribution of the state variables. To allow for general state-dependent prefer-

ences of the representative agent, the stochastic discount factor is constructed by multiplying

standard power utility over consumption with an unspecified function of the state variables. In

several structural models this additional component takes a specific functional form of the state

variables, which is typically log-linear. Its shape is therefore of interest in itself in evaluating

1Prominent examples are models that feature habit formation (Campbell and Cochrane, 1999), long-run risk
(Bansal and Yaron, 2004), stochastic volatility (Drechsler and Yaron, 2010), or variable rare disasters (Gabaix,
2012).
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commonly made linearity assumptions. The model dynamics are fully determined after specify-

ing the distribution of the state variables. Since asset prices depend on the distribution of state

variables at possibly any horizon, it is useful to provide some parametric structure to be able to

extrapolate the transition density across maturities of interest. In particular, the dynamics of

the state variables are specified as continuous time affine processes following Duffie et al. (2000).

The resulting semiparametric framework generalizes affine equilibrium asset pricing models in

which consumption and dividend growth are linear in the state variables; see Eraker and Shalias-

tovich (2008) for an overview. The framework combines the tractability of affine models with the

generality of models that include unknown components.

The nonlinear measurement equation between observables and unobservables can be related

to optimal consumption and dividend policy in fully structural models, or to partial equilibrium

models that include components whose distribution or functional form is unknown. The opti-

mal consumption and dividend ratios endogenously generate nonlinear variation in consumption

and dividend growth. Still, they are consistent with a notion of optimizing behaviour, which

would be more difficult to achieve when directly modelling consumption and dividend growth

as exogenous processes. Similarly the framework generates autocorrelation in consumption and

dividend growth through the properties of the stationary state variables, but allows for further

autocorrelation induced by transitory deviations from the optimal levels.

The framework is highly tractable when the unknown functions are approximated by orthog-

onal polynomials as in Chen (2007). In particular, closed-form expressions for the price-dividend

ratio and its volatility can be derived in terms of ratios of polynomials of the affine state vari-

ables. The pricing formulas can be rapidly evaluated and prevent the need for computationally

intensive simulation or numerical approximation methods. I study maximum likelihood estima-

tion of the structural parameters and the polynomial coefficients for the general setting where

the measurement equations contain unknown components, but the transition density of com-

mon state variables is known. The state variables can be recovered from cross-sections of asset

prices when the pricing errors are at most weakly dependent, so that they can be averaged out

in the cross-section. This gives rise to a fixed-effects estimator that evaluates the measurement

and transition densities at the recovered state variables, which is shown to be consistent yet

finite-sample biased when the cross-section and time series grow to infinity at the same rate.

The structural functions are nonparametrically identified from the conditional mean of the asset

prices and macroeconomic ratios, which motivates a quasi-maximum likelihood approach that

is robust against the distribution of the errors. For continuous-time Gaussian noise processes,

the measurement density simplifies to a generalized least squares criterion. I introduce a novel
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pairwise concentration procedure that incorporates knowledge of the transition density by penal-

izing state variables from adjacent cross-sections that are far apart. This is implemented using a

closed-form transition density approximation as in Filipović et al. (2013). When the cross-sections

become large, the pairwise concentrated estimator is asymptotically equivalent to the maximum

likelihood estimator, at low computational cost. The structural functions and parameters are

consistently estimated when the number of time periods and cross-sectional observations goes to

infinity. The coefficients are asymptotically normally distributed when the approximating error

is correctly specified, which provides the basis for performing standard parametric inference.

The framework is illustrated by analyzing the impact of time-varying economic uncertainty

and risk aversion. In the benchmark model aggregate productivity or output growth follows a

stochastic volatility process whose drift depends on the volatility level. The risk aversion shocks

depend on unexpected output shocks, as in models with habit formation, but also contain pure

preference shocks as in Bekaert et al. (2009). The resulting stochastic discount factor decomposes

into a permanent component that depends on the level of output and a transitory component

that depends on the stationary state variables as in Hansen and Scheinkman (2009). The latter

allows for general volatility-dependent discount factors, in line with common specifications based

on recursive preferences. The model is estimated using data on U.S. output and consumption, the

price-dividend ratio and realized variance of the S&P 500 stock market index, and a panel of price-

dividend ratios of sorted portfolios starting in 1929 and running until 2016. Economic uncertainty

proxies based on the monthly Industrial Production Index are included in the measurement

equation and have a penalization effect on the implied uncertainty similar to that for financial

volatility in Andersen et al. (2015).

The equilibrium dividend-consumption ratio is shown to be an increasing and convex function

of economic uncertainty, after controlling for risk aversion. The sign of the slope is consistent with

consumption and dividend growth being negatively and positively correlated, respectively, with

changes in the uncertainty proxies, while the convexity is consistent with a fixed adjustment cost

for changing policy. The stochastic discount factor is moderately increasing in uncertainty, as

opposed to a U-shaped pattern that is obtained when the dividend-consumption ratio is restricted

to be linear. The price-dividend ratio is most steeply declining for moderate levels of economic

uncertainty, for which return variance is dominated by variation in the price-dividend ratio as

opposed to dividend variation. Furthermore large firm dividend policy responds less to uncer-

tainty shocks than that of small firms. Uncertainty aversion therefore creates a wedge between

large and small firm valuation ratios, which is larger when risk aversion is high, thus allowing to

separate risk aversion from uncertainty. The recovered state variables suggest uncertainty and
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risk aversion have different dynamics, especially in crisis periods. Low risk aversion played an

important role in the build-up of the dotcom-bubble, while both risk aversion and uncertainty

peaked during the global financial crisis. Overall the nonlinear response functions, together with

moderate uncertainty aversion, are able to reconcile large drops in asset prices in response to

uncertainty shocks, the non-monotonic relation between economic uncertainty and stock market

volatility, and the dynamics of variance risk premia, with reasonable size and persistence of the

underlying shocks.

Related Literature. The paper contributes to the literature on the estimation of nonlinear

dynamic latent variables models, on the identification of risk and risk aversion from asset prices,

and on computational methods for nonlinear equilibrium asset pricing models.

Nonlinear dynamic panel data methods have been primarily applied in microeconomics, such

as Hu and Shum (2012) and Arellano et al. (2017); for an overview see Arellano and Bonhomme

(2011). These papers focus on individual-specific state variables instead of common state vari-

ables. An exception is Gagliardini and Gourieroux (2014), who extract common factors in a

setting where N grows faster than T and the cross-sectional units are identical and independent,

unlike in this paper. Schennach (2014) and Gallant et al. (2017) provide methods to integrate

out latent variables in conditional moment models via a minimum entropy criterion or Bayesian

methods, respectively, which this paper avoids by employing series approximations. Gallant

and Tauchen (1989) and Gallant et al. (1993) introduce series approximations to the transition

densities, whereas in this paper non-Gaussianity arises from the nonlinear policy functions. La-

tent variables have also been dealt with by inverting observations under monotonicity. This has

been used for affine models for the term structure (Piazzesi, 2010) or option prices (Pan, 2002;

Ait-Sahalia and Kimmel, 2010). For nonlinear or multivariate models the inverse mapping is

generally not unique, but the conditional likelihood of multiple observations could still have a

unique optimum, which is used in this paper to recover the state. Alternatively, direct proxies

for the state variables could be used, such as realized volatility measures to estimate the current

level of volatility. For example, stock market volatility can be computed from the variation of

high-frequency stock returns (Andersen et al., 2003) or option-implied measures such as the VIX

(Carr and Wu, 2008). However stock market volatility does not translate one-to-one into the

volatility of economic fundamentals, and moreover is affected by time-varying risk aversion. Us-

ing the realized variation of low frequency macroeconomic series suffers from backward looking

bias. Using cross-sectional dispersion measures based on firm level data (Bloom, 2009) overcomes

this, but requires modelling the conditional means and covariance structure (Jurado et al., 2015).

For state variables corresponding to time-varying drift, disaster probability, or changing prefer-
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ences, no obvious proxy is available. In the presence of noisy or unavailable proxies, the state

variables can still be recovered from forward-looking asset prices, which this paper focuses on.

Bansal and Viswanathan (1993), Chapman (1997), Chen and Ludvigson (2009), and Escan-

ciano et al. (2015) estimate unknown components of the stochastic discount factor nonparamet-

rically by generalized method-of-moments, but require observed factor proxies in the absence

of knowledge about their distribution. Hansen and Scheinkman (2009) and Christensen (2017)

study eigenfunction decompositions of the stochastic discount factor and investigate its tem-

poral properties, also requiring the state variables to be observed or estimated in a first step.

Aı̈t-Sahalia and Lo (1998) show that the risk-neutral distribution is nonparametrically identified

from option prices, but not its decomposition into the physical distribution and pricing kernel.

Bollerslev et al. (2009), Garcia et al. (2011), and Dew-Becker et al. (2017) disentangle variance

expectations and variance risk premia, but do not empirically link these to risk in fundamentals.

Recent papers by Constantinides and Ghosh (2011) and Jagannathan and Marakani (2015) use

equity price-dividend ratios to extract long-run risks, but do not extract uncertainty and risk

aversion, unlike this paper.

Finally the paper relates to the literature on approximation methods for expectations of non-

linear functions of continuous-time stochastic processes often encountered in derivative pricing.

The generalized transform analysis in Bakshi and Madan (2000) and Chen and Joslin (2012)

extends the Fourier transform analysis for affine jump-diffusions in Duffie et al. (2000) towards

a large class of models with nonlinear components. This is particularly suitable when the mul-

tivariate characteristic function of the driving variables is tractable, and the variables appear in

single-index form. Whereas Fourier analysis uses expansions in the complex domain, the approach

here uses series expansions in the real domain, which does not require knowledge of the charac-

teristic function. Heston and Rossi (2016) establishes the asymptotic equivalence between series

approximations of payoff functions and Edgeworth density expansions. Filipović et al. (2016)

show that the class of linear-rational models can also be linked to the class of linearity-generating

process introduced in Gabaix (2007). The rational-polynomial formulas in this paper nests both

approaches, and make use of the attractive extrapolation properties of ratios of polynomial func-

tions.

Organization. The remainder of this paper is organized as follows. Section 2 introduces

the model assumptions and derives closed-form asset pricing formulas. Section 3 outlines the

estimation procedure and its asymptotic properties. Section 4 discusses the empirical findings.

Section 5 concludes.
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2 Setting

This section describes a general class of models for which results are derived. The specific

examples are the basis of the empirical section. Throughout let (Ω,F ,P) be a probability space

and Ft be the information filtration process satisfying standard regularity conditions.

2.1 Technology

Let St = (Yt, st) ⊂ S ⊆ RD+1 be a Markovian state vector consisting of an output or produc-

tivity process Yt and a D-dimensional state variable st that describes its drift, variance, and/or

jump intensity, and possibly that of other relevant variables in the economy, as described by the

stochastic differential equation

d log Yt = µy(st)dt+ σy(st)dWt (1)

dst = µs(st)dt+ σs(st)dBt,

where (Bt,Wt) is a standard Brownian motion in RD+1. In particular, the level of the output

process Yt does not affect the distribution of the increments of the state vector. As a consequence,

mean-reversion is ruled out and the output process is non-stationary. On the other hand the state

variables are stationary under a mean-reversion specification of the drift. This implies output

growth log Yt+τ
Yt

over any horizon τ > 0 is stationary and its conditional distribution only depends

on st.

The drift µ(st) = (µy(st), µ
s(st)) = K0 + K1st, and volatility σ(st) = (σy(st), σ

s(st)) with

σ(st)σ(st)
′ = H0 +

∑D
j=1H1dstj are assumed to be linear in the state variables st, so that the

process is affine in the sense of Duffie et al. (2000).2 The affine class contains many models

commonly used for stock returns as it can incorporate stochastic volatility and leverage in a

tractable fashion. In this paper it is used to compute exact expressions of conditional moments,

and for the closed-form approximation of the transition density following Filipović et al. (2013).

The baseline model for output growth is a version of the Heston stochastic volatility model with

correlation ρ between the output and volatility Brownian innovations and a volatility-dependent

2The affine framework also accommodates discontinuous shocks provided the jump intensity is linear in the
state variables.
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drift:

d log Yt =

(
µ− 1

2
Vt − λVt

)
dt+

√
V tdWt

dVt = κ (θ − Vt) dt+ ω
√
V tdBt.

A positive value of the parameter λ corresponds to an endogenous growth hypothesis where

output uncertainty reduces expected growth. The mean reversion parameter κ assures that Vt is

stationary around its unconditional mean θ.

