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Abstract

Numerous studies find S-shaped pricing kernels, which is conflicting with standard
theory. In contrast to that, based on a novel GARCH model with structural breaks, I
show that the pricing kernel is consistently U-shaped. The new pricing kernel estimates
imply a downward sloping term structure of risk premia and Sharpe ratios in both
good and bad times for the pricing kernel itself. A pricing kernel mimicking trading
strategy confirms the predictions and yields sizable Sharpe ratios. Furthermore, the
U-shaped pricing kernel helps to explain cross-sectional stock return anomalies. The
results are robust to numerous variations in the methodology and hold for several major
international stock market indices. Finally, the empirical results can be explained well
by a model with a variance-dependent pricing kernel, but only if structural breaks are
included in the model.
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1 Introduction

The stochastic discount factor is the central object of interest in modern asset pricing.

It conveys valuable information about the assessment of risks by investors and tells us

how real-world probabilities are transformed into risk-neutral probabilities. In models

with a representative investor, it additionally relates to the agent’s marginal utility and

therefore speaks about preferences.

A natural way to get closer to the object of interest and to learn about these funda-

mental economic questions is to look at the projection of the stochastic discount factor on

returns of a broad market index (called pricing kernel in the following), where the latter

serves as a proxy for aggregate wealth. A large body of literature estimates the pricing

kernel using option prices by combining index option data with some model-dependent

return forecast. While many classical theories, like the CAPM, predict that the pric-

ing kernel is monotonically decreasing in returns, empirical estimates show that this is

not necessarily the case. This stylized fact is called the pricing kernel puzzle and was

first documented by Jackwerth (2000), Aı̈t-Sahalia & Lo (2000) and Rosenberg & Engle

(2002), and has since then been confirmed by many others.1 Most studies document that

the pricing kernel plotted against returns has the shape of a rotated S, meaning, that it

is generally downward-sloping but has a hump around zero. However, these findings are

incompatible with standard, rational asset pricing theory.

This paper argues that the findings of S-shaped pricing kernels are spurious and

caused by a previously unrecognized bias in the volatility forecasts. By overestimating

future volatility in calm market periods, the standard estimation methodology leads to

S-shaped pricing kernels in calm times, and U-shaped ones otherwise. Using a new model

that nests the previous approaches, but corrects for the forecasting bias, leads to always

U-shaped pricing kernel estimates.

To estimate the pricing kernel implied by option prices, two key quantities are re-

quired: the risk-neutral index return density implied by option prices and a physical

return density forecast. While standard methods exist for the estimation of the first,

the second one requires some parametric assumptions. The literature has recognized

early on that an important ingredient to predicting return distributions is the volatility

forecast. It is well known, e.g., from the vast literature on GARCH models in finance,

1The literature on the pricing kernel puzzle has become too large to fully describe here. For
more details see e.g. Cuesdeanu & Jackwerth (2018), who provide an excellent and comprehensive
overview on the existing empirical, theoretical and econometric literature on the pricing kernel
puzzle.
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that volatility is time-varying and clustered. While standard volatility models can only

capture the first property, I will show that the clustering is very important too.

First, I estimate a change-point (CP) GARCH model via maximum likelihood to

identify points where the parameters of the GARCH process change. The potential

existence of parameter changes in GARCH processes has been known in the econometric

literature for many years (e.g. Diebold 1986). I suggest a new GARCH model with

structural breaks, and in 25 years of S&P 500 return data I estimate five different

regimes that exhibit significantly different volatility dynamics. In particular, this regime-

switching structure is able to capture the clustering of volatility by identifying phases

where market volatility remains below its long-term average for many years, which is not

possible using a standard GARCH model. Therefore I also use the accompanying, long

sample of S&P 500 options over the period 1996-2015, to include the different market

phases.

Next, I show that standard methods relying on GARCH models with fixed param-

eters estimate S-shaped pricing kernels in times of low variance, and U-shaped ones

otherwise. Furthermore, when replacing the standard GARCH with the CP-GARCH in

the otherwise identical methodology, the S-shaped pricing kernels disappear altogether.

The calculation of confidence intervals for the estimated pricing kernels shows that the

results are statistically significant.

The paper then shows that the new pricing kernel estimates immediately have several

interesting economic properties. While one can study the properties of any pricing kernel

(PK) estimate, the results are only meaningful if the estimate is close to the true PK.

All applications below are such that they allow to discriminate between good and bad

estimates.

First, the new PK estimates set the Euler equation error to zero, while many other

estimates fail this necessary condition. This is non-parametric evidence in support of the

new approach. A closer look at the timing of the Euler equation errors further highlights

the importance of a time-varying pricing kernel.

Second, I use the famous Hansen & Jagannathan (1991) bound to relate the variance

of the pricing kernel estimates to the maximum attainable Sharpe ratios. I find that

the new estimates imply countercyclical risk premia and Sharpe ratio with a downward

sloping term structure in both good and bad times. The term structure of risk premia

and Sharpe ratios is discussed vividly since Van Binsbergen et al. (2012), as their results

are inconsistent with most leading asset pricing models. Although these results suggest

similar patterns for the PK, this must not be the case, as they could also be induced
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by state- and horizon-dependent correlations between the assets and the PK. The new

results bridge this gap by documenting the analogous patterns for the PK itself.

Third, I introduce the trading of the PK as a synthetic derivative in the options

market. The realized returns and Sharpe ratios confirm the predicted properties of the

pricing kernel in a non-parametric way. Furthermore, as theory predicts that the pricing

kernel itself is the asset with the highest attainable Sharpe-ratio in the economy, it is

very comforting that the trading strategy delivers sizable Sharpe ratios of up to 3.3 for

a monthly horizon, and above 5 for weekly maturities. By turning around the argument

of the Hansen-Jagannathan bound, one can see that the PK, that delivers the higher

Sharpe ratios relative to another one, is better and closer to the true PK.

Finally, the U-shaped pricing kernel is relevant beyond the realm of options, as it

helps to explain the cross-section of stock returns. Using the example of the low-beta

anomaly, I show that the new finding, the upward sloping part of the pricing kernel in

the area of high positive returns, contributes significantly to the reduction of the pricing

errors.

In the final part of the paper, I demonstrate that the findings are consistent with

the explanation brought forward by Christoffersen et al. (2013). The authors suggest

a variance-dependent stochastic discount factor, which is increasing in variance and

decreasing in returns. Since volatility is high both for high negative and high positive

returns, the variance risk premium causes the projection of the stochastic discount factor

on the index returns to be U-shaped. My analysis below shows that the structural breaks

are necessary to fit the model to the data. While the approach without breaks fails to

match the time-series properties of the empirical pricing kernels, the new model fits

the data very well. Also, the same analysis reveals that the introduction of structural

breaks increases the fit of the option pricing model considerably. It appears that the

cyclical bias in the volatility forecasts carries over to the risk-neutral dynamics as well

and makes option prices systematically biased when using standard GARCH. Finally,

the model can also generate the empirically observed patterns in risk premia and Sharpe

ratios of the pricing kernel.

Overall, the paper provides novel semi-parametric evidence on the time series be-

havior of the pricing kernel puzzle, which has not been subject to much research. Many

studies use a sample of option data that are much shorter than the 20 years used here,

and almost all studies document the typical S-shape.2 While a few studies document

2E.g., Jackwerth (2000), Aı̈t-Sahalia & Lo (2000), Rosenberg & Engle (2002), Liu et al.
(2009), Polkovnichenko & Zhao (2013), Figlewski & Malik (2014), Beare & Schmidt (2016),
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U-shaped pricing kernels (Christoffersen et al. 2013, Grith et al. 2013), they at the same

time find S-shapes in some periods of their sample, and do not address this conflict.

However, the two shapes are theoretically incompatible. Although theoretical models

can explain either one of the shapes, neither can explain both.3 In addition, the S-shape

is incompatible with an economy with one representative investor and rational expec-

tations, which is the backbone of most modern theoretical asset pricing models.4 It is

therefore not surprising that theoretical explanations for the S-shape have to turn to het-

erogeneous investors (e.g. Ziegler 2007), market incompleteness (Hens & Reichlin 2013),

probability misestimation (e.g. Polkovnichenko & Zhao 2013), reference-dependent pref-

erences (Grith et al. 2016), ambiguity aversion (Cuesdeanu 2016) and other behavioral

factors (Figlewski 2018), among others. However, none of the existing models can explain

the hump in the S-shape with a risk-factor. In contrast, the U-shape can be explained

by the variance risk premium (Christoffersen et al. 2013), which itself is empirically well

established (e.g. Carr & Wu 2009). Hence, any model that generates a variance risk pre-

mium can at least qualitatively also generate a U-shaped pricing kernel. Altogether, in

the existing literature the two different shapes seem to pose two different puzzles. Their

potential co-existence would be a challenge for theory and would pose a third puzzle.

The results brought forward in this paper can reconcile the different empirical and

conflicting theoretical results. In particular, this paper shows that S-shaped pricing ker-

nels are the consequence of structural breaks in the volatility process.5 The new model

nests the previous approaches, and this allows me to to pin down the source of the esti-

mation of S-shaped pricing kernels. The analysis shows that a standard GARCH model

provides biased multi-period volatility forecasts, and that this is the crucial driver be-

hind the fact that numerous studies find S-shaped pricing kernels. It becomes clear that

Belomestny et al. (2015) Cuesdeanu & Jackwerth (2018), Barone-Adesi et al. (2016) Grith et al.
(2016).

3This is true for both potential ways of coexistence: the shapes could alternate over time, or
a combination of the two could be present at the same point in time, resembling a W-shape.

4This is because the investor would be better off by investing in the region adjacent of the
hump. However, this cannot be an equilibrium, since the representative investor by definition
has to hold all securities. Hence, prices have to adjust such that the investor is willing to hold
all assets. See e.g. Hens & Reichlin (2013) for a more elaborate discussion of this argument.

5The relevance of regime switches for the pricing kernel puzzle has been advocated in the
literature before, but in a theoretical and not empirical context. Chabi-Yo et al. (2008) and
Grith et al. (2016) develop models with a representative agent and state dependent preferences,
that feature pricing kernels which are monotonically decreasing in returns in each state. Their
non-monotonic weighting of the different linear pricing kernels results in a stylized S-shaped
pricing kernel.
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the forecasts by the standard GARCH model revert to the long-run mean too quickly

and are not able to capture market phases where volatility is very low for several years.

The reverse is, to a lesser extent, true for periods of high volatility. This finding is

also a contribution to the econometric literature. Despite the large body of research

conducted on modeling and forecasting volatility, this countercyclical pattern has never

been documented systematically for standard GARCH. In the case of the pricing kernel

estimation, this pattern leads to systematically biased volatility forecasts and therefore

to biased forecasts of the physical return distribution. The bias is much more promi-

nent in times of low volatility, which is why S-shaped pricing kernels are observed only

during these times. Hence, the estimation of S-shaped pricing kernels appears to be the

consequence of a measurement error due to a misspecification of the volatility process.

The intuitive explanation for the results is that the overestimated volatility leads to

a return distribution forecast that is too wide, as it has too much probability mass in

the tails and too little in the center. Since the pricing kernel is the point-wise ratio of

the risk-neutral density over the physical density, these shifts are important. The excess

weight in the left tail is not strong enough to change the downward sloping pattern, but

the excess weight of the right tail makes the estimated pricing kernel slope downward

instead of upward. The corresponding lack of probability mass in the center in turn

causes the locally increasing part.

All the aforementioned findings are also documented for several other major interna-

tional equity indices, namely the FTSE 100, EuroStoxx 50 and DAX 30. Furthermore,

the empirical results are robust to numerous variations in the methodology. While the

benchmark analysis is kept as non-parametric as possible, the robustness section includes

the popular approach, where the physical density is obtained directly from a GARCH

model simulation. Moreover, a VIX-based volatility forecast is studied as well as the

Corsi (2009) realized volatility model based on high frequency data. Lastly, I test differ-

ent popular GARCH model specifications, consider various time horizons and also vary

several other methodological details.

In sum, the results show that the canonical use of a standard GARCH model with

fixed parameters in the PK literature significantly biases the results and causes the often

documented S-shaped pricing kernel estimates. These results challenge the existence of

a S-shaped pricing kernel, which has almost become consensus in the literature and is

considered a stylized fact by some. This provides valuable guidance for theorists when

validating the predictions of their models. While for many questions in finance the data

we want to explain is by large clear, this is not the case for the pricing kernel puzzle.
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Here it is important to first establish the “data”, at least in the sense of a stylized

property that theory can build on. In sum, the results help to identify the kind of asset

pricing model required to explain the joint pricing of options and the index, which is still

considered a major challenge in finance (Bates 1996). On the other hand, the evidence

on the behavior and relevance of volatility is of interest to market participants, since

volatility is an important quantity, for example in the context of option pricing.

The remainder of the paper proceeds as follows. Section 2 first introduces the change-

point GARCH model and then presents the data, estimation methodology, estimation

results and the model fit. Section 3 shows the empirical pricing kernels obtained with

the new model and contrasts them with the standard findings. It furthermore provides

a detailed analysis of how the different GARCH models drive the results. Section 4

contains several economic applications of the new pricing kernel estimates. Section 5

presents the partial equilibrium model that explains the empirical findings. Section 6

conducts several robustness checks, including the international evidence, and Section

7 concludes. The Appendix collects methodological details. In addition, I provide a

detailed online Appendix, which contains additional results and can be found on my

website.

2 A GARCH Model with Structural Breaks to

Overcome the Cyclical Forecast Bias

2.1 Motivation

Three quantities are required to estimate conditional pricing kernels (PKs) empirically:

the risk-free rate, conditional risk-neutral probabilities and conditional physical (objec-

tive) probabilities. The estimation of the first is an easy task and, since the discounting

effects over typical horizons of around one month are low, it is not a crucial parameter

in any case. The estimation of the second quantity is not straightforward, but estab-

lished and well understood methods exist. The remaining third quantity, however, the

conditional physical probability, is not easily quantifiable and requires a minimum of

parametric assumptions. The method of conditioning the return distribution estimate

is later shown to be crucial for the results.

Some of the first studies on the pricing kernel puzzle use a kernel density estimation

of past raw index returns (e.g. Aı̈t-Sahalia & Lo 2000). Many other studies agree that
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it is important to condition the estimate on current market volatility (see e.g. Jackw-

erth 2000, Rosenberg & Engle 2002, Beare & Schmidt 2016). Almost all studies use

a GARCH model for this, since it is the workhorse model for stochastic volatility in

finance. However, some econometric papers (e.g. Diebold 1986, Mikosch & Stărică 2004)

suggest that a standard GARCH model with fixed parameters does not fit a long time

series very well. The high degree of variance persistence, in particular for long time

series, has been questioned. It is argued that estimated dynamics close to a unit root

process are caused by changes in the parameters of the GARCH process, which are ig-

nored if the model is specified with fixed parameters. Hence, one potential solution is

to allow for structural breaks where the parameters of the GARCH model may change.

