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Abstract

This paper considers tests and con�dence sets (CS�s) concerning the coe¢ cient on the endogenous vari-

able in the linear IV regression model with homoskedastic normal errors and one right-hand side endogenous

variable. The paper derives a �nite-sample lower bound function for the probability that a CS constructed

using a two-sided invariant similar test has in�nite length and shows numerically that the conditional like-

lihood ratio (CLR) CS of Moreira (2003) is not always �very close,� say :005 or less, to this lower bound

function. This implies that the CLR test is not always very close to the two-sided asymptotically-e¢ cient

(AE) power envelope for invariant similar tests of Andrews, Moreira, and Stock (2006) (AMS).

On the other hand, the paper establishes the �nite-sample optimality of the CLR test when the correlation

between the structural and reduced-form errors, or between the two reduced-form errors, goes to 1 or -1 and

other parameters are held constant, where optimality means achievement of the two-sided AE power envelope

of AMS. These results cover the full range of (non-zero) IV strength.

The paper investigates in detail scenarios in which the CLR test is not on the two-sided AE power

envelope of AMS. Also, theory and numerical results indicate that the CLR test is close to having greatest

average power, where the average is over a grid of concentration parameter values and over pairs alternative

hypothesis values of the parameter of interest, uniformly over pairs of alternative hypothesis values and

uniformly over the correlation between the structural and reduced-form errors. Here, �close�means :015 or

less for k � 20; where k denotes the number of IV�s, and :025 or less for 0 < k � 40:
The paper concludes that, although the CLR test is not always very close to the two-sided AE power

envelope of AMS, CLR tests and CS�s have very good overall properties.

Keywords: Conditional likelihood ratio test, con�dence interval, in�nite length, linear instrumental

variables, optimal test, weighted average power, similar test.

JEL Classi�cation Numbers: C12, C36.



1 Introduction

The linear instrumental variables (IV) regression model is one of the most widely used models

in economics. It has been widely studied and considerable e¤ort has been made to develop good

estimation and inference methods for it. In particular, following the recognition that standard two

stage least squares t tests and con�dence sets (CS�s) can perform quite poorly under weak IV�s

(see Dufour (1997), Staiger and Stock (1997), and references therein), inference procedures that

are robust to weak IV�s have been developed, e.g., see Kleibergen (2002) and Moreira (2003, 2009).

The focus has been on models with one right-hand side (rhs) endogenous variable, because this

arises most frequently in applications, and on over-identi�ed models, because Anderson and Rubin

(1949) (AR) tests and CS�s are robust to weak IV�s and perform very well in exactly-identi�ed

models.

Andrews, Moreira, and Stock (2006) (AMS) develop a �nite-sample two-sided AE power en-

velope for invariant similar tests concerning the coe¢ cient on the rhs endogenous variable in the

linear IV model under homoskedastic normal errors and known reduced-form variance matrix. They

show via numerical simulations that the conditional likelihood ratio (CLR) test of Moreira (2003)

has power that is essentially (i.e., up to simulation error) on the power envelope. Chernozhukov,

Hansen, and Jansson (2009) (CHJ) show that this power envelope also applies to non-invariant

tests provided the envelope is for power averaged over certain direction vectors in a unit sphere.

CHJ also shows that the invariant similar tests that generate the two-sided AE power envelope

are �-admissible and d-admissible. Mikusheva (2010) provides approximate optimality results for

CLR-based CS�s that utilize the testing results in AMS. Chamberlain (2007), Andrews, Moreira,

and Stock (2008), and Hillier (2009) provide related results.

It is shown in Dufour (1997) that any CS with correct size 1�� must have positive probability
of having in�nite length at every point in the parameter space. The AR and CLR CS�s have this

property. In fact, simulation results show that in some over-identi�ed contexts the AR CS has

a lower probability of having an in�nite length than the CLR CS does. For example, consider a

model with one rhs endogenous variable, k IV�s, a concentration parameter �v (which is a measure

of the strength of the IV�s), homoskedastic normal errors, a correlation �uv between the structural-

equation error and the reduced-form error (for the �rst-stage equation) equal to zero, and no

covariates. When (k; �v) equals (2; 7); (5; 10); (10; 15); (20; 15); and (40; 20); the di¤erences between

the probabilities that the 95% CLR and AR CS�s have in�nite length are :013; :027; :037; :043;

and :049; respectively.1 In fact, one obtains positive di¤erences for all combinations of (k; �v) for

k = 2; 5; 10; 20; 40 and �v = 1; 5; 10; 15; 20: Hence, in these over-identi�ed scenarios the AR CS
1See Table SM-I in the Supplemental Material for other parameter combinations.
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outperforms the CLR CS in terms of its in�nite-length behavior, which is an important property

for CS�s. Similarly, one obtains positive (but smaller) di¤erences also when �uv = :3 for the same

range of (k; �v) values. On the other hand, for �uv = :5; :7; and :9; the di¤erences are negative over

the same range of (k; �v) values.

The AR and CLR CS�s are based on inverting AR and CLR tests that fall into the class of

invariant similar tests considered in AMS. Hence, the simulation results for �uv = :0 and :3 raise

the question: how can these results be reconciled with the near optimal CLR test and CS results

described above? In this paper, we answer this question and related questions concerning the

optimality of the CLR test and CS.

The contributions of the paper are as follows. First, the paper shows that the probability that

an invariant similar CS has in�nite length for a �xed true parameter value �� equals one minus the

power against �� of the test used to construct the CS as the null value �0 goes to 1 or �1: This
leads to explicit formulae for the probabilities that the AR and CLR CS�s have in�nite length.

Second, the paper determines a �nite-sample lower bound function on the probabilities that a

CS has in�nite length for CS�s based on invariant similar tests. This lower bound is obtained by

using the �rst result and �nding the limit of the power bound in AMS as the null value �0 goes

to 1 or �1: The lower bound function is found to be very simple. It is a function only of j�uvj;
�v; and k: These results allow one to compare the probabilities that the AR and CLR CS�s have

in�nite length with the lower bound.

Third, simulation results show that the AR and CLR CS�s are not always close to the lower

bound. This is not surprising for the AR CS, but it is surprising for the CLR CS in light of the

AMS results. The probabilities that the CLR CS has in�nite length are found to be o¤ the lower

bound function by a magnitude that is decreasing in j�uvj; increasing in k; and are maximized over
�v at values that correspond to somewhat weak IV�s, but not irrelevant IV�s. For �uv = 0; the paper

shows (analytically) that the AR test achieves the lower bound function. Hence, for �uv = 0; the

probabilities that the CLR CS has in�nite length exceed the lower bound by the same amounts as

reported above for the di¤erence between the in�nite length probabilities of the CLR and AR CS�s

for several (k; �v) values. On the other hand, for values of j�uvj � :7; the CLR CS has probabilities

of having in�nite length that are close to the lower bound function, :010 or less and typically much

less, for all (k; �v) combinations considered. For values of j�uvj � :7; the AR CS has probabilities

of having in�nite length that are often far from the lower bound. For j�uvj = :9 and certain values

of �v; they are as large as :084; :196; :280; :353; and :422 for k = 2; 5; 10; 20; and 40; respectively.2

The AMS numerical results did not detect scenarios where the CLR test�s power is o¤ the two-

2See Table SM-I in the SM.
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sided power envelope because AMS focussed on power for a �xed null hypothesis and a wide range

of alternative values, whereas the probability that CS has in�nite length depends on underlying

tests�power for a �xed true parameter and arbitraily distant null hypothesis values. As discussed

in Section 4 below, power in these two scenarios is di¤erent.

AMS reports results for only two values of the correlation �
 between the reduced-form errors,

viz., �
 = :5 and :95: However, this is not the reason that AMS did not detect scenarios where the

CLR test�s power is noticeably o¤ the two-sided power envelope. Figure SM-I in the Supplemental

Material provides graphs that are the same as in AMS, but with �
 = 0; rather than �
 = :5 or :95:

Even for �
 = 0; the power of the CLR test is close to the POIS2 power envelope in the scenarios

considered, viz., :0110 or less. Note that �
 = 0 is the �
 value that yields many of the largest

di¤erences between the power of the CLR test and the POIS2 power envelope found in this paper

when the true �� = 0 is �xed and the null value �0 varies.

Fourth, the paper derives new optimality properties of the CLR and Lagrange multiplier (LM)

tests when �uv ! �1 or �
 ! �1 with other parameters �xed at any values (with non-zero
concentration parameter). In particular, optimality holds for �xed �nite non-zero values of the

concentration parameter. Optimality here is in the class of invariant similar tests or similar tests

and employs the two-sided AE power envelope of AMS. These results are empirically relevant

because they are consistent with the numerical results that show that the CLR test is close to the

power envelope when j�uvj is large, viz., :7 and :9; but not extremely close to one.
These optimality results hold because taking �uv ! �1 or �
 ! �1 with other parameters �xed

drives the length of the mean vector of the conditioning statistic T; as de�ned in AMS and below,

to in�nity. This is the same mechanism that yields asymptotic optimality of the CLR and LM tests

when the concentration parameter goes to in�nity as n ! 1 (i.e., under strong or semi-strong

IV�s). The results show that arbitrarily large values of the concentration parameter are not needed

for limiting optimality of the CLR and LM tests.

Fifth, we simulate power di¤erences (PD�s) between the two-sided AE power envelope of AMS

and the power of the CLR test for a �xed alternative value �� and a range of �nite null values

�0 (rather than the PD�s as �0 ! �1 discussed above). These PD�s are equivalent to the false

coverage probability di¤erences between the CLR CS and the corresponding infeasible optimal

CS for a �xed true value �� at incorrect values �0: We consider a wide range of (�0; �v; �uv; k)

values. The maximum (over �0 and �v values) PD�s range between [:016; :061] over the (�uv; k)

values considered. On the other hand, the average (over �0 and � values) PD�s only range between

[:002; :016]: This indicates that, although there are some (�0; �) values at which the CLR test is

noticeably o¤ the power envelope, on average the CLR test�s power is not far from the power
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envelope. The maximum PD�s over (�0; �) are found to increase in k and decrease in j�uvj: The
�v values at which the maxima are obtained are found to (weakly) increase with k and decrease

in j�uvj: The j�0j values at which the maxima are obtained are found to be independent of k and
decrease in j�uvj:

Sixth, the paper considers a weighted average power (WAP) envelope with a uniform weight

function over a grid of concentration parameter values �v and the same two-point AE weight

function over (�; �) as in AMS. We refer to this as the WAP2 envelope. We determine numerically

how close the power of the CLR test is to the WAP2 envelope. We �nd that the di¤erence between

the WAP2 envelope and the average power of the CLR test is in the range of [:001; :007] over all

of the (�0; ��; �uv; k) values that we consider. Hence, the average power of the CLR test is quite

close to the WAP2 envelope.

Other papers in the literature that consider WAP include Wald (1943), Andrews and Ploberger

(1994), Andrews (1998), Moreira and Moreira (2013), Elliott, Müller, and Watson (2015), and

papers referenced above. The WAP2 envelope considered here is closest to the WAP envelopes

in Wald (1943), AMS, and CHJ because the other papers listed put a weight function over all of

the parameters in the alternative hypothesis, which yields a single weighted alternative density. In

contrast, the WAP2 envelope, Wald (1943), AMS, and CHJ consider a family of weight functions

over disjoint sets of parameters in the alternative hypothesis, which yields a WAP envelope.

In conclusion, based on our �ndings, we recommend use of the CLR test and CS. More specif-

ically, we recommend using heteroskedasticity-robust versions of these procedures that have the

same asymptotic properties as these procedures under homoskedasticity. For example, such tests

are given in Andrews, Moreira, and Stock (2004) and Andrews and Guggenberger (2015). The

CLR CS has higher probability of having in�nite length than the AR CS in some scenarios, and

the CLR test is not a UMP two-sided invariant similar test. But, no such UMP test exists and the

CLR CS is close to the two-sided AE power envelope for invariant similar tests when j�uvj is not
close to zero and is close to the WAP2 envelope for all values of j�uvj:

Finally, we point out that the results of this paper illustrate a point that applies more generally

than in the linear IV model. In weak identi�cation scenarios, where CS�s may have in�nite length

(or may be bounded only due to bounds on the parameter space), good test performance at a priori

implausible parameter values is important for good CS performance at plausible parameter values.

More speci�cally, the probability under an a priori plausible parameter value �� that a CS has

in�nite length depends on the power of the test used to construct the CS against �� when the null

value j�0j is arbitrarily large, which may be an a priori implausible null value.
For the computation of CLR CS�s, see Mikusheva (2010). For a formula for the power of the
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CLR test, see Hillier (2009).

The paper is organized as follows. Section 2 speci�es the model. Section 3 de�nes the class of

invariant similar tests. Section 4 contrasts the power properties of tests in the scenario where �0

is �xed and �� takes on large (absolute) values, with the scenario where �� is �xed and �0 takes

on large (absolute) values. Section 5 provides a formula for the probability that a CS has in�nite

length. Section 6 derives a lower bound on the probability that a CS constructed using two-sided

invariant similar tests has in�nite length. Section 7 reports di¤erences between the probability

that the CLR CS has in�nite length and the lower bound derived in the previous section. Section

8 proves the optimality results for the CLR test described above. Section 9 reports di¤erences

between the power of CLR tests and the two-sided AE power bound of AMS for a wide range of

parameter con�gurations. Section 10 provides comparisons of the power of the CLR test to the

WAP2 power envelope described above. Proofs and additional theoretical and numerical results

are given in the Supplemental Material (SM).

2 Model

We consider the same model as in Andrews, Moreira, and Stock (2004, 2006) (AMS04,

AMS) but, for simplicity and without loss of generality (wlog), without any exogenous variables.

The model has one rhs endogenous variable, k instrumental variables (IV�s), and normal errors

with known reduced-form error variance matrix. The model consists of a structural equation and

a reduced-form equation:

y1 = y2� + u and y2 = Z� + v2; (2.1)

where y1; y2 2 Rn and Z 2 Rn�k are observed variables; u; v2 2 Rn are unobserved errors; and

� 2 R and � 2 Rk are unknown parameters. The IV matrix Z is �xed (i.e., non-stochastic) and

has full column rank k: The n� 2 matrix of errors [u:v2] is i.i.d. across rows with each row having
a mean zero bivariate normal distribution.

The two corresponding reduced-form equations are

Y := [y1 :y2] := [Z�� + v1 :Z� + v2] = Z�a0 + V; where

V := [v1 : v2] = [u+ v2� : v2]; and a := (�; 1)0: (2.2)

The distribution of Y 2 Rn�2 is multivariate normal with mean matrix Z�a0; independence across
rows, and reduced-form variance matrix 
 2 R2�2 for each row. For the purposes of obtaining

exact �nite-sample results, we suppose 
 is known. As in AMS, asymptotic results for unknown 
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and weak IV�s are the same as the exact results with known 
: The parameter space for � = (�; �0)0

is Rk+1:

We are interested in tests of the null hypothesis H0 : � = �0 and CS�s for �:

As shown in AMS, Z 0Y is a su¢ cient statistic for (�; �0)0: As in Moreira (2003) and AMS, we

consider a one-to-one transformation [S : T ] of Z 0Y :

S := (Z 0Z)�1=2Z 0Y b0 � (b00
b0)�1=2 � N(c�(�0;
) � ��; Ik) and

T := (Z 0Z)�1=2Z 0Y 
�1a0 � (a00
�1a0)�1=2 � N(d�(�0;
) � ��; Ik); where

b0 := (1;��0)0; a0 := (�0; 1)0; �� := (Z 0Z)1=2� 2 Rk;

c�(�0;
) := (� � �0) � (b00
b0)�1=2 2 R;

d�(�0;
) := b0
b0 � (b00
b0)�1=2 det(
)�1=2 2 R; and b = (1;��)0: (2.3)

As de�ned, S and T are independent. Note that S and T depend on the null hypothesis value �0:

3 Invariant Similar Tests

As in Hillier (1984) and AMS, we consider tests that are invariant to orthonormal transfor-

mations of [S : T ]; i.e., [S : T ] ! [FS : FT ] for a k � k orthogonal matrix F: The 2� 2 matrix Q
is a maximal invariant, where

Q = [S:T ]0[S:T ] =

24 S0S S0T

S0T T 0T

35 =
24 QS QST

QST QT

35 and Q1 =

0@ S0S

S0T

1A =

0@ QS

QST

1A ; (3.1)

e.g., see Theorem 1 of AMS. Note that Q1 is the �rst column of Q and the matrix Q depends on

the null value �0:

The statistic Q has a non-central Wishart distribution because [S :T ] is a multivariate normal

matrix that has independent rows and common covariance matrix across rows. The distribution of

Q depends on � only through the scalar

� := �0Z 0Z� � 0: (3.2)

Leading examples of invariant identi�cation-robust tests in the literature include the AR test,

the LM test of Kleibergen (2002) and Moreira (2009), and the CLR test of Moreira (2003). The

latter test depends on the standard LR test statistic coupled with a �conditional� critical value
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that depends on QT . The LR, LM, and AR test statistics are

LR :=
1

2

�
QS �QT +

q
(QS �QT )2 + 4Q2ST

�
;

LM := Q2ST =QT = (S0T )2=T 0T; and AR := QS=k = S0S=k: (3.3)

The critical values for the LM and AR tests are �21;1�� and �
2
k;1��=k; respectively, where �

2
m;1��

denotes the 1� � quantile of the �2 distribution with m degrees of freedom.

A test based on the maximal invariant Q is similar if its null rejection rate does not depend

on the parameter � that determines the strength of the IV�s Z: As in Moreira (2003), the class of

invariant similar tests is speci�ed as follows. Let the [0; 1]-valued statistic �(Q) denote a (possibly

randomized) test that depends on the maximal invariant Q: An invariant test �(Q) is similar with

signi�cance level � if and only if E�0(�(Q)jQT = qT ) = � for almost all qT > 0 (with respect to

Lebesgue measure), where E�0(�jQT = qT ) denotes conditional expectation given QT = qT when

� = �0 (which does not depend on �):

The CLR test rejects the null hypothesis when

LR > �LR;�(QT ); (3.4)

where �LR;�(QT ) is de�ned to satisfy P�0(LR > �LR;�(QT )jQT = qT ) = � and the conditional

distribution of Q1 = (QS ; QST )0 given QT is speci�ed in AMS and in (12.3) in the SM.

The invariance condition discussed above is a rotational invariance condition. In some cases,

we also consider a sign invariance condition. A test that depends on [S : T ] is sign invariant if it is

invariant to the transformation [S : T ] ! [�S : T ]: A rotation invariant test is also sign invariant
if it depends on QST only through jQST j: Tests that are sign invariant are two-sided tests. In fact,
AMS shows that the two-sided AE power envelope is identical to the power envelope generated by

sign and rotation invariant tests, see (4.11) in AMS.

For simplicity, we will use the term invariant test to mean a rotation invariant test and the term

sign and rotation invariant test to describe a test that satis�es both invariance conditions.

The paper also provides some results that apply to tests that satisfy no invariance properties.

A test �([S : T ]) (that is not necessarily invariant) is similar with signi�cance level � if and only if

E�0(�([S : T ])jT = t) = � for almost all t (with respect to Lebesgue measure), where E�0(�jT = t)

denotes conditional expectation given T = t when � = �0 (which does not depend on �); see

Moreira (2009).
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4 Power Against Distant Alternatives Compared to Distant Null

Hypotheses

In this section, we consider the power properties of tests when j�� � �0j is large, where ��
denotes the true value of �:We compare scenario 1; where �0 and 
 are �xed and �� takes on large

(absolute) values, to scenario 2; where �� and 
 are �xed and �0 takes on large (absolute) values.

Scenario 1 yields the power function of a test against distant alternatives. Scenario 2 yields the

false coverage probabilities of the CS constructed using the test for distant null hypotheses (from

the true parameter value ��). We show that, while power goes to one in scenario 1 as �� ! �1
for �xed �0 for standard tests, it is not true that power goes to one in scenario 2 as �0 ! �1 for

�xed ��: Hence, the power properties of tests are quite di¤erent in scenarios 1 and 2.

The numerical power function and power envelope calculations in AMS are all of the type in

scenario 1: The di¤erence in power properties of tests between scenarios 1 and 2 suggests that it

is worth exploring the properties of tests in scenarios of the latter type as well. We do this in

the paper and show that the �nding of AMS that the CLR test is essentially on the two-sided AE

power envelope and is always at least as powerful as the AR test does not hold when one considers

a broader range of null and alternative hypothesis values (�0; ��) than considered in the numerical

results in AMS.

It is convenient to consider the AR test, which is the simplest test. The AR test rejects

H0 : � = �0 when S
0S > �2k;�: When the true value is �; the distribution of the S

0S statistic is

noncentral �2 with noncentrality parameter

c2�(�0;
) � � (4.1)

and k degrees of freedom. For the �xed null hypothesis H0 : � = �0; �xed 
; and �xed �; the

power at the alternative hypothesis value �� is determined by c
2
��
(�0;
): We have

lim
j��j!1

c2��(�0;
) = lim
j��j!1

(�� � �0)2 � (b00
b0)�1 =1: (4.2)

Hence, the power of the AR test goes to one as j��j ! 1:
On the other hand, if one �xes the alternative hypothesis value �� and one considers the limit
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as j�0j ! 1; then one obtains

lim
j�0j!1

c2��(�0;
) = lim
j�0j!1

(�� � �0)2 � (b00
b0)�1

= lim
j�0j!1

(�� � �0)2 � (!21 � 2!12�0 + !22�20)�1

= 1=!22; (4.3)

where !21; !
2
2; and !12 denote the (1; 1); (2; 2); and (1; 2) elements of 
; respectively. Hence, the

power of the AR test does not go to one as j�0j ! 1 even though j�0 � ��j ! 1: This occurs
because the structural equation error variance, V ar(ui) = b00
b0; diverges to in�nity as j�0j ! 1:

The di¤ering results in (4.2) and (4.3) is easy to show for the AR test, but it also holds for

Kleibergen�s and Moreira�s LM test and Moreira�s CLR test. For brevity, we do not provide such

results here.

Note that Davidson and MacKinnon (2008, Sec. 4) provide di¤erent, but somewhat related,

results to those in this section.3 They consider power when �0 is �xed and �� takes on large

(absolute) values (as in scenario 1) but when the correlation �uv (between the structural-equation

error u and the reduced-form error v2) is held �xed and the structural equation error variance is

estimated. In contrast, the results given here are for the case where the correlation �
 (between the

reduced-form errors v1 and v2) is held �xed because �
 can be consistently estimated and, hence,

in large samples can be treated as �xed and known. This is not true for �uv: In the Davidson and

MacKinnon (2008) scenario, power does not go to one as �� ! �1 for �xed �0:

5 Probability That a Con�dence Set Has In�nite Length

In this section, we show that the probability that a CS has in�nite length is given by one minus

the power of the test used to construct the CS as the null value �0 of the test goes to 1 or �1:
This provides motivation for interest in the power of tests as �0 ! �1: It shows why high power
against distant null hypotheses is highly desirable.

We sometimes make the dependence of Q; S; and T on Y and �0 explicit and write

Q = Q�0(Y ) = [S�0(Y ) : T�0(Y )]
0[S�0(Y ) : T�0(Y )]: (5.1)

We denote the (1; 1); (1; 2); and (2; 2) elements of Q�0(Y ) by QS;�0(Y ); QST;�0(Y ); and QT;�0(Y );

respectively.

3Davidson and MacKinnon (2008) do not consider the probabilities of unbounded CS�s or provide optimality
results for tests, which are the main focus of this paper.
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Let

�(Q�0(Y )) = 1(T (Q�0(Y )) > cv(QT�0(Y ))) (5.2)

be a (nonrandomized) invariant similar level � test for testing H0 : � = �0 for �xed known 
;

where T (Q�0(Y )) is a test statistic and cv(QT�0(Y )) is a (possibly data-dependent) critical value.
Examples include the AR, LM, and CLR tests in (3.3). Let CS� be the level 1�� CS corresponding
to �: That is,

CS�(Y ) = f�0 : �(Q�0(Y )) = 0g: (5.3)

We say CS�(Y ) has right (or left) in�nite length, which we denote by RLength(CS�(Y )) =1
(or LLength(CS�(Y )) =1), if

9K(Y ) <1 such that � 2 CS�(Y ) 8� � K(Y ) (or 8� � �K(Y )): (5.4)

We say CS�(Y ) has in�nite length, which we denote by Length(CS�(Y )) =1; if it has right and
left in�nite lengths. A CS with in�nite length contains a set of the form (�1;K1(Y ))[(K2(Y );1)
for some �1 < K1(Y ) � K2(Y ) <1:

Let P��;�;
(�) denote probability for events determined by Y when Y has a multivariate normal
distribution with means matrix [��� : �] 2 R2k; independence across rows, and variance matrix 

for each row. Let P��;�0;�;
(�) denote probability for events determined by Q when Q := [S : T ]

0[S :

T ] and [S : T ] has the multivariate normal distribution in (2.3) with � = �� and � = �0���: In this

case, Q has a noncentral Wishart distribution whose density is given in (12.2) in the SM.

For �xed true value �� and reduced-form variance matrix 
; let �� denote the corresponding

structural variance matrix of each row of [u : v2]: Let �uv denote the correlation between the

structural and reduced-form errors, i.e., the correlation corresponding to ��: Some calculations

show that

�uv =
!12 � !22��

(!21 � 2!12�� + !22�2�)1=2!2
and

�� =

24 �2u �u�v�uv

�u�v�uv �2v

35 =
24 !21 � 2!12�� + !22�2� !12 � !22��

!12 � !22�� !22

35 ; (5.5)

where !21; !
2
2; and !12 the elements of 
; see (12.9) in the SM. By the �rst equality in the second

line of (5.5), �2u = V ar(ui); �
2
v = V ar(v2i); and �uv = Corr(ui; v2i):
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It is shown in Lemma 16.1 in the SM that the limit as �0 ! �1 of Q�0(Y ) is

Q�1(Y ) :=

24 e02Y
0PZY e2 � 1�2v e02Y

0PZY 

�1e1 � �(1��

2
uv)

1=2�u
�v

e02Y
0PZY 


�1e1 � �(1��
2
uv)

1=2�u
�v

e01

�1Y 0PZY 


�1e1 � (1� �2uv)�2u

35 ; (5.6)

where PZ := Z(Z 0Z)�1Z 0; e1 := (1; 0)0; and e2 := (0; 1)0: Let QT;�1(Y ) denote the (2; 2) element

of Q�1(Y ): It is also shown in Lemma 16.1 in the SM that Q�1(Y ) has a noncentral Wishart

distribution with means matrix ���(1=�v; �uv=(�v(1 � �2uv)
1=2)) 2 Rk�2 and identity variance

matrix.4

Theorem 5.1 Suppose CS�(Y ) is a CS based on invariant level � tests �(Q�0(Y )) whose test

statistic and critical value functions, T (q) and cv(qT ); respectively, are continuous at all positive
de�nite 2 � 2 matrices q and positive constants qT ; P��;�;
(T (Qc(Y )) = cv(QT;c(Y ))) = 0 for

c = +1 in parts (a) and (c) below and c = �1 in part (b) below. Then, for all (��; �;
);

(a) P��;�;
(RLength(CS�(Y )) =1) = 1� lim�0!1 P��;�0;�;
(�(Q) = 1);

(b) P��;�;
(LLength(CS�(Y )) =1) = 1� lim�0!�1 P��;�0;�;
(�(Q) = 1); and

(c) if the tests are sign invariant, i.e., T (Q) depends on QST only through jQST j; then
P��;�;
(Length(CS�(Y )) =1) = 1� lim�0!�1 P��;�0;�;
(�(Q) = 1):

Comments. (i). For the AR, LM, and LR tests, the continuity conditions on T (q) and cv(qT )
hold given their simple functional forms in (3.3) using the assumption that qT > 0 for the LM

statistic and using the continuity of �LR;�(qT ); which holds by the argument in the proof of Thm.

10.1 in Andrews and Guggenberger (2016). We have P��;�;
(T (Q�1(Y )) = cv(QT;�1(Y ))) = 0 for

the AR and LM tests because cv(QT;�1(Y )) is a constant and T (Q�1(Y )) is absolutely continuous
with respect to Lebesgue measure. For the CLR test, P��;�;
(T (Q�1(Y )) = cv(QT;�1(Y ))) = 0 by

the argument given in the proof of Theorem 6.4 in the SM. The AR, LM, and CLR test statistics are

sign invariant. Hence, parts (a)-(c) of Theorem 5.1 apply to these tests. Theorem 6.4(a)-(c) below

provides formulae for the quantities lim�0!�1 P��;�0;�;
(�(Q) = 1); which appear in Theorem 5.1,

for the AR, LM, and CLR tests.

(ii). Comment (iii) to Theorem 6.2 below provides a lower bound on 1�lim�0!1 P��;�0;�;
(�(Q)

= 1) over all sign and rotation invariant similar level � tests. Combining this with Theorem 5.1(c)

yields a lower bound on the probability that a CS CS�(Y ) based on such tests has Length = 1:
The lower bound on the probability that Length = 1 is greater than the lower bound on the

probability that RLength =1 (or that LLength =1) unless �uv = 0 (in which case it turns out
that they are equal).