2.2 Stochastic discount factor

Suppose there is an infinitely-lived representative agent who maximizes its life time utility U(·)

given by

U(St) = E

(∫ ∞
t

e−δ(r−t)u(Cr, sr)dr | St
)
,

where δ is a fixed discount rate, and u(·) is a state-dependent instant utility function that de-

composes as

u(t, Ct, st) = e−δtv(Ct −Xt; γ)H(st),

with Xt the consumption reference level, v(·) the isoelastic utility function

v(Ct; γ) =


C1−γ
t

1−γ γ 6= 1

logCt γ = 1,

and H(·) a general function of the state that could be fully or partially unspecified. Such a

specification provides additional stochastic discounting in line with extensions of the standard

power utility consumption-based model that include further relevant state variables. Commonly

used models with habit formation, recursive preferences, or imperfect risk sharing can be written

in this form (Hansen and Renault, 2010).

Time-varying risk aversion is described by the local curvature

Ctucc(Ct, st)

uc(Ct, st)
=

Ct
Ct −Xt

≡ Qt,

where Qt is the inverse of the consumption surplus ratio (Ct−Xt)/Ct. The consumption reference
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level Xt is modelled implicitly via the specification for Qt

dQt = κq(θq −Qt)dt+
√
QtηdB

q
t + ry

√
V tdWt, Cov(dBq

t , dWt) = 0. (2)

Under this specification time-varying risk aversion is driven by productivity shocks dWt and pure

preference shocks dBq
t , and is mean-reverting around the level θq. In the baseline model the state

discount function Ht = H(Vt) is a general uncertainty aversion index, that is included to control

for the impact of uncertainty shocks on preferences. This allows for a direct impact on stochastic

discounting beyond the appearance of uncertainty shocks in the specification for Qt. Formally,

let the pricing kernel process ζt = e−δtuc(Ct, st) be proportional to the marginal utility of a unit

of consumption. Then the stochastic discount factor or marginal rate of substitution over states

is given by

Mt,t+τ =
ζt+τ
ζt

= e−δτ
(
Ct+τ −Xt+τ

Ct −Xt

)−γ H(Vt+τ )

H(Vt)
= e−δτ

(
Ct+τ
Ct

)−γ (Qt+τ
Qt

)γ H(Vt+τ )

H(Vt)
.

This semiparametric formulation specifies the marginal rate of substitution over states to be the

product of exponential time-discounting, a power of consumption growth relative to the habit,

and an unknown uncertainty aversion component.

2.3 Consumption and dividend policy

In general the optimal consumption choice depends on all sources of wealth and income and all

possible investment opportunities. When the primary interest is in understanding the response of

consumption to changing economic circumstances, a flexible reduced form approach is to model

the consumption-to-output ratio via some unknown function ψcy(·) of the latent states and an

unexplained stationary component zct :

Ct
Yt

= ψcy(st) + zct , E (zct | st) = 0. (3)

The specification of consumption as a ratio of output guarantees that in the long run consumption

and output cannot drift apart, while the stationary state variables and error component allow for

general transitory fluctuations. This specification is the continuous-time analogue of cointegration

of the discretely observed realization of the process.

Suppose furthermore an index of equities is traded at price Pt which pays a continuous stochas-

tic dividend stream Dt. Analogue to consumption, the optimal dividend policy as a share of
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consumption is modelled as a general function of the state ψdc(·) plus a stationary unexplained

component zdt :
Dt

Ct
= ψdc(st) + zdt , E(zdt | st) = 0 (4)

Alternatively the dividend-to-output ratio could be modelled first, as any pair of ratios of output,

consumption, and dividends, pins down the remaining one. The parametrization of dividends-to-

consumption is most convenient for asset pricing, and is also used in Menzly et al. (2004), among

others.

The specification of the consumption-output and dividend-consumption ratios leads to poten-

tially nonlinear dynamics of consumption and dividend growth:

d logCt = d log Yt + d logψcy(st)

d logDt = d logCt + d logψdc(st),

up to noise processes that depend on zMt = (zct , z
d
t ). This decomposes consumption and dividend

growth into output growth, changes in the optimal ratios driven by the state variables, and

unexplained transitory variation. The common affine approach is to model ψ(st) as exponential

affine functions of the state variables such that consumption and dividend growth are linear in

the state variable (Eraker and Shaliastovich, 2008). More general specifications of ψ(st) allow for

convex or concave relations, or for interaction terms between the state variables.

2.4 Asset prices

From the Euler equation for optimal consumption and investment it follows that the equilibrium

asset price satisfies

Pt = E

(∫ ∞
0

e−δτ
(
Ct+τQt
CtQt+τ

)−γ H(Vt+τ )

H(Vt)
Dt+τdτ | St

)
. (5)

Under joint Markovian dynamics of (st, z
d
t ) the asset’s price-dividend ratio φt = Pt

Dt
= φ(st, z

d
t ) is

a function of the current state st and the transitory deviation in the dividend-consumption ratio

zdt alone. For the case of log utility γ = 1 consumption and dividend growth cancel out and the

price-dividend ratio is given by:

φ(st, z
d
t ) = Et

(∫ ∞
0

e−δτ
Qt+τH(Vt+τ )

QtH(Vt)

ψdc(st+τ ) + zdt+τ
ψdc(st) + zdt

dτ

)
(6)
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In the general power utility case the nonstationary component
(
Yt+τ
Yt

)−γ
appears in the

stochastic discount factor. In this case the Girsanov change-of-measure formula can be applied

to e−γ log Yt to write the price-dividend ratio in terms of expectations of functions of stationary

affine state variables under a new probability measure. Details are given in the appendix.

The conditional moments of affine processes can be computed exactly by solving a first-order

linear matrix differential equation. This method was introduced for univariate processes by

Zhou (2003), and has been generalized to the multivariate setting by Cuchiero et al. (2012) and

Filipović et al. (2016). Define the generator A of the process St as the operator which for a

function f : RD+1 → R returns

Af = lim
τ→0

1

τ
(Et(f(St+τ ))− f(St)) .

Then for affine diffusion processes of the type (1)3

Af(S) = (K0 +K1S)T∇f(S) +
1

2

Tr(∇2fH0) +

D∑
j=1

Tr(∇2fH1,j)sj

 . (7)

Let |l| = l1 + · · ·+ lD+1 denote the length of a multi-index l ∈ ND+1, let Sl = ΠiS
li
i be a mixed

polynomial of degree |l|, and let PolL = {f : S ⊆ RD+1 → R : ∃a, f =
∑

0≤|l|≤L alS
l} be the

vector space of mixed polynomials of maximum degree L. Then it follows from (7) that for any

fl ∈ PolL, the generator Afl ∈ PolL as well. Applying the canonical basis BL = {Sl : |l| ≤ L} of

PolL to A and collecting the coefficients as

ASli =
∑
j

aijS
lj (8)

leads to a lower triangular matrix AL = (aij) that by linearity of A can be used to compute

the generator for any polynomial in PolL. The coefficients of A can be solved symbolically using

standard software. For the baseline model with second-order expansion L = 2 its solution is given

in Table 4. The conditional moments follow from Dynkin’s formula

E(Slt+τ | Slt = S) = Sl + E

(∫ t+τ

t
ASlsds

)
,

3This property extends to process with quadratic variance specification (Zhou, 2003; Cheng and Scaillet, 2007),
and to models with interaction terms such as the habit process (2) whose conditional volatility is

√
QtVt.
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which leads to a matrix differential equation with solution

E(Slt+τ | St = S) = eτALSl. (9)

Suppose the consumption and dividend policy functions are approximated by L-degree poly-

nomial expansions

ψcyL (s) =
∑

0≤|l|≤L

cls
l = c · sL, ψdcL (s) =

∑
0≤|l|≤L

dls
l = d · sL,

where the inner products use the stacked column vectors of mixed polynomials and their coeffi-

cients up to degree L using lexicographic ordering. Orthogonal polynomials such as the Hermite

or Chebyshev polynomials are spanned by elementary polynomials and can be represented in this

way. Similarly approximate the state-dependent preference function by a K-degree polynomial

HK(s) =

K∑
|l|=0

els
l = e · sK .

Define the product of two polynomials (HK · ψdcL )(s) =
∑M
|l|=0 gls

l = g · sM with coefficients

gl =
∑|l|
|m|=0 dmem−l and M = K+L. From the conditional moments (9) it follows that the time

t+ τ contribution to the approximated price-dividend ratio equals

Et

(
e−δτHK(st+τ )ψdcL (st+τ )

)
= gT e−δτEt

(
st+τ

M
)

= gT e−δτeτAM st
M .

This implies that the approximated price-dividend ratio becomes a ratio of polynomials given by

φM (st) =

∫ ∞
0

e−δτ
Et
(
HK(st+τ )ψdcL (st+τ )

)
HK(st)ψdcL (st)

dτ

=
gT
∫∞

0 e−δτeτAMdτst
M

gT stM

=
gTQMst

M

gT stM
. (10)

The matrix QM is the Laplace transform of the matrix exponential of AM and can be solved in

closed form as

QM =

∫ ∞
0

e−δτeτAMdτ = (δI −AM )−1 (11)
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provided that δI − AM is non-singular.4 The latter typically holds when δ > 0, but it might

be near-singular when AM is not full rank. In the univariate case AM is full rank when the

diagonal terms of the lower-triangular matrix AM are all non-zero. For affine diffusions this will

be satisfied when the drift is strictly affine. In the multivariate case the diagonal blocks of the

blockwise lower-triangular matrix AM need to be non-singular, which is equivalent to the non-

singularity of the matrix K1 in the drift. This holds for example when the state variables can be

ordered to appear in a triangular fashion in the drift of the other state variables.

The rational-polynomial formula (10) is an exact expression for the approximated model. This

differs from the more common situation where the input functions are known, but approximation

methods are needed to compute the price-dividend ratio as a solution to an integral equation

(Wachter, 2005; Calin et al., 2005). Similar equations arise in stochastic growth models; for

an overview see Taylor and Uhlig (1990). With unrestricted coefficients the rational-polynomial

formula could be used as a Padé expansion, which is known to have good approximation and

extrapolation properties (Judd, 1996). The analytic solution overcomes the need to compute

expectations via Fourier analysis or Monte Carlo simulation, which is particularly attractive for

the purpose of estimation. Exact expressions for asset prices under non-Gaussian distributions

and/or non-CRRA preferences are rare. An exception is the linearity generating processes of

Gabaix (2007), who modifies an autoregressive process such that the price-dividend ratio becomes

linear in the state variable. More often the log-linear approximation method of Campbell and

Shiller (1988) is used, which could obscure the impact of higher order moments.

Figure 1 illustrates the impact of nonlinearity in the dividend-consumption ratio as a function

of output uncertainty on the price-dividend ratio. In particular, it shows that the second order

term in the dividend-consumption ratio expansion Dt
Ct

= 1+0.1Vt+c2V
2
t controls the steepness of

the decline of the price-dividend ratio in economic uncertainty. The slope of the price-dividend

ratio has major implications for its variance, since when the slope is nearly flat the variance of

the price-dividend ratio will be near zero regardless of the magnitude of economic uncertainty.

Figure 2 shows that time-varying risk aversion and uncertainty have a similar negative impact

on the valuation ratio. Low price-dividend ratios can therefore not be unambiguously interpreted

as either high uncertainty or high risk aversion. The lower is economic uncertainty, the steeper

is the decline in the price-dividend ratio when risk aversion increases, and vice versa. More

observations are therefore needed to disentangle the two effects.

However, Figure 3 shows that when risk aversion amplifies the impact of economic uncertainty

4A similar expression obtains for singular δI − AM in terms of its Jordan form UJU−1, yielding QM =
U
∫∞
0
e−δτeτJdτU−1.
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Figure 1: Theoretical Price-Dividend Ratio versus Output Growth Volatility, for Dividend-
Consumption ratio set as Dt

Ct
= 1 + 0.1Vt + c2V

2
t for varying c2. Transition parameters are set as

in Table 3; habit Qt is in the steady state.
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Figure 2: Theoretical Price-Dividend Ratio versus Risk Aversion and Output Growth Volatility.
Dividend-Consumption ratio is set as Dt

Ct
= 1 + 0.1Vt. Transition parameters are set as in Table

3.

on the dividend-consumption ratio, higher levels of risk aversion imply more steeply declining

price-dividend ratios for any level of output growth volatility. This in turn implies that the

market return variance is monotonically increasing in risk aversion, which it does not necessarily

as a function of output growth volatility, as will be illustrated in 4.
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(b) Stock Market Return Variance.

Figure 3: Theoretical Price-Dividend Ratio and Stock Market Return Variance versus Output
Growth Volatility for varying levels of risk aversion. Dividend-Consumption ratio is set as Dt

Ct
=

1 + 0.1Vt + 0.2V 2
t + 0.1QtVt. Transition parameters are set as in Table 3.

2.5 Risk-free rate and expected excess returns

The pricing equation (5) implies that in equilibrium the expected return on dividend-paying

assets should satisfy

0 = ζtDtdt+ E (d(ζtPt) | st) .