Among others, the studies of Bauwens et al. (2014), Augustyniak (2014) and Klaassen

(2002) show that GARCH models with switching parameters outperform the standard

model both in- and out-of-sample.

In the empirical analysis below, I show that the GARCH model with structural breaks

has another important advantage over the standard model. Despite its high degree of

persistence, the multi-period variance forecasts of the standard GARCH model always

revert to the long run mean rather quickly. This leads to a systematic overestimation

or underestimation of future volatility when there are extended periods of time, where

the volatility is constantly below or above its time-series average (volatility clustering).

For the applications at hand, this will have decisive implications. I use the CP-GARCH

model in the benchmark analysis because it has the particular advantage that it nests

most existing methods, as opposed to several alternative models in the robustness section

that can also (partly) overcome the bias.

2.2 Dynamics of the CP-GARCH model

One way to make the standard GARCH model more flexible is to use a change-point

(CP) model.6 Such a CP-GARCH model is laid out in the following. How the model is

6A close relative of a change-point model is the probably more popular Markov-switching
(MS) model, also called regime-switching GARCH. For several reasons the CP model is preferred
here over the MS model. The most important one is that paths simulated from the MS GARCH
estimates of Augustyniak (2014) exhibit unreasonable dynamics. In particular, a significant
number of paths have volatility levels that vastly exceed any ever observed level in the data.
This is because in a two state MS GARCH model, the high variance state (over) fits the extreme
positive and negative daily returns that occur from time to time. Therefore, one would probably
need at least three or four states to produce reasonable dynamics. A reliable estimation of this
model would be very difficult, and the number of regimes would be similar to the five regimes
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used to construct a conditional return distribution is presented in Section 3.2.

There are two prominent GARCH models often used for modeling the dynamics of

stocks as well as for option pricing. The first is the NGARCH model of Duan (1995),

the second is the Heston-Nandi (HN) GARCH model of Heston & Nandi (2000). The

main analysis uses the HN-GARCH model because it conveniently allows for closed

form option pricing, and the robustness section shows that the results also hold for the

NGARCH model.

The dynamics of the asymmetric HN-GARCH model with structural breaks are:

ln
( St
St−1

)
= rt +

(
µyt −

1

2

)
ht +

√
htzt, (1)

ht = ωyt + βytht−1 + αyt

(
zt−1 − γyt

√
ht−1

)2
, (2)

zt ∼ N(0, 1), (3)

where St is the stock’s spot price at time t, rt is the daily continuously compounded

interest rate, zt are return innovations and ht is the conditional variance, and yt is an

integer random variable taking values in [1, K + 1].7 The latent state process yt is first

order Markovian with the absorbing and nonrecurrent transition matrix

P =



p11 1− p11 0 . . . 0 0

0 p22 1− p22 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . pKK 1− pKK
0 0 0 . . . 0 1


.

This transition matrix characterizes a change-point model (CP-GARCH) with K breaks.

A standard GARCH model with fixed parameters (FP) can be obtained by settingK = 0.

The economic interpretation of the change-point model is that there are different

regimes in the market, and when they end, fundamentals change. These changes are

so dramatic, that the standard and already dynamic model cannot capture them, but a

used in the CP model below.
7I use the conventional normal innovations here. Many papers in the econometric literature

argue that the shock in GARCH models are not normally distributed. However, the assumption
is required to be able to solve the model in Section 5. Nevertheless, in Section 6.6 I show that
the empirical results are fully robust to using e.g. a Student’s t-distribution.
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full new parameterization of the model is required in each regime. The estimation below

shows that the identified regimes are several years long and are related to business cycles.

2.3 Model Estimation

2.3.1 Data

The data used to estimate both the fixed parameter and switching GARCH are daily

S&P 500 log returns (excluding dividends) from 02.01.1992 to 31.08.2015. The sample

is chosen to match the available option data from 02.01.1996 to 31.08.2015. The earlier

start date is used because the analysis on of an even longer sample shows that the regime,

that prevails in 1996, starts around January 1992. As a robustness check, the fixed

parameter model is also estimated over the longer sample from 02.01.1986 to 30.06.2016

and the obtained parameters are very similar.

2.3.2 Estimation Methodology

The GARCH model is estiamted via maximum likelihood. For the Heston-Nandi GARCH

model with fixed parameters a classical likelihood function based on daily returns is used.

GARCH models with switching parameters on the other hand are notoriously difficult

to estimate as a result of the path dependence problem. Sichert (2018) proposes an

estimation algorithm for the change-point GARCH model that uses a particle filter for

the laten state variable, and both the Monte Carlo expectation-maximization algorithm

and the Monte Carlo maximum likelihood method in the optimization step to obtain the

maximum likelihood estimator (MLE). This hybrid algorithm, called Particle-MCEM-

MCML, is based on the algorithms proposed by Augustyniak (2014) and Bauwens et al.

(2014). The main steps of the algorithm are repeated in the online Appendix. For a

more detailed discussion of the approach as well as empirical studies the reader is re-

ferred to Sichert (2018). To identify the optimal number of breaks the algorithm is run

with the number of breaks K = 2, ..., 9. Then the optimal number of breaks is chosen

by the algorithm using the Bayesian information criterion.

2.3.3 Estimation Results

To the best of the author’s knowledge, there are no examples of an estimation of change-

point Heston-Nandi GARCH model. Hence, a more detailed analysis seems appropriate.

Table 1 presents the estimation results. In the upper panel, the first column gives
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the parameters for the standard GARCH, while the remaining columns contain the CP

parameters for each regime. The panel in the middle shows the degree of integration of

each regime’s variance process and annualized long-run volatility. The lower panel of the

table shows the log-likelihoods of the estimates. The log-likelihood of the CP-GARCH

model was calculated using the particle filter methodology with 100,000 particles as in

Bauwens et al. (2014), which is accurate to the first decimal place. Last, two standard

information criteria, namely the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC) are provided. The optimal number of regimes is five. The

identified break dates are 01.01.1992, 28.10.1996, 12.08.2003, 07.06.2007 and 29.11.2011,

each date being the first date of the new regime. These five regimes capture the economic

relevant states, while more regimes are prone to overfitting the data. For the interested

reader, the online Appendix provides a mode detailed analysis of the optimal number of

regimes.

The comparison of the estimation results in Table 1 delivers several insights. First,

the estimates show that there are distinct variance regimes in the CP model. The

long-run variances differ significantly across the regimes, while the variance of the fixed

GARCH fits the average variance. In particular, the long-run variances in the first,

third and fifth regime are significantly lower than the sample average of 16.6%, and the

variance of regime two and four are much higher. Within the CP model, periods with

low volatility are accompanied by higher values for µ, and also have a higher drift on

average, i.e. higher µ · ht. Furthermore, the estimation over the full period exhibits the

typical result that the variance process is almost integrated. The separate CP regimes,

on the contrary, all have a degree of integration (β + αγ2) lower than in the one regime

model.

Finally, when comparing the likelihood of the FP with the CP model, it becomes

apparent that the second one fits the data much better. This is of course expected if

one adds more parameters to the model. However, the two information criteria both

correct the log-likelihood for the number of parameters which are used. The comparison

of these measure across models also strongly suggests that the CP-GARCH is better.

An additional likelihood-ratio test also clearly prefers the model with five regimes.

A few words are called for to address potential data mining concerns. First, note

that the average duration of one state in the CP model is about 5.5 years, which is

fairly long. Second, the parameters in the above estimations are structurally different in

several regards. Furthermore, the dynamics across the regimes are very different as well

as the long-run variances. If there would not be any structural changes, the estimation
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Table 1: Estimation Results of the HN-GARCH model

FP HN-GARCH CP-HN-GARCH

Parameters ’92-15 ’92-’96 ’96-’03 ’03-’07 ’07-’12 ’12-’15

ω 3.01E-19 2.24E-06 1.91E-06 5.36E-06 4.41E-10 3.51E-06
α 4.34E-06 1.37E-06 6.13E-06 8.05E-07 7.66E-06 2.15E-06
β 0.821 0.801 0.786 0.301 0.772 0.273
γ 188.9 269.1 164.7 836.8 161.1 542.8
µ 2.256 9.149 1.090 8.243 -0.380 8.650
pjj 0.99918 0.99941 0.99898 0.99911 1

Properties

β + αγ2 0.9762 0.900 0.9522 0.8641 0.9703 0.9074
Long-run volatility 0.166 0.096 0.206 0.107 0.255 0.124

Log-likelihood FP CP

Total 19495.9 19691.6
AIC -38981.8 -39325.1
BIC -38948.4 -39131.0

Parameter estimates are obtained by optimizing the likelihood on returns. Param-
eters are daily, long-run volatility is calculated as

√
long − run variance · 252. For

each model, the total likelihood value at the optimum is reported. The volatility
parameters are constrained such that the variance is positive (0 ≤ α < 1, 0 ≤
β < 1, αγ2 + β < 1, 0 < ω). The Akaike information criterion (AIC) is calcu-
lated as 2k − 2 ln(LR) and Bayesian information criterion (BIC) is calculated as
ln(n)k − 2 ln(LR), where n is the length of the sample and k is the number of esti-
mated parameters.

could not identify them in such a long sample.8

Figure 1 illustrates the identified regimes by plotting the break dates together with

the level and 21-day realized volatility of the S&P 500 index. By visual inspection alone

one can recognize clear patterns of low and high volatility, which are accompanied by

good and low to moderate aggregate stock market returns, respectively. The estimated

regimes capture these periods very well. The first high volatility regime contains extreme

market events at the LTCM collapse and the market downturn of the early 2000s. The

second high volatility regime compasses the recent financial crisis and its aftermath.

8It is standard in the pricing kernel literature to estimate the GARCH model over the full
sample. Furthermore, the analysis focuses on the comparison of the standard GARCH with fixed
parameters versus the CP-GARCH, and both are estimated over the same sample.
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Figure 1: 21-day volatility of daily S&P 500 log returns and log(S&P 500 level)

The figure shows the annualized 21-day rolling window square root of the sum of
squared returns (top) and the natural logarithm of the level of the S&P 500 Index
(bottom).

2.4 The CP-GARCH model provides volatility forecasts

without a cyclical bias

The key property of the change-point GARCH model for this study is that it overcomes

the cyclical bias in multi-period GARCH models that is present for the standard GARCH

model with fixed parameters. Therefore, I next study the ex ante predicted 21-day

volatility of each model specification for each day in the sample, and compare it to the ex

post realized volatility. These multi-periods volatility forecasts are of interest, because

one month (21 trading days) is a typical horizon in the pricing kernel literature and

therefore the benchmark maturity in the empirical section below. For the comparison,

the estimated parameters are used to filter the volatility up to a point in time t, and then
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the model implied variance for t + 1 to t + 21 is calculated.9 The predicted volatility

is calculated as the square root of the predicted variance. The realized volatility is

calculated from daily returns Rt as: √√√√t+21∑
t+1

R2
t . (4)

Figure 2 displays the result graphically. It compares the realized 21-day volatility to

the models’ ex ante predicted volatility. The time series for the prediction is lagged by 21

days in the plot, such that for each point in time, the ex ante expectation is compared to

the ex post realization. It is clearly visible that the fixed parameter GARCH constantly

over-predicts volatility in times of low variance (regime 1, 3 and 5). This is because

it always reverts back to the long-term mean too quickly and cannot capture extended

periods with a below average volatility. To a lesser extent, the reverse is true for the

high variance regimes, where the one state GARCH mostly under-predicts volatility. On

the contrary, the CP-GARCH is much closer to the realized volatility in each case.

Table 2 shows the statistics corresponding to Figure 2. The first line contains the

realized volatility, while the following lines contain the average predicted volatility for the

fixed parameters (FP) and CP-GARCH as well as the root-mean-square error (RMSE).

The numbers match the visual findings. The FP model is always biased towards the

long-run mean and hence severely over-predicts volatility in times of low volatility (by

30% up to 50%), and vice versa. The CP model does match average numbers very well

and hence has a lower RMSE, often much lower. In the online Appendix I show that very

similar results can be obtained when splitting the sample on other criteria, as e.g. the

beginning of period VIX or GARCH forecast. This analysis shows that the standard

GARCH model does a worse job in predicting future volatilities. The model performs

particularly badly in times of low variance, which will be important in the estimation of

empirical pricing kernels.

9In this analysis the probability to switch into another regime is ignored, as well as the
uncertainty about which regime currently prevails. The first one has minor effects, since the
MLE for the switching probability is in the magnitude of 1/1000 to 1/1500 (see also Section
6.9). To address the second simplification, one would have to filter the probability of being in
a certain state at each point in time. This would require running the estimation separately for
each day, which is infeasible. However, this quantity is also likely to be low, since in other studies
the filtered probability is often very close to one for one state and zero for the others (see e.g.
Augustyniak 2014).
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Figure 2: Predicted vs. realized 21-day volatility

The figure shows the annualized 21-day rolling window realized volatility, measured

as the square root of the sum of squared returns, as well as the ex ante expected

volatility implied by the FP and CP-GARCH model. The predicted variance is

lagged by 21 days, such that expectation and realization are depicted at the same

point in time.

With these findings in mind, it becomes clearer why fixed parameter GARCH models

have such a high degree of integration and persistence. The higher αγ2 + β is, the more

slowly the process reverts to its long-run mean. Hence, this parameterization is necessary

to make even the one day ahead forecast, which is used in the estimation, to stay at the

respective high or low level. Overall, the CP-GARCH model allows to model volatility

clustering, while the GARCH with fixed parameters is biased and fails this task.

One could of course object that rational expectations during times of low market

volatility could have been higher than the ex post realized ones. It seems a very unlikely

event, however, that the rational expectations exceeded the realization as extremely as

shown above for such a long time period. The following comparison illustrates this in

another way: the FP GARCH volatility forecast in calm periods is virtually as high as the
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Table 2: Predicted vs. realized 21-day volatility

’92-’96 ’96-’03 ’03-’07 ’07-’11 ’11-’15

Average realized 21d volatility .0268 .0573 .0300 .0683 .0334
FP Avg. predicted 21d volatility .0391 .0511 .0409 .0543 .0413
CP Avg. predicted 21d volatility .0270 .0586 .0308 .0701 .0354
FP RMSE predicted 21d volatility .0155 .0167 .0129 .0350 .0120
CP RMSE predicted 21d volatility .0079 .0157 .0066 .0302 .0085
Average VIX .0406 .0709 .0406 .0777 .0450

The table shows the average realized 21-day volatility across the different regimes,
as well as the average ex ante predicted volatility by both the FP and CP-GARCH
model and the root-mean-square error (RMSE) of the predictions. The monthly VIX
is calculated as VIX/100/

√
12.