4The density of this distribution is given in (12.4) in the SM.
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Theorem 13.1 in the SM provides lower bounds on 1� lim�0!�1 P��;�0;�;
(�(Q) = 1) over all

invariant similar level � tests. Combining these with Theorem 5.1(a) and (b) yields lower bounds

on the probabilities that a CS CS�(Y ) has RLength = 1 based on �0 ! 1 and LLength = 1
based on �0 ! �1:

(iii). Note that Theorem 5.1 does not impose similarity, just invariance. The results of Theorem

5.1(a) and (b) also hold for a CS�(Y ) that is based on level � tests that are not invariant. Denote

such tests by �(S�0(Y ); T�0(Y )) and suppose their test statistic and critical value functions, T (s; t)
and cv(t); respectively, are continuous at all k � 2 matrices [s : t] and k vectors t and satisfy

P��;�;
(T (Sc(Y ); Tc(Y )) = cv(Tc(Y ))) = 0 for c = +1; where S�1(Y ) := �(Z 0Z)�1=2Z 0Y e2=�v
and T�1(Y ) := �(Z 0Z)�1=2Z 0Y 
�1e1 � (1 � �2uv)

1=2�u: In this case, P��;�;
(RLength(CS�(Y )) =

1) = 1� lim�0!1 P��;�0;�;
(�([S : T ]) = 1) and likewise with LLength(�); �0 ! �1; and c = �1
in place of RLength(�); �0 !1; and c = +1: If, in addition, the tests satisfy: T (Sc(Y ); Tc(Y )) �
cv(Tc(Y )) for c = +1 i¤ the same inequality holds for c = �1; then Theorem 5.1(c) also holds.

(These results hold by a straightforward modi�cation of the proof of Theorem 5.1.)

(iv). By Dufour (1997), all CS�s for � with correct size must have positive probability of

having in�nite length (assuming � is not bounded away from 0). In consequence, expected CS

length, which is a standard measure of the performance of a CS, is in�nite for all identi�cation-

robust CS�s. Due to this, Mikusheva (2010) compares CS�s based on their expected truncated

lengths for various truncation values. The result of Theorem 6.2 below implies that, for two CS�s

where the rhs of Theorem 6.2(c) is smaller for the �rst CS than the second, the �rst CS has smaller

expected truncated length than the second for su¢ ciently large truncation values.

(v) Section 25 in the Supplemental Material extends Theorem 5.1 to the linear IV model that

allows for heteroskedasticity and autocorrelation (HC) in the errors, as in Moriera and Ridder

(2017).

6 Power Bound as �0! �1

In this section, we provide two-sided AE power bounds for invariant similar tests as �0 ! �1
for �xed ��:We obtain these bounds by �nding the limit of the power bounds in Theorem 3 of AMS

as �0 ! �1: The power bounds also apply to the larger class of similar tests for which invariance
is not imposed, provided power is averaged over ��=jj��jj vectors using the uniform distribution on
the unit sphere in Rk; as in CHJ.

Using Theorem 5.1, these results are used to obtain bounds on the probabilities that CS�s

constructed using sign and rotation invariant similar tests have in�nite length. They also are used
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to obtain bounds on certain average probabilities that similar invariant tests and similar tests have

in�nite right (or left) length.

This section also determines the power of the AR, LM, and CLR tests as �0 ! �1 and the

probabilities that AR, LM, and CLR CS�s have in�nite length.

6.1 Density of Q as �0! �1

The density of Q := [S : T ]0[S : T ] when [S : T ] has the multivariate normal distribution in (2.3)

only depends on � through � := �0���: Let fQ(q;��; �0; �;
) denote this density when � = ��:

It is a noncentral Wishart density with means matrix of rank one and identity covariance matrix,

which was �rst derived by Anderson (1946, eqn. (6)). An explicit expression for fQ(q;��; �0; �;
)

is given in (12.2) in the SM.

Now, we determine the limit of the density fQ(q;��; �0; �;
) as �0 ! �1: De�ne

ruv :=
�uv

(1� �2uv)1=2
and �v := �=�2v = �0���=�

2
v: (6.1)

Note that �v is the concentration parameter, which indexes the strength of the IV�s. Let

fQ(q; �uv; �v) denote the density of Q := [S : T ]0[S : T ] when [S : T ] has a multivariate nor-

mal distribution with means matrix

�� � (1=�v; ruv=�v) 2 Rk�2; (6.2)

all variances equal to one, and all covariances equal to zero. This density also is a noncentral Wishart

density with means matrix of rank one and identity covariance matrix. The density depends on

ruv; �v; and � only through �uv and �v: An explicit expression for fQ(q; �uv; �v) is given in (12.4)

in Section 12.1 the SM.

Lemma 6.1 For any �xed (��; �;
); lim�0!�1 fQ(q;��; �0; �;
) = fQ(q; �uv; �v) for all 2 � 2
variance matrices q; where �uv and �v are de�ned in (5.5) and (6.1), respectively.

Comment. Lemma 6.1 is proved by showing: lim�0!�1 c��(�0;
) = �1=�v and lim�0!�1
d��(�0;
) = � !22���!12

!2(!21!
2
2�!212)1=2

= � �uv
�v(1��2uv)1=2

; see Lemma 15.1 in the SM. When expressed in

terms of ��; the latter limit only depends on �uv; �u; and �v and its functional form is of a

relatively simple multiplicative form.

Let P��;�0;�;
(�) and P�uv ;�v(�) denote probabilities under the alternative hypothesis densities
fQ(q;��; �0; �;
) and fQ(q; �uv; �v); respectively, de�ned above.
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6.2 Two-Sided AE Power Bound as �0! �1

AMS provides a two-sided power envelope for invariant similar tests based on maximizing av-

erage power against two points in the alternative hypothesis: (��; �) and (�2�; �2): AMS refers to

this as the two-sided AE power envelope because given one point (��; �); the second point (�2�; �2)

is the unique point such that the test that maximizes average power against these two points is a

two-sided AE test under strong IV asymptotics. This power envelope is a function of (��; �):

Given (��; �); the second point (�2�; �2) satis�es

�2� = �0 �
d�0(�� � �0)

d�0 + 2r�0(�� � �0)
and �2 = �

(d�0 + 2r�0(�� � �0))
2

d2�0
; (6.3)

where r�0 := e01

�1a0 � (a00
�1a0)�1=2; see (4.2) of AMS. We let POIS2(Q;�0; ��; �) denote the

optimal average-power test statistic for testing � = �0 against (��; �) and (�2�; �2): Its condi-

tional critical value is denoted by �2;�0(QT ): For brevity, the formulas for POIS2(Q;�0; ��; �) and

�2;�0(QT ) are given in Section 17 in the SM.

The limit as �0 ! �1 of the POIS2(Q;�0; ��; �) statistic is shown in (17.6) in the SM to be

POIS2(Q;1; j�uvj; �v) :=
 (Q; �uv; �v) +  (Q;��uv; �v)

2 2(QT ; j�uvj; �v)
; where

 (Q; �uv; �v) := exp(��v(1 + r2uv)=2)(�v�(Q; �uv))�(k�2)=4I(k�2)=2(
p
�v�(Q; �uv));

 2(QT ; j�uvj; �v) := exp(��vr2uv=2)(�vr2uvQT )�(k�2)=4I(k�2)=2(
p
�vr2uvQT ); and

�(Q; �uv) := QS + 2ruvQST + r
2
uvQT ; (6.4)

where Q; QS ; QST ; and QT are de�ned in (3.1), �uv is de�ned in (5.5), ruv and �v are de�ned in

(6.1), and I�(�) denotes the modi�ed Bessel function of the �rst kind of order � (e.g., see Comment
(ii) to Lemma 3 of AMS for more details regarding I�(�)):

Let �2;1(qT ) denote the conditional critical value of the POIS2(Q;1; j�uvj; �v) test statistic.
That is, �2;1(qT ) is de�ned to satisfy

PQ1jQT (POIS2(Q;1; j�uvj; �v) > �2;1(qT )jqT ) = � (6.5)

for all qT � 0; where PQ1jQT (�jqT ) denotes probability under the null density fQ1jQT (�jqT ); which is
speci�ed explicitly in (12.3) in the SM and does not depend on �0:

When �uv = 0; the test based on POIS2(Q;1; j�uvj; �v) is the AR test. This follows because
�(Q; 0) = QS ;  (Q; 0; �v) is monotone increasing in �(Q; 0); and  2(QT ; 0; �v) is a constant. Some

intuition for this is that EQST = 0 under the null and limj�0j!1EQST = 0 under any �xed
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alternative �� when �uv = 0:
5 In consequence, QST is not useful for distinguishing between H0 and

H1 when j�0j ! 1 and �uv = 0: Furthermore, it is shown in (13.5) and Theorem 13.1 in the SM

that the AR test is also the best one-sided test as �0 ! +1 and as �0 ! �1:
The following theorem shows that the POIS2(Q;1; j�uvj; �v) test provides a two-point average-

power bound as �0 ! �1 for any invariant similar test for any �xed (��; �) and 
:

Theorem 6.2 Let f��0(Q) : �0 ! �1g be any sequence of invariant similar level � tests of

H0 : � = �0 for �xed known 
: For �xed (��; �); (�2�; �2) de�ned (6.3), and 
; the two-sided AE

power envelope test POIS2(Q;1; j�uvj; �v) de�ned in (6.4) and (6.5) satis�es

lim sup (
�0!�1

P��;�0;�;
(��0(Q) = 1) + P�2�;�0;�2;
(��0(Q) = 1))=2

� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT ))

= P��uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )):

Comments. (i). The power bound in Theorem 6.2 only depends on (��; �); (�2�; �2); and 


through j�uvj; which is the absolute magnitude of endogeneity under ��; and �v; which is the

concentration parameter.

(ii). The power bound in Theorem 6.2 is strictly less than one. Hence, it is informative.

(iii). For sign and rotation invariant similar tests ��0(Q); the lim sup on the left-hand side in

Theorem 6.2 is the average of two equal quantities.

(iv). Theorem 6.2 can be extended to cover sequences of similar tests f��0(S; T ) : �0 !
�1g that satisfy no invariance properties, using the proof of Theorem 1 in CHJ. In this case,

the left-hand side (lhs) probabilities in Theorem 6.2 depend on � or, equivalently (�; ��=jj��jj);
rather than just �: In this case, Theorem 6.2 holds with P��;�0;�;
(��0(Q) = 1) replaced byR
P��;�;��=jj�� jj;
(��0(S; T ) = 1)dUnif(��=jj��jj) and analogously for the term that depends on

(�2�; �2); where P��;�;��=jj�� jj;
(�) denotes probability under (��; �; ��=jj��jj;
) and Unif(�) de-
notes the uniform measure on the unit sphere in Rk:

6.3 Lower Bound on the Probability That a CS Has In�nite Length

Next, we combine Theorems 5.1 and 6.2 to provide a lower bound on the probability that a

sign and rotation invariant similar CS has in�nite length. The same lower bound applies to the

average probability over (��; �) and (�2�; �) that a rotation invariant similar CS has right (left)

5We have EQST = ES0ET by independence of S and T; EQST = 0 under H0 because ES = 0; and
limj�0j!1EQST = 0 under �� because ET = ��d��(�0;
); lim�0!�1 d��(�0;
)! �ruv=�v by Lemma 15.1(e) in
the SM, and ruv = 0 when �uv = 0:
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in�nite length. For a similar CS with no invariance properties, the same lower bound applies to a

di¤erent average probability that the CS has right (left) in�nite length.

Let P��;�;
(�) denote probability for events determined by (Z
0Z)1=2Z 0Y that depend on � only

through �; such as events that are determined by a CS based on invariant tests.

Corollary 6.3 Suppose CS�(Y ) is a CS based on invariant similar level � tests �(Q�0(Y )) that

satisfy the continuity condition in Theorem 5.1. (a) For any �xed (��; �;
);

(P��;�;
(RLength(CS�(Y )) =1) + P�2�;�2;
(RLength(CS�(Y )) =1))=2

� 1� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )) and

(P��;�;
(LLength(CS�(Y )) =1) + P�2�;�2;
(LLength(CS�(Y )) =1)

� 1� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )):

(b) If the tests �(Q�0(Y )) also are sign invariant, then for any �xed (��; �;
);

P��;�;
(Length(CS�(Y )) =1) � 1� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )):

Comments. (i). All three lower bounds in Corollary 6.3 are the same. The di¤erent parts of

Corollary 6.3 specify di¤erent probabilities or average probabilities that have this lower bound.

(ii). Corollary 6.3(a) also holds for a similar CS that does not satisfy any invariance properties.

In this case, P��;�;
(RLength(CS�(Y )) =1) is replaced by
R
P��;�;��=jj�� jj;
(RLength(CS�(Y )) =

1)dUnif(��=jj��jj) and analogously for the other three lhs terms that depend on LLength(CS�(Y ))
and/or (�2�; �2): This holds provided the similar level � tests �(S�0(Y ); T�0(Y )) that de�ne the

CS satisfy the conditions in Comment (iii) to Theorem 5.1.

6.4 Power of the AR, LM, and CLR Tests as �0! �1

Here, we provide the power of the AR, LM, and CLR tests as �0 ! �1 for �xed (��;
):

Theorem 6.4 For �xed true (��; �;
); the AR, LM, and CLR tests satisfy

(a) lim�0!�1 P��;�0;�;
(AR > �2k;1��=k) = P�uv ;�v(AR > �2k;1��=k) = P (�2k(�v) > �2k;1��);

(b) lim�0!�1 P��;�0;�;
(LM > �21;1��) = P�uv ;�v(LM > �21;1��); and

(c) lim�0!�1 P��;�0;�;
(LR > �LR;�(QT )) = P�uv ;�v(LR > �LR;�(QT ));

where AR; LM; and LR are de�ned as functions of Q in (3.3), �2m;1�� is the 1� � quantile of the
�2m distribution, and �2m(�v) is a noncentral �

2
m random variable with noncentrality parameter �v:
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Comments. (i) By Theorem 5.1(c), Theorem 6.4 provides the probabilities that the AR, LM, and

CLR CS�s have in�nite length when the true parameters are (��; �;
): These probabilities depend

only on (j�uvj; �v): For the AR CS, they only depend on �v:
(ii) As pointed out by a referee, the AR CS has in�nite length when the �rst-stage F test

strictly fails to reject H0 : � = 0k; meaning that y02PZy2=!2 < �2k;1�� (with a strict inequality).

When the �rst-stage F test rejects H0 : � = 0k; i.e., y02PZy2=!2 > �2k;1��; the AR CS has �nite

length. When y02PZy2=!2 = �2k;1��; the AR CS can have in�nite length, right length, or left length,

or have �nite length.6 Results in Mikusheva (2010, Proofs of Thms. 1 and 2) provide expressions

for the cases where the LM and CLR CS�s have in�nite lengths, but they do not seem to have as

simple intuitive interpretations as for the AR CS.

7 Comparisons of Probabilities That Con�dence Sets Have

In�nite Length

Next, we investigate how close are the probabilities the CLR CS has in�nite length to the

lower bound in Corollary 6.3. Let POIS2 refer to the tests that generates the two-sided AE power

envelope of AMS. These tests depend on the alternative (��; �) considered and 
: Let POIS21 refer

to the tests in (6.4), which are the limits as �0 ! �1 of the POIS2 tests. These tests depend on

�� (through j�uvj) and �v: Let POIS2 and POIS21 CS�s refer to the CS�s constructed by inverting

the POIS2 and POIS21 tests. These CS�s are infeasible because they depend on knowing (��; �):

Table I reports di¤erences in simulated probabilities that the CLR and POIS21 CS�s have

in�nite lengths. The latter provide a lower bound on in�nite-length probabilities for CS�s based on

sign and rotation invariant tests, such as the CLR CS, by Corollary 6.3(b). Hence, these di¤erences

are necessarily nonnegative. The results cover k = 2; 5; 10; 20; 40; a range of � values between 1 and

60 depending on the value of k; and �uv = 0; :3; :5; :7; :9: Table I also reports the probabilities that

the CLR CS has in�nite length for the same k and � values and a subset of the �uv values, viz.,

0; :7; :9: The true value of �� is taken to be 0 wlog by Section 22 in the SM. The results for negative

and positive �uv values are the same by Section 22 in the SM, and hence, results for negative �uv

are not reported. The number of simulation repetitions employed is 50; 000: The critical values are

determined using 100; 000 simulation repetitions.

The results show that the CLR CS is not close to optimal in some parameter scenarios. In

6These results hold because (i) the AR test strictly fails to reject H0 : � = �0 when S
0S < �2k;1�� i¤ b

0
0Y

0PZY b0 <

b00
b0�
2
k;1�� i¤ a�

2
0 + b�0 + c < 0; where a := y

0
2PZy2 � !2�2k;1��; b := �2(y01PZy2 � !12�2k;1��); and c := y01PZy1 �

!1�
2
k;1��; using (2.3) and some calculations, and (ii) the AR CS has in�nite length when a < 0:When a = 0; the AR

CS has in�nite right length if b < 0; in�nite left length if b > 0; in�nite length if b = 0 and c � 0; and �nite length if
b = 0 and c > 0: For related results, see Dufour and Taamouti (2005).
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particular, the di¤erences in probabilities of in�nite length (DPIL�s) between the CLR and the

POIS21 CS�s are positive for numerous combinations of (k; �; �uv): The DPIL�s are increasing in k;

decreasing in j�uvj; and maximized in the middle of the range of � values considered. For example,
for (k; �uv) = (2; 0); DPIL2 [:002; :016] over the � values considered, whereas for (k; �uv) = (5; 0);
DPIL2 [:003; :031] and for (k; �uv) = (40; 0); DPIL2 [:002; :049]:7 Hence, k has a noticeable e¤ect
on the magnitude of non-optimality of the CLR CS with larger values of k leading to larger non-

optimality. For (k; �) = (5; 10); we have DPIL2 [:002; :031] over the �uv values considered, and
for (k; �) = (20; 15); we have DPIL2 [:001; :046] over the �uv values considered. Hence, j�uvj also
has a noticeable e¤ect on the magnitude of non-optimality of the CLR CS in terms of DPIL�s with

non-optimality greatest at �uv = 0:
8

8 Optimality of CLR and LM Tests as �uv! �1 or �
! �1

The results of Table I show that the magnitude of non-optimality of the CLR CS decreases as

j�uvj increases to 1: This raises the question of whether CLR tests are optimal in some sense in

the limit as j�uvj ! 1: In this section, we show that this is indeed the case, not just for power as

�0 ! �1; but uniformly over all (�0; ��) parameter values in a two-sided AE power sense.
Let �
 denote the correlation parameter corresponding to the reduced-form variance matrix 
;

i.e., �
 := !12=(!1!2):

In this section, we provide parameter con�gurations under which the CLR and LM tests have

optimality properties. The results cover the case of strong and semi-strong identi�cation (where

� ! 1): They cover the cases where �uv ! �1 or �
 ! �1 for (almost) any �xed values of
the other parameters, which includes weak identi�cation of any strength. And, they cover the

cases where (�uv; �0) ! (�1;�1) or (�
; �0) ! (�1;�1) and the other parameters are �xed at
(almost) any values, which also includes weak identi�cation.

In somewhat related results, CHJ show that the CLR and LM tests can be written as the limits

of certain WAP LR tests, which indicates that they are at least close to being admissible.

Let d2�� := d2��(�0;
) and c
2
��
:= c2��(�0;
): As in Section 6.2, let POIS2(Q;�0; ��; �) and

�2;�0(QT ) denote the optimal average-power test statistic and its data-dependent critical value.

Let �21(c
2
1) denote a noncentral �

2
1 random variable with noncentrality parameter c21:

7The simulation standard deviations of the DPIL�s are in the range of [:0000; 0014] with most being in the range
of [:0004; :0012]; see Table SM-I in the SM.

8Table SM-I in the SM shows that the di¤erences in probabilities that the AR and POIS2 CS�s have in�nite
length are very large for large �uv values for some � values. For example, for �uv = :9; they are as large as
:084; :196; :280; :353; :422 for k = 2; 5; 10; 20; 40; respectively, for some � values. As shown above, AR = POIS2 when
�uv = 0; so the di¤erences are zero in this case and they increase in j�uvj for given (k; �):
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Theorem 8.1 Consider any sequence of null parameters �0 and true parameters (��; �;
) such

that �d2�� !1 and �1=2c�� ! c1 2 Rnf0g: Then, as �d2�� !1 and �1=2c�� ! c1;

(a) P��;�0;�;
(POIS2(Q;�0; ��; �) > �2;�0(QT ))! P (�21(c
2
1) > �21;1��);

(b) P��;�0;�;
(LR > �LR;�(QT ))! P (�21(c
2
1) > �21;1��); and

(c) P��;�0;�;
(LM > �21;1��)! P (�21(c
2
1) > �21;1��):

Comments. (i). Theorem 8.1 shows that the CLR and LM tests have the same limit power as the

POIS2 test. Theorem 8.1 provides both �nite-sample limiting optimality results, where n is �xed

and the limits are determined by sequences of parameters (�0; ��; �;
); and large-sample limiting

optimality results, where the limits are determined by sequences of sample sizes n and parameters

(�0; ��; �;
):

(ii). By Corollary 1 of AMS, for any invariant similar test �(Q); for any (��; �0; �;
);

1

2

�
P��;�0;�;
(�(Q) = 1) + P�2�;�0;�2;
(�(Q) = 1)

�
� P��;�0;�;
(POIS2(Q;�0; ��; �) > �2;�0(QT )):

(8.1)

That is, the POIS2 test determines the two-sided AE average power envelope of AMS for in-

variant similar tests, where the average is over (��; �) and (�2�; �2): A fortiori, by Theorem 1 of

CHJ, for any similar test �([S : T ]) (that is not necessarily invariant), for any (��; �0; �;
); (8.1)

holds with P��;�0;�;
(�(Q) = 1) replaced by the power average
R
P��;�0;�;��=jj�� jj;
(�([S : T ]) =

1)dUnif(��=jj��jj) and likewise for the second lhs summand in (8.1). Hence, the POIS2 test also
determines this average power envelope for similar tests.

These results and Theorem 8.1 show that the CLR and LM tests achieve these average power

envelopes for all (��; �0; �;
) asymptotically when �d
2
��
!1 and �1=2c�� ! c1 6= 0:

(iii) The power envelopes in Comment (ii) translate immediately into false coverage probability

(FCP) lower bounds for CS�s based on invariant similar tests and similar tests. Speci�cally, one

minus the lhs in (8.1), which equals the average FCP of the point �0 by the CS based on �(Q);

where the average is over the truth being (��; �) and (�2�; �2); is greater than or equal to one

minus the rhs in (8.1). In the case of non-invariant similar tests, the bound is on the average of

the FCP�s of the CS with averaging over (��; �) and (�2�; �2) and ��=jj��jj in the unit sphere in
Rk: Thus, Theorem 8.1 shows that the CLR and LM CS�s have optimal average FCP properties

asymptotically when �d2�� !1 and �1=2c�� ! c1 6= 0:
(iv). Theorem 8.1 does not apply when the IV�s are completely irrelevant, i.e., � = 0; because

� = 0 implies that c1 = 0: However, Theorem 8.1 does cover some cases where the IV�s can be

arbitrarily weak, see Theorem 8.2 below.

Next, we provide conditions under which �d2�� !1 and �1=2c�� ! c1 2 Rnf0g; as is assumed
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in Theorem 8.1. First, if �0 and 
 are �xed, 
 is nonsingular, and (��; �) satisfy �!1 and

�1=2(�� � �0)! L 2 R as �!1; (8.2)

then �d2�� ! 1 and �1=2c�� ! c1 2 Rnf0g with c1 = L(b00
b0)
�1=2: Here L indexes the local

alternatives against which the tests have nontrivial power. This result covers the usual strong IV

case in which � is �xed, Z 0Z depends on n; and � = �0Z 0Z� !1 as n!1:
The scenario in (8.2) also covers cases where � = �n ! 0 as n!1; but su¢ ciently slowly that

� = �0nZ
0Z�n ! 1 as n ! 1; which covers �semi-strong�identi�cation. As far as we are aware,

this is the only optimality property in the literature for tests under semi-strong identi�cation. The

scenario in (8.2) also covers �nite-sample, i.e., �xed n; cases in which Z 0Z is �xed, � diverges, i.e.,

jj�jj ! 1; and �min(Z 0Z) > 0: In these cases, � = �0Z 0Z� !1 as jj�jj ! 1:
The most novel cases in which Theorem 8.1 applies are when �uv ! �1 or �
 ! �1: The next

result shows that �d2�� !1 and �1=2c�� ! c1 2 Rnf0g when �uv ! �1 or �
 ! �1 and the other
parameters are �xed at (almost) any values. It also shows that this holds when (�uv; �0)! (1;�1)
or (�1;�1) or (�
; �0) ! (1;�1) or (�1;�1) and the other parameters are �xed at (almost)
any values.

Theorem 8.2 (a) Suppose the parameters �0; ��; �u > 0; �v > 0; and � > 0 are �xed, �uv 2
(�1; 1); and �uv ! �1: Then, (i) lim�uv!�1 �

1=2c�� = �1=2(�� � �0)=j�u � (�� � �0)�vj and (ii)
lim�uv!�1 �d

2
��
=1 provided �� � �0 6= ��u=�v:

(b) Suppose the parameters �0; ��; !1 > 0; !2 > 0; and � > 0 are �xed, �
 2 (�1; 1); and
�
 ! �1: Then, (i) lim�
!�1 �

1=2c�� = �1=2(�� � �0)=j!1 � !2�0j provided �0 6= �!1=!2 and (ii)
lim�
!�1 �d

2
��
=1 provided �0 6= �!1=!2 and �� 6= �!1=!2:

(c) Suppose the parameters are as in part (a) except (�uv; �0)! (1;�1) or (�1;�1): Then, (i)
lim(�uv ;�0)!(1;�1) �

1=2c�� = lim(�uv ;�0)!(�1;�1) �
1=2c�� = ��

1=2=�v and (ii) lim(�uv ;�0)!(1;�1) �d
2
��

= lim(�uv ;�0)!(�1;�1) �d
2
��
=1:

(d) Suppose the parameters are as in part (b) except (�
; �0)! (1;�1) or (�1;�1): Then, (i)
lim(�
;�0)!(1;�1) �

1=2c�� = lim(�
;�0)!(�1;�1) �
1=2c�� = ��1=2=!2 and (ii) lim(�
;�0)!(1;�1) �d

2
��

=1 provided �� 6= !1=!2 and lim(�
;�0)!(�1;�1) �d
2
��
=1 provided �� 6= �!1=!2:

Comments. (i). Combining Theorems 8.1 and 8.2 provides analytic �nite-sample limiting opti-

mality results for the CLR and LM tests and CS�s as �uv ! �1 or �
 ! �1 with �0 �xed or jointly
with �0 ! �1 for (almost) any �xed values of the other parameters. These results apply for any

strength of the IV�s except � = 0: These results are much stronger than typical weighted average

power (WAP) results because they hold for (almost) any �xed values of the parameters �0; ��; �1;
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�v; and � > 0 when �uv ! �1 and (almost) any �xed values of the parameters �0; ��; !1; !2; and
� > 0 when �
 ! �1:

(ii). The cases �uv ! �1 and �
 ! �1 are closely related because (1��2
)1=2!1 = (1��2uv)1=2�u
by (16.10) in the SM. Thus, �uv ! �1 implies j�
j ! 1 and/or !1 ! 0: And, �
 ! �1 implies
j�uvj ! 1 and/or �u ! 0:

(iii) The asymptotic results of Theorem 8.2 as �uv ! �1 or �
 ! �1 are empirically relevant
because they re�ect the behavior of the CLR test even when j�uvj or j�
j is not very close to one.
See the results in Table I when �uv (= �
) equals :7 and :9: The results of Theorem 8.2 indicate

that it would be informative for empirical papers to report estimates of �
 (which is consistently

estimable even under weak IV�s).

9 General Power/False-Coverage-Probability Comparisons

By Theorem 5.1, the results in Table I equal power di¤erences (PD�s) between the POIS2 and

CLR tests as the null value �0 ! �1 for �xed true value �� = 0: Here, we consider PD�s between

the POIS2 and CLR tests for �nite �0 values, rather than PD�s as �0 ! �1: Speci�cally, Table
II reports maximum and average PD�s over �0 2 R and � > 0 for a �xed true value �� = 0 for a

range of values of (�uv; k): As above, the choice of �� = 0 (and !
2
1 = !22 = 1) is wlog. These PD�s

are equivalent to false coverage probability di¤erences (FCPD�s) between the CLR and POIS2 CS�s

for a �xed true value �� at incorrect values �0: They are necessarily nonnegative.

The � values considered are 1; 3; 5; 7; 10; 15; 20; as well as 22; 25 when k = 20 and 40; and :7; :8; :9

when k = 2 and 5 and �uv = :9: The positive and negative �0 values considered are those with

j�0j 2 f:25; :5; :::; 3:75; 4; 5; 7:5; 10; 50; 100; 1000; 10000g: These (�; �0) values were chosen, based on
preliminary simulations, to ensure that changes in the PD�s in Table II (and Tables III and IV

below) across neighboring values (�; �0) are small.

The number of simulation repetitions employed is 5; 000: The critical values are determined

using 100; 000 simulation repetitions. For example, the simulation standard deviations for the PD�s

for (�uv; k) = (0; 20) and any �xed (�0; �) value range from [:0013; :0040] across di¤erent (�0; �)

values, which compares to simulated averages of the PD�s over (�0; �) values that are of the :014

order of magnitude.

