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Abstract

This paper considers tests and confidence sets (CS’s) concerning the coefficient on the endogenous vari-
able in the linear IV regression model with homoskedastic normal errors and one right-hand side endogenous
variable. The paper derives a finite-sample lower bound function for the probability that a CS constructed
using a two-sided invariant similar test has infinite length and shows numerically that the conditional like-
lihood ratio (CLR) CS of Moreira (2003) is not always “very close,” say .005 or less, to this lower bound
function. This implies that the CLR test is not always very close to the two-sided asymptotically-efficient
(AE) power envelope for invariant similar tests of Andrews, Moreira, and Stock (2006) (AMS).

On the other hand, the paper establishes the finite-sample optimality of the CLR test when the correlation
between the structural and reduced-form errors, or between the two reduced-form errors, goes to 1 or -1 and
other parameters are held constant, where optimality means achievement of the two-sided AE power envelope
of AMS. These results cover the full range of (non-zero) IV strength.

The paper investigates in detail scenarios in which the CLR test is not on the two-sided AE power
envelope of AMS. Also, theory and numerical results indicate that the CLR test is close to having greatest
average power, where the average is over a grid of concentration parameter values and over pairs alternative
hypothesis values of the parameter of interest, uniformly over pairs of alternative hypothesis values and
uniformly over the correlation between the structural and reduced-form errors. Here, “close” means .015 or
less for k < 20, where k denotes the number of IV’s, and .025 or less for 0 < k& < 40.

The paper concludes that, although the CLR test is not always very close to the two-sided AE power

envelope of AMS, CLR tests and CS’s have very good overall properties.

Keywords: Conditional likelihood ratio test, confidence interval, infinite length, linear instrumental

variables, optimal test, weighted average power, similar test.
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1 Introduction

The linear instrumental variables (IV) regression model is one of the most widely used models
in economics. It has been widely studied and considerable effort has been made to develop good
estimation and inference methods for it. In particular, following the recognition that standard two
stage least squares t tests and confidence sets (CS’s) can perform quite poorly under weak IV’s
(see Dufour (1997), Staiger and Stock (1997), and references therein), inference procedures that
are robust to weak IV’s have been developed, e.g., see Kleibergen (2002) and Moreira (2003, 2009).
The focus has been on models with one right-hand side (rhs) endogenous variable, because this
arises most frequently in applications, and on over-identified models, because Anderson and Rubin
(1949) (AR) tests and CS’s are robust to weak IV’s and perform very well in exactly-identified
models.

Andrews, Moreira, and Stock (2006) (AMS) develop a finite-sample two-sided AE power en-
velope for invariant similar tests concerning the coefficient on the rhs endogenous variable in the
linear IV model under homoskedastic normal errors and known reduced-form variance matrix. They
show via numerical simulations that the conditional likelihood ratio (CLR) test of Moreira (2003)
has power that is essentially (i.e., up to simulation error) on the power envelope. Chernozhukov,
Hansen, and Jansson (2009) (CHJ) show that this power envelope also applies to non-invariant
tests provided the envelope is for power averaged over certain direction vectors in a unit sphere.
CHJ also shows that the invariant similar tests that generate the two-sided AE power envelope
are a-admissible and d-admissible. Mikusheva (2010) provides approximate optimality results for
CLR-based CS’s that utilize the testing results in AMS. Chamberlain (2007), Andrews, Moreira,
and Stock (2008), and Hillier (2009) provide related results.

It is shown in Dufour (1997) that any CS with correct size 1 — o must have positive probability
of having infinite length at every point in the parameter space. The AR and CLR CS’s have this
property. In fact, simulation results show that in some over-identified contexts the AR CS has
a lower probability of having an infinite length than the CLR CS does. For example, consider a
model with one rhs endogenous variable, k IV’s, a concentration parameter A, (which is a measure
of the strength of the IV’s), homoskedastic normal errors, a correlation p,, between the structural-
equation error and the reduced-form error (for the first-stage equation) equal to zero, and no
covariates. When (k, \,) equals (2,7), (5,10), (10, 15), (20, 15), and (40, 20), the differences between
the probabilities that the 95% CLR and AR CS’s have infinite length are .013, .027, .037, .043,
and .049, respectivelyﬂ In fact, one obtains positive differences for all combinations of (k, A,) for

k = 2,5,10,20,40 and A, = 1,5,10,15,20. Hence, in these over-identified scenarios the AR CS

'See Table SM-I in the Supplemental Material for other parameter combinations.



outperforms the CLR CS in terms of its infinite-length behavior, which is an important property
for CS’s. Similarly, one obtains positive (but smaller) differences also when p,,,, = .3 for the same
range of (k, \,) values. On the other hand, for p,, = .5,.7, and .9, the differences are negative over
the same range of (k, \,) values.

The AR and CLR CS’s are based on inverting AR and CLR tests that fall into the class of
invariant similar tests considered in AMS. Hence, the simulation results for p,, = .0 and .3 raise
the question: how can these results be reconciled with the near optimal CLR test and CS results
described above? In this paper, we answer this question and related questions concerning the
optimality of the CLR test and CS.

The contributions of the paper are as follows. First, the paper shows that the probability that
an invariant similar CS has infinite length for a fixed true parameter value 3, equals one minus the
power against 3, of the test used to construct the CS as the null value 3, goes to co or —oo. This
leads to explicit formulae for the probabilities that the AR and CLR CS’s have infinite length.

Second, the paper determines a finite-sample lower bound function on the probabilities that a
CS has infinite length for CS’s based on invariant similar tests. This lower bound is obtained by
using the first result and finding the limit of the power bound in AMS as the null value 3, goes
to 0o or —oo. The lower bound function is found to be very simple. It is a function only of |p,,|,
Av, and k. These results allow one to compare the probabilities that the AR and CLR CS’s have
infinite length with the lower bound.

Third, simulation results show that the AR and CLR CS’s are not always close to the lower
bound. This is not surprising for the AR CS, but it is surprising for the CLR CS in light of the
AMS results. The probabilities that the CLR CS has infinite length are found to be off the lower
bound function by a magnitude that is decreasing in |p,, |, increasing in k, and are maximized over
Ay at values that correspond to somewhat weak IV’s, but not irrelevant IV’s. For p,,,, = 0, the paper
shows (analytically) that the AR test achieves the lower bound function. Hence, for p,, = 0, the
probabilities that the CLR CS has infinite length exceed the lower bound by the same amounts as
reported above for the difference between the infinite length probabilities of the CLR and AR CS’s
for several (k, A\,) values. On the other hand, for values of |p,,| > .7, the CLR CS has probabilities
of having infinite length that are close to the lower bound function, .010 or less and typically much
less, for all (k, \,) combinations considered. For values of |p,,| > .7, the AR CS has probabilities
of having infinite length that are often far from the lower bound. For |p,,| = .9 and certain values
of Ay, they are as large as .084, .196, .280, .353, and .422 for k£ = 2, 5, 10, 20, and 40, respectivelyE]

The AMS numerical results did not detect scenarios where the CLR test’s power is off the two-

2See Table SM-I in the SM.



sided power envelope because AMS focussed on power for a fixed null hypothesis and a wide range
of alternative values, whereas the probability that CS has infinite length depends on underlying
tests’ power for a fixed true parameter and arbitraily distant null hypothesis values. As discussed
in Section [4] below, power in these two scenarios is different.

AMS reports results for only two values of the correlation pg between the reduced-form errors,
viz., pq = .5 and .95. However, this is not the reason that AMS did not detect scenarios where the
CLR test’s power is noticeably off the two-sided power envelope. Figure SM-I in the Supplemental
Material provides graphs that are the same as in AMS, but with pg = 0, rather than pg = .5 or .95.
Even for pg = 0, the power of the CLR test is close to the POIS2 power envelope in the scenarios
considered, viz., .0110 or less. Note that pg = 0 is the po value that yields many of the largest
differences between the power of the CLR test and the POIS2 power envelope found in this paper
when the true 8* = 0 is fixed and the null value 3, varies.

Fourth, the paper derives new optimality properties of the CLR and Lagrange multiplier (LM)
tests when p,, — +1 or pg — +1 with other parameters fixed at any values (with non-zero
concentration parameter). In particular, optimality holds for fixed finite non-zero values of the
concentration parameter. Optimality here is in the class of invariant similar tests or similar tests
and employs the two-sided AE power envelope of AMS. These results are empirically relevant
because they are consistent with the numerical results that show that the CLR test is close to the
power envelope when |p,,,| is large, viz., .7 and .9, but not extremely close to one.

These optimality results hold because taking p,, — £1 or pq — +1 with other parameters fixed
drives the length of the mean vector of the conditioning statistic T, as defined in AMS and below,
to infinity. This is the same mechanism that yields asymptotic optimality of the CLR and LM tests
when the concentration parameter goes to infinity as n — oo (i.e., under strong or semi-strong
IV’s). The results show that arbitrarily large values of the concentration parameter are not needed
for limiting optimality of the CLR and LM tests.

Fifth, we simulate power differences (PD’s) between the two-sided AE power envelope of AMS
and the power of the CLR test for a fixed alternative value §, and a range of finite null values
B¢ (rather than the PD’s as 3, — +oo discussed above). These PD’s are equivalent to the false
coverage probability differences between the CLR CS and the corresponding infeasible optimal
CS for a fixed true value 3, at incorrect values ;. We consider a wide range of (8, Av, Pyp, k)
values. The maximum (over 3, and A, values) PD’s range between [.016,.061] over the (p,,, k)
values considered. On the other hand, the average (over 5, and A values) PD’s only range between
[.002,.016]. This indicates that, although there are some (5, A\) values at which the CLR test is

noticeably off the power envelope, on average the CLR test’s power is not far from the power



envelope. The maximum PD’s over (,,A) are found to increase in k and decrease in |p,,|. The
Ay values at which the maxima are obtained are found to (weakly) increase with k and decrease
in |p,,|- The |By| values at which the maxima are obtained are found to be independent of k£ and
decrease in |p,,|-

Sixth, the paper considers a weighted average power (WAP) envelope with a uniform weight
function over a grid of concentration parameter values A, and the same two-point AE weight
function over (8, A) as in AMS. We refer to this as the WAP2 envelope. We determine numerically
how close the power of the CLR test is to the WAP2 envelope. We find that the difference between
the WAP2 envelope and the average power of the CLR test is in the range of [.001,.007] over all
of the (B, Bys Puns k) values that we consider. Hence, the average power of the CLR test is quite
close to the WAP2 envelope.

Other papers in the literature that consider WAP include Wald (1943), Andrews and Ploberger
(1994), Andrews (1998), Moreira and Moreira (2013), Elliott, Miiller, and Watson (2015), and
papers referenced above. The WAP2 envelope considered here is closest to the WAP envelopes
in Wald (1943), AMS, and CHJ because the other papers listed put a weight function over all of
the parameters in the alternative hypothesis, which yields a single weighted alternative density. In
contrast, the WAP2 envelope, Wald (1943), AMS, and CHJ consider a family of weight functions
over disjoint sets of parameters in the alternative hypothesis, which yields a WAP envelope.

In conclusion, based on our findings, we recommend use of the CLR test and CS. More specif-
ically, we recommend using heteroskedasticity-robust versions of these procedures that have the
same asymptotic properties as these procedures under homoskedasticity. For example, such tests
are given in Andrews, Moreira, and Stock (2004) and Andrews and Guggenberger (2015). The
CLR CS8 has higher probability of having infinite length than the AR CS in some scenarios, and
the CLR test is not a UMP two-sided invariant similar test. But, no such UMP test exists and the
CLR CS8 is close to the two-sided AE power envelope for invariant similar tests when |p,,| is not
close to zero and is close to the WAP2 envelope for all values of |p,,|-

Finally, we point out that the results of this paper illustrate a point that applies more generally
than in the linear IV model. In weak identification scenarios, where CS’s may have infinite length
(or may be bounded only due to bounds on the parameter space), good test performance at a priori
implausible parameter values is important for good CS performance at plausible parameter values.
More specifically, the probability under an a priori plausible parameter value 3, that a CS has
infinite length depends on the power of the test used to construct the CS against 5, when the null
value || is arbitrarily large, which may be an a priori implausible null value.

For the computation of CLR CS’s, see Mikusheva (2010). For a formula for the power of the



CLR test, see Hillier (2009).

The paper is organized as follows. Section 2] specifies the model. Section [3] defines the class of
invariant similar tests. Section [4] contrasts the power properties of tests in the scenario where f,
is fixed and (3, takes on large (absolute) values, with the scenario where f3, is fixed and f, takes
on large (absolute) values. Section [5 provides a formula for the probability that a CS has infinite
length. Section [6] derives a lower bound on the probability that a CS constructed using two-sided
invariant similar tests has infinite length. Section [7] reports differences between the probability
that the CLR CS has infinite length and the lower bound derived in the previous section. Section
proves the optimality results for the CLR test described above. Section [J] reports differences
between the power of CLR tests and the two-sided AE power bound of AMS for a wide range of
parameter configurations. Section provides comparisons of the power of the CLR test to the
WAP2 power envelope described above. Proofs and additional theoretical and numerical results

are given in the Supplemental Material (SM).

2 Model

We consider the same model as in Andrews, Moreira, and Stock (2004, 2006) (AMS04,
AMS) but, for simplicity and without loss of generality (wlog), without any exogenous variables.
The model has one rhs endogenous variable, k instrumental variables (IV’s), and normal errors
with known reduced-form error variance matrix. The model consists of a structural equation and
a reduced-form equation:

Y1 =y20 +u and yp = Z7 + va, (2.1)

where y1,y2 € R® and Z € R™* are observed variables; u,vy € R™ are unobserved errors; and
B € Rand m € R* are unknown parameters. The IV matrix Z is fixed (i.e., non-stochastic) and
has full column rank k. The n x 2 matrix of errors [u:vg] is i.i.d. across rows with each row having
a mean zero bivariate normal distribution.

The two corresponding reduced-form equations are

Y = [y1:y2] := [Z7B +v1: Z7 + va] = Zma' + V, where
V= [v1:va] = [u+v2f:vg], and a:= (B, 1)". (2.2)

The distribution of Y € R"*? is multivariate normal with mean matrix Z7a’, independence across
rows, and reduced-form variance matrix Q € R?*? for each row. For the purposes of obtaining

exact finite-sample results, we suppose €2 is known. As in AMS, asymptotic results for unknown



and weak IV’s are the same as the exact results with known 2. The parameter space for § = (3, 7")’
is RF

We are interested in tests of the null hypothesis Hy : 8 = 3, and CS’s for 5.

As shown in AMS, Z'Y is a sufficient statistic for (8, 7’)’. As in Moreira (2003) and AMS, we

consider a one-to-one transformation [S : T'] of Z'Y

!

Y22'Ybo - (5hQ0) ™ ~ N(ca(Bo, Q) - pr Ii) and

A
Z

!

Z)”
Z)272'v Q0 Yag - (ahQ ag) Y2 ~ N(dg(Bo, Q) - pirs Ii), where

c5(By, ) := Bo) - (bpQbo)~H* € R,

(
(
(1,=By), a0 := (By, 1), py := (Z'2)"?x € RF,
(B -
dg(Bo, Q) := V'Q

0 - (bhQbo) "2 det(Q) V2 € R, and b= (1,-3)". (2.3)

As defined, S and T are independent. Note that S and 7" depend on the null hypothesis value f,,.

3 Invariant Similar Tests

As in Hillier (1984) and AMS, we consider tests that are invariant to orthonormal transfor-
mations of [S : T, i.e., [S:T] — [FS : FT] for a k x k orthogonal matrix F. The 2 x 2 matrix @

is a maximal invariant, where

Q = [S:T)[S:T] = S5 ST | _ | Qs Qst and Q; = SE) [ 9s . (3.1)

S'T T'T Qsr Qr S'T Qst

e.g., see Theorem 1 of AMS. Note that ()1 is the first column of () and the matrix ) depends on
the null value f.

The statistic @ has a non-central Wishart distribution because [S:T] is a multivariate normal
matrix that has independent rows and common covariance matrix across rows. The distribution of

Q@ depends on 7 only through the scalar
N:=n'Z'Zn > 0. (3.2)

Leading examples of invariant identification-robust tests in the literature include the AR test,
the LM test of Kleibergen (2002) and Moreira (2009), and the CLR test of Moreira (2003). The

latter test depends on the standard LR test statistic coupled with a “conditional” critical value



that depends on Q7. The LR, LM, and AR test statistics are

LR := % <Qs —Qr+ \/(Qs —Qr)* + 4Q§T) ;
LM := Q%;/Qr = (8'T)*/T'T, and AR := Qs/k = S'S/k. (33)

The critical values for the LM and AR tests are X%,lfa and X%,l— o/, respectively, where an’lfa
denotes the 1 — a quantile of the x? distribution with m degrees of freedom.

A test based on the maximal invariant () is similar if its null rejection rate does not depend
on the parameter m that determines the strength of the IV’s Z. As in Moreira (2003), the class of
invariant similar tests is specified as follows. Let the [0, 1]-valued statistic ¢(()) denote a (possibly
randomized) test that depends on the maximal invariant (). An invariant test ¢(Q) is similar with
significance level « if and only if Eg (¢(Q)|Q@r = qr) = a for almost all gr > 0 (with respect to
Lebesgue measure), where Eg (-|Qr = qr) denotes conditional expectation given Qr = g7 when
B = By (which does not depend on 7).

The CLR test rejects the null hypothesis when

LR > krRo(Qr), (3.4)

where k1R o(Qr) is defined to satisfy Pg (LR > Kkrpo(Q7)|@r = qr) = a and the conditional
distribution of Q1 = (Qs, @sr)’ given Q7 is specified in AMS and in in the SM.

The invariance condition discussed above is a rotational invariance condition. In some cases,
we also consider a sign invariance condition. A test that depends on [S : T is sign invariant if it is
invariant to the transformation [S : T] — [—S : T]. A rotation invariant test is also sign invariant
if it depends on Qg7 only through |Qgr|. Tests that are sign invariant are two-sided tests. In fact,
AMS shows that the two-sided AE power envelope is identical to the power envelope generated by
sign and rotation invariant tests, see (4.11) in AMS.

For simplicity, we will use the term invariant test to mean a rotation invariant test and the term
sign and rotation invariant test to describe a test that satisfies both invariance conditions.

The paper also provides some results that apply to tests that satisfy no invariance properties.
A test ¢([S : T]) (that is not necessarily invariant) is similar with significance level « if and only if
Eg,(¢([S : T])|T =t) = « for almost all ¢ (with respect to Lebesgue measure), where Eg (-|T = t)
denotes conditional expectation given 7' = t when 8 = [, (which does not depend on 7), see

Moreira (2009).



4 Power Against Distant Alternatives Compared to Distant Null
Hypotheses

In this section, we consider the power properties of tests when |3, — S| is large, where 3,
denotes the true value of 3. We compare scenario 1, where 3, and €2 are fixed and [, takes on large
(absolute) values, to scenario 2, where /3, and Q are fixed and [, takes on large (absolute) values.
Scenario 1 yields the power function of a test against distant alternatives. Scenario 2 yields the
false coverage probabilities of the CS constructed using the test for distant null hypotheses (from
the true parameter value (3,). We show that, while power goes to one in scenario 1 as 3, — +oo
for fixed S for standard tests, it is not true that power goes to one in scenario 2 as 8y — oo for
fixed .. Hence, the power properties of tests are quite different in scenarios 1 and 2.

The numerical power function and power envelope calculations in AMS are all of the type in
scenario 1. The difference in power properties of tests between scenarios 1 and 2 suggests that it
is worth exploring the properties of tests in scenarios of the latter type as well. We do this in
the paper and show that the finding of AMS that the CLR test is essentially on the two-sided AE
power envelope and is always at least as powerful as the AR test does not hold when one considers
a broader range of null and alternative hypothesis values (8, 5,) than considered in the numerical
results in AMS.

It is convenient to consider the AR test, which is the simplest test. The AR test rejects
Hy: B = By when S'S > XZ@. When the true value is 3, the distribution of the S’S statistic is

noncentral x? with noncentrality parameter
c5(80, Q) - A (4.1)

and k degrees of freedom. For the fixed null hypothesis Hy : 8 = §;, fixed 2, and fixed A, the
power at the alternative hypothesis value 3, is determined by c% (8o, 2). We have

lim 2 (B, ) = lim (B, — o) (bpfbo) " = ox. (4.2)

|B.c|—00 84| —o0

Hence, the power of the AR test goes to one as |3,| — oc.

On the other hand, if one fixes the alternative hypothesis value 5, and one considers the limit



as |By| — oo, then one obtains

lim ¢ (8y, Q) = lim (8, — By)* - (BypS2bo) "

|Bo|—00 |Bo|—00

lim (B8, — By)? - (w} — 2w12B + w3B5) "

|Bo|l—00

= 1/w3, (4.3)

where w?, w3, and w2 denote the (1,1), (2,2), and (1,2) elements of €2, respectively. Hence, the

power of the AR test does not go to one as |5,| — oo even though |Sy — 5,| — oo. This occurs
because the structural equation error variance, Var(u;) = byQby, diverges to infinity as |5 — oo.

The differing results in and is easy to show for the AR test, but it also holds for
Kleibergen’s and Moreira’s LM test and Moreira’s CLR test. For brevity, we do not provide such
results here.

Note that Davidson and MacKinnon (2008, Sec. 4) provide different, but somewhat related,
results to those in this sectionﬁ They consider power when [, is fixed and [, takes on large
(absolute) values (as in scenario 1) but when the correlation p,, (between the structural-equation
error u and the reduced-form error vy) is held fixed and the structural equation error variance is
estimated. In contrast, the results given here are for the case where the correlation pq (between the
reduced-form errors v, and vq) is held fixed because pg can be consistently estimated and, hence,
in large samples can be treated as fixed and known. This is not true for p,,,. In the Davidson and

MacKinnon (2008) scenario, power does not go to one as [, — Foo for fixed 3.

5 Probability That a Confidence Set Has Infinite Length

In this section, we show that the probability that a CS has infinite length is given by one minus
the power of the test used to construct the CS as the null value 3, of the test goes to oo or —oo.
This provides motivation for interest in the power of tests as 3y — Foo. It shows why high power
against distant null hypotheses is highly desirable.

We sometimes make the dependence of @), S, and 7" on Y and [ explicit and write

Q = Qp,(Y) = [Sp,(Y) : T, (Y)]'[Sp, (Y) : T, (Y)]. (5.1)

We denote the (1,1), (1,2), and (2,2) elements of QBO(Y) by QS,BO(Y), QST,BO(Y)7 and QT,BO(Y)7

respectively.

*Davidson and MacKinnon (2008) do not consider the probabilities of unbounded CS’s or provide optimality
results for tests, which are the main focus of this paper.



Let
?(Qp,(Y)) = HT(Qp,(Y)) > cv(Qrp, (Y))) (5:2)

be a (nonrandomized) invariant similar level « test for testing Hp : 8 = [, for fixed known €,
where 7(Qgs,(Y)) is a test statistic and cv(Qrp,(Y')) is a (possibly data-dependent) critical value.
Examples include the AR, LM, and CLR tests in . Let C'Sy be the level 1 —a CS corresponding
to ¢. That is,

CSy(Y) ={Bo : #(Qp,(Y)) = 0}. (5.3)

We say CSy(Y') has right (or left) infinite length, which we denote by RLength(CSy(Y')) = oo
(or LLength(CSy(Y)) = o0), if

JK(Y) < oo such that B € CSy(Y) V5 > K(Y) (or V5 < —K(Y)). (5.4)

We say CS4(Y') has infinite length, which we denote by Length(CS4(Y')) = oo, if it has right and
left infinite lengths. A CS with infinite length contains a set of the form (—oo, K1 (Y))U(K2(Y), c0)
for some —oo < K1(Y) < K3(Y) < 0.

Let P3_rq(-) denote probability for events determined by ¥ when Y has a multivariate normal
distribution with means matrix [, : 7] € R?F_independence across rows, and variance matrix
for each row. Let Pg,_ g, a(-) denote probability for events determined by ¢ when @ := [S: T]'[S :
T) and [S : T] has the multivariate normal distribution in (2.3)) with 8 = 8, and A = p/ pu.. In this
case, @ has a noncentral Wishart distribution whose density is given in ((12.2) in the SM.

For fixed true value g, and reduced-form variance matrix €2, let X, denote the corresponding
structural variance matrix of each row of [u : wvy]. Let p,, denote the correlation between the

structural and reduced-form errors, i.e., the correlation corresponding to .. Some calculations

show that
Py = w1z — w3 and
Y (Wt = 2w, + w%ﬁi)l/%n
2
v ai Cu0vpuy | w% — 2w, + w%ﬁ* w19 — w%ﬁ* (5.5)
*x T - ) .
Ou0vPyy 0121 w12 — w%ﬂ* w%

where w?, w2, and wyy the elements of €, see (12.9) in the SM. By the first equality in the second
line of (5.5), 02 = Var(u;), 02 = Var(ve), and p,, = Corr(u;, va;).
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It is shown in Lemma in the SM that the limit as 3, — +oo of Qg (Y) is

Qio0(Y) := eyY'PzYey - é ebY' Pry Qle; - %Z)”%u .
= - /Y/P YQ_l . w /Q—IY/P YQ_I . 2 2 9 .
€9 Z €1 el ' €1 (1 puv)o_u

Ov

where Py := Z(Z'Z)71Z', e; := (1,0)', and e2 := (0,1)". Let Q7 +0(Y) denote the (2,2) element
of Qio(Y). It is also shown in Lemma in the SM that Q1 (Y) has a noncentral Wishart
distribution with means matrix T, (1/04, pue/(00(l — p2,)/?)) € RF¥*? and identity variance

matrixﬂ

Theorem 5.1 Suppose CSy(Y) is a CS based on invariant level o tests ¢(Qp,(Y)) whose test
statistic and critical value functions, T(q) and cv(qr), respectively, are continuous at all positive
definite 2 x 2 matrices q and positive constants qr, Pg_ro(7(Qc(Y)) = cv(Qr(Y))) = 0 for
¢ = +oo in parts (a) and (c) below and ¢ = —oo in part (b) below. Then, for all (5, X, ),

(a) Pg, ra(RLength(CSy(Y)) = 0o) =1 —limg, .o P3, g, 00(0(Q) = 1),

(b) Ps, ra(LLength(CSy(Y)) = 00) =1 —limg o Ps, g, 20(0(Q) = 1), and

(c) if the tests are sign invariant, i.e., T(Q) depends on Qs only through |Qsr|, then

Ps_ x0(Length(CSy(Y)) = 00) = 1 —limg, . +o0 P35, 2,0(4(Q) = 1).

Comments. (i). For the AR, LM, and LR tests, the continuity conditions on 7 (¢) and cv(qr)
hold given their simple functional forms in using the assumption that gr > 0 for the LM
statistic and using the continuity of K1r (q7), which holds by the argument in the proof of Thm.
10.1 in Andrews and Guggenberger (2016). We have P3_r o(7 (Q+00(Y)) = cv(Q1,+0(Y))) = 0 for
the AR and LM tests because cv(Qr,+00(Y)) is a constant and 7 (Q+.0(Y)) is absolutely continuous
with respect to Lebesgue measure. For the CLR test, Ps_ro(7 (Q+x0(Y)) = cv(Qr+00(Y))) = 0 by
the argument given in the proof of Theorem [6.4]in the SM. The AR, LM, and CLR test statistics are
sign invariant. Hence, parts (a)-(c) of Theorem [5.1] apply to these tests. Theorem [6.4|(a)-(c) below
provides formulae for the quantities limg, 1+ P, g,20(¢(Q) = 1), which appear in Theorem [5.1
for the AR, LM, and CLR tests.

(ii). Comment (iii) to Theorembelow provides a lower bound on 1—-limg .o Ps, g,20(¢(Q)
= 1) over all sign and rotation invariant similar level « tests. Combining this with Theorem (c)
yields a lower bound on the probability that a CS C'S4(Y’) based on such tests has Length = oo.
The lower bound on the probability that Length = oo is greater than the lower bound on the
probability that RLength = oo (or that LLength = oco) unless p,,, = 0 (in which case it turns out
that they are equal).

"The density of this distribution is given in 1) in the SM.
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Theorem in the SM provides lower bounds on 1 —limg, .+ P3, s, 2,0(¢(Q) = 1) over all
invariant similar level « tests. Combining these with Theorem [5.1j(a) and (b) yields lower bounds
on the probabilities that a CS C'Sy(Y') has RLength = oo based on 3, — oo and LLength = oo
based on By — —o0.

(iii). Note that Theoremdoes not impose similarity, just invariance. The results of Theorem
a) and (b) also hold for a C'Sy(Y) that is based on level « tests that are not invariant. Denote
such tests by ¢(S53,(Y),T3,(Y)) and suppose their test statistic and critical value functions, 7 (s, t)
and cv(t), respectively, are continuous at all k x 2 matrices [s : t] and k vectors ¢ and satisfy
P2 a(T(Se(Y),T.(Y)) = cv(T.(Y))) = 0 for ¢ = +00, where S1oo(Y) = F(Z2'2)"V22Z'Y e3 /0,
and Thoo(Y) := £(Z2'2)"Y22'Y Q7 ey - (1 — p2,)'/%0,. In this case, Ps_ro(RLength(CSs(Y)) =
00) = 1—limg, oo Ps, gyx0(#([S : T]) = 1) and likewise with LLength(-), By — —o0, and ¢ = —o0
in place of RLength(-), gy — o0, and ¢ = +o0. If, in addition, the tests satisfy: 7(S.(Y),Tc(Y)) <
cv(Te(Y)) for ¢ = +oo iff the same inequality holds for ¢ = —oo, then Theorem [5.1fc) also holds.
(These results hold by a straightforward modification of the proof of Theorem [5.1] )

(iv). By Dufour (1997), all CS’s for 5 with correct size must have positive probability of
having infinite length (assuming 7 is not bounded away from 0). In consequence, expected CS
length, which is a standard measure of the performance of a CS, is infinite for all identification-
robust CS’s. Due to this, Mikusheva (2010) compares CS’s based on their expected truncated
lengths for various truncation values. The result of Theorem below implies that, for two CS’s
where the rhs of Theorem[6.2)(c) is smaller for the first CS than the second, the first CS has smaller
expected truncated length than the second for sufficiently large truncation values.

(v) Section [25in the Supplemental Material extends Theorem to the linear IV model that
allows for heteroskedasticity and autocorrelation (HC) in the errors, as in Moriera and Ridder

(2017).

6 Power Bound as 8y— +too

In this section, we provide two-sided AE power bounds for invariant similar tests as Sy — o0
for fixed 3,. We obtain these bounds by finding the limit of the power bounds in Theorem 3 of AMS
as By — £oo. The power bounds also apply to the larger class of similar tests for which invariance
is not imposed, provided power is averaged over p../||u,|| vectors using the uniform distribution on
the unit sphere in R*, as in CHJ.

Using Theorem these results are used to obtain bounds on the probabilities that CS’s

constructed using sign and rotation invariant similar tests have infinite length. They also are used
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to obtain bounds on certain average probabilities that similar invariant tests and similar tests have
infinite right (or left) length.

This section also determines the power of the AR, LM, and CLR tests as 3; — £oo and the
probabilities that AR, LM, and CLR CS’s have infinite length.

6.1 Density of Q as By— oo

The density of @ := [S : T]'[S : T] when [S : T| has the multivariate normal distribution in ([2.3))
only depends on 7 through A := p/ .. Let fgo(q; By, Bo, A, €2) denote this density when 8 = f,.
It is a noncentral Wishart density with means matrix of rank one and identity covariance matrix,
which was first derived by Anderson (1946, eqn. (6)). An explicit expression for fg(g; B, Bg, A, Q)

is given in (12.2) in the SM.
Now, we determine the limit of the density fg(q; B, 8o, A, Q) as By — Foo. Define

Puy
Tuv “— m and )\U = )\/0'12} = ILL;TILLW/O'?) (61)

uv

Note that A, is the concentration parameter, which indexes the strength of the IV’s. Let
fo(q; puy, Av) denote the density of @ := [S : T)'[S : T] when [S : T] has a multivariate nor-

mal distribution with means matrix

fr - (1/00, Tuw/0y) € RF¥2, (6.2)

all variances equal to one, and all covariances equal to zero. This density also is a noncentral Wishart
density with means matrix of rank one and identity covariance matrix. The density depends on
Tww, Op, and 7 only through p,, and A,. An explicit expression for fg(g; py,, Av) is given in
in Section [12.1] the SM.

Lemma 6.1 For any fized (B,, ), ), limg, 100 f0(q; B Bos A Q) = fQ(G5 P> o) for all 2 x 2
variance matrices q, where p,, and A\, are defined in (5.5) and (6.1)), respectively.

Comment. Lemma is proved by showing: limg .+ cs, (89,2) = F1/oy, and limg 1o
ds, (B0, Q) = % = F

wa (wiwd—w?,)1/2

W’ see Lemma |15.1] in the SM. When expressed in

terms of X, the latter limit only depends on p,,, 04, and o, and its functional form is of a

relatively simple multiplicative form.