VIX in the same time period. The VIX is the non-parametric risk-neutral expectation of

the future volatility derived from option prices. It is typically significantly higher than

the physical expectation, since it includes the variance-risk-premium. Hence, on average,

the physical volatility forecast should be significantly below its risk-neutral counterpart

given the large magnitude of the variance risk premium documented in the literature

(e.g. Carr & Wu 2009). Several alternative volatility models as well as the VIX as a

purely forward-looking volatility forecast are used in the robustness section. Finally,

these results also hold for all horizons considered below (1 week to 3 months), as well as

for the other equity indices.

The documented pattern shed new light on the volatility clustering, which is con-

sidered a stylized fact of volatility in the financial econometrics literature. So far, this

behavior is usually interpreted as another manifestation of volatility persistence. The

CP-GARCH model on the contrary makes volatility switching between alternating high

and low volatility regimes. These regimes capture the empirical fact that volatility is

above or below its long-run mean for many years. For example, from June 2003 until

February 2007, the monthly volatility stayed below its long-run mean of 4.79% for about

3.5 years. A standard GARCH model with fixed parameters cannot model this behavior,

and consequently its volatility forecasts are systematically biased towards the long-run

mean. Despite the large body of literature on modeling and forecasting volatility, to the

best of the author’s knowledge, this results has not yet been systematically documented.
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3 Empirical Pricing Kernels

3.1 Data

The empirical analysis uses out-of-the-money S&P 500 call and put options that are

traded in the period from January 01, 1996 to August 31, 2015. This is the full sample

period available from OptionMetrics at the time of writing. The option data is cleaned

further in several ways. For each expiration date in the sample, the data of the trading

date is selected which is closest to the desired time to maturity (e.g. 30 days for one

month).10 Prior to 2008 there are only 12 expiration days per year (third Friday of each

month), but afterwards the number of expiration dates increased significantly with the

introduction of end-of-quarter, end-of-month and weekly options, and all are included.

Next, only options with positive trading volume are considered and the standard filters

proposed by Bakshi et al. (1997) are applied. The full details of the data cleaning process

are listed in Appendix A.

3.2 Methodology

The two major quantities that are required to empirically estimate pricing kernels are

the risk-neutral and the physical return density. The chosen approaches allow to stay as

non-parametric as possible, but provide evidence on the conditional density.

The method to estimate the risk-neutral density f∗(R(t, t + τ)) follows Figlewski

(2010). This standard approach is known to work well and is used by numerous studies,

and Appendix B contains the technical details. The obtained densities are truly con-

ditional because they reflect only option information from a given point in time. Also

note that the risk-neutral estimates are not influenced by any assumption of structural

breaks.

In the following, the risk-neutral probabilities are only estimated where option data

exists, and the implied volatility curve is not extrapolated. I choose to deviate from

Figlewski (2010) in this point, as, on the one hand, any extrapolation or tail fitting is

potentially unreliable, and the shape of the PK in the tail would crucially depend on

guessing the right parametric distribution for the tails. On the other hand, the data on

10For each time horizon that is analyzed in this paper, the desired time to maturity was set
such that it would be Wednesday data. It is common to use Wednesday data, because it is the
day of the week that is least likely to be a holiday and also less likely than other days to be
affected by day-of-the-week effects (such as Monday and Friday).
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average covers a cumulative probability of 95.5% at the one month horizon and therefore

the main results can be shown without any tail probabilities.11 Instead, I present the

ratio of the cumulative return density in the tail that is not covered by the (cleaned)

option data. The cumulative risk-neutral return density can also be obtained from option

prices non-parametrically. Dividing this quantity by its physical counterpart gives one

data point for the right tail. This point provides an indication of the behavior of the

pricing kernel in the tail. It can be interpreted as the average PK in that region.

The adopted approach for obtaining the conditional physical density of returns is

semi-parametric and has become popular recently.12 Many alternative approaches are

tested in the robustness section and they deliver very similar results. The benchmark

method for the physical return density is chosen because it has several distinct advan-

tages. First, it is flexible enough to incorporate the volatility forecasts of several other

models, which is done in the robustness section. Second, it allows me to explicitly detect

the main driver of the results by comparative statics. Finally, it is only semi-parametric

and hence less parametric than many alternatives. The starting point is a long daily time

series of the natural logarithm of one month returns from January 02 1992 to August 31

2015. First, the monthly return series is standardized by subtracting the sample mean

return R̄ and afterwards dividing by the conditional one month volatility
√
h(t, t+ τ)

forecasted by the GARCH model at the beginning of the month. This yields a series of

return shocks:

Z(t, t+ τ) = (R(t, t+ τ)− R̄)/
√
h(t, t+ τ). (5)

The conditional distribution is then constructed by multiplying the standardized return

shock series Z with the conditional volatility expectation on a given day:

f̂(R(t, t+ τ)) = f̂
(
R̄+

√
h(t, t+ τ)Z

)
. (6)

Hence, for each date in the sample a different conditional density is estimated. The

difference arises from the conditional volatility expectation, while the shape of the dis-

11Refraining from “completing the tails” does not influence the estimation of the risk-neutral
probabilities over the range of available option strikes. The risk-neutral probability is obtained
directly from applying (16), and no additional treatment as e.g. kernel fitting or scaling is neces-
sary. Therefore, the standard approach to exclude option prices with low prices (best bid below
$3/8) is at least innocuous and probably leads to an increase of the precision of the derivation
of the risk-neutral probabilities.

12Christoffersen et al. (2013) use the same method, and similar methods in related settings
are used e.g. in Barone-Adesi et al. (2008) and Faias & Santa-Clara (2017).
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tribution is always the same. For both models the full return time series is used, and for

the CP model the GARCH parameters of the respective regime are used.

Finally, the log of the empirical pricing kernel (EPK) M̂ is calculated as:

ln M̂t,t+τ = ln
(
f∗(R(t, t+ τ)/f̂(R(t, t+ τ))

)
. (7)

3.3 Results for the one month pricing kernel

This section documents the shape of the conditional pricing kernel using the non-

parametric method for estimating the risk-neutral and the semi-parametric method to

estimate the physical conditional densities described above. The one month horizon is

chosen to be the benchmark analysis, since it is the most studied horizon in the litera-

ture on empirical pricing kernels and a maturity with very liquid option contracts. The

robustness section shows that the results also hold for other typical horizons. Figure

3 shows the time series of the natural logarithm of the estimated pricing kernels using

the HN-GARCH model with fixed parameters. Figure 4 displays the same for the CP-

GARCH. The scale of the horizontal axis is log returns. The coloring indicates times

with high volatility (red) and times with low volatility (black), as defined in Section

2.3.3. The lines are not smoothed, to create no false impression of precision. The dotted

blue lines at the right end of the pricing kernels depict the ratio of the risk-neutral to

the physical cumulative return densities (CDF) in the tail. Each CDF ratio is just one

data point, but the line illustrates to which PK the point corresponds. This gives an

indication of the behavior of the PK in the right tail. It can be interpreted as the value

of the average PK in the tail. The value on the horizontal axis for the CDF ratio is

chosen as the return of the highest traded strike plus 0.013 (0.02) log-return points in

times of low variance (high variance).

When comparing the two plots, several observations emerge. The first plot mostly

exhibits U-shaped pricing kernels in times of high volatility, while the PKs in times of

low volatility have the typical S-shape. The finding that the latter pattern prevails in

times of low volatility was never documented systematically nor for such a long time

series. It is quite striking to see how well the different market regimes, depicted with

red and black graphs in the plot, separate S-shaped pricing kernels from U-shaped ones.

Although the estimation of the break points uses only return data and no option data,

it classifies the changes in the PK estimates obtained from standard methodology very

well.
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However, when the GARCH parameters are not fixed but structural breaks are in-

troduced, the kernels in times with low volatility are predominantly U-shaped. In times

of high volatility, the estimated PKs are now more noisy, but still mostly U-shaped. The

varying wideness of the PKs is to be expected, since the PK has to at least price the

risk-free asset and the index correctly. If the physical distribution expectation becomes

more disperse, the PK must change in order to price the asset correctly, and vice versa.

Furthermore, the PK estimates from the CP model are closer together in the plots than

their FP counterparts. This suggests that they are closer to documenting a stable re-

lationship over time. Lastly, the observation that the estimated PKs in times of low

volatility are very steep at their left end is reasonable in economic terms. If the market

return in these times would be very low, this would very likely be accompanied by a

large increase of variance and a severe worsening of economic conditions, and possibly

even with a regime shift. Such an adverse event should be expensive to insure against.

Two further comments on the shape of the PKs in the CP version are warranted.

A first objection might arise from the unclear direction of the plots at the right end,

especially in periods of low variance. Note that this ambiguity clearly increases from

the beginning to the end of a calm period (regime 1, 3 and 5). Therefore, a likely

explanation is that after several years of strong bull markets, the probability of further

large positive returns is lower. The adopted approach, however, cannot incorporate such

a specific conditional expectation, since the shape of the distribution (i.e. mean, skew

and kurtosis) is always the same and only the wideness (volatility) is conditional. This

is supported by the findings of Giordani & Halling (2016), who document that returns

are more negatively skewed when valuation levels are high. Furthermore, this pattern

of decreasing steepness of right-hand end of the estimated PK over the course of a

regime is also observed for all robustness checks below. All alternatively tested methods

have in common that the skewness and all higher moments of the return density only

depend on the volatility. In contrast, the skewness of the risk-neutral return distribution

clearly decreases over the course of the last low volatility regime. Figure 2 in the online

Appendix illustrates this. However, there exists no established method to model this

potential time series pattern in the physical expectation.

In addition, the point where the PK starts to increase again is rather deep OTM.

It is possible that these strikes are not traded, or best bid is below $3/8, which is the

cut-off point in the data cleaning. Both arguments are supported by the finding that

the lower the highest available strike is, i.e. the right-hand end of the line, the lower

the right-hand end of the PK line is. Furthermore, Table 2 above shows the model still
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slightly over-predicts the volatility in calm periods, especially in the last regime with

on average 6%. Over-predicted volatility is the key driver that generates the typical

S-shape, as discussed in detail in the next section. Therefore this can help to explain

why the PKs in the last regime are the most ambiguous ones. Finally, Section 6.2 shows

fully non-parametrically that the pricing kernel is at least on average upward sloping in

times of low volatility by analyzing OTM call option returns.

The second comment refers to the PK estimates in high volatility regimes with the

CP model, which are more noisy and sometimes exhibit a pronounced hump around

zero. Similar to above, this is again mostly observed at the end of a high volatility

regime. As the standard GARCH forecasts are biased towards the long-run mean, the

GARCH forecasts in high volatility times are also biased towards their high long-run

mean. This long-run mean is significantly influenced by the extreme returns, which are

mostly observed at the beginning of the high variance regime. Figure 2 shows that there

are also periods with relatively low volatility within these periods, as for example most

of the year 2011. However, the GARCH forecasts are not able to capture these periods.

In fact, it even overestimates the average volatility of these periods, as can be seen from

Table 2. Hence, the mechanism that causes these slightly S-shaped estimates here is the

same that causes the S when one uses the standard GARCH methodology, as discussed

in the next section.

Overall, one can conclude that the rather simple modification of the methodology

leads to a large change in findings. The application of a more accurate volatility forecast

makes the prominent finding of a hump around zero returns in the empirical pricing

kernel vanish. Moreover, the PKs seem to be U-shaped at least most of the time, if

not for all time periods. Furthermore, it becomes clear that the S-shaped kernels are

merely a result of the GARCH model with fixed parameters and are then only found

in periods of low variance. The calculation of confidence intervals in Section 6.1 shows

that the presented findings are also statistically significant. Furthermore, Section 6.3

shows that the same results can be found for other major international stock market

indices. Finally, the robustness section shows that of the results are robust to a variety

of changes in data and methods.
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Figure 3: Empirical pricing kernels with fixed parameters in the HN model

The figure shows the natural logarithm of estimated pricing kernels obtained when

using the Heston-Nandi model with fixed parameters. Red (black) depicts times with

high (low) variance, as defined in Section 2.3.3. Log-returns are on the horizontal

axis. The horizon is one month. The dotted blue line connects the points, which

depict the ratio of the CDFs of the tail, with the corresponding pricing kernels.
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Figure 4: Empirical pricing kernels with CP parameters in the HN model

The figure shows the natural logarithm of estimated pricing kernels obtained when

using the Heston-Nandi model with CP parameters. Red (black) depicts times with

high (low) variance, as defined in Section 2.3.3. Log-returns are on the horizontal

axis. The horizon is one month. The dotted blue line connects the points, which

depict the ratio of the CDFs of the tail, with the corresponding pricing kernels.
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3.4 How the volatility forecasts drive the result

The introduction of structural breaks into the standard GARCH model changes the

results on empirical pricing kernels significantly. The new model has three potential

channels that can influence the results: the filtered volatility, the different conditional

return distributions and the forecasted volatility. Untabulated results show that the first

factor has little impact since the filtered volatilities are very similar for both FP GARCH

and CP-GARCH. The second factor has also surprisingly little influence. One could

expect that the different volatility forecasts of the models lead the different distributions

of standardized return shocks. But the top left plot in Figure 5 shows that these two

distributions are actually very similar. The figure shows the densities of the monthly

normalized return shocks (i.e. the Z from Equ. (5)) for the two models. The first sub-

plot shows all return shocks of the full time series and the following ones only the return

shocks of the respective sub-periods. While the regime-specific shock densities are very

different, the aggregate density, which is used for the empirical study, is very similar.

The last remaining channel, the different volatility forecasts, turns out to be the

major driver of the results. At each point in time, the physical return density forecast is

constructed by multiplying the respective return shock density (top left Figure 5) with

the conditional volatility forecast. Since the densities are very similar, the key difference

is the more realistic volatility forecast. In times of low volatility, the upward-biased

monthly volatility forecasts of the FP GARCH create a physical density that is too wide

and has too much probability mass in the tails, and too little in the center.

Figure 6 illustrates the main mechanism how the volatility forecasts effect the empir-

ical pricing kernel estimates. The top row shows the actual data for October 2005, and

the bottom row shows the data for May 2009. The first column contains the physical

return forecasts. It is clearly visible, how in times of low volatility, the return density

for the FP model has more probability mass in the tails and less in the center, relative

to the CP counterpart, while the reverse is true for the high volatility times. The second

column shows the risk-neutral return density, and the last column shows the EPKs. One

can nicely see how the overestimated volatility for the FP model influences the shape of

the estimated PK in 2005. The overweight of probability mass in the left tail flattens the

EPK, but it is still downward sloping. The lack of probability mass in the center causes

the hump in the middle. Finally, the fatter right tail makes the EPK downward-sloping

on the right end. In 2009, the underestimation of the volatility makes the pricing kernel

steeper, but does not change the estimation qualitatively.
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The small differences between the FP and CP return shock density depicted top left

in Figure 5 actually counteract this mechanism. The FP density has slightly more mass

at the mode, which should reduce the hump.