Tables II(a) and II(b) contain the same numbers, but are reported di¤erently to make the

patterns in the table more clear. Table II(a) shows variation across k for �xed �uv; whereas Table

II(b) shows variation across �uv for �xed k: The third and fourth columns in each table report the

values of � and �0 at which the maximum PD is obtained. The �fth column in each table reports
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�uv;0; which is the correlation between the structural-equation and reduced-form errors when �0

is the true value (based on the assumption that the consistently-estimable reduced-form variance

matrix is the same whether the truth is �0 or ��): In contrast, �uv is the same correlation, but

when �� is the true value� which is the true � value in the PD simulations. The sixth column in

the tables reports the power of the CLR test at the (�0; �) values that maximize the PD for given

(�uv; k); i.e., at (�0;max; �max):

Table II shows that the maximum (over (�0; �)) PD�s between the POIS2 and CLR tests range

between [:016; :061] over the (�uv; k) values. On the other hand, the average (over (�0; �)) PD�s

only range between [:002; :016] over the (�uv; k) values. This indicates that, although there are

some (�0; �) values at which the CLR test is noticeably o¤ the two-sided AE power envelope, on

average the CLR test�s power is not far from the power envelope.

In contrast, the analogous maximum and average PD ranges for the AR test are [:079; :513]

and [:012; :179]; see Table SM-III in the SM. For the LM test, they are [:242; :784] and [:010; :203];

see Table SM-IV in the SM. Hence, the power of AR and LM tests is very much farther from the

POIS2 power envelope than is the power of the CLR test.

Table II(a) shows that the maximum and average (over (�0; �)) PD�s for the CLR test are

clearly increasing in k: Table II(a) shows that for �uv � :3; the PD�s are maximized at more or less

the same �0 regardless of the value of k: For �uv = 0; this is also true to a certain extent, because

the sign of �0 is irrelevant (when �uv = 0) and the values 50 and 10; 000 are both large values.

Table II(a) also shows that for each �uv; the PD�s are maximized at � values that (weakly) increase

with k: The increase is particularly evident going from k = 20 to 40:

Table II(b) shows that for k � 5; the maximum PD�s are more or less the same for �uv � :7;

but noticeably lower for �uv = :9: For k = 2; the maximum PD�s are more or less the same for all

�uv considered. Table II(b) shows that, for each k; the PD�s are maximized at j�0j values that are
closer to 0 as �uv increases. Table II(b) also shows that, for each k; the PD�s are maximized at �

values that are closer to 0 as �uv increases.
9

In sum, the maximum PD�s over (�0; �) are found to increase in k ceteris paribus and decrease

in �uv ceteris paribus. The � values at which the maxima are obtained are found to (weakly)

increase with k ceteris paribus and decrease in �uv ceteris paribus. The j�0j values at which the
maxima are obtained are found to be independent of k ceteris paribus and decrease in �uv ceteris

paribus.

Next, Figure 1 provides a picture of how the power of the CLR, AR, and POIS2 tests di¤er

as a function of �0 when other parameters are held �xed. Results given are for three parameter

9See Table SM-II in the SM for how the maximum PD�s over �0 vary with � for the (�uv; k) values in Table II.
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con�gurations �uv = 0; :5; :9 with � = 15; k = 10; and �� = 0 in all three con�gurations. These

parameter con�guations are chosen because they are ones in which the power of the CLR test is

noticeably o¤ the power envelope for su¢ ciently large �0 when �uv = 0 and :5:

Figure 1(a) for �uv = 0 shows: (i) the power of all three tests does not go to one as �0 ! 1
(the limit value depends on the magnitude of �; which is 15 in Figure 1), (ii) the CLR test is o¤

the power envelope and the AR test is on the power envelope (up to the numerical accuracy) for

large �0 � ��; and (iii) the reverse is true for smaller �0 � ��:
Figures 1(b) for �uv = :5 shows: (i) the power of all three tests does not go to one as �0 !1;

(ii) the CLR test is o¤ the power envelope for large �0 � �� and on the power envelope (up to the
numerical accuracy) for smaller �0 � ��; and (iii) the AR test is on the power envelope (up to the
numerical accuracy) for intermediate values of �0 � �� and o¤ the power envelope for larger and

smaller �0 � ��:
Figures 1(c) for �uv = :9 shows: (i) the power of all three tests does not go to one as �0 !1;

but the powers of the CLR and POIS2 tests are quite close to one for �0 large, (ii) the CLR test

is on the POIS2 power envelope (up to the numerical accuracy) for all �0 values, and (iii) the AR

test is o¤ the POIS2 power envelope for most of the �0 values considered, including small and large

�0 values.

In all of the simulations considered (across the parameters scenarios considered in Table II), the

CLR test was found to be on the POIS2 power envelope (up to the numerical accuracy) for small

values of �0 � ��:
The numerical results in this section show that the �nding of AMS that the CLR test is essen-

tially on the two-sided AE power envelope does not hold when one considers a broader range of null

and alternative hypothesis values (�0; ��) than those considered in the numerical results in AMS.

10 Di¤erences between CLR Power and an Average Over �

Power Envelope

In this section, we introduce a �WAP2�power envelope for similar tests with weight functions

over: (i) a �nite grid of � values, f�j > 0 : j � Jg; (ii) the same two-points (��; �j) and (�2�; �2j)
as in AMS for each �j for j � J; and (iii) the same uniform weight function over ��=jj��jj as in
CHJ. In particular, we use the uniform weight function over the 36 values of � in f2:5; 5:0; :::; 90:0g:

The WAP2 envelope is a function of (�0; ��): The WAP2(Q; �0; ��) test statistic that generates

this envelope is of the form
PJ
j=1( (Q;�0; ��j ; �j)+ (Q;�0; �2�j ; �2j))=

PJ
j=1 2 2(QT ;�0; ��; �j);

where the functions  (Q;�0; �; �) and  2(QT ;�0; �; �) are as in AMS (and as in (12.5) in the SM).
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The WAP2(Q; �0; ��) conditional critical value �2;�0;J(qT ) is de�ned to satisfy PQ1jQT (WAP2(Q;

�0; ��) > �2;�0;J(qT )jqT ) = � for all qT � 0; where PQ1jQT (�jqT ) denotes probability under the
density fQ1jQT (�jqT ); which is speci�ed in (12.3) in the SM.

To be consistent with Tables I and II, we report PD�s between the WAP2(Q; �0; ��) and CLR

tests for �� = 0 and a range of �0 values. These PD�s are equivalent to the FCPD�s between

the CLR and WAP2 CS�s for �xed true �� and varying incorrect �0 values. The di¤erences are

necessarily nonnegative.

We consider �uv 2 f0; :3; :5; :7; :9; :95; :99g; k = 2; 5; 10; 20; 40; the same �0 values as in Table

II, and !21 = !22 = 1: (The large �uv values of :95 and :99 are included to show that the results are

not sensitive to �uv being close to one.) Since �� = 0; �
 = �uv: Section 22 in the SM shows that

taking �� = 0 and !
2
1 = !22 = 1 is wlog provided the support of the weight function for � is scaled

by !22 when !2 6= 1: The number of simulation repetitions employed is 1; 000 for each �j value.

With power averaged over the 36 �j values and independence of the simulation draws across �j ;

this yields simulation SD�s that are comparable to using 36; 000 simulation repetitions. The critical

values are determined using 100; 000 simulation repetitions for k = 5 and 10; 000 for other values

of k:

For brevity, Table III reports results only for k = 5 for a subset of the �0 values considered.

Results for all values of k and �0 considered are given in Table SM-V in the SM. Table IV reports

summary results for all values of k: In particular, Table IV(a) provides the maxima over �0 of the

average over � PD�s for each (�uv; k): Table IV(b) provides the average over �0 of the average over

� PD�s for each (�uv; k):

Table III shows that the CLR test has power quite close to the WAP2 power envelope for k = 5:

The PD�s for �uv 2 f0; :3; :5; :7g; we have PD2 [:000; :005] and SD2 [:0003; :0007] across all �0
values. For �uv 2 f:9; :95; :99g; we have PD2 [:000; :001] and SD2 [:0000; :0003] across all �0 values.

Table IV shows that PD�s between the WAP2 power envelope and the CLR power are increasing

in k and decreasing in j�uvj: For k = 2; the maximum PD over �0 and �uv values is very small:

:004: In the worst case for CLR, which is when (k; �uv) = (40; 0); the maximum PD over �0 values

is substantially larger: :024: The average (over �0 values) PD in this case is :013; which is not very

large. For k = 40 and �uv � :9; the maximum PD (over �0 and �uv values) is very small: :004: This

is consistent with the theoretical optimality properties of the CLR test as �uv ! �1 described in
Section 8. For k = 40 and �uv � :9; the average PD (over �0 values and the �ve �uv values) is very

small: :000: The second worst case for CLR in Table IV is when (k; �uv) = (20; 0): In this case, the

maximum PD over �0 values is :013; which is noticeably lower than :024 for (k; �uv) = (40; 0):

In conclusion, the results in Tables III and IV show that the CLR test is very close to the WAP2
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power envelope for most (k; �uv; �0) values, but can deviate from it by as much as :024 for some �0

values when (k; �uv) = (40; 0):
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TABLE I. Differences in Probabilities of Infinite-Length CI’s for the CLR and POIS2∞ CI’s, and Probabilities of
Infinite-Length POIS2∞ CI’s as Functions of k, λ and ρuv

k λ
CLR–POIS2∞ POIS2∞

ρuv = 0 .3 .5 .7 .9 ρuv = 0 .7 .9
2 1 .002 .003 .003 .001 .002 .867 .862 .851
2 3 .007 .008 .003 .004 .004 .680 .654 .614
2 5 .011 .010 .005 .004 .002 .497 .452 .407
2 7 .013 .009 .004 .004 .003 .345 .291 .256
2 10 .012 .007 .004 .003 .002 .182 .138 .117
2 15 .007 .004 .002 .001 .001 .056 .034 .029
2 20 .003 .002 .001 .000 .000 .015 .008 .006
5 1 .003 .002 .001 .001 .003 .902 .900 .884
5 3 .010 .007 .003 .001 .005 .779 .752 .670
5 5 .020 .010 .003 .004 .004 .639 .571 .459
5 7 .026 .013 .005 .006 .002 .502 .404 .295
5 10 .027 .014 .006 .005 .001 .323 .214 .139
5 12 .027 .013 .006 .004 .001 .230 .133 .082
5 15 .023 .011 .005 .003 .000 .132 .061 .035
5 20 .012 .005 .003 .001 .000 .047 .014 .008
5 25 .006 .003 .001 .000 .000 .015 .003 .002
10 1 .002 .002 .001 .001 .003 .918 .917 .904
10 5 .018 .011 .005 .003 .007 .733 .673 .526
10 10 .035 .018 .008 .005 .002 .461 .317 .173
10 15 .037 .017 .008 .005 .001 .242 .110 .046
10 17 .034 .016 .007 .004 .000 .177 .069 .026
10 20 .026 .015 .006 .002 .000 .109 .033 .011
10 25 .016 .008 .003 .001 .000 .043 .008 .002
10 30 .008 .004 .002 .000 .000 .016 .002 .000
20 1 .003 .002 .001 .000 .002 .929 .930 .921
20 5 .017 .012 .004 .003 .008 .806 .768 .617
20 10 .035 .021 .008 .008 .003 .597 .462 .240
20 15 .043 .023 .010 .009 .002 .393 .211 .070
20 20 .042 .021 .009 .005 .001 .226 .079 .018
20 25 .033 .016 .007 .003 .000 .116 .024 .004
20 30 .023 .011 .004 .002 .000 .053 .007 .001
20 40 .007 .003 .001 .000 .000 .010 .001 .000
40 1 .001 .000 .000 -.000 -.001 .936 .936 .932
40 5 .011 .008 .005 .003 .010 .861 .837 .717
40 10 .030 .016 .006 .010 .004 .721 .615 .354
40 15 .046 .024 .011 .011 .002 .553 .371 .128
40 20 .049 .028 .013 .010 .001 .394 .186 .038
40 30 .043 .022 .010 .004 .000 .155 .029 .002
40 40 .022 .010 .004 .001 .000 .046 .003 .000
40 60 .003 .001 .000 .000 .000 .002 .000 .000



TABLE II. Maximum and Average Power Differences over λ and β0 Values between POIS2 and CLR Tests for Fixed Alternative β∗ = 0

(a) Across k patterns for fixed ρuv

POIS2–CLR
ρuv k λmax β0,max ρuv,0 POIS2 max average
.0 2 7 −10000.00 1.00 .66 .021 .006
.0 5 10 −50.00 1.00 .68 .030 .009
.0 10 15 −50.00 1.00 .76 .038 .012
.0 20 15 10.00 −1.00 .60 .042 .014
.0 40 22 −50.00 1.00 .66 .059 .016
.3 2 10 3.75 −0.96 .86 .019 .005
.3 5 10 3.50 −0.96 .73 .034 .008
.3 10 10 3.00 −0.94 .59 .032 .009
.3 20 15 3.50 −0.96 .66 .045 .012
.3 40 22 4.00 −0.97 .72 .061 .014
.5 2 5 2.00 −0.87 .64 .016 .004
.5 5 10 2.25 −0.90 .82 .029 .005
.5 10 10 2.00 −0.87 .70 .037 .007
.5 20 10 1.75 −0.82 .53 .046 .009
.5 40 15 1.75 −0.82 .59 .050 .012
.7 2 5 1.50 −0.75 .81 .016 .002
.7 5 5 1.50 −0.75 .67 .033 .003
.7 10 7 1.50 −0.75 .71 .036 .005
.7 20 7 1.25 −0.61 .54 .042 .006
.7 40 15 1.50 −0.75 .84 .050 .008
.9 2 0.9 1.25 −0.63 .46 .017 .002
.9 5 0.9 1.00 −0.22 .33 .017 .002
.9 10 3 1.25 −0.63 .77 .027 .003
.9 20 3 1.00 −0.22 .61 .032 .003
.9 40 5 1.25 −0.63 .75 .040 .004

(b) Across ρuv patterns for fixed k

POIS2–CLR
k ρuv λmax β0,max ρuv,0 POIS2 max average
2 .0 7 −10000.00 1.00 .66 .021 .006
2 .3 10 3.75 −0.96 .86 .019 .005
2 .5 5 2.00 −0.87 .64 .016 .004
2 .7 5 1.50 −0.75 .81 .016 .002
2 .9 0.9 1.25 −0.63 .46 .017 .002
5 .0 10 −50.00 1.00 .68 .030 .009
5 .3 10 3.50 −0.96 .73 .034 .008
5 .5 10 2.25 −0.90 .82 .029 .005
5 .7 5 1.50 −0.75 .67 .033 .003
5 .9 0.9 1.00 −0.22 .33 .017 .002

10 .0 15 −50.00 1.00 .76 .038 .012
10 .3 10 3.00 −0.94 .59 .032 .009
10 .5 10 2.00 −0.87 .70 .037 .007
10 .7 7 1.50 −0.75 .71 .036 .005
10 .9 3 1.25 −0.63 .77 .027 .003
20 .0 15 10.00 −1.00 .60 .042 .014
20 .3 15 3.50 −0.96 .66 .045 .012
20 .5 10 1.75 −0.82 .53 .046 .009
20 .7 7 1.25 −0.61 .54 .042 .006
20 .9 3 1.00 −0.22 .61 .032 .003
40 .0 22 −50.00 1.00 .66 .059 .016
40 .3 22 4.00 −0.97 .72 .061 .014
40 .5 15 1.75 −0.82 .59 .050 .012
40 .7 15 1.50 −0.75 .84 .050 .008
40 .9 5 1.25 −0.63 .75 .040 .004
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TABLE III. Average (over λ) Power Differences for λ ∈ {2.5, 5.0, ..., 90.0} between the WAP2 and CLR Tests for
k = 5

β0
ρuv,0 WAP2–CLR

ρuv = 0 .9 ρuv = 0 .3 .5 .7 .9 .95 .99
−10000.00 1.00 1.00 .005 .002 .001 .001 .000 -.000 .000
−100.00 1.00 1.00 .005 .002 .001 .001 .000 -.001 -.000
−10.00 1.00 1.00 .005 .002 .001 .000 .000 -.000 -.000
−4.00 .97 1.00 .003 .001 .000 -.000 .000 .000 -.000
−3.00 .95 .99 .003 .001 .000 .000 -.000 .001 .000
−2.00 .89 .99 .002 .001 .000 .001 -.000 -.001 -.000
−1.50 .83 .98 .001 .001 .001 .000 .000 -.001 -.000
−1.00 .71 .97 .001 .000 -.000 -.000 -.000 .000 -.000
−0.75 .60 .97 .000 -.000 .001 -.000 -.000 .000 .000
−0.50 .45 .95 -.000 -.000 -.001 -.001 -.000 -.001 -.000
−0.25 .24 .94 -.001 -.001 -.001 -.000 -.000 .001 -.001

0.25 −.24 .83 -.000 -.001 -.001 -.000 -.001 .000 .000
0.50 −.45 .68 .001 .000 .000 .000 .000 -.001 .000
0.75 −.60 .33 .000 .001 .001 .001 .000 .000 .000
1.00 −.71 −.22 .002 .001 .001 .001 .000 .000 .000
1.50 −.83 −.81 .001 .002 .003 .003 .001 -.000 .000
2.00 −.89 −.93 .002 .003 .004 .002 .000 -.001 -.000
3.00 −.95 −.98 .003 .005 .003 .001 .000 .000 .000
4.00 −.97 −.99 .004 .005 .002 .001 .000 .001 .000

10.00 −1.00 −1.00 .005 .003 .001 .001 .000 .000 .000
100.00 −1.00 −1.00 .005 .003 .001 .000 .000 -.001 .000

10000.00 −1.00 −1.00 .005 .002 .001 .001 .000 -.000 .000

TABLE IV. Average (over λ) Power Differences between the WAP2 and CLR Tests

k
(a) Maxima over β0 (b) Averages over β0

ρuv = 0 .3 .5 .7 .9 .95 .99 ρuv = 0 .3 .5 .7 .9 .95 .99
2 .004 .003 .002 .002 .001 .001 .001 .002 .002 .001 .001 .000 .000 .000
5 .005 .005 .004 .003 .001 .001 .000 .003 .002 .001 .001 .000 .000 .000
10 .011 .010 .008 .005 .004 .003 .003 .007 .006 .004 .002 .001 .001 .001
20 .013 .012 .010 .007 .002 .001 .002 .008 .007 .005 .002 .000 .000 .000
40 .024 .021 .017 .011 .004 .001 .000 .013 .011 .007 .004 .000 .000 .000



Figure 1. The Power Functions of the POIS2, CLR, and AR Tests for k = 10, λ = 15, and ρuv = 0, .5, .9

(a) ρuv = 0
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(b) ρuv = .5
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(c) ρuv = .9
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11 Outline

References to sections, theorems, and lemmas with section numbers less than 11 refer to

sections and results in the main paper.

Section 12 of this Supplemental Material (SM) provides expressions for the densities

fQ(q;��; �0; �;
); fQ1jQT (q1jqT ); and fQ(q; �uv; �v); expressions for the POIS2 test statistic and
critical value of AMS, and expressions for the one-to-one transformations between the reduced-

form and structural variance matrices. Section 13 provides one-sided power bounds for invariant

similar tests as �0 ! �1; where �0 denotes the null hypothesis value. Section 14 corrects (4.1)
of AMS, which concerns the two-point weight function that de�nes AMS�s two-sided AE power

envelope.

Section 15 proves Lemma 6.1. Section 16 proves Theorem 5.1 and its Comment (v). Section 17

proves Theorem 6.2 and its Comment (iv), Corollary 6.3 and its Comment (ii), and Theorem 6.4.

Section 18 proves Theorem 8.1. Section 19 proves Theorem 13.1 and Lemmas 14.1 and 14.2.

Section 20 computes the structural error variance matrices in scenarios 1 and 2 considered in

(4.2) and (4.3) in Section 4.

Section 21 shows how the model is transformed to go from a testing problem of H0 : � = �0

versus H1 : � = �� for � 2 Rk and �xed 
 to a testing problem of H0 : � = 0 versus H1 : � = ��

for some � 2 Rk and some �xed 
 with diagonal elements equal to one. This links the model

considered here to the model used in the Andrews, Moreira, and Stock (2006) (AMS) numerical

work.

Section 22 shows how the model is transformed to go from a testing problem of H0 : � = �0

versus H1 : � = �� for � 2 Rk and �xed 
 to a testing problem of H0 : � = �0 versus H1 : � = 0 for

some � 2 Rk and some �xed 
 with diagonal elements equal to one. These transformation results
imply that there is no loss in generality in the numerical results of the paper to taking !21 = !22 = 1;

�� = 0; and �uv 2 [0; 1] (rather than �uv 2 [�1; 1]):
Section 23 provides numerical results that supplement the results given in Tables I-IV in the

main paper.

Section 24 considers a variant of the CLR test, which we denote the CLR2n test, and computes

probabilities that it has in�nite length. It is not found to improve upon the CLR test.

Section 25 considers the linear IV model that allows for heteroskedasticity and autocorrelation

(HC) in the errors, as in Moriera and Ridder (2017). It extends Theorem 5.1 to this model. Thus,

it gives formulae for the probabilities that a CI has in�nite right length, in�nite left length, and

in�nite length in this model.
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12 De�nitions

12.1 Densities of Q when � = �� and when �0! �1

In this subsection, we provide expressions for (i) the density fQ(q;��; �0; �;
) of Q when the

true value of � is ��; and the null value �0 is �nite, (ii) the conditional density fQ1jQT (q1jqT ) of Q1
given QT = qT ; and (iii) the limit of fQ(q;��; �0; �;
) as �0 ! �1:

Let

���(q) = ���(q;�0;
) := c2��qS + 2c��d��qST + d
2
��
qT ; (12.1)

where c�� = c��(�0;
) and d�� = d��(�0;
): As in Section 6, fQ(q;��; �0; �;
) denotes the density

of Q := [S : T ]0[S : T ] when [S : T ] has the multivariate normal distribution in (2.3) with � = ��

and � = �0���: This noncentral Wishart density is

fQ(q;��; �0; �;
) = K1 exp(��(c2�� + d
2
��
)=2) det(q)(k�3)=2 exp(�(qS + qT )=2)

�(����(q))
�(k�2)=4I(k�2)=2(

q
����(q)); where

q =

24 qS qST

qST qT

35 ; q1 =
0@ qS

qST

1A 2 R+ �R; qT 2 R+; (12.2)

K�1
1 = 2(k+2)=2pi1=2�((k � 1)=2); I�(�) denotes the modi�ed Bessel function of the �rst kind of

order �; pi = 3:1415:::; and �(�) is the gamma function. This holds by Lemma 3(a) of AMS with
� = ��:

By Lemma 3(c) of AMS, the conditional density of Q1 given QT = qT when [S : T ] is distributed

as in (2.3) with � = �0 is

fQ1jQT (q1jqT ) := K1K
�1
2 exp(�qS=2) det(q)(k�3)=2q�(k�2)=2T ; (12.3)

which does not depend on �0; �; or 
:

By Lemma 6.1, the limit of fQ(q;��; �0; �;
) as �0 ! �1 is the density fQ(q; �uv; �v): As in

Section 6, fQ(q; �uv; �v) denotes the density of Q := [S : T ]
0[S : T ] when [S : T ] has a multivariate

normal distribution with means matrix in (6.2), all variances equal to one, and all covariances equal

to zero. This is a noncentral Wishart density that has following form:

fQ(q; �uv; �v) = K1 exp(��v(1 + r2uv)=2) det(q)(k�3)=2 exp(�(qS + qT )=2)

�(�v�(q; �uv))�(k�2)=4I(k�2)=2(
p
�v�(q; �uv)); where

�(q; �uv) := qS + 2ruvqST + r
2
uvqT : (12.4)

3



This expression for the density holds by the proof of Lemma 3(a) of AMS with means matrix

�� � (1=�v; ruv=�v) in place of the means matrix �� � (c� ; d�):

12.2 POIS2 Test

Here we de�ne the POIS2(q1; qT ;�0; ��; �) test statistic of AMS, which is analyzed in Section

6, and its conditional critical value �2;�0(qT ):

Given (��; �); the parameters (�2�; �2) are de�ned in (6.3), which is the same as (4.2) of AMS.

By Cor. 1 of AMS, the optimal average-power test statistic against (��; �) and (�2�; �2) is

POIS2(Q;�0; ��; �) :=
 (Q;�0; ��; �) +  (Q;�0; �2�; �2)

2 2(QT ;�0; ��; �)
; where

 (Q;�0; �; �) := exp(��(c2� + d2�)=2)(���(Q))�(k�2)=4I(k�2)=2(
q
���(Q));

 2(QT ;�0; �; �) := exp(��d2�=2)(�d2�QT )�(k�2)=4I(k�2)=2(
q
�d2�QT ); (12.5)

Q and QT are de�ned in (3.1), c� = c�(�;
) and d� = d�(�;
) are de�ned in (2.3), I�(�) is de�ned
in (12.2), ��(Q) is de�ned in (12.1) with Q and � in place of q and ��; and � := �0���: Note that

 2(QT ;��; �) =  2(QT ;�2�; �2) by (6.3).

Let �2;�0(qT ) denote the conditional critical value of the POIS2(Q;�0; ��; �) test statistic. That

is, �2;�0(qT ) is de�ned to satisfy

PQ1jQT (POIS2(Q;�0; ��; �) > �2;�0(qT )jqT ) = � (12.6)

for all qT � 0; where PQ1jQT (�jqT ) denotes probability under the density fQ1jQT (�jqT ) de�ned in
(12.3). The critical value function �2;�0(�) depends on (�0; ��; �;
) and k (and (�2�; �2) through
(��; �)).

12.3 Structural and Reduced-Form Variance Matrices

Let ui; v1i; and v2i denote the ith elements of u; v1; and v2; respectively. We have

v1i := ui + v2i� and 
 =

24 !21 !12

!12 !22

35 ; (12.7)

where � denotes the true value.

Given the true value � and some structural error variance matrix �; the corresponding reduced-

4



form error variance matrix 
(�;�) is


(�;�) := V ar

0@0@ v1i

v2i

1A1A = V ar

0@0@ ui + v2i�

v2i

1A1A
=

24 1 �

0 1

35�
24 1 0

� 1

35 =
24 �2u + 2�uv� + �

2
v�
2 �uv + �

2
v�

�uv + �
2
v� �2v

35 ; where
� =

24 �2u �uv

�uv �2v

35 : (12.8)

Given the true value � and the reduced-form error variance matrix 
; the structural variance

matrix �(�;
) is

�(�;
) := V ar

0@0@ ui

v2i

1A1A = V ar

0@0@ v1i � v2i�
v2i

1A1A (12.9)

=

24 1 ��
0 1

35

24 1 0

�� 1

35 =
24 !21 � 2!12� + !22�2 !12 � !22�

!12 � !22� !22

35 :
Let �2u(�;
); �

2
v(�;
); and �uv(�;
) denote the (1; 1); (2; 2); and (1; 2) elements of �(�;
): Let

�uv(�;
) denote the correlation implied by �(�;
):

In the asymptotics as �0 ! �1; we �x �� and 
 and consider the testing problem as �0 ! �1:
Rather than �xing 
; one can equivalently �x the structural variance matrix when � = ��; say at

��: Given �� and ��; there is a unique reduced-form error variance matrix 
 = 
(��;��) de�ned

using (12.8). Signi�cant simpli�cations in certain formulae occur when they are expressed in terms

of ��; rather than 
; e.g., see Lemma 15.1(e) below.

For notational simplicity, we denote the (1; 1); (2; 2); and (1; 2) elements of �� by �2u; �
2
v; and

�uv; respectively, without any � subscripts. As de�ned in (5.5), �uv := �uv=(�u�v): Thus, �uv is the

correlation between the structural and reduced-form errors ui and v2i when the true value of � is

��: Note that �uv does not change when (��;��) is �xed (or, equivalently, (��;
) = (��;
(��;��))

is �xed) and �0 is changed. Also, note that �
2
v = !22 because both denote the variance of v2i under

� = �� and � = �0:

13 One-Sided Power Bound as �0! �1

In this section, we provide one-sided power bounds for invariant similar tests as �0 ! �1 for

�xed ��: The approach is the same as in Andrews, Moreira, and Stock (2004) (AMS04) except that

5



we consider �0 ! �1: Also see Mills, Moreira, and Vilela (2014).

13.1 Point Optimal Invariant Similar Tests for Fixed �0 and ��

First, we consider the point null and alternative hypotheses:

H0 : � = �0 and H1 : � = ��; (13.1)

where � 2 Rk (or, equivalently, � � 0) under H0 and H1:
Point optimal invariant similar (POIS) tests for any given null and alternative parameter values

�0 and ��; respectively, and any given 
 are constructed in AMS04, Sec. 5. Surprisingly, the same

test is found to be optimal for all values of � under H1; i.e., for all strengths of identi�cation.