Let Ps,_p,a0(-) and P, (-) denote probabilities under the alternative hypothesis densities
fo(q; By, Bos A, Q) and fo(q; puy» Av), respectively, defined above.
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6.2 Two-Sided AE Power Bound as 8,— +o0

AMS provides a two-sided power envelope for invariant similar tests based on maximizing av-
erage power against two points in the alternative hypothesis: (5,,A) and (8., A2). AMS refers to
this as the two-sided AE power envelope because given one point (3,, ), the second point (8,,, \2)
is the unique point such that the test that maximizes average power against these two points is a
two-sided AE test under strong IV asymptotics. This power envelope is a function of (f3,, A).

Given (f,, A), the second point (8, \2) satisfies

dg, (B« — Bo) and Ay — )\(dﬁo + 2rg, (8. — Bo))?

/3 * /3 - )
2 0 dﬁo +27”50(ﬁ* _BO) d%‘o

(6.3)

where 75, = et tag - (a6Q_1a0)_1/2, see (4.2) of AMS. We let POIS2(Q; By, B, A) denote the
optimal average-power test statistic for testing 5 = [, against (5,,A) and (Bg,, A2). Its condi-
tional critical value is denoted by kg g, (Qr). For brevity, the formulas for POI1S52(Q; By, ., A) and
k2,,(Qr) are given in Section [17|in the SM.

The limit as 3y — £oo of the POIS2(Q; By, B4, ) statistic is shown in in the SM to be

¢(Qa puva A'L)) + w(Qa _pu'zﬂ )\'U)
2¢2(QT; |puv|7 )\U)

1/}(Q7 Puv> )‘U) = eXp(_)\’U(l + T31))/2)()‘U£(Qa puv))_(k_2)/4-[(k—2)/2( )"Ug(Q’ puv))’
Do QT3 [Pusls o) 1= exp(—=Aur2,/2)(Nor2, Q7)™ F D439y 12 (v Ar2,Qr), and
§(Q; puy) 1= Qs + 2ruQsr + 12, Qr, (6.4)

, Where

where @, Qg, Qsr, and Qr are defined in (3.1)), p,,, is defined in (5.5), 7y, and A, are defined in
(6.1)), and I, (-) denotes the modified Bessel function of the first kind of order v (e.g., see Comment

(ii) to Lemma 3 of AMS for more details regarding I,,(+)).
Let k2,00(qr) denote the conditional critical value of the POIS2(Q; 00, |p,,], Av) test statistic.
That is, K2 00(gr) is defined to satisfy

P, 1Qr (POIS2(Q;00, |pyyls Ao) > K2,c0(ar)lar) = o (6.5)

for all g7 > 0, where Py, |, (‘|gr) denotes probability under the null density fg, o, (-|¢r), which is
specified explicitly in in the SM and does not depend on j,.

When p,,,, = 0, the test based on POIS2(Q; 00, |pyy|s Av) is the AR test. This follows because
£(Q;0) = Qs, ¥(Q;0,)\,) is monotone increasing in £(Q;0), and 1¥y(Q7;0,\,) is a constant. Some
intuition for this is that EQsr = 0 under the null and limg |_,o EQsr = 0 under any fixed
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alternative 3, when p,,, = OE| In consequence, Qgr is not useful for distinguishing between Hy and
H; when |3y| — oo and p,,, = 0. Furthermore, it is shown in and Theorem in the SM
that the AR test is also the best one-sided test as f; — 400 and as ;5 — —o0.

The following theorem shows that the POIS2(Q; 00, |pyy|, Av) test provides a two-point average-

power bound as [3; — too for any invariant similar test for any fixed (5,,A) and €.

Theorem 6.2 Let {¢ﬁo(Q) . By — Loo} be any sequence of invariant similar level « tests of
Hy : B = By for fized known Q. For fixred (B,, ), (Bay, A2) defined (6.3), and 2, the two-sided AE
power envelope test PO1S2(Q; 00, |pyyl, Av) defined in (6.4) and (6.5) satisfies

111;1 sup (Ps.50.0,0(03,(Q) = 1) + Bp,_ 5y, 00.,0(5,(Q) = 1)) /2

< Puv,)\v(POIS2(Q;OO7 |puv|7)\’u) > KJQ,OO(QT))
= P—Puv,)\v(POIS2(Q; o0, ‘puv‘aAv) > H2,oo(QT))-

Comments. (i). The power bound in Theorem only depends on (53,,A), (Bas, A2), and Q
through |p,,,|, which is the absolute magnitude of endogeneity under 5,, and \,, which is the
concentration parameter.

(ii). The power bound in Theorem is strictly less than one. Hence, it is informative.

(iii). For sign and rotation invariant similar tests ¢g (Q), the limsup on the left-hand side in
Theorem is the average of two equal quantities.

(iv). Theorem can be extended to cover sequences of similar tests {(bﬁo (S,T) : By —
+oo} that satisfy no invariance properties, using the proof of Theorem 1 in CHJ. In this case,
the left-hand side (lhs) probabilities in Theorem depend on 7 or, equivalently (A, fi./||tx]])s
rather than just A. In this case, Theorem holds with Pp g, x0(¢g,(Q) = 1) replaced by
T P ap fllin10(05, (S, T) = 1)dUnif(pir/l|11z|]) and analogously for the term that depends on
(Bax, A2), where Pg 5, /. |.() denotes probability under (8, A, pi/||pl], ) and Unif(-) de-

notes the uniform measure on the unit sphere in RF.

6.3 Lower Bound on the Probability That a CS Has Infinite Length

Next, we combine Theorems and [6.2] to provide a lower bound on the probability that a
sign and rotation invariant similar CS has infinite length. The same lower bound applies to the

average probability over (f5,,A) and (Bs,,A) that a rotation invariant similar CS has right (left)

We have EQsr = ES'ET by independence of S and T, EQsr = 0 under Hy because ES = 0, and
lim|g | —oo EQsT = 0 under 3, because ET = p._dg, (B4,Q), limg; 100 ds, (Bg,2) — Fruv/0v by Lemma e) in
the SM, and 7y, = 0 when p,,, = 0.
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infinite length. For a similar CS with no invariance properties, the same lower bound applies to a
different average probability that the CS has right (left) infinite length.
Let Pg, xq(-) denote probability for events determined by (Z'Z )1/2Z'Y that depend on 7 only

through A, such as events that are determined by a CS based on invariant tests.

Corollary 6.3 Suppose CSy(Y') is a CS based on invariant similar level o tests ¢(Qp,(Y)) that
satisfy the continuity condition in Theorem [5.1. (a) For any fized (5,, A, ),

(Pg*,A,Q(RLength(CSdY)) = OO) + PBQ*AQ,Q(RLength(CS(ﬁ(Y)) = OO))/Q
2 1- P,U»l“”)\v (POISZ(Q7 o0, |puv|7 )\v) > KZ,OO(QT)) and
(P, x0(LLength(CSy(Y)) = 00) + Pg, r,.a(LLength(CSy(Y)) = o)

> 1- P,Dm,)\v (POIS2(Q7 o0, |puv|7 )\v) > &Z,OO(QT))'
(b) If the tests ¢(Qp,(Y)) also are sign invariant, then for any fized (B, A, ),
Ps_ra(Length(CSy(Y)) =00) >1— P, 3, (POIS2(Q;00,|py,l, Av) > K2,00(QT))-

Comments. (i). All three lower bounds in Corollary are the same. The different parts of
Corollary specify different probabilities or average probabilities that have this lower bound.

(ii). Corollary[6.3|(a) also holds for a similar CS that does not satisfy any invariance properties.
In this case, Pg, x o(RLength(CS4(Y)) = co) is replaced by [ Ps_» . /i (.0 (RLength(CSy(Y)) =
00)dUnif (. /||1t-]]) and analogously for the other three lhs terms that depend on LLength(CSy(Y))
and/or (fBg,,A2). This holds provided the similar level a tests ¢(Sg,(Y),Tp,(Y)) that define the
CS satisfy the conditions in Comment (iii) to Theorem

6.4 Power of the AR, LM, and CLR Tests as 3,— £too

Here, we provide the power of the AR, LM, and CLR tests as 5, — too for fixed (5,,2).

Theorem 6.4 For fized true (B,, A\, 2), the AR, LM, and CLR tests satisfy
(a) limp,—too Ps, 8,0 0(AR > XE1_o/k) = Pp,, 2 (AR > X3 1 _o/k) = P0G (M) > Xi1-a),
(b) limg, 100 Ps, sy 00(LM > xT1-4) = Pp, 2, (LM >3 _,), and
(c) limg, 400 Ps, gy 00(LR > kLR o(QT)) = Py, 2 (LR > KLRo(QT)),
where AR, LM, and LR are defined as functions of Q in 1' X%n,lfa is the 1 — a. quantile of the

X2, distribution, and x2,(\,) is a noncentral x2, random variable with noncentrality parameter .
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Comments. (i) By Theorem[5.1{(c), Theorem [6.4] provides the probabilities that the AR, LM, and
CLR CS’s have infinite length when the true parameters are (5,, A, 2). These probabilities depend
only on (|p,.|, Av). For the AR CS, they only depend on A,.

(ii) As pointed out by a referee, the AR CS has infinite length when the first-stage F test
strictly fails to reject Hy : m = O, meaning that y5Pzys/wa < X%,lfa (with a strict inequality).
When the first-stage F test rejects Ho : m = Ok, i.e., y4Pzy2/wa > x%’lfa, the AR CS has finite
length. When y} Pzys/we = X%,l—av the AR CS can have infinite length, right length, or left length,
or have finite lengthﬁ Results in Mikusheva (2010, Proofs of Thms. 1 and 2) provide expressions
for the cases where the LM and CLR CS’s have infinite lengths, but they do not seem to have as

simple intuitive interpretations as for the AR CS.

7 Comparisons of Probabilities That Confidence Sets Have
Infinite Length

Next, we investigate how close are the probabilities the CLR CS has infinite length to the
lower bound in Corollary [6.3] Let POIS2 refer to the tests that generates the two-sided AE power
envelope of AMS. These tests depend on the alternative (8,, \) considered and Q. Let POIS2,, refer
to the tests in , which are the limits as 87 — £oo of the POIS2 tests. These tests depend on
B, (through |p,,|) and A,. Let POIS2 and POIS2,, CS’s refer to the CS’s constructed by inverting
the POIS2 and POIS2,, tests. These CS’s are infeasible because they depend on knowing (53,, A).

Table I reports differences in simulated probabilities that the CLR and POIS2,, CS’s have
infinite lengths. The latter provide a lower bound on infinite-length probabilities for CS’s based on
sign and rotation invariant tests, such as the CLR CS, by Corollary (b) Hence, these differences
are necessarily nonnegative. The results cover k = 2,5, 10, 20, 40, a range of A values between 1 and
60 depending on the value of k, and p,,, =0, .3,.5,.7,.9. Table I also reports the probabilities that
the CLR CS has infinite length for the same k£ and A values and a subset of the p,, values, viz.,
0,.7,.9. The true value of 3, is taken to be 0 wlog by Section [22]in the SM. The results for negative
and positive p,,, values are the same by Section [22|in the SM, and hence, results for negative p,,
are not reported. The number of simulation repetitions employed is 50, 000. The critical values are
determined using 100, 000 simulation repetitions.

The results show that the CLR CS is not close to optimal in some parameter scenarios. In

These results hold because (i) the AR test strictly fails to reject Ho : 3 = 8, when 'S < Xi,ka iff bGY' PzYbo <
b()QbOXi,l—a iff aBE +bB, + ¢ < 0, where a := yhPzys — ‘U2Xi,1—m b:= —2(yy Pzy2 — w12Xi,1—a)v and ¢ := yi Pzy1 —
wlxi,l,a, using and some calculations, and (ii) the AR CS has infinite length when a < 0. When a = 0, the AR
CS has infinite right length if b < 0, infinite left length if b > 0, infinite length if b = 0 and ¢ < 0, and finite length if
b =0 and ¢ > 0. For related results, see Dufour and Taamouti (2005).
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particular, the differences in probabilities of infinite length (DPIL’s) between the CLR and the
POIS2,, CS’s are positive for numerous combinations of (k, A, p,,,,).- The DPIL’s are increasing in k,
decreasing in |p,,, |, and maximized in the middle of the range of A values considered. For example,
for (k, pyy) = (2,0), DPILe [.002,.016] over the A values considered, whereas for (k, p,,) = (5,0),
DPILe [.003,.031] and for (k, p,,) = (40,0), DPILE [.002,.049][] Hence, k has a noticeable effect
on the magnitude of non-optimality of the CLR CS with larger values of k£ leading to larger non-
optimality. For (k,\) = (5,10), we have DPILe [.002,.031] over the p,, values considered, and
for (k,A\) = (20,15), we have DPILe [.001,.046] over the p,, values considered. Hence, |p,,| also
has a noticeable effect on the magnitude of non-optimality of the CLR CS in terms of DPIL’s with
non-optimality greatest at p,,, = OE|

8 Optimality of CLR and LM Tests as p,,— £1 or po— *+1

The results of Table I show that the magnitude of non-optimality of the CLR CS decreases as
|puo| increases to 1. This raises the question of whether CLR tests are optimal in some sense in
the limit as |p,,| — 1. In this section, we show that this is indeed the case, not just for power as
By — Fo00, but uniformly over all (5, 5,) parameter values in a two-sided AE power sense.

Let pq denote the correlation parameter corresponding to the reduced-form variance matrix €2,
ie., pq = wia/(wiw2).

In this section, we provide parameter configurations under which the CLR and LM tests have
optimality properties. The results cover the case of strong and semi-strong identification (where
A — o0). They cover the cases where p,, — *+1 or pg — =+1 for (almost) any fixed values of
the other parameters, which includes weak identification of any strength. And, they cover the
cases where (p,.,, Bg) — (£1,%00) or (pg,By) — (£1,+00) and the other parameters are fixed at
(almost) any values, which also includes weak identification.

In somewhat related results, CHJ show that the CLR and LM tests can be written as the limits
of certain WAP LR tests, which indicates that they are at least close to being admissible.

Let d%* = d%*(ﬁO,Q) and c%* = c%* (Bo, §2). As in Section m let PO1S2(Q; By, B, A) and

k2,8,(Qr) denote the optimal average-power test statistic and its data-dependent critical value.
2

Let x2(c%,) denote a noncentral x? random variable with noncentrality parameter c2,.

"The simulation standard deviations of the DPIL’s are in the range of [.0000,0014] with most being in the range
of [.0004,.0012], see Table SM-I in the SM.

8Table SM-I in the SM shows that the differences in probabilities that the AR and POIS2 CS’s have infinite
length are very large for large p,, values for some A values. For example, for p,, = .9, they are as large as
.084,.196, .280, .353, .422 for k = 2,5, 10, 20, 40, respectively, for some A values. As shown above, AR = POIS2 when
Puw = 0, so the differences are zero in this case and they increase in |p,,,| for given (k, A).
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Theorem 8.1 Consider any sequence of null parameters 5, and true parameters (f,,\, ) such
that )\d%* — 00 and )\1/20,3* — Coo € R\{0}. Then, as )\d%* — 00 and )\1/205* — Coo,

(a) Ps, 3, ,0(POIS2(Q; By, B A) > K2,8,(Q1)) — P(xF(cZ) > xT1_a)s

(b) Ps, ora(LR > kLra(Qr)) = P(xT(cA) > Xi1_a)s and

() Pa, goao(LM >xi1 o) = P(x3(c%) > xi1-a)-

Comments. (i). Theorem [8.1|shows that the CLR and LM tests have the same limit power as the
POIS2 test. Theorem provides both finite-sample limiting optimality results, where n is fixed
and the limits are determined by sequences of parameters (3, 3y, A, 2), and large-sample limiting
optimality results, where the limits are determined by sequences of sample sizes n and parameters

(507 5*7 )‘7 Q)
(ii). By Corollary 1 of AMS, for any invariant similar test ¢(Q), for any (5,, B¢, A, ),

(Ps.,60,0,0(0(Q) = 1) + Ps,_5,2,,0(0(Q) = 1)) < P, 5,2,0(POIS2(Q; By, Bss A) > ka6, (Qr1))-
(8.1)
That is, the POIS2 test determines the two-sided AE average power envelope of AMS for in-

1
2

variant similar tests, where the average is over (8,,\) and (8., A2). A fortiori, by Theorem 1 of
CHJ, for any similar test ¢([S : T]) (that is not necessarily invariant), for any (8., 8, A, ), (8.1
holds with Pg_ g, x0(¢(Q) = 1) replaced by the power average [ Pg g xu /| l,0(@(S : T]) =
1)dUnif(pi,/||1tx]|) and likewise for the second lhs summand in (8.1). Hence, the POIS2 test also
determines this average power envelope for similar tests.

These results and Theorem show that the CLR and LM tests achieve these average power
envelopes for all (5,, 5y, A, 2) asymptotically when )\d%* — oo and )\1/205* — Coo # 0.

(iii) The power envelopes in Comment (ii) translate immediately into false coverage probability
(FCP) lower bounds for CS’s based on invariant similar tests and similar tests. Specifically, one
minus the lhs in , which equals the average FCP of the point 3, by the CS based on ¢(Q),
where the average is over the truth being (8,,\) and (B, \2), is greater than or equal to one
minus the rhs in . In the case of non-invariant similar tests, the bound is on the average of
the FCP’s of the CS with averaging over (f3,, ) and (89,, A2) and g /||i,|| in the unit sphere in
RF. Thus, Theorem shows that the CLR and LM CS’s have optimal average FCP properties
asymptotically when /\d2* — o0 and )\1/205* — Coo # 0.

(iv). Theorem does not apply when the IV’s are completely irrelevant, i.e., A = 0, because
A = 0 implies that ¢y, = 0. However, Theorem does cover some cases where the IV’s can be

arbitrarily weak, see Theorem [8.2] below.

Next, we provide conditions under which )\d% — o0 and AV %c5. — oo € R\{0}, as is assumed
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in Theorem 8.1} First, if 5, and 2 are fixed, € is nonsingular, and (3,, \) satisfy A — oo and
A28, —By) — L e Ras X\ — oo, (8.2)

then )\d%* — 00 and )\1/205* — Coo € R\{0} with coo = L(b)Qo)~ /2. Here L indexes the local
alternatives against which the tests have nontrivial power. This result covers the usual strong IV
case in which 7 is fixed, Z’Z depends on n, and A\ = 7'Z'Z7 — 0o as n — co.

The scenario in also covers cases where m = 7, — 0 as n — 0o, but sufficiently slowly that
A=mn, 7' Z7, — 0o as n — oo, which covers “semi-strong” identification. As far as we are aware,
this is the only optimality property in the literature for tests under semi-strong identification. The
scenario in also covers finite-sample, i.e., fixed n, cases in which Z’Z is fixed, 7 diverges, i.e.,
||| = o0, and Amin(Z'Z) > 0. In these cases, A = 1'Z'Zn — oo as ||7|| — oc.

The most novel cases in which Theorem applies are when p,,, — +1 or pg — 1. The next
result shows that )\d%* — 00 and )\1/20[3* — Coo € R\{0} when p,,, — £1 or pq — %1 and the other
parameters are fixed at (almost) any values. It also shows that this holds when (p,,,, 89) — (1, £00)
or (—1,400) or (pq,By) — (1,£00) or (—1,£00) and the other parameters are fixed at (almost)

any values.

Theorem 8.2 (a) Suppose the parameters By, B,, oy > 0, 0, > 0, and X > 0 are fized, p,, €
(=1,1), and py, — £1. Then, (i) lim, 21 A\Y2cs = A28, — Bo)/|ow £ (B, — Bo)as| and (ii)
lim, .41 /\d%* = oo provided 3, — By # Fou/0v.

(b) Suppose the parameters By, B, w1 > 0, wa > 0, and A > 0 are fized, po € (—1,1), and
po — E£1. Then, (i) lim,, 41 )\1/205* = M2(8, = By) /w1 F wafB| provided By # +w Jws and (ii)
lim,, 41 )\d%* = oo provided By # w1 /we and B, # *wi/wa.

(c) Suppose the parameters are as in part (a) except (py,, Bo) — (1,£00) or (=1, £o0). Then, (i)
By, ) (1 400) A 208, =Ty, 30) (<1 00) A28, = A2 /0y and. (i) limy,, ;) (1, 400) A,
= lim(puvwgo)ﬂ(,liw) Ad%* = Q.

(d) Suppose the parameters are as in part (b) except (pq,Bgy) — (1, £00) or (—1,+00). Then, (i)
B 50)—(1,00) A28, = T, 5)(—1,00) AP, = FAV2 wp and (i) Timpp, 5) (1, 400) A5,

= 00 provided 3, # w1/wa and lim, 3y (~1,+00) /\d%* = 00 provided B, # —w1/wa.

Comments. (i). Combining Theorems and provides analytic finite-sample limiting opti-
mality results for the CLR and LM tests and CS’s as p,,, — £1 or pg — £1 with 3, fixed or jointly
with 8y — oo for (almost) any fixed values of the other parameters. These results apply for any
strength of the IV’s except A\ = 0. These results are much stronger than typical weighted average
power (WAP) results because they hold for (almost) any fixed values of the parameters 3, 3,, o1,
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oy, and A > 0 when p,,, — +1 and (almost) any fixed values of the parameters 3, 3,, wi, wa, and
A > 0 when po — £1.

(ii). The cases p,, — 1 and pg — +1 are closely related because (1—p3)"/ 2w = (1—p2,) 0.,
by in the SM. Thus, p,, — %1 implies |pg| — 1 and/or w; — 0. And, pg — +1 implies
|puw| — 1 and/or o, — 0.

(iii) The asymptotic results of Theorem as P, — 1 or po — £1 are empirically relevant
because they reflect the behavior of the CLR test even when |p,,| or |pq| is not very close to one.
See the results in Table I when p,, (= pq) equals .7 and .9. The results of Theorem indicate
that it would be informative for empirical papers to report estimates of po (which is consistently

estimable even under weak IV’s).

9 General Power /False-Coverage-Probability Comparisons

By Theorem the results in Table I equal power differences (PD’s) between the POIS2 and
CLR tests as the null value 5y — £oo for fixed true value 3, = 0. Here, we consider PD’s between
the POIS2 and CLR tests for finite 3, values, rather than PD’s as 3, — £o00. Specifically, Table
IT reports maximum and average PD’s over 5, € R and A > 0 for a fixed true value 3, = 0 for a
range of values of (p,,, k). As above, the choice of 8, = 0 (and w? = w3 = 1) is wlog. These PD’s
are equivalent to false coverage probability differences (FCPD’s) between the CLR and POIS2 CS’s
for a fixed true value f3, at incorrect values 3. They are necessarily nonnegative.

The A values considered are 1, 3,5, 7, 10, 15, 20, as well as 22, 25 when k£ = 20 and 40, and .7, .8, .9
when & = 2 and 5 and p,, = .9. The positive and negative 3, values considered are those with
1Bo| € {.25,.5,...,3.75,4,5,7.5,10, 50, 100, 1000, 10000}. These (), 3,) values were chosen, based on
preliminary simulations, to ensure that changes in the PD’s in Table II (and Tables III and IV
below) across neighboring values (), 8,) are small.

The number of simulation repetitions employed is 5,000. The critical values are determined
using 100, 000 simulation repetitions. For example, the simulation standard deviations for the PD’s
for (pyy, k) = (0,20) and any fixed (8, A) value range from [.0013,.0040] across different (S, \)
values, which compares to simulated averages of the PD’s over (8, \) values that are of the .014
order of magnitude.

Tables II(a) and II(b) contain the same numbers, but are reported differently to make the
patterns in the table more clear. Table II(a) shows variation across k for fixed p,,, whereas Table
II(b) shows variation across p,, for fixed k. The third and fourth columns in each table report the

values of A and B, at which the maximum PD is obtained. The fifth column in each table reports
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Puv,0s Which is the correlation between the structural-equation and reduced-form errors when 3,
is the true value (based on the assumption that the consistently-estimable reduced-form variance
matrix is the same whether the truth is 3, or ,). In contrast, p,, is the same correlation, but
when S, is the true value—which is the true 8 value in the PD simulations. The sixth column in
the tables reports the power of the CLR test at the (8, \) values that maximize the PD for given
(P K)s 102, 8t (B s Amae)-

Table IT shows that the maximum (over (58y, A)) PD’s between the POIS2 and CLR tests range
between [.016,.061] over the (p,,, k) values. On the other hand, the average (over (8y,A)) PD’s
only range between [.002,.016] over the (p,,,k) values. This indicates that, although there are
some (g, A) values at which the CLR test is noticeably off the two-sided AE power envelope, on
average the CLR test’s power is not far from the power envelope.

In contrast, the analogous maximum and average PD ranges for the AR test are [.079,.513]
and [.012,.179], see Table SM-III in the SM. For the LM test, they are [.242,.784] and [.010, .203],
see Table SM-IV in the SM. Hence, the power of AR and LM tests is very much farther from the
POIS2 power envelope than is the power of the CLR test.

Table II(a) shows that the maximum and average (over (g, A)) PD’s for the CLR test are
clearly increasing in k. Table II(a) shows that for p,, > .3, the PD’s are maximized at more or less
the same [ regardless of the value of k. For p,, = 0, this is also true to a certain extent, because
the sign of (3, is irrelevant (when p,, = 0) and the values 50 and 10,000 are both large values.
Table II(a) also shows that for each p,,,,, the PD’s are maximized at A values that (weakly) increase
with k. The increase is particularly evident going from k = 20 to 40.

Table II(b) shows that for £ > 5, the maximum PD’s are more or less the same for p,, < .7,
but noticeably lower for p,, = .9. For k = 2, the maximum PD’s are more or less the same for all
Py considered. Table II(b) shows that, for each k, the PD’s are maximized at |3,| values that are
closer to 0 as p,, increases. Table II(b) also shows that, for each k, the PD’s are maximized at A
values that are closer to 0 as p,, increasesﬁ

In sum, the maximum PD’s over (3, A) are found to increase in k ceteris paribus and decrease
in p,, ceteris paribus. The A values at which the maxima are obtained are found to (weakly)
increase with & ceteris paribus and decrease in p,, ceteris paribus. The |3, values at which the
maxima are obtained are found to be independent of k ceteris paribus and decrease in p,,, ceteris
paribus.

Next, Figure 1 provides a picture of how the power of the CLR, AR, and POIS2 tests differ

as a function of 5, when other parameters are held fixed. Results given are for three parameter

See Table SM-IT in the SM for how the maximum PD’s over 8, vary with A for the (p,,, k) values in Table II.
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configurations p,, = 0,.5,.9 with A = 15, k = 10, and 8, = 0 in all three configurations. These
parameter configuations are chosen because they are ones in which the power of the CLR test is
noticeably off the power envelope for sufficiently large 8, when p,, = 0 and .5.

Figure 1(a) for p,, = 0 shows: (i) the power of all three tests does not go to one as Sy — oo
(the limit value depends on the magnitude of A, which is 15 in Figure 1), (ii) the CLR test is off
the power envelope and the AR test is on the power envelope (up to the numerical accuracy) for
large B, — B,, and (iii) the reverse is true for smaller 5, — f3,.

Figures 1(b) for p,, = .5 shows: (i) the power of all three tests does not go to one as 3y, — oo,
(ii) the CLR test is off the power envelope for large 5, — /3, and on the power envelope (up to the
numerical accuracy) for smaller 5, — 3,, and (iii) the AR test is on the power envelope (up to the
numerical accuracy) for intermediate values of 8, — 3, and off the power envelope for larger and
smaller 3, — f,.

Figures 1(c) for p,, = .9 shows: (i) the power of all three tests does not go to one as 3y, — oo,
but the powers of the CLR and POIS2 tests are quite close to one for 3, large, (ii) the CLR test
is on the POIS2 power envelope (up to the numerical accuracy) for all S, values, and (iii) the AR
test is off the POIS2 power envelope for most of the 3, values considered, including small and large
By values.

In all of the simulations considered (across the parameters scenarios considered in Table II), the
CLR test was found to be on the POIS2 power envelope (up to the numerical accuracy) for small
values of B, — f,.

The numerical results in this section show that the finding of AMS that the CLR test is essen-
tially on the two-sided AE power envelope does not hold when one considers a broader range of null

and alternative hypothesis values (8, §,) than those considered in the numerical results in AMS.

10 Differences between CLR Power and an Average Over )\

Power Envelope

In this section, we introduce a “WAP2” power envelope for similar tests with weight functions
over: (i) a finite grid of X values, {\; > 0:j < J}, (ii) the same two-points (3,,A;) and (8o, A2j)
as in AMS for each \; for j < J, and (iii) the same uniform weight function over p. /||x,|| as in
CHJ. In particular, we use the uniform weight function over the 36 values of A in {2.5,5.0,...,90.0}.

The WAP2 envelope is a function of (5, 5,). The WAP2(Q, 5, 5.) test statistic that generates

thlS envelope is Of the form Zj:l(¢<@7 ﬁO? ﬁ*]? A]) +¢<Q7 507 52*]‘7 )\2]))/ Zj:l 2w2(QT7 507 /8*7 )\])7
where the functions ¢¥(Q; 8y, 5, A) and ¥y (Q1; By, B, A) are as in AMS (and as in ([12.5]) in the SM).
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The WAP2(Q, By, 8,) conditional critical value 2 g, s(gr) is defined to satisfy Py, o, (WAP2(Q,
By Bs) > Ka2p,u(ar)lar) = « for all g7 > 0, where Py, |0, (|gr) denotes probability under the
density fg, |0, (-|gr), which is specified in in the SM.

To be consistent with Tables I and II, we report PD’s between the WAP2(Q, S, 5,) and CLR
tests for 8, = 0 and a range of S, values. These PD’s are equivalent to the FCPD’s between
the CLR and WAP2 CS’s for fixed true 3, and varying incorrect (5, values. The differences are
necessarily nonnegative.

We consider p,, € {0,.3,.5,.7,.9,.95,.99}, k = 2,5,10, 20,40, the same 3, values as in Table
I, and w? = w2 = 1. (The large p,,, values of .95 and .99 are included to show that the results are
not sensitive to p,, being close to one.) Since 5, = 0, pq = P, Section [22/in the SM shows that
taking 3, = 0 and w? = w3 = 1 is wlog provided the support of the weight function for \ is scaled
by w2 when wy # 1. The number of simulation repetitions employed is 1,000 for each Aj value.
With power averaged over the 36 A\; values and independence of the simulation draws across \j,
this yields simulation SD’s that are comparable to using 36, 000 simulation repetitions. The critical
values are determined using 100,000 simulation repetitions for £ = 5 and 10,000 for other values
of k.

For brevity, Table III reports results only for £ = 5 for a subset of the 3, values considered.
Results for all values of £ and 3 considered are given in Table SM-V in the SM. Table IV reports
summary results for all values of k. In particular, Table IV(a) provides the maxima over 3, of the
average over A\ PD’s for each (p,,, k). Table IV(b) provides the average over 3, of the average over
A PD’s for each (py,, k).

Table III shows that the CLR test has power quite close to the WAP2 power envelope for k = 5.
The PD’s for p,, € {0,.3,.5,.7}, we have PDe [.000,.005] and SDe [.0003,.0007] across all 3,
values. For p,, € {.9,.95,.99}, we have PDe [.000,.001] and SDe [.0000,.0003] across all 3, values.

Table IV shows that PD’s between the WAP2 power envelope and the CLR power are increasing
in k and decreasing in |p,,|. For £ = 2, the maximum PD over 5, and p,, values is very small:
.004. In the worst case for CLR, which is when (k, p,,,,) = (40,0), the maximum PD over 3, values
is substantially larger: .024. The average (over (3, values) PD in this case is .013, which is not very
large. For k = 40 and p,,,, > .9, the maximum PD (over 3, and p,,,, values) is very small: .004. This
is consistent with the theoretical optimality properties of the CLR test as p,, — £1 described in
Section [8| For k = 40 and p,, > .9, the average PD (over 3 values and the five p,,, values) is very
small: .000. The second worst case for CLR in Table IV is when (k, p,,,) = (20,0). In this case, the
maximum PD over 3, values is .013, which is noticeably lower than .024 for (k, p,,,) = (40,0).