The sub-plots two to six in Figure 5 point to another interesting finding. First, for

the FP model, the densities of the respective regimes are substantially different from

the one of the full sample. An apparent pattern is that the densities in times of low

variance are much tighter, while the reverse is true for the other times. This pattern is

barely visible in the respective densities for the CP model. The application of a model

with better volatility forecasts leads to estimated shock densities that are very similar

across time. The difference is caused solely by the different volatility forecasts. In the

low variance regimes, in the FP version the monthly returns are divided by an upward-

biased volatility forecast and hence produce a very narrow shock distribution. Similarly,

in times of high variance, where monthly returns are also much more volatile, these

returns are standardized by a downward-biased volatility forecast.

To further evaluate the similarity of the shock distributions I conduct a formal test.

Table 3 presents the p-values of a Kolmogorov-Smirnov-Test. The null hypothesis is that

the shock distribution of one regime is not different from the shock distribution of the

full sample. The results support what the visual evidence suggests. For the model with

fixed parameters the shock distribution of the regimes are significantly different from

the shocks of the full sample. For the CP model the null of equality cannot be rejected

for the three low variance regimes 1, 3 and 5, nor for regime 2, and only be rejected

for regime 4, which contains the financial crisis. This is interpreted as support of the

approach, and especially for the inclusion of breaks.

Overall, the estimation of very homogeneous monthly shock distributions is a very

interesting side result, and not least because this is solely attributable to the different

volatility forecasts. This gives rise to the possibility of finding a time-invariant distribu-

tion for stock returns, which is left for further research.
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Figure 5: Monthly return shock densities

The figure shows the estimated monthly return shock density (21 days) calculated as

in Equ. (5) using the FP GARCH and CP-GARCH. The first sub-plot depicts the

case where the shocks of all periods are pooled together, while the remaining ones

only contain the shocks of the respective regimes in timely order.
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Figure 6: Main mechanism how volatility estimates drive the results

The top row shows data from October 2005 and the bottom row shows data for May

2009. The first column displays the estimated conditional monthly return density

at the given date, while the second column displays the risk-neutral monthly return

density at the same date. The last column illustrates the estimated pricing kernels.

Table 3: Kolmogorov-Smirnov-Test of equal distribution of monthly return shocks

’92-’96 ’96-’03 ’03-’07 ’07-’11 ’11-’15

FP GARCH 1.5E-07 7.2E-08 4.2E-05 5.2E-09 5.7E-05
CP-GARCH 0.051 0.072 0.126 0.001 0.128

The table shows the p-values of a Kolmogorov-Smirnov-Test. The null hypothesis is
that the shock distribution of one regime is not different from the shock distribution
of the full sample.

4 Economic Properties of the Empirical Pricing

Kernels

In the following section, the empirical pricing kernel estimates presented in Section 3.3

are used, with two minor adjustments (see Appendix C.1 for the details). Furthermore, I
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will use the level of the implied volatility index to identify times of high and low volatility.

As this has a very high overlap with the estimated regimes, the non-parametric way is

more intuitive and easier to replicate. For all maturities, the 30 day implied volatility

index with the same cutoff value is used. The cutoff values are chosen close to the in-

sample medians, with 18 for the VIX, 19 for the FTSE IVI, 23 for the VSTOXX and 21

in case of the VDAX New. If not indicated otherwise, the presented results are for the

benchmark specification as in Ch. 3.3, and returns and Sharpe ratios are annualized by

·(365/days to maturity) and ·
√

365/days to maturity, respectively. To not to overwhelm

the reader, I present only the main results. All additional findings I refer to, but do not

show as tables or figures, can be found in the online Appendix.

4.1 Euler equation errors support the model with breaks

Analyzing Euler equation errors is a non-parametric and standard way to test a candidate

pricing kernel. The Euler equation follows directly from the fundamental equation of

asset pricing, and the true pricing kernel sets the Euler equation errors to zero. The

conditional Euler equation is:

1 = Et[Mt,t+τRt,t+τ ], (8)

where Rt is the return of the index and Mt is SDF. In the following, the average (un-

conditional) Euler equation error is defined as the time-series average of T conditional

Euler equation errors:

1

T

T∑
t=1

(
M̂t,t+τRt,t+τ − 1

)
, (9)

where M̂ is the empirical pricing kernel (EPK). An average Euler equation error of zero

is a minimum condition that any candidate pricing kernel has to fulfill.

Table 4 shows the results. The first two columns show the Euler equation errors of the

empirical PKs from Section 3.3. The other columns show the errors for the three most

important methods from the robustness section. In particular, column three shows the

errors for the method where the level of the VIX is used as volatility forecast. Columns

four and five show the results for the method where the conditional physical return

density is obtained from simulating the GARCH model. This is an approach that is often

used in the literature and I employ it below both for the fixed and switching parameter
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model.13 The last column shows the results where the realized volatility model of Corsi

(2009) is used for forecasting volatility. The first line displays the Euler equation errors

and the second line contains the corresponding bootstrapped 90% confidence intervals

in square brackets. They are obtained from N=25,000 i.i.d. bootstraps. The draws are

i.i.d., since the Ljung-Box test at lags up to 30 rejects autocorrelation in the time series.

The third and fourth line show the average Euler equation errors split into times of high

and low volatility.

Table 4: Euler equation errors of empirical pricing kernels

FP CP VIX FP simul. CP simul. Real. Vol

Error 0.052 -0.006 0.007 0.046 0.001 -0.001
[Conf. Bounds] [.008, [-.035, [-.032, [.013, [-.028, [-.032,
bounds] 0.107] 0.026] 0.06] 0.085] 0.03] 0.06]
Error low vol 0.068 0.001 0.019 0.089 0.021 0.019
Error high vol 0.032 -0.016 -0.008 -0.012 -0.026 -0.008

The table shows the average Euler equation errors, together with their 99% confi-
dence intervals as well as the Euler equation errors for the two subsamples of times
with high and low volatility (VIX≶18).

The main result is that the standard approaches which use a GARCH model with

fixed parameters (column 1 and 4) produce Euler equation errors that are both eco-

nomically and statistically significant. They therefore fail a necessary condition. The

approaches that use a GARCH models with breaks on the contrary have errors that are

virtually zero. The third and fourth line show that this is also the case if only times of

high or low volatility are studied. For the standard model, the last two lines reveal that

it performs particularly bad in times of low volatility.

4.2 Term structure of risk premia and Sharpe ratios

Next, I turn to the term structure of risk premia and Sharpe ratios, which is discussed

vividly since Van Binsbergen et al. (2012), in particular since their results are inconsistent

with most leading asset pricing models. Van Binsbergen & Koijen (2017) show that the

findings of a downward sloping term structure of risk premia and Sharpe ratios can be

documented for a variety of assets and markets (and they also provide a comprehensive

13 The approach is used e.g. by Rosenberg & Engle (2002), Barone-Adesi et al. (2008) Liu
et al. (2009), Barone-Adesi & Dall’o (2012), Cuesdeanu & Jackwerth (2018), Cuesdeanu (2016).
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theory review). While these results suggest that the SDF has similar properties, this

must not be the case. The time series and term structure properties of the SDF can be

different if the assets have state- and horizon-dependent correlations with the SDF.

Therefore, in the following I study the term structure and time series of the pricing

kernel itself. I document that this asset with the maximum attainable conditional Sharpe

ratio in the economy also has a downward sloping term structure of risk premia and

Sharpe ratios. Although the pricing kernel is only the projection of the SDF on the

index, the results are still very valid. While the full SDF most likely has a higher

volatility than its projection, there are no assets to trade it. Given that magnitude of

the Sharpe ratios presented below exceeds any value obtainable by standard assets, this

is probably the closest one can get to the SDF empirically.

In particular, equipped with the empirical pricing kernels (EPKs) from Section 3.3

one can calculate the bounds of Hansen & Jagannathan (1991) for the expected return

and Sharpe ratio. Doing this for the index is a standard exercise, but here I can go one

step further. The Hansen-Jagannathan bound for asset i reads:

E(Ri,t,t+τ −Rf )

σ(Ri,t,t+τ −Rf )
= −ρ(Ri,t,t+τ ,Mt,t+τ ) · σ(Mt,t+τ ) ·Rf . (10)

Hence, the asset that is perfectly negative correlated (ρ = −1) with the SDF is the

asset with the maximum attainable conditional Sharpe ratio.14 This can be achieved by

considering an asset, that pays out the level of the realized PK. Following Bakshi et al.

(2010), I call this asset the “pricing kernel strangle” (PKS).15 In particular, the return

of this asset is:

RPKS,t,t+τ =
Mt,t+τ

E∗t (Mt,t+τ )
. (11)

In the following, I discuss the right-hand side of Equ. (10), which is basically the

volatility of the pricing kernel. In Section 4.3 I do the complementary and introduce a

trading strategy that mimics the left-hand side of Equ. (10).

While the benchmark results above are concerned with the standard one month

PK, the analysis can be extended to other horizons.16 Therefore, I can study the term

14The Hansen-Jagannathan bound holds for the SDF and not its projection on the index (the
PK). However, as long as one just compares assets which payoff functions are only a function of
the market return (as here and in the following), the PK still maximizes the Sharpe ratio.

15Bakshi et al. (2010) call the right, upward sloping part of the asset “kernel call”, as it
resembles the payoff profile of a call. Analogously, the U-shaped full EPKs resemble the payoff
profile of a strangle or straddle.

16Section 6.8 shows that the estimates for other horizons are also clearly U-shaped.
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structure of the pricing kernel, and in particular the term structure of implied risk premia

and Sharpe ratios.

Table 5: Average risk premia and Sharpe ratios implied by the EPKs

1w 2w 1m 2m 3m 1w 2w 1m 2m 3m

Risk premia Sharpe ratios

Panel A: SPX empircal pricing kernels with fixed parameters GARCH

All dates 10.99 5.05 2.49 1.21 0.93 3.96 2.58 1.78 1.47 1.25
Low vol 6.74 2.40 1.14 0.54 0.47 2.80 1.57 1.08 0.78 0.75
High vol 13.22 6.80 3.54 1.74 1.28 4.57 3.25 2.33 1.95 1.63

Panel B: SPX empircal pricing kernels with change-point GARCH

All dates 9.63 5.36 3.20 1.54 1.15 3.72 2.80 2.36 1.61 1.45
Low vol 8.70 5.16 3.35 1.59 1.13 3.56 2.76 2.48 1.66 1.48
High vol 10.11 5.49 3.09 1.50 1.16 3.80 2.83 2.27 1.57 1.44

The table shows the model implied excess returns and Sharpe ratios for different
maturities for the S&P 500 empirical pricing kernels.

Table 5 reports the results for several horizons, which provides several findings.17 First,

the term structure of both risk premia and Sharpe ratios are clearly downward sloping.

This hold not only on average, but also both for calm times and times of financial tur-

moil. Second, the risk premia and Sharpe ratios are countercyclical, with maybe the

exceptions of CP model implied Sharpe ratios. Third, the values are substantial. As

discussed below for the trading strategy, the returns are not obtainable, because having

a short position in the PKS involves substantial leverage. But the Sharpe ratios are not

affected by collateral, if the latter is held in the risk-free asset. Fourth, comparing the

Panels A and B it emerges that the EPKs using standard GARCH imply much more

countercyclical values, a steeper term structure, and comparably larger values in the

short run and smaller ones in the long run. However, the results in Section 4.3 shows

that the realized values for the FP model do not match the expected values well, while

they do for the CP model. Fifth, the volatility split values for the CP model converge to

similar values for longer maturities, while they stay strongly countercyclical for the FP

17While it is possible to obtain a full time series of implied risk premia and Sharpe ratios, this
plot if very noisy in my case. A substantial part of that noise stems from the time-variation in
the probability mass contained in the available risk-neutral densities.
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model. In addition it is worth mentioning that all the methods tested in the robustness

section have the same predictions.

4.3 Trading the pricing kernel

To complement the previous analysis, I introduce a trading strategy that trades the

pricing kernel in the options market. This is a non-parametric way to test the EPK

estimates and their properties. It also confirms the accuracy of the model predictions

presented before, at least on average.

The pricing kernel strangle (PKS) is a synthetic derivative that pays out the realized

level of the PK. Using the cross-section of options one can mimic this optimal derivatives

position very well.18 Practically this means that one combines several puts and calls at

a given point in time, to obtain a payoff profile, that mimics the lines of the EPKs, as

they are e.g. depicted in the right of Figure 6.

To match the empirical returns to the EPK-implied values, one has to take a short

position in the PKS, as one needs a perfect negative relation between the PK and the

asset with the maximum attainable Sharpe ratio. In the following, I calculate the excess

return on a short position in the PKS as the negative of the long position. In practice,

selling the PKS requires to post significant amount of collateral, as it involves large short

option positions. While this would reduce the returns significantly19, it does not affect

the Sharpe ratios. Therefore, I focus on the analysis of the latter. In any case, it is an

interesting theoretically exercise that provides valuable economic insights.

Table 6 shows the obtained, annualized Sharpe ratios from selling the PKS and

holding it until maturity. Since theses are key results, the table contains also several

international stock market indices, that are otherwise only discussed in the robustness

section.20 There are several main findings. First, the obtained Sharpe ratios are sub-

18To reduce the noise from pricing, I calculate the price of this synthetic derivative using the
risk-neutral density directly. Nevertheless, the PKS could be approximated well in practice, at
least in the absence of transaction costs. This is because the number of traded options clearly
exceeds the used number of points on the numerical grid and because the interpolation is done
linearly here. Please note also that the approach is model-free, as it is only a derivative with
a complex payoff profile that is priced using contemporary option prices, while its payoff is
determined by the realized market return.

19The ratio of required collateral for the PKS price is in the magnitude of 15-20:1. As a
robustness, I calculate the returns to a fully collateralized position in the PKS. The results are
very similar in all regards, only the returns are significantly reduced (by about 93%).

20The online Appendix also shows the results for 1.5, 2.5 and 6 months. All three confirm
the documented patters. However, for horizons longer than 3 months several empirical problems
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stantial. However, they are not completely out of the ballpark of values known for the

derivatives market. For example, Broadie et al. (2009) report an annualized Sharpe ratio

of 1.01 for selling monthly S&P 500 future OTM puts, while Van Binsbergen & Koi-

jen (2017) report an annualized Sharpe ratio of 1.6 for selling monthly S&P 500 ATM

straddles. Nevertheless, the magnitude of the reported Sharpe ratios makes it likely that

the trading strategy is actually close to the attainable maximum. In comparison, the

annualized monthly Sharpe ratio of the S&P 500 index is 0.34 in the matching sample.