In particular, if a risk-free security is traded, then its deterministic rate of return rft should satisfy

rft dt = −E
(
dζt
ζt

∣∣∣ st) ,
which is shown in the appendix to be increasing in the discount rate δ and expected consumption

growth, and decreasing in the inverse consumption surplus Qt. The impact of output growth

volatility on the risk-free rate depends on the shape of the uncertainty aversion function H(Vt)

and whether volatility is above or below its long-run mean. The innovations of the pricing kernel

follow

dζt
ζt

= −rft dt− λY (st)
√
VtdWt − λV (st)ω

√
VtdBt − λQ(st)η

√
QtdB

q
t ,
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where the prices of growth, uncertainty, and discount rate risks, respectively, are given by

λY (st) = 1 +

(
ψcyq (st)

ψcy(st)
− 1

Qt

)
ry
√
Qt (12)

λV (st) =
ψcyv (st)

ψcy(st)
− H ′(Vt)

H(Vt)

λQ(st) =
ψcyq (st)

ψcy(st)
− 1

Qt
.

The expected excess return on the aggregate stock is

Et(dPt) +Dtdt

Pt
− rft dt = −Et

(
dζt
ζt

dPt
Pt

)
= λY (st)β

Y (st) + λV (st)β
V (st) + λQ(st)β

Q(st),

in terms of the asset’s risk exposures βX(st) = Et

(
dXt

dPt
Pt

)
with respect to X ∈ {log Yt, Vt, Qt}.

The prices of growth, uncertainty, and discount rate risks would be constant over time if the

consumption policy function ψcy and the uncertainty aversion function H(Vt) are both log-linear,

and the inverse consumption surplus is constant. Instead, the model generates time-varying prices

of risks not only from the time-varying consumption reference level, as in habit formation models,

but also from the nonlinearity in the consumption policy function and uncertainty aversion.

Likewise, the risk exposures depend nonlinearly on the state variables unless the price-dividend

ratio is log-linear. Together, these flexible functional forms can generate rich dynamics of growth

and variance risk premia.

2.6 Individual stock prices

The general pricing formula can be straightforwardly extended to individual stocks. Suppose the

equities of N firms are traded at prices (Pit) and pay continuous dividends (Dit). To separate

a common component and heterogeneity in firm-level dividend policy it is natural to model the

shares of total dividend Dit
Dt

, an approach also taken in Menzly et al. (2004). If the dividend

shares are stationary then in the long run no single firm dominates aggregate dividends. Suppose

that the optimal dividend shares are modelled by individual-specific functions of the aggregate

state ψdi (·) plus stationary individual-specific unexplained components zdit:

Dit

Dt
= αi + βi

T st + zdit, E(zdit | st, zdt ) = 0. (13)

Various extensions can be thought of to model the functions (ψi) in a flexible way. In particular

nonlinear specifications of ψdi (st) could be assumed in the same fashion as the nonlinear response

in aggregate dividends Dt. Since the aggregate nonlinearity already implies nonlinear individual
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dividend-consumption ratios, for parsimony I restrict to the linear specification for individual div-

idend shares. The error terms zdit are allowed to be correlated with the aggregate error term zdt .

A positive correlation suggests the asset pays out less when the aggregate dividend-consumption

ratio is low, which makes it less valuable to an investor seeking to diversify its income. Further-

more observed time-invariant characteristics Xi, such as book-to-market or leverage ratios, can

be used to explicitly describe parameter heterogeneity.5 The individual price-dividend ratios are

given by

φi(st, z
d
it, z

d
t ) = Et

(∫ ∞
0

e−δτ
Qt+τH(Vt+τ )

QtH(Vt)

ψdc(st+τ ) + zdt+τ
ψdc(st) + zdt

αi + βi
T st+τ + zdit+τ

αi + βi
T st + zdit

dτ

)
. (14)

Using the same steps as for the aggregate price-dividend ratio, and abstracting from the noise

processes zdt , the price-dividend ratio of an asset i has the rational-polynomial expression

φiM (st) =
gi
TQMst

M

giT stM
, (15)

where now gi are the coefficients of the product of polynomials (HK · ψdcL · ψdi,L)(s).

2.7 Asset Price Volatility

Variation in the log return can be decomposed into variation in the log price-dividend ratio φM ,

the log dividend-output ratio ψdyL , and log output log Yt:

d logPt = d log φM + d logψdyL + d log Yt.

The price-dividend ratio and the dividend-output ratio are driven by the latent variables st which

generate covariation among the components. From Itô’s Lemma it follows that the relative size of

each component depends on its first derivatives with respond to the state variables. In particular,

the variability of the price-dividend ratio follows from its quadratic variation increments

d〈φM (st)〉t = ∇φM (st)
TCov([dVt dQt]

T )∇φM (st),

5Including time-varying characteristics would complicate computing asset prices, as their distribution would
have to be explicitly modelled. With sorted stock portfolios the time-variation in the sorting variable is naturally
controlled for.
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with ∇φM (st) the gradient of the price-dividend ratio (see the Appendix). The rational polyno-

mial expression is preserved under differentiation, with the gradient given by

∇φM (s) =
∇sMT (

GTQTM −QMG
)
sM

sMTGsM
,

where G = ggT is the outer product of the coefficient vector. The same formula applies to the

dividend-output ratio. Figure 4 shows the theoretical variance decomposition of the log market
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Figure 4: Theoretical variance decomposition of the log market return into variation in the log
price-dividend ratio, log dividend-output ratio, and output growth, under quadratic expansion
of the policy functions ψ and the pricing kernel H. Parameter values are set as the estimates
reported in Table 3; habit Qt is in the steady state.

return into its components using quadratic approximations. The graph shows that total return

variance is non-monotonic in the underlying economic uncertainty. This explains why financial

markets can be volatile even at low levels of economic uncertainty, or why stock market variance

can be relatively low under high economic uncertainty. At low levels of uncertainty the total

return variance is dominated by the large negative slope of the price-dividend ratio, whereas at

large levels of uncertainty variation in fundamentals is the main component. Variation in the log

dividend-output ratio is of a lower magnitude, so that variation in dividend growth is roughly

proportional to output growth. In the empirical section the variation of log returns and dividends

is estimated from daily observations over a long time span, and compared against their theoretical

counterpart.
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3 Estimation

This section discusses the estimation of the policy functions ψ =
(
ψcy, ψdc

)T
, the discount param-

eter δ and uncertainty aversion index H, and the parameters of the latent variable distribution θs.

The functional parameters are combined into h = (ψ,H), the finite-dimensional into θ = (δ, θs),

and both functional and finite-dimensional parameters into ϑ = (θ, h).

3.1 State space formulation

The vector Mt =
(
Ct
Yt
, DtCt

)T
contains the aggregate responses whose conditional mean is modelled

by polynomial approximation. The N -dimensional vector Pt = (Pit) contains asset prices and

realized volatility measures whose theoretical values are stacked in the vector-valued function

g. The theoretical values are functions, derived in Section 2, of the common state st and the

characteristics Xt = (Xit) that describe cross-sectional heterogeneity. The system of observations

is represented as

Mt = ψ(st) + zMt (16)

Pt = g(st, z
M
t , Xt, ϑ) + zPt , (17)

with zt = (zMt , z
P
t ) the combined error terms. Combine the time-t observations into the vec-

tor Yt = (Yt,Mt, Pt), where output Yt is the observed part of the state variable St. Let

FYt = (Yt,Yt−1, . . .) and Fst = (st, st−1, . . .) denote the histories of the observed and unob-

served components, respectively. The following assumptions describe the interaction between the

states and the errors:

Assumption 1.

a) (zt, st) are jointly stationary and contemporaneously exogenous: E (zt | st) = 0.

b) The joint process is first-order Markov:

(Yt+1,St+1) | (FYt ,Fst ) ∼ (Yt+1,St+1) | (Yt, st).

c) There is no feedback from the errors to the states:

St+1 | (zt,St) ∼ St+1 | St.

The stationarity assumption of the states and errors is equivalent to the cointegration of
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output, consumption, and dividends, that appear as ratios in Mt. This cointegration relation

is at the heart of several studies of return predictability (Lettau and Ludvigson, 2001; Bansal

et al., 2007). The presence of state variables in the policy functions generalizes the constant

cointegration relation and allows for more general dynamic error-correction forms. The joint

first-order Markov assumption of observables and states is equivalent to the joint first-order

Markov property of the states and the errors zt. In practice higher order dependence can be

allowed for by including further lags in the state vector. The no feedback assumption means that

the state variables are themselves Markovian, and are not caused in the sense of Granger (1969)

by errors in the observables. This allows for an interpretation of exogenous variation in the state

variables that generates endogenous responses in the observations. Together with a notion of

weak cross-sectional dependence between the errors zt this means the state variables describe the

systematic variation in the observables. The stronger assumption of a hidden Markov model,

which rules out dependence of the error components on past states, is not needed. In particular,

the observations do not need to be Markovian themselves, and can depend on shocks at all lags.

Under Assumption 1 the transition density of the state vector St = (Yt, st) depends only on

the current unobserved state:

f(St+1 | FYt ,Fst ) = f(St+1 | st).

The time t+ 1 contribution to the likelihood function LTN (ϑ) =
∏T−1
t=1 Lt+1(ϑ) is given by

Lt+1(ϑ) = f(Yt+1 | FYt ;ϑ)

=

∫
f
(
Yt+1, st+1 | FYt ;ϑ

)
dst+1

=

∫∫
f (Yt+1 | st+1,Yt, st;ϑ) f (st+1 | st;ϑ) f

(
st | FYt ;ϑ

)
dst+1dst.

The normalized log likelihood is written as `NT (ϑ) = 1
T

∑T−1
t=1 `t+1(ϑ) with contributions `t+1(ϑ) =

1
N logLt+1(ϑ). The likelihood contributions are integrals over the future and current state vari-

ables, where the integrands are the product of the measurement, transition, and updating densi-

ties.

The population parameters of interest are given by

(θ0, h0) = arg max
θ∈Θ,h∈H

lim
N→∞

E (`t+1(θ, h)) , (18)
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and the maximum likelihood estimator by

(θ̂, ĥ) = arg max
θ∈Θ,h∈H

1

T

T−1∑
t=1

`t+1(θ, h), (19)

with Θ and H parameter spaces of finite and infinite dimension, respectively.

In dynamic models it is generally not possible to integrate out the latent variables analyti-

cally from the likelihood. Whereas in linear models with Gaussian errors the updating density

f
(
St | FYt ; θ, h

)
can be computed recursively by the Kalman filter, in nonlinear models exact

filtering is rarely possible. In line with Taylor expansion methods of solving equilibrium models

(e.g. Schmitt-Grohé and Uribe, 2004), a second order approximation to the measurement equation

can be performed to identify parameters corresponding to volatility shocks (Fernández-Villaverde

and Rubio-Ramı́rez, 2007). However, this may cause parameters related to higher order moments

to become unidentified. Alternatively, particle filtering in combination with Bayesian updating

can be used to numerically compute expectations over the state vector, see Doucet and Johansen

(2009) for an overview.

3.2 Cross-sectional state recovery

The data set takes the form of a panel consisting of N asset prices observed over T time pe-

riods. The approach in this paper is to extract the unobserved dynamic state variables from

large cross-sections, and evaluate the joint likelihood at the estimated states. While avoiding a

computationally intensive simulation procedure, this plug-in approach may lead to biases in the

estimated parameters, when the number of cross-sectional units N is not of a larger order than

the number of time periods T (e.g. Hahn and Kuersteiner, 2011; Fernández-Val and Weidner,

2016). This is the time series analogue of the incidental parameters problem for individual-

specific effects. The bias may be avoided if the number of units N grows faster than the number

of time periods T , although this would affect the identification and convergence rate of parameters

describing the state dynamics (Gagliardini and Gourieroux, 2014).

While the dynamic state variables are modelled as random, a fixed-effects type estimator is

generally consistent as long as N and T go to infinity. When the number of cross-sectional

units grows to infinity, the updating density of the dynamic state variables becomes concentrated

around its mode, subject to identification conditions. If the true parameter ϑ0 were known, the

prevailing state st could be recovered from a single cross-section as long as the cross-sectional

errors satisfy a suitable law of large numbers. To formalize this, define the expected limited
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information conditional likelihood

¯̀
t(ϑ, s) = plim

N→∞

1

N
Eϑ0 (log fϑ (Yt | s) | st) . (20)

Also define the population implied state

s̄t(ϑ) := s̄(ϑ, st) := arg max
s

¯̀
t(ϑ, s).