The optimal test is constructed by determining the level � test that maximizes conditional power

given QT = qT among tests that are invariant and have null rejection probability � conditional on

QT = qT ; for each qT 2 R:
By AMS04 (Comment 2 to Cor. 2), the POIS test of H0 : � = �0 versus H1 : � = ��; for any

� 2 Rk (or � � 0) under H1; rejects H0 for large values of

POIS(Q;�0; ��) := QS + 2
d��(�0;
)

c��(�0;
)
QST : (13.2)

The critical value for the POIS(Q;�0; ��) test is a conditional critical value given QT = qT ; which

we denote by ��0(qT ): The critical value ��0(qT ) is de�ned to satisfy

PQ1jQT (POIS(Q;�0; ��) > ��0(qT )jqT ) = � (13.3)

for all qT � 0; where PQ1jQT (�jqT ) denotes probability under the conditional density fQ1jQT (q1jqT )
de�ned in (12.3). Although the density fQ1jQT (q1jqT ) does not depend on �0; ��0(qT ) depends on
�0; as well as (��;
; k); because POIS(Q;�0; ��) does.

Note that, although the same POIS(Q;�0; ��) test is best for all strengths of identi�cation,

i.e., for all � = �0��� > 0; the power of this test depends on �:

13.2 One-Sided Power Bound When �0! �1

Now we consider the best one-sided invariant similar test as �0 ! �1 keeping (��;
) �xed.

Lemma 15.1 below implies that

lim
�0!�1

d��(�0;
)

c��(�0;
)
=

�
� �uv
�v(1� �2uv)1=2

�
= (�1=�v) =

�uv
(1� �2uv)1=2

; (13.4)
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where �uv; de�ned in (5.5), is the correlation between the structural and reduced-form errors ui

and v2i under ��: Hence, the limit as �0 ! �1 of the POIS(Q;�0; ��) test statistic in (13.2) is

POIS(Q;1; �uv) := lim
�0!�1

�
QS + 2

d��(�0;
)

c��(�0;
)
QST

�
= QS + 2

�uv
(1� �2uv)1=2

QST : (13.5)

Notice that (i) this limit is the same for �0 ! +1 and �0 ! �1; (ii) the POIS(Q;1; �uv) statistic
depends on (��;
) = (��;
(��;��)) only through �uv := Corr(��); and (iii) when �uv = 0;

the POIS(Q;1; �uv) statistic is the AR statistic (times k): Some intuition for result (iii) is that
EQST = 0 under the null and limj�0j!1EQST = 0 under any �xed alternative �� when �uv = 0

(see the discussion in Section 6.2). In consequence, QST is not useful for distinguishing between

H0 and H1 when j�0j ! 1 and �uv = 0:

Let �1(qT ) denote the conditional critical value of the POIS(Q;1; �uv) test statistic. That is,
�1(qT ) is de�ned to satisfy

PQ1jQT (POIS(Q;1; �uv) > �1(qT )jqT ) = � (13.6)

for all qT � 0: The density fQ1jQT (�jqT ) of PQ1jQT (�jqT ) only depends on the number of IV�s k; see
(12.3). The critical value function �1(�) depends on �uv and k:

Let ��0(Q) denote a test of H0 : � = �0 versus H1 : � = �� based on Q that rejects H0 when

��0(Q) = 1: In most cases, a test depends on �0 because the distribution of Q depends on �0; see

(2.3) and (3.1), and not because ��0(�) depends on �0: For example, this is true of the AR, LM,
and CLR tests in (3.3) and (3.4). However, we allow for dependence of ��0(�) on �0 in the following
result in order to cover all possible sequences of (non-randomized) tests of H0 : � = �0:

Theorem 13.1 Let f��0(Q) : �0 ! �1g be any sequence of invariant similar level � tests of
H0 : � = �0 versus H1 : � = �� when Q has density fQ(q;�; �0; �;
) for some � � 0 and 
 is �xed
and known. For �xed true (��; �;
); the POIS(Q;1; �uv) test satis�es

lim sup
�0!�1

P��;�0;�;
(��0(Q) = 1) � P�uv ;�v(POIS(Q;1; �uv) > �1(QT )):

Comments. (i). Theorem 13.1 shows that the POIS(Q;1; �uv) test provides an asymptotic
power bound as �0 ! �1 for any invariant similar test for any �xed (��; �;
): This power bound

is strictly less than one. The reason is that lim�0!�1 jc��(�0;
)j 9 1: This is the same reason
that the AR test does not have power that converges to one in this scenario, see Section 4. Hence,

the bound in Theorem 13.1 is informative.

(ii). The power bound in Theorem 13.1 only depends on (��; �;
) through �uv; the magnitude
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of endogeneity under ��; and �v; the concentration parameter:

(iii). As an alternative to the power bound given in Theorem 13.1, one might consider develop-

ing a formal limit of experiments result, e.g., along the lines of van der Vaart (1998, Ch. 9). This

approach does not appear to work for the sequence of experiments consisting of the two uncondi-

tional distributions of [S : T ] (or Q) for � = �0; �� and indexed by �0 as �0 ! �1: The reason
is that the likelihood ratio of these two distributions is asymptotically degenerate as �0 ! �1
(either 0 or 1 depending on which density is in the numerator) when the truth is taken to be

� = �0: This occurs because the length of the mean vector of T diverges to in�nity as �0 ! �1
(provided � = �0��� > 0) by (2.3) and Lemma 15.1(c) below. For the sequence of conditional

distributions of Q given QT = qT ; it should be possible to obtain a formal limit of experiments

result, but this would not very helpful because we are interested in the unconditional power of tests

and a conditional limit of experiments result would not deliver this.

(iv). The proof of Theorem 13.1 is given in Section 19 below.

14 Equations (4.1) and (4.2) of AMS

This section corrects (4.1) of AMS, which concerns the two-point weight function that de�nes

AMS�s two-sided AE power envelope.

Equation (4.1) of AMS is:10 given (��; �); the second point (�2�; �2) solves

�
1=2
2 c�2� = ��

1=2c�� (6= 0) and �
1=2
2 d�2� = �1=2d�� : (14.1)

AMS states that provided �� 6= �AR; the solutions to the two equations in (4.1) satisfy the two

equations in (4.2) of AMS, which is the same as (6.3) and which we repeat here for convenience:11

�2� = �0 �
d�0(�� � �0)

d�0 + 2r�0(�� � �0)
and �2 = �

(d�0 + 2r�0(�� � �0))
2

d2�0
; where

r�0 := e01

�1a0 � (a00
�1a0)�1=2 and e1 := (1; 0)0: (14.2)

Equation (4.2) is correct as stated, but (4.1) of AMS is not correct. More speci�cally, it is not

complete. It should be: given (��; �); the second point (�2�; �2) solves either (14.1) or

�
1=2
2 c�2� = �1=2c�� (6= 0) and �

1=2
2 d�2� = ��

1=2d�� : (14.3)

10Note that (��; �) and (�2�; �2) in this paper correspond to (�
�; ��) and (��2; �

�
2) in AMS.

11The formulae in (6.3) and (14.2) only hold for �� 6= �AR; where �AR := (!21 � !12�0)=(!12 � !22�0) provided
!12 � !22�0 6= 0 (which necessarily holds for j�0j su¢ ciently large because !22 > 0):
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For brevity, we write the �either or�conditions in (14.1) and (14.3) as

�
1=2
2 c�2� = ��

1=2c�� (6= 0) and �
1=2
2 d�2� = ��

1=2d�� : (14.4)

The reason (4.1) of AMS needs to be augmented by (14.3) is that for some (��; �); �0; and


; (4.1) has no real solutions (�2�; �2) and the expressions for (�2�; �2) in (4.2) of AMS do not

satisfy (4.1). Once (4.1) of AMS is augmented by (14.3), there exist real solutions (�2�; �2) to the

augmented conditions and they are given by the expressions in (4.2) of AMS, i.e., by (14.2). This

is established in the following lemma.

Lemma 14.1 The conditions in (14.4) hold i¤ the conditions in (4.2) of AMS hold, i.e., i¤ the

conditions in (14.2) holds.

With (4.1) of AMS replaced by (14.4), the results in Theorem 8(b) and (c) of AMS hold as

stated. That is, the two-point weight function that satis�es (14.4) leads to a two-sided weighted

average power (WAP) test that is asymptotically e¢ cient under strong IV�s. And, all other two-

point weight functions lead to two-sided WAP tests that are not asymptotically e¢ cient under

strong IV�s.

Lemma 14.2 Under the assumptions of Theorem 8 of AMS, i.e., Assumptions SIV-LA and 1-4 of

AMS, (a) if (�2�; �2) satis�es (14.4); then LR
�( bQ1;n; bQT;n; ��; �) = e�

1
2
(��)2 cosh(��LM

1=2
n )+op(1);

where �� = �1=2c�� ; which is a strictly-increasing continuous function of LMn; and (b) if (�2�; �2)

does not satisfy (14.4), then LR�( bQ1;n; bQT;n;��; �) = �2(QST;n=Q
1=2
T;n) + op(1) for a continuous

function �2(�) that is not even.

Comments. (i). Lemma 14.2(a) is an extension of Theorem 8(b) of AMS; while Lemma 14.2(b)

is a correction to Theorem 8(c) of AMS.

(ii). The proofs of Lemma 14.1 and 14.2 are given in Section 19 below.

Having augmented (4.1) by (14.3), the two-point weight function of AMS does not have the

property that �2� is necessarily on the opposite side of �0 from ��: However, it does have the

properties that (i) for any (��; �); (�2�; �2) is the only point that yields a two-point WAP test

that is asymptotic e¢ cient in a two-sided sense under strong IV�s, (ii) the marginal distributions

of QS ; QT; and QST are the same under (��; �) and (�2�; �2); and (iii) the joint distribution of

(QS ; QST ; QT ) under (��; �) is the same as that of (QS ;�QST ; QT ) under (�2�; �2):
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15 Proof of Lemma 6.1

The proof of Lemma 6.1 and other proofs below use the following lemma.

The distributions of [S : T ] under (�0;
) and (��;
) depend on c�(�0;
) and d�(�0;
) for

� = �0 and ��: The limits of these quantities as �0 ! �1 are given in the following lemma.12

Lemma 15.1 For �xed �� and positive de�nite matrix 
; we have

(a) lim�0!�1 c�0(�0;
) = 0:

(b) lim�0!�1 c��(�0;
) = �1=�v:
(c) lim�0!�1 d�0(�0;
) =1:
(d) d�0(�0;
)=j�0j =

!2
(!21!

2
2�!212)1=2

+ o(1) = 1
�u(1��2uv)1=2

+ o(1) as j�0j ! 1:

(e) lim�0!�1 d��(�0;
) = �
!22���!12

!2(!21!
2
2�!212)1=2

= � �uv
�v(1��2uv)1=2

:

Comment. The limits in parts (d) and (e), expressed in terms of ��; only depend on �uv; �u; and

�v and their functional forms are of a relatively simple multiplicative form. The latter provides

additional simpli�cations of certain quantities that appear below.

Proof of Lemma 15.1. Part (a) holds because c�0(�0;
) = 0 for all �0: Part (b) holds by the

following calculations:

lim
�0!�1

c��(�0;
) = lim
�0!�1

(�� � �0) � (b00
b0)�1=2

= lim
�0!�1

(�� � �0) � (!21 � 2!12�0 + !22�20)�1=2

= �1=!2

= �1=�v: (15.1)

Now, we establish part (e). Let b� := (1;���)0: We have

lim
�0!�1

d��(�0;
) = lim
�0!�1

b0�
b0 � (b00
b0)�1=2 det(
)�1=2

= lim
�0!�1

!21 � !12�� � !12�0 + !22���0
(!21 � 2!12�0 + !22�20)1=2(!21!22 � !212)1=2

= � !22�� � !12
!2(!21!

2
2 � !212)1=2

: (15.2)

Next, we write the limit in (15.2) in terms of the elements of the structural error variance matrix

12Throughout, �0 ! �1 means �0 !1 or �0 ! �1:
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��: The term in the square root in the denominator of (15.2) satis�es

!21!
2
2 � !212 = (�2u + 2�uv�� + �2v�2�)�2v � (�uv + �2v��)2 = �2u�

2
v � �2uv; (15.3)

where the �rst equality uses !22 = �2v (since both denote the variance of v2i); !
2
1 = �2u + 2�uv�� +

�2v�
2
�); and !12 = �uv+�

2
v�� (which both hold by (12.8) with � = �� and � = ��); and the second

equality holds by simple calculations. The limit in (15.2) in terms of the elements of �� is

� !22�� � !12
!2(!21!

2
2 � !212)1=2

= ��
2
v�� � (�uv + �2v��)
�v(�2u�

2
v � �2uv)1=2

= � �uv
�v(1� �2uv)1=2

; (15.4)

where the �rst equality uses (15.3), !22 = �2v; and !12 = �uv + �2v��; and the second inequality

holds by dividing the numerator and denominator by �u�v: This establishes part (e).

For part (c), we have

lim
�0!�1

d�0(�0;
) = lim
�0!�1

(b00
b0)
1=2 det(
)�1=2

= lim
�0!�1

(!21 � 2!12�0 + !22�20)1=2

(!21!
2
2 � !212)1=2

= 1: (15.5)

Part (d) holds because, as j�0j ! 1; we have

d�0(�0;
)=j�0j =
(!21=�

2
0 � 2!12=�0 + !22)1=2

(!21!
2
2 � !212)1=2

=
!2

(!21!
2
2 � !212)1=2

+ o(1)

=
1

�u(1� �2uv)1=2
+ o(1); (15.6)

where the last equality uses (15.3) and !2 = �v: �

Next, we prove Lemma 6.1, which states that for any �xed (��; �;
); lim�0!�1 fQ(q;��; �0; �;
)

= fQ(q; �uv; �v):

Proof of Lemma 6.1. By Lemma 15.1(b) and (e) and (6.1), we have lim�0!�1 c�� = �1=�v and
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lim�0!�1 d�� = �ruv=�v: In consequence,

lim
�0!�1

�(c2�� + d
2
��
) = �(1=�2v)(1 + r

2
uv) = �v(1 + r

2
uv) and

lim
�0!�1

����(q) = lim
�0!�1

�(c2��qS + 2c��d��qST + d
2
��
qT )

= �(1=�2v)(qS + 2ruvqST + r
2
uvqT ) = �v�(q; �uv); (15.7)

using the de�nitions of �v and �(q; �uv) in (6.1) and (12.4), respectively, where the �rst equality in

the third line uses (�1)(�ruv) = ruv: Combining this with (12.2) and (12.4) proves the result of

the lemma. �

16 Proof of Theorem 5.1

The proof of Theorem 5.1 uses the following lemma.13 Let

S�1(Y ) := (Z 0Z)�1=2Z 0Y e2 �
�1
�v
;

T�1(Y ) := (Z 0Z)�1=2Z 0Y 
�1e1 � (�(1� �2uv)1=2�u); and

Q�1(Y ) :=

24 e02Y
0PZY e2 � 1�2v e02Y

0PZY 

�1e1 � �(1��

2
uv)

1=2�u
�v

e02Y
0PZY 


�1e1 � �(1��
2
uv)

1=2�u
�v

e01

�1Y 0PZY 


�1e1 � (1� �2uv)�2u

35 ; (16.1)
where �uv := Corr(ui; v2i); PZ := Z(Z 0Z)�1Z 0; e1 := (1; 0)0; and e2 := (0; 1)0: Let QT;�1(Y ) denote

the (2; 2) element of Q�1(Y ): As de�ned in (6.1), ruv = �uv=(1� �2uv)1=2:

Lemma 16.1 For �xed �� and positive de�nite matrix 
; we have

(a) lim�0!�1 S�0(Y ) = S�1(Y );

(b) S�1(Y ) � N(� 1
�v
��; Ik);

(c) lim�0!�1 T�0(Y ) = T�1(Y ) = (Z 0Z)�1=2Z 0Y 
�1e1�(�(1��2
)1=2!1); where �
 := Corr(v1i; v2i);

(d) T�1(Y ) � N
�
� ruv
�v
��; Ik

�
;

(e) S�1(Y ) and T�1(Y ) are independent,

(f) lim�0!�1Q�0(Y ) = Q�1(Y ); and

(g) Q�1(Y ) has a noncentral Wishart distribution with means matrix ���( 1�v ;
ruv
�v
) 2 Rk�2;

identity variance matrix, and density given in (12.4).

Comment. The convergence results in Lemma 16.1 hold for all realizations of Y:
13The proof of Comment (v) to Theorem 5.1 is the same as that of Theorem 5.1(a) and (b) with [S�0(Y ); T�0(Y )]

and T�0(Y ) in place of Q�0(Y ) and QT;�0(Y ); respectively.
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Proof of Theorem 5.1. First, we prove part (a). We have

1(RLength(CS�(Y )) =1)

= 1(T (Q�0(Y )) � cv(QT;�0(Y )) 8�0 � K(Y ) for some K(Y ) <1)

= lim
�0!1

1(T (Q�0(Y )) � cv(QT;�0(Y ))); (16.2)

where the second equality holds provided the limit as �0 !1 on the rhs exists, the �rst equality

holds by the de�nition of CS�(Y ) in (5.1)-(5.3) and the de�nition of RLength(CS�(Q)) = 1
in (5.4), and the second equality holds because its rhs equals one (when the rhs limit exists) i¤

T (Q�0(Y )) � cv(QT;�0(Y )) for 8�0 � K(Y ) for some K(Y ) <1; which is the same as its lhs.
Now, we use the dominated convergence theorem to show

lim
�0!1

E��;�;
1(T (Q�0(Y )) � cv(QT;�0(Y )))

= E��;�;
 lim
�0!1

1(T (Q�0(Y )) � cv(QT;�0(Y ))): (16.3)

The dominated convergence theorem applies because (i) the indicator functions in (16.3) are domi-

nated by the constant function equal to one, which is integrable, and (ii) lim�0!1 1(T (Q�0(Y )) �
cv(QT;�0(Y )) exists a.s.[P��;�;
] and equals 1(T (Q1(Y )) � cv(QT;1(Y )) a.s.[P��;�;
]. The lat-

ter holds because the assumption that T (q) and cv(qT ) are continuous at positive de�nite (pd) q
and positive qT ; respectively, coupled with the result of Lemma 16.1(f) (that Q�0(Y ) ! Q1(Y )

as �0 ! 1 for all sample realizations of Y; where Q1(Y ) is de�ned in (16.1)), imply that (a)

lim�0!1 T (Q�0(Y )) = T (Q1(Y )) for all realizations of Y for which Q1(Y ) is pd, (b) lim�0!1

cv(QT;�0(Y )) = cv(QT;1(Y )) for all realizations of Y with QT;1(Y ) > 0; and hence (c) lim�0!1

1(T (Q�0(Y )) � cv(QT�0(Y )) = 1(T (Q1(Y )) � cv(QT;1(Y )) for all realizations of Y for which

T (Q1(Y )) 6= cv(QT;1(Y )): We have P��;�;
(T (Q1(Y )) = cv(QT;1(Y ))) = 0 by assumption, and

P��;�;
(Q1(Y ) is pd & QT;1(Y ) > 0) = 1 (because Q1(Y ) has a noncentral Wishart distribution

by Lemma 16.1(g)). Thus, condition (ii) above holds and the DCT applies.

Next, we have

1� lim
�0!1

P��;�0;�;
(�(Q) = 1)

= lim
�0!1

E��;�;
1(T (Q�0(Y )) � cv(QT;�0(Y )))

= E��;�;
 lim
�0!1

1(T (Q�0(Y )) � cv(QT;�0(Y )))

= P��;�;
(RLength(CS�(Y )) =1); (16.4)
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where the �rst equality holds because the distribution ofQ under P��;�0;�;
(�) equals the distribution
of Q�0(Y ) under P��;�;
(�) and �(Q) = 0 i¤ T (Q�0) � cv(QT ) by (5.2), the second equality holds

by (16.3), and the last equality holds by (16.2). Equation (16.4) establishes part (a).

The proof of part (b) is the same as that of part (a), but with LLength; 8�0 � �K(Y );
�0 ! �1; Q�1(Y ); and QT;�1(Y ) in place of RLength; 8�0 � K(Y ); �0 ! 1; Q1(Y ); and
QT;1(Y ); respectively.

The proof of part (c) uses the following: (i) Q1(Y ) and Q�1(Y ) only di¤er in the sign of their

o¤-diagonal elements by (16.1), (ii) T (Q1(Y )) does not depend on the sign of the o¤-diagonal
element of Q1(Y ) by assumption, and hence, (iii) 1(T (Q1(Y )) � cv(QT;1(Y )) = 1(T (Q�1(Y ))
� cv(QT;�1(Y )) for all sample realizations of Y: We have

1(RLength(CS�(Y )) =1 & LLength(CS�(Y )) =1)

= 1(T (Q�0(Y )) � cv(QT�0(Y )) 8�0 � K(Y ) & 8�0 � �K(Y ) for some K(Y ) <1)

= lim
�0!1

1(T (Q�0(Y )) � cv(QT;�0(Y )) & T (Q��0(Y )) � cv(QT;��0(Y )))

= 1(T (Q1(Y )) � cv(QT;1(Y )) & T (Q�1(Y )) � cv(QT;�1(Y )))

= 1(T (Q1(Y )) � cv(QT;1(Y ))

= lim
�0!1

1(T (Q�0(Y )) � cv(QT;�0(Y )) (16.5)

where the �rst two equalities hold for the same reasons as the equalities in (16.2), the third equality

holds a.s.[P��;�;
] by result (ii) that follows (16.3) and the same result with ��0 and �1 in place of

�0 and 1; respectively, the second last equality holds by condition (iii) immediately above (16.5),
and the last equality holds by result (ii) that follows (16.3).

Now, we have

P��;�;
(RLength(CS�(Y )) =1 & LLength(CS�(Y )) =1)

= E��;�;
 lim
�0!1

1(T (Q�0(Y )) � cv(QT;�0(Y )))

= 1� lim
�0!1

P��;�0;�;
(�(Q) = 1); (16.6)

where the �rst equality holds by (16.5) and the second equality holds by the �rst four lines of

(16.4). This establishes the equality in part (c) when �0 ! 1: The equality in part (c) when
�0 ! �1 holds because (16.5) and (16.6) hold with �0 ! 1 replaced by �0 ! �1 since the

indicator function on the rhs of the second equality in (16.5) depends on �0 only through j�0j: �
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Proof of Lemma 16.1. Part (a) holds because

lim
�0!�1

S�0(Y ) = lim
�0!�1

(Z 0Z)�1=2Z 0Y b0 � (b00
b0)�1=2

= (Z 0Z)�1=2Z 0Y lim
�0!�1

0@ 1

��0

1A =(!21 � 2!12�0 + !22�20)1=2

= (Z 0Z)�1=2Z 0Y e2(�1=�v); (16.7)

where e2 := (0; 1)0; the �rst equality holds by (2.3), the second equality holds because b0 :=

(1;��0)0; and the third equality holds using !2 = �v:

Next, we prove part (b). The statistic S�1(Y ) has a multivariate normal distribution because

it is a linear combination of multivariate normal random variables. The mean of S�1(Y ) is

ES�1(Y ) = (Z
0Z)�1=2Z 0Z[��� : �]e2 �

�1
�v

= (Z 0Z)1=2� � �1
�v

= �� �
�1
�v
; (16.8)

where the �rst equality holds using (2.2) with a = (��; 1)
0 and (16.1). The variance matrix of

S�1(Y ) is

V ar(S�1(Y )) = V ar((Z 0Z)�1=2Z 0Y e2)=�
2
v = V ar

 
nX
i=1

(Z 0Z)�1=2ZiY
0
i e2

!
=�2v

=
nX
i=1

V ar((Z 0Z)�1=2ZiY
0
i e2)=�

2
v =

nX
i=1

(Z 0Z)�1=2ZiZi(Z
0Z)�1=2e02
e2=�

2
v = Ik; (16.9)

where the third equality holds by independence across i and the last equality uses !22 = �2v: This

establishes part (b).

To prove part (c), we have

lim
�0!�1

T�0(Y ) = lim
�0!�1

(Z 0Z)�1=2Z 0Y 
�1a0 � (a00
�1a0)�1=2

= (Z 0Z)�1=2Z 0Y 
�1 lim
�0!�1

0@ �0

1

1A =(!11�20 + 2!
12�0 + !

22)1=2

= (Z 0Z)�1=2Z 0Y 
�1e1 � (�1=!11)1=2

= (Z 0Z)�1=2Z 0Y 
�1e1 � (�(!21!22 � !212)1=2=!2); (16.10)

where !11; !12; and !22 denote the (1; 1); (1; 2); and (2; 2) elements of 
�1; respectively, e1 := (1; 0)0;

the �rst equality holds by (2.3), the second equality holds because a0 := (�0; 1)
0; and the fourth

15



equality holds by the formula for !11: In addition, we have

(!21!
2
2 � !212)1=2=!2 = (1� �2
)1=2!1 = (1� �2uv)1=2�u; (16.11)

where the �rst equality uses �
 := !12=(!1!2) and the second equality holds because !21!
2
2�!212 =

�2u�
2
v � �2uv by (15.3) and !2 = �v: Equations (16.10) and (16.11), combined with (16.1), establish

part (c).

Now, we prove part (d). Like S�1(Y ); T�1(Y ) has a multivariate normal distribution. The

mean of T�1(Y ) is

ET�1(Y ) = (Z 0Z)�1=2Z 0Z[��� : �]

�1e1 � (�(1� �2uv)1=2�u)

= (Z 0Z)1=2�(��!
11 + !12) � (�(1� �2uv)1=2�u); (16.12)

where the equality holds using (2.2) with a = (��; 1)
0 and (16.1). In addition, we have

��!
11 + !12 =

��!
2
2 � !12

!21!
2
2 � !212

=
��uv

�2u�
2
v � �2uv

=
��uv

(1� �2uv)�u�v
; (16.13)

where the second equality uses !21!
2
2 � !212 = �2u�

2
v � �2uv by (15.3) and ��!

2
2 � !12 = ��uv by

(12.9) with � = ��: Combining (16.12) and (16.13) gives

ET�1(Y ) = �� �
��uv

�v(1� �2uv)1=2
= �� �

�ruv
�v

: (16.14)

The variance matrix of T�1(Y ) is

V ar(T�1(Y )) = V ar((Z 0Z)�1=2Z 0Y 
�1e1) � (1� �2uv)�2u

= V ar

 
nX
i=1

(Z 0Z)�1=2ZiY
0
i


�1e1

!
� (1� �2uv)�2u =

nX
i=1

V ar((Z 0Z)�1=2ZiY
0
i


�1e1) � (1� �2uv)�2u

=
nX
i=1

(Z 0Z)�1=2ZiZi(Z
0Z)�1=2e01


�1e1 � (1� �2uv)�2u = Ik
!22

!21!
2
2 � !212

� (1� �2uv)�2u

= Ik
�2v

�2u�
2
v � �2uv

� (1� �2uv)�2u = Ik;

where the �rst equality holds by (16.1), the third equality holds by independence across i; and the

second last equality uses !21!
2
2 � !212 = �2u�

2
v � �2uv by (15.3) and !22 = �2v:
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Part (e) holds because

Cov(S�1(Y ); T�1(Y )) = �
nX
i=1

Cov((Z 0Z)�1=2ZiY
0
i e2; (Z

0Z)�1=2ZiY
0
i


�1e1) � (1� �2uv)1=2�u=�v

=
nX
i=1

(Z 0Z)�1=2ZiZi(Z
0Z)�1=2e02



�1e1 � (1� �2uv)1=2�u=�v = 0k: (16.15)

Part (f) follows from parts (a) and (c) of the lemma and (5.1).

Part (g) holds by the de�nition of the noncentral Wishart distribution and parts (b), (d), and

(e) of the lemma. The density of Q�1(Y ) equals the density in (12.4) because the noncentral

Wishart density is invariant to a sign change in the means matrix. �

17 Proofs of Theorems 6.2, Corollary 6.3, and Theorem 6.4

The following lemma is used in the proof of Theorem 6.2. As above, let P��;�0;�;
(�) and
P�uv ;�v(�) denote probabilities under the alternative hypothesis densities fQ(q;��; �0; �;
) and
fQ(q; �uv; �v); which are de�ned in Section 12.1. See (12.2) and (12.4) for explicit expressions for

these noncentral Wishart densities.

Lemma 17.1 (a) lim�0!�1 P��;�0;�;
(POIS2(Q;��; �0; �) > �2;�0(QT )) = P�uv ;�v(POIS2(Q;1;
j�uvj; �v) > �2;1(QT ));

(b) lim�0!�1 P�2�;�0;�2;
(POIS2(Q;��; �0; �) > �2;�0(QT )) = P��uv ;�v(POIS2(Q;1; j�uvj; �v)
> �2;1(QT ));

(c) P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )) = P��uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT ));

(d) lim�0!�1 �2� = ��� + 2!12!22 = �� + 2
�u�uv
�v

; and

(e) lim�0!�1 �2 = �:

The reason that Q has the density fQ(q;��uv; �v) (de�ned in (12.4)) in the limit expression in
Lemma 17.1(b) can be seen clearly from the following lemma.