Second, for the CP model, the realized Sharpe ratios match the predicted values

presented above well on average, and also for the subsamples. For the FP model however,

the realization are substantially lower than the predictions. The values are particularly

worse in low volatility times. Since this is also the same for the other indices, these

results are included in the online Appendix for brevity. One exception is the very short

maturity of 1-2 weeks, where the EPKs from the FP model also performs very well. For

these PKs, the difference between the two methods is the lowest, both here and in term

of their shape. This is because the volatility forecasting bias has less effect for short

maturities and hence the EPKs from the FP model are less S-shaped or even U-shaped

in calm times.

Third, holding all else fixed, by large the risk premia and Sharpe ratios are highest for

the SPX, followed by FTSE, ESTX and DAX. This order matches the order of number of

stocks in the index, which could be a proxy for the amount of unsystematic and unpriced

risk in the index.

Fourth, as it comes to the time series, the results confirm the predicted patterns. In

times of high volatility the risk premia are clearly higher than in times of low volatility,

i.e. are countercyclical, and by large the same hold true for Sharpe ratios. For the

SPX and, to lesser extent, also for the FTSE, this seems not to be the case for longer

maturities. However, this is driven by some unreasonable EPKs, that are caused by too

high volatility forecasts in high volatility times. These EPKs, correspond to the flat or

S-shaped pricing kernels visible in Figure 4 as e.g. in 2008. Therefore, I exclude EPKs

from the sample where the variance risk premium is positive (forecasted volatility>VIX).

This increases the realized values substantially and makes them countercyclical almost

always. The results are included in the online Appendix.

Fifth, the term structures of realized excess returns and Sharpe ratios of the PKS

emerge. First, these options are traded significantly less and there are at most four maturities
available per year. Second, both the forecasting of volatility and return densities become less
reliable.
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Table 6: Realized Sharpe ratios and risk premia for the pricing kernel strangle

1w 2w 1m 2m 3m 1w 2w 1m 2m 3m

Sharpe ratios Excess returns
Panel A: SPX empircal pricing kernels with fixed parameters GARCH

SPX 11.18 3.95 1.94 1.04 0.63 5.42 1.70 1.12 1.15 0.73
Low vol 7.51 2.75 0.63 0.31 0.35 4.62 3.01 0.50 0.48 0.68
High vol 13.11 4.75 2.97 1.60 0.86 5.94 1.65 1.51 1.61 0.81

Panel B: SPX empircal pricing kernels with change-point GARCH

SPX 11.58 5.40 3.73 1.96 1.43 6.37 2.33 1.58 2.38 2.27
Low vol 9.78 6.56 4.22 2.12 1.71 5.35 5.43 3.31 2.98 3.31
High vol 12.53 4.62 3.34 1.83 1.83 6.98 1.65 1.14 2.05 1.33

Panel C: International empircal pricing kernels with change-point GARCH

FTSE 9.38 3.88 2.71 1.40 1.29 5.38 2.52 2.34 1.60 2.19
Low vol 7.15 3.33 1.93 1.00 1.31 3.96 2.34 1.52 1.40 2.53
High vol 12.32 4.57 3.80 1.87 1.25 7.86 2.74 4.16 1.87 1.81

ESTX 9.33 4.36 2.88 1.35 0.74 4.61 3.40 3.10 2.10 1.46
Low vol 3.42 3.55 2.30 1.08 0.58 1.54 3.07 2.85 2.11 1.30
High vol 11.25 4.69 3.20 1.49 0.84 5.98 3.54 3.27 2.14 1.56

DAX 5.48 3.68 2.18 1.19 0.90 2.68 2.48 2.26 1.54 1.73
Low vol 2.57 4.52 1.58 0.87 0.82 1.23 4.18 1.81 1.51 1.67
High vol 7.11 3.25 2.56 1.36 0.97 3.58 1.98 2.55 1.60 1.79

The table reports the annualized Sharpe ratios for a short position in the pricing
kernel strangle for maturities of 1 week to 3 months. The values are annualized by
·
√

365/days to maturity. For the second part, only dates are considered, where the
physical volatility forecast is below 0.9·volatility index.
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are generally downward sloping. This pattern seems to be disrupted for the SPX and

the FTSE, but again prevails if the restriction on the variance risk premium is imposed.

The slope of the term structure is particularity steep for short maturities and converges

to similar values for longer maturities. The two week horizons seems to be an outlier for

all indices but the ESTX.

The online Appendix contains some additional results. Among others, it compares

the excess returns and Sharpe ratios predicted by the EPKs to the realized ones for all

indices, and finds that they are well in line also quantitatively. In addition, similarly

strong results are obtained for the methods tested in the robustness section. Further-

more, the corresponding results for the model using FP GARCH show that it performs

worse both in terms of results and matching the model’s predictions for all indices. The

performance of the FP model is particularly bad in times of low volatility. However, in a

few cases, trading the PK estimates from the FP GARCH outperforms the CP version.

All these cases are in times of high volatility, where all the FP GARCH EPKs are clearly

U-shaped. The reason could be that some of the PK estimates from the CP-GARCH

are unreasonable flat or S-shaped, due to an overprediction of volatility. Again, this is

confirmed by excluding EPKs where the variance risk premium restriction is violated.

Taken together, the realized returns and Sharpe ratios shed new light on key proper-

ties of the pricing kernel. Most obvious is that the high Sharpe ratios imply a very high

volatility of the SDF, especially in the short run. Also, on average, the volatility of the

SDF increases in time, but increases by significantly less than the square root of time.

The variance-dependent pricing kernel in Section 5 presents a model that can explain

both the U-shape and the empirical patterns in risk premia and Sharpe ratios. Finally,

one can reverse the argument of the Hansen-Jagannathan bound and see that the PK

that delivers the higher Sharpe ratios relative to another one is better and closer to the

true PK.
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4.4 The U-shaped pricing kernel helps to explain the low

beta anomaly

Figure 7: Non-linear relationship between returns of the market and returns of
beta-sorted portfolios

The left plot shows the excess returns of the low and high beta portfolio of Kenneth

French plotted against the market’s excess returns, together with a fitted 1st (each

black) and 2nd order polynomial. The right plot shows the estimated curvature

parameter for the 2nd order polynomial, using the 25 beta and size portfolios of

Kenneth French. The portfolios are equally weighted and the time period is 1996-

2015.

The presented empirical pricing kernels also have asset pricing implications beyond the

options market, and they can for example help to explain the cross-section of stock

returns. The following will show this for the case of the ”low beta anomaly”, also called

”betting against beta”, which is widely discussed recently. In short, it is the effect that

portfolios comprised of stocks with a high (low) beta have negative (positive) abnormal

returns. This anomaly is particularly suited for the pricing kernel presented above, as

it is not (yet) an established cross-sectional risk factor, that otherwise might be hard to

capture with an SDF that is only a function of the market.

Most existing risk-based explanations for the low beta anomaly focus on the left tail.

Therefore, the following analysis will focus on the right tail of the return distribution and

show that a U-shaped pricing kernel, and in particular the upward sloping part in the area

of high positive returns, can also help to explain the empirical patterns. The intuition is
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as follows. A thorough analysis of the conditional correlation of the returns of the beta-

sorted portfolios and the market shows that the low-beta portfolio tends to underperform

the (beta adjusted) market both in times of very negative and very positive market

returns, while the reverse is true for the high beta portfolio. Figure 7 (left) illustrates

this pattern. The figure shows the returns of the high and low beta portfolios provided

by Kenneth French plotted against the market return, together with a fitted first (only

beta with constant) and second order polynomial. In particular, the relationship for the

low beta portfolio has a negative curvature relative to a linear relationship. The right

graph in Figure 7 generalizes this pattern by showing the curvature parameter of a fitted

2nd order polynomial for all the 25 size and beta sorted portfolios of Kenneth French.

The underperformance of the low beta portfolio for low market returns is well in

line with existing explanations, that require a premium for downside risk. However, the

underperformance in the case of high market returns implies a lower return for models

with a decreasing pricing kernel for these states. But if the PK is upward sloping in that

area, assets that have lower payoffs in these states are more negatively correlated with

the PK, and vice versa. The more negative the correlation then leads to a risk premium

and higher average returns.21 Overall, on an abstract level, one can say that the payoff

profile of the low beta portfolio resembles and inverse U, which is then more negatively

correlated with the U-shaped PK. The reverse is true for the high beta portfolio.

This explanation is tested quantitatively using the empirical pricing kernel estimates

from above. For this, the beta-sorted portfolios are recalculated to match the dates

and timing of the option prices. Appendix D contains the technical details. The top

of Table 7 shows the in-sample statistics for the portfolios. While the returns are not

exactly monotonically decreasing across portfolios, their Sharpe ratios show the typical

pattern. The pricing performance of the EPK estimates M̂ is tested by calculating the

Euler equation errors of the beta-sorted portfolios analogously to Equ. 8-9, where the

return of the index is replaced with the return of the beta-sorted portfolios. The errors

in Table 7 suggest that the pricing kernel estimated from option prices can also not fully

explain the return differences between the beta-sorted portfolios. The pricing errors can

be interpreted similar to a factor model as an average alpha.22

21Similarly, the dip of the U-shaped PK around zero renders these states, where the low beta
portfolio outperforms on average, cheap and hence also helps to explain the anomaly.

22The errors are not estimated such that they center around zero. Therefore, the apparent
overpricing of the portfolios is not necessarily a problem, as the PK was not estimated using
the portfolio returns, but rather from option prices. Also, partly due to the low N , neither
the pricing error nor the first order differences are statistically significantly different from zero
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Table 7: Low beta portfolios and Euler equation errors (monthly, in [%])

Average net return 1.06 1.14 1.15 1.25 1.24
Sharpe ratio 0.19 0.17 0.15 0.14 0.10

Error M̂ 0.41 0.35 0.29 0.33 0.13

∆Error M̂ -0.05 -0.06 0.04 -0.20

Error M̂Mono -5.13 -5.29 -5.39 -5.42 -5.73

∆Error M̂Mono -0.17 -0.09 -0.03 -0.31

Error M̂CAPM 0.87 0.75 0.64 0.61 0.29

∆Error M̂CAPM -0.13 -0.11 -0.02 -0.32

∆Error M̂ -∆Error M̂Mono 0.11 0.04 0.07 0.11
[99% Confidence [0.02, [-0.01, [0.02, [0.02,
bounds] [0.27, [0.1, [0.14, [0.23,

∆Error M̂ -∆Error M̂Mono 0.07 0.05 0.06 0.12
[99% Confidence [-0.13, [-0.04, [-0.04, [-0.01,
bounds] 0.32] 0.15] 0.17] 0.37]

The table shows characteristics and the average Euler equation errors for the five
beta-sorted portfolios on a monthly basis. M̂ denotes the empirical pricing kernel
estimate obtained using the CP-GARCH in the benchmark method, and M̂Mono

its counterpart that is monotonic in the domain of positive returns. M̂CAPM is
the CAPM implied PK. The confidence intervals are obtained from 25,000 pairwise
bootstrap draws from the sample of errors differences. The numbers are monthly in
percent. The total number of monthly observations are N = 234.

Nevertheless, the U-shaped pricing kernel, and in particular the upward sloping

part for positive returns can contribute to the pricing of the low beta anomaly. To

demonstrate this, I calculated a weakly monotone version of the the estimated pricing

kernel, denoted M̂Mono, and compare the pricing performance to the unadjusted M̂ .

The monotone PK estimate is obtained by first finding the minimum level of M̂ in

the domain of positive returns, and then replacing all PK values to the right of the

minimum with the minimum value, i.e. , it is made flat (monotone) to the right. Table

7 show the results of its pricing performance. The discussion focuses on the differences

between the portfolios, and less on the level, as the level is distorted by the adjustments

(Appendix C.2 provides a detailed discussion of the issue). The results first show that

(reported in online Appendix).
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the unexplained return spread between the portfolios widens for the monotone version

of the PK. Furthermore, this difference is statistically significantly higher compared to

the U-shaped PK. This is the quantitative equivalent of the effect that was described

qualitatively before: if the PK was upward sloping in the area of high returns, assets that

have low payoffs here require a premium. If the PK is decreasing in the area, the effect

would be reversed. The difference is statistically significant here already for a flat PK,

and would be even larger for a decreasing one. As a second comparison, I calculate the

Euler equation errors of the CAPM.23 Here, the pricing errors (alphas) are substantially

larger. Furthermore, the unexplained return differences are smaller for the EPKs. While

the portfolio-wise comparison is at best borderline statistically significant, the high-low

comparison is clearly significant.

The presented benchmark analysis uses the equal weighted returns of five beta-sorted

portfolios. The results are robust to value weighting, independent double sorts on size

and beta and other technical variations, and sometimes get even stronger. Moreover,

the EPKs obtained from the FP GARCH model produce sizable and significant pricing

errors, similar to those in Section 4.1. Finally, I obtain very similar results for the

momentum anomaly with regard to all results discussed above. For brevity, the analysis

is included in the online Appendix.

The effect of the upward sloping part of the PK is illustrated here for a selected case.

This could be investigated further for other cross-sectional pricing anomalies and also

by using standard factor models. As this is beyond the scope of this paper, I leave this

for another paper.

5 A Variance-Dependent Pricing Kernel Can Ex-

plain the U-shape

An important question is how the empirically observed U-shaped pricing kernel can be

explained economically. Christoffersen et al. (2013) show that the variance risk premium

can rationalize the U-shape.24 This section shows that structural breaks are necessary

to make a variance-dependent stochastic discount factor fit the empirical results.

In the following, first the model is introduced and then its empirical investigation

presented. An important purpose of the model is to successfully capture the differences

23Please see the online Appendix for the technical details.
24A similar idea can be found in Chabi-Yo (2012).
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between the physical and risk-neutral distributions. To be able to evaluate its ability in

that regard, it is necessary to fit both distributions using the same, internally consistent,

set of parameters.

5.1 Stochastic discount factor

To bridge the gap from the physical to the risk-neutral probabilities a stochastic discount

factor (SDF) is required. In their original model Heston & Nandi (2000) use the SDF

kernel of Rubinstein (1976). In a log-normal context, this is equivalent to using the

Black-Scholes formula for one-period options. Instead, following Christoffersen et al.

(2013), the following SDF is assumed here:

M(t) = M(0)
(St
S0

)φyt
exp

(
δytt+ ηyt

t∑
s=1

hs + ξyt(ht+1 − h1)
)
, (12)

where the parameters δ and η govern the time preference, while φ and ξ govern the

respective aversion to equity and variance risk. When variance is constant, (12) collapses

to the power utility from Rubinstein (1976) and the Black-Scholes model. With ξ = 0 the

variance risk premium is zero, and with ξ > 0 the variance risk premium is negative.25

With φ > 0 and ξ > 0, the SDF is monotonically decreasing in returns and monotonically

increasing in variance. The projection of the SDF on the index returns is U-shaped, as

can be seen below. The reason is that volatility is not only high for large negative

returns, but also for large positive returns. For large positive returns, the variance risk

premium dominates the equity premium, and the projection is increasing.