In conclusion, the results in Tables I1I and IV show that the CLR test is very close to the WAP2
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power envelope for most (k, p,,,,, B¢) values, but can deviate from it by as much as .024 for some £,

values when (%, p,,,,) = (40,0).
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TABLE I. Differences in Probabilities of Infinite-Length CI’s for the CLR and POIS52,, CI’s, and Probabilities of
Infinite-Length POIS2., CI’s as Functions of k, A\ and py,

B CLR POIS2.. POIS2.
Puv =0 3 5) .7 9 Puv =0 7 9

2 1 .002 .003 .003 .001  .002 .867 .862  .851
2 3 .007 .008 .003 .004 .004 .680 .654  .614
2 5 .011 .010 .005 .004 .002 497 452 407
2 7 .013 .009 .004 .004  .003 .345 291 .256
2 10 .012 .007  .004 .003  .002 182 138 117
2 15 .007 .004  .002 .001  .001 .056 .034 .029
2 20 .003 .002 .001 .000  .000 .015 .008 .006
) 1 .003 002  .001 .001  .003 902 900 .884
5 3 .010 .007  .003 .001 .005 779 752 .670
) ) .020 .010 .003 .004 .004 .639 571 459
) 7 .026 .013 .006 .006 .002 .602 404 .295
5 10 .027 .014 .006 .005 .001 323 214 139
5 12 .027 .013 .006 .004 .001 .230 133 .082
5 15 .023 011 .005 .003  .000 132 .061  .035
5 20 .012 .005 .003 .001  .000 .047 .014 .008
5 25 .006 .003 .001 .000  .000 .015 .003 .002
10 1 .002 .002  .001 .001  .003 918 917 .904
10 5 .018 011 .005 .003 .007 733 673 .526
10 10 .035 .018 .008 .005 .002 461 317173
10 15 .037 .017 .008 .005 .001 242 110 .046
10 17 .034 .016  .007  .004 .000 77 .069 .026
10 20 .026 .015 .006 .002 .000 109 .033  .011
10 25 .016 .008 .003 .001 .000 .043 .008 .002
10 30 .008 .004  .002 .000  .000 .016 .002 .000
20 1 .003 .002  .001 .000  .002 929 930 921
20 5 017 012  .004 .003 .008 .806 768 .617
20 10 .035 021 .008 .008 .003 .b97 462 .240
20 15 .043 .023 .010 .009 .002 .393 2211 .070
20 20 .042 .021 .009 .005  .001 .226 .079 .018
20 25 .033 .016  .007  .003  .000 116 .024  .004
20 30 .023 .011  .004 .002 .000 .053 .007 .001
20 40 .007 .003  .001 .000  .000 .010 .001 .000
40 1 .001 .000  .000 -.000 -.001 .936 936 .932
40 5 .011 .008 .005 .003 .010 .861 837 .T1T
40 10 .030 .016 .006 .010 .004 721 615 .354
40 15 .046 .024 .011 .011 .002 .553 371128
40 20 .049 .028 .013 .010 .001 .394 186 .038
40 30 .043 .022  .010 .004 .000 .155 .029 .002
40 40 .022 .010 .004 .001  .000 .046 .003 .000

=
o
D
)

.003 .001  .000 .000 .000 .002 .000 .000




TABLE II. Maximum and Average Power Differences over A and 3y Values between POIS2 and CLR Tests for Fixed Alternative 5* =0

(a) Across k patterns for fixed puyo

(b) Across puv patterns for fixed k

POIS2-CLR
Puv k )\max BO,max Puv,0 POIS2 max average

0 2 7 —10000.00 1.00 .66 .021 .006
0 5 10 -50.00  1.00 .68 .030 .009
.0 10 15 -50.00  1.00 .76 .038 012
.0 20 15 10.00 —1.00 .60 .042 .014
.0 40 22 —50.00  1.00 .66 .059 .016
32 10 3.75 —0.96 .86 .019 .005
3 5 10 3.50 —0.96 .73 .034 .008
3 10 10 3.00 —0.94 .99 .032 .009
320 15 3.50 —0.96 .66 .045 012
3 40 22 4.00 —-0.97 .72 .061 .014
D2 5 2.00 —-0.87 .64 .016 .004
s B 10 2.25 -0.90 .82 .029 .005
S5 10 10 2.00 —0.87 .70 .037 .007
520 10 1.75 —0.82 .53 .046 .009
5 40 15 1.75 —0.82 .59 .050 .012
72 5 1.50 —-0.75 .81 .016 .002
705 ) 1.50 -0.75 .67 .033 .003
710 7 1.50 —-0.75 .71 .036 .005
720 7 1.25 -0.61 .04 .042 .006
740 15 1.50 —0.75 .84 .050 .008
9 2 0.9 1.25 —-0.63 .46 .017 .002
9 5 0.9 1.00 —-0.22 .33 017 .002
9 10 3 1.25 —-0.63 .7 .027 .003
9 20 3 1.00 -0.22 .61 .032 .003
9 40 5 1.25 —-0.63 .75 .040 .004

POIS2-CLR

k Puv  Amax Bo,max Puv,o POIS2  max  average
2 .0 7  —10000.00 1.00 .66 .021 .006
2 .3 10 3.75 —0.96 .86 .019 .005
2 .5 5 2.00 —0.87 .64 .016 .004
2 .7 5 1.50 —0.75 .81 .016 .002
2 .9 0.9 1.25 —0.63 .46 .017 .002
5 .0 10 —50.00  1.00 .68 .030 .009
5 3 10 3.50 —0.96 .73 .034 .008
5 .5 10 2.25 —0.90 .82 .029 .005
5 .7 5 1.50 —0.75 .67 .033 .003
5 .9 0.9 1.00 —0.22 .33 .017 .002
10 .0 15 —50.00  1.00 .76 .038 .012
10 3 10 3.00 —0.94 .59 .032 .009
10 5 10 2.00 —0.87 .70 .037 .007
10 .7 7 1.50 —0.75 71 .036 .005
10 .9 3 1.25 —0.63 7 .027 .003
20 .0 15 10.00 —1.00 .60 .042 .014
20 3 15 3.50 —0.96 .66 .045 .012
20 .5 10 1.75 —0.82 .53 .046 .009
20 .7 7 1.25 —0.61 .54 .042 .006
20 .9 3 1.00 -0.22 .61 .032 .003
40 .0 22 —50.00  1.00 .66 .059 .016
40 .3 22 4.00 —-0.97 .72 .061 .014
40 .5 15 1.75 —0.82 .59 .050 .012
40 .7 15 1.50 —0.75 .84 .050 .008
40 9 5 1.25 —0.63 .75 .040 .004




TABLE III. Average (over A) Power Differences for A € {2.5,5.0,...,90.0} between the WAP2 and CLR Tests for

k=5
5o Puv,0 WAP2-CLR
Puv =0 9 puw=0 .3 5 7 9 .95 .99
—10000.00  1.00 1.00 .005 .002 .001 .001 .000 -.000 .000
—100.00  1.00 1.00 .005 .002 .001 .001 .000 -.001 -.000
—10.00  1.00 1.00 .005 .002 .001 .000 .000 -.000 -.000
—4.00 97 1.00 .003 .001  .000 -.000 .000 .000 -.000
—3.00 .95 99 .003 .001 .000 .000 -.000 .001 .000
—2.00 .89 .99 .002 .001 .000 .001 -.000 -.001 -.000
—1.50 .83 .98 .001 .001 .001 .000 .000 -.001 -.000
—1.00 71 97 .001 .000 -.000 -.000 -.000 .000 -.000
—0.75 .60 97 .000  -.000 .001 -.000 -.000 .000 @ .000
—0.50 .45 95 -.000 -.000 -.001 -.001 -.000 -.001 -.000
—0.25 .24 94 -.001 -.001 -.001 -.000 -.000 .001 -.001
025 —.24 .83 -.000 -.001 -.001 -.000 -.001 .000 .000
0.50 —.45 .68 .001 .000 .000 .000 .000 -.001 .000
0.75 —.60 33 .000 .001 .001 .001 .000 .000 .000
1.00 -.71 —.22 .002 .001 .001 .001 .000 .000 .000
1.50 —.83 —.81 .001 .002 .003 .003 .001 -.000 .000
2.00 -.89 —.93 .002 .003 .004 .002 .000 -.001 -.000
3.00 —.95 —.98 .003 .005 .003 .001 .000 .000  .000
400 97 -.99 .004 .005 .002 .001 .000 .001 .000
10.00 —1.00 —1.00 .005 .003 .001 .001 .000 .000 .000
100.00 —-1.00 —1.00 .005 .003 .001 .000 .000 -.001 .000
10000.00 —1.00 —1.00 .005 .002 .001 .001 .000 -.000 .000
TABLE IV. Average (over A) Power Differences between the WAP2 and CLR Tests
1 (a) Maxima over (g (b) Averages over [y
Puv = 3 5 7 9 95 99 P =0 3 5 7 9 95 .99
2 .004 .003 .002 .002 .001 .001 .001 .002 .002 .001 .001 .000 .000  .000
5 .005 .005 .004 .003 .001 .001  .000 .003 .002 .001 .001 .000 .000  .000
10 011 .010 .008 .005 .004 .003 .003 .007 .006 .004 .002 .001 .001 .001
20 .013 .012 .010 .007 .002 .001 .002 .008 .007 .005 .002 .000 .000 .000
40 .024 .021  .017 .011  .004 .001  .000 .013 .011  .007 .004 .000 .000 .000
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11 Outline

References to sections, theorems, and lemmas with section numbers less than [T1] refer to
sections and results in the main paper.

Section of this Supplemental Material (SM) provides expressions for the densities
fo(@; Bys Bo, M), fonr(ailar), and fo(g; puw, M), expressions for the POIS2 test statistic and
critical value of AMS, and expressions for the one-to-one transformations between the reduced-
form and structural variance matrices. Section provides one-sided power bounds for invariant
similar tests as Sy — +oo, where 3, denotes the null hypothesis value. Section |14| corrects (4.1)
of AMS, which concerns the two-point weight function that defines AMS’s two-sided AE power
envelope.

Section (L5 proves Lemma Section (16| proves Theorem and its Comment (v). Section
proves Theorem and its Comment (iv), Corollary and its Comment (ii), and Theorem
Section [18| proves Theorem Section [19| proves Theorem and Lemmas and

Section computes the structural error variance matrices in scenarios 1 and 2 considered in
and in Section

Section |21 shows how the model is transformed to go from a testing problem of Hy : 8 = S,
versus Hy : = 8, for 7 € R* and fixed  to a testing problem of Hy : § = 0 versus H; : = 3,
for some 7 € R* and some fixed © with diagonal elements equal to one. This links the model
considered here to the model used in the Andrews, Moreira, and Stock (2006) (AMS) numerical
work.

Section |22 shows how the model is transformed to go from a testing problem of Hy : 8 = S,
versus Hy : 3 = 3, for 7 € R* and fixed € to a testing problem of Hy : f = f3, versus Hj : = 0 for
some 7 € R* and some fixed © with diagonal elements equal to one. These transformation results
imply that there is no loss in generality in the numerical results of the paper to taking w? = w3 =1,
B, =0, and p,, € [0,1] (rather than p,, € [-1,1]).

Section provides numerical results that supplement the results given in Tables I-IV in the
main paper.

Section [24] considers a variant of the CLR test, which we denote the CLR2,, test, and computes
probabilities that it has infinite length. It is not found to improve upon the CLR test.

Section [25] considers the linear IV model that allows for heteroskedasticity and autocorrelation
(HC) in the errors, as in Moriera and Ridder (2017). It extends Theorem [5.1] to this model. Thus,
it gives formulae for the probabilities that a CI has infinite right length, infinite left length, and
infinite length in this model.



12 Definitions

12.1 Densities of Q when 3 = 3, and when 8,— +oo

In this subsection, we provide expressions for (i) the density fg(q;B,,5g, A, Q) of @ when the
true value of 3 is 3,, and the null value § is finite, (ii) the conditional density fq, |0, (q1lqr) of Q1
given Q7 = gr, and (iii) the limit of fg(q; B,, By, A, Q) as By — Loo.

Let

£5.(q) = €5 (4,80, 2) := CE{*QS’ +2cg,dg qsT + d%*q:r, (12.1)
where cg_ = cg_(By,2) and dg, = dg_(5(,2). As in Section@ fo(q; By, Bos A, ) denotes the density

of Q@ :=[S:T)[S : T] when [S : T] has the multivariate normal distribution in (2.3) with g = 3,
and A = p/ p.. This noncentral Wishart density is

(@ B, Bos A, Q) = K1 exp(—A(c, + d3,)/2) det(q) /2 exp(—(qs + qr)/2)
X()‘gﬁ*(Q))_(k_2)/4l(k—2)/2( Mg (q)), where

q= ds s , Q= %) e Rt x R, qr € RT, (12.2)

qgsT 4qr qsT

Kt = 20220120 ((k — 1)/2), 1,(-) denotes the modified Bessel function of the first kind of
order v, pi = 3.1415..., and I'(+) is the gamma function. This holds by Lemma 3(a) of AMS with

By Lemma 3(c) of AMS, the conditional density of Q1 given Qr = qp when [S : T is distributed

as in (2.3) with 8 = B, is
forian(ailar) == KKy " exp(—qs/2) det(q)F=2/2q; 57272, (12.3)

which does not depend on S, A, or €.

By Lemma [6.1] the limit of fg(g; 84, Bos A, Q) as By — oo is the density fo(q; pyy, Av)- As in
Section @ fo(q; Py, Av) denotes the density of @ := [S : T)'[S : T] when [S : T has a multivariate
normal distribution with means matrix in , all variances equal to one, and all covariances equal

to zero. This is a noncentral Wishart density that has following form:

Fo @ puys Ao) = K1 exp(—Ao(1+12,)/2) det(q) ¥~/ exp(—(gs + qr)/2)
X ()\vg(q, puv))i(k72)/4f(kf2)/2( )‘Ug(qa puv))’ where

(G Pun) = 45 + 2ruvdST + 72041 (12.4)



This expression for the density holds by the proof of Lemma 3(a) of AMS with means matrix

fr - (1/04,Tuw/0y) in place of the means matrix p, - (cg,dg).

12.2 POIS2 Test

Here we define the POI1S52(q1, qr; Bo, B+, A) test statistic of AMS, which is analyzed in Section
|§|7 and its conditional critical value 2 g, (q7)-

Given (B,, )), the parameters (8,,, A2) are defined in ((6.3), which is the same as (4.2) of AMS.
By Cor. 1 of AMS, the optimal average-power test statistic against (5,,A) and (Ss,, A2) is

P(Q; Bo, Bas A) +¥(Q; Bos Baxs A2)
2¢2(QT; /801 5*? )‘)

B(Q; By, B, A) 1= exp(—A(ch + d3)/2)(A5(Q)) "I _o) (1 /AER(Q)),
Uo(Qr3 By, B, A) 1= exp(—=Ad3/2)(AdZQr) ™ * 2/ 1 _g) (/[ AdEQ1), (12.5)

POISQ(Qa BOa B*a )‘) =

, where

Q@ and Q7 are defined in , cg = cg(B,9) and dg = dg(3,2) are defined in (2.3), I,,(-) is defined
in , £5(Q) is defined in with @ and S in place of ¢ and 3,, and X := p/ u.. Note that
U2(QT; Bys A) = ¥2(Qr3 Bays A2) by (6.3).

Let k2 g, (qr) denote the conditional critical value of the POI1S2(Q; By, B, A) test statistic. That
is, ka,p,(qr) is defined to satisfy

P11 (POIS2(Q; By, By A) > k2,6, (ar)lar) = (12.6)

for all gr > 0, where Py, |0, (-|gr) denotes probability under the density fg,g,(-l¢r) defined in
(12.3). The critical value function g g (-) depends on (g, B,, A, Q2) and k (and (S, A2) through

(Bs; A))-

12.3 Structural and Reduced-Form Variance Matrices

Let u;, v1;, and vg; denote the ith elements of u, vy, and vy, respectively. We have

w% w12
v1; i= U; + v 3 and Q = , | (12.7)
w12 5

where 3 denotes the true value.

Given the true value 8 and some structural error variance matrix I, the corresponding reduced-



form error variance matrix Q(f3, %) is

V14 Uj + v2;
QB,%) := Var . = Var N
V24 V24
1 g 10 02 + 20,0+ 028% oy + 028
= > = , where
0 1 g 1 Ouw + 0203 o2
i ol o
Y= R (12.8)
| Tw o2

Given the true value 8 and the reduced-form error variance matrix €2, the structural variance

matrix %(5, ) is

U; V1; — V24
X(B,Q) := Var = Var ! 2if (12.9)
V23 V24
|1 -8 N Lo _ w? — 2w19B + wiB? wig — Wi
0 1 -5 1 w12 — W%ﬁ w%

Let 02(8,Q), 02(8,9Q), and 0,,(3,9) denote the (1,1), (2,2), and (1,2) elements of X(3, ). Let
Puv(B, Q) denote the correlation implied by (3, Q).

In the asymptotics as 3, — Fo00, we fix 8, and 2 and consider the testing problem as 3, — Fo0.
Rather than fixing €2, one can equivalently fix the structural variance matrix when 8 = ,, say at
Y.. Given 3, and X, there is a unique reduced-form error variance matrix Q = Q(3,, X,) defined
using (12.8). Significant simplifications in certain formulae occur when they are expressed in terms
of X, rather than €, e.g., see Lemma [15.1fe) below.

For notational simplicity, we denote the (1,1), (2,2), and (1,2) elements of ¥, by 02, o2

o, and

O, Tespectively, without any * subscripts. As defined in (5.5)), p,,, := 0uv/(0woy). Thus, p,, is the
correlation between the structural and reduced-form errors u; and vo; when the true value of [ is
B, Note that p,,, does not change when (3,,X,) is fixed (or, equivalently, (53,,) = (8., Q(B,, Xx))

is fixed) and 3, is changed. Also, note that 02 = w3 because both denote the variance of ve; under

B =P, and = By

13 Omne-Sided Power Bound as 3,— +o©

In this section, we provide one-sided power bounds for invariant similar tests as 5, — Foo for

fixed (3. The approach is the same as in Andrews, Moreira, and Stock (2004) (AMS04) except that



we consider 3y — £oo. Also see Mills, Moreira, and Vilela (2014).

13.1 Point Optimal Invariant Similar Tests for Fixed 3, and 3,

First, we consider the point null and alternative hypotheses:

Hy:p=pyand Hy: 8 =0,, (13.1)

where 7 € R* (or, equivalently, A > 0) under Hy and H;.

Point optimal invariant similar (POIS) tests for any given null and alternative parameter values
B and f3,, respectively, and any given 2 are constructed in AMS04, Sec. 5. Surprisingly, the same
test is found to be optimal for all values of m under Hi, i.e., for all strengths of identification.
The optimal test is constructed by determining the level « test that maximizes conditional power
given Q7 = qr among tests that are invariant and have null rejection probability a conditional on
Qr = qr, for each gr € R.

By AMS04 (Comment 2 to Cor. 2), the POIS test of Hy : § = 3, versus H; : § = 3,, for any
7w € RF (or A > 0) under Hy, rejects Hy for large values of

d
POIS(Q;: By, B.) == Qs + 205*(*62%. (13.2)

The critical value for the POIS(Q; B, 5,) test is a conditional critical value given Q7 = ¢p, which
we denote by g (qr). The critical value kg (gr) is defined to satisfy

Pg, 10, (POIS(Q; By, B.) > kg, (qr)lar) = « (13.3)

for all gr > 0, where Py, |, (‘|gr) denotes probability under the conditional density fq, |, (q1]qr)
defined in . Although the density fg, |0, (q1lgr) does not depend on 3, rg,(¢r) depends on
By, as well as (5,8, k), because POIS(Q; By, 5,) does.

Note that, although the same POIS(Q; 5y, 5,) test is best for all strengths of identification,
Le., for all A = p/ . > 0, the power of this test depends on A.

13.2 One-Sided Power Bound When 8,— +oo

Now we consider the best one-sided invariant similar test as 8, — £oo keeping (5,,?) fixed.

Lemma below implies that

. dg (B, ) p
1 e N _ruwv
o T o (1= p2)12

_ Puy
Bo—oo ¢, (o, ) > [T = (13-4

(1= %)



where p,,,,, defined in (5.5)), is the correlation between the structural and reduced-form errors u;
and vg; under (.. Hence, the limit as §y — foo of the POIS(Q; By, ,) test statistic in (13.2)) is
dg, (Bo, )

)QST) = Qs+ Q%QST (13.5)

POIS(Q;00,py) == i 4ot b0
@)= i (@s+ 2050 )

o—Eo0

Notice that (i) this limit is the same for 5; — +o00 and §; — —o0, (ii) the POIS(Q; 00, p,,) statistic
depends on (8,,Q) = (8,,Q(B,,2x)) only through p,, := Corr(X,), and (iii) when p,, = 0,
the POIS(Q; 00, p,,) statistic is the AR statistic (times k). Some intuition for result (iii) is that
EQsr = 0 under the null and lim|g | oo EQsr = 0 under any fixed alternative 3, when p,, =0
(see the discussion in Section . In consequence, Qg7 is not useful for distinguishing between
Hy and H; when |y — oo and p,, = 0.

Let koo (gr) denote the conditional critical value of the POIS(Q; 00, p,,,) test statistic. That is,
Koo(qr) is defined to satisfy

P, (POIS(Q;00, pyy) > Kool(ar)lar) = o (13.6)

for all gr > 0. The density fo, |0, (-lgr) of Pg, g, (-lgr) only depends on the number of IV’s k, see
(12.3]). The critical value function ks (-) depends on p,,, and k.

Let ¢g, (Q) denote a test of Hy : f = (3, versus Hy : f = [, based on @ that rejects Hy when
P35, (Q) = 1. In most cases, a test depends on (3, because the distribution of ) depends on S, see
and , and not because ¢/3o(') depends on ;. For example, this is true of the AR, LM,
and CLR tests in and . However, we allow for dependence of ¢g () on 3y in the following

result in order to cover all possible sequences of (non-randomized) tests of Hp : 5 = 5.

Theorem 13.1 Let {QS@O(Q) 1 By — Foo} be any sequence of invariant similar level a tests of
Hy: B =By versus Hy : = B, when QQ has density fQ(q; B, Bos A, Q) for some A >0 and Q is fized
and known. For fized true (B,,\,Q), the POIS(Q; o0, p,,,) test satisfies

liﬁm Sup Ps, 8o 20(05,(Q) =1) < P, (POIS(Q;00, pyy) > Koo(QT)).
0L

Comments. (i). Theorem shows that the POIS(Q;0,p,,) test provides an asymptotic
power bound as 3, — +oo for any invariant similar test for any fixed (5,, A, 2). This power bound
is strictly less than one. The reason is that limg, .+ [cg, (B9, )| -+ oo. This is the same reason
that the AR test does not have power that converges to one in this scenario, see Section [d] Hence,
the bound in Theorem [[3.1]is informative.

(ii). The power bound in Theorem only depends on (S,, A, Q) through p,,,,, the magnitude

7



of endogeneity under 3,, and \,, the concentration parameter.

(iii). As an alternative to the power bound given in Theorem one might consider develop-
ing a formal limit of experiments result, e.g., along the lines of van der Vaart (1998, Ch. 9). This
approach does not appear to work for the sequence of experiments consisting of the two uncondi-
tional distributions of [S : T (or Q) for § = B, 8, and indexed by 5, as Sy — £oo. The reason
is that the likelihood ratio of these two distributions is asymptotically degenerate as 5y — £o0
(either 0 or oo depending on which density is in the numerator) when the truth is taken to be
B = By. This occurs because the length of the mean vector of 1" diverges to infinity as 3, — £oo
(provided A = plp,. > 0) by and Lemma [15.1c) below. For the sequence of conditional
distributions of ) given Qp = qp, it should be possible to obtain a formal limit of experiments
result, but this would not very helpful because we are interested in the unconditional power of tests
and a conditional limit of experiments result would not deliver this.

(iv). The proof of Theorem is given in Section (19| below.

14 Equations (4.1) and (4.2) of AMS

This section corrects (4.1) of AMS, which concerns the two-point weight function that defines
AMS’s two-sided AE power envelope.
Equation (4.1) of AMS isﬂ given (5,,\), the second point (S,,, A2) solves

A 2es, = —A2cs (#0) and Ay *dg, = A/2dg.. (14.1)

AMS states that provided 8, # B4p, the solutions to the two equations in (4.1) satisfy the two
equations in (4.2) of AMS, which is the same as (6.3) and which we repeat here for convenienceﬂ

ds (B, — dg. +2 . — Bo))?
52* — 50 _ 60(/6 50) and )\2 _ A( Bo r602(/8 BO)) ’ where
dg, + 273, (B4 — Bo) dg,
T8y i = el Yag - (ah Yag)"Y? and e; := (1,0)". (14.2)

Equation (4.2) is correct as stated, but (4.1) of AMS is not correct. More specifically, it is not
complete. It should be: given (3,, ), the second point (3,,, A2) solves either (14.1]) or

Ay es, = AV2cs (#0) and Ay *ds, = —A\/2dg.. (14.3)
0Note that (8, and (Bgx> A2) in this paper correspond to (8%, A*) and (83, \3) in AMS.
U The formulae in ) and (14.2) only hold for 3, # Bag, where B,p = (W3 — wi2fy)/(wiz — W3B,) provided

w12 — w3fBy #0 (Whlch necessarlly holds for |3, sufficiently large because w3 > 0).



For brevity, we write the “either or” conditions in (14.1]) and (14.3) as

Ay es, = FAV e (#0) and Ay *ds,. = +A\2dy. (14.4)

2

The reason (4.1) of AMS needs to be augmented by is that for some (8,,\), By, and
2, (4.1) has no real solutions (f,,,A2) and the expressions for (fs,,A2) in (4.2) of AMS do not
satisfy (4.1). Once (4.1) of AMS is augmented by (14.3), there exist real solutions (8,,, A2) to the
augmented conditions and they are given by the expressions in (4.2) of AMS, i.e., by . This

is established in the following lemma.

Lemma 14.1 The conditions in (14.4)) hold iff the conditions in (4.2) of AMS hold, i.e., iff the
conditions in (14.2)) holds.

With (4.1) of AMS replaced by (14.4)), the results in Theorem 8(b) and (c) of AMS hold as
stated. That is, the two-point weight function that satisfies leads to a two-sided weighted
average power (WAP) test that is asymptotically efficient under strong IV’s. And, all other two-
point weight functions lead to two-sided WAP tests that are not asymptotically efficient under
strong IV’s.

Lemma 14.2 Under the assumptions of Theorem 8 of AMS, i.e., Assumptions SIV-LA and 1-4 of
AMS, (a) if (Bay, \2) satisfies , then LR*(@LWC/Q\TW; By A) = e~3(T)? cosh(T*LMﬁ/z)—Fop(l),
where T = /\1/205*, which is a strictly-increasing continuous function of LM, and (b) if (Ba., A2)
does not satisfy (14.4), then LR*(@17n,@T7n;B*,)\) = 772(6257’7”/@;/’721) + 0p(1) for a continuous

function ny(+) that is not even.

Comments. (i). Lemma[14.2{a) is an extension of Theorem 8(b) of AMS; while Lemma [14.2|(b)

is a correction to Theorem 8(c) of AMS.

(ii). The proofs of Lemma and are given in Section [19| below.

Having augmented (4.1) by , the two-point weight function of AMS does not have the
property that (4, is necessarily on the opposite side of 3, from [,. However, it does have the
properties that (i) for any (8., ), (Bas, A2) is the only point that yields a two-point WAP test
that is asymptotic efficient in a two-sided sense under strong IV’s, (ii) the marginal distributions
of Qs, Qr, and Qgr are the same under (5,,A) and (B, A2), and (iii) the joint distribution of
(Qs, Qst, Qr) under (B,,\) is the same as that of (Qg, —Qsr, @r) under (B, \2).



15 Proof of Lemma [6.1]

The proof of Lemma [6.1] and other proofs below use the following lemma.
The distributions of [S : T] under (8,,2) and (5,,) depend on cg(By,2) and dg(By,2) for

B = By and B,. The limits of these quantities as 5, — Foo are given in the following lemmaE

Lemma 15.1 For fized B, and positive definite matriz €2, we have
(a) limg, —+o00 3, (8o, 2) = 0.

b) limg, 400 ¢, (8o, ) = F1/0%.

c) limg, .40 dg, (B, 2) = oo.

d) dg, (8o, ) /|Bo| = (w%wﬁW +o(1) = W +0(1) as |By| — oc.

(
(
(
(

2
. B*_ UY.
) 0 on . (B D) = o s = ¥

wiwa—

Comment. The limits in parts (d) and (e), expressed in terms of ¥, only depend on p,,,,, 04, and
0, and their functional forms are of a relatively simple multiplicative form. The latter provides

additional simplifications of certain quantities that appear below.

Proof of Lemma m. Part (a) holds because cg, (80,€2) = 0 for all 3,. Part (b) holds by the

following calculations:

lim ¢ ,Q) = lim (8, — - (BhQby) /2
i (B0, ) = tim (5.~ By) - ()

T s hrﬁ (B, — Bo) - (Wi — 2w1afBy +w3p3) /2
o—too

= Fl/we
= F1/0,. (15.1)

Now, we establish part (e). Let by := (1, —/,)". We have

5 dm ds, (B, ) = Tim b.0bo- (b$bo) /2 det(92) 72
lim w? — w128, — w12y + w3850

Bo—Eoo (Wi — 2wiafy + wiBF) /2 (whed — wiy)1/?

_ o wbmwn (15.2)

nlu} =

Next, we write the limit in (15.2)) in terms of the elements of the structural error variance matrix

2 Throughout, 8, — Zo0 means f, — 0o or B, — —o0.

10



Y.. The term in the square root in the denominator of (|15.2)) satisfies

wiws — wiy = (05 + 200, + 0087)0y — (0w + 038,)° = 0h0y — on, (15.3)
where the first equality uses w3 = o2 (since both denote the variance of vg;), w3 = 02 + 20,3, +
026%), and wis = 0y + 02/, (which both hold by (12.8) with 8 = 8, and ¥ = %), and the second
equality holds by simple calculations. The limit in (15.2]) in terms of the elements of ¥, is

Wi, —wis  _  02B.— (Cw +02B,) _ c Puw (15.4)

+
wa(wiwd — wiy)!/? ou(0%07 — 05,)' ao(l = pi,)t?

where the first equality uses (15.3), w3 = 02, and w1z = 0yy + 023,, and the second inequality
holds by dividing the numerator and denominator by ¢,0,. This establishes part (e).

For part (c), we have

lim  dg, (B, Q) = lim (byQbo)"/? det(Q)~1/2

Bo—Eo0 Bo—Eo0
~ lim (W] — 2w128y + w363)"/?
fo—too (wiwd — wiy)'/?
= 00. (15.5)

Part (d) holds because, as |3,| — oo, we have

2/52 _ 9 211/2
dg, (B0, 2)/|Bol = (1/5% 2 2WI2/§0);L/2OJQ)

(wiw; — wiy

w2
= 1
-
1
BT S .

where the last equality uses (15.3)) and wy = 0,,. O

Next, we prove Lemma which states that for any fixed (8, A, ), limg, 100 fQ(; Bss Bos A, )
= [Q(& Puvs Av)-

Proof of Lemma By Lemmal[t5.1(b) and (e) and (6.1)), we have limg 100 c5, = F1/0, and

11



limg, 400 dg, = Fruv/0w. In consequence,

lim A(cﬁ +d6 ) = A1/ (1 +7r2) = A\ (1 +72,) and

Bo—rEo0

lim A (¢) =  lim )\(c% q5+205*d5*qST+d% qr)
50*>i00 * *

Bo—Eo0

= M1/02)(gs + 2ruwgsT + r2007) = ME(G; Puv)s (15.7)

using the definitions of A\, and £(g; p,,,) in (6.1]) and (12.4)), respectively, where the first equality in
the third line uses (F1)(Fryy) = Tup. Combining this with (12.2)) and (12.4) proves the result of

the lemma. [

16 Proof of Theorem [5.1]

The proof of Theorem uses the following lemmaE Let

1
Sioo(Y) = (Z22) V22V ey T2,
Ov
Tioo(Y) = (Z/Z)_l/QZ,YQ_le ’ (:l:(l - piv)1/2au)7 and
LY PsYes ebY' Py Y QO ley - TUpi) o
Qioo(Y):= | —al puv) Vg B Y, | (161)
e Y'PyY Qe Torlu) 0w ot O-LY' Py Qe - (1 — p2,)0?

Oy

where p,,, := Corr(u;,va;), Pz := Z(Z2'Z)71Z', e; := (1,0)', and e := (0,1)". Let Q7 1+00(Y) denote
the (2,2) element of Qioo(Y). As defined in (6.1)), ruy = py,/(1 — p2,)V2.

Lemma 16.1 For fized 5, and positive definite matriz 2, we have
(a) limg, 00 S5, (V) = Sxoo(Y),
b) Stoo(Y) ~ N(F 5t 1),
c) limg, 100 T3, (Y) = Thoo(Y) = (Z2'Z)~ 127y Q= ey (£(1—p3) ' 2w1), where pg := Corr(vii, va;),
Q) Teoo (V) ~ N (F52 117, 11 )
e)
)

St00(Y) and Ty oo (Y') are independent,
limg, 400 @5, (Y) = Q1eo(Y), and

) Q+o00(Y) has a noncentral Wishart distribution with means matriz :F,u,r(a ) € RF*2,

(
(
(
(
(
(g

identity variance matriz, and density given in (12.4).