For any parameter value ϑ the implied state maximizes the expected log likelihood function

conditional on the prevailing state st. At the true parameter ϑ0 it satisfies s̄(ϑ0, s) = s by

properties of the Kullback-Leibler divergence. Define the implied state estimator

ŝt(ϑ) = arg max
s

log fϑ (Yt | s) . (21)

The implied state estimator is the standard fixed effect estimator when the realized states are

treated as parameters. Write the limited information updating density as

fϑ (st | Yt) =
fϑ (Yt | st) fϑ (st)

fϑ (Yt)
,

and denote its mode

s̃t(ϑ) = arg max
s

log fϑ (s | Yt) .

The measurement density log fϑ (Yt | st) grows with the number of observations, unlike the un-

conditional state density fϑ (st) which can be interpreted as a prior. Therefore the maximzers

ŝt and s̃t of the measurement and updating density are asymptotically equivalent, provided the

unconditional state density fϑ (s) is uniformly bounded in s. For the state estimators to converge

to their population counterpart, the measurement density should become more informative about

the state when the number of cross-sectional units increases:

Assumption 2. For every st, when N →∞

sup
ϑ∈Θ×H,s∈S

∣∣∣ 1

N
log fϑ (Yt | s)− ¯̀

t(ϑ, s)
∣∣∣ p−→ 0

Assumption 2 assures that the cross-sectional limit (20) is well defined. For i.i.d. data,

it is implied by compactness of Θ and continuity and boundedness of fϑ. More generally, it

requires the measurement errors to satisfy a uniform (weak) law of large numbers to prevent

the measurement density from growing faster than the number of observations. This allows for
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weak forms of cross-sectional dependence, which the next subsection discusses in more detail. If

Assumption 2 holds, and a consistent estimator for ϑ0 is available, the state variables can be

consistently estimated from a large cross-section.

The maximizer of the concentrated likelihood

`cTN (ϑ) =
1

T

T∑
t=1

log fϑ (Yt | ŝt(ϑ)) (22)

is the analogue of the fixed-effects estimator in panel data models with individual effects, and

is therefore generally consistent when N → ∞. The related concentrated nonlinear least square

estimator has been applied to option pricing (Andersen et al., 2015; ?) and term structure

models (Andreasen and Christensen, 2015), and can consistently estimate the state variables

even when their transition density is unspecified.6 However, unlike independent cross-sectional

units, the state variables create a natural dependency between different time periods, which is

ignored by the estimation based on (22). The parameters of the transition density may therefore

be inefficiently estimated or not even identified, which would carry over to the estimation of the

states and the structural parameters. To incorporate the knowledge about the transition density

of the state variables, the limited information maximum likelihood can be extended to condition

on the one-period lagged cross-section:

`NT,1(ϑ) =
1

NT

T−1∑
t=1

log fϑ (Yt+1 | Yt) . (23)

The state variables can now be concentrated pairwise, taking account of the transition density.

In particular, the augmented time t+ 1 log likelihood including one lag is

`t+1|t(ϑ; s′, s) =
1

N

(
log fθ

(
Yt+1 | Yt, s′, s

)
+ log fθ

(
s′ | s

)
+ log fθ (s | Yt)

)
,

and the pairwise concentrated states are

(
ŝ′t+1, ŝt

)
(ϑ) = arg max

(s′,s)
`t+1|t(ϑ; s′, s).

The pairwise concentrated log likelihood function is

`c,pairTN,1 (ϑ) =
1

T

T−1∑
t=1

`c,pairt+1 (ϑ), `c,pairt+1 (ϑ) = `t+1|t
(
ϑ; ŝ′t+1(ϑ), ŝt(ϑ)

)
,

6Andersen et al. (2015) apply this estimator to large cross-sections of option prices, and show that when the
risk-neutral distribution is correctly specified, a single cross-section suffices for consistent parameter estimation.
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with corresponding estimator

(θ̂c,pair, ĥc,pair) = arg max
θ∈Θ,h∈H

`c,pairTN,1 (θ, h). (24)

This procedure is a hybrid version of simultaneously concentrating out all state variables, and

doing so only locally for every point in time. The full simultaneous concentration procedure

defines an optimization over TD state variables and is computationally intractable for large

T . The local concentration procedure involves simple optimizations but ignores the dependence

between the state variables. In finite samples this can lead to large distances between adjacent

state vectors, which could result in estimation bias when evaluating the transition density at

the concentrated states. The pairwise procedure automatically takes into account the transition

density of the states, while solving only 2D dimensional optimization problems. For every time

period it yields two estimates of the prevailing state, ŝ′t(θ, h) and ŝt(θ, h). The former uses

current and one-period lagged observations, while the latter uses current and one-period ahead

observations. Under Assumption 2 and a sufficiently large cross-section, the difference between

the estimators disappears, which can be used for diagnostic analysis.

By the maximum theorem the pairwise concentrated likelihood (24) is continuous in the pa-

rameters, even when the concentrated state variables themselves are not continuous everywhere.

Therefore it satisfies the continuity conditions for sieve M-estimation for weakly dependent data

in Chen and Shen (1998). The pairwise concentrated likelihood is asymptotically equivalent,

denoted
a.e.
= , to the integrated limited information likelihood under weak cross-sectional depen-

dence. When moreover past lags are uninformative about the current state given a large enough

cross-section, it poses no efficiency loss compared to the full maximum likelihood estimator:

Proposition 1. a) Under Assumption 2, when N →∞

`c,pairNT,1 (ϑ)
a.e.
= `NT,1(ϑ).

b) Under Assumptions 2 and arg max
s∈S

plim
N→∞

1
NEϑ0

(
log fϑ (Yt | s) | FYt

)
= s̄t(ϑ) a.s.,

`c,pairTN,1 (ϑ)
a.e.
= `TN (ϑ).

The proof of Proposition 1 uses a Laplace approximation and is given in the appendix. Part a)

states that the difference between the concentrated likelihood and the one-lag limited information

likelihood disappears when N →∞, as long as the scale of the updating density shrinks propor-
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tionally to the number of observations. Part b) states that if moreover the updating density is

maximized at the same state when past lags are added, the difference with the full information

likelihood disappears. Under these assumptions the pairwise concentrated likelihood suffers no

asymptotic efficiency loss compared to the full maximum likelihood estimator.

3.3 Quasi-maximum likelihood

When the structural parameters are identified from the conditional mean and variance of the

measurement equation, their consistent estimation does not require modelling explicitly the (joint)

distribution of the errors. This motivates a quasi-maximum likelihood approach following White

(1982), which is robust to specific assumptions on the error distribution, only at the cost of

a possible loss of efficiency. In particular, I construct quasi-likelihoods based around Gaussian

errors, in which case the joint measurement density reduces to a nonlinear least squares criterion.

The errors are not restricted to be uncorrelated over time or in the cross-section, as long as they

can be averaged out from a cross-section. Since both the macroeconomic ratios and the price-

dividend ratios are highly persistent, I use an autoregressive model for their error terms. Since

the state variables already introduce non-Gaussian shocks into the observables, the residuals may

not be too far from Gaussian, which limits the associated efficiency loss.

Let theN+2-dimensional error vector zt = (zMt , z
P
t ) representing the transitory deviation from

equilibrium follow the continuous time autoregressive Ornstein-Uhlenbeck process with Brownian

increments

dzt = −Aztdt+ ΣdWt. (25)

This process reverts around its unconditional mean of zero, with the autocorrelation matrix A

capturing the speed of mean reversion, and Σ the covariance matrix of the Gaussian shocks in

Wt. The continuous time setup allows computing the distribution of the errors over any horizon.

The increments for a given horizon τ follow the normal distribution

zt+τ − zτ ∼ N(µzt,t+τ ,Ω
z
τ ),

whose expectation µzt,t+τ is linear in the current value with exponentially decaying weight

µt,τ (z) = e−Aτzt,

and with the covariance matrix Ωz
τ varying with the horizon but independent of the current value.

For notational convenience define the autocorrelation matrix Rτ = exp(−Aτ). The unconditional

25



distribution of zt is also Gaussian, and given by

z0 ∼ N(0,Ωz
∞).

Under a Gaussian error distribution, the one-period ahead measurement density of the macroe-

conomic ratios and the price-dividend ratios conditional on the current and previous state is

fϑ (Yt+1 | Yt, st+1, st) = φ (εt+1(ϑ, st+1, st); Ωτ )

in terms of the multivariate normal density φ(·;σ2) with mean zero and variance σ2, and the

generalized residuals

εt+1(ϑ, st+1, st) = zt+1(ϑ, st+1)−Rzt(ϑ, st) (26)

zt(ϑ, st) =

 Mt − ψ(st)

Pt − g(st, z
M
t , Xt, ϑ)

 . (27)

The limited information likelihood conditional on the current state alone is given by

fϑ (Yt | st) = φ (zt(ϑ, st); Ω∞) .

Under a large cross-section of asset prices the dimension of zPt grows with N , while that of zMt

is bounded. Assumption 2 thus requires

1

N
log fϑ (Pt | st) = − 1

2N
log(2π)− 1

2N
log |ΩP

∞| −
1

2N
zPt (ϑ, st)

TΩP
∞
−1
zPt (θ, st) (28)

to remain bounded in probability. For independent Gaussian errors this is implied by non-

singularity of Ωp
∞, which leads to a non-central Chi-squared distribution. More generally this

restricts the magnitude of the covariance terms in Ωp
∞. In particular, it should be ruled out that

the variance of some linear combinations of the error terms does not disappear, which would

violate the law of large numbers. This is guaranteed by the following assumption of weak cross-

sectional dependence based on Chudik et al. (2011):

Assumption 3. For every period t = 1, . . . , T , for any weight vector wt such that ‖wt‖2 =

O(N−1) and wit
‖wt‖ = O(N−

1
2 ) when N →∞,

Var
(
wT
t zt | st, Xt

)
→ 0.
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For the quasi-maximum likelihood density (28), Assumption 3 implies Assumption 2. Assump-

tion 3 rules out common components in the error terms. For example, strong factor structures

of the form zit = βiXt + εit, with εit i.i.d., would not be allowed. In practice this requires taking

out the factors by including sufficiently many latent variables or observed regressors. A natural

control in the case of many individual price-dividend ratios is to include the error of the aggregate

price-dividend ratio, which effectively demeans the individual errors. The assumption does allow

for general spatial dependence in the errors, such as α-mixing errors with distance measured by

Xit (Sarafidis and Wansbeek, 2012). This type of local dependence can be effectively dealt with

by cross-sectional kernel smoothing prior to estimation, as in Dalderop (2018). This also allows

using observations of nearby dates to smooth out the errors over time, as is useful in dealing with

observation errors in option prices that are likely to be less persistent.

The number of parameters in A and Ωp
∞ grows with N2 if no restrictions are imposed. In

practice dimension reductions are required, for example by assuming uncorrelatedness, which

leads to the order of N parameters. In this case zit = e−aiτzit−1 + ωτ,iεit, with εit i.i.d. N(0, 1).

Furthermore when the cross-sectional units have a natural ordering in the variable Xi, it could

be assumed that (ai, σi) = (a(Xi), σ(Xi)) for some global functional parameters (a(·), σ(·)) that

can be approximated by a series of basis functions.

3.4 Closed-form transition density approximation

There is an active literature on approximating the transition density of the state variables based on

stochastic differential equations of the type (1). The major advantage of such an approach is that

it prevents the need for costly simulation of continuous time processes. Starting from Aı̈t-Sahalia

(2002), several papers study approximating the log transition density using Hermite polynomials

and solving the coefficients from the Kolmogorov forward and backward equations. This approach

works particularly well for multivariate diffusions, and for relatively short horizons. In this paper

I use a variant of the approximation method in Filipović et al. (2013). This method is based

on series expansions in the state space rather than the time horizon, so that the approximation

quality does not deteriorate with the horizon.7 In particular, starting from an auxiliary density

w(·) I approximate the likelihood ratio using orthogonal polynomials up to some order J :

f (J)(S | s) = w(S | s)

1 +

J∑
|l|=1

clHl(S)

 ,

7See Filipović et al. (2013) for details on the approximation properties when J →∞.
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where l is a multi-index and Hl(·) is the Hermite polynomial of degree l whose coefficients are

constructed from the Gram-Schmidt process. The projection coefficients based on the weighted

L2
w norm satisfy

cl(s) =

〈
f (J)

w
,Hl

〉
L2w

= E (Hl(St+τ ) | st = s) .

The polynomial moments are linear combinations of the known conditional moments (9). In

our implementation I choose the auxiliary densities for output log Yt, its instantaneous volatility

Vt, and the risk aversion state Qt, to be the symmetric Variance-Gamma density, and twice the

noncentral Chi-squared distribution, respectively. The former naturally allows for fat tails, while

the latter is the exact distribution of processes of the type of Cox et al. (1985). Each distribution

has two parameters which are used to match the conditional mean and variance of each variable.