Under the assumptions (1), (2), (3) and (12), the risk-neutral dynamics for the HN

GARCH model with structural breaks are:

ln
( St
St−1

)
= rt −

1

2
h∗t +

√
h∗t z
∗
t ,

h∗t = ω∗yt + βyth
∗
t−1 + α∗yt

(
z∗t−1 − γ∗yt

√
h∗t−1

)2
,

(13)

25For an discussion of the implications and differences of the SDF with and without a variance
risk premium see Christoffersen et al. (2013).
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where z∗t has a standard normal distribution under the risk-neutral measure, and

h∗t =
ht

1− 2αytξyt
,

ω∗yt =
ωyt

1− 2αytξyt
,

α∗yt =
αyt

(1− 2αytξyt)
2
,

γ∗yt = γyt − φyt .

(14)

The model is estimated via maximum likelihood, by jointly maximizing the likelihood

over the observed returns (physical dynamics) and option prices (risk-neutral dynamics).

The approach is as in Christoffersen et al. (2013) and for the details I refer to their paper.

5.2 Data

As before, the data is out-of-the-money S&P 500 call and put options that are traded

in the period from January 01, 1996 to August 31, 2015. For each Wednesdays in the

sample period, the option series with a maturity closest to 30 days is selected. From that

maturity, the 15 most actively traded options are used. This results in 15,171 option

prices with a maturity between 17 and 53 days. The full details on the data cleaning

are reported in Appendix A.

5.3 Identification of breaks points

Theoretically it would be possible to perform a maximum-likelihood estimation of the

change-point model over the full sample or returns and option prices. However, this

is practically infeasible due to the computational burden that mostly stems from the

option pricing part. Therefore, I use the breaks identified in the estimation in Section

2.3 in the return process only, and estimate the model separately in each regime for the

change-point version. This is equivalent of treating each period as a separate sample.

5.4 Model fit and properties

Table 8 presents the estimation results. The physical parameters are now different from

the ones presented in Table 1. The requirement to simultaneously fit the option prices

requires a balancing of the risk-neutral and physical dynamics. As above, the standard

GARCH with fixed parameters has an average long-run volatility, while the CP model
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has regimes that capture times of high and low volatility. The risk-neutral volatility is

higher than the physical volatility, which captures the sizeable negative variance risk

premium.

The likelihood of the CP model is significantly higher than the likelihood of the

model with fixed parameters. Also the two information criterion, that put a penalty on

the number of parameters, prefer the model with breaks. The physical likelihood from

returns of the CP model is only slightly higher than of the FP model. However, the

option likelihood increases significantly. This is further studied in Section 5.6.
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Table 8: Estimation results of the joint estimation of the HN-GARCH model

FP HN-GARCH CP-HN-GARCH

Physical parameters ’92-15 ’92-’96 ’96-’03 ’03-’07 ’07-’12 ’12-’15

ω 1.90E-14 8.97E-08 2.20E-10 6.87E-07 1.82E-11 2.08E-12

α 1.56E-06 2.89E-07 2.47E-06 1.78E-06 1.42E-06 4.57E-06

β 0.713 0.699 0.826 0.733 0.696 0.820

γ 417.1 999.0 238.6 341.7 441.0 174.4

µ 4.327 17.016 5.895 0.109 10.471 7.825

Risk-neutral parameters

ω∗ 2.22E-14 1.26E-07 3.49E-10 9.64E-07 2.87E-11 2.50E-12

α∗ 2.13E-06 5.71E-07 6.25E-06 3.50E-06 3.53E-06 6.63E-06

β∗ = β 0.713 0.699 0.826 0.733 0.696 0.820

γ∗ 360.8 723.0 153.9 243.8 286.7 151.4

ξ 46,248 499,023 75,168 80,716 128,518 18,541

Properties

β + αγ2 0.9839 0.988 0.9667 0.9408 0.9728 0.9592

β∗ + α∗γ∗2 0.9896 0.9980 0.9741 0.9412 0.9864 0.9722

Long-run volatility 0.156 0.089 0.137 0.102 0.115 0.168√
h∗/h =

√
(1− 2αξ) 1.081 1.186 1.261 1.184 1.255 1.097

Log-likelihood FP CP

Total 47,687 53,461

From returns 19,359 19,560

From options 28,328 33,901

AIC -95,362 -106,862

BIC -95,314 -106,624

Parameter estimates are obtained by optimizing the likelihood on returns and

options jointly. Parameters are daily, long-run volatility is calculated as
√
long − run variance · 252. For each model, the total likelihood value at the opti-

mum is reported as well as the value of the returns component at the optimum and

the option component at the optimum. The volatility parameters are constrained

such that the variance is positive (0 ≤ α < 1, 0 ≤ β < 1, αγ2 + β < 1, 0 < ω). The

Akaike information criterion (AIC) is calculated as 2k− 2 ln(LR +LO) and Bayesian

information criterion (BIC) is calculated as ln(n)k − 2 ln(LR + LO), where n is the

length of the sample and k is the number of estimated parameters.42



5.5 Model implied pricing kernels

Figure 8 and present the model implied pricing kernels for the GARCH with fixed param-

eters (left) for the CP-GARCH (right). Each plotted line is obtained by first simulating

100,000 paths under the physical measure using the parameter estimates from Table

8, and then calculating the stochastic discount factor and its projection on the index

return. The comparison of the plots shows how the structural breaks are necessary to

match the empirical results. First, the standard GARCH always implies U-shaped PKs,

while its empirical counterparts exhibit S-shapes in many periods. On the contrary, the

CP version of the model matches the empirical results astonishingly well. Second, the

model implied PKs of the standard GARCH have little variation in their wideness across

time, which contradicts the strongly time-varying corresponding EKPs. In contrast, the

CP version exhibits the same strong time variation in their wideness as their empirical

counterparts. In addition, for the CP model, the model implied pricing kernels do ap-

pear similar within one regime. This also matches the empirical findings well, where the

empirical shape within one regime is rather stable.
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Figure 8: Model implied pricing kernels with FP and CP parameters

The figure shows the theoretical pricing kernel in the Heston-Nandi GARCH model

with fixed (left) and CP (right) parameters. Red (black) depicts times with high

(low) variance, as defined in Ch. 2.3.3. Log-returns are on the horizontal axis. The

horizon is one month.
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5.6 Option pricing fit

Table 8 shows that the model with the breaks has a substantially higher likelihood than

the standard GARCH. The major part stems from the better option pricing fit, i.e. a

reduction in the option pricing errors. Figure 9 displays the time series of the option

pricing errors of the model, which provides further insights. At each date, the vega

weighted pricing errors are not squared, but averaged. Pricing errors are market prices

minus model prices, hence a negative pricing error occurs when the model overprices the

option, and vice versa.26 The average pricing errors exhibit an interesting time series

pattern: in times of low volatility the FP model frequently overprices the actual data.

For example, between 2004 and 2006, there is a period of several years where options

are constantly overpriced by the model. To a lesser extent, the reverse is true for high

volatility periods. For example, at the end of the 1990ies and around 2010 there are

periods of several years where options are constantly under-priced by the model. The

pricing errors of the CP model on the contrary have a much lower time-clustering of the

pricing errors. These observations suggest that the FP GARCH option pricing model

has a systematic bias in its prices. This is also visible in the autocorrelation of the errors

in the last plot in Figure 9: while both model have significant autocorrelation in the

pricing errors for few lags, the autocorrelation of the CP model is always lower and dies

out more quickly.

The reason for this bias is most likely the same bias in forecasted volatility that was

documented above. Over the average option maturity of one month, the forecasted risk-

neutral volatility also reverts back to its long-run mean. This leads to an overestimation

of volatility in periods of low volatility, and vice versa, relative to the market believes.

This then results in the over-pricing and under-pricing, respectively. This complements

the findings of Pan (2002) for stochastic volatility models with jumps. The study doc-

uments systematic over- (under-)pricing on days of low (high) volatility, although only

for options with maturity of more than 60 days.

In sum, one can conclude that the bias in multi-period volatility forecasts of the

GARCH model with fixed parameters also carries over to the risk-neutral dynamics as

well. When the GARCH model is enriched by structural breaks, the bias is removed.

The combined results show the structural breaks are important for both the physical

and risk-neutral dynamics.

26The used parameters are the risk-neutral parameters from Table 8. The same results can be
obtained when the risk-neutral GARCH parameters are estimated using only option price data
and no return data.
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Figure 9: Time series of average option pricing erros

The figure shows the time series of average vega weighted option pricing errors per

date of the Heston-Nandi GARCH model with fixed and CP parameters in the first

two plots. Black (red) vertical lines indicate the beginning of a low (high) variance

regime. The last plot shows the autocorrelation of the errors.

5.7 Term structure and time series of the pricing kernel

Table 9 shows the risk premia and Sharpe ratios for trading the pricing kernel implied

by the estimated GARCH model with the variance-dependent pricing kernel. The used

parameters are those from Table 8, and high and low volatility regimes are identified by

the model. All specifications are chosen such that they match the empirical results from
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Table 6.

The results in table 9 show that the FP model implied values do not match the

observed patterns. While the values are generally countercyclical, they are much too

low, and the term structure is rather flat. On the contrary, the CP model matches the

empirical results well. Risk premia and Sharpe ratios are countercyclical and approach

similar values for longer maturities. For the risk premia, the term structure is downward

sloping, with a very steep slope for short maturities. In the model, this is caused by the

mean-reverting property of the variance: as there is a high short-run risk of changes in

the variance, this risk fades out in the long run. The Sharpe ratios of the pricing kernel

straddle by large also have a downward sloping term structure. However, the slope is

not as steep as observed in the market. A higher slope and also higher values for short

maturities could probably be obtained by adding e.g. jumps in returns or volatility to

the model.

Table 9: Model-implied risk premia and Sharpe ratios

1w 2w 1m 2m 3m 1w 2w 1m 2m 3m

Panel A: FP GARCH Panels B: CP-GARCH

Risk premia pricing kernel strangle

Low vol 1.07 0.86 0.77 0.76 0.77 3.60 2.86 2.44 2.05 1.84
High vol 1.50 1.25 1.13 1.06 1.02 11.54 8.21 5.88 3.90 3.11

Sharpe ratios pricing kernel strangle

Low vol 1.04 0.94 0.90 0.93 0.96 1.98 1.85 1.77 1.81 1.82
High vol 1.22 1.12 1.09 1.12 1.15 4.05 3.73 3.69 3.67 3.71

The table shows the risk premia and Sharpe ratios for trading the PK implied by
the estimated GARCH models with the variance-dependent pricing kernel. The used
parameters are those form Table 8. The values are obtained by simulating 500,000
paths of the model at each date.

6 Robustness

6.1 Confidence intervals for the estimated pricing kernels

The empirical results above suggest that there is a significant change in findings between

the pricing kernel estimation that relies on FP GARCH compared to the one that employs
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Figure 10: Confidence intervals for EPK

The figure shows pricing kernel estimates from October 2005 and May 2009, together
with their pointwise 90% confidence intervals (CI).

a CP-GARCH model. This section introduces confidence intervals for the estimated

pricing kernels in order to test the differences statistically. The confidence intervals

characterize the precision of the PK estimates for a given value of the index return.

The confidence intervals are calculated by sampling from the distributions of f() and

f∗() independently. The variation of f∗() is obtained using the method of Aı̈t-Sahalia &

Duarte (2003), and the variation of f() is calculated relying on asymptotic results from

Härdle et al. (2014). Appendix F contains the full details of the approach.

Figure 10 illustrates the results by plotting the 90% confidence intervals for two

selected years. The plot shows that the confidence intervals are fairly tight. However,

testing for global shape differences is not straightforward, because the different estimates

always intersect. Therefore I rather test for differences at certain, prominent points that

are decisive for the global shape. In particular, I test whether the disappearance of the

hump of the S-shape is statistically significant, and for properties of the right end and

tail of the EPKs. The calculated statistics over all dates are summarized in Table 10.

First, I test whether the hump of the S-shape, when it appears in the method with

the FP GARCH, is significantly different from the CP estimate. A hump is defined as

a the local maximum of the estimated PK in the area of returns between -5% and 5%,

48



that is surrounded by lower values on both sides. The test statistic is whether the 90%

lower bound of the FP method is higher than the 90% upper bound of the method with

the breaks. At 96.64% of the dates where a hump exists, the hump of the FP method is

statistically significantly different from the CP counterpart. Since the majority of humps

appears in times of low volatility, the second line reports the same test only for regime

1, 3 and 5.

Table 10: Test results on differences between estimated pricing kernels

Percentage of dates with
statistical significant results N

FP ’Hump’ > CP 96.6% 149
FP ’Hump’ > CP, only Regime 1, 3, 5 97.0% 135
Right tail of FP < right tail of CP, only Regime 1, 3, 5 98.7% 239
Right tail of FP > right tail of CP, only Regime 2, 4 82.8% 157
Right tail of CP > 1, only Regime 1, 3, 5 63.2% 239
Right tail of FP < 1, only Regime 1, 3, 5 77.0% 239

The table reports the results for the statistical test on differences between the
pricing kernel estimates. The test statistic for the hypothesis ˆPKA > ˆPKB is

ˆPKA
lower90%bound

> ˆPKB
upper90%bound

. The table reports the percentage of dates
in the sample where the test statistic is true. The last column reports the number of
dates which are tested.

Second, I test whether the ratios of the CDF in the right tail are significantly different

by comparing the respective 90% confidence bounds. At 98.7% of the dates in times of

low volatility the CDF tail probability ratio of the method that uses the CP-GARCH is

statistically significantly higher than its counterpart that uses the FP GARCH. On the

contrary, in times of high volatility 82.8% of the CP estimates are lower than the FP

estimates. Finally, I test whether the CDF tail ratio is higher or lower than 1 in times of

low volatility. If the probability ratio in the tail is larger than 1, this suggests that the

PK is upward sloping in that region. The test returns that 63.2% of all CP estimates

are statistically significantly larger than one, while 77.0% of their FP counterparts are

smaller than one.