Lemma 17.2 For any �xed (��; �;
); lim�0!�1 fQ(q;�2�; �0; �2;
) = fQ(q;��uv; �v) for all 2�2
variance matrices q; where �2� and �2 satisfy (6.3) and �uv and �v are de�ned in (5.5) and (6.1),

respectively.
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Proof of Lemma 17.2. Given (��; ��); suppose the second point (��2; �
�
2) solves (14.1). In this

case, by Lemma 15.1(b) and (e), we have

lim
�0!�1

�
1=2
2 c�2�(�0;
) = lim

�0!�1
��1=2c��(�0;
) = ��

1=2=�v = ��1=2v and (17.1)

lim
�0!�1

�
1=2
2 d�2�(�0;
) = lim

�0!�1
�1=2d��(�0;
) = ��

1=2 �uv
�v(1� �2uv)1=2

= ��1=2v ruv:

Using (12.1), (12.4), and (17.1), we obtain

lim
�0!�1

�2(c
2
�2�
+ d2�2�) = �v(1 + r

2
uv) and

lim
�0!�1

�2��2�(q) := lim
�0!�1

�2(c
2
�2�
qS + 2c�2�d�2�qST + d

2
�2�
qT )

= �v(qS � 2ruvqST + r2uvqT )

=: �v�(q;��uv); (17.2)

On the other hand, given (��; ��); suppose the second point (��2; �
�
2) solves (14.3). In this case,

the minus sign on the rhs side of the �rst equality on the �rst line of (17.1) disappears, the quantity

on the rhs side of the last equality on the �rst line of (17.1) becomes ��1=2v ; a minus sign is added

to the rhs side of the �rst equality on the second line of (17.1), and the quantity on the rhs side of

the last equality on the second line of (17.1) becomes ��1=2v ruv: These changes leave �2c2�2� ; �2d
2
�2�
;

and �2c�2�d�2� unchanged from the case where (�
�
2; �

�
2) solves (14.1). Hence, (17.2) also holds when

(��2; �
�
2) solves (14.3).

Combining (17.2) with (12.2) (with (�2�; �2) in place of (��; �)) and (12.4) proves the result of

the lemma. �

Proof of Theorem 6.2. By Theorem 3 of AMS, for all (��; �0; �;
);

P��;�0;�;
(��0(Q) = 1) + P�2�;�0;�2;
(��0(Q) = 1) (17.3)

� P��;�0;�;
(POIS2(Q;�0; ��; �) > �2;�0(QT )) + P�2�;�0;�2;
(POIS2(Q;�0; ��; �) > �2;�0(QT )):

That is, the test on the rhs maximizes the two-point average power for testing � = �0 against

(��; �) and (�2�; �2) for �xed known 
:

Equation (17.3) and Lemma 17.1(a)-(c) establish the result of Theorem 6.2 by taking the

lim sup�0!�1 of the lhs and the lim inf�0!�1 of the rhs. �

The proof of Comment (iv) to Theorem 6.2 is the same as that of Theorem 6.2, but in

place of (17.3) it uses the inequality in Theorem 1 of CHJ i.e.,
R
P��;�0;�;��=jj�� jj;
(��0(Q) =
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1)dUnif(��=jj��jj) �
R
P��;�0;�;��=jj�� jj;
(POIS2(Q;�0; ��; �) > �2;�0(QT ))dUnif(��=jj��jj); plus

the fact that the rhs expression equals P��;�0;�;
(POIS2(Q;�0; ��; �) > �2;�0(QT )) because the dis-

tribution of Q only depends on �� through � = �0���:

Proof of Lemma 17.1. To prove part (a), we write

P��;�0;�;
(POIS2(Q;�0; ��; �) > �2;�0(QT ))

=

Z Z
1(POIS2(q;�0; ��; �) > �2;�0(qT ))�k(s� c����)�k(t� d����)dsdt; and

P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )) (17.4)

=

Z Z
1(POIS2(q;1; j�uvj; �v) > �2;1(qT ))�k(s� (�1=�v)��)�k(t� (�ruv=�v)��)dsdt;

where �k(x) for x 2 Rk denotes the density of k i.i.d. standard normal random variables, � = �0���;

s; t 2 Rk; q = [s : t]0[s : t]; qT = t0t; c�� = c��(�0;
); d�� = d��(�0;
); the � signs in the last line
are both + or both �; and the integral in the last line is the same whether both � signs are + or
� (by a change of variables calculation).

We have

lim
�0!�1

�k(s� c��(�0;
)��)�k(t�d��(�0;
)��) = �k(s� (�1=�v)��)�k(t� (�ruv=�v)��) (17.5)

for all s; t 2 Rk; by Lemma 15.1(b) and (e) and the smoothness of the standard normal density

function. By (6.4) and (12.5) and Lemma 15.1(b) and (e), we have

lim
�0!�1

POIS2(q;�0; ��; �) = POIS2(q;1; j�uvj; �v) (17.6)

for all for 2�2 variance matrices q; for given (��; �;
): In addition, we show below that lim�0!�1
�2;�0(qT ) = �2;1(qT ) for all qT � 0: Combining these results gives the following convergence result:

lim
�0!�1

1(POIS2(q;�0; ��; �) > �2;�0(qT )) � �k(s� c��(�0;
)��)�k(t� d��(�0;
)��)

= 1(POIS2(q;1; j�uvj; �v) > �2;1(qT )) � �k(s� (�1=�v)��)�k(t� (�ruv=�v)��) (17.7)

for all [s : t] for which POIS2(q;1; j�uvj; �v) > �2;1(qT ) or POIS2(q;1; j�uvj; �v) < �2;1(qT );

where [s : t]; q and (qS ; qST ; qT ) are functionally related by q = [s : t]0[s : t] and the de�nitions in

(12.2).

Given Lebesgue measure on the set of points (s0; t0)0 2 R2k; the induced measure on (qS ; qST ; qT )
= (s0s; s0t; t0t) 2 R3 is absolutely continuous with respect to (wrt) Lebesgue measure on R3 with
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positive density only for positive de�nite q: (This follows from change of variables calculations.

These calculations are analogous to those used to show that if [S : T ] has the multivariate normal

density �k(s�(�1=�v)��)�k(t�(�ruv=�v)��); then Q has the density fQ(q; �uv; �v); which, viewed
as a function of (qS ; qST ; qT ); is a density wrt Lebesgue measure on R3 that is positive only for posi-

tive de�nite q:) The Lebesgue measure of the set of (qS ; qST ; qT ) for which POIS2(q;1; j�uvj; �v) =
�2;1(qT ) is zero. (This holds because (i) the de�nition of POIS2(q;1; j�uvj; �v) in (6.4) implies that
the Lebesgue measure of the set of (qS ; qST ) for which POIS2(q;1; j�uvj; �v) = �2;1(qT ) is zero for

all qT � 0 and (ii) the Lebesgue measure of the set of (qS ; qST ; qT ) for which POIS2(q;1; j�uvj; �v)
= �2;1(qT ) is obtained by integrating the set in (i) over qT 2 R subject to the constraint that q

is positive de�nite.) In turn, this implies that the Lebesgue measure of the set of (s0; t0)0 for which

POIS2(q;1; j�uvj; �v) = �2;1(qT ) is zero. Hence, (17.7) veri�es the a.s. (wrt Lebesgue measure

on R2k) convergence condition required for the application of the DCT to obtain part (a) using

(17.4).

Next, to verify the dominating function requirement of the DCT, we need to show that

sup
�02R

j�k(s� c��(�0;
)��)�k(t� d��(�0;
)��)j (17.8)

is integrable wrt Lebesgue measure on R2k (since the indicator functions in (17.7) are bounded by

one). For any 0 < c <1 and m 2 R; we haveZ
sup
jmj�c

exp
�
�(x�m)2=2

�
dx = 2

Z 1

0
sup
jmj�c

exp
�
�x2=2 +mx�m2=2

�
dx

� 2

Z 1

0
exp

�
�x2=2 + cx

�
dx = 2

Z 1

0
exp

�
�(x� c)2=2 + c2=2

�
dx <1; (17.9)

where the �rst equality holds by symmetry. This result yields the integrability of the dominat-

ing function in (17.8) because �k(�) is a product of univariate standard normal densities and
sup�02R jc��(�0;
)j < 1 and sup�02R jd��(�0;
)j < 1 are �nite by Lemma 15.1(b) and (e) and

continuity of c��(�0;
) and d��(�0;
) in �0:

Hence, the DCT applies and it yields part (a).

It remains to show lim�0!�1 �2;�0(qT ) = �2;1(qT ) for all qT � 0: As noted above, lim�0!�1
POIS2(q;�0; ��; �) = POIS(q;1; j�uvj; �v) for all 2 � 2 variance matrices q: Hence,

1(POIS2(Q;�0; ��; �) � x) ! 1(POIS2(Q;1; j�uvj; �v) � x) as �0 ! �1 for all x 2 R for

which POIS2(Q;1; j�uvj; �v) 6= x: We have PQ1jQT (POIS2(Q;1; j�uvj; �v) = xjqT ) = 0 for all

qT � 0 by the absolute continuity of POIS2(Q;1; j�uvj; �v) under PQ1jQT (�jqT ) (by the functional
form of POIS2(Q;1; j�uvj; �v) and the absolute continuity of Q1 under PQ1jQT (�jqT ); whose density
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is given in (12.3)). Thus, by the DCT, for all x 2 R;

lim
�0!�1

PQ1jQT (POIS2(Q;�0; ��; �) � xjqT ) = PQ1jQT (POIS2(Q;1; j�uvj; �v) � xjqT ) and

POIS2(Q;�0; ��; �)!d POIS2(Q;1; j�uvj:�v) as �0 ! �1 under PQ1jQT (�jqT ): (17.10)

The second line of (17.10), coupled with the fact that POIS2(Q;1; j�uvj; �v) has a strictly
increasing distribution function at its 1 � � quantile under PQ1jQT (�jqT ) for all qT � 0 (which

is shown below), implies that the 1 � � quantile of POIS2(Q;�0; ��; �) under PQ1jQT (�jqT ) (i.e.,
�2;�0(qT )) converges as �0 ! �1 to the 1� � quantile of POIS2(Q;�0; ��; �) under PQ1jQT (�jqT )
(i.e., �2;1(qT )): This can be proved by contradiction. First, suppose � := lim supj!1 �2;j(qT ) �
�2;1(qT ) > 0 (where each j 2 R represents some value of �0 here). Then, there exists a subsequence
fmj : j � 1g of fj : j � 1g such that � = limj!1 �2;mj (qT )� �2;1(qT ): We have

� = lim
j!1

PQ1jQT (POIS2(Q;mj ; ��; �) > �2;mj (qT )jqT )

� lim
j!1

PQ1jQT (POIS2(Q;mj ; ��; �) > �2;1(qT ) + �=2jqT )

= PQ1jQT (POIS2(Q;1; j�uvj; �v) > �2;1(qT ) + �=2jqT )

< PQ1jQT (POIS2(Q;1; j�uvj; �v) > �2;1(qT )jqT )

= �; (17.11)

where the �rst equality holds by the de�nition of �2;�0(qT ); the �rst inequality holds by the ex-

pression above for �; the second equality holds by the �rst line of (17.10) with x = �2;1(qT ) + �=2;

the second inequality holds because � > 0 and the distribution function of POIS2(Q;1; j�uvj; �v)
is strictly increasing at its 1 � � quantile �2;1(qT ) under PQ1jQT (�jqT ) for all qT � 0; and the

last equality holds by the de�nition of �2;1(qT ): Equation (17.11) is a contradiction, so � � 0:

An analogous argument shows that lim inf�0!1 �2;�0(qT ) � �2;1(qT ) < 0 does not hold. Hence,

lim�0!1 �2;�0(qT ) = �2;1(qT ): An analogous argument shows that lim inf�0!�1 �2;�0(qT ) =

�2;1(qT ):

It remains to show that the distribution function of POIS2(Q;1; j�uvj; �v) is strictly increas-
ing at its 1 � � quantile �2;1(qT ) under PQ1jQT (�jqT ) for all qT � 0: This holds because (i)

POIS2(Q;1; j�uvj; �v) is a nonrandom strictly increasing function of (�(Q; �uv); �(Q;��uv)) condi-
tional on T = t (speci�cally, POIS2(Q;1; j�uvj; �v) = CqT

P1
j=0[(�v�(Q; �uv))

j +(�v�(Q;��uv))j ]
=(4jj!�(� + j + 1)); where CqT is a constant that may depend on qT ; � := (k � 2)=2; and

�(�) is the gamma function, by (6.4) and (4.8) of AMS, which provides an expression for the
modi�ed Bessel function of the �rst kind I�(x)); (ii) �(Q; �uv) = (S + ruvT )

0(S + ruvT ) and
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�(Q;��uv) = (S � ruvT )
0(S � ruvT ) have the same noncentral �2k distribution conditional on

T = t (because [S : T ] has a multivariate normal distribution with means matrix given by (6.2)

and identity variance matrix), (iii) (�(Q; �uv); �(Q;��uv)) has a positive density on R2+ conditional
on T = t and also conditional on QT = qT (because the latter conditional density is the integral of

the former conditional density over t such that t0t = qT ); and hence, (iv) POIS2(Q;1; j�uvj; �v)
has a positive density on R+ conditional on qT for all qT � 0: This completes the proof of part (a).

The proof of part (b) is the same as that of part (a), but with (i) �c�� and �1=�v in place of
c�� and �1=�v; respectively, in (17.4), (17.5), and (17.7), and (ii) �2 in place of �; where

�2 :=Me1;k; e1;k := (1; 0; :::; )
0 2 Rk; M :=

�1=2g(�0; ��;
)

(e01;kZ
0Ze1;k)1=2

;

g(�0; ��;
) :=
d�0 + 2r�0(�� � �0)

d�0
; and �2 := �0�2��2 : (17.12)

As de�ned, �2 satis�es (6.3) because

�2 := �0�2��2 = �02Z
0Z�2 =M2e01;kZ

0Ze1;k = �g2(�0; ��;
): (17.13)

In addition, �2 ! � as �0 ! �1 by (17.17) below. With the above changes, the proof of part (a)

establishes part (b).

Part (c) holds because the test statistic POIS2(Q;1; j�uvj; �v) and critical value �2;1(QT )
only depend on �uv and qST through j�uvj and jqST j; respectively, and the density fQ(q; �uv; �v)
of Q only depends on the sign of �uv through ruvqST : In consequence, a change of variables from

(qS ; qST ; qT ) to (qS ;�qST ; qT ) establishes the result of part (c).
To prove part (d), we have

d�0 = (a00

�1a0)

1=2 =
!22�

2
0 � 2!12�0 + !21
!21!

2
2 � !212

(a00

�1a0)

�1=2 and

r�0 = e01

�1a0(a

0
0


�1a0)
�1=2 =

!22�0 � !12
!21!

2
2 � !212

(a00

�1a0)

�1=2; (17.14)
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where the �rst equalities on lines one and two hold by (2.7) of AMS and (6.3), respectively. Next,

we have

�2� = �0 �
d�0(�� � �0)

d�0 + 2r�0(�� � �0)

=
d�0(2�0 � ��) + 2r�0(�� � �0)�0

d�0 + 2r�0(�� � �0)

=
(!22�

2
0 � 2!12�0 + !21)(2�0 � ��) + 2(!22�0 � !12)(���0 � �20)
(!22�

2
0 � 2!12�0 + !21) + 2(!22�0 � !12)(�� � �0)

=
�20(�!22�� � 4!12 + 2!22�� + 2!12) +O(�0)

�20(!
2
2 � 2!22) +O(�0)

=
(!22�� � 2!12) + o(1)

�!22 + o(1)

= ��� +
2!12
!22

+ o(1); (17.15)

where the third equality uses (17.14) and the two terms involving �30 in the numerator of the rhs

of the third equality cancel. Next, we have

� �� +
2!12
!22

=
2(!12 � !22��) + !22��

!22
=
2�uv + �

2
v��

�2v
= �� + 2

�uv
�2v

= �� + 2
�u�uv
�v

; (17.16)

where the second equality uses (12.9) with � = �� and !
2
2 = �2v:

Next, we prove part (e). We have

�
�2
�

�1=2
=

����d�0 + 2r�0(�� � �0)d�0

����
=

����!22�20 � 2!12�0 + !21 + 2(!22�0 � !12)(�� � �0)!22�
2
0 � 2!12�0 + !21

����
=

�����20(!22 � 2!22) + �0(�2!12 + 2!22�� + 2!12) + !21 � 2!12��!22�
2
0 � 2!12�0 + !21

����
= 1 + o(1); (17.17)

where the �rst equality holds by (6.3) and the second equality uses (17.14). �

Proof of Corollary 6.3. We have

(P��;�;
(RLength(CS�(Y )) =1) + P�2�;�2;
(RLength(CS�(Y )) =1))=2

= 1� lim
�0!1

[P��;�0;�;
(�(Q) = 1) + lim
�0!1

P�2�;�0;�2;
(�(Q) = 1)]=2

� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )); (17.18)
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where the equality holds by Theorem 5.1(a) with (��; �) and (�2�; �2�); P��;�;
(�) is equivalent to
P��;�;
(�); which appears in Theorem 5.1(a) (because events determined by CS�(Y ) only depend

on � through �; since CS�(Y ) is based on rotation-invariant tests), and the inequality holds by

Theorem 6.2(a). This establishes the �rst result of part (a).

The second result of part (a) holds by the same calculations as in (17.18), but with LLength

and �0 ! �1 in place of RLength and �0 ! 1; respectively, using Theorem 5.1(b) in place of

Theorem 5.1(a).

Part (b) holds by combining Theorem 5.1(c) and Theorem 6.2 because, as noted in Comment

(iii) to Theorem 6.2, the lim sup on the left-hand side in Theorem 6.2 is the average of two equal

quantities. �

Next, we prove Comment (ii) to Corollary 6.3. The proof is the same as that of Corollary 6.3,

but usingZ
P��;�;��=jj�� jj;
(RLength(CS�(Y )) =1)dUnif(��=jj��jj) = 1� lim

�0!1
P��;�0;�;
(�(Q) = 1)

(17.19)

and likewise with (�2�; �2) in place of (��; �) in place of the �rst equality in (17.18). The proof

of (17.19) is the same as the proof of Theorem 5.1(a) but with Q�0(Y ) and QT;�0(Y ) replaced

by [S�0(Y ); T�0(Y )]; and T�0(Y ); respectively, throughout the proof, with E��;�;
(�) replaced byR
E��;�;��=jj�� jj;
(�)dUniform(��=jj��jj) in (16.3), and using Lemma 16.1(a) and (c) in place of

Lemma 16.1(f) when verifying the limit property (ii) needed for the dominated convergence theorem

following (16.3).

Proof of Theorem 6.4. The proof is quite similar to, but much simpler than, the proof of part

(a) of Lemma 17.1 with POIS2(q;�0; ��; �) > �2;�0(qT ) in (17.4) replaced by qS > �2k;1��=k for

the AR test, q2ST =qT > �21;1�� for the LM test, and qS � qT + ((qS � qT )2 + 4q2ST )1=2 > 2�LR;�(qT )
for the CLR test. The proof is much simpler because for the latter three tests neither the test

statistics nor the critical values depend on �0: The parameter �0; for which the limit as �0 ! �1
is being considered, only enters through the multivariate normal densities in (17.4). The limits

of these densities and an integrable dominating function for them have already been provided

in the proof of Lemma 17.1(a). The indicator function that appears in (17.7) is bounded by one

regardless of which test appears in the indicator function. In addition, P��;�uv ;�v(AR = �2k;1��) = 0

and P��;�uv ;�v(LM = �21;1��) = 0 because the AR statistic has a noncentral �
2
k distribution with

noncentrality parameter �v under P��;�uv ;�v (since S � N(��=�v; Ik) by Lemma 6.1 and (6.2))

and the conditional distribution of the LM statistic given T under P��;�uv ;�v is a noncentral �
2
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distribution.

Next, we show P��;�uv ;�v(LR = �LR;�(QT )) = 0: Let J = AR � LM: Then, 2LR = J + LM �
QT + ((J + LM � QT )

2 + 4LM � QT )1=2: We can write Q = [S : T ]0[S : T ]; where [S : T ] has a

multivariate normal distribution with means matrix given by (6.2) and identity variance matrix. As

shown below, conditional on T = t; LM and J have independent noncentral �2 distributions with 1

and k� 1 degrees of freedom, respectively. This implies that (i) the distribution of LR conditional
on T = t is absolutely continuous, (ii) P��;�uv ;�v(LR = �LR;�(QT )jT = t) = 0 for all t 2 Rk; and (iii)
P��;�uv ;�v(LR = �LR;�(QT )) = 0: It remains to show that conditional on QT = qT ; LM and J have

independent noncentral �2 distributions. We can write LM = S0PTS and J = S0(Ik�PT )S; where
PT := T (T 0T )�1T 0 and S has a multivariate normal with identity variance matrix. This implies

that PTS and (Ik � PT )S are independent conditional on T = t and LM and J have independent

noncentral �2 distributions conditional on T = t for all t 2 Rk: This completes the proof. �

18 Proof of Theorem 8.1

The proof of Theorem 8.1(a) uses the following lemma.

Lemma 18.1 Suppose b1x = 1 + �x=x and b2x = 1 � �x=x; where �x ! �1 6= 0 as x ! 1;
Kj1x = (bjxx)

� for some � 2 R for j = 1; 2; and Kj2x ! K1 2 (0;1) as x ! 1 for j = 1; 2:

Then, (a) as x!1;

log
�
K11xK12xe

b1xx +K21xK22xe
b2xx
�
� x� � log x� logK1

! �1 + log
�
1 + e�2�1

�
and

(b) the function s(y) := y + log
�
1 + e�2y

�
for y 2 R is in�nitely di¤erentiable, symmetric about

zero, strictly increasing for y > 0; and hence, strictly increasing in jyj for jyj > 0:

Proof of Lemma 18.1. Part (a) holds by the following:

log
�
K11xK12xe

b1xx +K21xK22xe
b2xx
�
� x� � log x� logK1

= log

�
K11xK12xe

b1xx

�
1 +

K21xK22x

K11xK12x
e(b2x�b1x)x

��
� x� � log x� logK1

= b1xx+ logK11x + log(K12x=K1) + log

�
1 +

K21xK22x

K11xK12x
e(b2x�b1x)x

�
� x� � log x

= �x + � log(b1x) + log(K12x=K1) + log

�
1 +

K21xK22x

K11xK12x
e�2�x

�
! �1 + log

�
1 + e�2�1

�
; (18.1)

25



where the third equality uses b1xx � x = �x; logK11x = � log(b1xx) = � log(b1x) + � log(x); and

b2x � b1x = �2�x=x; and the convergence uses log(b1x) = log(1 + o(1)) ! 0; K12x=K1 ! 1;

K21x=K11x = (b2x=b1x)
� = 1 + o(1); and K22x=K12x ! 1:

The function s(y) is in�nitely di¤erentiable because log(x) and e�2y are. The function s(y) is

symmetric about zero because

y + log
�
1 + e�2y

�
= �y + log

�
1 + e2y

�
, 2y = log

�
1 + e2y

�
� log

�
1 + e�2y

�
= log

�
1 + e2y

1 + e�2y

�
= log(e2y) = 2y: (18.2)

The function s(y) is strictly increasing for y > 0 because

d

dy
s(y) = 1� 2e�2y

1 + e�2y
=
1� e�2y
1 + e�2y

=
e2y � 1
e2y + 1

; (18.3)

which is positive for y > 0: We have s(y) = s(jyj) because s(y) is symmetric about zero, and
(d=djyj)s(jyj) > 0 for jyj > 0 by (18.3). Hence, s(y) is strictly increasing in jyj for jyj > 0: �

Proof of Theorem 8.1. Without loss in generality, we prove the results for the case where

sgn(d��) is the same for all terms in the sequence as �d
2
��
! 1: Given (2.3), without loss of

generality, we can suppose that

S = c���� + ZS and T = d���� + ZT ; (18.4)

where ZS and ZT are independent N(0k; Ik) random vectors.

We prove part (c) �rst. The distribution of Q depends on �� only through �: In consequence,

without loss of generality, we can assume that � := ��=�
1=2 2 Rk does not vary as �d2�� and

�1=2c�� vary. The following establishes the a.s. convergence of the one-sided LM test statistic: as
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�d2�� !1 and �1=2c�� ! c1;

QST

Q
1=2
T

=
(c���� + ZS)

0(d���� + ZT )

((d���� + ZT )
0(d���� + ZT ))

1=2

=
(c���� + ZS)

0(d���� + ZT )

(d2��
�)1=2(1 + oa:s:(1))

=
(c����=�

1=2 + ZS=�
1=2)0(sgn(d��)�� +Oa:s:(1=jd�� j)
(1 + oa:s:(1))

=

 
sgn(d��)�

0ZS + sgn(d��)�
1=2c�� +Oa:s:

 
(�c2��)

1=2

(�d2��
)1=2

!
+Oa:s:

 
1

(�d2��
)1=2

!!
�(1 + oa:s:(1))

!a:s: sgn(d��)�
0ZS + sgn(d��)c1

= : LM11 � N(sgn(d��)c1; 1); (18.5)

where the �rst equality holds by (3.1) and (18.4), the second equality holds using d���� + ZT =

(�d2��)
1=2(d����=(�d

2
��
)1=2 + oa:s:(1)) since �d2�� ! 1; the convergence holds because �d2�� ! 1

and �1=2c�� ! c1; and the limit random variable LM11 has a N(sgn(d��)c1; 1) distribution

because sgn(d��)�
0ZS � N(0; 1) (since ZS � N(0k; Ik) and jj�jj = 1):

The a.s. convergence in (18.5) implies convergence in distribution by the dominated convergence

theorem applied to 1(QST =Q
1=2
T � y) for any �xed y 2 R: In consequence, we have

P (LM > �21;1��) = P ((QST =Q
1=2
T )2 > �21;1��)! P (LM2

11 > �21;1��) = P (�21(c
2
1) > �21;1��)

(18.6)

as �d2�� !1 and �1=2c�� ! c1; which establishes part (c).

To prove Theorem 8.1(a), we apply Lemma 18.1 to a realization of the random vectors ZS and

ZT with

x := (�d2��QT )
1=2;

b1xx := (����(Q;�0;
))
1=2 := �1=2(c2��QS + 2c��d��QST + d

2
��
QT )

1=2;

b2xx := �1=2(c2��QS � 2c��d��QST + d
2
��
QT )

1=2;

K11x := (b1xx)
�(k�1)=2;

K12x :=
(b1xx)

1=2I(k�2)=2(b1xx)

eb1xx

K21x := (b2xx)
�(k�1)=2; and

K22x :=
(b2xx)

1=2I(k�2)=2(b2xx)

eb2xx
; (18.7)
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Thus, we take � := �(k � 1)=2:
We have

QT = (d���� + ZT )
0(d���� + ZT ) = �d2��(1 + oa:s:(1)): (18.8)

This implies that x = (�d2��)(1 + oa:s:(1)): Thus, x!1 a.s. since �d2�� !1 by assumption.

The conditions �d2�� ! 1 and �1=2c�� ! c1 2 R imply that b1xx ! 1 and b2xx ! 1
as x ! 1: In consequence, by the properties of the modi�ed Bessel function of the �rst kind,
I(k�2)=2(x) for x large, e.g., see Lebedev (1965, p. 136),

lim
b1xx!1

K12x = 1=(2�)
1=2 and lim

b2xx!1
K22x = 1=(2�)

1=2: (18.9)

Hence, the assumptions of Lemma 18.1 on Kj2x for j = 1; 2 hold with K1 = 1=(2�)1=2:

Next, we have

b1x = (�c2��QS + 2�c��d��QST + �d
2
��
QT )

1=2=x

=

 
1 +

2�c��d��QST

(�d2��
QT )1=2x

+
�c2��QS

x2

!1=2

=

 
1 +

2�1=2c��sgn(d��)

x

QST

Q
1=2
T

+
�c2��QS

x2

!1=2

= 1 + (1 + oa:s:(1))
�1=2

 
2�1=2c��sgn(d��)

x

QST

Q
1=2
T

+
�c2��QS

x2

!
; (18.10)

where the fourth equality holds by the mean value theorem because �1=2c�� = O(1); x ! 1 a.s.,

and QST =Q
1=2
T = O(1) a.s. (by (18.5)) imply that the term in parentheses on the last line of (18.10)

is oa:s:(1):

From (18.10), we have

�x = (1 + oa:s:(1))
�1=2

 
2�1=2c��sgn(d��)

QST

Q
1=2
T

+
�c2��QS

x

!
! 2c1sgn(d��)LM11 =: �1 a.s. (18.11)

using (18.5). This veri�es the convergence condition of Lemma 18.1 on �x with �1 6= 0 a.s. (by

the absolute continuity of ZS): Hence, Lemma 18.1 applies with x; b1x; ::: as in (18.7).
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Let ��� abbreviate ���(Q;�0;
) = c2��QS+2c��d��QST+d
2
��
QT : Let ��2� = c2��QS�2c��d��QST

+ d2��QT : So, b1xx = (����)
1=2 and b2xx = (���2�)

1=2: Let

�(��; �;QT ) := �(�d2��QT )
1=2 +

k � 1
2

log((�d2��QT )
1=2)� logK1

= �x� � log x� logK1; (18.12)

where the equality holds using the de�nitions in (18.7) and K1 = 1=(2�)1=2 by (18.9).