The product of the univariate auxiliary densities then creates the trivariate auxiliary density. The

approximations using mixed Hermite polynomials to the fourth order are very close to densities

obtained via Fourier inversion. All coefficients are computed symbolically, which only needs to

be performed once prior to estimation. The marginal densities of the unobserved states are

approximated using the corresponding subset of the conditional moments. Their unconditional

density is approximated via conditioning on the mean and setting a large horizon such as τ = 5

years.

3.5 Identification

Under the cross-sectional averaging assumption, the population parameters (θ0, h0) defined by

(18) also minimize the concentrated version of the population likelihood. This section discusses

conditions such that the structural parameters ϑ are identified from the expected quasi-maximum

likelihood

¯̀c,pair(ϑ) = lim
N→∞

E
(
`c,pairt+1 (ϑ)

)
= lim

N→∞
Eϑ0

(
N−1‖zt+1 (ϑ, s̄t+1(ϑ))−Rzt (ϑ, s̄t(ϑ)) ‖2Ωτ

)
+ Eϑ0

(
N−1‖zt (ϑ, s̄t(ϑ)) ‖2Ω∞

)
.

The conditions are general and apply to other settings where latent variables are backed out

from cross-sections of asset prices, as is common in option pricing and term structure applications.

Related conditions are in Pastorello et al. (2003), who study identification based on the transition

density of the profiled state. We use information from the measurement equations, which makes

it possible to identify structural parameters that do not appear in the transition density. The

following assumption suffices to identify the structural parameters from the concentrated quasi-
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maximum likelihood ¯̀c,pair(ϑ):

Assumption 4. For every pair ϑ 6= ϑ′ there exists some s, such that

ψ(s̄(ϑ, s)) 6= ψ(s̄(ϑ′, s)) or g(s̄(ϑ, s), Xt, ϑ) 6= g(s̄(ϑ′, s), Xt, ϑ
′).

Assumption 4 rules out that different parameters lead to the same prices, which requires that

the implied states cannot respond to a change in parameters in such a way that the price remains

unchanged. In general, this is a high level invertibility condition, but it has been studied in

the context where the state variables are observable. In particular, given the policy functions,

the uncertainty aversion is identified from the price-dividend ratio if H is the only function that

satisfies the integral equation

E

(
Pt
Dt

∣∣ st) = Et

(∫ ∞
0

e−δτ
H(st+τ )

H(st)

ψdc(st+τ )

ψdc(st)
dτ

)

Sufficient conditions are studied in Christensen (2017) using uniqueness of positive eigenfunctions,

and in Chen and Ludvigson (2009) in terms of completeness of the conditional density weighted

by ψdc. Since H is only identified up to scale, it is normalized by setting the constant coefficient

at 1.

3.6 Consistency

Define the product space Θ = Θ × H, where Θ is a finite-dimensional parameter space, and

H =
∏
mHψm×HH is a Cartesian product of infinite-dimensional parameter spaces for the policy

functions ψm and the uncertainty aversion function H. Let the spaces Hm and HH be equipped

with the weighted Sobolev norm ‖ · ‖, which sums the expectations of the partial derivatives of

a function. In particular, for λ a d × 1 vector of non-negative integers such that |λ| =
∑d

l=1 λ1,

and Dλ = ∂|λ|

∂y
λ1
1 ···∂y

λd
d

the partial derivative operator, it is given for some positive integers r and

p by

‖g‖r,p =

∑
|λ|≤r

E
(
Dλg(S)

)p
1/p

. (29)

For vector-valued functions define ‖g‖r,p =
∑K

m=1 ‖gm‖r,p. Instead of maximizing `cNT (θ) over the

infinite dimensional functional spaceH, the method of sieves (Chen, 2007) controls the complexity

of the model in relation to the sample size by minimizing over approximating finite-dimensional

spaces HL ⊆ HL+1 ⊆ ... ⊆ H which become dense in H. For some positive constant B and
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integer p, define the functional space

Hp =
{
g : RD 7→ R : ‖g‖pr,p ≤ B

}
(30)

All functions in the compact space Hp have at least r partial derivatives that are bounded in

expectation. For p = 2 the polynomials in this space can be conveniently characterized in terms

of their coefficients. Let p
L

= (p1(w), ..., pL(w)) be a set of basis functions, and consider the

finite-dimensional series approximator gL(w) =
∑L

l=1 γjpj(w) = γ · p
L

(w). Define

ΛL =
∑
|λ|≤m

E
(
Dλp

L
(z)Dλp

L
(z)T

)
, (31)

which implies that gL(w) ∈ H2 if and only if γTΛLγ ≤ B (Newey and Powell, 2003). Therefore

the optimization in (24) is redefined over the compact finite-dimensional subspace H2
L(T ):

(θ̂c,pair, ĥc,pair) = arg max
θ∈Θ,h∈HL(T )

`c,pairTN (θ, h),

where H2
L(T )

H2
L(T ) =

g(w) =

L(T )∑
l=1

γjpj(w) : γTΛL(T )γ ≤ B

 .

Also define the Sobolev sup-norm

‖g‖r,∞ = max
|λ|≤r

sup
z

∣∣∣Dλg(z)
∣∣∣ . (32)

Then the closure H̄ of H with respect to the norm ‖g‖r,∞ is compact (Gallant and Nychka, 1987;

Newey and Powell, 2003).

Let Σ̂ := (Σ̂M , Σ̂P ) be initial estimators of the covariance matrices Σ := (ΣM ,ΣP ), and

R̂ = e−Â be initial estimators of the autocorrelation parameters. Plugging Σ̂ and R̂ into (3.6)

yields the feasible quasi-maximum likelihood objective

ˆ̀c,pair
TN (θ, h) = `c,pairTN (θ, h; Σ̂, R̂). (33)

This is the objective of two-step estimators which do not involve simultaneous maximization over

possibly high-dimensional covariance matrices.

Consider the following set of assumptions:

Assumption 5.
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a) The parameter space Θ = Θ×H is compact, and the population quasi-maximum likelihood

¯̀c(θ, h)is uniquely maximized at the interior point ϑ0 = (θ0, h0).

b) Σ̂N and ΣN are positive definite, ΣN is bounded, and Σ̂N − ΣN
a.s.−−→ 0; R is bounded, and

R̂N −RN
a.s.−−→ 0.

c) (Xt, zt) is a strong mixing stationary process, with E
(
‖zt‖2

)
<∞

d) The pricing functions satisfy for every i = 1, ..., N ,

|gi(st, Xit, ϑ)− gi(st, Xt, ϑ̃)| ≤ b(st, Xt)‖ϑ− ϑ̃‖v

for some v > 0 with E
(
b(st, Xt)

2
)
< ∞, and Var (gi(st, Xt, ϑ0)) < ∞. The transition

density satisfies

∣∣ log f (S | s; θ)− log f
(
S | s; θ̃s

) ∣∣ ≤ c(S, s)‖θs − θ̃s‖u
for some u > 0 with E

(
c(St+1, st)

2
)
<∞, and Var (log f (St+1|st; θs,0)) <∞.

Theorem 1. Under Assumptions 1-5, the maximizer (θ̂, ĥL) of (33) satisfies

θ̂
p−→ θ0,

‖ĥL − h0‖r,∞
p−→ 0,

when N,T →∞, L→∞, and LD+1/NT → 0.

3.7 Inference

Ackerberg et al. (2012) show that when the unknown functions are approximated by the sieve

method, then for M -estimators inference based on assuming the approximating order is correct

is numerically equivalent to inference taking into account the presence of the infinite-dimensional

parameters. This provides a basis for performing standard parametric-style inference that is

relatively simple to implement. While the numerical equivalence of standard errors only considers

the parametric part of the model, its application to the sieve coefficients is justified when the

approximation up to a certain order is correct. This is a parametric specification hypothesis

that can be tested for sequentially. This section therefore derives the asymptotic distribution of

the parameters and sieve coefficients under the assumption that the order of the polynomial is

correctly specified.
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Let cL = (cψ, cH) denote the coefficients of the L degree polynomial approximations to ψ and

H, and let ϑL = (θ, cL) be the combined parameters. Let ∂ϑ and ∂ϑϑ′ be the first and second

partial derivative operator with respect to ϑ, respectively. The score vector and the Hessian for

observation t are then given by ∂ϑL`
c
t(θL) and ∂ϑϑ′`

c
t(ϑ).

The following additional regularity conditions are required for the asymptotic normality of

ϑ̂L:

Assumption 6.

a) E
(
supα

∥∥∂αα′ log f(s′ | s;α)‖t
)
<∞, E

(∥∥∂α log f(s′ | s;α0)
∥∥4
)
<∞, and for i = 1, . . . , N

E
(
supϑ

∥∥∂ϑϑ′gi(st, Xt, ϑ0)
∥∥) <∞ and E

(∥∥∂ϑgi(st, Xt, ϑ0)
∥∥4
)
<∞

b) E(∂ϑϑ′`
c
t(ϑ0)) is non-singular

c) E(εit | Ft−1) = 0, and

E
((

wT
t εt
)4 | st, Xt

) 1
2

= Op

(
1

N

)
Theorem 2. Let Assumptions 1 - 6 hold. When N,T → ∞, and T

N → κ for some 0 < κ < ∞,

then
√
NT (ϑ̂− ϑ0)

d−→ H−1
0 ×N

(
κE(B̄t),V0

)
,

where

V0 = lim
N→∞

1

N
E
(
∂ϑεt(ϑ0)TΩ−1

N ΩtNΩ−1
N ∂ϑεt(ϑ0)

)
ΩtN = E

(
εtε

T
t | st, st−1

)
H0 = E

(
∂ϑϑ′ ¯̀(ϑ0, sp,t(ϑ0))

)
+ E

(
∂ϑs′p

¯̀(ϑ0, sp,t(ϑ0))∂ϑ′sp,t(ϑ0)
)
.

The expression for the bias term B̄t is given in the appendix. If the cross-section is large

compared to the time series, then κ is close to zero and the bias is small, and vice versa for a

relatively small cross-section. Under conditional homoskedasticity V0 simplifies to

lim
N→∞

1

N
E
(
∂ϑεt(ϑ0)TΩ−1

N ∂ϑεt(ϑ0)
)
.

Sample counterparts V̂ and Ĥ based on the outer product of the gradient and the Hessian matrix

can be used to estimate the standard errors of the parameters, and to construct Wald or Lagrange-

Multiplier test statistics for hypotheses on the coefficients.
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4 Empirical Results

4.1 Data

Output and consumption data are obtained from the Bureau of Economic Analysis of the U.S.

Department of Commerce. Output is measured by U.S. real gross domestic product in 1992

chained dollars. Consumption is measured as the real expenditure on nondurables and service,

excluding shoes and clothing, and scaled to match the average total real consumption expenditure.

The sample combines annual data starting from January 1929 with quarterly data starting from

January 1947 and ending in December 2016. Monthly observations of the Industrial Production

Index starting from 1929 obtained from the Federal Reserve are used to construct a proxy for

economic uncertainty.

Aggregate stock market prices and dividends are based on the S&P 500 index obtained from

CRSP. The individual price-dividend ratios are constructed from 10 Size and 10 Book-to-Market

portfolios obtained from Kenneth French’s Data Library. All prices and dividends are expressed in

real terms using the price index for U.S. gross domestic product. Dividends per unit are computed

from the difference in value-weighted returns with (Rdt+1) and without (Rxt+1) dividends:

Dt+1

Pt
= Rdt+1 −Rxt+1.

Price-dividend ratios are then computed as

pdt+1 =
Pt+1

Dt+1
=
Pt+1

Pt

Pt
Dt+1

=
Rxt+1

Rdt+1 −Rxt+1

,

and dividends from
Dt+1

Dt
=
pdt+1

pdt
Rxt+1.

The initial aggregate dividend Dm
1 = C1 is normalized to aggregate consumption, and the initial

portfolio dividends normalized by their relative market share Di1 = Mi1∑
jMj1

Dm
1 . The constructed

dividend series are equivalent to reinvesting intermediate cash payments in the underlying stock

(Cochrane, 1992).

Let ipt denote the log observed industrial production in month t, and let its increment be

∆ipt = ipt − ipt−1. The underlying volatility of output growth can be estimated using the

annualized Realized Economic Variance (REV) measure

REVt =
12∑
m=1

(∆ipt+1−m −∆ipt)
2,
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with ∆ipt the rolling window annual mean. The realized stock market variance (RV) is similarly

constructed from daily log returns Rt+1 with demeaning at the quarterly frequency as8

RVt =

252∑
d=1

(∆Rt+1−d −Rt)2,

with Rt the rolling window quarterly mean.