Comment. The convergence results in Lemma hold for all realizations of Y.

Y The proof of Comment (v) to Theorem is the same as that of Theorem a) and (b) with [Sg, (Y),T3,(Y)]
and T, (Y) in place of Qp,(Y) and Q1,5,(Y"), respectively.
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Proof of Theorem [5.1. First, we prove part (a). We have

1(RLength(CSy(Y)) = o0)
W7 (Qp,(Y)) < cv(Qrp,(Y)) ¥By > K(Y) for some K(Y) < o0)
i 1T(Q3,(V) < o@ris, (V) (162)

where the second equality holds provided the limit as B, — oo on the rhs exists, the first equality
holds by the definition of C'S4(Y) in (5.1)-(5.3) and the definition of RLength(CSy(Q)) = oo
in (5.4), and the second equahty holds because its rhs equals one (when the rhs limit exists) iff
T(Qp,(Y)) < cv(Qrp,(Y)) for V3, > K(Y') for some K(Y) < oo, which is the same as its lhs.

Now, we use the dominated convergence theorem to show

lim Elg 77rQl( (Qﬂo (Y)) < CU(QT,BO (Y)))

Bo—00

= Epoma lim HT(Qs,(Y)) < cv(Qr,5,(Y)))- (16.3)

The dominated convergence theorem applies because (i) the indicator functions in are domi-
nated by the constant function equal to one, which is integrable, and (ii) limg .. 1(7(Qp,(Y)) <
cv(Qr,,(Y)) exists a.s.[Pg, ra] and equals 1(7(Quo(Y)) < cv(QT,00(Y)) a.8.[Ps, r0] The lat-
ter holds because the assumption that 7(q) and cv(qr) are continuous at positive definite (pd) ¢
and positive gr, respectively, coupled with the result of Lemma [16.1(f) (that Qg (Y) — Quo(Y)
as By — oo for all sample realizations of Y, where Qo (Y) is defined in (16.1))), imply that (a)
limg, 00 7(Qp,(Y)) = T(Quo(Y)) for all realizations of ¥ for which Q. (Y) is pd, (b) limg, o0
cv(Qr,,(Y)) = cv(QT,00(Y)) for all realizations of ¥ with Q7,(Y) > 0, and hence (c) limg, o0
L7 (Qp,(Y)) < cv(Qrs,(Y)) = HT(Quo(Y)) < cv(QT,00(Y)) for all realizations of ¥ for which
T(Qoo(Y)) # cv(Qr,00(Y)). We have P3_r o(7 (Rso(Y)) = cv(Q7,00(Y))) = 0 by assumption, and
P3 70(Qoo(Y) is pd & Qr,00(Y) > 0) =1 (because Qo (Y) has a noncentral Wishart distribution
by Lemma g)). Thus, condition (ii) above holds and the DCT applies.

Next, we have

1 —Bilin Ps, sor0(0(Q) =1)
:5ilglooEB*’7r’Ql( (@5, (Y)) < cv(Qr,3,(Y)))
= Eﬁ*,ﬂ',Q hm 1( ( (Y)) (QTBO( )))

(Y)

= P3, WQ(RL€TL9th(CS¢ Y)) = o0), (16.4)

0

13



where the first equality holds because the distribution of Q under Pg_ g, x.(-) equals the distribution
of Qp,(Y) under Ps_r () and ¢(Q) = 0 iff 7(Qps,) < cv(Qr) by (5.2)), the second equality holds

by (16.3]), and the last equality holds by (16.2)). Equation ([16.4)) establishes part (a).
The proof of part (b) is the same as that of part (a), but with LLength, V5, < —K(Y),

Bo — —00, Q—(Y), and Q1 (Y) in place of RLength, V3, > K(Y), By — 00, Qx(Y), and
Q1,00(Y), respectively.

The proof of part (c) uses the following: (i) Qoo(Y) and Q_o(Y") only differ in the sign of their
off-diagonal elements by , (ii) 7(Qwo(Y)) does not depend on the sign of the off-diagonal
element of Qs (Y) by assumption, and hence, (iii) 1(7 (Qx(Y)) < cv(QT,00(Y)) = H(T(Q-(Y))
< ev(Qr,—00(Y)) for all sample realizations of Y. We have

1(RLength(CSy(Y)) = 0o & LLength(CSy(Y)) = o0)
= 1T (Qp,(Y)) < cv(Qrg,
i 1(T(Qs,(V)) < 0(@rp, (V) & T(Q-3, (V) < v(Qr, (V)

(Y)) V8o > K(Y) & ¥, < —K(Y) for some K(Y) < )
) < evf

= UT(Quo(Y)) = cv(Qr,00(Y)) & T(Q-0(Y)) < cv(Qr,—0(Y)))
(@00
) < v

HT(Qoo(Y)) < cv(Qr,00(Y))

=6iiglool( (Qs,(Y)) < cv(Qr,,(Y)) (16.5)

where the first two equalities hold for the same reasons as the equalities in , the third equality
holds a.s.[P3_ o] by result (ii) that follows and the same result with —/, and —oo in place of
By and oo, respectively, the second last equality holds by condition (iii) immediately above ,
and the last equality holds by result (ii) that follows (16.3)).

Now, we have

Ps_ra(RLength(CSy(Y)) = oo & LLength(CSy(Y)) = o0)
= Ep.ra Jim 1(T(Qs,(Y)) < cv(Qr(Y)))
= 1- ghgloo Ps, s,a0(0(Q) = 1), (16.6)

where the first equality holds by and the second equality holds by the first four lines of
(16.4). This establishes the equality in part (c) when 8, — oo. The equality in part (c¢) when
By — —oo holds because and hold with 8y — oo replaced by 5, — —oo since the
indicator function on the rhs of the second equality in depends on 3, only through |S,|. O

14



Proof of Lemma Part (a) holds because

lim Sp (V) = lim (Z2'2)"Y22'Yby - (bpbo) />

ﬁo—d:oo ﬁ’o—d:oo
1
= (Z2)"Y?2'Y lim [(w? = 2wy + wipR)/?
Bo—Eo0 _60
= (Z,Z)_1/2Z/Y62(:Fl/0'v), (167)

where eg := (0,1), the first equality holds by (2.3)), the second equality holds because by :=
(1,—By)’, and the third equality holds using wy = 7.
Next, we prove part (b). The statistic S1o0(Y) has a multivariate normal distribution because

it is a linear combination of multivariate normal random variables. The mean of S1(Y) is

ESua(Y) = (Z'2) 22/ 2[5B, : wles - 1% = (2/2) 27 T2 — . FL (16.8)

Oy Oy Oy

where the first equality holds using (2.2)) with a = (8,,1)" and (16.1). The variance matrix of
Si0o(Y) is

n
Var(S+o(Y)) = Var(Z'2)1?2'Y e3))0? = Var (Z(Z’Z)_l/QZiYZ-’@) Jo?
i=1
n n
= Var(Z2'2)"'?2Y]es)[o% = (2'2) 1 2:2/(2'2)PehQes /o = T, (16.9)
=1 =1
where the third equality holds by independence across i and the last equality uses w3 = o2. This
establishes part (b).
To prove part (c), we have

: : —-1/2 —1 —1 —1/2
5015200230(1/) = aollrioo(zlz) 2Z'Yv Q0 ag - (ahQ tag) ™Y

= (Z2'2)"V2Z2'yQ' lim P

jm ) /(wllﬁ% +2w12,6’0 +w22)1/2
0—)

— (le)fl/Qzlygflel . (il/wll)l/Z
= (Z'2)V2Z'YQ ey - (£(wiwd — w)Y? wy), (16.10)

where w'l, w!2, and w?? denote the (1,1), (1,2), and (2, 2) elements of Q~!, respectively, e; := (1,0),

the first equality holds by ([2.3)), the second equality holds because ag := (3¢, 1), and the fourth
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equality holds by the formula for w'!. In addition, we have

(@iws —why)? fwz = (1= p§) w1 = (1= pi,) P00, (16.11)

where the first equality uses pq = wiz/(wiws) and the second equality holds because wiw3 —w?, =

0202 — 02 by (15.3) and wy = o,. Equations (16.10) and (16.11]), combined with (16.1)), establish

part (c).
Now, we prove part (d). Like Sio0(Y), Thoo(Y') has a multivariate normal distribution. The

mean of T (V) is

ET:too(Y) = (ZIZ)71/2Z/Z[7TB* . W]Qilel . (:l:(l B p12w)1/20_u)
= (Z/Z)1/27T(B*w11 —|—w12) (1 — wa)l/%u), (16.12)

where the equality holds using (2.2) with a = (8,,1)" and (16.1). In addition, we have

12 /B*(“)Q — w12 . —Owv o —Puv

Bt +w = , 16.13
w%wg w%Z 030121 - U%w (1 - p%v)auav ( )
where the second equality uses w1w2 — w12 = 0202 — 0’ by and 5*002 — W13 = —0Oyy by
with = f3,. Combining ((16.12)) and (16.13|) gives
B _ :Fpuv - Fruw
The variance matrix of Ty (Y) is
Var(Tie(Y)) = Var(Z'2)"Y22'y Q0 Yer) - (1 — p2, )02
n
= Var <Z(Z’Z)1/2ZiYi’Qlel> —p2 o ZV(M’ Z'Z2) 2z y!0 ey) - (1 - p2)o2
i=1
- w3
= N2 2) 22,202 2) 0 ey - (1 - )02 = Ii—at—y - (1= p2,)02
- w1w2 Wi
2
o
= I L (1= ply)os = I,
0%0-12) — Y woe

where the first equality holds by (({16.1]), the third equality holds by independence across ¢, and the

second last equality uses wiw3 — wi, = 0202 — 02, by (15.3) and w3 = o2
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Part (e) holds because

Cov(Szoo(Y), Tioe(Y)) = =Y Cov((Z'2) 72 ZY] ey, (2'2) 72 Z,Y] 0 er) - (1 = pL,) 2o f oy
=1

=Y (Z22)71?2:2/(2'2)" b0 ey - (1= pl,) 20w /oy = OF. (16.15)
i=1
Part (f) follows from parts (a) and (c) of the lemma and (5.1)).
Part (g) holds by the definition of the noncentral Wishart distribution and parts (b), (d), and
(e) of the lemma. The density of Qi (Y) equals the density in (12.4) because the noncentral

Wishart density is invariant to a sign change in the means matrix. [

17 Proofs of Theorems [6.2], Corollary [6.3, and Theorem [6.4

The following lemma is used in the proof of Theorem As above, let Pg g ra(-) and
P, () denote probabilities under the alternative hypothesis densities fq(q; B4, 8o, A, §2) and
fo(q; puys Av), which are defined in Section [12.1} See (12.2) and (12.4)) for explicit expressions for

these noncentral Wishart densities.

Lemma 17.1 (a) limg, .+o0 Ps, g, 2,0(POI1S2(Q; B4, By, A) > ka,(QT)) = P,
|Puvls Av) > K2,00(Q1)),

(b) limp 200 Ps,. 500,02 (POIS2(Q; By, By, A) > k2,6,(Q1)) = Py, A, (POIS2(Q; 00, |y, Av)
> K2,00(QT)),

(©) Py, (POIS2(Q: 00, oyl M) > Koo @1)) = Py, 2 (POIS2(Q5 00, 0yl M) > rizoo (@),

(d) limg, 400 Box = —B4 + 2";—132 =06, + 201;7’1““, and

(e) hmﬂo—d:oo )\2 =\

A, (POIS52(Q; 00,

The reason that @ has the density fo(q; —puy, Av) (defined in (12.4)) in the limit expression in
Lemma b) can be seen clearly from the following lemma.

Lemma 17.2 For any fized (B, \, ), limg, 100 fQ(q; Bax, By A2, Q) = fQ(q5 —Puw, Mo) for all 2x2
variance matrices q, where By, and Aa satisfy (6.3)) and p,, and A\, are defined in (5.5) and (6.1)),

respectively.
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Proof of Lemma Given (8%, \*), suppose the second point (53, A3) solves (14.1). In this
case, by Lemma [15.1|(b) and (e), we have

lim  AY%cs, (B0,9) = lim —AY%cs (8o, Q) = A2 /g, = +AL/? and (17.1)
BO_E‘:OO 60—>:t00

lim  AY2d Q) = lim AY2dy (8,,Q) = FAV2—Pu
Bomrtoo 2 3. (B0:2) Boboo 5, (B0, ) = F

NN,
Uv(l - p12w)1/2 T

Using (12.1)), (12.4)), and (17.1]), we obtain
lim Ao(c3 4+d3 ) = A\(1+72) and
Bo"ioo 52* 52* uv

. L . 2 2
501inioo A€, (q) = Bolgr;oo Aa2(c3,,qs + 2cp, dp, qsT + dg, qr)
= )\v(qs — 2ruwqsT + 7“12“)(]’1“)
= A& —Puw); (17.2)

On the other hand, given (8%, \*), suppose the second point (33, A3) solves (14.3)). In this case,
the minus sign on the rhs side of the first equality on the first line of disappears, the quantity
on the rhs side of the last equality on the first line of becomes :F)wl/ 2, a minus sign is added
to the rhs side of the first equality on the second line of , and the quantity on the rhs side of

the last equality on the second line of (17.1]) becomes i)\f/ 2ruv. These changes leave )\20?32*, )\Qd%2*,
and Azcg,, dg, unchanged from the case where (35, A3) solves . Hence, also holds when
(8%, A3) solves (14.3).

Combining with (with (894, A2) in place of (5,,A)) and proves the result of

the lemma. [J

Proof of Theorem By Theorem 3 of AMS, for all (8,, 5y, A, ),

Ps_gor0(d3,(Q) = 1) + P, 5,20,0(05,(Q) = 1) (17.3)
< PB*,ﬁO,)\,Q<POIS2(Q;5075*7 )‘) > HZ,BO(QT)) + P,Bg*,ﬁo,)\z,Q(POI‘S?(Q; /8075*7 >‘) > K?,Bo(QT))‘

That is, the test on the rhs maximizes the two-point average power for testing S = [, against
(Bs, A) and (B, A2) for fixed known Q.

Equation and Lemma [17.1(a)-(c) establish the result of Theorem by taking the
lim supg of the lhs and the liminfg ... of the rhs. [J

—+o0

The proof of Comment (iv) to Theorem is the same as that of Theorem but in
place of (17.3) it uses the inequality in Theorem 1 of CHIJ i.e., [ Ps g xu./llu.l2(P5,(Q) =
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VAU f (b /1) < [ Pa, g 3pn /i 12 (POLS2(Qs By, Bis A) > ki, 5, (Q))AUNf (1 /| ]), Pluss
the fact that the rhs expression equals Pg_ g, x,o(POI1S2(Q; By, By, A) > k2,5,(Q1)) because the dis-

tribution of @ only depends on p,. through A = p! p .

Proof of Lemma To prove part (a), we write

Pg, 5, 20(POI1S2(Q; B, By, A) > k2,(QT))
= [ [1POIS2(0: 0. 5. 2) > s (ar))x(s — o ne)nlt — st and

Poro (POIS2(Q; 00, [pyy|s Av) > 2,00 (Q1)) (17.4)
= [ [ (POIS2ai 0. [puul: M) > Kacelar))y(s — (F1/0) g oult — (Fra /o g s,

where ¢, (z) for x € R* denotes the density of & i.i.d. standard normal random variables, A\ = p/ s,
s,t € RE q=1[s:t]'[s:t], qr = t't, cs. = cp_(Bo, ), dg. = dg_(By, ), the F signs in the last line
are both 4+ or both —, and the integral in the last line is the same whether both F signs are + or
— (by a change of variables calculation).

We have

gim (s = e, (Bo, Ditn) ox(t = ds, (Bo, Dtir) = b5 = (F1/00) )bt = (Fruw/ow)ptz) (17:5)

for all s,t € R¥, by Lemma M(b) and (e) and the smoothness of the standard normal density
function. By (6.4) and (12.5) and Lemma M(b) and (e), we have

lim  POIS2(q; By, B, A) = POIS2(g: 59, |y, M) (17.6)

Bo—*Eo0

for all for 2 x 2 variance matrices g, for given (8,, A, ©2). In addition, we show below that limg, 1o

KJQ“@O((]T) = K2,00(qr) for all gr > 0. Combining these results gives the following convergence result:

8 lgﬁoo L(POIS2(g; By, Bas A) > K2,8,(qr)) - b1 (s — cp, (Bo, Wir)Or(t — dg, (Bo, ) pir)

= 1(POLS52(q; 00, |puyl, Av) > F2,00(qr)) - Pi(s = (F1/00)pr) Pkt = (Fruw/ow)pz) — (17.7)

for all [s : t] for which POIS2(q; 00, |pyyl, Av) > K2,00(qr) 0r POIS2(q; 00, |pysl, M) < K2,00(q1),
where [s : t], ¢ and (¢s, gsT, qr) are functionally related by ¢ = [s : t]'[s : t] and the definitions in
([12.2).

Given Lebesgue measure on the set of points (s',#')’ € R?*, the induced measure on (¢s, ¢s7, ¢7)

= (s's,s't,t't) € R3 is absolutely continuous with respect to (wrt) Lebesgue measure on R? with
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positive density only for positive definite g. (This follows from change of variables calculations.
These calculations are analogous to those used to show that if [S : 7] has the multivariate normal
density ¢, (s— (F1/0y)br) P (t— (Fruv/ow) ity ), then @ has the density fo(q; pyy, Av), Which, viewed
as a function of (qs, ¢s7, qr), is a density wrt Lebesgue measure on R? that is positive only for posi-
tive definite ¢.) The Lebesgue measure of the set of (gs, ¢s7, gr) for which POI152(q; 00, |pyul, Av) =
K2,00(qr) is zero. (This holds because (i) the definition of POI52(q; 00, |py,|, Av) in implies that
the Lebesgue measure of the set of (gg, gs7) for which POI52(q; 00, |pyls Av) = K2,00(qr) is zero for
all gr > 0 and (ii) the Lebesgue measure of the set of (¢s, gsr, ¢r) for which PO152(q; 00, |pys Av)
= K2,00(qr) is obtained by integrating the set in (i) over ¢r € R subject to the constraint that ¢
is positive definite.) In turn, this implies that the Lebesgue measure of the set of (s',¢')’ for which
POI1S52(q; 00, |puyl, Av) = K2.00(qr) is zero. Hence, verifies the a.s. (wrt Lebesgue measure
on R?¥) convergence condition required for the application of the DCT to obtain part (a) using
(117.4]).

Next, to verify the dominating function requirement of the DCT, we need to show that

sup [@y(s — g, (Bo, Qi) Pt — dp, (Bo, ) pir)| (17.8)
BoER
is integrable wrt Lebesgue measure on R?* (since the indicator functions in (17.7) are bounded by

one). For any 0 < ¢ < co and m € R, we have

/ sup exp (—(x — m)2/2) dr = 2/ sup exp (—x2/2 + max — m2/2) dx
Im|<c 0 |m|<c

o0

< 2/Oooexp (—:U2/2—|—cx) dz :2/0 exp (—(m—c)2/2+02/2) dx < oo, (17.9)

where the first equality holds by symmetry. This result yields the integrability of the dominat-
ing function in because ¢ (-) is a product of univariate standard normal densities and
supg er lcg, (Bo, )| < oo and supg cp |ds, (8o, 2)| < oo are finite by Lemma m(b) and (e) and
continuity of cg_(5¢,€2) and dg_(5y,2) in By.

Hence, the DCT applies and it yields part (a).

It remains to show limg 1o K2,8,(qT) = K2,00(qr) for all gr > 0. As noted above, limg, -+
POIS2(q; By, Bs,A) = POIS(q;00,|pypls Av) for all 2 x 2 variance matrices ¢. Hence,
1(POIS2(Q; By, Bis A) < x) — 1(POIS2(Q;00, |pyyls Av) < ) as Sy — +oo for all x € R for
which POIS2(Q; 00, |pyyl; Av) # @ We have Py, g, (POIS2(Q; 00, |pyl, Av) = |qr) = 0 for all
qr > 0 by the absolute continuity of POIS2(Q; 00, |py,|, Av) under Py, g, (-lgr) (by the functional
form of POIS2(Q; 00, [py,|; Av) and the absolute continuity of @1 under Py, g, (*|¢r), whose density
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is given in ((12.3))). Thus, by the DCT, for all z € R,

5 lini Po,10r (POIS2(Q; By, By, A) < xlqr) = PQ1|QT(POISQ(Q; 00, | puw |, Av) < x|gr) and
0 —E00
POIS2(Q; By, Bys A) —a POIS2(Q; 00, |pyy|-Av) as By — Foo under Py, o, (lgr).  (17.10)

The second line of (17.10)), coupled with the fact that POIS2(Q;00, |py,|, Av) has a strictly
increasing distribution function at its 1 — a quantile under Py, |q,(-[¢r) for all gr > 0 (which
is shown below), implies that the 1 — a quantile of POIS2(Q; By, B, A) under Py, g, (-lgr) (i-e.,
K2,8,(qr)) converges as 3, — +oo to the 1 — a quantile of POIS2(Q; B, B, A) under Py, g, (-|q7)
(i-e., K2,00(gr)). This can be proved by contradiction. First, suppose § := limsup;_, k2;(qr) —
K2,00(qr) > 0 (where each j € R represents some value of 3, here). Then, there exists a subsequence
{mj:j>1} of {j:j > 1} such that § = limj oo k2,m; () — K2,00(qT). We have

o = Jlgr;o Pg, 10+ (POIS2(Q;myj, By, A) > kam; (qr)lqr)
Jim Po,10r (POIS2(Q5my, B, A) > h2.00(g7) +6/2lar)
= P10 (POIS2(Q; 00, |pyy s Av) > K2,00(q1) +6/2]q7)
< Poy 1 (POIS2(Q; 00, |pyyls Av) > K2,00(qr)lar)

= a, (17.11)

IN

where the first equality holds by the definition of 2, (qr), the first inequality holds by the ex-
pression above for §, the second equality holds by the first line of with © = K2 oo (qr) +9/2,
the second inequality holds because § > 0 and the distribution function of POIS2(Q; 00, |pyels Av)
is strictly increasing at its 1 — a quantile k2o (gr) under PQ1|QT(-\qT) for all gr > 0, and the
last equality holds by the definition of k2 (g7). Equation is a contradiction, so § < 0.
An analogous argument shows that liminfg . x2,5,(¢7) — K2,00(qr) < 0 does not hold. Hence,
limg, o0 K2,8,(qT) = FK2,00(¢r). An analogous argument shows that liminfg . o ko, (q7) =
K2,00(qT)-

It remains to show that the distribution function of POIS2(Q; 00, |pyy|, Av) is strictly increas-
ing at its 1 — a quantile kg co(qr) under Py o, (lgr) for all gr > 0. This holds because (i)
POIS2(Q; 00, |pyyl, Av) is a nonrandom strictly increasing function of (§(Q; puy)s (@5 —pue)) condi-
tional on T = t (specifically, POTS2(Q; 50, 9,0} Ae) = Cop S22 0[ME(Q3 ) + ME(Q3 =)V
J(45'T(v + j + 1)), where Cy,. is a constant that may depend on gr, v := (k — 2)/2, and
I'() is the gamma function, by and (4.8) of AMS, which provides an expression for the
modified Bessel function of the first kind I,(z)), (ii) £(Q;pu) = (S + rwT)'(S + ruT) and
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E(Q; —pyy) = (S — 1uT)' (S — ryT) have the same noncentral x? distribution conditional on
T =t (because [S : T] has a multivariate normal distribution with means matrix given by
and identity variance matrix), (i) (£(Q; puy)s €(Q; —pyy)) has a positive density on R% conditional
on T' =t and also conditional on Q7 = gr (because the latter conditional density is the integral of
the former conditional density over ¢t such that t't = ¢r), and hence, (iv) POIS2(Q; 00, |pyul, M)
has a positive density on Ry conditional on gp for all gr > 0. This completes the proof of part (a).

The proof of part (b) is the same as that of part (a), but with (i) —cg, and 41/0, in place of
cg, and F1/0,, respectively, in (17.4)), (17.5)), and (17.7)), and (ii) 72 in place of m, where

_ A28y, 8., )

To 1= M€17k, €1k = (1707--'7)/ € Rka M :

(ellij/ZeLk)l/T
dg +2rg (B, — 5
0(B0.B,.9) = 20 f;;( 0 and Ay 1= iy i, (17.12)
0
As defined, \g satisfies (6.3]) because
Mo i= iy, = TyZ' Ty = M6}, 2 Zer g = Mg (Bg, By Q). (17.13)

In addition, A — A as 8y — oo by below. With the above changes, the proof of part (a)
establishes part (b).

Part (c) holds because the test statistic POIS2(Q;00,|py,,l, Av) and critical value kg o (Q7)
only depend on p,, and ggr through |p,,| and |gsr|, respectively, and the density fo(q; puy, Av)
of @ only depends on the sign of p,, through r,,qgsr. In consequence, a change of variables from
(gs,qsT,qr) to (gs, —qst, qr) establishes the result of part (c).

To prove part (d), we have

W%B% B 2(&)1250 —+ w% (a/OQ—laO)_l/z and

g, = (@0 ag)"/? =

0 2,2 2
wiwy — Wig
_ ,Q,1 ( /Qfl >71/2 _ Wgﬁo - wl?( /Qfl >71/2 (17 14)
7'50 = € apl Qg aq =5 35 3 ag ap s .
wiwy — Wig
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where the first equalities on lines one and two hold by (2.7) of AMS and (/6.3)), respectively. Next,

we have

dg, (B« — Bo)
P = B0 G 23, (B — o)
dg, (280 — B.) + 2rg, (B, — Bo)Bo
dg, + 213, (Bx — Bo)
_ (w35 — 2wi2By + wi) (28 — B.) + 2(w3By — wi2)(B.8o — B3)
(W35 — 2wi2fBy + w?) + 2(w3By — wi2) (B, — Bo)
_ BR(—w3B, — dwiz + 2w3B, + 2wia) + O(6By)
B3 (w3 — 2w3) + O(B,)
(w38, — 2wi2) + o(1)
—w3 + o(1)
2w12

= B+ 5 +oll). (17.15)

where the third equality uses (17.14)) and the two terms involving 68 in the numerator of the rhs

of the third equality cancel. Next, we have

2 2(w12 — w3 3 2 2
_B* i W212 _ <w12 w?i*) +w2/6* _ Ouv _:Uvﬂ* _ B* _'_201121) _ 5* T 20'upuv7 (17.16)
w5 w3 o o2 ol

where the second equality uses (12.9) with 3 = 3, and w3 = o2

v*

Next, we prove part (e). We have

(Az )“2 dg, + 275, (B, = By)
A dg,
w3 B3 — 2w12B0 + wi + 2(w3B — wi2)(Bs — Bo)
w3 B3 — 2w12B) + w?
B3 (w3 — 2wd) + Bo(—2wia 4 2wiB, + 2wiz) + wW? — 2wiaf,
w3 B3 — 2w12B) + w?
o), (7.7

where the first equality holds by (6.3) and the second equality uses (17.14)). O

Proof of Corollary We have

(Ps. 2 0(RLength(CSy(Y)) = 00) + Ps,_x,,0(RLength(CSy(Y)) = o0))/2
=1 tim [Ps ga0(@(@) =1)+ lim P, s, 0(4(Q) =1)]/2
Ppum/\u (POIS2(Qa 0, |puv|7 )\’U) > KQ,OO(QT))a (1718)

v
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where the equality holds by Theorem [5.1(a) with (3,,A) and (Ba,, A2+), Pg,x0(:) is equivalent to
P3_ra(-), which appears in Theorem [5.1(a) (because events determined by C'S4(Y') only depend
on m through A, since CSy(Y') is based on rotation-invariant tests), and the inequality holds by
Theorem [6.2|(a). This establishes the first result of part (a).

The second result of part (a) holds by the same calculations as in , but with LLength
and B, — —oo in place of RLength and [, — oo, respectively, using Theorem [5.1(b) in place of
Theorem [5.1fa).

Part (b) holds by combining Theorem c) and Theorem because, as noted in Comment
(iii) to Theorem the limsup on the left-hand side in Theorem is the average of two equal

quantities. [

Next, we prove Comment (ii) to Corollary The proof is the same as that of Corollary

but using

/ B, M /g 102 (BLENGER(CS(Y)) = 00)dUni f (pir /|| 1t |]) = 1 — Sim P, g 20(0(Q) =1)
(17.19)

and likewise with (8,,, A2) in place of (8., ) in place of the first equality in (17.18]). The proof
of (17.19) is the same as the proof of Theorem (a) but with Qg (Y) and Qrg,(Y) replaced
by [S5,(Y),T3,(Y)], and T3, (Y'), respectively, throughout the proof, with Eg_ro(-) replaced by

T Es xp i ,0()dUni form(pu /|| p]]) in (16.3), and using Lemma [16.1(a) and (c) in place of
Lemma f) when verifying the limit property (ii) needed for the dominated convergence theorem

following (|16.3]).

Proof of Theorem The proof is quite similar to, but much simpler than, the proof of part
(a) of Lemma with POIS2(q; By, B, ) > Ka2,5,(qr) in replaced by ¢qg > Xz,lfa/k for
the AR test, ¢, /qr > X%,l—a for the LM test, and gs — qr + ((gs — qr)* + 4qg~T)1/2 > 2KLRa(qT)
for the CLR test. The proof is much simpler because for the latter three tests neither the test
statistics nor the critical values depend on ). The parameter [3,, for which the limit as 3, — £oo
is being considered, only enters through the multivariate normal densities in . The limits
of these densities and an integrable dominating function for them have already been provided
in the proof of Lemma |[17.1{a). The indicator function that appears in is bounded by one
regardless of which test appears in the indicator function. In addition, Pg_, (AR = Xi’l_ o) =0
and Pg,_, (LM = X%,l—a) = 0 because the AR statistic has a noncentral x3 distribution with
noncentrality parameter A\, under Pg_, , (since S ~ N(u,/0y,Ix) by Lemma and )

and the conditional distribution of the LM statistic given T under Ps_, », is a noncentral y?
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distribution.

Next, we show Pg_, A, (LR = kLR a(Q@7)) =0. Let J = AR — LM. Then, 2LR = J + LM —
Qr + ((J + LM — Qr)? + 4LM - Qr)Y/2. We can write Q = [S : T)'[S : T], where [S : T] has a
multivariate normal distribution with means matrix given by and identity variance matrix. As
shown below, conditional on 7' = ¢, LM and J have independent noncentral x? distributions with 1
and k — 1 degrees of freedom, respectively. This implies that (i) the distribution of LR conditional
on T = t is absolutely continuous, (ii) Pg, ., (LR = krpra(Q7)|T =t) =0 forallt € R, and (iii)
P32 (LR = kLR o(Q7)) = 0. It remains to show that conditional on Q7 = qr, LM and J have
independent noncentral y? distributions. We can write LM = S'PrS and J = S'(I}, — Pr)S, where
Pr := T(T'T)"'T" and S has a multivariate normal with identity variance matrix. This implies
that PpS and (I — Pr)S are independent conditional on 7' =t and LM and J have independent

noncentral x? distributions conditional on T' =t for all ¢t € R*. This completes the proof. [J

18 Proof of Theorem [8.1]
The proof of Theorem [8.1)(a) uses the following lemma.

Lemma 18.1 Suppose by, = 1+ 6,/x and bey, = 1 — 0, /x, where 0, — 0o # 0 as x — 0,
Kjiz = (bjzx)" for some n € R for j = 1,2, and Kjo, — Koo € (0,00) as © — oo for j = 1,2.

Then, (a) as x — 00,

log (KlmKlmeb”x + K21xK22m€b2zx> —z —nlogz —log Ko

— 000 1 log (1 + 6726‘”) and

(b) the function s(y) = y + log (1 + 6_23”) for y € R is infinitely differentiable, symmetric about

zero, strictly increasing for y > 0, and hence, strictly increasing in |y| for |y| > 0.

Proof of Lemma Part (a) holds by the following;:

IOg (-[{1196[{12%6[)19;m + K2lxK22x€b21x) —xr—n 10g$ - 10g Koo

Ko1K
= log <K11xK12xeblzx (1 + Me(bzz—blz)r)> —z—nlogz — log Koo
K12 K124

Ko, K
= biyx +log K11, + log(Ki2:/Koo) + log (1 + Me“”’“””) —xz—nlogx
KllxK12x

Ko1: K29, 6_251>
K112 K12,

— bo +log (14720, (18.1)

= 0; +nlog(biz) + log(Ki2:/Koo) + log <1 +
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where the third equality uses bi,z — = d,, log K11, = nlog(bizz) = nlog(bis) + nlog(x), and
bay — b1y = —2d;/x, and the convergence uses log(bi,) = log(l + o(1)) — 0, Ki2:/Kso — 1,
Ko12/Ki1z = (b2:/b12)" = 1+ 0(1), and Kooz /K12: — 1.