6.2 Verifying U-shape using option returns

The results on the estimated empirical pricing kernels in Section 3.3 are partially am-

biguous regarding the shape. In particular, towards the end of the low volatility regimes,
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it is unclear whether the PK is upward or downward sloping. The statistical tests in

Section 6.1 do confirm that the majority of pricing kernel estimates with the CP model

are upward sloping, but do not allow to test for global shape characteristics. I therefore

take an alternative approach. Bakshi et al. (2010) show how to use returns on options

to examine the shape of the pricing kernel. In particular, a U-shaped PK implies that

the returns of OTM call options decrease in their strike beyond a certain point. This

can be studied by sorting the options according to their moneyness and then calculating

average returns per moneyness bin. Their results show that the PK is U-shaped on

average for their full sample from 1988-2008. The method is fully non-parametric, but

only speaks about the average, i.e. unconditional pricing kernel. Intuitively, the method

analyzes the non-parametric, average (payoff-weighted) risk-neutral density,i.e. the call

prices, relative to the non-parametric, average physical density, i.e. the realized returns,

and hence is a function of the PK.

To show that this effect stems not only from returns from times of high volatility

(where the U-shape is less ambiguous), I replicate their approach using only call option

data from the low volatility regimes. For this, from all call options from the respective

time period (and exactly the same that are used above for the PK estimation), those

are selected that are closest to the target moneyness of the bin. Then their returns

are calculated using the corresponding settlement prices. Finally, average returns for

each moneyness group are calculated and the results are displayed in Table 11. The

confidence intervals are bootstrapped as in Bakshi et al. (2010). The target moneyness

ranges from 0%, 1%,...,9%, and the sorting ends at 9% OTM, because the number of

traded options decreases significantly here.

If average call returns decrease when their moneyness increases, this shows that the

(average) pricing kernel is increasing with returns. The returns documented in Table

11 have exactly this pattern. The noisy nature of option returns is well known (e.g.

Broadie et al. 2009), but the results here have both a higher statistical and economic

significance than in Bakshi et al. (2010). Only the 4% or 5% and the 7% or 8% group

appear to violate the monotonicity, with either the first having too low returns, or the

later having too high returns, or both. Among the negative average returns, only those

in the 7% to 9% bins are significantly different from zero. However, most pair-wise

differences between groups are positive and many of them are statistically different from

zero.27 In sum, the results are consistent with a U-shaped pricing kernel. They show

27Note that the statistical significance of the differences could be increased by using less bins
with larger difference in moneyness. While the presented results use only the monthly cycle of
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non-parametrically that also in times of low volatility the PK is very likely to be upward

sloping in returns in the domain of high positive returns. This does not rule out that

some conditional PKs are not increasing, but in a sense, the majority of them should be

increasing.

Table 11: Returns of OTM call options

% OTM 1% 2% 3% 4% 5% 6% 7% 8% 9%

Return [%] 9.24 3.8 -6.8 -15.8 -10.6 -32.5 -90.5 -87.5 -88.2
90% Conf. [-9, [-18.3, [-34.2, [-52.8, [-66, [-84.2, [-97.8, [-98.1, [-100,

28] 27.2] 23.4] 28] 56.9] 35.3] -80.3] -73.6] -75.4]

0%-1% 1%-2% 2%-3% 3%-4% 4%-5% 5%-6% 6%-7% 7%-8% 8%-9%

Differences: 3.1 5.3 10.7 8.9 -5.2 21.9 58.0 -3.1 0.7
90% Conf. [-1.7, [-1.7, [0.1, [-5.2, [-31.3, [-6.9, [1.3, [0.1, [0.2,

7.7] 12.2] 20.6] 29.6] 17.7] 29] 13.9] 5.6] 8.5]

The reported average returns (in percent) are of call options on the S&P 500 index
over 01/1996-08/2015 that are closest to the target moneyness and that are from
periods of low volatility, as defined in Section 2.3.3. Call returns are calculated using
actual settlement prices. Moneyness is calculated as: [strike/(index level at price
date)]. The average time to maturity is 30 days. The 90% confidence intervals for
average returns are obtained from 25,000 i.i.d. bootstrap draws from the sample of
option returns (in square brackets). To test for difference in returns, 25,000 pairwise
bootstrap samples of returns are drawn.

6.3 International evidence

Most studies on the pricing kernel puzzle use US option data, and in particular often

use options written on the S&P 500 index. However, some studies present international

evidence, mostly on the German DAX 30 index and the British FTSE 100, and most

of them document S-shaped pricing kernels.28 Therefore, I repeat all the above analysis

for several major international equity indices, namely the FTSE 100, EuroStoxx 50 and

DAX 30. In general, the results are the same as above in all regards.

For brevity, this section presents only the main results for the FTSE 100, as it is

the second most studies underlying in the PK literature. The missing details, as e.g. the

AM settled options, the results are similar if all options are used or the level of the VIX is used
to identify times of high and low volatility.

28Cuesdeanu & Jackwerth (2018), Section 3.2. to 3.4., provide a great and comprehensive
overview of these studies.
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parameter estimates and volatility prediction details, as well as all the results for the

other indices are presented in full depth in the online Appendix. The used methodology

is exactly as above in Section 2.3, only with option and return data for the FTSE

100.29 The one month GBP LIBOR rate was used as risk-free rate.

The estimated model shows the same patterns and properties as the model estimated

with S&P 500 data. The change-point GARCH model exhibits alternating high and low

variance regimes which are accompanied by low and high drift, respectively. The degree

of integration of the variance equation in each regime is lower than in the standard

GARCH model. Finally, the increase of total log-likelihood from the standard GARCH

with fixed parameters to the change-point GARCH is substantial, and also both the

Bayesian and Akaike information criterion would strongly select the CP model. Fur-

thermore, the volatility forecasts of the standard GARCH model with fixed parameters

show a strong cyclical bias, while the forecasts of the CP-GARCH capture the different

volatility regimes very well. Again, this result can also be obtained without relying on

estimating the structural breaks, but by using the FTSE volatility index or the standard

GARCH to identify times of high and low volatility.

Finally, Figure 11 shows the EPKs estimated with the standard methodology (upper

part) and with the change-point model (lower part). The analysis delivers results that are

very similar to the S&P 500 case. First, it is clearly visible that the standard estimation

methodology delivers S-shaped PKs in times of high variance (black), and U-shaped

ones otherwise (red). On the contrary, the estimation methodology that employs the

CP-GARCH mostly delivers U-shaped PK estimates. The last regime, and in particular

the year 2014 seems to be an exception. The details on the volatility time series however

show, that the volatility in 2014 was so low, that also the CP model has problems

capturing it and severely overpredicts the volatility.

29The number of regimes is always chosen to be five for better comparison. However, for
most indices this is also the optimal number of regimes. Furthermore, the starting date of the
time-series, 02.01.1992, is also not “optimized”, meaning, the end of the previous regime was not
estimated with maximum likelihood, and the same start date is used to match the S&P 500 case.
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Figure 11: Empirical pricing kernels with FP and CP for the FTSE 100

The figure shows the natural logarithm of estimated pricing kernels obtained when

using the Heston-Nandi model with fixed (upper half) and CP parameters (lower

half). Red (black) depicts times with high (low) variance, as defined in Section

2.3.3. Log-returns are on the horizontal axis. The horizon is one month. The dotted

blue line connects the points, which depict the ratio of the CDFs of the tail, with

the corresponding pricing kernels.
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The online appendix shows that very similar results can be obtained for the Eu-

roStoxx 50 (which has not been studied in the literature so far) and the DAX 30. This

shows that the results presented so far are generalizable to other indices. The only atten-

uation is that the results get less strong the fewer stocks the index contains. In parallel,

also the likelihood of the GARCH model decreases. The reason could be that the ratio

of systematic to idiosyncratic volatility in the index is likely to decrease, i.e. that the

amount of unpriced risk increases.

6.4 Using VIX volatility forecasts

The above analysis points out that it is important to use a precise and unbiased con-

ditional volatility forecast. So far at least the volatility forecast was model-dependent.

The VIX is a non-parametric and conditional volatility forecast that is well understood

in finance, and the flexibility of the benchmark method allows me to incorporate it into

the approach. However, it comes with the problem that it is not the expected future

volatility, but the expected future volatility under the risk-neutral measure. This means

that it includes one or several risk premia and is typically much higher than the physical

expectation. Nevertheless, I present an analysis where the level of the VIX replaces the

model-implied ex ante expected volatility in (5) and (6). This means that the level of

the VIX is used both for normalizing the monthly returns and for rescaling. Chang et al.

(2012) show that for certain applications, the bias caused by using risk-neutral moments

can be quite small. This means here, there are risk premia both in the numerator and

the denominator, and the two effects may cancel out.

The results are presented for two reasons. First, the VIX is a well understood measure

and can at least be used as a robustness check. Second, the VIX is a truly conditional

expectation that in particular reflects market expectations. This is the reason why other

studies also use it as a measure for the expected physical variance (e.g. Figlewski & Malik

2014). Figure 12 presents the results. The estimated PKs are U-shaped throughout the

entire time series and without any major humps. Again it is evident that the steepness

of the right-hand end of the PK estimates decreases over the course of the regimes.
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Figure 12: Empirical pricing kernels using the VIX as volatility forecast

The figure shows the natural logarithm of estimated pricing kernels obtained by using

the VIX as volatility forecast. Red (black) depicts times with high (low) variance,

as defined in Section 2.3.3. Log-returns are on the horizontal axis. The horizon is

one month. The dotted blue line connects the points, which depict the ratio of the

CDFs of the tail, with the corresponding pricing kernels.
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6.5 Expected physical return distribution from GARCH

simulations

A popular alternative to obtain a conditional forecast of the physical return distribution

is to simulate it directly from the GARCH model.13 I implement this approach for both

the fixed parameter and change-point HN GARCH, using the parameters from Table

1. For each density, I simulate 100,000 paths, starting from the filtered variance. The

results confirm the previous findings: for the FP model, one observes U-shaped PKs in

times of high variance and strongly S-shaped ones in times of low variance. Notably,

this pattern is even more pronounced here than in the analysis above. When switching

to the CP-GARCH model, the finding of S-shaped PKs disappears. To save space, the

corresponding plots are included in the online Appendix.

In addition, the results in Section 4.1 show that the PK estimates, which employ the

fixed parameter GARCH model, violate the unconditional Euler equation. The pricing

errors are particularly large in times of low volatility, which casts additional doubt on

the validity of the S-shape. It also shows that there is a problem by the physical density

forecasts obtained from the FP GARCH model especially in these regimes.

6.6 GARCH innovation follow Student’s t-distribution

Numerous studies argue that the shocks in GARCH models do not follow a normal

distribution. A popular alternative is to use t-distributed shocks. I implement this

as a robustness check and find that the results a fully robust to the alternative model

specification. In sum, the fit of the GARCH model improves for the CP model, but

worsens for the FP model estimated over the full sample. Furthermore, the shape of the

EPKs is almost unaltered, and the economic properties are quantitatively very similar.

More detailed results are included in the online Appendix.

6.7 Using realized volatility forecasts from the Corsi model

Corsi (2009) proposes an appealing model for realized volatility, that is structurally very

different to the GARCH models. It has become popular due to its parsimony, straight-

forward estimation and good empirical performance. The model uses high frequency

data (typically five minute intervals) to estimate realized volatility. Since both using

realized volatility from high-frequency data and the Corsi model have become popular,
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I include the latter as a robustness check.30

The following summarizes the main results, while the online Appendix provides tech-

nical details, estiamtion results and a more detailed analysis. First, the volatility fore-

casts of the heterogeneous autoregressive (HAR) model of Corsi (2009) also have a

cyclical bias. Compared to the standard GARCH model, the bias is smaller in mag-

nitude and more pronounced in high volatility times than in calm periods. Next, I

incorporate this volatility model into my pricing kernel estimation methodology, by em-

ploying its volatility forecast in (5) and (6), while everything else remains unchanged.

The estimated pricing kernels appear U-shaped most of the time. Again, the pattern of

decreasing steepness of the right-hand side of the PK estimates is present. As above,

the reason is that this approach cannot handle time-variation in the higher moments.

Furthermore, the wideness of the PK estimates across time is very similar. This is prob-

ably caused by the general underestimation of volatility by the HAR model, especially

in times of high volatility. The Euler equation errors in Section 4.1 fully support this

conjecture. Lastly, the wiggles around zero are the result of an unsmooth empirical

return shock density. Figure 3 in the online Appendix illustrates this. Furthermore,

smoothing these wiggles would give a PK estimate that typically is well within the con-

fidence intervals. Overall, using the HAR model at least partly confirms the U-shape

of the the pricing kernels. The results also point in the direction of different volatility

regimes, that are hard to capture with standard models.

6.8 Different maturities

Studies on empirical pricing kernels typically use maturities between two weeks and two

months. To show that the results are not specific to the one month horizon, I repeat

the analysis with maturities of two weeks, six weeks and two months. For each horizon,

both the results for the benchmark method with empirical shocks and for the simulated

GARCH kernel method from Section 6.5 are reported. The graphs show that the results

are robust against changes in the analyzed horizon. All the observations above can be

found for the other maturities and are equally strong. The results can be found in the

online Appendix.

30I thank the Oxford-Man Institute (Heber et al. 2009) for providing the data on their website.
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6.9 Including the switching probability

The benchmark analysis ignores the probability to switch into another regime, since

this probability is very small. As a first robustness, a version with a crude control for

a regime switching probability is estimated. The highest switching probability is close

to 0.001. With this switching probability, the probability of the state to switch at all

over a time period of 21 days is 1 − 0.99921 = 2.08%. The analysis is repeated using a

2% switching probability from a red (black) regime to an average low (high) variance

regime. The 2% are still a rather high estimate, because even if the state switches, it

can switch at any of the 21 days and hence only parts of the final density come from the

later state. The results show that the impact is only marginal and the omission of the

switching probability cannot explain the results.

The second robustness fully includes the switching probabilities in the forecasting of

the variance. The forecast is then used both in the construction of the shock densities

and the conditional return density, which comes at the cost that the approach is more

involved. Again, the results show that the impact is only marginal and the omission of

the switching probability is a reasonable simplification. Both results and the technical

details are included in the online Appendix.

6.10 Different GARCH model

An alternative to the so far employed Heston-Nandi GARCH model that is also used for

option pricing is the NGARCH model of Duan (1995). The following analysis shows that

the results are robust to using an alternative GARCH model specification. The major

difference in the dynamics of the two GARCH models are the drift term in the return

equation and the “alpha-term” in the variance equation. Most other popular GARCH

models use one of these two specifications, and mainly differ in how the “leverage-effect”

is modeled.

All the above analysis is repeated using the NGARCH model and the results remain

the same as above. This does not only hold for the pricing kernel estimates, but also for

the (biased) volatility forecasting, the properties of the shock densities as well as all the

robustness checks. The detailed results can be found in the online Appendix. In sum,

this suggests that the key driver of the results, namely the biased volatility forecast,

prevails in any GARCH specifications.
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6.11 Rolling window GARCH

The analysis above points out that the mean reversion property of standard GARCH

estimated over a long time series biases the volatility forecasts, especially in times of

low volatility. One way to address this could be to use a rolling window GARCH with

a relatively short window length. To test this, I run an explicit data mining exercise.