Table 1 contains descriptive statistics of the aggregate series. Output and consumption have

on average grown at a comparable pace of 3-4%. Both series are fairly persistent, with output

growth about twice as volatile. The S&P 500 market return earned on average over 6%, and is

highly volatile but not persistent. The consumption-to-output ratio is more smooth and more

persistent than the dividend-consumption ratio. The price-dividend ratio is relatively volatile yet

highly persistent. Realized stock market variance is about ten times higher than that of realized

productivity growth, and about five times as volatile. The two variation measures feature similar

autocorrelation, but the REV is estimated using lower frequency (monthly) data which could

lead to underestimate its autocorrelation.

Table 1: Sample mean, standard deviation and first-order autocorrelation (ACF(1)) of selected
annual series from 1930-2016.

Real output growth (∆ log Y ), real consumption growth (∆ logC), and the real market return (∆ logP ) are in
percentages. The ratios are in levels with the dividend-consumption ratio (D/C) normalized to start at unity.
Realized Variance (RV) and Realized Economic Variance (REV) are multiplied by 100.

∆ log Y ∆ logC ∆ logP C/Y D/C P/D RV REV

Mean 3.45 3.09 6.54 0.69 0.51 32.97 3.01 0.33

Std Dev 4.57 1.99 17.77 0.07 0.16 16.06 4.00 0.92

ACF(1) 0.44 0.36 -0.13 0.85 0.58 0.90 0.50 0.42

4.2 Economic Uncertainty and Stock Market Volatility

Figure 5 shows the historical series of the measure of economic uncertainty (REV) and the

measure of financial market volatility (RV). While both measures of variation peaked during the

Great Depression and the Great Recession, there are several well-known episodes during which

they diverged. The first postwar decades saw substantial economic uncertainty but historically

calm financial markets. On the other hand, during the LTCM collapse of 1998 stock market

volatility peaked while production growth remained largely unchanged. In recent years, stock

market volatility has plummeted while economic uncertainty remains relatively high. Figure 6

8Cum-dividend returns are used to control for price changes due to anticipated payments. At the index level
the difference compared to using ex-dividends returns is negligible.
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Figure 5: Realized Variance of Industrial Production growth and of S&P 500 returns from 1930-
2016.

compares REV with the dividend-consumption ratio. It displays substantial comovement between

the series, with the dividend-consumption ratio starting high during the uncertain 1930s, reaching

historical lows during the post war recovery period, and steadily rising again during and after the

Great Recession. This suggests output uncertainty affects not just the scale but also the level of

consumption and dividend growth. In particular, dividends must grow faster than consumption

when uncertainty increases in order to explain the behaviour of the dividend-consumption ratio.

To understand the different channels via which economic and financial market uncertainty affect

asset prices, Figures 7 and 8 plot the annual percentage change in REV and RV , respectively,

against the annual log return on output, consumption, dividends, and the S&P 500 Index from

1930 to 2016. Figure 7 suggests a negative relation between uncertainty shocks and output and

consumption growth, in line with the evidence in Bloom (2009) and Nakamura et al. (2017). The

market return also goes down contemporaneously when uncertainty increases in line with the

well known leverage effect. Dividend growth, on the other hand, does not go down and even is

slightly convexly increasing in changes to uncertainty, in line with rebalancing of the dividend-

consumption ratio. Figure 8 shows the impact of changes in financial market volatility on the same

response variables. While the direction of the responses is the same as for changes in economic

uncertainty, the realized stock market variance correlates much stronger with dividend growth

and the market return and much weaker with consumption and output growth. In particular,

dividend growth is pronounced convexly increasing and the market return convexly decreasing in
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Figure 6: Realized Variance of Industrial Production growth versus Dividend-Consumption ratio
(DC1930 = 1) from 1930-2016.
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Figure 7: Annual change in log Realized Economic Variance (REV) of Industrial Production
growth versus annual log return on Output, Consumption, Dividends, and the S&P 500 Index
from 1930-2016. Fitted line corresponds to a quadratic fit.

changes in the realized variance. This provides further evidence against a simple linear relation

between economic and financial uncertainty, which would not explain the different impact they

have on fundamentals. Figures 14 and 15 in the Appendix show that the same patterns can be
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observed when quarterly instead of annual data is used.

4.3 Cross-sectional heterogeneity

Table 2 shows the heterogeneous impact of increases in uncertainty on the dividend share of small

and large firms based on the regression

Dit

Dt
= α0i + βi

TREVt + zdit, E(zdit | REVt) = 0. (34)

The estimated coefficients show that larger firms tend to increase their dividend share in uncertain

Table 2: Parameter estimates and standard errors of regression (34) using annual data from
1926-2016 using one-lag feasible generalized least squares.

Size decile 1 2 3 4 5 6 7 8 9 10

β̂i -2.67 -2.24 -1.35 -1.58 0.77 0.47 2.04 1.13 1.58 1.85

(4.15) (1.18) (0.56) (0.73) (0.85) (1.08) (0.81) (0.94) (0.71) (0.70)

times, whereas smaller firms tend to reduce them. A possible explanation is the real options

theory of investment which suggests that large firms invest less when uncertainty is high and

can afford to pay out cash to their shareholders. Small firms have less cash reserves to fall
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back on, which could force them to cut dividends in uncertain times. This heterogeneity in

individual dividend-consumption ratios generates heterogeneous impact of the portfolio price-

dividend ratios in response to uncertainty shocks. This is illustrated in Figure 9, which compares

the price-dividend ratios as a function of output volatility for small and big firms, at the estimated

parameters. Larger firm are expected to pay more dividends in uncertain times, which is priced by

uncertainty averse investors, making large firm equity relatively expensive. Moreover large firm

price-dividend ratios are more sensitive to changes in uncertainty, as their more countercyclical

dividend payouts induce larger variations in expected dividend growth, which is reflected in their

prices. As a result, the spread between large and small firm price-dividend ratios helps to identify

uncertainty beyond the level of the price-dividend ratios.
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Figure 9: Price-dividend ratios as function of output volatility for the 10% smallest and largest
firms, and their ratio, based on estimated parameters.

Figure 10 shows the time series of the price-dividend ratios and the dividend shares of the

stock portfolio corresponding to the smallest and largest size decile. The price-dividend ratios of

the small firms have a strong negative correlation of −0.52 with its dividend share, suggesting an

important role for the mean-reverting error to drive expected dividend growth. The price-dividend

ratios of large firms are more smooth, reflecting their ability to smooth dividends. During several

episodes, in particular in the 80s and 90s, the price-dividend ratios moved substantially apart

even when their dividend shares did not. Small firms were more vulnerable to the increased

uncertainty in the aftermath of the 1987 stock market crash, but recovered sharply when markets

calmed. The peak in large-firm valuation ratios during the dot-com bubble is difficult to explain

by uncertainty alone but can be attributed to high risk appetite.
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(a) Price-Dividend Ratios.
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(b) Relative Dividend Share.

Figure 10: Annualized Price-Dividend ratios and Dividend Share of the stock portfolios of the
10% smallest and largest U.S. exchange-traded firms by market capitalization over the period
1930-2016. Price-Dividend ratios are normalized by their sample average, Dividend shares are
normalized to have mean 0.1.

The estimated coefficients are used as initial estimates in the full estimation algorithm, and

updated for each set of estimated states. The proxy V̂t = REVt for the unobserved economic

uncertainty Vt is similarly used to construct initial estimates of the policy functions in (16).

When the proxies are consistent estimators of the underlying states, the structural parameters

can be consistently estimated albeit typically with a bias due to the measurement error. This

approach is particularly useful when using high frequency financial data, for which appropriate

limit theory is derived in Li and Xiu (2016). The proxy for economic uncertainty is made up from

low frequency observations, so that a direct estimation likely involves some non-negligible biases,

but is nevertheless useful to get initial estimates of the parameters and the error distribution.

In particular, the quasi-maximum likelihood set out in subsection 3.3 leads to the feasible GLS

regressions

Mit − R̂iMit−1 =
L∑
l=0

cl(V̂
l
t − R̂iV̂ l

t−1) + ηit,

where R̂i is an initial estimator of the autocorrelation of the noise process Zit. The next section

includes further observations in the form of asset prices that improve estimating the latent states.
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4.4 Estimates

This section reports estimated parameters for the feasible quasi-maximum likelihood estimator

(33) and a second-order expansion of the policy functions and the pricing kernel. The multi-

plicative form of the asset price means that conditional moments up to the sixth order are being

used in the approximation. The parameters of the error distribution are initialized based on the

residuals of an initial estimation based on the proxy REVt. Under the Ornstein-Uhlenbeck spec-

ification these errors are normally distributed and the parameters (A,Σ) in (25) are estimated

by maximum likelihood.

Table 3 reports the estimates of the parameter vector θ = (δ, θs) that include the discount

rate δ and the transition density parameters θs with their standard errors. The discount rate of

0.02 is equivalent to a time discount parameter of 0.98 and is accurately estimated. The triple

(κ, θ, ω) captures the mean reversion, steady state, and volatility of output growth volatility

Vt. The estimates confirm this is a quickly mean-reverting process as κ is large relative to ω.

In particular, the Feller condition 2κθ > ω2 is satisfied, which guarantees the positivity of the

volatility process. The large negative correlation parameter ρ = −0.6 suggests a pronounced

leverage effect between adverse economic shocks and economic uncertainty, akin to the financial

leverage effects in stock returns. The negative value for λ suggests that moreover increases in

economic uncertainty lead to lower subsequent economic growth. The triple (κQ, θQ, η) captures

the mean reversion, steady state, and volatility of the inverse consumption surplus ratio Qt that

describes changing relative risk aversion. The steady state level is reasonable as it corresponds

locally to a constant relative risk aversion of about five. The inverse consumption surplus ratio

is slightly more volatile than economic uncertainty, but reverts slightly quicker. The impact ry

of output shocks on risk aversion is negative, in line with models of external habit formation

that generate countercyclical risk premia. Unlike pure habit models however, the presence of a

non-negligible pure preference component proportional to η suggests the fundamental shocks and

consumption surplus ratio are only imperfectly correlated; similar findings are in Bekaert et al.

(2009). Nonetheless, the hypothesis that η = 0 cannot be rejected at standard confidence values.

Figure 11 shows the estimated uncertainty aversion index ĤL for L = 2, together with a

95% pointwise confidence intervals. The estimated uncertainty aversion index is increasing and

slightly convex. This suggests that uncertainty is a priced state variable beyond its impact on

consumption growth. This is related to findings that stock market volatility is priced, which

explains the presence of variance risk premia. However, the shape of the aversion against stock
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Table 3: Estimates and standard errors (in brackets) of the discount rate and transition density
parameters.

Estimates based on mixed frequency data, with annual observations from 1926 to 1946 and quarterly observations
from 1947 to 2016.

δ κ θ ω ρ µ λ κQ θQ η ry

0.02 0.38 3 ∗ 10−3 0.08 -0.60 0.04 -1.98 0.55 5.45 0.21 -2.86

(0.00) (0.19) (1.7 ∗ 10−3) (0.10) (0.12) (0.01) (0.73) (0.67) (0.03) (0.84) (2.25)

market versus macroeconomic volatility need not be the same in line with their nonlinear relation

as seen in Figure 4. This could explain the evidence in Song and Xiu (2016) from variance

derivatives that investors are primarily concerned about either very high or very low levels of

stock market volatility, creating a U-shaped pricing kernel. In my model, the aversion towards

low levels of stock market volatility would merely be an artefact of not controlling for economic

uncertainty.
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Figure 11: Estimated uncertainty aversion index ĤL for L = 2 against a constant value of one,
together with 95% pointwise confidence intervals. Estimates are based on annual observations
from 1926 to 1946 and quarterly observations from 1947 to 2016.

Figure 12 shows the estimated states using the pairwise concentration procedure. During

most of the post war economic expansion the estimated uncertainty and relative risk aversion are

relatively smooth and are moderately negative correlated. Uncertainty has been steadily declining

with the exception of heightened levels around the 1980s energy crisis. The risk aversion measure

shows strong mean reversion towards a level around 5.5 up to and including the 1980s. However,

during the 1990s it started a steady decline, reaching historical lows prior to the burst of the
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technology bubble in the early 2000s. The period after that risk aversion showed a strong upward

trajectory that lasts until the most recent observations. Economic uncertainty did not experience

a similar trend but does show an extreme peak in the aftermath of the 2008 financial crisis. A
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Figure 12: Concentrated states ŝ′t = (V̂ ′t , Q̂
′
t) over the period 1930-2016. Time t states are

estimated using observations from dates t− 1 and t.

useful measure of the reliability of the pairwise concentrated states is the proximity of the states

estimated from the two overlapping pairs of cross-sections. Figure 16 in the Appendix shows

that the difference in the implied states based on using the current and lagged cross-section or

the current and future cross-section is of a smaller magnitude than the variation of the states

over time. This suggests the states are generally well identified from single cross-sections, as

adding information from leads or lags does not make a major difference. Figure 13 shows the

estimated expected dividend-consumption ratio as a function of the states. It shows a strong

convexity, with the dividend-consumption ratio initially barely responsive or even declining in

output growth volatility, while strongly increasing when output growth volatility reaches higher

levels.