The function s(y) is infinitely differentiable because log(z) and e~2?Y are. The function s(y) is

symmetric about zero because

y+log (1 + e_2y) = —y+log (1+ e2y)

1+e%
= 2y — -2y = _— = 2y =
& 2y = log (1 +e ) log (1 +e ) log <1 n e—2y> log(e*Y) = 2y. (18.2)
The function s(y) is strictly increasing for y > 0 because
d 2e~ 2 1= e e -1

1+e 2y 14e 2y e2v41 ( )

which is positive for y > 0. We have s(y) = s(|y|) because s(y) is symmetric about zero, and

(d/dlyl)s(Jy|) > 0 for |y| > 0 by (18.3). Hence, s(y) is strictly increasing in |y| for |y| > 0. O

Proof of Theorem Without loss in generality, we prove the results for the case where
sgn(dg,) is the same for all terms in the sequence as )\d% — 00. Given 1) without loss of

generality, we can suppose that
S=cg pp+ Zs and T = dg_p,. + Z, (18.4)

where Zg and Zr are independent N (0%, I;,) random vectors.
We prove part (c) first. The distribution of @ depends on p,. only through A. In consequence,
without loss of generality, we can assume that T := pu_/ A2 e RF does not vary as )\d% and

AV 205* vary. The following establishes the a.s. convergence of the one-sided LM test statistic: as
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/\d% — 00 and )\1/205* — Coo,

QST _ (Cﬁ*/J’TK' + ZS)/(dB*MTr + ZT)
M2 ((ds,pn + Z1) (da, b + Z7)) 2
(Cﬁ*:u’w + ZS)/<d5*M7r + ZT)
(d3 MV2(1+ 04.5.(1))
(e, 1/ N? + Zg /XY (sgni(dp, ) iy + Oa.s.(1/dg, )
(1 + Oa.s.(l)

1/2 Ach 2 1

_ / * .

= sgn(dg*)T Zg + Sgn(dg*))\ cg, + Oy 7()@% )1/2 + Og.s. ()\d% )1/2
X (14 04.5.(1))

—a.s. Sgn(dﬁ*)T/ZS + Sgn(d,@*)coo
= : LM ~ N(sgn(dg,)coo, 1), (18.5)

where the first equality holds by and , the second equality holds using dg_pu, + Zr =
()\d%*)1/2(d5*u7r/()\d%*)1/2 + 04.5.(1)) since )\d%* — 00, the convergence holds because )\dé* — 00
and )\1/205* — Coo, and the limit random variable LMo has a N(sgn(dg,)cs, 1) distribution
because sgn(dg )Y Zg ~ N(0,1) (since Zg ~ N(0%, I};) and ||Y|| = 1).

The a.s. convergence in implies convergence in distribution by the dominated convergence
theorem applied to 1(Qsr/ QlT/ 2 < y) for any fixed y € R. In consequence, we have

1/2
P(LM >4 _a) = P(@Qs1/Q7) > x4 1-a) = P(LMis > 3 1-0) = POG(cR) > X3 1-0)
(18.6)
as )\d%* — o0 and Al/zcg* — Coo, which establishes part (c).
To prove Theorem (a), we apply Lemma to a realization of the random vectors Zg and
ZT with

z = (A} Qr)'/?,
brow i= (A&, (Q3 By, M)V 1= NV2(ch Qs + 205.d3, Qs + &3 Qr)'/?,
bor = )\1/2(0%* Qs — 2cp,dg, Qst + d%*QT)1/27

Kiip i= (b))~ k=072,
(b122)? I _2) j2(b10)

ebizm

Koy := (b2xl')_(k_1)/2a and

bor )21 1 o) o(b
Kogy = (b2a) " 1(5—2) /2 M), (18.7)

eng:r

Kio, =
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Thus, we take n:= —(k —1)/2.
We have
Qr = (dg, pix + Z7)'(dp, 11z + Z1) = A _(1+ 00.5.(1)). (18.8)

This implies that x = (Ad%*)(l + 04.5.(1)). Thus, x — oo a.s. since )\d%* — 00 by assumption.
The conditions )\d%* — 00 and )\1/205* — Cxo € R imply that b,z — oo and bg,z — o0
as © — 00. In consequence, by the properties of the modified Bessel function of the first kind,

I(j—9)/2(z) for z large, e.g., see Lebedev (1965, p. 136),

lim Kjpp =1/(2m)? and  lim Ky, = 1/(27)"/2. (18.9)

bizx—00 bozx—00

Hence, the assumptions of Lemma on Ko, for j = 1,2 hold with K., = 1/(2m)%/2.

Next, we have

bie = (A3 Qs + 2Acg,dg Qs + Ad%*QT)I/Q e

|4 2, ds Qs A Qs
(A3 Q)1 a?

oAL/2 d A2 Qs\
_ <1+ cs.59n(ds.) Qst A%,

x 1T/2 x?
g [ 23 Pes, sgn(ds,) Qsr | A5 Qs
= 1+ (1+ 04..(1)) 71/ ( . St | (18.10)
T

where the fourth equality holds by the mean value theorem because AL 203* =0(1), x — o0 a.s.,

and QST/Q;/2 =0(1) a.s. (by 1) imply that the term in parentheses on the last line of (|18.10)
is 04.5.(1).

From ([18.10)), we have

d: = (1 +oa_8_(1))*1/2 (2)\1/2cﬁ*sgn(d5*)Ql/2 + .
T

— 2¢o08gn(dg, ) LMoo =: 0o a.5. (18.11)

QsT AC%*QS>

using (18.5)). This verifies the convergence condition of Lemma on d; with do # 0 a.s. (by
the absolute continuity of Zg). Hence, Lemma applies with z, b1, ... as in ((18.7)).
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Let &g, abbreviate &5 (Q; By, Q) = ¢ Qs+2c3,dg, Qsr+d3 Qr. Let &5, = & Qs—2c5,dg,Qsr
+d2 Qr. So, bigw = (A\5,) /2 and byew = (Mg, ) /2. Let

(8., A Qr) 1= —(Ad} Qr)'/? + ! log((Ad3_Qr)'/?) —log Ko

= —z —nlogx — log Ko, (18.12)

where the equality holds using the definitions in (18.7) and K., = 1/(27)'/2 by (18.9).
Given the definitions of POIS2(Q; By, B4, A) and z,big,,... in (12.5) and (18.7)), respectively,
Lemma a) gives

10g(POIS2(Q7 BOa B*a )‘)) + 10%(2¢2(QT; BOa B*a )‘)) + T(ﬁ*? >\7 QT)
= 1og ((A5,) 2/ 1o n (A5 )2) + (A5, ) T F DT 5y 0(05,)M%)) + 7B A, Q1)

(Mg, VWAL G /2((>\£6*)1/2) 1/2
o (Nﬂ e NOPREE )

#2028 o) IEL;)/)ZS()\EB )" )<A652*>1/2>+r(6*,A,QT)

= log (KllxKl2x€b1mm + K21xK22x6b2Im) —x —nlogz — log Koo

—a.s. 000 + lOg (1 + 6_25‘”)

= 5(0c0)

= 5(2¢00|LM1o)), (18.13)

where 1¥5(QT1; 8o, B+, A) is defined in , LM2_ ~ x3(c%,) is defined in , the first equality
holds by the definition of POIS2(Q; 5y, By, A) in , the third equality uses the definitions in
and , the convergence holds by Lemma (a), the second last equality holds by the
definition of s(y) in Lemma M(b), and the last equality holds because 0o := 2co0sgn(dg, ) LMoo,
see ([18.11)), and s(y) is symmetric around zero by Lemma [18.1](b).

Equation and the dominated convergence theorem (applied to 1(log(POIS2(Q; By, By, A))
+10g(215(Q7; Bo, Bss A)) + 7(B4; A, Qr) < w) for any w € R) give

log(POIS2(Qs By, B2, V) +108(205(Qr3 By Bus N)) + 7(Bus A, Q1) —a (500) = 52600 | LMioc).
(18.14)
Now we consider the behavior of the critical value function for the POIS2 test, s2g,(qr),
where ¢r denotes a realization of Q7. We are interested in the power of the POIS2 test. So,

we are interested in the behavior of /432730((]:[1) for gr sequences as )\dé — 00 and AV 205* — Coo
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that are generated when the true parameters are (5,,A). This behavior is given in to be
qr = )\d%*(l +0(1)) a.s. under (f,,A).

Up to this point in the proof, the parameters (3,, A) have played a duel role. First, they denote
the parameter values against which the POIS2 test is designed to have optimal two-sided power
and, hence, determine the form of the POIS2 test statistic. Second, they denote the true values
of f and A (because we are interested in the power of the POIS2 test when the (3,,\) values for
which it is designed are the true values). Here, where we discuss the behavior of the critical value
function k2 g, (-), (8., A) only play the former role. The true value of 3 is 8, and the true value of
A we denote by Ag. The function g 5, () depends on (3,,A) because the POIS2 test statistic does,
but the null distribution that determines k3 g (-) does not depend on (f3,, A). In spite of this, the
values gp which are of interest to us, do depend on (S,, \) as noted in the previous paragraph.

The function 2 g, (+) is defined in . Its definition depends on the conditional null distribu-
tion of @1 given Qr = g7 whose density fqg,|o,(-[¢r) is given in . This density depends on k,
but not on any other parameters, such as 3,5, Ao = ,u;ro Hrys OF S0 In consequence, for the purposes
of determining the properties of xg g () we can suppose that 3y = 0, p,, = 1%/]11%|, Ao = 1, and
Q = I. In this case,

S=Zs~NO 1), T = pir, + Zr ~ Npir,, Ir), (18.15)

and S and T are independent (using dg (8o, ) = by Qo (byQbg) "2 det(Q)~1/2 = 1 since by =
(1, B0)" = (1,0)").

We now show that ko g, (qr) satisfies

log(k2,3,(qr)) +108(2¢2(ar; By, B.s A)) + T(Bus A ar) — 5(2]coo] (xF1-0)"?) as qr — 0o (18.16)

for any sequence of constants gr = )\d%*(l +o0(1)) as )\d%* — 00.

Suppose random variables {W,,, : m > 1} and W satisfy: (i) W,, —q W as m — oo, (ii)
W has a continuous and strictly increasing distribution function at its 1 — o quantile ko, and
(iii) P(Wy, > Kpm) = « for all m > 1 for some constants {k,, : m > 1}. Then, Kk, — Keo.
This holds because if limsup,,,_, . Km > Koo, then there is a subsequence {v,,} of {m} such that
limy, 00 Ko, = Koot > Koo and o = P(W,, > Ky,,) — P(W > Kooy) < P(W > Koo) = v, which is
a contradiction, and likewise liminf,, .o Km < Koo leads to a contradiction.

We apply the result in the previous paragraph with (a) {W,, : m > 1} given by log(POI152(Q; S,
By ) +10g(2¢9(q7; By, By, A)) + T7(By, A, gr) under the null hypothesis and conditional on T = ¢

with ¢ = 1kq%/2/k:1/2 for some sequence of constants qr = Ad% (1 4+ 0(1)) — oo as )\d% —
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00, (b) W = (200|515 /EY2|), where S'1¥/EY? ~ N(0,1), (¢) Km equal to log(k2,8,(ar)) +
108(202(q1; Bo, Bas A)) + T(Bas A, qr), and (d) oo = 5(2|¢aol (X3 1_0) ")

We need to show conditions (i)-(iii) above hold. Condition (ii) holds straightforwardly for W
as in (b) given the normal distribution of S, the functional form of s(y), and cs # 0.

By definition of kg g,(qr), under the null hypothesis, Py, 0, (POIS2(Q; By, By, N) > k25,(q7)
lgr) = « for all gr > 0, see (12.6)). This implies that the invariant POIS2 test is similar. In turn,
this implies that under the null hypothesis P(POI1S52(Q; B¢, B.,A) > k25,(qr)|T = t) = a for all
t € R¥ because Theorem 1 of Moreira (2009) shows that any invariant similar test has null rejection
probability « conditional on 7. This verifies condition (iii) because the log function is monotone
and the last two summands of W, and k,, defined in (a) and (c) above cancel.

Next, we show that condition (i) holds. Given and t = 1kq:1p/ ?/kY2 under the null and

conditional on T = t, we have

!/
Ost S5 S'1F /Y2 33, (18.17)

which does not depend on )\d% or AV 205*. Hence, in place of the a.s. convergence result for

Qsr/ QlT/ % as )\d% — 00 and AV 205*_,000 in ([18.5)), which applies under the alternative hypothesis
with true parameters (3,,\), we have Qgr/QY* = $'1¥/k1/2 under the null hypothesis for all Ad3

and A/ 205*. Using this in place of 1' the unconditional a.s. convergence result in (|18.13)),
established in ([18.7)-(18.13)), goes through as a conditional on T' = t a.s. result without any further

changes. In consequence, the convergence in distribution result in (18.14]) also holds conditional on
T =t a.s., but with s(2¢s|S'1%/k/2|) in place of 5(2cs0|LMiso|). This verifies condition (i).
Given that conditions (i)-(iii) hold, we obtain K, — Koo as )\d% — 00 for Ky, and Ko, defined

in (c) and (d), respectively, above. This establishes ((18.16|).
Given ([18.16f), we have

Ps_ po00(POIS2(Q; By, Bys A) > K2,8,(Q))
= Pg, 5, 20(log(POIS2(Q; By, B., A)) +10g(202(Qrs B, Ba, A)) + (B A, Q1)
> log(kz2,5,(QT)) + 10g(2¢5(Q; By, By, A)) + 7(B4, A, QT))
—a P(5(2¢00|LMioo|) > 5(2¢o0|xT 1-al))
= P(LM{y > xi1-0)

= P(xI(c%) > Xi1-a); (18.18)
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where the second last equality uses the fact that s(y) is symmetric and strictly increasing for y > 0

by Lemma b). Equation (18.18]) establishes part (a) of the theorem.
Now we establish part (b) of the theorem. Let

J = S'MrS, (18.19)
where My := I}, — Pr and P := T(T'T)~'T". It follows from (3.3) that
LM = S'PrS and Qg = LM + J. (18.20)

By 1) Qr = /\d%*(l + 04.5.(1)) — o0 a.s. as )\d%* — 00 when the true parameters are (3,, \).
By (18.20) and some algebra, we have (Qs — Q7)? +4LM -Qr = (LM — J + Qr)*> +4LM - J. This
and the definition of LR in (3.3]) give

1

L
R 2

(LM+J—QT+ \/(LM—J+QT)2+4LM.J). (18.21)

Using a mean-value expansion of the square-root expression in (18.21)) about (LM — J + Q1)?, we

have

V(LM —J+Qr)2 +4LM - J = LM — J + Qr + (2¢/C)"Y4LM - J (18.22)

for an intermediate value ¢ between (LM — J 4+ Qr)? and (LM — J + Q7)* + 4LM - J. It follows
that
LR = LM + o(1) as. (18.23)

because Qr — oo a.s., LM = O(1) a.s., and J = O(1) a.s. as /\d%* — 00 and )\1/205* — Cso € R,
which imply that (v/¢)~! = o(1) a.s. These properties of LM and J hold because LM = S'PrS <
S'S, J =S8"MpS < S'S, and, using , we have S'S = (cg, i + Zs)'(ca, pir + Zs) = O(1) a.s.
because ||ca, pr|[* = /\c%* = O(1) by assumption.

The critical value function for the CLR test, k1ro(-), depends only on k and «, see Lemma
3(c) and (3.5) in AMS. It is well known in the literature that kr o(-) satisfies kg o(qr) — X%,lfa

as qr — 00, e.g., see Moreira (2003, Proposition 1). Hence, we have

Pﬁ*,BO,A,Q(LR > KLRa(QT)) = Pﬂ*ﬂo,)\,Q(LM + 0q4.5.(1) > Xil—a + 04.5.(1))

= Pg, goao(LM +0p(1) > x5 1 o) = P(X3 () > X3 1 a) (18.24)
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as )\d%* — oo and )\1/205* — Coo, Where the first equality holds by (18.23)), Q7 — oo a.s. by
1) and limg, oo KLR,a(qT) = X%,ka and the convergence holds by part (c) of the theorem.
This establishes part (b) of the theorem. [

Proof of Theorem (8.2, First, we establish part (a)(i) of the theorem. By (12.8) with g = S,

and ¥ = X,, we have

W w 02 + 208, + 0232 ouw + 028,
Q(B*,E*) _ 1 12 — u uv/B vﬁ* uv U/B ) (1825)

2 2 2
w12 Wh Ouv + O'UB* (o

Using this, we obtain, as p,,, — %1,

cs, = s, (B, UB.. Tx)) = (B, — By)(wl — 2Bgwia +w3pg) /2
= (B, — Bo) (02 + 20uB. + 0282 — 2By(0us + 02B,) + 02B3) 2
= (B, = Bo) (02 + 2(B. — Bo)TuTvpuy + (B — Bo)os) ™/?
— (B, = Bo) (0% £ 2(B, — Bo)ouow + (B, — By)?03) 1/
= (B. = Bo)/low £ (B, — Byl (18.26)

where the second equality uses ([2.3]), the convergence only holds if o, + (8, — By)o, # 0, and the
fourth equality uses oy, = 04,0y p,,- This proves part (a)(i).

To prove part (a)(ii), we have

ds, = dy. (B, QB.. 5.)) = H.Qbo(bhbe) /2 det () /2 (18.27)

= (w} — wi2(Bp + B.) + wiBoB.) - (wF — 26wz + w3HE) 2 - (wiwd — why) T,

where the second equality holds by (2.3]). The second multiplicand on the rhs of ((18.27)) converges

to oy & (B, — By)ow| ! provided o, £ (B, — Bg)ow # 0 by the calculations in ((18.26)).
The first multiplicand on the rhs of (18.27) satisfies, as p,,, — %1,

wi —wia(Bo + B.) + w3BopBs
= 02+ 20508, + 0262 — (0us + 02B.) (Bo + B.) + 0B,
= 02 + 0u0uPu (B, — Bo)
— oyloy £ 0,(By — By)), (18.28)
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where the first equality uses ((18.25)) and the second equality holds by simple algebra and o, =

OuOvPyy-

The reciprocal of the square of the third multiplicand on the rhs of (18.27)) satisfies, as p,,, — £1,

wiw? — = (02 + 20400008 + 028202 — (GuTwpyy + 028,)2

— (0% £20,0,08, + 0232)02 — (£0yu0, + 025,)?
(Uu + 0'1)5*)20-12) - (io'u + O-’U/B*)2O-2
=0, (18.29)

where the first equality holds by (18.25) and oy, = 04,04y

Combining (|18.27)-(18.29) and A > 0 proves part (a)(ii).
Next, we establish part (b) of the theorem. Using the definition of cg(3y,2) in (£2.3]), we have

lim s (B0, ) = lim (B, — Bo)(Bpbo) ™2
po—=E1 PO

= limy (B, — o) (@} — 2Bgurwapg +wiBF)

= (6* — Bo)/lw1 F w2l (18.30)

where the third equality holds provided w; F w2, # 0. This establishes part (b)(i) of the theorem.
Using the definition of dg(8, ) in (2.3)) and b, := (1, 3,)’, we have

lim dg, (8o, 2) = lim b.0bo(b)Sbo)” 172 det(Q)~1/2

po—=*1 po—=E
= mh_f}il(w% — wiwapq (B + B.) + wiBoB.) - (Wi — 2Bowiwapq + w3pg) 12
(wiws — wiwdpd) 2
(w1 F wnfo) w1 F wal) - —— Loy !
= W w w w . . . 1m S
1 F w2Pp){w1 F w20, w1 F wafyl wiws pa—t1 (1— pgz)l/z
= sgn((w1 F w2fp) (w1 F wap)) - o0, (18.31)

where the third and fourth equalities hold provided w; F wafy # 0 and w; F waf, # 0. This and
A > 0 establish part (b)(ii) of the theorem.
Part (c)(i) is proved as follows:

— /B* B /BO R i .
@ (0—121 + 2(5* - ﬂO)UUO—Upuv + (5* - 50)203)1/2 :FUU s (pm},ﬁO) (1’ :|:OO), (1832)

where the first equality holds by ((18.26]) and the convergence holds by considering only the dominant

Bo terms. The same result holds as (p,,, 8g) — (1, £o0) because p,, enters the middle expression
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in only through a term that does not affect the limit.

Part (c)(ii) is proved using the expression for dg_in (18.27). By (18.29), the third multiplicand
in , which does not depend on f3, diverges to infinity when p,, — 1 or —1. The product of
the first two multiplicands on the rhs of equals

w% _w12(ﬁ0+6*) +w%ﬁ()ﬁ* _ O'%-FO'uO'U,Om,(B* _60)
(W} — 2Bpwi2 + W%ﬁ%)l/z (02 +2(B, — Bo)ouTvpuy + (Bs — Bo)?02)1/2
— :Fauav = Foy as (pPyy, Bo) — (1, £00), (18.33)

v

where the equality uses the calculations in the first three lines of and and the
convergence holds by considering only the dominant 3, terms. When (p,,, 89) — (—1,£00), the
limit in is £0,, because p,,,, enters multiplicatively in the dominant 5, term in the numerator.
In both cases, the product of the first two multiplicands on the rhs of converges to a non-
zero constant and the third multiplicand diverges to infinity. Hence, dg_ diverges to +oo or —oo

and )\d%, — 00 since A > 0, which completes the proof.

Part (d)(i) holds because

/5*—50

w? — 2B wiwaepg + w%ﬁ%)lﬂ

1
c3, = ( — F+— as (p97B0) - (15 :|:OO), (1834‘)
w2
where the equality uses (18.30). The same convergence holds as (pq, 5y) — (1,+00) because p,,
enters the middle expression in (18.34)) only through a term that does not affect the limit.

Part (d)(ii) is proved using the expression for dg_in (18.31)):

(WQ—W1W2P (ﬁ +B*)+w2ﬁ ﬁ*) —
iy, = i renpaCot B oiPoBe) (g a7,
(wi = 2Bpwiwapg + w365)
w? — ww + *+w2ﬁ N :I:wQ*fww
(wy 2_122PQ(/60 B.) 2 221/02/6 ) _ (w3 1wW2) = F(w1 — waf,), and
(wi = 2Bpwiwapq + w3 6) wa
(wiws — wiwdpd) ™12 — 00 as (pg, By) — (1,%00). (18.35)

Hence, )\d% — 00 as (pq, By) — (1,%00) provided wy —wafB, # 0. When (pq, By) — (—1,£00), the
limit in the second line of (18.35) is (w33, + wiws)/we = £(w; + we3,) and, hence, )\d% — 00
provided wy + wef, # 0, which completes the proof. [J
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19 Proofs of Theorem [13.1 and Lemmas [14.1] and [14.2]

Proof of Theorem By Cor. 2 and Comment 2 to Cor. 2 of Andrews, Moreira, and Stock
(2004)’ for all (B*a BOa >‘7 Q)7

Ps_por0(95,(Q) =1) < Ps_pg, 20(POIS(Q; By, B,) > ks, (Qr))- (19.1)

That is, the test on the rhs is the (one-sided) POIS test for testing Hy : f = (B, versus Hy : 5 = 3,
for fixed known 2 and any A > 0 under H;.

We use the dominated convergence theorem (DCT) to show

gl Ps, 8, 00(POIS(Q; By, By) > k8, (Q1)) = Fp,,, 2, (POIS(Q;00,pyy) > Koo(@r)).  (19.2)

Equations (19.1)) and ([19.2)) imply that the result of Theorem holds.
By (133), ((35), and Lemma [[5.1(b) and (e),

Bo—=Eo0

for all 2 x 2 variance matrices g, for given (3,,m, Q).
The proof of (19.2) is the same as the proof of Lemma [17.1fa), but with POIS(Q; By, 5,),
kg, (QT), POIS(Q; 00, py,), and koo (Qr) in place of POIS2(Q; By, By, A); k2,5, (Q1), POIS2(Q; 00,

|Pusls Av), and ko oo (QT), respectively, using (|19.3)) in place of (17.6]), and using the results (estab-
lished below) that (i) the Lebesgue measure of the set of (gs, ¢gs7, gr) for which POIS(g; 00, py,) =

Keo(qr) 1s zero, (ii) Py, (POIS(Q;00,p,,) = x|qr) = 0 for all gr > 0, and (iii) the distribution
function of POIS(Q; 00, p,,) is strictly increasing at its 1 — o quantile koo (gr) under Py, o, (-lqr)
for all gr > 0.

Condition (i) holds because (a) POIS(q; 00, py,) = qs + 2ruwgst (see (13.5)) implies that the
Lebesgue measure of the set of (gg, gsr) for which gg + 2ru,qsT = Koo (qr) is zero for all gp and (b)
the Lebesgue measure of the set of (qg, qsr, gr) for which gs + 2ry,gsT = Koo(qr) is obtained by
integrating the set in (a) over gy € R subject to the constraint that ¢ is positive definite.

Condition (ii) holds by the absolute continuity of POIS(Q; 0, p,,,) under Py, g, (‘|gr) (by the
functional form of POIS(Q; 0, p,,) and the absolute continuity of @1 under Py, g, (‘|qr), whose
density is given in (12.3)).

Condition (iii) holds because we can write POIS(Q; 00, p,) = S'S 427, S'T = (S+71u,T) (S +
ruwT) — 12, T'T, where [S : T|] has a multivariate normal distribution with means matrix given by

(6.2) and identity variance matrix and, hence, POIS(Q; o0, p,,) has a shifted noncentral x? distri-
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bution conditional on 7' = t. In consequence, it has a positive density on (r2,t't,00) = (r2,qr, o0)
conditional on T = ¢ and also conditional on Q7 = gr (because the latter conditional density is the

integral of the former conditional density over ¢ such that ¢'t = ¢p). This completes the proof. [J

Proof of Lemma First, we show that (14.4) implies the equation for Ay in (14.2)). By the
expression dg = a’Q  ag(ahQ " ag) /2 given in (2.7) in AMS, where a := (8,1)" and ag := (B, 1),
for any 8 € R,

dlg — dﬂo = (a — ao)lelao(CL{)Qflao)il/2

= (B — Bo)et  ao(apQ " ag) V2 == (B — Bo)rs,, (19.4)

where e; := (1,0)" and the last equality holds by the definition of T8y
Substituting ((19.4) into the second equation in ([14.4]) gives

Ay 2dg,, = £AV2dg,
iff A;/z(dﬂo + 78, (/32* - 50)) = i)‘lﬂ(dﬁo + 78, (5* - /30))
i g/ %dg, = £AY2(dg, + 15, (By — Bo)) — 18,3 > (Baw — Bo)- (19.5)

Given the definition of cg in (2.3)), the first equation in (14.4) can be written as

M2 (Ba. = Bo) = FNVA(B, — o). (19.6)
Substituting this into ((19.5)) yields

A, = £X2ds,

2
i Ay 2dg, = +AV2(dg, + 2rs, (B, — Bo))
_ :i:)\l/2 dﬁo + 2Tﬁo (6* - 60)

dg,

iff Ay/2 (19.7)
The square of the equation in the last line in (19.7)) is the equation for Ay in ((14.2)).
Next, we show that (14.4) implies the equation for f,, in (14.2)). Using (19.6)), the first equation

in (14.4) can be written as
)\1/2
Bow = Bo F Tm(ﬁ* — Bo)- (19.8)
A

2
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This combined with the equation for AL/2 / )\;/ ? obtained from the last line of 1) gives

dg
Boy = By — 0 B, — Bo); 19.9

2% 0 dﬁo _|_ 2T50 (ﬁ* _ 60)( * 0) ( )
where a minus sign appears because the F sign in ((19.8) gets multiplied by the + sign in the last
line of ((19.7)), which yields a minus sign in both cases. Equation ((19.9) is the same as the first

condition in (14.2). This completes the proof that (14.4) implies (14.2)).

Now, we prove the converse. We suppose ([14.2) holds. Taking the square root of the second
equation in ([14.2) gives
dﬁo + 2Tﬂo(6* - /60)

A/ = A1/ >
0

: (19.10)

where the + sign means that this equation holds either with + or with —. Substituting this into

the first equation in gives , which is the same as , and is the first equation
in .

The second equation in is given by . Given that the first equation in holds,
the second equation in is given in . The last line of holds by . This
completes the proof that implies . O

Proof of Lemma m The proof of part (a) of the lemma is essentially the same as that of
Theorem 8(b) in AMS. The only change is to note that when (f,,, A2) satisfies (14.3), we have

T =75, 0" = =085, and dmax = [0*| = [05| (using the notation in AMS). Because dmax = [0*| = |05],
we obtain V2 — 62 .. = 0 and the remainder of the proof of Theorem 8(b) goes through as is.

The proof of part (b) of the lemma is quite similar to the proof of Theorem 8(c) of AMS. The
latter proof first considers the case where “(83,,, A2) does not satisfy the second condition of (14.1]).”
This needs to be changed to “(f5,, A2) does not satisfy the second condition of or (14.3).”
With this change, the rest of that part of the proof of Theorem 8(c) goes through unchanged.

The remaining cases (where both and fail) to consider are (i) when the second
condition in holds and the first condition in fails and (ii) when the second condition in
holds and the first condition in fails. These are mutually exclusive scenarios because
the second conditions in and are incompatible. The proof of Theorem 8(c) of AMS
considers case (i) and proves the result of Theorem 8(c) for that case. The proof of Theorem 8(c)
for case (ii) is quite similar to that for case (i) using (A.21) in AMS because §* = —§5, dmax =
|0%| = [65] > 0, and 7* # 75 imply that sgn(6*) = —sgn(d3) and 7*sgn(d*) # —74sgn(d3). This last
inequality shows that the expression in (A.21) in AMS is a continuous function of QSTQ;I/ % that

is not even. (Note that (A.21) in AMS has a typo: the quantity 75sgn(d*) in its second summand
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should be 75sgn(d3).) O

20 Structural Error Variance Matrices under Distant

Alternatives and Distant Null Hypotheses

Here, we compute the structural error variance matrices in scenarios 1 and 2 considered in (4.2))
and (4.3]) in Section 4l By design, the reduced-form variance matrix €2 is the same for 5, and 3,
and, hence, does not vary between these two scenarios.

In scenario 1 in (4.2]), the structural error variance matrix under Hy is X(f8,2), defined in
(12.9). Under H; : g = 3,, as |8,| — oo, we have

2
. . w12 — wy B,
lim ) = lim = F1 and
Bt Pun (B ) footoo (w? — 2w12f3, + w3B2)1 2w, i
2 9 212
lim o2(8,,0)/02(8.,Q) = 120l twafs (20.1)

|B*‘—>OO w2

where p,,(8,,9), 02(8,,9), and 02(8,,Q) are defined just below . Equation shows
that, for standard power envelope calculations, when the alternative hypothesis value (3, is large in
absolute value the structural variance matrix under H; exhibits correlation close to one in absolute
value and a large ratio of structural to reduced-form variances.

In scenario 2 in , the structural error variance error matrix under H, is 3(53,, ). Under
Hy : B = By, by exactly the same argument as in with 3, in place of (,, we obtain

lim puv(5079) =F1 and  lim O—i(ﬁ()vQ)/Ug(/BOvQ) = 0. (202)

Bo—=Eoo |Bo|—00

So, in scenario 2, when the null hypothesis value 3 is large in absolute value the structural variance
matrix under Hy exhibits correlation close to one in absolute value and a large ratio of structural
to reduced-form variances.

From a testing perspective, it is natural and time honored to fix the null hypothesis value j,,
and consider power as the alternative hypothesis value 5, varies. On the other hand, a confidence
set is the set of null hypothesis values 3 for which one does not reject Hy : 8 = [,. Hence, for a
given true value 3,, the false coverage probabilities of the confidence set equal one minus its power
as one varies Hy : § = (. Thus, from the confidence set perspective, it is natural to fix 5, and

consider power as [, varies.
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21 Transformation of the 3, Versus 3, Testing Problem
to a 0 Versus 3, Testing Problem

In this section, we transform the general testing problem of Hy : f = B, versus Hy : § = [,
for 7 € R* and fixed Q to a testing problem of Hy : 8 = 0 versus H; : f = 3, for some 7 € RF
and some fixed  whose diagonal elements equal one. This is done using the transformations given
footnotes 7 and 8 of AMS, which argue that there is no loss in generality in the AMS numerical
results to take w? = w? = 1 and B, = 0. These results help link the numerical work done in this
paper with that done in AMS.