Given the de�nitions of POIS2(Q;�0; ��; �) and x; b1x; ; ::: in (12.5) and (18.7), respectively,

Lemma 18.1(a) gives

log(POIS2(Q;�0; ��; �)) + log(2 2(QT ;�0; ��; �)) + �(��; �;QT )

= log
�
(����)

�(k�2)=4I(k�2)=2((����)
1=2) + (���2�)

�(k�2)=4I(k�2)=2((���2�)
1=2)

�
+ �(��; �;QT )

= log

 
(����)

�(k�1)=4 (����)
1=4I(k�2)=2((����)

1=2)

e(���� )
1=2

e(���� )
1=2

+(���2�)
�(k�1)=4 (���2�)

1=4I(k�2)=2((���2�)
1=2)

e(���2� )
1=2

e(���2� )
1=2

!
+ �(��; �;QT )

= log
�
K11xK12xe

b1xx +K21xK22xe
b2xx
�
� x� � log x� logK1

!a:s: �1 + log
�
1 + e�2�1

�
= s(�1)

= s(2c1jLM11j); (18.13)

where  2(QT ;�0; ��; �) is de�ned in (12.5), LM
2
11 � �21(c

2
1) is de�ned in (18.5), the �rst equality

holds by the de�nition of POIS2(Q;�0; ��; �) in (12.5), the third equality uses the de�nitions in

(18.7) and (18.12), the convergence holds by Lemma 18.1(a), the second last equality holds by the

de�nition of s(y) in Lemma 18.1(b), and the last equality holds because �1 := 2c1sgn(d��)LM11;

see (18.11), and s(y) is symmetric around zero by Lemma 18.1(b).

Equation (18.13) and the dominated convergence theorem (applied to 1(log(POIS2(Q;�0; ��; �))

+ log(2 2(QT ;�0; ��; �)) + �(��; �;QT ) � w) for any w 2 R) give

log(POIS2(Q;�0; ��; �)) + log(2 2(QT ;�0; ��; �)) + �(��; �;QT )!d s(�1) = s(2c1jLM11j):
(18.14)

Now we consider the behavior of the critical value function for the POIS2 test, �2;�0(qT );

where qT denotes a realization of QT : We are interested in the power of the POIS2 test. So,

we are interested in the behavior of �2;�0(qT ) for qT sequences as �d
2
��
! 1 and �1=2c�� ! c1
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that are generated when the true parameters are (��; �): This behavior is given in (18.8) to be

qT = �d2��(1 + o(1)) a.s. under (��; �):

Up to this point in the proof, the parameters (��; �) have played a duel role. First, they denote

the parameter values against which the POIS2 test is designed to have optimal two-sided power

and, hence, determine the form of the POIS2 test statistic. Second, they denote the true values

of � and � (because we are interested in the power of the POIS2 test when the (��; �) values for

which it is designed are the true values). Here, where we discuss the behavior of the critical value

function �2;�0(�); (��; �) only play the former role. The true value of � is �0 and the true value of
� we denote by �0: The function �2;�0(�) depends on (��; �) because the POIS2 test statistic does,
but the null distribution that determines �2;�0(�) does not depend on (��; �): In spite of this, the
values qT which are of interest to us, do depend on (��; �) as noted in the previous paragraph.

The function �2;�0(�) is de�ned in (12.6). Its de�nition depends on the conditional null distribu-
tion of Q1 given QT = qT whose density fQ1jQT (�jqT ) is given in (12.3). This density depends on k;
but not on any other parameters, such as �0; �0 = �0�0��0 ; or 
: In consequence, for the purposes

of determining the properties of �2;�0(�) we can suppose that �0 = 0; ��0 = 1
k=jj1kjj; �0 = 1; and


 = I2: In this case,

S = ZS � N(0k; Ik); T = ��0 + ZT � N(��0 ; Ik); (18.15)

and S and T are independent (using d�0(�0;
) = b00
b0(b
0
0
b0)

�1=2 det(
)�1=2 = 1 since b0 =

(1; �0)
0 = (1; 0)0):

We now show that �2;�0(qT ) satis�es

log(�2;�0(qT )) + log(2 2(qT ;�0; ��; �)) + �(��; �; qT )! s(2jc1j(�21;1��)1=2) as qT !1 (18.16)

for any sequence of constants qT = �d2��(1 + o(1)) as �d
2
��
!1:

Suppose random variables fWm : m � 1g and W satisfy: (i) Wm !d W as m ! 1; (ii)
W has a continuous and strictly increasing distribution function at its 1 � � quantile �1; and

(iii) P (Wm > �m) = � for all m � 1 for some constants f�m : m � 1g: Then, �m ! �1:

This holds because if lim supm!1 �m > �1; then there is a subsequence fvmg of fmg such that
limm!1 �vm = �1+ > �1 and � = P (Wvm > �vm)! P (W > �1+) < P (W > �1) = �; which is

a contradiction, and likewise lim infm!1 �m < �1 leads to a contradiction.

We apply the result in the previous paragraph with (a) fWm : m � 1g given by log(POIS2(Q;�0;
��; �)) + log(2 2(qT ;�0; ��; �)) + �(��; �; qT ) under the null hypothesis and conditional on T = t

with t = 1kq
1=2
T =k1=2 for some sequence of constants qT = �d2��(1 + o(1)) ! 1 as �d2�� !
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1; (b) W = s(2c1jS01k=k1=2j); where S01k=k1=2 � N(0; 1); (c) �m equal to log(�2;�0(qT )) +

log(2 2(qT ;�0; ��; �)) + �(��; �; qT ); and (d) �1 = s(2jc1j(�21;1��)1=2):
We need to show conditions (i)-(iii) above hold. Condition (ii) holds straightforwardly for W

as in (b) given the normal distribution of S; the functional form of s(y); and c1 6= 0:
By de�nition of �2;�0(qT ); under the null hypothesis, PQ1jQT (POIS2(Q;�0; ��; �) > �2;�0(qT )

jqT ) = � for all qT � 0; see (12.6). This implies that the invariant POIS2 test is similar. In turn,
this implies that under the null hypothesis P (POIS2(Q;�0; ��; �) > �2;�0(qT )jT = t) = � for all

t 2 Rk because Theorem 1 of Moreira (2009) shows that any invariant similar test has null rejection
probability � conditional on T: This veri�es condition (iii) because the log function is monotone

and the last two summands of Wm and �m de�ned in (a) and (c) above cancel.

Next, we show that condition (i) holds. Given (18.15) and t = 1kq1=2T =k1=2; under the null and

conditional on T = t; we have

QST

Q
1=2
T

=
S0t

(t0t)1=2
= S01k=k1=2 � �21; (18.17)

which does not depend on �d2�� or �
1=2c�� : Hence, in place of the a.s. convergence result for

QST =Q
1=2
T as �d2�� !1 and �1=2c��!c1 in (18.5), which applies under the alternative hypothesis

with true parameters (��; �); we have QST =Q
1=2
T = S01k=k1=2 under the null hypothesis for all �d2��

and �1=2c�� : Using this in place of (18.5), the unconditional a.s. convergence result in (18.13),

established in (18.7)-(18.13), goes through as a conditional on T = t a.s. result without any further

changes. In consequence, the convergence in distribution result in (18.14) also holds conditional on

T = t a.s., but with s(2c1jS01k=k1=2j) in place of s(2c1jLM11j): This veri�es condition (i).
Given that conditions (i)-(iii) hold, we obtain �m ! �1 as �d2�� ! 1 for �m and �1 de�ned

in (c) and (d), respectively, above. This establishes (18.16).

Given (18.16), we have

P��;�0;�;
(POIS2(Q;�0; ��; �) > �2;�0(QT ))

= P��;�0;�;
(log(POIS2(Q;�0; ��; �)) + log(2 2(QT ;�0; ��; �)) + �(��; �;QT )

> log(�2;�0(QT )) + log(2 2(QT ;�0; ��; �)) + �(��; �;QT ))

!d P (s(2c1jLM11j) > s(2c1j�21;1��j))

= P (LM2
11 > �21;1��)

= P (�21(c
2
1) > �21;1��); (18.18)
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where the second last equality uses the fact that s(y) is symmetric and strictly increasing for y > 0

by Lemma 18.1(b). Equation (18.18) establishes part (a) of the theorem.

Now we establish part (b) of the theorem. Let

J := S0MTS; (18.19)

where MT := Ik � PT and PT := T (T 0T )�1T 0: It follows from (3.3) that

LM = S0PTS and QS = LM + J: (18.20)

By (18.8), QT = �d2��(1 + oa:s:(1)) ! 1 a.s. as �d2�� ! 1 when the true parameters are (��; �):

By (18.20) and some algebra, we have (QS �QT )2+4LM �QT = (LM � J +QT )2+4LM � J: This
and the de�nition of LR in (3.3) give

LR =
1

2

�
LM + J �QT +

p
(LM � J +QT )2 + 4LM � J

�
: (18.21)

Using a mean-value expansion of the square-root expression in (18.21) about (LM � J +QT )2; we
have p

(LM � J +QT )2 + 4LM � J = LM � J +QT + (2
p
�)�14LM � J (18.22)

for an intermediate value � between (LM � J +QT )
2 and (LM � J +QT )

2 + 4LM � J: It follows
that

LR = LM + o(1) a.s. (18.23)

because QT ! 1 a.s., LM = O(1) a.s., and J = O(1) a.s. as �d2�� ! 1 and �1=2c�� ! c1 2 R;
which imply that (

p
�)�1 = o(1) a.s. These properties of LM and J hold because LM = S0PTS �

S0S; J = S0MTS � S0S; and, using (18.4), we have S0S = (c���� + ZS)
0(c���� + ZS) = O(1) a.s.

because jjc����jj
2 = �c2�� = O(1) by assumption.

The critical value function for the CLR test, �LR;�(�); depends only on k and �; see Lemma
3(c) and (3.5) in AMS. It is well known in the literature that �LR;�(�) satis�es �LR;�(qT )! �21;1��

as qT !1; e.g., see Moreira (2003, Proposition 1). Hence, we have

P��;�0;�;
(LR > �LR;�(QT )) = P��;�0;�;
(LM + oa:s:(1) > �21;1�� + oa:s:(1))

= P��;�0;�;
(LM + op(1) > �21;1��)! P (�21(c
2
1) > �21;1��) (18.24)
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as �d2�� ! 1 and �1=2c�� ! c1; where the �rst equality holds by (18.23), QT ! 1 a.s. by

(18.8), and limqT!1 �LR;�(qT ) = �21;1�� and the convergence holds by part (c) of the theorem.

This establishes part (b) of the theorem. �

Proof of Theorem 8.2. First, we establish part (a)(i) of the theorem. By (12.8) with � = ��

and � = ��; we have


(��;��) =

24 !21 !12

!12 !22

35 =
24 �2u + 2�uv�� + �

2
v�
2
� �uv + �

2
v��

�uv + �
2
v�� �2v

35 : (18.25)

Using this, we obtain, as �uv ! �1;

c�� = c��(�0;
(��;��)) = (�� � �0)(!21 � 2�0!12 + !22�20)�1=2

= (�� � �0)(�2u + 2�uv�� + �2v�2� � 2�0(�uv + �2v��) + �2v�20)�1=2

= (�� � �0)(�2u + 2(�� � �0)�u�v�uv + (�� � �0)2�2v)�1=2

! (�� � �0)(�2u � 2(�� � �0)�u�v + (�� � �0)2�2v)�1=2

= (�� � �0)=j�u � (�� � �0)�vj; (18.26)

where the second equality uses (2.3), the convergence only holds if �u � (�� � �0)�v 6= 0; and the
fourth equality uses �uv = �u�v�uv: This proves part (a)(i).

To prove part (a)(ii), we have

d�� = d��(�0;
(��;��)) = b0�
b0(b
0
0
b0)

�1=2 det(
)�1=2 (18.27)

= (!21 � !12(�0 + ��) + !22�0��) � (!21 � 2�0!12 + !22�20)�1=2 � (!21!22 � !212)�1=2;

where the second equality holds by (2.3). The second multiplicand on the rhs of (18.27) converges

to j�u � (�� � �0)�vj�1 provided �u � (�� � �0)�v 6= 0 by the calculations in (18.26).
The �rst multiplicand on the rhs of (18.27) satis�es, as �uv ! �1;

!21 � !12(�0 + ��) + !22�0��

= �2u + 2�uv�� + �
2
v�
2
� � (�uv + �2v��)(�0 + ��) + �2v�0��

= �2u + �u�v�uv(�� � �0)

! �u(�u � �v(�� � �0)); (18.28)
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where the �rst equality uses (18.25) and the second equality holds by simple algebra and �uv =

�u�v�uv:

The reciprocal of the square of the third multiplicand on the rhs of (18.27) satis�es, as �uv ! �1;

!21!
2
2 � !212 = (�2u + 2�u�v�uv�� + �

2
v�
2
�)�

2
v � (�u�v�uv + �2v��)2

! (�2u � 2�u�v�� + �2v�2�)�2v � (��u�v + �2v��)2

= (�u � �v��)2�2v � (��u + �v��)2�2v

= 0; (18.29)

where the �rst equality holds by (18.25) and �uv = �u�v�uv:

Combining (18.27)-(18.29) and � > 0 proves part (a)(ii).

Next, we establish part (b) of the theorem. Using the de�nition of c�(�0;
) in (2.3), we have

lim
�
!�1

c��(�0;
) = lim
�
!�1

(�� � �0)(b00
b0)�1=2

= lim
�
!�1

(�� � �0)(!21 � 2�0!1!2�
 + !22�20)�1=2

= (�� � �0)=j!1 � !2�0j; (18.30)

where the third equality holds provided !1�!2�0 6= 0: This establishes part (b)(i) of the theorem.
Using the de�nition of d�(�0;
) in (2.3) and b� := (1; ��)

0; we have

lim
�
!�1

d��(�0;
) = lim
�
!�1

b0�
b0(b
0
0
b0)

�1=2 det(
)�1=2

= lim
�
!�1

(!21 � !1!2�
(�0 + ��) + !22�0��) � (!21 � 2�0!1!2�
 + !22�20)�1=2

�(!21!22 � !21!22�2
)�1=2

= (!1 � !2�0)(!1 � !2��) �
1

j!1 � !2�0j
� 1

!1!2
� lim
�
!�1

1

(1� �2
)1=2
= sgn((!1 � !2�0)(!1 � !2��)) � 1; (18.31)

where the third and fourth equalities hold provided !1 � !2�0 6= 0 and !1 � !2�� 6= 0: This and
� > 0 establish part (b)(ii) of the theorem.

Part (c)(i) is proved as follows:

c�� =
�� � �0

(�2u + 2(�� � �0)�u�v�uv + (�� � �0)2�2v)1=2
! � 1

�v
as (�uv; �0)! (1;�1); (18.32)

where the �rst equality holds by (18.26) and the convergence holds by considering only the dominant

�0 terms. The same result holds as (�uv; �0)! (1;�1) because �uv enters the middle expression
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in (18.32) only through a term that does not a¤ect the limit.

Part (c)(ii) is proved using the expression for d�� in (18.27). By (18.29), the third multiplicand

in (18.27), which does not depend on �0; diverges to in�nity when �uv ! 1 or �1: The product of
the �rst two multiplicands on the rhs of (18.27) equals

!21 � !12(�0 + ��) + !22�0��
(!21 � 2�0!12 + !22�20)1=2

=
�2u + �u�v�uv(�� � �0)

(�2u + 2(�� � �0)�u�v�uv + (�� � �0)2�2v)1=2

! ��u�v
�v

= ��u as (�uv; �0)! (1;�1); (18.33)

where the equality uses the calculations in the �rst three lines of (18.26) and (18.28) and the

convergence holds by considering only the dominant �0 terms. When (�uv; �0) ! (�1;�1); the
limit in (18.33) is ��u because �uv enters multiplicatively in the dominant �0 term in the numerator.
In both cases, the product of the �rst two multiplicands on the rhs of (18.27) converges to a non-

zero constant and the third multiplicand diverges to in�nity. Hence, d�� diverges to +1 or �1
and �d2�� !1 since � > 0; which completes the proof.

Part (d)(i) holds because

c�� =
�� � �0

(!21 � 2�0!1!2�
 + !22�20)1=2
! � 1

!2
as (�
; �0)! (1;�1); (18.34)

where the equality uses (18.30). The same convergence holds as (�
; �0) ! (1;�1) because �uv
enters the middle expression in (18.34) only through a term that does not a¤ect the limit.

Part (d)(ii) is proved using the expression for d�� in (18.31):

d�� =
(!21 � !1!2�
(�0 + ��) + !22�0��)
(!21 � 2�0!1!2�
 + !22�20)1=2

� (!21!22 � !21!22�2
)�1=2;

(!21 � !1!2�
(�0 + ��) + !22�0��)
(!21 � 2�0!1!2�
 + !22�20)1=2

! �(!22�� � !1!2)
!2

= �(!1 � !2��); and

(!21!
2
2 � !21!22�2
)�1=2 !1 as (�
; �0)! (1;�1): (18.35)

Hence, �d2�� !1 as (�
; �0)! (1;�1) provided !1�!2�� 6= 0:When (�
; �0)! (�1;�1); the
limit in the second line of (18.35) is �(!22�� + !1!2)=!2 = �(!1 + !2��) and, hence, �d

2
��
! 1

provided !1 + !2�� 6= 0; which completes the proof. �
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19 Proofs of Theorem 13.1 and Lemmas 14.1 and 14.2

Proof of Theorem 13.1. By Cor. 2 and Comment 2 to Cor. 2 of Andrews, Moreira, and Stock

(2004), for all (��; �0; �;
);

P��;�0;�;
(��0(Q) = 1) � P��;�0;�;
(POIS(Q;�0; ��) > ��0(QT )): (19.1)

That is, the test on the rhs is the (one-sided) POIS test for testing H0 : � = �0 versus H1 : � = ��

for �xed known 
 and any � � 0 under H1:
We use the dominated convergence theorem (DCT) to show

lim
�0!�1

P��;�0;�;
(POIS(Q;�0; ��) > ��0(QT )) = P�uv ;�v(POIS(Q;1; �uv) > �1(QT )): (19.2)

Equations (19.1) and (19.2) imply that the result of Theorem 13.1 holds.

By (13.2), (13.5), and Lemma 15.1(b) and (e),

lim
�0!�1

POIS(q;�0; ��) = POIS(q;1; �uv) (19.3)

for all 2� 2 variance matrices q; for given (��; �;
):
The proof of (19.2) is the same as the proof of Lemma 17.1(a), but with POIS(Q;�0; ��);

��0(QT ); POIS(Q;1; �uv); and �1(QT ) in place of POIS2(Q;�0; ��; �); �2;�0(QT ); POIS2(Q;1;
j�uvj; �v); and �2;1(QT ); respectively, using (19.3) in place of (17.6), and using the results (estab-
lished below) that (i) the Lebesgue measure of the set of (qS ; qST ; qT ) for which POIS(q;1; �uv) =
�1(qT ) is zero, (ii) PQ1jQT (POIS(Q;1; �uv) = xjqT ) = 0 for all qT � 0; and (iii) the distribution
function of POIS(Q;1; �uv) is strictly increasing at its 1� � quantile �1(qT ) under PQ1jQT (�jqT )
for all qT � 0:

Condition (i) holds because (a) POIS(q;1; �uv) = qS + 2ruvqST (see (13.5)) implies that the

Lebesgue measure of the set of (qS ; qST ) for which qS +2ruvqST = �1(qT ) is zero for all qT and (b)

the Lebesgue measure of the set of (qS ; qST ; qT ) for which qS + 2ruvqST = �1(qT ) is obtained by

integrating the set in (a) over qT 2 R subject to the constraint that q is positive de�nite.

Condition (ii) holds by the absolute continuity of POIS(Q;1; �uv) under PQ1jQT (�jqT ) (by the
functional form of POIS(Q;1; �uv) and the absolute continuity of Q1 under PQ1jQT (�jqT ); whose
density is given in (12.3)).

Condition (iii) holds because we can write POIS(Q;1; �uv) = S0S+2ruvS0T = (S+ruvT )0(S+

ruvT )� r2uvT
0T; where [S : T ] has a multivariate normal distribution with means matrix given by

(6.2) and identity variance matrix and, hence, POIS(Q;1; �uv) has a shifted noncentral �2 distri-
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bution conditional on T = t: In consequence, it has a positive density on (r2uvt
0t;1) = (r2uvqT ;1)

conditional on T = t and also conditional on QT = qT (because the latter conditional density is the

integral of the former conditional density over t such that t0t = qT ): This completes the proof. �

Proof of Lemma 14.1. First, we show that (14.4) implies the equation for �2 in (14.2). By the

expression d� = a0
�1a0(a00

�1a0)�1=2 given in (2.7) in AMS, where a := (�; 1)0 and a0 := (�0; 1)

0;

for any � 2 R;

d� � d�0 = (a� a0)0
�1a0(a00
�1a0)�1=2

= (� � �0)e01
�1a0(a00
�1a0)�1=2 := (� � �0)r�0 ; (19.4)

where e1 := (1; 0)0 and the last equality holds by the de�nition of r�0 :

Substituting (19.4) into the second equation in (14.4) gives

�
1=2
2 d�2� = ��

1=2d��

i¤ �1=22 (d�0 + r�0(�2� � �0)) = ��
1=2(d�0 + r�0(�� � �0))

i¤ �1=22 d�0 = ��
1=2(d�0 + r�0(�� � �0))� r�0�

1=2
2 (�2� � �0): (19.5)

Given the de�nition of c� in (2.3), the �rst equation in (14.4) can be written as

�
1=2
2 (�2� � �0) = ��1=2(�� � �0): (19.6)

Substituting this into (19.5) yields

�
1=2
2 d�2� = ��

1=2d��

i¤ �1=22 d�0 = ��
1=2(d�0 + 2r�0(�� � �0))

i¤ �1=22 = ��1=2
d�0 + 2r�0(�� � �0)

d�0
: (19.7)

The square of the equation in the last line in (19.7) is the equation for �2 in (14.2).

Next, we show that (14.4) implies the equation for �2� in (14.2). Using (19.6), the �rst equation

in (14.4) can be written as

�2� = �0 �
�1=2

�
1=2
2

(�� � �0): (19.8)
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This combined with the equation for �1=2=�1=22 obtained from the last line of (19.7) gives

�2� = �0 �
d�0

d�0 + 2r�0(�� � �0)
(�� � �0); (19.9)

where a minus sign appears because the � sign in (19.8) gets multiplied by the � sign in the last

line of (19.7), which yields a minus sign in both cases. Equation (19.9) is the same as the �rst

condition in (14.2). This completes the proof that (14.4) implies (14.2).

Now, we prove the converse. We suppose (14.2) holds. Taking the square root of the second

equation in (14.2) gives

�
1=2
2 = ��1=2

d�0 + 2r�0(�� � �0)
d�0

; (19.10)

where the � sign means that this equation holds either with + or with �: Substituting this into
the �rst equation in (14.2) gives (19.8), which is the same as (19.6), and (19.6) is the �rst equation

in (14.4).

The second equation in (14.4) is given by (19.5). Given that the �rst equation in (14.4) holds,

the second equation in (14.4) is given in (19.7). The last line of (19.7) holds by (19.10). This

completes the proof that (14.2) implies (14.4). �

Proof of Lemma 14.2. The proof of part (a) of the lemma is essentially the same as that of

Theorem 8(b) in AMS. The only change is to note that when (�2�; �2) satis�es (14.3), we have

�� = ��2; �
� = ���2; and �max = j��j = j��2j (using the notation in AMS). Because �max = j��j = j��2j;

we obtain
p
�2 �

q
�2max = 0 and the remainder of the proof of Theorem 8(b) goes through as is.

The proof of part (b) of the lemma is quite similar to the proof of Theorem 8(c) of AMS. The

latter proof �rst considers the case where �(�2�; �2) does not satisfy the second condition of (14.1).�

This needs to be changed to �(�2�; �2) does not satisfy the second condition of (14.1) or (14.3).�

With this change, the rest of that part of the proof of Theorem 8(c) goes through unchanged.

The remaining cases (where both (14.1) and (14.3) fail) to consider are (i) when the second

condition in (14.1) holds and the �rst condition in (14.1) fails and (ii) when the second condition in

(14.3) holds and the �rst condition in (14.3) fails. These are mutually exclusive scenarios because

the second conditions in (14.1) and (14.3) are incompatible. The proof of Theorem 8(c) of AMS

considers case (i) and proves the result of Theorem 8(c) for that case. The proof of Theorem 8(c)

for case (ii) is quite similar to that for case (i) using (A.21) in AMS because �� = ���2; �max =
j��j = j��2j > 0; and �� 6= ��2 imply that sgn(�

�) = �sgn(��2) and ��sgn(��) 6= ���2sgn(��2): This last
inequality shows that the expression in (A.21) in AMS is a continuous function of QSTQ

�1=2
T that

is not even. (Note that (A.21) in AMS has a typo: the quantity ��2sgn(�
�) in its second summand
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should be ��2sgn(�
�
2):) �

20 Structural Error Variance Matrices under Distant

Alternatives and Distant Null Hypotheses

Here, we compute the structural error variance matrices in scenarios 1 and 2 considered in (4.2)

and (4.3) in Section 4. By design, the reduced-form variance matrix 
 is the same for �0 and ��

and, hence, does not vary between these two scenarios.

In scenario 1 in (4.2), the structural error variance matrix under H0 is �(�0;
); de�ned in

(12.9). Under H1 : � = ��; as j��j ! 1; we have

lim
��!�1

�uv(��;
) = lim
��!�1

!12 � !22��
(!21 � 2!12�� + !22�2�)1=2!2

= �1 and

lim
j��j!1

�2u(��;
)=�
2
v(��;
) =

!21 � 2!12�� + !22�2�
!22

=1; (20.1)

where �uv(��;
); �
2
u(��;
); and �

2
v(��;
) are de�ned just below (12.9). Equation (20.1) shows

that, for standard power envelope calculations, when the alternative hypothesis value �� is large in

absolute value the structural variance matrix under H1 exhibits correlation close to one in absolute

value and a large ratio of structural to reduced-form variances.

In scenario 2 in (4.3), the structural error variance error matrix under H� is �(��;
): Under

H0 : � = �0; by exactly the same argument as in (20.1) with �0 in place of ��; we obtain

lim
�0!�1

�uv(�0;
) = �1 and lim
j�0j!1

�2u(�0;
)=�
2
v(�0;
) =1: (20.2)

So, in scenario 2, when the null hypothesis value �0 is large in absolute value the structural variance

matrix under H0 exhibits correlation close to one in absolute value and a large ratio of structural

to reduced-form variances.

From a testing perspective, it is natural and time honored to �x the null hypothesis value �0

and consider power as the alternative hypothesis value �� varies. On the other hand, a con�dence

set is the set of null hypothesis values �0 for which one does not reject H0 : � = �0: Hence, for a

given true value ��; the false coverage probabilities of the con�dence set equal one minus its power

as one varies H0 : � = �0: Thus, from the con�dence set perspective, it is natural to �x �� and

consider power as �0 varies.
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21 Transformation of the �0 Versus �� Testing Problem

to a 0 Versus �� Testing Problem

In this section, we transform the general testing problem of H0 : � = �0 versus H1 : � = ��

for � 2 Rk and �xed 
 to a testing problem of H0 : � = 0 versus H1 : � = �� for some � 2 Rk

and some �xed 
 whose diagonal elements equal one. This is done using the transformations given

footnotes 7 and 8 of AMS, which argue that there is no loss in generality in the AMS numerical

results to take !21 = !22 = 1 and �0 = 0: These results help link the numerical work done in this

paper with that done in AMS.

Starting with the model in (2.1), we transform the model based on (y1; y2) with parameters

(�; �) and �xed reduced-form variance matrix 
 to a model based on (ey1; y2) with parameters
(e�; �) and �xed reduced-form variance matrix e
; where

ey1 := y1 � y2�0;e� := � � �0; and

e
 := V ar

0@0@ ey1
y2

1A1A = V ar

0@24 1 ��0
0 1

350@ y1

y2

1A1A
=

24 !21 � 2!12�0 + !22�20 !12 � !22�0
!12 � !22�0 !22

35 : (21.1)

The transformed testing problem is H0 : e� = 0 versus H1 : e� = e��; where e�� = �� � �0; with

parameter � and reduced-form variance matrix e
:
The matrix e
 does not have diagonal elements equal to one, so we transform the model based

on (ey1; y2) with parameters (e�; �) and �xed reduced-form variance matrix e
 to a model based on
(y1; y2) with parameters (�; �) and �xed reduced-form variance matrix 
; where14

y1 :=
ey1e!1 = y1 � y2�0

(!21 � 2!12�0 + !22�20)1=2

y2 :=
1e!2 y2 = 1

!2
y2;

� :=
e!2e!1 e� = !2

(!21 � 2!12�0 + !22�20)1=2
(� � �0); and

� :=
1e!2� = 1

!2
�: (21.2)

14The formula � := (e!2=e!1)e� in (21.2) comes from y1 := ey1=e!1 = (y2e�+u)=e!1 = y2e�=e!1+u=e!1 = (y2=e!2)e�(e!2=e!1)
+ u=e!1 = y2� + u; where the last equality holds when � := (e!2=e!1)e� and u := u=e!1:
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In addition, we have


 := V ar

0@ y1

y2

1A = V ar

0@24 1=e!1 0

0 1=e!2
350@ ey1

y2

1A1A
=

24 1=e!1 0

0 1=e!2
35 e


24 1=e!1 0

0 1=e!2
35

=

24 1=e!1 0

0 1=!2

3524 !21 � 2!12�0 + !22�20 !12 � !22�0
!12 � !22�0 !22

3524 1=e!1 0

0 1=!2

35
=

24 1
!12�!22�0

(!21�2!12�0+!22�
2
0)
1=2!2

!12�!22�0
(!21�2!12�0+!22�

2
0)
1=2!2

1

35 : (21.3)

The transformed testing problem is H0 : � = 0 versus H1 : � = ��; where

�� =
!2

(!21 � 2!12�0 + !22�20)1=2
(�� � �0); (21.4)

with parameter � and reduced-form variance matrix 
:

Now, we consider the limit as �0 ! �1 of the original model and see what it yields in terms

of the transformed model. We have

lim
�0!�1

�� = �1 and lim
�0!�1


 =

24 1 �1
�1 1

35 : (21.5)

So, the asymptotic testing problem as �0 ! �1 in terms of a model with a null hypothesis � value

of 0 and a reduced-form variance matrix 
 with ones on the diagonal is a test of H0 : � = 0 versus

H1 : � = �1:
We get the same expression for the limits as �0 ! �1 of c��(�0;
) and d��(�0;
) written in

terms of the transformed parameters (�0; ��; �;
) as in Lemma 15.1 except they are multiplied by

�v: This occurs because �� = ��=�v: In consequence, the limits as �0 ! �1 of c��(�0;
)�� and

d��(�0;
)�� written in terms of the transformed parameters (�0; ��; �;
) are the same as their

limits without any transformation.