Figure 17 in the Appendix shows the consumption-to-output ratio as a function of the states.

It shows a moderate decline in consumption per unit of output when uncertainty or risk aversion

increases, with a slightly negative interaction effect. Unlike the dividend-consumption ratio, it is

less responsive to the states and does not show strong evidence for nonlinearity.

Figures 18, 19, and 20 in the Appendix show the time-series fitted values of the macroeco-
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Figure 13: Fitted dividend-consumption ratio as a function of the estimated states using a
second-order bivariate expansion. Time t states are estimated using observations from dates t−1
and t.

nomic ratios, the price-dividend ratio, and the realized stock market variance, respectively, using

the estimated states. The residual processes display clear first-order autocorrelation, but their

prediction errors do not, nor are there strong violations of non-Gaussianity apart from during the

1987 and 2008 stock market crashes. The time-series fitted values of the quarterly price-dividend

ratio in Figure 19 show that even with only two state variables, the model is able to match

the peaks and troughs in the data, including periods of sharp declines such as the 2008 crisis.

The dividend-consumption residual, however, is important in explaining, for example, the high

price-dividend ratios prior to the dotcom-bubble, which coincided with relatively low dividend

payouts. The model cannot fully explain the very low valuation ratios during the 50s and 70s,

closely related to the equity premium puzzle, for which institutional issues such as limited access

to stock markets may have prevented the cheap stock prices from being corrected.

5 Conclusion

This paper develops a class of nonlinear Markovian asset pricing models in which the dynamics

of consumption and dividends per unit of output is described via general policy functions of la-

tent state variables, with a focus on understanding the impact of economic uncertainty and risk

aversion on economic outcomes. The state variables are recovered from cross-sections of price-
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dividend ratios and proxies for real output uncertainty and financial market volatility. The policy

functions are estimated to be consistent with asset prices, given a semiparametric specification

of the stochastic discount factor. Tractable closed-form expressions for price-dividend ratios and

financial volatility are obtained under polynomial approximations of the policy functions and the

pricing kernel. The paper establishes the consistency and asymptotic normality of a profile max-

imum likelihood estimator for the general case where the distribution of observables conditional

on unobservables is unknown, but many observations on functions of the same state variables are

available. This setting is typical in asset pricing contexts, and can be naturally extended to other

types of cross-sectional pricing data such as bonds or derivatives. The paper proposes a practi-

cal pairwise profiling procedure that takes into account the persistence of dividend-consumption

and price-dividend ratios, and shows that the state variables are accurately estimated from two

cross-sections of asset prices. The expected consumption-dividend ratio is found to be an in-

creasing and convex function of economic uncertainty, and the positive impact of uncertainty on

dividends is greater for large than for small firms. Together with a moderately uncertainty averse

representative investor this leads to steeply declining price-dividend ratios for moderate levels of

economic uncertainty, which can explain episodes of large stock market volatility that occurred

during periods of moderate economic uncertainty. Low risk aversion played an important role in

the build-up of the dotcom bubble and the period preceding the Global Financial Crisis. Finally,

the non-monotonic relation between economic uncertainty and stock market volatility helps to

explain why variance risk premia are small on average, but peak during highly volatile crisis

periods.
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A Appendix

A.1 Proofs.

Change-of-measure formula for price-dividend ratio.

Define the time-T forward measure QT by

dQT

dP

∣∣∣∣
Ft

=
e− log YT

EP
t (e− log YT )

. (35)

The affine property of (yt, st) implies that

p̃T (t) = EP
t (e−γ(yT−yt)) = eα

T (t;γ)+βT (t;γ)·st , (36)

where α(·) and β(·) solve the differential equations

β̇(t) = −K1(t)Tβ(t)− 1

2
β(t)TH1(t)β(t)

α̇(t) = −K0(t)Tβ(t)− 1

2
β(t)TH0(t)β(t)

with boundary conditions αT (T ) = βT (T ) = 0. Under the forward measure the drift of the state

variables changes to (Duffie et al., 2000, Prop. 5)

KQT
0 (t) = K0 +H0β

T (t), KQT
1 (t) = K1 +H1β

T (t). (37)

For the benchmark model with st = (Vt, ht), the differential equations can be explicitly solved

as β = (βV , βh), where βh = 0, and letting λ1, λ2 = κ+ωργ±
√

∆
(1−ρ2)ω2 and ∆ = (κ + ωργ)2 − (1 −
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ρ2)ω2(−2λγ + γ2),

βTV (t) =
λ1λ2(1− e−

√
∆τ )

λ1 − λ2e−
√

∆τ
(38)

αT (t) = (−µγ + λ2κθ)τ + κθ
2

(1− ρ2)ω2
log

(
λ1 − λ2

λ1 − λ2e−
√

∆τ

)
, (39)

so that under QT the variables solve the s.d.e.

d log Yt =

(
µ−

(
1

2
+ λ+ βTV (t)

)
Vt

)
dt+

√
V tdWt

dVt = κ
(
θ − (1− ω

κ
βTV (t))Vt

)
dt+ ω

√
V tdBt.

Write

EP
t (e−γ(yT−yt)sjt ) = p̃T (t)EQT

t (sjt ), (40)

where by the affine property the conditional QT -moments are given by

EQT
t

(
sLT | st = s

)
= exp

(∫ T

t
AL(τ)dτ

)
sL. (41)

provided AL(τ1) and AL(τ2) are commutative for any τ1 6= τ2, otherwise the Magnus series

expansion can be used. The time-varying matrix AL(τ) has a known expression that involves

∫ T

t
βV (τ)τ = λ1(T − t)− λ1 − λ2√

∆
log
(
λ1 − λ2e

−
√

∆(T−t)
)
. (42)

Derivations used for the risk-free rate and the expected excess return. The innovations of the

pricing kernel under log utility (γ = 1) follow from Itô’s Lemma applied to ζt = e−δt QtCtH(Vt):

dζt
ζt

= −δdt− dCt
Ct

+
dQt
Qt

+
dH(Vt)

H(Vt)
+
d〈Ct, Qt〉
CtQt

+
d〈Ct, H(Vt)〉
CtH(Vt)

+
d〈Qt, H(Vt)〉
QtH(Vt)

.

Therefore

rft = − 1

dt
E

(
dζt
ζt

∣∣st) = δ +
1

dt
Et

(
dCt
Ct

)
+ κq

(
θq

Qt
− 1

)
+

1

H(Vt)

(
κH ′(Vt)(θ − Vt) +

1

2
H ′′(Vt)ω

2Vt

)
+ covariance terms.
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The innovations of the pricing kernel follow from demeaning the stochastic terms:

dζt
ζt

= −rft dt−
dCt − Et(dCt)

Ct
+

1√
Qt

(
ηdBq

t + ry
√
V tdWt

)
+
H ′(Vt)

√
Vt

H(Vt)
ωdBt,

which, after applying Itô’s Lemma to the consumption policy function, can be rearranged to yield

the prices of risk given in (12).

Example of the coefficient matrix for computing conditional moments in the baseline model.

Table 4 lists the coefficient matrix used for computing conditional moments in the baseline model

with stochastic volatility Vt of output growth and time-varying risk aversion Qt.

Table 4: Coefficient matrix A mapping the Itô generator of the second-degree moments of
(log Yt, Vt, Qt) into itself.

0 0 0 0 0 0 0 0 0 0

µ 0 λV 0 0 0 0 0 0 0

κθ 0 -κ 0 0 0 0 0 0 0

κqθq 0 λV -κq 0 0 0 0 0 0

0 2µ 1 0 0 2λV 0 0 0 0

0 κθ µ + ωρ 0 0 -κ 0 λV 0 0

0 κqθq ry + ωrvρ µ 0 λV -κq 0 λV 0

0 0 2κθ + ω2 0 0 0 0 -2κ 0 0

0 0 κqθq + ω2rv/2 + ω(ωrv + ryρ)/2 + ωryρ/2 κθ 0 0 0 λV - κ - κq 0

0 0 ry(ry + ωrvρ) + ωrv(ωrv + ryρ) 2κqθq + σ2
q 0 0 0 0 2λV -2κq

Quadratic variation of the price-dividend ratio for multivariate affine diffusions. Itô’s Lemma

for multivariate diffusions yields that

dφM (st) = (∇φM (st))
Tσ(st)dWt + µtdt,

for some drift term µt that does not contribute to the spot variance. The increment of the

quadratic variation of the approximated price-dividend ratio for affine diffusions is

d〈φM (st)〉 = ∇φM (st)
T

H0 +
D∑
j=1

Hjsj

∇φM (st)dt,

where Cov(dst) = H0 +
∑D

j=1Hjsj for affine models.

Proof of Proposition 1. Denote ∇(S′,S)f =
(
∂
∂S′ ,

∂
∂S
)T

as the gradient and H(S′,S)f =

∇(S′,S)(∇(S′,S)f)T as the Hessian of a twice differentiable function f with respect to the future
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and current state variables. For the below argument drop the dependence of (Ŝt+1(θ, h), Ŝt(θ, h))

on the parameter vector (θ, h). Combine the current and future state variables into the vector

St:t+1 = (St+1,St)T . Define the time-t likelihood conditional on its state

lt(θ, h,S) =
1

N
log fθ,h (Yt|St = S) ,

and write Bayes’ rule for time-t observations as

fθ,h (St|Yt) =
exp(Nlt(θ, h,St))fθ,h (St)

fθ,h (Yt)
.

Denote the objective function for the choice of state variables as

qt+1(S′, S; θ, h) = lt+1(θ, h,S ′,S) +
1

N
log fθ,h (Yt|S) +

1

N
log fθ,h (S) .

A Laplace approximation of the limited information integrated likelihood fθ,h (Yt+1|Yt) around

the pair of concentrated state variables shows that

fθ,h (Yt+1|Yt) =

∫∫
exp

(
Nlt+1(θ, h,S ′,S) + log fθ,h(S|Yt)

)
dS ′dS

=

∫∫
exp

(
Nqt+1(S′, S; θ, h)

)
dS ′dSfθ,h (Yt)

= exp
(
Nqt+1(Ŝ ′t+1, Ŝt; θ, h)

)
fθ,h (Yt)

(
1 +Op

(
1

N

))
∫∫

exp

(
N

2
(St:t+1 − Ŝt:t+1)TH(S′,S)

∣∣∣
Ŝt:t+1

qt+1(S′, S; θ, h)(St:t+1 − Ŝt:t+1)

)
dS ′dS

= exp
(
Nqt+1(Ŝ ′t+1, Ŝt; θ, h)

)
fθ,h (Yt)

(
2π

T

)D
∣∣∣∣−NH(S′,S)

∣∣∣
Ŝt:t+1

qt+1(S′, S; θ, h)

∣∣∣∣− 1
2
(

1 +Op

(
1

N

))
,

with | · | the matrix determinant. It follows that

1

N
log fθ,h (Yt+1|Yt) = lct+1(θ, h)+

1

N
log

(
2π

N

)D
− 1

2N
log

∣∣∣∣−H(S′,S)

∣∣∣
Ŝt:t+1

qt+1(S′, S; θ, h)

∣∣∣∣+Op( 1

N2

)
,

which implies the first part of the proposition.

The second part follows from performing the same Laplace approximation around the pair of
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states

(
Ŝ ′t+1|t(θ, h), Ŝt|t(θ, h)

)
= arg max

S′,S
lt+1(θ, h,S ′,S)+

1

N
log fθ,h

(
Yt|S,FYt−1

)
+

1

N
log fθ,h

(
S|FYt−1

)
.

(43)

From the assumed probability limit of the implied state it follows that Ŝ ′t+1|t(θ, h)
a.e.
= S̃ ′t+1(θ, h)

a.e.
=

Ŝ ′t+1(θ, h), with S̃ ′t+1(θ, h) as in (21), as their respective objections functions agree on leading

terms. In particular the first part of objective functions (3.2) and (43) coincide under the first-

order Markov assumption. Similarly Ŝ ′t+1|t(θ, h)
a.e.
= S̃ ′t+1(θ, h)

a.e.
= Ŝ ′t+1(θ, h). Hence the updating

densities are evaluated at the same state asymptotically, and the conclusion follows from the

continuity of the concentrated likelihoods.

Proof of Theorem 1. The proof is based on Lemma A1 in Newey and Powell (2003). Let

Q′(θ) = lc(θ) and Q(θ) = E(lct (θ)). This requires that (i) there is unique θ0 that minimizes Q′(θ)

on Θ, (ii) ΘT are compact subsets of Θ such that for any θ ∈ Θ there exists a θ̃T ∈ ΘT such that

θ̃T
p−→ θ, and (iii)Q′T (θ) andQ′(θ) are continuous, Q′(θ) is compact, and maxθ∈Θ |Q′T (θ)−Q′(θ)| p−→

0.