Starting with the model in , we transform the model based on (y1,y2) with parameters
(8, m) and fixed reduced-form variance matrix 2 to a model based on (yi,y2) with parameters

(B, m) and fixed reduced-form variance matrix (NZ, where

y1 = y1 — y2050,

B:= B — By, and

- U 1 —

Q:=Var L =Var Fo n
Y2 0 1 Y2

_ w} — 2w12B + w3BF w1z — wiBy ‘ (21.1)
w12 — w3By w3
The transformed testing problem is Hy : B = 0 versus H; : E = B*, where B* = B, — By, with
parameter m and reduced-form variance matrix Q.
The matrix Q does not have diagonal elements equal to one, so we transform the model based
on (y1,y2) with parameters (E, 7) and fixed reduced-form variance matrix Q to a model based on

(Y1, 75) with parameters (3,7) and fixed reduced-form variance matrix €, wher

Ty = @ _ Y1 — Y25

VUG (W — 2wiafB + wiB)2

B 1 1

Yo 1= =—Y2 = —Y2,
w2 w

— (:)2~ w9

B:==—p= 8 —By), and
N e N 2 3 HEAG
1 1

Ti= —m=—T. (21.2)
W9 w9

" The forrrillaﬁ := (@2 /@1)B in lj comes from 77, := /o1 = (y~25+u)/a1 = yoB3/E14u/D1 = (y2/@2)B(@2 /1)
+ u/@1 = Yo + U, where the last equality holds when 8 := (W2/wW1)8 and T := u/w@,.
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In addition, we have

_ 7 1/w 0 %
Q:=Var s =Var /o _ u
Yo 0 1/ws Yo
_ 1/ 0 & 1/wq 0
0 1/we 0 1/we
_ 1/(:)1 0 w% — 2w12ﬂ0 + w%ﬂ% w12 — w%ﬁo 1/(:)1 0
0 1/ws w12 — wiB, w3 0 1/ws
i 1 wi2—w3By
= (Wi —2w12B+w3B3) 1/ w2 (21.3)
wi2—w3f 1 ' ’
| (w?—2w12B8g+w3BE)1/ 2w,

The transformed testing problem is Hy : 3 = 0 versus H; : 8 = 3,, where

B, = -2 5 (B. = Bo), (21.4)

(w? — 2w1280 + w3B3)

with parameter @ and reduced-form variance matrix €.
Now, we consider the limit as 3; — oo of the original model and see what it yields in terms
of the transformed model. We have
1 =1

lim B,=7Fland lim Q= ) 21.5
Bo—=Eo0 Bo—=Eo0 Tl 1 ( )

So, the asymptotic testing problem as 8, — 00 in terms of a model with a null hypothesis 3 value
of 0 and a reduced-form variance matrix Q with ones on the diagonal is a test of Hy : B = 0 versus
Hy: [ =7Fl.

We get the same expression for the limits as 5y — £o0o of cg_(5y,(2) and dg (B, 2) written in
terms of the transformed parameters (3, 3,,7, (1) as in Lemma except they are multiplied by
oy. This occurs because pi = p,/0,. In consequence, the limits as 3, — £oo of cg (B, ), and
ds_(Bg, ), written in terms of the transformed parameters (B, 3,,,(2) are the same as their

limits without any transformation.

Lemma 21.1 Let B, = B,(8y) and Q = Q(B,) be defined in (21.4) and (21.3), respectively. Let
Bo(ﬁo) =0.

(a) limg, . +o0 55, (Bo(Bo), A(By)) = F1.

(b) limg, —+o0 dg*(go)(go(ﬁo)aﬁ(ﬁo)) = :F(lizzﬁ'




Comment. (i). By Lemmas and the distributions of all of the tests considered in this
paper are the same in the model in Section [2 when 3, and Q are fixed and the null hypothesis
value f, satisfies By — £o0, and in the transformed model of this section when the null hypothesis
Bo is fixed at 0 and the alternative hypothesis value 8, = 3,(8,) and the reduced-form variance
Q = Q(3,) converge as in as By — oo. (This uses the fact that 0, = 1 in Lemma )
(ii). AMS footnote 5 notes that there is a special parameter value = 4 at which the one-
sided point optimal invariant similar test of Hy : 8 = 3, versus H; : 5 = B 4p is the (two-sided) AR
test. In footnote 5 B4y is defined to be 845 = wiwisbo f e compute 345 for the transformed

le*M%BO

model (7;,75) with parameters (3,7, Q), where 3, = 0, we obtain
72 _ =
Bar= "% = = Fl, (21.6)

which is the same as the limit of 8, = 5,(8,) as By — oo in (21.2)).

Proof of Lemma First, we prove part (a). We have

c5. (B, Q) = (B, — Bo) (BoQbo) /2

- (w? — 2w12;}o2+ wiB5)1/2 (8. = Bo)(1 — 2@128 + o) /2
1 2
C w(B-By)
(W] — 2w128, + w363)1/?
— F1l as By — £oo, (21.7)

where the second equality uses 1) and the third equality uses 8, = 0. Hence, cg. (Bo, V) pz —
F(1/oy)p, as By — Loo using the expression for 7 in (21.2) and we = oy,
Next, we prove part (b). Let b, = (1,—3,)" and by = (1, —3,)". We have

det(ﬁ) =1- 5%2,
T = w12 — w%ﬁo
(w? — 2w128 + w}B5) 2wy’
5000 (5 5000) /2 = L= @125 ‘f”ﬁij PoPe _ 1 57, (21.8)
(1 — 2w12Bg + By) /2

and
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where the second equality on the third line uses 3, = 0. Next, we have

2
- wi2 — w5 wa
1_w126*:1_ (5*_5)
(w? — 2w128¢ + W3BF) w2 (W} — 2w12By + wEBG)1/2 0

_ (w12 — W%ﬁo)(ﬂ* — Bo)
w? — 2w128) + w3
w} — 2w12B + w3BF — w128, + wi12By + WiBeB. — wiBY
w? — 2w128) + w3

w% - WIQBO - wl?ﬁ* + w%ﬁoﬁ*

_ , (21.9)
w? — 2w128g + w363
where the first equality uses (21.3) and (21.4)).
In addition, we have
1— 5%2 — 1 (w12 — W%ﬁO)Q
(W} — 2w12By + W33 )w)
_ wiw3 — 2w1awiBy + w%ﬁ% — w2y + 2wi2wiBy — w4ﬁ%
(W} — 2w12B, + wW3BF)w3
_ wiws — wi
= — s (21.10)
(Wi — 2w128y + w3B5)w3
where the first equality uses (21.8)).
Using (21.8)-(21.10)), we have
d5 (Bo, ) = b, 0o (BoS2bo) ~/* det(Q2) 7/
_ wi — w12y — wi2f, + w3pyb. < wiw) — wiy >_1/2
w} — 212680 + w365 (F — 2w1280 + wiBY)w3
(W} — wi2fy — wi2f. + w3BoB.) (21.11)

pr— 2.
(w? — 2w128) + w3BH /2 (Wiwd — wi,)1/2

The rhs of (21.11]) is the same as the expression on the second line of ((15.2) multiplied by we = o,,.
In consequence, the calculations in (15.2)-(15.4) give the result of part (a) of Lemma 21.1] O

22 Transformation of the 3, Versus 3, Testing Problem
to a B, Versus 0 Testing Problem

In this section, we transform the general testing problem of Hy : § = 8, versus H; : 8 = [,
for 7 € RF and fixed reduced-form variance matrix Q to a testing problem of Hy : 8 = B versus

Hy : B = 0 for some 7 € RF and some fixed © with diagonal elements equal to one. These
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transformation results imply that there is no loss in generality in the numerical results of the paper
to taking w? = w2 = 1 and 3, = 0. We also show that there is no loss in generality in the numerical
results of the paper to taking p,, € [0, 1], rather than p,, € [-1,1], where p,, is the structural
variance matrix correlation defined in .

We consider the same transformations as in Section but with 3, in place of 8, in —
and with the roles of 3, and 3, reversed in and . The transformed testing problem
given the transformations in (21.1) (with 3, in place of 3;) is Hp : 3 = Eo versus Hj : E = 0, where
BO = By — B, with parameter m and reduced-form variance matrix Q. The transformed testing
problem given the transformations in - (with 3, in place of By) is Hp : B = B, versus
Hy : B =0, where Bo = By — Bs, with parameters 3, 7, and Q defined in and (with
the roles of 3, and 3, reversed).

For example, a scenario in which a typical test has high power in the original scenario of testing
Hy : B = By versus H; : = f3,, such as Sy = 0 and |53, large, gets transformed into the testing
problem of Hy : B = B, versus Hj : B = 0 with correlation wis (the (1,2) element of Q) close to
+1, because by (with the roles of 3, and [, reversed) we have

1 =1

lim (= . (22.1)
By—Eoo Tl 1

In this case, we also have limg .4 By = F1 by 1} Also, note that the reduced-form and
structural variances matrices are equal when the alternative hypothesis holds in the testing problem
Hy: B = By versus Hy : 8 =0, so the result in also applies to the structural variance matrix
%(B,9) when 8 = 0 whose correlation we denote by p,,, i.e., limg 1 p,, = F1. Here the
parameter p,, is the parameter p,, that appears in the tables in the paper. These results are
useful in showing how the numerical results of the paper apply to general hypotheses of the form
Hy: B =py versus Hy : = f,.

Next, we show that there is no loss in generality in the numerical results of the paper to taking
Puv € [0,1]. We consider the hypotheses Hy : § = [, versus Hj : 5 = 0, as in the numerical results
in the paper. When the true g equals 0 and 2 has ones on its diagonal, the reduced-form and
structural variance matrices are equal, see . Hence, the correlation wis given by §2 equals the
structural variance correlation p,, in power calculations in the paper, and it suffices to show that
there is no loss in generality in the numerical results of the paper to taking wis € [0, 1].

By , the distributions of S and T only depend on c (8, ), ds(By, Q), and p,. := (Z'Z)'/?7.
The vector g, does not depend on f3, By, or . First, note that wis enters cg(8y,Q) = (8 —
Bo) (bhQbo) /2 = (B — Bo)(w? — 2wiaBy + wiB2)~ Y2 only through wizfy. In consequence, the
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distribution of S is the same under (8,,wi2) as under (—fg, —wi2). Second, by (2.8) of AMS,
ds(Bo, ) can be written as b'Qbo(bhQbo) ~/2 det(Q) /2, where b := (1, —f)". The distribution of T
when 8 = 0 depends on dy(Bg, Q) = (1 —wi284) (byQbo) /2 det(2) /2. The first two multiplicands
depend on wis only through wisB, and the third multiplicand only depends on w2 through w?,
(because det(Q2) = 1 — w?,). In addition, S and T are independent. Hence, the distribution of
[S : T for given (fy,w12) when § = 0 equals its distribution under (—f,, —w12) when g = 0. Thus,
the power of a test of Hy : 8 = B, versus Hj : f = 0 when w2 < 0 equals its power for testing

Hy: B =—py versus Hy : f =0 for —wi2 > 0.

23 Additional Numerical Results

This section contains Tables SM-I,..., SM-V and Figure SM-I, which provide additional numer-
ical results to those in Tables I,..., V in the main paper.

Table SM-I is analogous to Table I, but considers AR and POIS,, CS’s, in addition to the CLR
and POIS2,, CS’s. Here, POIS,, denotes the CS obtained from the optimal one-sided invariant
similar test as 5y — £o00 defined in in Section Table SM-I reports probabilities of infinite
length, as well as differences in probabilities of infinite length (DPIL’s) for CLR and AR, AR and
POIS2,,, and CLR and POIS2,, CS’s. In addition, it reports simulation standard deviations for
the first and third DPIL’s.

The results for the DPIL’s vary greatly with p,,. When p,, = 0, the AR CS is the same as
the optimal POIS,, CS and the CLR-AR DPIL’s range over [.001,.049] as (k,A) vary. On the
other hand, when p,, = .9, the AR CS is far from optimal and the CLR-AR DPIL’s range over
[—.002, —.421] as (k, A) vary. In sum, when p,, > .5, the AR CS can, and typically does, perform
noticeably worse than the CLR CS in terms of DPIL’s.

Table SM-II reports more detailed results than those given in Table II. Table SM-II reports the
maximum power differences (PD’s) over [, values between the POIS2 power envelope and the CLR
test for a grid of (k, p,,, A) values. (In contrast, Table II reports maximum and average PD’s over
(Bg, A) values for a grid of (k, p,,) values.) Table SM-II shows that the maximum (over ;) PD’s
vary substantially over A values for p,,, < .7 values and less so for p,, = .9. For example, for k =5
and p,, = .0,.3,.5,.7,.9, the PD’s ranges (over A\ values) are [.004,.030], [.008,.034], [.007,.029],
[.005,.033], [.001, .017], respectively.

Tables SM-IIT and SM-IV are the same as Table II except they consider the AR and LM tests,
respectively, rather than the CLR test. As noted in the main paper, Tables SM-III and SM-IV
show that the power of the AR and LM tests is much farther from the POIS2 power envelope than
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is the power of the CLR test. Table SM-III(a) shows that the maximum and average (over (g, \))
PD’s for the AR test are increasing in k up to k = 20, but drop going from k& = 20 to 40. (This
drop may be due to the choice of A values considered. The choice yields the Apax value for the AR
test to be on the upper bound of the values considered.) Table SM-III(b) shows that the maximum
and average (over (5y,A)) PD’s for the AR test are increasing in p,,, for all values of k, which is
the opposite of the pattern for the CLR test. Table SM-III(b) also shows that the Apax values are
at the boundary of the grid of A values considered for all k.

Table SM-1V(a) shows that the maximum and average PD’s (over (8, A)) for the LM test are
clearly increasing in k, except that for p,, = 0,.3 there is a drop from k£ = 20 to 40 (which may
be due to the choice of A\ values considered, as for the AR test). Table SM-IV(b) shows that the
maximum and average (over (8, A)) PD’s for the LM test are decreasing in p,,, for all values of k,
as for the CLR test. Table SM-IV(b) also shows that the A\pax values decrease in p,, for each k,
as with the CLR test.

Table SM-V is the same as Table III except that it reports results for k£ = 2, 5,10, 20, and 40,
rather than just £ = 5. It also reports results for a finer grid of 3, values than in Table IV and it
reports the power of the WAP2 test, in addition to the difference in power between the WAP2 and
CLR tests.

Figure SM-I provides graphs that are the same as in AMS, but with pg = 0, rather than po = .5
or .95. Specifically, these graphs provide the power of the significance level .05 CLR, LM, and AR
tests and the POIS2 power envelope for fixed null value 5, = 0, varying true value 5%, k = 2,5,10
and A = 5,20. The number of simulation repetitions used to construct the power functions is 5,000
and 100,000 repetitions are used to compute the null distribution of the POIS2 statistic to obtain
its p-values.

Figure SM-I shows that the power of the CLR test is very close to the POIS2 power envelope
in the scenarios considered. In fact, the maximum differences are .0074,.0040,.0110,.0062,.0102,
and .0090 in the six graphs in Figure SM-I. Note that pn = 0 is the pg value that yields many of
the largest differences between the power of the CLR test and the POIS2 power envelope when the
true f* = 0 is fixed and the null value S, varies, as shown in Tables II and SM—IIE The results in
Figure SM-I show that standard power graphs with 5, = 0 fixed and true * varying, as in AMS,
do not pick up the relatively large differences between the power of the CLR test and the POIS2
power envelope that appear in some pq = 0 parameter configurations considered in Tables IT and
SM-II.

"In Tables IT and SM-II, p,,, = p for all B, values because the true value * = 0.
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24 Unknown Variance CLR Test

In this section, we consider a different form of the CLR test to see whether it has smaller
probabilities of infinite length than the CLR test defined in and E By Moreira (2003,
pp. 1036, 1045), the likelihood ratio statistic under the assumption that the reduced-form variance
matrix is unknown is

LRU =

, Where

n b6YPZYbO n Amin (ﬁfl/QYP2Y§*1/2)
~n|{l+——"—=—|—-—zIn|1+
2 (n—k)bhQby | 2 n—k

Q:=YM;Y/(n—k). (24.1)

(Note that Moreira (2003) denotes the statistic LRy by LR and the statistic LR in above by
LRy.)

The probabilities that the CLR test has infinite length (given in Table I in Section are
computed under the assumption that € is known. If we made comparisons of these results to
analogous results for the conditional test that employs the statistic LRy (combined with the same
conditional critical value as in ), the comparisons would be misleading because LRy does not
make use of the known value of €2. To obtain a fair comparison, we alter the LR statistic by

replacing Q by 2. The resulting statistic is

n byY Pz Y by n Amin (Q7Y2Y P,y Q~1/2)
LR2,:= -In(1+2—2— ) — —In|1
R 2n<+(n—kz)bg@bo> 2n<+ n—k

_n Qs n Qs — LR
—2ln(1+(n_k)>—2ln<1+n_k>, (24.2)

where the second equality holds by the definition of Qg in and and the expression LRy =
S'S — Amin on p. 1033 of Moreira (2003), which in the notation of this paper is LR = Qg — Amin
for Amin = Amin (Q_l/QYPZYQ_l/Q) by p. 1045 of Moreira (2003).

The conditional critical value for this statistic is the same as that in ) We call the resulting

test the CLR2,, test. Somewhat confusingly, or perhaps paradoxically, the form of the L R2,, statistic
is determined by assuming €2 is unknown, which yields a test that depends on an estimator Q of
), which we then replace by €2, which yields a test for the case where 2 is known. Note that the
LR2, statistic depends on n, whereas the LR statistic in does not.

Table SM-VTI reports differences in the probabilities that the CLR2,, and CLR CI’s have infinite
length for the same k, A, and p,,,, values as in Table I, for three values of n: n =100, 500, and 1,000.

16We thank Marcelo Moreira for suggesting that we consider the CLR2,, tests considered in this section.
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Note that the data generating process depends only on k, A, and p,,,,, and not on n. The quantity
n only enters through the form of the LR2,, statistic.

The results in Table SM-VI show that the CLR2,, and CLR CI’s perform very similarly. This is
especially true for n = 500 and 1,000 in which cases all differences are less than .005. For n = 100,
the differences exceed .005 in some scenarios where p,,,, is small (0, .3, and .5) and k is large (k > 10
for p,, = .0, .3 and k > 20 for p,, = .5). The largest difference is .0235 and is achieved when
n = 100, p,, = 0, k =40, and A = 20.

Based on these results, we do not find that the CLR2,, test improves on the CLR test in terms
of its probabilities of having infinite length. The differences between the CLR2,, and CLR tests are
quite small, especially for n = 500 and 1000.

25 Heteroskedastic and Autocorrelated Model

Theorem gives formulae for the probabilities that certain CI’s have infinite right length,
infinite left length, and infinite length in the homoskedastic Gaussian linear IV model. In this
section, we extend these results to the Gaussian linear IV model that allows for heteroskedasticity
and autocorrelation (HC) in the errors. We use the specification and notation in Moreira and
Ridder (2017). The reduced-form model is Y = Zra' + V, as in , but without the assumption

that the rows of V' are i.i.d. with distribution 2. Rather, we assume that
vee(V) :=vec((Z2'Z)22'V) ~ N(0, %), (25.1)

where V € RF*2 and ¥ is a positive definite 2k x 2k matrix. The matrix ¥ can be consistently
estimated. In consequence, we focus on the case where ¥ is known. Let P, := Z(Z'Z )*1/ 2 ¢ gk
and let P, € R™ (™ %) be such that P := [P, : Py is orthogonal. A one-to-one transforma-
tion of Y is (P/Y, P,Y). The matrix PjY is ancillary and the variance of V' is only restricted by

Var(vee(P{V)) = X. In consequence, we only consider tests that are a function of PjY. We have
R:=PlY =y d +V, where pu, := (2'Z)"?7 and a := (8,1)’. (25.2)

For a given null hypothesis value f;, a one-to-one transformation of R is (Sg,(R),Tp,(R)),

where

Spo(R) := [(by @ I)S(bo @ I,)] /2 (b @ Ip)vec(R),
Tio(R) := [(ap @ 1) =" (a0 ® 1) 712 (ap © 1) £~ "vee(R), (25.3)
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0 = (By, 1), and by := (1,—p)". The statistics Sg (R) and T (R) are independent. Their

distributions are

Sgy(R) ~ N((B = Bo)Cpytin: L) and
Ts,(R) ~ N(Dgpir, It), where
Cﬁo = [(b6 ® Ij)%(bp ® Ik)]71/2 and

Dg = [(af ® I)S ™ (a0 ® [r)] 2 (ah @ I)S (a ® ). (25.4)
As shown in the following lemma, the limits of Sg (R) and Tp (R) as 3y — Foo are

Sioo(R) := F5557* Ry and
Tioo(R) := £(1)7V2(eh @ I) 2 tvec(R), (25.5)

where Ry denotes the second column of R, Y95 denotes the lower right k x k block of X, > denotes

the upper left k x k block of X7, and e; := (1,0)".

Lemma 25.1 For fized true value 8 = 5, and positive definite matrix 3, we have

(a) limg, 100 Sp, (R) = Sioo(R),

(b) Sxoo(R) ~ N(F235"" i T,

(¢) limgy— o0 Ty (R) = Tieoo(R),

(d) Troo(R) ~ N (£(EM)7V2(eh @ Iy) S vec(pyal), Ix) , where a. == (B, 1), and
(€) Stoo(R) and T'voo(R) are independent.

Comments. (i) The convergence results in Lemma hold for all realizations of R.

(ii) In the homoskedatic case, where ¥ = Q ® I, we have S1o(R) = S1oo(Y) and Thoo(R) =
T10o(Y), where Sioo(Y) and T (Y) are defined in for the homoskedastic model.

These results hold by the following calculations. In the homoskedatic case, Y9y = w3l = 021,
where w? denotes the (2,2) element of Q and 02 := Var(vy;). This yields Sioo(R) = F(1/0,)Re =
F(1/0,)(Z'Z)"Y2Z'Y ey := Si0o(Y). In the homoskedatic case, ¥ = w'' I}, where w!'! denotes
the (1,1) element of @71, ¥~ = Q71 [;, and (¢} @ 1}) X tvec(R) = (e} Q1@ I} )vec(R) = RO~
where the last equality uses the formula vec(ABC) = (C' ® A)vec(B). We have w!'l = w3/(wiw? —

w?,) by the formula for the inverse of a 2 x 2 matrix, wiwi—w?, = 0202 —02, = 0202(1—p2,), where

the first equality holds by (|1 , and (W')712 = gu0,(1 — p2,)2 Jwe = ou(1 — p2,)Y/?, where
the last equality uses o, = wo. Putting these results together gives Tlioo(R) 1= +(X1)"1/2(e}f @
2

L)Y Wwee(R) = £0,(1 — p2) 2RO ey = (2'2) 122’y Q tey - (£(1 — p2,)/204) == Tioo(R).
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Let Pg_rx(-) denote the probability distribution of R when f3,, 7, are the true values.
The HC model analogue of Theorem [5.1] is the following.

Theorem 25.2 Suppose CSy(R) is a CS based on level o tests ¢(Sp,(R), Tp,(R)) whose test sta-
tistic and critical value functions, T (s,t) and cv(t), respectively, are continuous at all kX2 matrices
[s : t] and k vectors t, Pg (T (Sc(R),Tc(R)) = cv(Te(R))) = 0 for ¢ = 00 in parts (a) and (c)
below and ¢ = —oo in part (b) below. Then, for all (B,,7,%) with ¥ positive definite,

(a) Pg, xx(RLength(CSy(R)) = 00) = 1 —limg, 00 Pp, #,5(¢(Sp,(R), Tp,(R)) = 1),

(b) Ps, »x(LLength(CSy(R)) = 00) = 1 —limg _, o P3, »=(¢(Ss,(R), Ts,(R)) = 1), and

(c) if T(Se(R), T:(R)) < cv(T.(R)) for ¢ = 400 iff the same inequality holds for ¢ = —oc0 a.s.,
then

Ps_rs(Length(CSy(R)) = 00) =1 — limg, 400 Pp, 7,5(¢(Sp,(R), Tp,(R)) = 1).

Proof of Theorem The proof is essentially the same as that for Theorem [5.1f with (i)
(Sp,(R),Ts,(R)) and T (R) in place of Qg (Y) and Q14,(Y), respectively, using (ii) Lemma
25.1) in place of Lemma and using (iii) the assumption of the Theorem that “7(s,t) and
cv(t) are continuous at all k£ x 2 matrices [s : t] and k vectors ¢,” in place of the assumption of
Theorem that “7 (¢q) and cv(gr) are continuous at all positive definite 2 x 2 matrices g and
positive constants gr.” (In the argument following in the proof of Theorem the latter
assumption is combined with the result of Lemma [16.1)(g), which implies that Q(Y) is pd a.s.
and Qr,00(Y) > 0 a.s. In contrast, in the proof of the present Theorem, this part of the argument
is not needed because there is no restriction to positive definite matrices ¢ and positive constants
gr-) In the proof of part (c), the second last equality in in the proof of Theorem holds
(with the changes listed in (i)-(iii) above) because the assumption imposed in part (c¢) of the present

Theorem is the same as condition (iii) stated immediately above ((16.5). [J

Proof of Lemma We prove part (a) first. Dividing the components of Sg (R) in (25.3) by

|Bol, we obtain

Sgo(R) = [((bo/180l)’ © Tk)£((bo/1Bo)) ® 11)] ™ /((bo/|Bo|)’ ® Iy )vee(R). (25.6)
We have
ﬁ?inoo ((bo/|Bol)" ® I1) vec(R) = ((0,F1) ® Iy) vec(R) = FRy and
Aim ((bo/15ol)" @ 11)2((bo/1Bol) @ 1) = ((0,F1) ® L) (0, F1) @ I) = B, (25.7)
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using bp := (1, —5,)’, where Ry denotes the second column of R. Combmmg and ( and
using the positive definiteness of X9o gives limg +o0 S5, (R) = / Ry := Siso (R)7 which proves

part (a).

Part (b) holds by the definition of St (R) in because Ra ~ N (fi,,222) by and
25.2).

To prove part (c), we divide the components of T (R) in by |By| to obtain

T, (R) = [((a0/1Bo])’ © 1e) £ ((ao/1B80l) ® 1)) ™2 ((a0/1B0l)’ © Ir) £~ vee(R), (25.8)
where ag = (8¢, 1)". We have

lim ((ag/|ﬁ0|) ® I;) X tvece(R) = £((1,0) @ I;) S tvec(R) and

s ((ao/\ﬁol) ® I)Z " ((ao/[Bol) © I) = ((£1,0) @ L)X ((£1,0) ® Iy) = T, (25.9)

where X! denotes the upper left k x k block of ¥~!. Combining and and using the
positive definiteness of X! gives limg 100 T3, (R) = +(SH712(eh @ I) Y wee(R) = Tioo(R),
which establishes part (c) of the lemma.

Part (d) holds by the definition of T (R) in because R = pal, + V when 8 = j, by

, vec(V) ~ N(0,%) by , and

Var(Tieo(R)) = Var(S'™)™V2(e) @ I,) S vec(R))
= (S 2(e) @ )T TIEE T (e @ L) (2 V2
= I;. (25.10)

Part (e) holds because St (R) and T (R) are jointly normal with covariance

Cov(Stoo(R), Tioo(R)) = Cov(FX0" (e} @ I)vec(R), (M) "2(e) @ I;) X vec(R)
= —22_21/2(6’2 ® Ik)Var(vec(R))Efl(el ® Ik)(211)71/2

= I;. (25.11)

This implies that Sio0(R) and T oo (R) are independent, which proves part (e). O
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TABLE SM-I(a). Probabilities of Infinite-Length Confidence Intervals for py, =0

kX AR CLR POIS, POIS2,, CLR-AR SD AR-POIS2,, CLR-POIS2,, SD

2 1 .867 .868 .867 867 .002 .0007 .000 .002 .0007
2 3 .680 .687 .680 .680 .007 .0009 .000 .007 .0009
2 5 497 .508 497 497 .011 .0010 .000 .011 .0010
2 7 345 .358 .345 .345 .013 .0010 .000 .013 .0010
2 10 .182 .195 182 182 .012 .0008 .000 .012 .0008
2 15 .056 .063 .056 .056 .007 .0006 .000 .007 .0006
2 20 .015 .017 .015 .015 .003 .0003 .000 .003 .0003
5 1 .902 .905 902 902 .003 .0008 .000 .003 .0008
5 3 .79 789 779 779 .010 .0011 .000 .010 .0011
5 5 .639 .659 .639 .639 .020 .0012 .000 .020 .0012
5 7 .502  .529 .502 .502 .026 .0012 .000 .026 .0012
5 10 323 .350 323 323 .027 .0012 .000 .027 .0012
5 12 .230 .257 .230 230 .027 .0011 .000 .027 .0011
5 15 132 156 132 132 .023 .0009 .000 .023 .0009
5 20 .047 .059 .047 .047 .012 .0007 .000 .012 .0007
5 256 .015 .021 .015 015 .006 .0004 .000 .006 .0004
10 1 918 .920 918 918 .002 .0009 .000 .002 .0009
10 5 733 .751 733 733 .018 .0012 .000 .018 .0012
10 10 .461 .496 461 461 .035 .0013 .000 .035 .0013
10 15 242 279 .242 .242 .037 .0012 .000 .037 .0012
10 17 177 212 A7 A7 .034 .0011 .000 .034 .0011
10 20 .109 .135 109 .109 .026 .0010 .000 .026 .0010
10 25 .043 .060 .043 .043 .016 .0007 .000 .016 .0007
10 30 .016 .024 .016 016 .008 .0005 .000 .008 .0005
20 1 929 .932 929 929 .003 .0008 .000 .003 .0008
20 5 .806 .824 .806 .806 .017 .0012 .000 .017 .0012
20 10 .597  .632 597 597 .035 .0014 .000 .035 .0014
20 15 .393 .436 .393 393 .043 .0014 .000 .043 .0014
20 20 .226 .268 .226 .226 .042 .0012 .000 .042 .0012
20 25 .116 .149 116 116 .033 .0010 .000 .033 .0010
20 30 .053 .077 .053 .053 .023 .0008 .000 .023 .0008
20 40 .010 .017 .010 .010 .007 .0004 .000 .007 .0004
40 1 .936 .938 .936 936 .001 .0008 .000 .001 .0008
40 5 .861 .872 .861 .861 .011 .0011 .000 .011 .0011
40 10 721 .750 721 721 .030 .0013 .000 .030 .0013
40 15 .553 .599 553 553 .046 .0014 .000 .046 .0014
40 20 .394 443 .394 .394 .049 .0014 .000 .049 .0014
40 30 .155 .198 155 155 .043 .0012 .000 .043 .0012
40 40 .046 .068 .046 .046 .022 .0008 .000 .022 .0008
40 60 .002 .005 .002 .002 .003 .0003 .000 .003 .0003




TABLE SM-I(b). Probabilities of Infinite-Length Confidence Intervals for p,, = .3

kX AR CLR POIS, POIS2,, CLR-AR SD AR-POIS2,, CLR-POIS2,, SD

2 1 .867 .868 .859 .864 .001 .0007 .002 .003 .0007
2 3 680 .684 .654 676 .003 .0010 .004 .008 .0008
2 5 497 501 461 491 .004 .0011 .005 .010 .0009
2 7T 345 347 .304 338 .002 .0010 .008 .009 .0008
2 10 .182 .184 150 A7 .001 .0009 .006 .007 .0007
2 15 .056 .056 .039 .052 .000 .0006 .003 .004 .0005
2 20 .015 .015 .010 .013 .001 .0004 .002 .002 .0003
5 1 .902 .905 .899 903 .003 .0008 -.001 .002 .0008
5 3 719 785 762 779 .006 .0011 .000 .007 .0009
5 5 .639 .647 .607 637 .008 .0013 .002 .010 .0010
5 7 .502 .510 .460 498 .008 .0013 .005 .013 .0011
5 10 323 .330 279 316 .007 .0013 .007 .014 .0010
5 12 .230 .235 .190 222 .005 .0012 .008 .013 .0009
5 15 132 137 101 126 .004 .0010 .007 .011 .0007
5 20 .047 .048 .031 .042 .000 .0007 .005 .005 .0005
5 25 .015 .016 .009 013 .001 .0004 .002 .003 .0003
10 1 918 .920 915 918 .002 .0009 -.001 .002 .0008
10 5 733 744 709 733 .010 .0013 .001 .011 .0011
10 10 461 472 414 454 .011 .0014 .007 .018 .0011
10 15 242 248 195 231 .006 .0013 .011 .017 .0010
10 17 177 184 139 168 .007 .0012 .009 .016 .0009
10 20 .109 .114 .079 .100 .005 .0010 .009 .015 .0008
10 25 .043 .046 .028 .039 .003 .0007 .005 .008 .0005
10 30 .016 .017 .009 013 .001 .0005 .003 .004 .0004
20 1 929 931 928 929 .002 .0008 -.001 .002 .0008
20 5 .806 .819 789 .807 .012 .0012 -.000 .012 .0011
20 10 .597 .615 .558 594 .018 .0015 .004 .021 .0012
20 15 .393  .406 .339 .383 .013 .0015 .010 .023 .0011
20 20 .226 .236 180 215 .009 .0013 .012 .021 .0010
20 25 116 .122 .082 .106 .006 .0011 .010 .016 .0008
20 30 .053 .057 .035 .046 .004 .0008 .007 .011 .0006
20 40 .010 .011 .005 .008 .001 .0004 .002 .003 .0003
40 1 .936 .937 934 937 .001 .0008 -.000 .000 .0008
40 5 .861 .869 .849 .861 .008 .0011 -.000 .008 .0010
40 10 721 737 .690 720 .016 .0014 .001 .016 .0012
40 15 .553 .572 505 .548 .018 .0015 .006 .024 .0012
40 20 .393 .409 .336 381 .015 .0015 .012 .028 .0012
40 30 .155 .164 114 142 .009 .0013 .013 .022 .0009
40 40 .046 .048 .027 .038 .002 .0008 .008 .010 .0006
40 60 .002 .002 .001 .001 .000 .0002 .001 .001 .0002