Lemma 21.1 Let �� = ��(�0) and 
 = 
(�0) be de�ned in (21.4) and (21.3), respectively. Let

�0(�0) = 0:

(a) lim�0!�1 c��(�0)
(�0(�0);
(�0)) = �1:

(b) lim�0!�1 d��(�0)
(�0(�0);
(�0)) = �

�uv
(1��2uv)1=2

:
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Comment. (i). By Lemmas 15.1 and 21.1, the distributions of all of the tests considered in this

paper are the same in the model in Section 2 when �� and 
 are �xed and the null hypothesis

value �0 satis�es �0 ! �1; and in the transformed model of this section when the null hypothesis
�0 is �xed at 0 and the alternative hypothesis value �� = ��(�0) and the reduced-form variance


 = 
(�0) converge as in (21.5) as �0 ! �1: (This uses the fact that �v = 1 in Lemma 21.1.)
(ii). AMS footnote 5 notes that there is a special parameter value � = �AR at which the one-

sided point optimal invariant similar test of H0 : � = �0 versus H1 : � = �AR is the (two-sided) AR

test. In footnote 5 �AR is de�ned to be �AR =
!21�!12�0
!12�!22�0

: If we compute �AR for the transformed

model (y1; y2) with parameters (�; �;
); where �0 = 0; we obtain

�AR =
!21 � !12�0
!12 � !22�0

=
1

!12
= �1; (21.6)

which is the same as the limit of �� = ��(�0) as �0 ! �1 in (21.2).

Proof of Lemma 21.1. First, we prove part (a). We have

c��
(�0;
) = (�� � �0)(b

0
0
b0)

�1=2

=
!2

(!21 � 2!12�0 + !22�20)1=2
(�� � �0)(1� 2!12�0 + �

2
0)
�1=2

=
!2(�� � �0)

(!21 � 2!12�0 + !22�20)1=2
! �1 as �0 ! �1; (21.7)

where the second equality uses (21.4) and the third equality uses �0 = 0: Hence, c��(�0;
)�� !
�(1=�v)�� as �0 ! �1 using the expression for � in (21.2) and !2 = �v:

Next, we prove part (b). Let b� = (1;���)0 and b0 = (1;��0)0: We have

det(
) = 1� !212;

!12 =
!12 � !22�0

(!21 � 2!12�0 + !22�20)1=2!2
; and

b
0
�
b0(b

0
0
b0)

�1=2 =
1� !12�0 � !12�� + �0��
(1� 2!12�0 + �

2
0)
1=2

= 1� !12��; (21.8)
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where the second equality on the third line uses �0 = 0: Next, we have

1� !12�� = 1� !12 � !22�0
(!21 � 2!12�0 + !22�20)1=2!2

!2

(!21 � 2!12�0 + !22�20)1=2
(�� � �0)

= 1� (!12 � !
2
2�0)(�� � �0)

!21 � 2!12�0 + !22�20

=
!21 � 2!12�0 + !22�20 � !12�� + !12�0 + !22�0�� � !22�20

!21 � 2!12�0 + !22�20

=
!21 � !12�0 � !12�� + !22�0��

!21 � 2!12�0 + !22�20
; (21.9)

where the �rst equality uses (21.3) and (21.4).

In addition, we have

1� !212 = 1� (!12 � !22�0)2

(!21 � 2!12�0 + !22�20)!22

=
!21!

2
2 � 2!12!22�0 + !42�20 � !212 + 2!12!22�0 � !4�20

(!21 � 2!12�0 + !22�20)!22

=
!21!

2
2 � !212

(!21 � 2!12�0 + !22�20)!22
; (21.10)

where the �rst equality uses (21.8).

Using (21.8)-(21.10), we have

d��
(�0;
) = b

0
�
b0(b

0
0
b0)

�1=2 det(
)�1=2

=
!21 � !12�0 � !12�� + !22�0��

!21 � 2!12�0 + !22�20

�
!21!

2
2 � !212

(!21 � 2!12�0 + !22�20)!22

��1=2
=

(!21 � !12�0 � !12�� + !22�0��)
(!21 � 2!12�0 + !22�20)1=2(!21!22 � !212)1=2

!2: (21.11)

The rhs of (21.11) is the same as the expression on the second line of (15.2) multiplied by !2 = �v:

In consequence, the calculations in (15.2)-(15.4) give the result of part (a) of Lemma 21.1. �

22 Transformation of the �0 Versus �� Testing Problem

to a �0 Versus 0 Testing Problem

In this section, we transform the general testing problem of H0 : � = �0 versus H1 : � = ��

for � 2 Rk and �xed reduced-form variance matrix 
 to a testing problem of H0 : � = �0 versus

H1 : � = 0 for some � 2 Rk and some �xed 
 with diagonal elements equal to one. These
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transformation results imply that there is no loss in generality in the numerical results of the paper

to taking !21 = !22 = 1 and �� = 0:We also show that there is no loss in generality in the numerical

results of the paper to taking �uv 2 [0; 1]; rather than �uv 2 [�1; 1]; where �uv is the structural
variance matrix correlation de�ned in (5.5).

We consider the same transformations as in Section 21, but with �� in place of �0 in (21.1)-(21.3)

and with the roles of �� and �0 reversed in (21.4) and (21.5). The transformed testing problem

given the transformations in (21.1) (with �� in place of �0) is H0 : e� = e�0 versus H1 : e� = 0; wheree�0 = �0 � ��; with parameter � and reduced-form variance matrix e
: The transformed testing
problem given the transformations in (21.1)-(21.3) (with �� in place of �0) is H0 : � = �0 versus

H1 : � = 0; where e�0 = �0 � ��; with parameters �; �; and 
 de�ned in (21.2) and (21.3) (with

the roles of �� and �0 reversed).

For example, a scenario in which a typical test has high power in the original scenario of testing

H0 : � = �0 versus H1 : � = ��; such as �0 = 0 and j��j large, gets transformed into the testing
problem of H0 : � = �0 versus H1 : � = 0 with correlation !12 (the (1; 2) element of 
) close to

�1; because by (21.5) (with the roles of �� and �0 reversed) we have

lim
��!�1


 =

24 1 �1
�1 1

35 : (22.1)

In this case, we also have lim��!�1 �0 = �1 by (21.5). Also, note that the reduced-form and

structural variances matrices are equal when the alternative hypothesis holds in the testing problem

H0 : � = �0 versus H1 : � = 0; so the result in (22.1) also applies to the structural variance matrix

�(�;
) when � = 0 whose correlation we denote by �uv; i.e., lim��!�1 �uv = �1: Here the
parameter �uv is the parameter �uv that appears in the tables in the paper. These results are

useful in showing how the numerical results of the paper apply to general hypotheses of the form

H0 : � = �0 versus H1 : � = ��:

Next, we show that there is no loss in generality in the numerical results of the paper to taking

�uv 2 [0; 1]: We consider the hypotheses H0 : � = �0 versus H1 : � = 0; as in the numerical results

in the paper. When the true � equals 0 and 
 has ones on its diagonal, the reduced-form and

structural variance matrices are equal, see (12.9). Hence, the correlation !12 given by 
 equals the

structural variance correlation �uv in power calculations in the paper, and it su¢ ces to show that

there is no loss in generality in the numerical results of the paper to taking !12 2 [0; 1]:
By (2.3), the distributions of S and T only depend on c�(�0;
); d�(�0;
); and �� := (Z

0Z)1=2�:

The vector �� does not depend on �; �0; or 
: First, note that !12 enters c�(�0;
) := (� �
�0)(b

0
0
b0)

�1=2 = (� � �0)(!
2
1 � 2!12�0 + !22�

2
0)
�1=2 only through !12�0: In consequence, the
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distribution of S is the same under (�0; !12) as under (��0;�!12): Second, by (2.8) of AMS,
d�(�0;
) can be written as b

0
b0(b00
b0)
�1=2 det(
)�1=2; where b := (1;��)0: The distribution of T

when � = 0 depends on d0(�0;
) = (1�!12�0)(b00
b0)�1=2 det(
)�1=2: The �rst two multiplicands
depend on !12 only through !12�0 and the third multiplicand only depends on !12 through !

2
12

(because det(
) = 1 � !212): In addition, S and T are independent. Hence, the distribution of

[S : T ] for given (�0; !12) when � = 0 equals its distribution under (��0;�!12) when � = 0: Thus,
the power of a test of H0 : � = �0 versus H1 : � = 0 when !12 < 0 equals its power for testing

H0 : � = ��0 versus H1 : � = 0 for �!12 > 0:

23 Additional Numerical Results

This section contains Tables SM-I,..., SM-V and Figure SM-I, which provide additional numer-

ical results to those in Tables I,..., V in the main paper.

Table SM-I is analogous to Table I, but considers AR and POIS1 CS�s, in addition to the CLR

and POIS21 CS�s. Here, POIS1 denotes the CS obtained from the optimal one-sided invariant

similar test as �0 ! �1 de�ned in (13.5) in Section 13.2. Table SM-I reports probabilities of in�nite

length, as well as di¤erences in probabilities of in�nite length (DPIL�s) for CLR and AR, AR and

POIS21; and CLR and POIS21 CS�s. In addition, it reports simulation standard deviations for

the �rst and third DPIL�s.

The results for the DPIL�s vary greatly with �uv: When �uv = 0; the AR CS is the same as

the optimal POIS1 CS and the CLR-AR DPIL�s range over [:001; :049] as (k; �) vary. On the

other hand, when �uv = :9; the AR CS is far from optimal and the CLR-AR DPIL�s range over

[�:002;�:421] as (k; �) vary. In sum, when �uv � :5; the AR CS can, and typically does, perform

noticeably worse than the CLR CS in terms of DPIL�s.

Table SM-II reports more detailed results than those given in Table II. Table SM-II reports the

maximum power di¤erences (PD�s) over �0 values between the POIS2 power envelope and the CLR

test for a grid of (k; �uv; �) values. (In contrast, Table II reports maximum and average PD�s over

(�0; �) values for a grid of (k; �uv) values.) Table SM-II shows that the maximum (over �0) PD�s

vary substantially over � values for �uv � :7 values and less so for �uv = :9: For example, for k = 5

and �uv = :0; :3; :5; :7; :9; the PD�s ranges (over � values) are [:004; :030]; [:008; :034]; [:007; :029];

[:005; :033]; [:001; :017]; respectively.

Tables SM-III and SM-IV are the same as Table II except they consider the AR and LM tests,

respectively, rather than the CLR test. As noted in the main paper, Tables SM-III and SM-IV

show that the power of the AR and LM tests is much farther from the POIS2 power envelope than
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is the power of the CLR test. Table SM-III(a) shows that the maximum and average (over (�0; �))

PD�s for the AR test are increasing in k up to k = 20; but drop going from k = 20 to 40: (This

drop may be due to the choice of � values considered. The choice yields the �max value for the AR

test to be on the upper bound of the values considered.) Table SM-III(b) shows that the maximum

and average (over (�0; �)) PD�s for the AR test are increasing in �uv for all values of k; which is

the opposite of the pattern for the CLR test. Table SM-III(b) also shows that the �max values are

at the boundary of the grid of � values considered for all k:

Table SM-IV(a) shows that the maximum and average PD�s (over (�0; �)) for the LM test are

clearly increasing in k; except that for �uv = 0; :3 there is a drop from k = 20 to 40 (which may

be due to the choice of � values considered, as for the AR test). Table SM-IV(b) shows that the

maximum and average (over (�0; �)) PD�s for the LM test are decreasing in �uv for all values of k;

as for the CLR test. Table SM-IV(b) also shows that the �max values decrease in �uv for each k;

as with the CLR test.

Table SM-V is the same as Table III except that it reports results for k = 2; 5; 10; 20; and 40;

rather than just k = 5: It also reports results for a �ner grid of �0 values than in Table IV and it

reports the power of the WAP2 test, in addition to the di¤erence in power between the WAP2 and

CLR tests.

Figure SM-I provides graphs that are the same as in AMS, but with �
 = 0; rather than �
 = :5

or :95: Speci�cally, these graphs provide the power of the signi�cance level :05 CLR, LM, and AR

tests and the POIS2 power envelope for �xed null value �0 = 0; varying true value �
�; k = 2; 5; 10

and � = 5; 20: The number of simulation repetitions used to construct the power functions is 5,000

and 100,000 repetitions are used to compute the null distribution of the POIS2 statistic to obtain

its p-values.

Figure SM-I shows that the power of the CLR test is very close to the POIS2 power envelope

in the scenarios considered. In fact, the maximum di¤erences are :0074; :0040; :0110; :0062; :0102;

and :0090 in the six graphs in Figure SM-I. Note that �
 = 0 is the �
 value that yields many of

the largest di¤erences between the power of the CLR test and the POIS2 power envelope when the

true �� = 0 is �xed and the null value �0 varies, as shown in Tables II and SM-II.
15 The results in

Figure SM-I show that standard power graphs with �0 = 0 �xed and true �
� varying, as in AMS,

do not pick up the relatively large di¤erences between the power of the CLR test and the POIS2

power envelope that appear in some �
 = 0 parameter con�gurations considered in Tables II and

SM-II.
15 In Tables II and SM-II, �uv = �
 for all �0 values because the true value �

� = 0:
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24 Unknown Variance CLR Test

In this section, we consider a di¤erent form of the CLR test to see whether it has smaller

probabilities of in�nite length than the CLR test de�ned in (3.3) and (3.4).16 By Moreira (2003,

pp. 1036, 1045), the likelihood ratio statistic under the assumption that the reduced-form variance

matrix is unknown is

LRU :=
n

2
ln

 
1 +

b00Y PZY b0

(n� k)b00b
b0
!
� n

2
ln

0@1 + �min

�b
�1=2Y PZY b
�1=2�
n� k

1A ; where

b
 := YMZY=(n� k): (24.1)

(Note that Moreira (2003) denotes the statistic LRU by LR and the statistic LR in (3.3) above by

LR0:)

The probabilities that the CLR test has in�nite length (given in Table I in Section 7) are

computed under the assumption that 
 is known. If we made comparisons of these results to

analogous results for the conditional test that employs the statistic LRU (combined with the same

conditional critical value as in (3.4)), the comparisons would be misleading because LRU does not

make use of the known value of 
: To obtain a fair comparison, we alter the LRU statistic by

replacing b
 by 
: The resulting statistic is
LR2n :=

n

2
ln

�
1 +

b00Y PZY b0
(n� k)b00
b0

�
� n

2
ln

 
1 +

�min
�

�1=2Y PZY 


�1=2�
n� k

!

=
n

2
ln

�
1 +

QS
(n� k)

�
� n

2
ln

�
1 +

QS � LR
n� k

�
; (24.2)

where the second equality holds by the de�nition of QS in (2.3) and (3.1) and the expression LR0 =

S
0
S � �min on p. 1033 of Moreira (2003), which in the notation of this paper is LR = QS � �min

for �min := �min
�

�1=2Y PZY 


�1=2� by p. 1045 of Moreira (2003).
The conditional critical value for this statistic is the same as that in (3.4)). We call the resulting

test the CLR2n test. Somewhat confusingly, or perhaps paradoxically, the form of the LR2n statistic

is determined by assuming 
 is unknown, which yields a test that depends on an estimator b
 of

; which we then replace by 
; which yields a test for the case where 
 is known. Note that the

LR2n statistic depends on n; whereas the LR statistic in (3.3) does not.

Table SM-VI reports di¤erences in the probabilities that the CLR2n and CLR CI�s have in�nite

length for the same k; �; and �uv values as in Table I, for three values of n: n =100, 500, and 1,000.

16We thank Marcelo Moreira for suggesting that we consider the CLR2n tests considered in this section.
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Note that the data generating process depends only on k; �; and �uv; and not on n: The quantity

n only enters through the form of the LR2n statistic.

The results in Table SM-VI show that the CLR2n and CLR CI�s perform very similarly. This is

especially true for n = 500 and 1; 000 in which cases all di¤erences are less than :005: For n = 100;

the di¤erences exceed .005 in some scenarios where �uv is small (0, .3, and .5) and k is large (k � 10
for �uv = :0; :3 and k � 20 for �uv = :5). The largest di¤erence is :0235 and is achieved when

n = 100; �uv = 0; k = 40; and � = 20:

Based on these results, we do not �nd that the CLR2n test improves on the CLR test in terms

of its probabilities of having in�nite length. The di¤erences between the CLR2n and CLR tests are

quite small, especially for n = 500 and 1000:

25 Heteroskedastic and Autocorrelated Model

Theorem 5.1 gives formulae for the probabilities that certain CI�s have in�nite right length,

in�nite left length, and in�nite length in the homoskedastic Gaussian linear IV model. In this

section, we extend these results to the Gaussian linear IV model that allows for heteroskedasticity

and autocorrelation (HC) in the errors. We use the speci�cation and notation in Moreira and

Ridder (2017). The reduced-form model is Y = Z�a0 + V; as in (2.2), but without the assumption

that the rows of V are i.i.d. with distribution 
: Rather, we assume that

vec(eV ) := vec((Z 0Z)�1=2Z 0V ) � N(0;�); (25.1)

where eV 2 Rk�2 and � is a positive de�nite 2k � 2k matrix. The matrix � can be consistently
estimated. In consequence, we focus on the case where � is known. Let P1 := Z(Z 0Z)�1=2 2 Rn�k

and let P2 2 Rn�(n�k) be such that P := [P1 : P2] is orthogonal. A one-to-one transforma-

tion of Y is (P 01Y; P
0
2Y ): The matrix P

0
2Y is ancillary and the variance of V is only restricted by

V ar(vec(P 01V )) = �: In consequence, we only consider tests that are a function of P
0
1Y: We have

R := P 01Y = ��a
0 + eV ; where �� := (Z 0Z)1=2� and a := (�; 1)0: (25.2)

For a given null hypothesis value �0; a one-to-one transformation of R is (S�0(R); T�0(R));

where

S�0(R) := [(b00 
 Ik)�(b0 
 Ik)]�1=2(b00 
 Ik)vec(R);

T�0(R) := [(a00 
 Ik)��1(a0 
 Ik)]�1=2(a00 
 Ik)��1vec(R); (25.3)
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a0 := (�0; 1)
0; and b0 := (1;��0)0: The statistics S�0(R) and T�0(R) are independent. Their

distributions are

S�0(R) � N((� � �0)C�0��; Ik) and

T�0(R) � N(D���; Ik); where

C�0 := [(b00 
 Ik)�(b0 
 Ik)]�1=2 and

D� := [(a00 
 Ik)��1(a0 
 Ik)]�1=2(a00 
 Ik)��1(a
 Ik): (25.4)

As shown in the following lemma, the limits of S�0(R) and T�0(R) as �0 ! �1 are

S�1(R) := ���1=222 R2 and

T�1(R) := �(�11)�1=2(e01 
 Ik)��1vec(R); (25.5)

where R2 denotes the second column of R; �22 denotes the lower right k�k block of �; �11 denotes
the upper left k � k block of ��1; and e1 := (1; 0)0:

Lemma 25.1 For �xed true value � = �� and positive de�nite matrix �; we have

(a) lim�0!�1 S�0(R) = S�1(R);

(b) S�1(R) � N(���1=222 ��; Ik);

(c) lim�0!�1 T�0(R) = T�1(R);

(d) T�1(R) � N
�
�(�11)�1=2(e01 
 Ik)��1vec(��a0�); Ik

�
; where a� := (��; 1)

0; and

(e) S�1(R) and T�1(R) are independent.

Comments. (i) The convergence results in Lemma 25.1 hold for all realizations of R:

(ii) In the homoskedatic case, where � = 

 Ik; we have S�1(R) = S�1(Y ) and T�1(R) =

T�1(Y ); where S�1(Y ) and T�1(Y ) are de�ned in (16.1) for the homoskedastic model.

These results hold by the following calculations. In the homoskedatic case, �22 = !22Ik = �2vIk;

where !22 denotes the (2; 2) element of 
 and �
2
v := V ar(v2i): This yields S�1(R) = �(1=�v)R2 =

�(1=�v)(Z 0Z)�1=2Z 0Y e2 := S�1(Y ): In the homoskedatic case, �11 = !11Ik; where !11 denotes

the (1; 1) element of 
�1; ��1 = 
�1
Ik; and (e01
Ik)��1vec(R) = (e01
�1
Ik)vec(R) = R
�1e1;

where the last equality uses the formula vec(ABC) = (C 0 
A)vec(B): We have !11 = !22=(!
2
1!
2
2 �

!212) by the formula for the inverse of a 2�2matrix, !21!22�!212 = �2u�
2
v��2uv = �2u�

2
v(1��2uv); where

the �rst equality holds by (15.3), and (!11)�1=2 = �u�v(1 � �2uv)
1=2=!2 = �u(1 � �2uv)

1=2; where

the last equality uses �v = !2: Putting these results together gives T�1(R) := �(�11)�1=2(e01 

Ik)�

�1vec(R) = ��u(1� �2uv)1=2R
�1e1 = (Z 0Z)�1=2Z 0Y 
�1e1 � (�(1� �2uv)1=2�u) := T�1(R):
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Let P��;�;�(�) denote the probability distribution of R when ��; �;� are the true values.

The HC model analogue of Theorem 5.1 is the following.

Theorem 25.2 Suppose CS�(R) is a CS based on level � tests �(S�0(R); T�0(R)) whose test sta-

tistic and critical value functions, T (s; t) and cv(t); respectively, are continuous at all k�2 matrices
[s : t] and k vectors t; P��;�;�(T (Sc(R); Tc(R)) = cv(Tc(R))) = 0 for c = +1 in parts (a) and (c)

below and c = �1 in part (b) below. Then, for all (��; �;�) with � positive de�nite,

(a) P��;�;�(RLength(CS�(R)) =1) = 1� lim�0!1 P��;�;�(�(S�0(R); T�0(R)) = 1);

(b) P��;�;�(LLength(CS�(R)) =1) = 1� lim�0!�1 P��;�;�(�(S�0(R); T�0(R)) = 1); and

(c) if T (Sc(R); Tc(R)) � cv(Tc(R)) for c = +1 i¤ the same inequality holds for c = �1 a.s.,

then

P��;�;�(Length(CS�(R)) =1) = 1� lim�0!�1 P��;�;�(�(S�0(R); T�0(R)) = 1):

Proof of Theorem 25.2. The proof is essentially the same as that for Theorem 5.1 with (i)

(S�0(R); T�0(R)) and T�0(R) in place of Q�0(Y ) and QT;�0(Y ); respectively, using (ii) Lemma

25.1 in place of Lemma 16.1, and using (iii) the assumption of the Theorem that �T (s; t) and
cv(t) are continuous at all k � 2 matrices [s : t] and k vectors t;� in place of the assumption of
Theorem 5.1 that �T (q) and cv(qT ) are continuous at all positive de�nite 2 � 2 matrices q and
positive constants qT :�(In the argument following (16.3) in the proof of Theorem 5.1, the latter

assumption is combined with the result of Lemma 16.1(g), which implies that Q1(Y ) is pd a.s.

and QT;1(Y ) > 0 a.s. In contrast, in the proof of the present Theorem, this part of the argument

is not needed because there is no restriction to positive de�nite matrices q and positive constants

qT :) In the proof of part (c), the second last equality in (16.5) in the proof of Theorem 5.1 holds

(with the changes listed in (i)-(iii) above) because the assumption imposed in part (c) of the present

Theorem is the same as condition (iii) stated immediately above (16.5). �

Proof of Lemma 25.1. We prove part (a) �rst. Dividing the components of S�0(R) in (25.3) by

j�0j; we obtain

S�0(R) = [((b0=j�0j)
0 
 Ik)�((b0=j�0j)
 Ik)]�1=2((b0=j�0j)0 
 Ik)vec(R): (25.6)

We have

lim
�0�1

�
(b0=j�0j)0 
 Ik

�
vec(R) = ((0;�1)
 Ik) vec(R) = �R2 and

lim
�0�1

((b0=j�0j)0 
 Ik)�((b0=j�0j)
 Ik) = ((0;�1)
 Ik)�((0;�1)
 Ik) = �22; (25.7)
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using b0 := (1;��0)0; where R2 denotes the second column of R: Combining (25.6) and (25.7) and
using the positive de�niteness of �22 gives lim�0�1 S�0(R) = ��

�1=2
22 R2 := S�1(R); which proves

part (a).

Part (b) holds by the de�nition of S�1(R) in (25.5) because R2 � N(��;�22) by (25.1) and

(25.2).

To prove part (c), we divide the components of T�0(R) in (25.3) by j�0j to obtain

T�0(R) = [((a0=j�0j)
0 
 Ik)��1((a0=j�0j)
 Ik)]�1=2((a0=j�0j)0 
 Ik)��1vec(R); (25.8)

where a0 = (�0; 1)
0: We have

lim
�0�1

((a0=j�0j)0 
 Ik)��1vec(R) = �((1; 0)
 Ik)��1vec(R) and

lim
�0�1

((a0=j�0j)0 
 Ik)��1((a0=j�0j)
 Ik) = ((�1; 0)
 Ik)��1((�1; 0)
 Ik) = �11; (25.9)

where �11 denotes the upper left k � k block of ��1: Combining (25.8) and (25.9) and using the

positive de�niteness of ��1 gives lim�0�1 T�0(R) = �(�11)�1=2(e01 
 Ik)�
�1vec(R) := T�1(R);

which establishes part (c) of the lemma.