The identification condition (i) follows from subsection 3.5, together with the positive definite-

ness of Σt. The compact subset condition in (ii) holds by construction of HT and H. Moreover

for any θ ∈ Θ we can find a series approximator θT ∈ ΘT that satisfies ‖θT − θ‖ → 0 as by

construction the approximating spaces HT are dense in H.

For (iii), continuity of Q′T (θ) follows from continuity of the pricing function and the transition

density. Their continuity carries over to the profiled lc(θ) by the maximum theorem. The

remaining conditions of continuity of Q′(θ) and uniform convergence follow from Lemma A2

in Newey and Powell (2003). This requires pointwise convergence Q′T (θ) − Q′(θ) p−→ 0 as well

as the stochastic equicontinuity condition that there is a v > 0 and Bn = Op(1) such that for

all θ, θ̃ ∈ Θ, ‖Q′T (θ) − Q′T (θ̃)‖ ≤ Bn‖θ − θ̃‖v. Pointwise convergence follows from the weak

law of large numbers due to the stationarity and mixing condition in Assumption 5. Stochastic

equicontinuity follows from Assumption 5.

Proof of Theorem 2. Introduce the notation:

Ut(ϑ) = ∂ϑ`t(ϑ, sp,t(ϑ))

St(ϑ) = ∂sp`t(ϑ, sp,t(ϑ))

Ht(ϑ) = ∂spsp`t(ϑ, sp,t(ϑ))
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Furthermore let U
sp
t (ϑ) and U

spsp
t (ϑ) denote the first and second derivative of Ut(ϑ) with respect

to sp. The parameter argument is suppressed when evaluated at ϑ = ϑ0.

A mean value expansion around the parameter ϑ0 yields

∂ϑ`
c(ϑ0) + ∂ϑϑ′`

c(ϑ̃)(ϑ̂− ϑ0) = 0. (44)

for some ϑ̃ that lies in between ϑ0 and ϑ̂. Rearranging yields

√
NT (ϑ̂− ϑ0) = −

(
∂ϑϑ′`

c(ϑ̃)
)−1√

NT∂ϑ`
c(ϑ0). (45)

The uniform convergence supϑ
∣∣ 1
T

∑T−1
t=1 ∂θθ′`

c
t+1(θ̃)−E(∂ϑϑ′`

c(ϑ0))
∣∣ p−→ 0 follows from stationarity,

mixing, and the bounded supremum Assumption 6a.). Here

E (∂ϑϑ′`
c(ϑ0)) = E (dϑ∂ϑ`(ϑ0, sp,t(ϑ0)))

= E (∂ϑϑ′`(ϑ0, sp,t(ϑ0))) + E
(
∂ϑs′p`(ϑ0, sp,t(ϑ0))∂ϑ′sp,t(ϑ0)

)
,

where dϑ denotes the total derivative with respect to ϑ.

Let ŝpt+1(ϑ) = (ŝ′t+1(ϑ), ŝt(ϑ)), which satisfies for every t the estimating equation

0 = ∂sp`t+1(ϑ, ŝp,t(ϑ)).

Similarly, a mean value expansion of ŝp,t(ϑ) around sp,t(ϑ) yields

√
N (ŝp,t(ϑ)− sp,t(ϑ)) = −

(
∂spsp`t+1(ϑ, s̃p,t(ϑ)

)−1√
NSt. (46)

for some s̃p,t(ϑ) that lies in between ŝp,t(ϑ) and sp,t(ϑ) for every ϑ. Write

∂ϑ`
c(ϑ) =

1

T

T−1∑
t=1

∂ϑ`
c
t+1(ϑ) =

1

T

T−1∑
t=1

∂ϑ`t+1(ϑ, ŝp,t(ϑ)), (47)

using the envelope theorem. A second-order Taylor expansion around the true states sp,t(ϑ0) =

sp,t yields for l = 1, . . . ,dimϑ

∂ϑl`t+1(ϑ0, ŝp,t(ϑ0)) = Utl +U
sp
tl
T

(ŝp,t(ϑ0)− sp,t) +
1

2
(ŝp,t(ϑ0)− sp,t)TU

spsTp
tl (ŝp,t(ϑ0)− sp,t) +R3t.

(48)
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Plugging in the expansion (48) into (47) and rescaling yields

√
NT∂ϑ`

c(ϑ0) = V +B +R3, (49)

with leading variance term

V =

√
N

T

T−1∑
t=1

UtN ,

a bias term whose l-th element equals

Bl =

√
N

T

T−1∑
t=1

(
1

2
STt+1H−1

t+1U
spsTp
tl − U s

T
p

tl

)
H−1
t+1St+1

=
1

T

√
T

N

T−1∑
t=1

1

2

STt+1√
N
H−1
t+1U

spsTp
tl −

U
sTp
tl√
N

H−1
t+1

St+1√
N

and the remainder R3 =
√

N
T

∑T−1
t=1 Rt3 = op(1). Denote

H̄t+1 = plim
N→∞

Ht+1,

Ū
spsTp
tl = plim

N→∞
U
spsTp
tl ,

Īt = plim
N→∞

NEt
(
St+1STt+1

)
,

Īut = plim
N→∞

NEt
(
U
sp
t STt+1

)
,

where the subscript t denotes conditioning on spt. The summands of Bl are then recognized as

quadratic forms with probability limit

B̄tl = tr

(
H̄−1
t+1

(
1

2
Ū
spsTp
tl H̄−1

t+1Īt − Ī
u
t

))
. (50)

It follows that B = κE(B̄t) +Op
(

1
T

)
.

The summands of the variance term are given by

UtN =
1

N

(
−2 (∂ϑε̂t(ϑ0))T Σ̂ε̂t(ϑ0) + ∂ϑ log f (st|st−1;ϑ0)

)
(51)

Using ε̂t − εt = (Â−A)εt−1, write

ε̂Tt Ω̂−1ε̂t − εTt Ω−1εt = (Â−A)T εTt−1Ω̂(Â−A)εt−1

+ 2εTt Ω̂−1(Â−A)εt−1

+ εTt−1(Ω̂−1 − Ω−1)εt

= op(N)
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by the triangle inequality and the consistency of Â and Ω̂. The limiting distribution of the score

vector is therefore determined by

U∗tN =
1√
N

(
−2 (∂ϑεt(ϑ0))T Ω−1εt(ϑ0) + ∂ϑ log f (st|st−1;ϑ0)

)
=: ξtN,1 + ξtN,2 (52)

where ξtN,1 is a linear combination of the prediction errors, and ξtN,2 is the score of the transition

density. From Corollary 3.1 in Hall and Heyde (1980) it follows that V
a.e.
= 1√

T

∑T
t=1 U

∗
tN

d−→

N (0,V0) provided the following two conditions hold:

i) for all ε > 0, 1
T

∑T
t=1Et−1

(
‖U∗tN‖21‖U∗tN‖≥ε

√
T

)
p−→ 0

ii) 1
T

∑T
t=1Et−1

(
‖U∗tN‖2

) p−→ V0

To prove the Lindeberg condition i), note

Et−1

(
‖U∗tN‖21‖U∗tN‖≥ε

√
T

)
≤ Et−1

(
‖U∗tN‖4

) 1
2 Pt−1

(
‖U∗tN‖ ≥ ε

√
T
) 1

2
,

by the Cauchy-Schwartz inequality, where

Pt−1

(
‖U∗tN‖ ≥ ε

√
T
)
≤ Pt−1

(
‖ξtN,1‖ ≥

1

2
ε
√
T

)
+ Pt−1

(
‖ξtN,2‖ ≥

1

2
ε
√
T

)
,

The first probability satisfies

Pt−1

(
‖ξtN,1‖ ≥

1

2
ε
√
T

)
= Pt−1

(∥∥∥∥ 1√
N
ξtN,1

∥∥∥∥ ≥ 1

2
ε

√
T

N

)
≤ 4N

ε2T
tr

(
Var

(
1√
N
ξtN,1

))

by the Chebyshev inequality for random vectors, where

tr

(
Var

(
1√
N
ξtN,1

))
= 4

dimϑ∑
j=1

E

((
1

N
∂ϑjεt(ϑ0)TΩ−1εt

)2
)

=: 4

dimϑ∑
j=1

E
(
Var

(
wTtN,jεt | spt

))
→ 0

since wtN,j = 1
NΩ−1∂ϑjεt(ϑ0) = 1

NΩ∂ϑj (zt+1(ϑ, st+1)−Rzt(ϑ, st)) satisfies the granularity As-

sumption 3 using boundedness of the weighting matrix Ω and Assumption 5d) on the pricing

function. Similarly, the second probability satisfies

TP
(
‖ξtN,2‖ ≥

1

2
ε
√
T

)
≤

4E
(
‖∂ϑ log f (st|st−1;ϑ0) ‖2

)
Nε2

→ 0,
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using Assumption 5d) on the transition density. Meanwhile

Et−1

(
‖U∗tN‖4

)
≤ 8

(
Et−1

(
‖ξtN,1‖4

)
+ Et−1

(
‖ξtN,2‖4

))
by the triangle inequality, where

Et−1

(
‖ξtN,1‖4

)
=

dimϑ∑
i=1

dimϑ∑
j=1

Et−1

((
1√
N
∂ϑiεt(ϑ0)TΩ−1εt

)2( 1√
N
∂ϑjεt(ϑ0)TΩ−1εt

)2
)

≤
dimϑ∑
i=1

dimϑ∑
j=1

Et−1

((
1√
N
∂ϑiεt(ϑ0)TΩ−1εt

)4
) 1

2

Et−1

((
1√
N
∂ϑjεt(ϑ0)TΩ−1εt

)4
) 1

2

= Op(1),

by the Cauchy-Schartz inequality and Assumption 6c), and

Et−1

(
‖ξtN,2‖4

)
=

1

N2
Et−1

(
‖∂ϑ log f (st|st−1;ϑ0) ‖4

)
→ 0,

by Assumption 6a). It follows that Et−1

(
‖U∗tN‖4

)
= Op(1), while Pt−1

(
‖U∗tN‖ ≥ ε

√
T
)

= op(1),

which together implies i).

For ii), an application of the weak law of large numbers for mixingale arrays in Andrews (1988,

Theorem 2) to the stationary strong mixing array U∗tNU
∗
tN

T implies that

1

T

T∑
t=1

U∗tNU
∗
tN

T p−→ V0,

where

V0 = lim
N→∞

E
(
U∗tNU

∗
tN

T
)

= lim
N→∞

E
(
ξtN,1ξtN,1

T
)

= lim
N→∞

1

N
E
(
∂ϑεt(ϑ0)TΩ−1εtε

T
t Ω−1∂ϑεt(ϑ0)

)
= lim

N→∞

1

N
E
(
∂ϑεt(ϑ0)TΩ−1E

(
εtε

T
t | st, st−1

)
Ω−1∂ϑεt(ϑ0)

)
.

The result now follows from Slutzky’s theorem.

A.2 Further empirical evidence
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Figure 14: Quarterly changes in log Realized Economic Variance (REV) of Industrial Production
growth versus annual log return on Output, Consumption, Dividends, and the S&P 500 Index
from 1947-2016.

-2 -1 0 1 2
-0.04

-0.02

0

0.02

0.04
Output Growth

-2 -1 0 1 2
-0.01

0

0.01

0.02

0.03
Consumption Growth

-2 -1 0 1 2
-0.5

0

0.5
Dividend Growth

-2 -1 0 1 2
-0.4

-0.2

0

0.2
Market Return

Figure 15: Quarterly changes in log Realized Variance (RV) versus Annual log return Output,
Consumption, Dividends, and the S&P 500 Index from 1947-2016.
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Figure 16: Comparison of the pairwise concentrated ‘filtered’ states ŝ′t and ‘smoothed’ states
ŝt. Filtered time t states use observations from dates (t, t + 1); smoothed time t states use
observations from dates (t− 1, t).
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Figure 17: Fitted consumption-output ratio as a function of the estimated states using a second-
order bivariate expansion. Time t states are estimated using observations from dates t − 1 and
t.
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(a) Dividend-Consumption ratio.
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(b) Consumption-Output ratio.

Figure 18: Time-series fitted values of the quarterly macroeconomic ratios using the estimated
states and a second-order bivariate expansion.
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Figure 19: Time-series fitted values of the quarterly price-dividend ratio as a function of the
estimated states using a second-order bivariate expansion, with and without correcting for the
dividend-consumption residual Ẑdt .
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Figure 20: Time-series fitted values of the quarterly realized variance as a function of the
estimated states using a second-order bivariate expansion.
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