TABLE SM-I(c). Probabilities of Infinite-Length Confidence Intervals for p,, = .5

kX AR CLR POIS, POIS2,, CLR-AR SD AR-POIS2,, CLR-POIS2,, SD

2 1 .867 .867 .846 .864 .000 .0007 .003 .003 .0006
2 3 680 .67 .615 672 -.006 .0011 .009 .003 .0006
2 5 497 486 .405 480 -.011 .0012 .017 .005 .0006
2 7 345 327 .250 323 -.019 .0012 .022 .004 .0005
2 10 .182 .166 111 162 -.016 .0010 .020 .004 .0005
2 15 .056 .046 025 .043 -.010 .0007 .012 .002 .0003
2 20 .015 .012 .005 011 -.003 .0004 .004 .001 .0002
5 1 .902 .904 .890 903 .001 .0009 -.000 .001 .0007
5 3 .79 776 729 174 -.003 .0012 .005 .003 .0007
5 5 639 .624 551 622 -.015 .0014 .017 .003 .0007
5 7 .502 476 .392 471 -.026 .0015 .031 .005 .0007
5 10 323 .289 213 283 -.034 .0015 .040 .006 .0007
5 12 .230 .196 133 190 -.035 .0014 .041 .006 .0007
5 15 132 104 063 .099 -.028 .0012 .033 .005 .0006
5 20 .047 .032 .016 .029 -.015 .0008 .018 .003 .0004
5 25 .015 .009 .004 .007 -.006 .0005 .008 .001 .0002
10 1 918 919 908 918 .002 .0009 -.000 .001 .0007
10 5 733 .725 .662 721 -.008 .0014 .013 .005 .0008
10 10 461 .423 333 415 -.038 .0016 .046 .008 .0008
10 15 242 194 130 .186 -.048 .0015 .056 .008 .0007
10 17 177 136 .085 129 -.041 .0014 .048 .007 .0007
10 20 .109 .077 .043 071 -.032 .0012 .038 .006 .0006
10 25 .043 .026 012 .023 -.017 .0008 .020 .003 .0004
10 30 .016 .008 .003 .006 -.008 .0005 .009 .002 .0003
20 1 929 931 922 929 .002 .0009 -.001 .001 .0008
20 5 .806 .804 .756 .800 -.002 .0013 .006 .004 .0008
20 10 .597 .571 482 563 -.026 .0017 .034 .008 .0009
20 15 .393 .340 251 .330 -.053 .0017 .063 .010 .0009
20 20 .226 .172 11 163 -.054 .0015 .063 .009 .0008
20 25 .116 .076 .042 .069 -.041 .0013 .047 .007 .0006
20 30 .053 .030 .014 .026 -.023 .0009 .027 .004 .0004
20 40 .010 .004 .002 .003 -.006 .0004 .007 .001 .0002
40 1 .936 .937 932 937 .000 .0009 -.000 .000 .0008
40 5 .861 .862 .825 .858 .001 .0012 .003 .005 .0008
40 10 721 .706 .627 .700 -.015 .0016 .021 .006 .0009
40 15 .553 .513 416 502 -.041 .0018 .051 .011 .0009
40 20 .393 .335 245 322 -.059 .0018 .072 .013 .0009
40 30 .155 .103 .058 .093 -.052 .0014 .061 .010 .0007
40 40 .046 .022 .010 .018 -.023 .0009 .028 .004 .0004
40 60 .002 .001 .000 .000 -.002 .0002 .002 .000 .0001




TABLE SM-I(d). Probabilities of Infinite-Length Confidence Intervals for p,, = .7

kX AR CLR POIS, POIS2,, CLR-AR SD AR-POIS2,, CLR-POIS2,, SD

2 1 .867 .864 .823 .862 -.003 .0008 .004 .001 .0003
2 3 .680 .658 .5b8 .654 -.022 .0012 .026 .004 .0005
2 5 497 456 .343 452 -.040 .0014 .044 .004 .0006
2 7 345 295 199 291 -.050 .0014 .054 .004 .0005
2 10 .182 .140 .082 138 -.042 .0012 .044 .003 .0004
2 15 .055 .035 017 .034 -.020 .0008 .021 .001 .0002
2 20 .015 .009 .004 .008 -.006 .0004 .006 .000 .0001
5 1 .902 .901 872 900 -.002 .0009 .002 .001 .0004
5 3 .79 753 .667 752 -.026 .0014 .027 .001 .0006
5 5 .639 .575 461 571 -.064 .0017 .069 .004 .0007
5 7 .502 410 297 404 -.092 .0018 .098 .006 .0007
5 10 323 .219 139 214 -.104 .0017 .109 .005 .0006
5 12 .230 .137 .081 133 -.093 .0016 .097 .004 .0006
5 15 132 .064 .033 .061 -.068 .0013 .071 .003 .0004
5 20 .047 .016 .007 014 -.031 .0009 .033 .001 .0003
5 25 .015 .004 .002 .003 -.011 .0005 .012 .000 .0001
10 1 918 918 .895 917 .000 .0009 .000 .001 .0005
10 5 733 .676 575 673 -.057 .0016 .060 .003 .0008
10 10 461 .322 223 317 -.139 .0019 144 .005 .0008
10 15 .242 115 .065 110 -.127 .0017 132 .005 .0006
10 17 177 073 .038 .069 -.104 .0015 .109 .004 .0005
10 20 .109 .034 .016 .033 -.075 .0013 .076 .002 .0004
10 25 .043 .009 .003 .008 -.034 .0009 .036 .001 .0002
10 30 .016 .002 .001 .002 -.014 .0005 .014 .000 .0001
20 1 .929 .930 914 930 .001 .0009 -.001 .000 .0006
20 5 .806 .771 .682 768 -.036 .0015 .038 .003 .0008
20 10 .597 470 .350 462 -.127 .0020 135 .008 .0009
20 15 .393 .220 136 211 -.174 .0020 182 .009 .0008
20 20 .226 .083 .044 .079 -.143 .0018 .148 .005 .0006
20 25 .116 .027 .012 .024 -.089 .0014 .092 .003 .0004
20 30 .053 .008 .003 .007 -.045 .0010 .047 .002 .0002
20 40 .010 .001 .000 .001 -.009 .0004 .009 .000 .0001
40 1  .936 .936 925 936 -.001 .0009 .001 -.000 .0007
40 5 .861 .841 772 837 -.020 .0014 .024 .003 .0007
40 10 721  .624 .505 615 -.096 .0019 .106 .010 .0010
40 15 .553  .382 .269 371 -.172 .0021 182 .011 .0009
40 20 393 197 118 .186 -.197 .0021 207 .010 .0008
40 30 .155 .033 .015 .029 -.122 .0016 125 .004 .0004
40 40 .046 .004 .001 .003 -.042 .0009 .043 .001 .0002
40 60 .002 .000 .000 .000 -.002 .0002 .002 .000 .0000




TABLE SM-I(e). Probabilities of Infinite-Length Confidence Intervals for p,, = .9

kX AR CLR POIS, POIS2,, CLR-AR SD AR-POIS2,, CLR-POIS2,, SD

2 1 .867 .854 778 .851 -.013 .0010 .015 .002 .0006
2 3 680 .617 491 614 -.063 .0015 .067 .004 .0005
2 5 497 410 293 407 -.087 .0016 .089 .002 .0003
2 7 345 258 167 .256 -.087 .0015 .090 .003 .0003
2 10 .182 119 .067 A17 -.063 .0013 .065 .002 .0002
2 15 .055 .029 .014 .029 -.026 .0008 .027 .001 .0001
2 20 .015 .006 .003 .006 -.008 .0004 .008 .000 .0001
5 1 902 .887 .824 .884 -.016 .0011 .019 .003 .0007
5 3 .T719 675 553 670 -.104 .0018 109 .005 .0007
5 5 .639 .462 .340 .459 =177 .0021 180 .004 .0005
5 7 .502 297 197 .295 -.205 .0021 207 .002 .0004
5 10 323 .140 .083 139 -.182 .0019 183 .001 .0003
5 12 .230 .083 .044 .082 -.148 .0017 .149 .001 .0003
5 15 132 .036 017 .035 -.097 .0014 .097 .000 .0002
5 20 .047 .008 .003 .008 -.039 .0009 .039 .000 .0001
5 25 .015 .002 .001 .002 -.013 .0005 .013 .000 .0001
10 1 918 .907 .855 904 -.011 .0011 .014 .003 .0007
10 5 733 .533 404 526 -.201 .0022 207 .007 .0006
10 10 461 .176 .106 173 -.285 .0022 .288 .002 .0004
10 15 242 .047 .023 .046 -.196 .0018 .196 .001 .0003
10 17 177 .026 .012 .026 -.151 .0016 151 .000 .0002
10 20 .109 .011 .004 011 -.098 .0014 .098 .000 .0002
10 25 .043 .002 .001 .002 -.041 .0009 .041 .000 .0001
10 30 .016 .000 .000 .000 -.015 .0006 .015 .000 .0000
20 1 929 .923 .885 921 -.006 .0010 .008 .002 .0007
20 5 .806 .625 498 617 -.181 .0021 189 .008 .0007
20 10 .597 .243 155 .240 -.354 .0024 357 .003 .0005
20 15 .393 .072 .038 .070 -.321 .0022 .323 .002 .0003
20 20 .226 .019 .008 .018 -.207 .0018 .209 .001 .0002
20 25 .116 .004 .002 .004 -.112 .0014 112 .000 .0001
20 30 .053 .001 .000 .001 -.052 .0010 .052 .000 .0001
20 40 .010 .000 .000 .000 -.010 .0004 .010 .000 .0000
40 1 936 .932 904 932 -.005 .0010 .004 -.001 .0006
40 5 .861 .727 .607 17 -.134 .0020 144 .010 .0009
40 10 721 .358 .249 .354 -.362 .0024 .366 .004 .0006
40 15 .553 .130 074 128 -.423 .0023 426 .002 .0005
40 20 .393 .039 .019 .038 -.354 .0022 .356 .001 .0003
40 30 .155 .003 .001 .002 -.152 .0016 152 .000 .0001
40 40 .046 .000 .000 .000 -.046 .0009 .046 .000 .0000
40 60 .002 .000 .000 .000 -.002 .0002 .002 .000 .0000




TABLE SM-II(a). Maximum Power Differences over A and [y Values between POIS2 and CLR Tests for Fixed
Alternative 8* = 0 for p,, = 0.00

kX Bomax  puso POIS2 POIS2-CLR
2 1 —5.00 .98 133 1009
2 3 100.00 —1.00 314 012
2 5 ~10.00  1.00 499 019
2 7 —10000.00 1.00 .663 .021
2 10 750  —.99 814 018
2 15 10.00 —1.00 950 .009
2 20 125 .78 923 004
5 1 —10.00  1.00 1095 004
5 3 ~5.00 .98 209 012
5 5 —1000.00 1.00 363 017
5 7 ~10.00  1.00 501 025
5 10  —50.00 1.00 .680 .030
5 15 —10000.00  1.00 870 025
5 20 ~50.00  1.00 953 015
0 1 2.00 —.89 078 003
10 3 3.75  —.97 161 012
10 5 10.00 —1.00 268 021
0 7 100.00 —1.00 379 028
10 10 —10000.00  1.00 540 030
10 15  —50.00 1.00 760 .038
10 20 50.00 —1.00 888 025
20 1 275 .04 1064 1006
20 3 —100.00 1.00 116 .007
20 5 100.00 —1.00 180 016
20 7 500 —.98 252 028
20 10  —100.00  1.00 389 040
20 15 10.00 —1.00 .596 .042
20 20 100.00 —1.00 770 040
20 22 100.00 —1.00 820 038
20 25 —10000.00  1.00 878 035
0 1 025 .24 054 011
40 3 2.50 —.93 095 011
40 5 —750 .99 149 .020
40 7 ~50.00  1.00 201 024
40 10 —100.00 1.0 287 035
40 15 —7.50 .99 441 041
40 20 50.00 —1.00 608 058
40 22 —50.00 1.00 .664 .059
40 25 1000.00 —1.00 742 056




TABLE SM-II(b). Maximum Power Differences over A and Sy Values between POIS2 and CLR Tests for Fixed
Alternative 8* = 0 for p,, = 0.30

kX  Bommx puwo POIS2 POIS2-CLR
2 1 10.00 —1.00 140 1009
2 3 750  —.99 335 012
2 5 350  —.96 543 016
2 7 2.25  —.90 692 018
2 10  3.75 —.96 .860 .019
2 15 225 —.90 966 .009
2 20 —175 91 1920 004
5 1 375  —.96 102 1008
5 3 2.75  —.93 239 017
5 5 750 —.99 387 018
5 7 3.00 —.94 546 023
5 10  3.50 —.96 732 .034
5 15 275 —.93 901 023
5 20 400 —.97 971 014
0 1 3.00 —.94 090 1003
10 3 3.00 —.94 181 014
10 5 2.75  —.93 296 023
10 7 375 —.96 A17 .026
10 10  3.00 —.94 .590 .032
10 15 350 —.96 806 032
10 20 350 —.96 921 025
20 1 —50.00 1.00 067 1006
20 3 3.50  —.96 126 .009
20 5 400 —.97 195 019
20 7 3.00 —.94 285 .030
20 10 325 —.95 432 038
20 15  3.50 —.96 .655 .045
20 20 275 —.93 817 038
20 22 300 —.94 863 034
20 25 375 —.96 915 031
0 1 —025 50 051 1008
40 3 150 —.78 .097 .008
40 5 2.75  —.93 153 014
40 7 500 —.98 215 .020
40 10 400 —.97 312 036
40 15 3.00 —.94 485 042
40 20 375 —.96 663 059
40 22 4.00 —.97 724 .061
40 25 375 —.96 798 052




TABLE SM-II(c). Maximum Power Differences over A and Sy Values between POIS2 and CLR Tests for Fixed
Alternative 8* = 0 for p,, = 0.50

kX  Bommx puwo POIS2 POIS2-CLR
2 1 200 —.87 162 1006
2 3 250  —.92 399 014
2 5 2.00 —.87 .635 .016
2 7 2.50  —.92 782 013
2 10 225 —.90 922 012
2 15 —10.00 1.00 943 .004
2 20 -125 .90 804 .003
5 1 175 —.82 112 007
5 3 2.00 —.87 291 019
5 5 2.50 —.92 AT5 022
5 7 2.50 —.92 638 028
5 10  2.25 —.90 .821 .029
5 15 175 —.82 951 014
5 20 100 —.50 969 .007
0 1 2.00 —.87 097 1003
10 3 175 —.82 215 014
10 5 2.00 —.87 362 028
0 7 175  —.82 500 028
10 10  2.00 —.87 .697 .037
10 15 200 —.87 887 023
10 20 225 —.90 968 018
20 1 500 —.08 071 1008
20 3 2.00 —.87 148 011
20 5 3.00 —.94 233 024
20 7 2.00 —.87 355 034
20 10 175 —.82 533 .046
20 15 200 —.87 769 .040
20 20 200 —.87 905 031
20 22 225 —.90 934 025
20 25 225 —.90 963 014
0 1  —025 .65 051 007
40 3 1.50 —.76 117 .008
40 5 2.00 —.87 184 014
40 7 3.25 —.95 256 026
40 10 200 —.87 381 035
40 15 175 —.82 .594 .050
40 20 175 —.82 776 049
40 22 200 —.87 835 049
40 25 200 —.87 897 040




TABLE SM-II(d). Maximum Power Differences over A and Sy Values between POIS2 and CLR Tests for Fixed
Alternative 8* = 0 for p,, = 0.70

kX  Bommx puwo POIS2 POIS2-CLR
2 1 175 —.83 214 1006
2 3 225 —.91 528 013
2 5 1.50 —.75 .811 .016
2 7 125 —.61 927 .009
2 10 -275 .98 672 .005
2 15  —4.00 .99 896 .003
2 20 —1.00 .92 671 002
5 1 2.00 —.88 142 005
5 3 175 —.83 413 .020
5 5 1.50 —.75 .669 .033
5 7 1.50 —.75 834 .029
5 10 150 —.75 949 016
5 15 750 —.99 971 .003
5 20 -250 .98 897 .003
10 1 125 —.61 117 004
10 3 150 —.75 320 028
10 5 125 —.61 521 .030
10 7 1.50 —.75 11 .036
10 10 150 —.75 878 021
10 15 175 —.83 979 010
10 20 050 .27 757 .007
20 1 2.00 —.88 087 007
20 3 150 —.75 212 025
20 5 1.50 —.75 377 038
20 7 1.25 —.61 .544 .042
20 10 150 —.75 754 036
20 15 150 —.75 935 024
20 20 -125 .94 582 .007
20 22 —1.00 .92 546 .007
20 25 —7.50  1.00 952 .005
40 1 —100.00 1.00 071 1006
40 3 225 —.91 158 015
40 5 175 —.83 275 030
40 7 125 —.61 393 038
40 10 150 —.75 588 .049
40 15 150 —.75 .837 .050
40 20 150 —.75 948 026
40 22 150 —.75 967 017
40 25 —325 .98 817 .009




TABLE SM-II(e). Maximum Power Differences over A and 5y Values between POIS2 and CLR Tests for Fixed
Alternative g* = 0 for py, = 0.90

kX Bomax Puvo POIS2 POIS2-CLR
2 0.7 125 —.63  .359 010
2 08 100 -—22 @ 412 015
2 09 125 —.63  .461 017
2 1 1.25 —.63 505 013
2 3 1.25 —.63 947 005
2 5 750 1.00 497 002
2 7 500 1.00  .600 001
2 10 -350 1.00  .702 001
2 15 —50.00 1.00  .967 001
2 20 -375 1.00  .950 001
5 0.7 100 —22 256 013
5 08 100 —22 @ .292 017
5 09 100 —.22  .331 017
5 1 .00 —22 365 015
5 3 1.00 —22 870 015
5 5 1.00 —22 985 004
5 7 075 .33 975 004
5 10 1000 —1.00  .916 002
5 15 —1000 1.00  .934 001
5 20 -1.75 .99 815 001
10 1 1.00 —22 273 017
10 3 1.25 —.63  .766 027
10 5 1.25 —.63  .956 014
10 7 200 —.93 964 005
10 10 —50.00 1.00  .812 004
10 15 —150 98 618 003
10 20 -275 99 895 003
20 1 100 —22 183 015
20 3 1.00 —.22  .607 032
20 5 125 —.63 882 022
20 7 500 —.99  .705 008
20 10  3.00 —.98  .951 005
20 15 —3.25 .99 .769 003
20 20 -1.75 .99  .766 003
20 22 -375 100  .931 003
20 25 325 .99 946 002
0 1 100 —.22 146 016
0 3 100 —.22 440 027
0 5 1.25 —.63  .750 .040
0 7 125 —.63 919 022
40 10 375 —99 844 009
40 15 —3.00 .99 674 005
40 20 -225 .99 770 004
40 2 -275 99 857 002
40 25 025 .94 151 001




TABLE SM-III. Maximum and Average Power Differences over A and 3y Values between POIS2 and AR Tests for Fixed Alternative 8* = 0

(a) Across k patterns for fixed puyo (b) Across puv patterns for fixed k
POIS2-AR POIS2-AR
Puv k )\max BO,max Puv,0 POIS2 max average k Puv )‘max BO,max Puv,0 POIS2 max average
0 2 20 0.50 —.45 49 .079 .012 2 .0 20 0.50 —.45 .49 .079 .012
0 5 20 0.7 —.60 .66 151 .014 2 3 20 0.50 —-.21 .60 .084 .014
.0 10 20 —0.75 .60 b7 183 015 2 5 20 —0.75 .82 .58 .090 .020
.0 20 25 0.75 —.60 o7 217 .016 2 .7 20 —0.75 .90 .54 .094 .030
.0 40 25 —-0.75 .60 42 .161 011 2 9 20 —1.00 97 .64 .105 .033
32 20 0.50 =21 .60 .084 .014 5 .0 20 0.7 —.60 .66 151 .014
35 20 —-0.75 .74 .06 .163 .020 ) 3 20 —-0.75 .74 .56 .163 .020
310 20 —1.00 .81 .61 .201 .022 5 b 20 0.50 .00 .66 182 .031
320 25 0.50 -—.21 A7 231 .024 5 .7 20 —1.25 94 .72 .208 .054
3 40 25 —1.00 .81 A7 .194 .019 5 9 20 —1.25 .98 .70 237 .068
D2 20 —0.75 .82 .08 .090 .020 10 .0 20 —0.75 .60 b7 183 .015
D b 20 0.50 .00 .66 182 .031 10 3 20 —1.00 .81 .61 .201 .022
b 10 20 —1.00 .87 .59 .232 .038 10 .5 20 —1.00 .87 .59 .232 .038
b 20 25 —1.00 .87 .60 .285 .044 10 7 20 —1.25 94 .67 281 .069
5 40 25 —1.25 90 .04 .248 .040 10 9 20 —1.50 98 .75 .340 133
72 20 —0.75 .90 .04 .094 .030 20 .0 25 0.75 —.60 b7 217 .016
705 20 —1.25 94 .72 .208 .054 20 3 25 0.50 —.21 A7 231 .024
710 20 —1.25 94 .67 281 .069 20 5 25 —1.00 .87 .60 .285 .044
720 25 —1.25 94 .71 .361 .084 20 .7 25 —1.25 94 71 .361 .084
740 25 —2.00 97 .73 351 .085 20 9 25 —1.25 .98 .76 .455 .160
9 2 20 —1.00 97 .64 105 .033 40 .0 25 —-0.75 .60 42 .161 011
9 5 20 —1.25 98 .70 237 .068 40 3 25 —1.00 .81 47 .194 .019
9 10 20 —1.50 .98 .75 .340 133 40 ) 25 —1.25 .90 .54 .248 .040
9 20 25 —1.25 .98 .76 .455 .160 40 .7 25 —2.00 97 73 351 .085
9 40 25 —1.75 .99 .82 513 179 40 9 25 —1.75 .99 .82 513 179




TABLE SM-IV. Maximum and Average Power Differences over A and 3y Values between POIS2 and LM Tests for Fixed Alternative * =0

(a) Across k patterns for fixed puyo

(b) Across puv patterns for fixed k

POIS2-LM
Puv k )\max BO,max Puv,0 POIS2 max average
0 2 15 50.00 —1.00 .95 312 A17
0 5 20 1000.00 —1.00 .95 538 173
.0 10 20 10000.00 —1.00 .89 .611 174
.0 20 25 10000.00 —1.00 .88 .687 .203
.0 40 25 10000.00 —1.00 .74 .621 173
32 15 3.7 —.96 97 .309 103
35 20 3.25  —.95 .97 .036 155
310 20 3.50 —.96 .92 .628 161
320 25 3.25 —.95 91 .710 187
3 40 25 3.25  —.95 .80 671 .168
D2 10 2.00 —.87 .92 311 077
D b 15 2.00 —.87 .95 .038 121
b 10 20 2.00 —.87 97 .639 133
b5 20 25 2.00 —-.87 .96 734 .153
5 40 25 2.00 —-.87 .90 .750 152
72 7 1.50 .75 .93 310 .041
705 10 1.50 —-.75 .95 031 .070
710 15 1.50 —=.75 .98 .621 .084
720 20 1.50 —=.75 .99 721 .089
740 22 1.50 .75 .97 784 107
9 2 3 1.25 —.63 .95 .242 .010
9 5 3 1.00 —.22 .87 422 .016
9 10 5 1.25 —.63 .96 474 .023
9 20 5 1.25 —.63 .88 .562 .021
9 40 7 1.25 —.63 .92 .620 .031

POIS2-LM
k Puv )\max BO,max Puv,0 POIS2 max average
2 .0 15 50.00 —1.00 .95 312 JA17
2 3 15 3.7 —.96 97 .309 103
2 .0 10 2.00 —-.87 .92 311 077
2 .7 7 1.50 .75 .93 310 .041
2 9 3 1.25 —.63 .95 .242 .010
5 .0 20 1000.00 —1.00 .95 538 173
) 3 20 3.25  —.95 97 .036 155
5 ) 15 2.00 -—-.87 .95 .538 121
5 .7 10 1.50 —-.75 .95 .b31 .070
5 9 3 1.00 —.22 .87 422 .016
10 .0 20 10000.00 —1.00 .89 .611 174
10 3 20 3.0  —.96 .92 .628 .161
10 .5 20 2.00 —-.87 97 .639 133
10 7 15 1.50 —=.75 98 .621 .084
10 9 5) 1.25 —.63 .96 474 .023
20 .0 25 10000.00 —1.00 .88 .687 .203
20 3 25 3.25 —.95 91 .710 A87
20 D 25 2.00 -—-.87 .96 734 153
20 .7 20 1.50 —=.75 99 721 .089
20 9 5 1.25 —.63 .88 .562 .021
40 .0 25 10000.00 —1.00 .74 .621 173
40 3 25 3.25 =95 .80 671 .168
40 ) 25 2.00 —-.87 .90 .750 152
40 .7 22 1.50 .75 97 .784 107
40 9 7 1.25 —.63 92 .620 .031




TABLE SM-V(a). Average (over A\) Power Differences for A € {2.5,5.0, ...,90.0} between the WAP2 and CLR Tests
for k =2

Duv0 WAP2 WAP2-CLR

Po pov=0 .9  puw=0 .3 5 7 9  pw=0 3 5 7 9
—10000.00 1.00  1.00 946 950 951 955 958 | .003  .002 .001 .001 .001
—~1000.00  1.00  1.00 946 950 951 955 958 | .003  .002 .001 .001 .001
—-100.00  1.00  1.00 946 949 951 954 957 | .003  .002 .001 .000 .001
—50.00 1.00  1.00 946 949 950 953 956 | .003  .002 .001 .001 .001
~10.00  1.00  1.00 946 945 945 947 948 | .003  .002 .001 .000 .001
—750 .99  1.00 945 944 943 944 945 | 003  .002 .001 .000 .000
—5.00 .98  1.00 944 941 938 938 937 | .003  .001 .001 .001 .000
—4.00 .97  1.00 943 938 935 933 931 | .003  .001 .001 .001 .000
-375 .97  1.00 942 937 933 931 929 | .003  .001 .001 .001 .001
-350 .96  1.00 941 936 932 .929 927 | .002  .001 .001 .001 .001
-325 .96 99 940 934 930 926 923 | .002 .00l .001 .001 .001
-3.00 .95 99 940 933 927 923 920 | .003  .001 .001 .001 .000
—2.75 .94 99 938 930 925 920 916 | .003  .001 .001 .000 .000
-2.50 .93 99 937 928 922 916 911 | .002  .001 .001 .001 .000
—225 91 .99 935 925 918 910  .904 | .002  .001 .001 .001 .000
—2.00 .89 99 932 920 912 904 .896 | .002  .002 .001 .001 .001
-1.75 .87 99 928 914 904 895  .885 | .002  .001 .001 .001 .000
-1.50 .83 98 921 905 893  .881  .870 | .001  .001 .001 .001  .000
-125 .78 98 910 890 876  .861  .847 | .001  .002 .001 .001 .001
-1.00 .71 97 895 866  .845  .827  .809 | .002  .002 .001 .001 .001
—0.75 .60 97 851 814 788 762 .738 | .001  .002 .002 .001 .001
—0.50 .45 95 736 681 646  .613  .584 | .002  .002 .002 .002 .001
—025 .24 94 366 .329 310 .293 279 | .002  .002 .002 .001 .001
0.25 —.24 83 366 410 447 488 544 | 001  .001 .002 .002 .001
0.50 —.45 68 737 804 848 892 937 | .002  .002 .001 .001 .000
0.75 —.60 33 851 899 928 959 989 | .002  .001 .001 .001 .000
1.00 —71  —.22 892 928 951 975 997 | .001  .001 .001 .001 .000
125 —78  —.63 911 942 959 979 997 | .001  .002 .001 .001 .000
150 —.83 —.81 921 948 963 980  .995 | .001  .002 .002 .001 .000
1.75 —87  —.89 928 950 965 979 993 | .002  .002 .002 .002 .000
2.00 —.89 —.93 932 953 965 .978 991 | .001  .002 .002 .002 .000
225 —91  —.95 935 953 965 .976 989 | .002  .002 .002 .001 .000
250 —.93  —.96 937 954 964 975 986 | .002  .003 .002 .001 .000
275 —.94  —.97 938 955 964 973 985 | .003  .003 .002 .001 .000
3.00 —.95 —.98 939 955 963 973 983 | .002  .003 .002 .001 .000
325 —.96 —.98 940 954 963 .972 982 | .003  .003 .002 .001 .000
350 —.96  —.99 941 954 962 970 980 | .003  .003 .002 .000 .000
375  —.97  —.99 942 955 962 970 979 | .003  .003 .002 .001 .000
400 —-97 —.99 942 954 962 969 978 | .003  .002 .002 .001 .000
500 —.98  —.99 944 954 960 967 974 | .003  .002 .002 .001 .000
750 —.99 —1.00 945 953 957 964 970 | .003  .002 .001 .001 .000
10.00 —1.00 —1.00 946 952 956 .961  .967 | .004  .002 .002 .001 .000
50.00 —1.00 —1.00 946 950 952 956  .960 | .003  .002 .001 .000 .001
100.00 —1.00 —1.00 946 950 952 955 959 | .003  .002 .002 .001 .001
1000.00 —1.00 —1.00 946 950 951 955 958 | .003  .002 .001 .001 .001
10000.00 —1.00 —1.00 946 950 951 955 958 | .003  .002 .001 .001 .001




TABLE SM-V(b). Average (over \) Power Differences for A € {2.5,5.0, ...,90.0} between the WAP2 and CLR Tests
for k=5

Duv0 WAP2 WAP2-CLR

fo piv=0 .9  puw=0 .3 5 7 9 pw=0 3 5 7 9
—10000.00  1.00  1.00 923 924 929 939 953 | .005  .002 .00 .001 .000
—1000.00  1.00  1.00 923 924 929 939 953 | .005  .002 .001 .001 .000
—-100.00  1.00  1.00 923 923 929 939 952 | .005  .002 .001 .001 .000
—-50.00  1.00  1.00 923 923 929 938 951 | .005  .003 .001 .001 .000
—-10.00  1.00  1.00 922 920 924 931 942 | 005  .002 .001 .000 .000
—750 .99  1.00 921 918 922 929 938 | .004  .002 .000 .000 .000
—5.00 .98  1.00 919 915 917 923 931 | .004  .001 .000 .000 .000
—4.00 .97  1.00 918 912 913 917 924 | .003  .001 .000 -.000 .000
-375 .97  1.00 917 911 911 915 922 | .003  .002 .000 -.000 -.000
—-3.50 .96  1.00 917 910 910 913 920 | .003  .001 -.000 -.000 .000
-325 .96 .99 916 909 908 910 .917 | .003  .001 .000 .000 -.000
-3.00 .95 .99 916 907 906 907 914 | .003  .001 .000 .000 -.000
—2.75 .94 .99 914 905 903 904 910 | .002  .001 .000 .000 -.000
-2.50 .93 .99 913 902 899 900  .904 | .002  .001 .001 -.000 .000
-225 91 .99 910 898 895  .894  .897 | .002  .000 .001 -.000 -.000
—2.00 .89 .99 907 893 888  .887  .888 | .002  .001 .000 .001 -.000
-1.75 .87 .99 903 886 .80 .877  .877 | .001  .001 .001 .000 .000
-1.50 .83 98 896 877 868  .863  .863 | .001  .001 .001 .000 .000
-125 .78 98 885 861  .850  .842  .839 | .002  .001 .001 .000 .000
-1.00 .71 97 865 836 .820  .808  .800 | .001  .000 -.000 -.000 -.000
-0.75 .60 97 823 783 760 .741 727 | .000  -.000 .001 -.000 -.000
—0.50 .45 95 705 649 618 592 572 | -.000 -.000 -.001 -.001 -.000
-0.25 .24 94 340 311 294 282 272 | -.001 -.001 -.001 -.000 -.000
0.25 —.24 83 347 390 428 476 536 | -.000 -.001 -.001 -.000 -.001
0.50 —.45 68 11 777 825 877 931 | 001 .000 .000 .000 .000
0.75 —.60 33 827 873 908 944 985 | .000  .001 .001 .001 .000
1.00 —71  —.22 868 904 930 960 .994 | .002  .001 .001 .001 .000
125 —78  —.63 887 915 940 966  .994 | .001  .001 .004 .003 .001
150 —.83 —.81 897 922 943 966  .992 | .001  .002 .003 .003 .001
175 —87  —.89 904 926 945 965 989 | .002  .003 .004 .003 -.000
200 —.89 —.93 907 928 945 963 986 | .002  .003 .004 .002 .000
225 —91  —.95 910 930 945 961 984 | .001  .004 .004 .001 .000
250 —.93  —.96 912 931 945 960 981 | .001  .005 .004 .001 -.000
275 —.94  —97 914 931 944 958 979 | .003  .005 .004 .001 .000
3.00 —.95 —.98 915 931 943 957 977 | .003  .005 .003 .001 .000
325 —.96  —.98 916 931 942 956 976 | .003  .004 .003 .001 .000
350 —.96  —.99 917 931 942 955 974 | .003  .005 .003 .001 -.000
375 —.97  —.99 918 931 941 954 973 | .003  .004 .002 .001 .000
400 —.97 —.99 919 931 940 954 972 | .004  .005 .002 .001 .000
500 —.98  —.99 920 930 939 951 968 | .004  .005 .002 .000 .000
750 —.99 —1.00 922 929 936 948 963 | .005  .004 .001 .001 .000
10.00 —1.00 —1.00 922 928 935 946 960 | .005  .003 .001 .001 .000
50.00 —1.00 —1.00 923 925 930  .941 955 | .005  .003 .001 .000 -.000
100.00 —1.00 —1.00 923 924 930  .940 954 | .005  .003 .001 .000 .000
1000.00 —1.00 —1.00 923 924 929 939 953 | .005  .002 .001 .001 .000
10000.00 —1.00 —1.00 923 924 929 939 953 | .005  .002 .001 .001 .000