First, I estimated the HN GARCH model on the first trading day of each calendar month

using the past N=[63, 84, 105, 126, 189, 252, 315, 378, 504, 630] daily returns, and then

use the obtained parameters to filter and forecasts variance in that month. The forecast

horizon was 21 days. To keep the analysis comprehensible, I present the key findings,

while more detailed results are included in the online Appendix.

First, it appears that the estimated parameters vary substantially, and are at the

boundary of the parameter space a significant number of times. As a consequence,

for example, if one simulates the GARCH model, many of the obtained return distri-

butions appear unreasonable. Second, the volatility forecasting with rolling window

GARCH works worse than for the change-point GARCH, but better than for the stan-

dard GARCH which is estimated over the full sample (measured by RMSE). This is pos-

sibly surprising, and contradicts studies which find that the GARCH forecasts are the

better the longer the estimation sample is, both for short- and long-term forecasts (e.g.

Figlewski 1994). The volatility forecasts are best for a 126d-252d estimation window.

Third, the pricing kernel estimates are mostly U-shaped. Compared to the estimates

with the CP-GARCH they have less humps in the period 2008-2010, have significant

humps when leaving high vol phase, e.g. 2003, 2011-12 and they are unreasonable tight

at beginning of high vol phase: 96/97, 2007. At these times, the forecasts are most

unreasonable, since they are based on observations of the recent very calm or volatile

period, when conditions change suddenly.

However, the estimated PKs using rolling window GARCH all violate the uncon-

ditional Euler equation. The average value is larger than one, and this is statistically

significant. It seems that the error emerges mostly in times of high variance, possibly

from the PK being “too tight/not wide enough”. The lowest error was obtained for the

126d window, followed by 189d and 252d. These specification also produce the most

“reasonable” PK estimates, in the sense that they appear most regular.

Together, this points into the direction that a variance estimate that is based (only)

on the recent past can partly solve the problem. However, the problem of sudden changes

remains. This problem is nicely addresses by the specification with the VIX as volatility
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forecasts, and is probably the reason why the latter specification produces so smooth

results.

6.12 Relation of the results to other methods in the exist-

ing literature

The methods used so far to derive an estimate of the conditional physical return distri-

bution are the methods used in the majority of the existing literature on option implied

pricing kernels. There are a few more methods, that e.g. assume a specific parametric

function of the return distribution. However, these methods most likely are also affected

by the volatility bias documented above. The online Appendix provides a more detailed

discussion.

7 Summary and Conclusion

Numerous empirical studies agree that the pricing kernel derived from option prices

is not monotonically decreasing in index returns, but disagree whether it is U-shaped

or S-shaped. The paper shows that the finding of S-shaped pricing kernels, which is

conflicting with most asset pricing models, is spurious. The reason is the canonical

use of standard GARCH models that, when estimated over a long time series, lead to

volatility forecasts that systematically biased towards the long-run mean, especially in

times of low volatility. Therefore, this paper identifies structural breaks in the volatility

process of the market index using a change-point GARCH model. The model has the

advantage that it can capture market phases where the volatility is very high or low for

extended periods of time. The results brought forward show that the breaks are not

only a technical econometric issue, but rather change economic results. Moreover, from

all the different tested methods one picture emerges: as long as the method to forecast

volatility avoids the previously unknown cyclical volatility forecast bias, the S-shaped

pricing kernel estimates disappear.

The paper also shows how the new pricing kernel estimates can be applied to different

questions in asset pricing. One of the key implications is the implied time series and

term structure of risk premia. An important step in this regard is to trade the pricing

kernel in the options market. This is a novel way to test the quality and the properties of

pricing kernel estimates non-parametrically. The obtained Sharpe ratios show that the

volatility of the pricing kernel is very high, especially in the short run. Furthermore, the
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term structure of risk premia and Sharpe-ratios is generally downward sloping, and the

values are countercyclical. But there are also implications outside the world of option,

as the U-shaped pricing kernel for example helps to explain the cross-section of stock

returns.

Finally, the empirical results are matched very well by a variance-dependent pricing

kernel, but only when the model contains structural breaks. It furthermore emerges that

the breaks are equally important for modeling the risk-neutral GARCH dynamics, which

are otherwise also cyclically biased.

The results in this paper can be extended and generalized in a number of ways.

First, there are likely to exist further areas of research in finance where the introduc-

tion of structural breaks into the GARCH process might lead to a change in findings.

Second, one can study more general pricing kernels and richer dynamics. The partic-

ular challenge is to fit both the observed returns and option prices as pointed out by

Christoffersen et al. (2013). Finally, the results provide an important benchmark to

more general asset pricing models. The findings suggest that a model should generate

a U-shaped projection of the stochastic discount factor on the returns of the market

index. Identifying risk factors which make states with high returns risky and expensive

for investors is economically very interesting.

Appendix

A Data Cleaning

The data cleaning follows the standard approach in the option literature. The following

gives a detailed list of the option data cleaning steps applied.

A.1 Pricing Kernel Option Data

1. Remove all quotes that:

• have zero trading volume on the day of the price quote

• have best bid is below $3/8

• are more than 20 points in-the-money

• violate standard no-arbitrage bounds.
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2. For each month, find the option series that has a remaining time to maturity

closest to the desired time to maturity. For the benchmark one month horizon

this is 30 days, and in the robustness section this is 9 days (one week), 16 days (two

weeks), 44 days (six weeks), 60 days (two months) and 90 days (three months).

The time is chosen such that the data is from Wednesday, if available.

B Estimation of Risk-Neutral Density

The exact steps for the estimation of the risk-neutral density from options prices:

1. Clean the data as described above.

2. Get risk-free rate from OptionMetrics, and interpolate linearly for the correct

maturity.

3. Get the dividend yield data from OptionMetrics, and interpolate linearly for the

correct maturity (Using the implied dividend yield from at the money call and put

pair leads to similar results, but the dividend yield estimates are more noisy).

4. Transform mid-prices into implied volatilities using Black and Scholes (1973). In

the region of +/- 20 points from at-the-money, take a weighted average (by volume)

of put and call implied volatilities. The results remain unaltered if the implied

volatility provided by OptionMetrics is used.

5. Fit a 4th order polynomial to the implied volatilities over a dense set of strike

prices, and convert back into call option prices using Black-Scholes. (Using a

second order polynomial delivers virtually the same results).

6. Numerically differentiate the call prices using (15) and (16) to recover the risk-

neutral return distribution.

1− F ∗(St+τ ) = − exp(rτ)
[∂CBS(St, X, τ, r, σ̂(St, X))

∂X

]
|X=St+τ

. (15)

f∗(St+τ ) = exp(rτ)
[∂2CBS(St, X, τ, r, σ̂(St, X))

∂X2

]
|X=St+τ

. (16)

7. Finally, if on a selected date, the probability mass of the risk-neutral measure

within the range of traded range is below 0.8 (i.e. the CDF between the lowest

and highest traded strike on that date), the date is discarded for all the pricing

kernel related analysis.
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B.1 Note on the matching physical return distribution

Since the option data contains several slightly different times to maturity (from 29 up to

32 days) and thereby also different numbers of expected trading days, several different

‘monthly’ returns are calculated, one for each observed number of expected trading days.

Expected trading days are the number of working days minus the holidays between the

date of the option price and the maturity date.31 Each option price date is then matched

with the correct length of the ‘monthly’ returns.

C Adjustments to empirical pricing kernel for

applications

C.1 General

In Section 4 the empirical pricing kernel estimates presented in Section 3.3 are used, with

a few minor adjustments. First, where necessary, the PK is interpolated linearly between

the two grid points adjacent to the realized index return. Furthermore, an upper bound

of 30 is put on the empirical PK estimates. The main reason is to reduce some noise in

the estimates, as the maximum PK point is in the order of magnitude of 106. This cap

is rarely applied, and this happens only in the tails. Furthermore, it makes the ratio of

price to maximal payoff of the PK strangle, as well as its price to margin ratio, more

similar to the one of a deep out-of-the-money put. Finally, increasing the bound slightly

increases the botht he implied and realized risk premia and the Sharpe ratios, but does

not change the main findings. Lastly, the ratio of the CDFs is used for the tails. In

Section 4.1, 4.3 and 4.4 only the PK estimated from the monthly AM expiration cycle

(SPX) are used. This gives a series of (almost) non-overlapping 30 day periods, and,

more importantly, it avoids a sample selection problem, as the vast increase in expiration

dates happened towards the end of the sample. Option settlement prices are obtained

from the website of the CBOE.

31The majority of options in the used sample (closing prices) are AM settled (SPX), meaning,
the settlement price is determined by the opening price on the expiration date. Therefore, the
chosen approach slightly overestimates the time to maturity. Overestimating the time horizons
also leads directly to a higher variance estimate. If the AM settled options would be treated as
if settled PM the previous day (as some studies do), the results below get even stronger.
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C.2 Making the pricing kernel monotone

In Section 4.4 the pricing kernel is made weakly monotonically decreasing in the domain

of positive returns in the following way. First, the minimum value of the PK estimate

in the domain of positive returns is found. Then all points of the PK to the right of the

return corresponding to the minimum are replaced with that minimum, including the

CDF ratio in the right tail. This implies that the PK is flat to the right of its minimum.

Consequently, the PK is often ”too low” on average. This can be solved by shifting

it upwards by adding a constant a. The effect on the pricing errors is be the following:

E
(
(Mmono + a) · R

)
= E

(
Mmono · R

)
+ E(a · R). Taking the time series average gives

a · R̄ for the second term, i.e. a times the sample average return. Since the differences

in returns are small on a monthly basis, the effect on the pricing errors is also small.

Furthermore, the effect would go in favor of the results, as the average returns decrease

from the low to the high beta portfolio, and hence the spread between the portfolio

would increase.

Alternatively, at can be calculated time-varying such that Et
(
(Mmono

t+τ +at) = Et
(
M̂t)

)
.

As long as there is no time series correlation between at and the return, the error is the

same as for the constant a case.

Both are tested, and the results are qualitatively the same, and quantitatively

stronger, as predicted.

D Construction of low beta portfolios and re-

turns

Following Bali et al. (2014) the ex ante beta is estimated using a rolling window of one

year of daily returns. The stock returns are obtained from CRSP, the risk-free rate and

the market factor are form the website of Kenneth French. Stocks are excluded if the

have less then 180 valid return observations per year. Lastly, stocks with an ex ante

price below 1$ (5$ as robustness) are excluded. For the beta quintile break points only

the betas of NYSE traded stocks are considered, as suggested by Kenneth French. This

aims at mitigating the impact of the large number of small stocks that are predominantly

traded as NASDAQ. The monthly portfolio returns are calculated to match the dates

of the option prices and expiration dates. Only option for the monthly AM expiration

cycle (SPX) are used, which gives a series of (almost) non-overlapping 30 day returns.

For the independent double sorts on size and beta, the market values from the CRSP
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database are used. The results are robust against using equal-weighted or value-weighted

portfolio returns, a 1$ or 5$ exclusion criterion, different beta estimation periods, using

either only beta-sorting or independent double sorts on size and beta and against using

the in-sample size quintiles or the size quintiles provided by Kenneth French.

Lastly, the options expiry ”AM” on the third Friday of each month, i.e. the settlement

price is the opening price. Hence to be exact, I calculate ”open returns” by using the

closing return provided by CRSP and divide this by the intraday return of that day,

where I follow the approach of Polk et al. (2018). As a robustness, the results remain

unchanged if the closing returns either from the expiry date the preceding day are used.

The confidence intervals for the pricing errors are bootstrapped. Since the Ljung-

Box test at lags up to 30 rejects autocorrelation in the time series of the pricing errors,

the calculation uses 25,000 i.i.d. bootstrap draws.

E Data for the model estimation

The steps for the data cleaning is as above. The selection of the option data is different

and follows by large Christoffersen et al. (2013). For each Wednesdays in the sample

period, the option series with a maturity closest to 30 days is selected. From that

maturity, the 15 most actively traded options are used. This results in 15,171 option

prices with a maturity between 17 and 53 days. In contrast to Christoffersen et al. (2013)

15 instead of six options are chosen per date, to broaden the moneyness range for each

date and to have more deep out of the money options in the sample.

F Calculation of Confidence Intervals

In order to calculate confidence intervals for the estimated pricing kernels, measures for

the precision of both the risk-neutral and physical density estimates are required. To

obtain the asymptotic distribution of f̂∗32 I follow Aı̈t-Sahalia & Duarte (2003), that

add noise to the observed option prices. Aı̈t-Sahalia & Duarte (2003) calibrate the noise

to the typical intraday variation of S&P 500 option prices. In particular, the noise is

uniformly distributed, and the values range from 3% for deep in the money options

(moneyness of 1.2) to 18% for deep out of the money options (moneyness of 0.8). I use

32I use the notation f̂∗ here for what was denoted f∗ above, to differentiate between the
estimated density and the true, unknown quantity.
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the same specification and also N = 5000 simulations. Since the liquidity in the sample

used here is higher, this should be a conservative approach. Next, I follow the standard

methodology from Section 3.2 above. The option prices are converted into Black-Scholes

implied volatility and the implied volatility is smoothed using a fourth order polynomial.

Then, call prices are calculated using a dense grid of strikes and finally these prices are

differentiated once and twice to obtain the risk-neutral CDF and risk-neutral density,

respectively. Repeating this N = 5000 times delivers a distribution of f̂∗ for each point

on the grid. Next, for the precision of the physical density estimate f̂ , I rely on the

asymptotic result of Härdle et al. (2014). They show that:√
nphnp{f̂(x)− f(x)} L−→ N(0, f(x)

∫
K2(u)du), (17)

where L denotes convergence in lax, x is a point on the grid, f(x) is the true density, np

is the number of observed returns and K(·) is a kernel function with bandwidth hnp .

Finally, to obtain the (1 − α)% confidence interval of the estimated pricing kernel

for each point on the grid, I numerically solve for ˆPK
upper

(x) in:

P
( f̂∗(x)

f̂(x)

)
≥ ˆPK

upper
(x) = (α/2), (18)

and for ˆPK
lower

(x) in:

P
( f̂∗(x)

f̂(x)

)
≥ ˆPK

lower
(x) = (1− α/2), (19)

where [
P
( f̂∗(x)

f̂(x)

)
≥ ˆPK(x)

]
=

1

N

f̂∗(x)max∑
f̂∗(x)min

∫ f̂∗(x)/ ˆPK(x)

−∞
f̂(x)dx. (20)

The calculation for F̂ ∗ is done analogously.

The distribution of the risk-neutral density estimate is always the same, regardless

of which method is used to estimate the physical density. Therefore, differences in

the confidence intervals of different methods at the same point in time only arise from

differences in the physical density estimate.
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