TABLE SM-V(c). Average (over \) Power Differences for A € {2.5,5.0, ...,90.0} between the WAP2 and CLR Tests
for k=10

Duv0 WAP2 WAP2-CLR

Po pov=0 .9  puw=0 .3 5 7 9  pw=0 3 5 7 9
—10000.00 1.00  1.00 901 903 910 924 946 | .011  .006 .003 .00I .000
—~1000.00  1.00  1.00 901 903 910 924 946 | .011  .006 .003 .001  .000
—-100.00  1.00  1.00 901 902 910 .924 945 | .011  .006 .003 .002 .00l
—50.00 1.00  1.00 901 902 909 923 944 | .011  .006 .003 .002 .001
~10.00  1.00  1.00 900 898 904 916 935 | .011  .005 .003 .001 .001
—7.50 .99  1.00 900 896 902 913 932 | .010  .005 .003 .002 .00l
—5.00 .98  1.00 897 892 897 907  .924 | .008  .004 .003 .002 .001
—4.00 .97  1.00 895 889 893 902 918 | .007  .004 .002 .002 .001
-375 .97  1.00 894 888 891  .900 916 | .007  .004 .002 .001 .001
-350 .96  1.00 893 886  .889  .898 914 | .007  .004 .002 .002 .001
-325 .96 99 892 884 888  .896  .911 | .006  .003 .003 .002 .00l
-3.00 .95 99 891 882 885  .893  .908 | .006  .004 .002 .001 .00l
—2.75 .94 99 890 881  .882  .889  .904 | .007  .005 .002 .001 .00l
-2.50 .93 99 888 878 879  .886  .899 | .006  .004 .002 .002 .001
—225 91 .99 885 874 874 881  .892 | .006  .003 .002 .002 .001
—2.00 .89 99 881 869 .868 873  .884 | .004  .003 .002 .002 .001
-1.75 .87 99 876 862 860  .863  .872 | .005  .003 .003 .002 .00l
-1.50 .83 98 869 853 847  .848 857 | .005  .003 .002 .001 .002
-125 .78 98 858 837 820  .827  .834 | .003  .003 .003 .002 .002
-1.00 .71 97 838 809 799 794 796 | .003  .003 .002 .002 .002
—0.75 .60 97 793 756 738 727 U724 | .003  .003 .003 .002 .002
—0.50 .45 95 676 623 596 580 572 | 004  .004 .003 .003 .004
—025 .24 94 323 294 282 274 272 | .003  .004 .003 .002 .003
0.25 —.24 83 326 370 408 460  .530 | .004  .004 .004 .003 .002
0.50 —.45 68 674 743 796 857 923 | .003  .003 .002 .002 .00l
0.75 —.60 33 794 845 885 929 979 | .003  .003 .003 .002 .001
1.00 —71  —.22 838 878 910 .948 989 | .003  .004 .003 .003 .002
125 —.78  —.63 857 891 920 953  .989 | .003  .005 .005 .005 .002
150 —.83  —.81 870 899 927 955 986 | .004  .005 .007 .005 .00l
1.75 —87  —.89 877 904 929 953 983 | .005  .007 .008 .004 .001
2.00 —.89 —.93 881 906 929 951 980 | .005  .007 .008 .004 .001
225 —91  —.95 884 909 929 .950 978 | .005  .009 .008 .003 .001
250 —.93  —.96 887 910 928 948 975 | .006  .009 .008 .003 .00l
2.75 —.94  —.97 888 910 928 946 973 | .006  .009 .008 .003 .00l
3.00 —.95 —.98 890 911 927 945 971 | .006 .010 .008 .002 .00l
325 —.96  —.98 892 911 925 944 969 | .007  .010 .007 .002 .000
350 —.96  —.99 893 912 925 943 968 | .007 .010 .007 .002 .001
375  —.97  —.99 893 912 924 942 967 | .007 .010 .006 .002 .000
4.00 —.97  —.99 894 912 923 942 966 | .008  .010 .006 .002 .000
500 —.98  —.99 896 910 921 939 962 | .009  .009 .005 .002 .001
750 —.99 —1.00 899 908 918 934 957 | .009  .008 .004 .002 .000
10.00 —1.00 —1.00 900 907 916 932 954 | .011  .008 .004 .002 .000
50.00 —1.00 —1.00 901 903 912 926 948 | 010  .006 .003 .002 .00l
100.00 —1.00 —1.00 901 903 911 925 947 | .011  .006 .003 .002 .00l
1000.00 —1.00 —1.00 901 903 910 925 946 | .011  .006 .003 .001  .000
10000.00 —1.00 —1.00 901 903 910 924 946 | .011  .006 .003 .001  .000




TABLE SM-V(d). Average (over \) Power Differences for A € {2.5,5.0, ...,90.0} between the WAP2 and CLR Tests
for k =20

Puv0 WAP2 WAP2 CLR

Po Puv=0 9  puw=0 .3 5 7 9 puw=0 .3 5 7 9
—10000.00  1.00  1.00 862 865 878 901 934 | .013  .008 .004 .001 .000
~1000.00  1.00  1.00 862 865 .878 900 .934 | .013  .008 .004 .001 .000
—~100.00  1.00  1.00 862 864 .877 900 .933 | .013  .007 .003 .002 .000
~50.00 1.00  1.00 862 864 876 .899 .932 | .013  .007 .003 .002 .000
~10.00 1.00  1.00 860  .860 .870 .892  .923 | .012  .007 .002 .002 .00l
~750 .99  1.00 859  .858 .867 .889 .919 | .012  .007 .002 .002 .000
~5.00 .98  1.00 856  .853 .862 .881 .911 | .010  .006 .003 .001 .000
—4.00 .97 100 854 849 858 .876 .905 | .009  .005 .003 .002 .000
—-3.75 97 1.00 853  .847 856 .875 .902 | .009  .005 .003 .003 -.000
350 .96  1.00 852 845 854 .872 .900 | .009  .004 .003 .003 .000
~3.25 .96 .99 851 843 852 .869 .897 | .009  .004 .003 .002 -.000
~-3.00 .95 99 849 841 849 866 .893 | .008  .004 .003 .002 .000
275 .94 .99 847 839  .846 .862 .889 | .008  .005 .003 .001 -.000
250 .93 .99 845 836 .842 857 .884 | .007  .004 .003 .002 .000
225 91 .99 842 832 837 .81 .877 | .006  .004 .002 .002 .000
—2.00 .89 .99 838 826 .830 .843 .869 | .006  .004 .003 .002 .000
175 87 .99 833 818 820 .832 .87 | .005  .004 .003 .002 .000
~1.50 .83 98 825 807 .806 .817 .841 | .005  .005 .003 .002 .000
~1.25 .78 98 811 789 787 794 816 | .005  .004 .004 .002 .00l
~1.00 .71 97 787 760 752 757 776 | .004  .004 .003 .001 .00l
—0.75 .60 97 739 701 688  .688 .704 | .004  .002 .002 .00l .000
050 .45 95 615 567 549 543 556 | .002  .002 .00l .001 .00l
025 .24 94 286 263 258 .257 263 | .001  .001 .002 .00l .000
025 —.24 83 286 .328 .367 428  .512| .002  .003 .001 .001 .00l
050 —.45 68 617 692 757 820 912 | .004  .003 .003 .002 .000
0.75 —.60 33 743 800 .849 906 .971 | .004  .004 .003 .003 .00l
.00 —.71  —.22 790 .837 877 927 983 | .004  .005 .004 .003 .002
125 —.78  —.63 812 853 889 936  .983 | .004  .005 .005 .007 .002
150 —.83 —.81 824 861 .897 936 .980 | .004  .006 .008 .007 .001
175 —.87  —.89 832 867 .900 934 .976 | .006  .007 .010 .006 .00l
2.00 —.89  —.93 838 870 900 931 .972 | .006  .009 .010 .004 .00l
225 —91  —.95 842 872 900 930 .969 | .007  .010 .010 .004 .00l
250 —.93  —.96 845 873 899  .927 967 | .008  .011 .010 .003 .00l
2.75  —.94  —.97 848 874 897 925 965 | .008 .01l .009 .002 .00l
3.00 —.95 —.08 849 875 .896 924 .963 | .008  .011 .008 .002 .00l
325 —.96  —.08 851 875 .895 922 .961 | .009  .012 .008 .002 .000
350 —.96  —.99 852 875 .894 921 960 | .009  .012 .007 .002 .00l
375 —97  —.99 853 875 .893 920 .958 | .009  .012 .007 .002 .00l
400 —.97  —.99 854 875 893 919 957 | .009  .012 .007 .002 .00l
500 —.98  —.99 857 874 .890 916 .954 | .010  .012 .006 .002 .00l
750 —.99 —1.00 859 872 .887 911 .948 | .012  .010 .005 .002 .00l
10.00 —1.00 —1.00 860  .870 885 .909 .945 | .012  .010 .005 .002 .00l
50.00 —1.00 —1.00 862 866 .879 .902 .936 | .013  .008 .004 .002 .00l
100.00 —1.00 —1.00 862 .85 879 901 .935 | .013  .008 .004 .00l .000
1000.00 —1.00 —1.00 862 865 .878 901 .934 | .013  .008 .004 .001 .000
10000.00 —1.00 —1.00 862 865 .878 901 .934 | .013  .008 .004 .001 .000




TABLE SM-V(e). Average (over \) Power Differences for A € {2.5,5.0, ...,90.0} between the WAP2 and CLR Tests
for kK =40

Puv0 WAP2 WAP2-CLR

Po piv=0 9  puw=0 .3 5 7 9  pw=0 3 5 7 9
—10000.00  1.00  1.00 817 819 835 869 919 | .024 013 .006 .004 .001
—~1000.00  1.00  1.00 817 819 835 .869  .919 | .023  .013 .006 .004 .001
—-100.00  1.00  1.00 817 818 834 867 917 | .023 013 .006 .004 .001
—50.00  1.00  1.00 817 817 833 867 916 | .023 012 .005 .004 .001
—10.00  1.00  1.00 814 810 826 .88  .905 | .022  .010 .005 .003 .000
—7.50 .99 1.0 812 807 .823  .853  .901 | .020  .010 .005 .003 .001
—5.00 .98  1.00 808 802 816  .845  .892 | .018  .009 .005 .003 .000
—4.00 .97 100 804 797 810 838  .884 | .016  .008 .004 .003 .000
-3.75 .97 100 802 796 808  .836  .882 | .015  .008 .004 .004 .000
-3.50 .96 1.00 801 794 806  .834  .879 | .014  .008 .004 .003 -.000
-325 .96 99 799 792 803 .831 876 | .013  .008 .004 .003 .000
-3.00 .95 99 797 790 800 .828 872 | 012  .008 .004 .004 .000
—2.75 .94 99 795 786 796 .823  .867 | .012  .007 .004 .003 .001
-2.50 .93 99 792 783 792 817 .861 | .011  .007 .005 .002 .001
-225 91 .99 788 777 786 811 854 | 011  .006 .004 .003 .000
—2.00 .89 99 783 772 778 802 .846 | .009  .007 .005 .004 .001
-1.75 .87 99 777 761 767 790 .833 | .009  .006 .004 .003 -.000
-1.50 .83 98 768 749 754 773 816 | .008  .006 .004 .003 .001
-125 .78 98 752 730 730 750 .791 | 007 .006 .004 .003 .000
-1.00 .71 97 727 698 694 709 751 | 007  .007 .004 .003 -.000
—0.75 .60 97 672 633 624 632 .675 | .006  .005 .004 .001 -.000
—0.50 .45 95 536 490 480 489 524 | 004  .004 .002 .001 -.002
—025 .24 94 233 217 215 221 242 | .001  .001 -.000 -.001 -.002
0.25 —.24 83 237 275 318 383 491 | .001  .000 .000 -.002 -.002
0.50 —.45 68 539 621 697 788 .892 | .004  .004 .004 .003 .001
0.75 —.60 33 672 741 804 876 958 | .004  .005 .005 .004 .001
1.00 —71  —.22 727 784 837 901 974 | 005  .006 .006 .006 .003
125 —78  —.63 754 803 .83 911 974 | .006  .008 .010 .009 .004
150 —.83  —.81 769 815 861  .913 969 | .007  .012 .014 .011 .002
175  —87  —.89 779 824 865 910  .965 | .008  .016 .016 .008 .001
2.00 —.89 —.93 785 828 866 .905  .961 | .009  .017 .016 .006 .001
225 —91  —.95 790 831 866 .903  .958 | .010  .019 .017 .006 .001
250 —.93  —.96 794 833 864 901 955 | .011  .020 .016 .005 .001
275 —.94  —.97 797 834 862 .898 953 | .012  .020 .015 .004 .001
3.00 —.95 —.98 799 834 861  .896  .950 | .013  .021 .014 .004 .001
325 —.96 —.98 801 834 859  .894 949 | .014  .021 013 .004 .001
350 —.96  —.99 803 835 858  .893  .947 | .015  .021 013 .004 .001
375  —.97  —.99 805 834 857  .892 946 | .016  .021 .013 .004 .001
400 —-97 —.99 806  .834 855 .890 .944 | .016  .021 012 .004 .001
500 —.98  —.99 810 831  .852  .887  .940 | .018  .019 .011 .004 .001
750 —.99 —1.00 814 828 847  .881 933 | .021  .017 .009 .004 .001
10.00 —1.00 —1.00 815 826 844 878 929 | .022  .016 .009 .004 .002
50.00 —1.00 —1.00 817 820 .837 .871 921 | .023  .014 .007 .004 .001
100.00 —1.00 —1.00 817 820 836  .870  .920 | .023  .014 .007 .005 .001
1000.00 —1.00 —1.00 817 819 836  .869  .919 | .024 013 .006 .004 .001
10000.00 —1.00 —1.00 817 819 835  .869 919 | .024 013 .006 .004 .001




TABLE SM-VI(a). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2,, and CLR
for py, = .0 and n = 100, 500 and 1000

kX CLR CLR2,50CLR SD CLR250,CLR SD CLR2900-CLR SD

2 1 .868 -.0011 .0001 -.0013 .0001 -.0014 .0000
2 3 .687 -.0021 .0002 -.0025 .0001 -.0025 .0001
2 5 .508 -.0019 .0002 -.0025 .0001 -.0028 .0001
2 7 358 -.0009 .0002 -.0023 .0001 -.0025 .0001
2 10 .195 -.0011 .0002 -.0017 .0001 -.0019 .0001
2 15 .063 .0002 .0002 -.0005 .0001 -.0006 .0001
2 20 .017 .0001 .0001 -.0002 .0000 -.0002 .0000
5 1 .905 .0002 .0002 .0001 .0001 -.0001 .0001
5 3 .789 .0017 .0003 .0005 .0001 .0002 .0001
5 5 .659 .0028 .0003 .0008 .0002 .0005 .0001
5 7 .529 .0031 .0004 .0005 .0002 .0003 .0001
5 10 .350 .0041 .0003 .0009 .0002 .0004 .0001
5 12 257 .0043 .0003 .0011 .0001 .0007 .0001
5 15 .156 .0029 .0003 .0007 .0001 .0004 .0001
5 20 .059 .0020 .0002 .0005 .0001 .0002 .0001
5 1 .905 .0002 .0002 .0001 .0001 -.0001 .0001
5 3 .789 .0017 .0003 .0005 .0001 .0002 .0001
5 5 .659 .0028 .0003 .0008 .0002 .0005 .0001
5 7 .529 .0031 .0004 .0005 .0002 .0003 .0001
5 10 .350 .0041 .0003 .0009 .0002 .0004 .0001
5 12 257 .0043 .0003 .0011 .0001 .0007 .0001
5 15 156 .0029 .0003 .0007 .0001 .0004 .0001
5 20 .059 .0020 .0002 .0005 .0001 .0002 .0001
5 25 .021 .0011 .0002 .0001 .0001 .0000 .0000
10 1 .920 .0006 .0003 .0003 .0001 .0002 .0001
10 5 7581 .0042 .0004 .0009 .0002 .0006 .0001
10 10 496 .0068 .0005 .0011 .0002 .0005 .0001
10 15 .279 .0077 .0004 .0016 .0002 .0007 .0002
10 17 212 .0067 .0004 .0013 .0002 .0006 .0002
10 20 .135 .0065 .0004 .0013 .0002 .0006 .0001
10 25 .060 .0039 .0003 .0008 .0001 .0003 .0001
10 30 .024 .0020 .0002 .0003 .0001 .0001 .0000
20 1 .932 .0009 .0003 .0004 .0002 .0003 .0001
20 5 .824 .0044 .0005 .0007 .0002 .0006 .0001
20 10 .632 .0099 .0006 .0023 .0003 .0014 .0002
20 15 436 .0126 .0006 .0030 .0003 .0020 .0002
20 20 .268 .0141 .0006 .0031 .0003 .0015 .0002
20 25 .149 .0107 .0005 .0024 .0002 .0012 .0001
20 30 .077 .0067 .0004 .0014 .0002 .0006 .0001
20 40 .017 .0025 .0002 .0005 .0001 .0003 .0001
40 1 938 .0011 .0004 .0004 .0002 .0003 .0001
40 5 872 .0057 .0005 .0010 .0002 .0007 .0002
40 10 .750 0125 .0006 .0027 .0003 .0017 .0002
40 15 .599 .0201 .0007 .0033 .0003 .0021 .0002
40 20 .443 .0235 .0008 .0047 .0003 .0028 .0002
40 30 .198 .0194 .0006 .0039 .0003 .0021 .0002
40 40 .068 .0113 .0005 .0020 .0002 .0012 .0002
40 60 .005 .0013 .0002 .0002 .0001 .0001 .0001




TABLE SM-VI(b). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2,, and CLR
for py, = .3 and n = 100, 500 and 1000

kX CLR CLR2,50CLR SD CLR250,CLR SD CLR2900-CLR SD
2 1 .868 -.0015 .0002 -.0016 .0001 -.0017 .0000
2 3 684 -.0023 .0002 -.0026 .0001 -.0026 .0001
2 5 .501 -.0024 .0002 -.0030 .0001 -.0029 .0001
2 7T .34v -.0016 .0002 -.0025 .0001 -.0027 .0001
2 10 .184 -.0004 .0002 -.0014 .0001 -.0015 .0001
2 15 .056 -.0001 .0001 -.0006 .0001 -.0006 .0001
2 20 .015 -.0001 .0001 -.0002 .0000 -.0002 .0000
5 1 .905 .0001 .0002 .0001 .0001 .0001 .0001
5 3 .78 .0010 .0003 .0003 .0001 .0002 .0001
5 5 .647 .0019 .0003 .0007 .0002 .0003 .0001
5 7 510 .0028 .0003 .0007 .0002 .0003 .0001
5 10 .330 .0034 .0004 .0007 .0001 .0003 .0001
5 12 235 .0029 .0003 .0006 .0002 .0001 .0001
5 15 137 .0020 .0003 .0001 .0001 .0000 .0001
5 20 .048 .0015 .0002 .0001 .0001 .0000 .0001
5 256 .016 .0007 .0002 .0002 .0001 .0001 .0000
10 1 .920 .0000 .0003 .0001 .0001 .0000 .0001
10 5 744 .0030 .0004 .0004 .0002 .0001 .0001
10 10 472 .0055 .0005 .0005 .0002 -.0000 .0001
10 15 .248 .0052 .0004 .0008 .0002 .0003 .0001
10 17 184 .0049 .0004 .0006 .0002 .0000 .0001
10 20 .114 .0038 .0003 .0007 .0001 .0002 .0001
10 25 .046 .0018 .0002 .0003 .0001 .0002 .0001
10 30 .017 .0013 .0002 .0002 .0001 .0002 .0001
20 1 931 .0007 .0004 -.0000 .0001 .0001 .0001
20 5 .819 .0032 .0005 .0013 .0002 .0008 .0001
20 10 .615 .0080 .0006 .0017 .0002 .0012 .0002
20 15 .406 .0104 .0006 .0019 .0003 .0010 .0002
20 20 .236 .0100 .0005 .0017 .0002 .0007 .0002
20 25 122 .0075 .0004 .0018 .0002 .0010 .0001
20 30 .057 .0050 .0003 .0010 .0002 .0007 .0001
20 40 .011 .0015 .0002 .0004 .0001 .0001 .0001
40 1 937 .0009 .0004 .0002 .0002 .0003 .0001
40 5 .869 .0046 .0005 .0014 .0002 .0009 .0002
40 10 .737 0114 .0007 .0027 .0003 .0016 .0002
40 15 572 .0164 .0007 .0033 .0003 .0019 .0002
40 20 .409 .0189 .0007 .0036 .0003 .0019 .0002
40 30 .164 .0147 .0006 .0023 .0003 .0011 .0002
40 40 .048 .0079 .0004 .0015 .0002 .0008 .0001
40 60 .002 .0010 .0001 .0002 .0001 .0001 .0000




TABLE SM-VI(c). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2,, and CLR
for py, = .5 and n = 100, 500 and 1000

kX CLR CLR2,50CLR SD CLR250,CLR SD CLR2900-CLR SD

2 1 867 -.0019 .0001 -.0018 .0001 -.0018 .0001
2 3 675 -.0025 .0002 -.0027 .0001 -.0028 .0001
2 5 486 -.0024 .0002 -.0028 .0001 -.0029 .0001
2 T 327 -.0013 .0002 -.0020 .0001 -.0021 .0001
2 10 .166 -.0012 .0002 -.0018 .0001 -.0018 .0001
2 15 .046 -.0004 .0001 -.0007 .0001 -.0007 .0000
2 20 .012 -.0001 .0001 -.0001 .0000 -.0002 .0000
5 1  .904 .0003 .0002 .0000 .0001 .0001 .0001
5 3 .T76 .0010 .0003 -.0000 .0001 -.0001 .0001
5 5 .624 .0010 .0004 .0001 .0002 -.0000 .0001
5 7 476 .0013 .0004 .0000 .0002 -.0000 .0001
5 10 .289 .0008 .0004 -.0000 .0001 -.0001 .0001
5 12 196 .0009 .0003 .0000 .0001 -.0001 .0001
5 15 .104 .0012 .0003 -.0002 .0001 -.0003 .0001
5 20 .032 .0008 .0002 .0001 .0001 -.0001 .0001
5 25 .009 .0003 .0001 .0000 .0000 -.0000 .0000
10 1 919 .0004 .0003 .0000 .0001 -.0001 .0001
10 5 .725 .0008 .0004 .0001 .0002 .0001 .0001
10 10 .423 .0026 .0005 .0001 .0002 -.0002 .0001
10 15 194 .0030 .0004 .0001 .0002 -.0001 .0001
10 17 .136 .0026 .0004 .0002 .0002 -.0001 .0001
10 20 .077 .0022 .0003 .0004 .0001 .0001 .0001
10 25 .026 .0012 .0002 .0001 .0001 -.0000 .0001
10 30 .008 .0007 .0001 .0003 .0001 .0000 .0000
20 1 931 .0006 .0004 .0003 .0002 .0003 .0001
20 5 .804 .0033 .0005 .0011 .0002 .0009 .0002
20 10 571 .0055 .0006 .0012 .0003 .0010 .0002
20 15  .340 .0065 .0006 .0017 .0003 .0011 .0002
20 20 172 .0059 .0005 .0013 .0002 .0005 .0001
20 25 .076 .0046 .0004 .0007 .0002 .0004 .0001
20 30 .030 .0027 .0003 .0005 .0001 .0003 .0001
20 40 .004 .0005 .0001 .0001 .0001 .0001 .0000
40 1 937 .0007 .0004 -.0001 .0002 .0001 .0001
40 5 .862 .0032 .0005 .0009 .0002 .0005 .0002
40 10 .706 .0059 .0007 .0012 .0003 .0008 .0002
40 15 513 .0094 .0007 .0013 .0003 .0011 .0002
40 20 .335 .0099 .0007 .0021 .0003 .0013 .0002
40 30 .103 .0085 .0005 .0011 .0002 .0007 .0002
40 40 .022 .0036 .0003 .0006 .0001 .0002 .0001
40 60 .001 .0003 .0001 .0000 .0000 .0000 .0000




TABLE SM-VI(d). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2,, and CLR
for py, = .7 and n = 100, 500 and 1000

kX CLR CLR2,50CLR SD CLR250,CLR SD CLR2900-CLR SD

2 1 .864 -.0017 .0002 -.0018 .0001 -.0018 .0000
2 3 .658 -.0026 .0003 -.0028 .0001 -.0028 .0001
2 5 456 -.0026 .0003 -.0029 .0001 -.0030 .0001
2 7 .29 -.0026 .0002 -.0025 .0001 -.0025 .0001
2 10 .140 -.0009 .0002 -.0012 .0001 -.0013 .0001
2 15 .035 -.0002 .0001 -.0004 .0000 -.0004 .0000
2 20 .009 -.0000 .0001 -.0000 .0000 -.0001 .0000
5 1 .901 -.0000 .0002 -.0001 .0001 .0000 .0001
5 3 .753 .0001 .0003 .0000 .0001 -.0003 .0001
5 5 .B75 -.0010 .0004 -.0007 .0002 -.0006 .0001
5 7 410 -.0011 .0004 -.0015 .0002 -.0014 .0001
5 10 .219 .0003 .0003 -.0006 .0002 -.0009 .0001
5 12 137 -.0001 .0003 -.0006 .0001 -.0008 .0001
5 15 .064 .0005 .0002 -.0001 .0001 -.0002 .0001
5 20 .016 .0003 .0002 .0000 .0001 -.0001 .0001
5 256 .004 .0001 .0001 .0000 .0000 -.0000 .0000
10 1 918 -.0002 .0003 .0000 .0001 -.0001 .0001
10 5 .676 -.0008 .0005 -.0006 .0002 -.0008 .0002
10 10 .322 .0004 .0005 -.0006 .0002 -.0008 .0002
10 15 115 .0010 .0004 -.0005 .0002 -.0005 .0001
10 17 .073 .0007 .0003 -.0002 .0001 -.0003 .0001
10 20 .034 .0009 .0002 .0000 .0001 -.0000 .0001
10 25 .009 .0004 .0001 -.0001 .0001 -.0001 .0001
10 30 .002 .0002 .0001 .0000 .0000 .0000 .0000
20 1 .930 -.0005 .0004 .0001 .0001 .0001 .0001
20 5 .71 .0001 .0005 -.0002 .0002 -.0002 .0002
20 10 .470 .0025 .0006 .0002 .0003 -.0001 .0002
20 15 .220 .0013 .0005 -.0004 .0002 -.0004 .0002
20 20 .083 .0027 .0004 .0004 .0002 .0002 .0001
20 25 .027 .0019 .0003 .0002 .0001 .0001 .0001
20 30 .008 .0009 .0002 .0001 .0001 .0000 .0000
20 40 .001 .0001 .0001 .0000 .0000 .0000 .0000
40 1 936 .0008 .0004 .0004 .0002 .0003 .0001
40 5 841 -.0005 .0006 .0002 .0003 .0000 .0002
40 10 .624 -.0003 .0008 -.0006 .0003 -.0002 .0002
40 15 .382 .0042 .0008 .0003 .0004 -.0001 .0003
40 20 .197 .0052 .0006 .0005 .0003 .0000 .0002
40 30 .033 .0036 .0003 .0005 .0001 .0001 .0001
40 40 .004 .0009 .0001 .0001 .0001 .0001 .0001
40 60 .000 .0000 .0000 .0000 .0000 .0000 .0000




TABLE SM-VI(e). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2,, and CLR
for py, = .9 and n = 100, 500 and 1000

kX CLR CLR2,50CLR SD CLR250,CLR SD CLR2900-CLR SD

2 1 .84 -.0023 .0002 -.0020 .0001 -.0020 .0001
2 3 617 -.0026 .0003 -.0028 .0001 -.0027 .0001
2 5 410 -.0029 .0003 -.0027 .0001 -.0025 .0001
2 7 258 -.0019 .0003 -.0019 .0001 -.0020 .0001
2 10 .119 -.0011 .0002 -.0011 .0001 -.0011 .0000
2 15 .029 -.0003 .0001 -.0004 .0000 -.0004 .0000
2 20 .006 -.0001 .0000 -.0001 .0000 -.0001 .0000
5 1 .887 -.0006 .0003 -.0004 .0001 -.0003 .0001
5 3 675 -.0026 .0004 -.0018 .0002 -.0016 .0001
5 5 462 -.0026 .0004 -.0018 .0002 -.0018 .0001
5 7 .297 -.0022 .0004 -.0020 .0002 -.0021 .0001
5 10 .140 -.0002 .0003 -.0011 .0001 -.0011 .0001
5 12 .083 .0003 .0003 -.0005 .0001 -.0007 .0001
5 15 .036 -.0001 .0002 -.0003 .0001 -.0004 .0001
5 20 .008 .0000 .0001 -.0000 .0000 -.0001 .0000
5 256 .002 .0000 .0000 -.0000 .0000 -.0000 .0000
10 1 .907 -.0008 .0003 -.0002 .0001 -.0002 .0001
10 5 .533 -.0035 .0005 -.0026 .0002 -.0024 .0002
10 10 .176 -.0004 .0004 -.0014 .0002 -.0016 .0001
10 15 .047 .0006 .0002 -.0003 .0001 -.0004 .0001
10 17 .026 .0001 .0002 -.0002 .0001 -.0003 .0001
10 20 .011 .0002 .0002 -.0001 .0001 -.0002 .0000
10 25 .002 -.0000 .0001 -.0000 .0000 -.0000 .0000
10 30 .000 .0000 .0000 -.0000 .0000 -.0000 .0000
20 1 .923 -.0005 .0004 -.0001 .0002 -.0001 .0001
20 5  .625 -.0016 .0006 -.0012 .0003 -.0009 .0002
20 10 .243 .0019 .0005 -.0010 .0002 -.0012 .0002
20 15 .072 .0024 .0004 -.0006 .0002 -.0005 .0001
20 20 .019 .0006 .0002 -.0002 .0001 -.0003 .0001
20 25 .004 .0004 .0001 -.0000 .0000 -.0001 .0000
20 30 .001 .0001 .0001 .0000 .0000 .0000 .0000
20 40 .000 .0000 .0000 .0000 .0000 .0000 .0000
40 1 932 .0004 .0005 .0004 .0002 .0002 .0001
40 5 .727 -.0035 .0007 -.0012 .0003 -.0011 .0002
40 10  .358 .0019 .0007 -.0013 .0003 -.0016 .0002
40 15 .130 .0048 .0006 .0000 .0002 -.0004 .0002
40 20 .039 .0030 .0004 .0000 .0001 -.0000 .0001
40 30 .003 .0004 .0001 .0001 .0000 .0000 .0000
40 40 .000 .0000 .0000 .0000 .0000 .0000 .0000
40 60 .000 .0000 .0000 .0000 .0000 .0000 .0000




FIGURE SM-I(a). Power of the significance level .05 CLR, LM, and AR tests and the POIS2 power envelope for
fixed null value Sy = 0, varying true value S,, k =2, po =0, and A = 5,20
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FIGURE SM-I(b). Power of the significance level .05 CLR, LM, and AR tests and the POIS2 power envelope for
fixed null value Sy = 0, varying true value S,, k =5, po =0, and A = 5,20
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FIGURE SM-I(c). Power of the significance level .05 CLR, LM, and AR tests and the POIS2 power envelope for
fixed null value Sy = 0, varying true value S, k = 10, pog = 0, and A = 5,20
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