Part (d) holds by the de�nition of T�1(R) in (25.5) because R = ��a
0
� + eV when � = �� by

(25.2), vec(eV ) � N(0;�) by (25.1), and

V ar(T�1(R)) = V ar((�11)�1=2(e01 
 Ik)��1vec(R))

= (�11)�1=2(e01 
 Ik)��1���1(e1 
 Ik)(�11)�1=2

= Ik: (25.10)

Part (e) holds because S�1(R) and T�1(R) are jointly normal with covariance

Cov(S�1(R); T�1(R)) = Cov(���1=222 (e02 
 Ik)vec(R);�(�11)�1=2(e01 
 Ik)��1vec(R)

= ���1=222 (e02 
 Ik)V ar(vec(R))��1(e1 
 Ik)(�11)�1=2

= Ik: (25.11)

This implies that S�1(R) and T�1(R) are independent, which proves part (e). �
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TABLE SM-I(a). Probabilities of Infinite-Length Confidence Intervals for ρuv = 0

k λ AR CLR POIS∞ POIS2∞ CLR–AR SD AR–POIS2∞ CLR–POIS2∞ SD
2 1 .867 .868 .867 .867 .002 .0007 .000 .002 .0007
2 3 .680 .687 .680 .680 .007 .0009 .000 .007 .0009
2 5 .497 .508 .497 .497 .011 .0010 .000 .011 .0010
2 7 .345 .358 .345 .345 .013 .0010 .000 .013 .0010
2 10 .182 .195 .182 .182 .012 .0008 .000 .012 .0008
2 15 .056 .063 .056 .056 .007 .0006 .000 .007 .0006
2 20 .015 .017 .015 .015 .003 .0003 .000 .003 .0003
5 1 .902 .905 .902 .902 .003 .0008 .000 .003 .0008
5 3 .779 .789 .779 .779 .010 .0011 .000 .010 .0011
5 5 .639 .659 .639 .639 .020 .0012 .000 .020 .0012
5 7 .502 .529 .502 .502 .026 .0012 .000 .026 .0012
5 10 .323 .350 .323 .323 .027 .0012 .000 .027 .0012
5 12 .230 .257 .230 .230 .027 .0011 .000 .027 .0011
5 15 .132 .156 .132 .132 .023 .0009 .000 .023 .0009
5 20 .047 .059 .047 .047 .012 .0007 .000 .012 .0007
5 25 .015 .021 .015 .015 .006 .0004 .000 .006 .0004
10 1 .918 .920 .918 .918 .002 .0009 .000 .002 .0009
10 5 .733 .751 .733 .733 .018 .0012 .000 .018 .0012
10 10 .461 .496 .461 .461 .035 .0013 .000 .035 .0013
10 15 .242 .279 .242 .242 .037 .0012 .000 .037 .0012
10 17 .177 .212 .177 .177 .034 .0011 .000 .034 .0011
10 20 .109 .135 .109 .109 .026 .0010 .000 .026 .0010
10 25 .043 .060 .043 .043 .016 .0007 .000 .016 .0007
10 30 .016 .024 .016 .016 .008 .0005 .000 .008 .0005
20 1 .929 .932 .929 .929 .003 .0008 .000 .003 .0008
20 5 .806 .824 .806 .806 .017 .0012 .000 .017 .0012
20 10 .597 .632 .597 .597 .035 .0014 .000 .035 .0014
20 15 .393 .436 .393 .393 .043 .0014 .000 .043 .0014
20 20 .226 .268 .226 .226 .042 .0012 .000 .042 .0012
20 25 .116 .149 .116 .116 .033 .0010 .000 .033 .0010
20 30 .053 .077 .053 .053 .023 .0008 .000 .023 .0008
20 40 .010 .017 .010 .010 .007 .0004 .000 .007 .0004
40 1 .936 .938 .936 .936 .001 .0008 .000 .001 .0008
40 5 .861 .872 .861 .861 .011 .0011 .000 .011 .0011
40 10 .721 .750 .721 .721 .030 .0013 .000 .030 .0013
40 15 .553 .599 .553 .553 .046 .0014 .000 .046 .0014
40 20 .394 .443 .394 .394 .049 .0014 .000 .049 .0014
40 30 .155 .198 .155 .155 .043 .0012 .000 .043 .0012
40 40 .046 .068 .046 .046 .022 .0008 .000 .022 .0008
40 60 .002 .005 .002 .002 .003 .0003 .000 .003 .0003



TABLE SM-I(b). Probabilities of Infinite-Length Confidence Intervals for ρuv = .3

k λ AR CLR POIS∞ POIS2∞ CLR–AR SD AR–POIS2∞ CLR–POIS2∞ SD
2 1 .867 .868 .859 .864 .001 .0007 .002 .003 .0007
2 3 .680 .684 .654 .676 .003 .0010 .004 .008 .0008
2 5 .497 .501 .461 .491 .004 .0011 .005 .010 .0009
2 7 .345 .347 .304 .338 .002 .0010 .008 .009 .0008
2 10 .182 .184 .150 .177 .001 .0009 .006 .007 .0007
2 15 .056 .056 .039 .052 .000 .0006 .003 .004 .0005
2 20 .015 .015 .010 .013 .001 .0004 .002 .002 .0003
5 1 .902 .905 .899 .903 .003 .0008 -.001 .002 .0008
5 3 .779 .785 .762 .779 .006 .0011 .000 .007 .0009
5 5 .639 .647 .607 .637 .008 .0013 .002 .010 .0010
5 7 .502 .510 .460 .498 .008 .0013 .005 .013 .0011
5 10 .323 .330 .279 .316 .007 .0013 .007 .014 .0010
5 12 .230 .235 .190 .222 .005 .0012 .008 .013 .0009
5 15 .132 .137 .101 .126 .004 .0010 .007 .011 .0007
5 20 .047 .048 .031 .042 .000 .0007 .005 .005 .0005
5 25 .015 .016 .009 .013 .001 .0004 .002 .003 .0003
10 1 .918 .920 .915 .918 .002 .0009 -.001 .002 .0008
10 5 .733 .744 .709 .733 .010 .0013 .001 .011 .0011
10 10 .461 .472 .414 .454 .011 .0014 .007 .018 .0011
10 15 .242 .248 .195 .231 .006 .0013 .011 .017 .0010
10 17 .177 .184 .139 .168 .007 .0012 .009 .016 .0009
10 20 .109 .114 .079 .100 .005 .0010 .009 .015 .0008
10 25 .043 .046 .028 .039 .003 .0007 .005 .008 .0005
10 30 .016 .017 .009 .013 .001 .0005 .003 .004 .0004
20 1 .929 .931 .928 .929 .002 .0008 -.001 .002 .0008
20 5 .806 .819 .789 .807 .012 .0012 -.000 .012 .0011
20 10 .597 .615 .558 .594 .018 .0015 .004 .021 .0012
20 15 .393 .406 .339 .383 .013 .0015 .010 .023 .0011
20 20 .226 .236 .180 .215 .009 .0013 .012 .021 .0010
20 25 .116 .122 .082 .106 .006 .0011 .010 .016 .0008
20 30 .053 .057 .035 .046 .004 .0008 .007 .011 .0006
20 40 .010 .011 .005 .008 .001 .0004 .002 .003 .0003
40 1 .936 .937 .934 .937 .001 .0008 -.000 .000 .0008
40 5 .861 .869 .849 .861 .008 .0011 -.000 .008 .0010
40 10 .721 .737 .690 .720 .016 .0014 .001 .016 .0012
40 15 .553 .572 .505 .548 .018 .0015 .006 .024 .0012
40 20 .393 .409 .336 .381 .015 .0015 .012 .028 .0012
40 30 .155 .164 .114 .142 .009 .0013 .013 .022 .0009
40 40 .046 .048 .027 .038 .002 .0008 .008 .010 .0006
40 60 .002 .002 .001 .001 .000 .0002 .001 .001 .0002



TABLE SM-I(c). Probabilities of Infinite-Length Confidence Intervals for ρuv = .5

k λ AR CLR POIS∞ POIS2∞ CLR–AR SD AR–POIS2∞ CLR–POIS2∞ SD
2 1 .867 .867 .846 .864 .000 .0007 .003 .003 .0006
2 3 .680 .675 .615 .672 -.006 .0011 .009 .003 .0006
2 5 .497 .486 .405 .480 -.011 .0012 .017 .005 .0006
2 7 .345 .327 .250 .323 -.019 .0012 .022 .004 .0005
2 10 .182 .166 .111 .162 -.016 .0010 .020 .004 .0005
2 15 .056 .046 .025 .043 -.010 .0007 .012 .002 .0003
2 20 .015 .012 .005 .011 -.003 .0004 .004 .001 .0002
5 1 .902 .904 .890 .903 .001 .0009 -.000 .001 .0007
5 3 .779 .776 .729 .774 -.003 .0012 .005 .003 .0007
5 5 .639 .624 .551 .622 -.015 .0014 .017 .003 .0007
5 7 .502 .476 .392 .471 -.026 .0015 .031 .005 .0007
5 10 .323 .289 .213 .283 -.034 .0015 .040 .006 .0007
5 12 .230 .196 .133 .190 -.035 .0014 .041 .006 .0007
5 15 .132 .104 .063 .099 -.028 .0012 .033 .005 .0006
5 20 .047 .032 .016 .029 -.015 .0008 .018 .003 .0004
5 25 .015 .009 .004 .007 -.006 .0005 .008 .001 .0002
10 1 .918 .919 .908 .918 .002 .0009 -.000 .001 .0007
10 5 .733 .725 .662 .721 -.008 .0014 .013 .005 .0008
10 10 .461 .423 .333 .415 -.038 .0016 .046 .008 .0008
10 15 .242 .194 .130 .186 -.048 .0015 .056 .008 .0007
10 17 .177 .136 .085 .129 -.041 .0014 .048 .007 .0007
10 20 .109 .077 .043 .071 -.032 .0012 .038 .006 .0006
10 25 .043 .026 .012 .023 -.017 .0008 .020 .003 .0004
10 30 .016 .008 .003 .006 -.008 .0005 .009 .002 .0003
20 1 .929 .931 .922 .929 .002 .0009 -.001 .001 .0008
20 5 .806 .804 .756 .800 -.002 .0013 .006 .004 .0008
20 10 .597 .571 .482 .563 -.026 .0017 .034 .008 .0009
20 15 .393 .340 .251 .330 -.053 .0017 .063 .010 .0009
20 20 .226 .172 .111 .163 -.054 .0015 .063 .009 .0008
20 25 .116 .076 .042 .069 -.041 .0013 .047 .007 .0006
20 30 .053 .030 .014 .026 -.023 .0009 .027 .004 .0004
20 40 .010 .004 .002 .003 -.006 .0004 .007 .001 .0002
40 1 .936 .937 .932 .937 .000 .0009 -.000 .000 .0008
40 5 .861 .862 .825 .858 .001 .0012 .003 .005 .0008
40 10 .721 .706 .627 .700 -.015 .0016 .021 .006 .0009
40 15 .553 .513 .416 .502 -.041 .0018 .051 .011 .0009
40 20 .393 .335 .245 .322 -.059 .0018 .072 .013 .0009
40 30 .155 .103 .058 .093 -.052 .0014 .061 .010 .0007
40 40 .046 .022 .010 .018 -.023 .0009 .028 .004 .0004
40 60 .002 .001 .000 .000 -.002 .0002 .002 .000 .0001



TABLE SM-I(d). Probabilities of Infinite-Length Confidence Intervals for ρuv = .7

k λ AR CLR POIS∞ POIS2∞ CLR–AR SD AR–POIS2∞ CLR–POIS2∞ SD
2 1 .867 .864 .823 .862 -.003 .0008 .004 .001 .0003
2 3 .680 .658 .558 .654 -.022 .0012 .026 .004 .0005
2 5 .497 .456 .343 .452 -.040 .0014 .044 .004 .0006
2 7 .345 .295 .199 .291 -.050 .0014 .054 .004 .0005
2 10 .182 .140 .082 .138 -.042 .0012 .044 .003 .0004
2 15 .055 .035 .017 .034 -.020 .0008 .021 .001 .0002
2 20 .015 .009 .004 .008 -.006 .0004 .006 .000 .0001
5 1 .902 .901 .872 .900 -.002 .0009 .002 .001 .0004
5 3 .779 .753 .667 .752 -.026 .0014 .027 .001 .0006
5 5 .639 .575 .461 .571 -.064 .0017 .069 .004 .0007
5 7 .502 .410 .297 .404 -.092 .0018 .098 .006 .0007
5 10 .323 .219 .139 .214 -.104 .0017 .109 .005 .0006
5 12 .230 .137 .081 .133 -.093 .0016 .097 .004 .0006
5 15 .132 .064 .033 .061 -.068 .0013 .071 .003 .0004
5 20 .047 .016 .007 .014 -.031 .0009 .033 .001 .0003
5 25 .015 .004 .002 .003 -.011 .0005 .012 .000 .0001
10 1 .918 .918 .895 .917 .000 .0009 .000 .001 .0005
10 5 .733 .676 .575 .673 -.057 .0016 .060 .003 .0008
10 10 .461 .322 .223 .317 -.139 .0019 .144 .005 .0008
10 15 .242 .115 .065 .110 -.127 .0017 .132 .005 .0006
10 17 .177 .073 .038 .069 -.104 .0015 .109 .004 .0005
10 20 .109 .034 .016 .033 -.075 .0013 .076 .002 .0004
10 25 .043 .009 .003 .008 -.034 .0009 .036 .001 .0002
10 30 .016 .002 .001 .002 -.014 .0005 .014 .000 .0001
20 1 .929 .930 .914 .930 .001 .0009 -.001 .000 .0006
20 5 .806 .771 .682 .768 -.036 .0015 .038 .003 .0008
20 10 .597 .470 .350 .462 -.127 .0020 .135 .008 .0009
20 15 .393 .220 .136 .211 -.174 .0020 .182 .009 .0008
20 20 .226 .083 .044 .079 -.143 .0018 .148 .005 .0006
20 25 .116 .027 .012 .024 -.089 .0014 .092 .003 .0004
20 30 .053 .008 .003 .007 -.045 .0010 .047 .002 .0002
20 40 .010 .001 .000 .001 -.009 .0004 .009 .000 .0001
40 1 .936 .936 .925 .936 -.001 .0009 .001 -.000 .0007
40 5 .861 .841 .772 .837 -.020 .0014 .024 .003 .0007
40 10 .721 .624 .505 .615 -.096 .0019 .106 .010 .0010
40 15 .553 .382 .269 .371 -.172 .0021 .182 .011 .0009
40 20 .393 .197 .118 .186 -.197 .0021 .207 .010 .0008
40 30 .155 .033 .015 .029 -.122 .0016 .125 .004 .0004
40 40 .046 .004 .001 .003 -.042 .0009 .043 .001 .0002
40 60 .002 .000 .000 .000 -.002 .0002 .002 .000 .0000



TABLE SM-I(e). Probabilities of Infinite-Length Confidence Intervals for ρuv = .9

k λ AR CLR POIS∞ POIS2∞ CLR–AR SD AR–POIS2∞ CLR–POIS2∞ SD
2 1 .867 .854 .778 .851 -.013 .0010 .015 .002 .0006
2 3 .680 .617 .491 .614 -.063 .0015 .067 .004 .0005
2 5 .497 .410 .293 .407 -.087 .0016 .089 .002 .0003
2 7 .345 .258 .167 .256 -.087 .0015 .090 .003 .0003
2 10 .182 .119 .067 .117 -.063 .0013 .065 .002 .0002
2 15 .055 .029 .014 .029 -.026 .0008 .027 .001 .0001
2 20 .015 .006 .003 .006 -.008 .0004 .008 .000 .0001
5 1 .902 .887 .824 .884 -.016 .0011 .019 .003 .0007
5 3 .779 .675 .553 .670 -.104 .0018 .109 .005 .0007
5 5 .639 .462 .340 .459 -.177 .0021 .180 .004 .0005
5 7 .502 .297 .197 .295 -.205 .0021 .207 .002 .0004
5 10 .323 .140 .083 .139 -.182 .0019 .183 .001 .0003
5 12 .230 .083 .044 .082 -.148 .0017 .149 .001 .0003
5 15 .132 .036 .017 .035 -.097 .0014 .097 .000 .0002
5 20 .047 .008 .003 .008 -.039 .0009 .039 .000 .0001
5 25 .015 .002 .001 .002 -.013 .0005 .013 .000 .0001
10 1 .918 .907 .855 .904 -.011 .0011 .014 .003 .0007
10 5 .733 .533 .404 .526 -.201 .0022 .207 .007 .0006
10 10 .461 .176 .106 .173 -.285 .0022 .288 .002 .0004
10 15 .242 .047 .023 .046 -.196 .0018 .196 .001 .0003
10 17 .177 .026 .012 .026 -.151 .0016 .151 .000 .0002
10 20 .109 .011 .004 .011 -.098 .0014 .098 .000 .0002
10 25 .043 .002 .001 .002 -.041 .0009 .041 .000 .0001
10 30 .016 .000 .000 .000 -.015 .0006 .015 .000 .0000
20 1 .929 .923 .885 .921 -.006 .0010 .008 .002 .0007
20 5 .806 .625 .498 .617 -.181 .0021 .189 .008 .0007
20 10 .597 .243 .155 .240 -.354 .0024 .357 .003 .0005
20 15 .393 .072 .038 .070 -.321 .0022 .323 .002 .0003
20 20 .226 .019 .008 .018 -.207 .0018 .209 .001 .0002
20 25 .116 .004 .002 .004 -.112 .0014 .112 .000 .0001
20 30 .053 .001 .000 .001 -.052 .0010 .052 .000 .0001
20 40 .010 .000 .000 .000 -.010 .0004 .010 .000 .0000
40 1 .936 .932 .904 .932 -.005 .0010 .004 -.001 .0006
40 5 .861 .727 .607 .717 -.134 .0020 .144 .010 .0009
40 10 .721 .358 .249 .354 -.362 .0024 .366 .004 .0006
40 15 .553 .130 .074 .128 -.423 .0023 .426 .002 .0005
40 20 .393 .039 .019 .038 -.354 .0022 .356 .001 .0003
40 30 .155 .003 .001 .002 -.152 .0016 .152 .000 .0001
40 40 .046 .000 .000 .000 -.046 .0009 .046 .000 .0000
40 60 .002 .000 .000 .000 -.002 .0002 .002 .000 .0000



TABLE SM-II(a). Maximum Power Differences over λ and β0 Values between POIS2 and CLR Tests for Fixed
Alternative β∗ = 0 for ρuv = 0.00

k λ β0,max ρuv,0 POIS2 POIS2–CLR
2 1 −5.00 .98 .133 .009
2 3 100.00 −1.00 .314 .012
2 5 −10.00 1.00 .499 .019
2 7 −10000.00 1.00 .663 .021
2 10 7.50 −.99 .814 .018
2 15 10.00 −1.00 .950 .009
2 20 −1.25 .78 .923 .004
5 1 −10.00 1.00 .095 .004
5 3 −5.00 .98 .209 .012
5 5 −1000.00 1.00 .363 .017
5 7 −10.00 1.00 .501 .025
5 10 −50.00 1.00 .680 .030
5 15 −10000.00 1.00 .870 .025
5 20 −50.00 1.00 .953 .015
10 1 2.00 −.89 .078 .003
10 3 3.75 −.97 .161 .012
10 5 10.00 −1.00 .268 .021
10 7 100.00 −1.00 .379 .028
10 10 −10000.00 1.00 .540 .030
10 15 −50.00 1.00 .760 .038
10 20 50.00 −1.00 .888 .025
20 1 −2.75 .94 .064 .006
20 3 −100.00 1.00 .116 .007
20 5 100.00 −1.00 .180 .016
20 7 5.00 −.98 .252 .028
20 10 −100.00 1.00 .389 .040
20 15 10.00 −1.00 .596 .042
20 20 100.00 −1.00 .770 .040
20 22 100.00 −1.00 .820 .038
20 25 −10000.00 1.00 .878 .035
40 1 −0.25 .24 .054 .011
40 3 2.50 −.93 .095 .011
40 5 −7.50 .99 .149 .020
40 7 −50.00 1.00 .201 .024
40 10 −100.00 1.00 .287 .035
40 15 −7.50 .99 .441 .041
40 20 50.00 −1.00 .608 .058
40 22 −50.00 1.00 .664 .059
40 25 1000.00 −1.00 .742 .056



TABLE SM-II(b). Maximum Power Differences over λ and β0 Values between POIS2 and CLR Tests for Fixed
Alternative β∗ = 0 for ρuv = 0.30

k λ β0,max ρuv,0 POIS2 POIS2–CLR
2 1 10.00 −1.00 .140 .009
2 3 7.50 −.99 .335 .012
2 5 3.50 −.96 .543 .016
2 7 2.25 −.90 .692 .018
2 10 3.75 −.96 .860 .019
2 15 2.25 −.90 .966 .009
2 20 −1.75 .91 .920 .004
5 1 3.75 −.96 .102 .008
5 3 2.75 −.93 .239 .017
5 5 7.50 −.99 .387 .018
5 7 3.00 −.94 .546 .023
5 10 3.50 −.96 .732 .034
5 15 2.75 −.93 .901 .023
5 20 4.00 −.97 .971 .014
10 1 3.00 −.94 .090 .003
10 3 3.00 −.94 .181 .014
10 5 2.75 −.93 .296 .023
10 7 3.75 −.96 .417 .026
10 10 3.00 −.94 .590 .032
10 15 3.50 −.96 .806 .032
10 20 3.50 −.96 .921 .025
20 1 −50.00 1.00 .067 .006
20 3 3.50 −.96 .126 .009
20 5 4.00 −.97 .195 .019
20 7 3.00 −.94 .285 .030
20 10 3.25 −.95 .432 .038
20 15 3.50 −.96 .655 .045
20 20 2.75 −.93 .817 .038
20 22 3.00 −.94 .863 .034
20 25 3.75 −.96 .915 .031
40 1 −0.25 .50 .051 .008
40 3 1.50 −.78 .097 .008
40 5 2.75 −.93 .153 .014
40 7 5.00 −.98 .215 .020
40 10 4.00 −.97 .312 .036
40 15 3.00 −.94 .485 .042
40 20 3.75 −.96 .663 .059
40 22 4.00 −.97 .724 .061
40 25 3.75 −.96 .798 .052



TABLE SM-II(c). Maximum Power Differences over λ and β0 Values between POIS2 and CLR Tests for Fixed
Alternative β∗ = 0 for ρuv = 0.50

k λ β0,max ρuv,0 POIS2 POIS2–CLR
2 1 2.00 −.87 .162 .006
2 3 2.50 −.92 .399 .014
2 5 2.00 −.87 .635 .016
2 7 2.50 −.92 .782 .013
2 10 2.25 −.90 .922 .012
2 15 −10.00 1.00 .943 .004
2 20 −1.25 .90 .804 .003
5 1 1.75 −.82 .112 .007
5 3 2.00 −.87 .291 .019
5 5 2.50 −.92 .475 .022
5 7 2.50 −.92 .638 .028
5 10 2.25 −.90 .821 .029
5 15 1.75 −.82 .951 .014
5 20 1.00 −.50 .969 .007
10 1 2.00 −.87 .097 .003
10 3 1.75 −.82 .215 .014
10 5 2.00 −.87 .362 .028
10 7 1.75 −.82 .500 .028
10 10 2.00 −.87 .697 .037
10 15 2.00 −.87 .887 .023
10 20 2.25 −.90 .968 .018
20 1 5.00 −.98 .071 .008
20 3 2.00 −.87 .148 .011
20 5 3.00 −.94 .233 .024
20 7 2.00 −.87 .355 .034
20 10 1.75 −.82 .533 .046
20 15 2.00 −.87 .769 .040
20 20 2.00 −.87 .905 .031
20 22 2.25 −.90 .934 .025
20 25 2.25 −.90 .963 .014
40 1 −0.25 .65 .051 .007
40 3 1.50 −.76 .117 .008
40 5 2.00 −.87 .184 .014
40 7 3.25 −.95 .256 .026
40 10 2.00 −.87 .381 .035
40 15 1.75 −.82 .594 .050
40 20 1.75 −.82 .776 .049
40 22 2.00 −.87 .835 .049
40 25 2.00 −.87 .897 .040



TABLE SM-II(d). Maximum Power Differences over λ and β0 Values between POIS2 and CLR Tests for Fixed
Alternative β∗ = 0 for ρuv = 0.70

k λ β0,max ρuv,0 POIS2 POIS2–CLR
2 1 1.75 −.83 .214 .006
2 3 2.25 −.91 .528 .013
2 5 1.50 −.75 .811 .016
2 7 1.25 −.61 .927 .009
2 10 −2.75 .98 .672 .005
2 15 −4.00 .99 .896 .003
2 20 −1.00 .92 .671 .002
5 1 2.00 −.88 .142 .005
5 3 1.75 −.83 .413 .020
5 5 1.50 −.75 .669 .033
5 7 1.50 −.75 .834 .029
5 10 1.50 −.75 .949 .016
5 15 7.50 −.99 .971 .003
5 20 −2.50 .98 .897 .003
10 1 1.25 −.61 .117 .004
10 3 1.50 −.75 .320 .028
10 5 1.25 −.61 .521 .030
10 7 1.50 −.75 .711 .036
10 10 1.50 −.75 .878 .021
10 15 1.75 −.83 .979 .010
10 20 0.50 .27 .757 .007
20 1 2.00 −.88 .087 .007
20 3 1.50 −.75 .212 .025
20 5 1.50 −.75 .377 .038
20 7 1.25 −.61 .544 .042
20 10 1.50 −.75 .754 .036
20 15 1.50 −.75 .935 .024
20 20 −1.25 .94 .582 .007
20 22 −1.00 .92 .546 .007
20 25 −7.50 1.00 .952 .005
40 1 −100.00 1.00 .071 .006
40 3 2.25 −.91 .158 .015
40 5 1.75 −.83 .275 .030
40 7 1.25 −.61 .393 .038
40 10 1.50 −.75 .588 .049
40 15 1.50 −.75 .837 .050
40 20 1.50 −.75 .948 .026
40 22 1.50 −.75 .967 .017
40 25 −3.25 .98 .817 .009



TABLE SM-II(e). Maximum Power Differences over λ and β0 Values between POIS2 and CLR Tests for Fixed
Alternative β∗ = 0 for ρuv = 0.90

k λ β0,max ρuv,0 POIS2 POIS2–CLR
2 0.7 1.25 −.63 .359 .010
2 0.8 1.00 −.22 .412 .015
2 0.9 1.25 −.63 .461 .017
2 1 1.25 −.63 .505 .013
2 3 1.25 −.63 .947 .005
2 5 −7.50 1.00 .497 .002
2 7 −5.00 1.00 .600 .001
2 10 −3.50 1.00 .702 .001
2 15 −50.00 1.00 .967 .001
2 20 −3.75 1.00 .950 .001
5 0.7 1.00 −.22 .256 .013
5 0.8 1.00 −.22 .292 .017
5 0.9 1.00 −.22 .331 .017
5 1 1.00 −.22 .365 .015
5 3 1.00 −.22 .870 .015
5 5 1.00 −.22 .985 .004
5 7 0.75 .33 .975 .004
5 10 10.00 −1.00 .916 .002
5 15 −10.00 1.00 .934 .001
5 20 −1.75 .99 .815 .001
10 1 1.00 −.22 .273 .017
10 3 1.25 −.63 .766 .027
10 5 1.25 −.63 .956 .014
10 7 2.00 −.93 .964 .005
10 10 −50.00 1.00 .812 .004
10 15 −1.50 .98 .618 .003
10 20 −2.75 .99 .895 .003
20 1 1.00 −.22 .183 .015
20 3 1.00 −.22 .607 .032
20 5 1.25 −.63 .882 .022
20 7 5.00 −.99 .705 .008
20 10 3.00 −.98 .951 .005
20 15 −3.25 .99 .769 .003
20 20 −1.75 .99 .766 .003
20 22 −3.75 1.00 .931 .003
20 25 −3.25 .99 .946 .002
40 1 1.00 −.22 .146 .016
40 3 1.00 −.22 .440 .027
40 5 1.25 −.63 .750 .040
40 7 1.25 −.63 .919 .022
40 10 3.75 −.99 .844 .009
40 15 −3.00 .99 .674 .005
40 20 −2.25 .99 .770 .004
40 22 −2.75 .99 .857 .002
40 25 −0.25 .94 .151 .001



TABLE SM-III. Maximum and Average Power Differences over λ and β0 Values between POIS2 and AR Tests for Fixed Alternative β∗ = 0

(a) Across k patterns for fixed ρuv

POIS2–AR
ρuv k λmax β0,max ρuv,0 POIS2 max average
.0 2 20 0.50 −.45 .49 .079 .012
.0 5 20 0.75 −.60 .66 .151 .014
.0 10 20 −0.75 .60 .57 .183 .015
.0 20 25 0.75 −.60 .57 .217 .016
.0 40 25 −0.75 .60 .42 .161 .011
.3 2 20 0.50 −.21 .60 .084 .014
.3 5 20 −0.75 .74 .56 .163 .020
.3 10 20 −1.00 .81 .61 .201 .022
.3 20 25 0.50 −.21 .47 .231 .024
.3 40 25 −1.00 .81 .47 .194 .019
.5 2 20 −0.75 .82 .58 .090 .020
.5 5 20 0.50 .00 .66 .182 .031
.5 10 20 −1.00 .87 .59 .232 .038
.5 20 25 −1.00 .87 .60 .285 .044
.5 40 25 −1.25 .90 .54 .248 .040
.7 2 20 −0.75 .90 .54 .094 .030
.7 5 20 −1.25 .94 .72 .208 .054
.7 10 20 −1.25 .94 .67 .281 .069
.7 20 25 −1.25 .94 .71 .361 .084
.7 40 25 −2.00 .97 .73 .351 .085
.9 2 20 −1.00 .97 .64 .105 .033
.9 5 20 −1.25 .98 .70 .237 .068
.9 10 20 −1.50 .98 .75 .340 .133
.9 20 25 −1.25 .98 .76 .455 .160
.9 40 25 −1.75 .99 .82 .513 .179

(b) Across ρuv patterns for fixed k

POIS2–AR
k ρuv λmax β0,max ρuv,0 POIS2 max average
2 .0 20 0.50 −.45 .49 .079 .012
2 .3 20 0.50 −.21 .60 .084 .014
2 .5 20 −0.75 .82 .58 .090 .020
2 .7 20 −0.75 .90 .54 .094 .030
2 .9 20 −1.00 .97 .64 .105 .033
5 .0 20 0.75 −.60 .66 .151 .014
5 .3 20 −0.75 .74 .56 .163 .020
5 .5 20 0.50 .00 .66 .182 .031
5 .7 20 −1.25 .94 .72 .208 .054
5 .9 20 −1.25 .98 .70 .237 .068

10 .0 20 −0.75 .60 .57 .183 .015
10 .3 20 −1.00 .81 .61 .201 .022
10 .5 20 −1.00 .87 .59 .232 .038
10 .7 20 −1.25 .94 .67 .281 .069
10 .9 20 −1.50 .98 .75 .340 .133
20 .0 25 0.75 −.60 .57 .217 .016
20 .3 25 0.50 −.21 .47 .231 .024
20 .5 25 −1.00 .87 .60 .285 .044
20 .7 25 −1.25 .94 .71 .361 .084
20 .9 25 −1.25 .98 .76 .455 .160
40 .0 25 −0.75 .60 .42 .161 .011
40 .3 25 −1.00 .81 .47 .194 .019
40 .5 25 −1.25 .90 .54 .248 .040
40 .7 25 −2.00 .97 .73 .351 .085
40 .9 25 −1.75 .99 .82 .513 .179

2



TABLE SM-IV. Maximum and Average Power Differences over λ and β0 Values between POIS2 and LM Tests for Fixed Alternative β∗ = 0

(a) Across k patterns for fixed ρuv

POIS2–LM
ρuv k λmax β0,max ρuv,0 POIS2 max average
.0 2 15 50.00 −1.00 .95 .312 .117
.0 5 20 1000.00 −1.00 .95 .538 .173
.0 10 20 10000.00 −1.00 .89 .611 .174
.0 20 25 10000.00 −1.00 .88 .687 .203
.0 40 25 10000.00 −1.00 .74 .621 .173
.3 2 15 3.75 −.96 .97 .309 .103
.3 5 20 3.25 −.95 .97 .536 .155
.3 10 20 3.50 −.96 .92 .628 .161
.3 20 25 3.25 −.95 .91 .710 .187
.3 40 25 3.25 −.95 .80 .671 .168
.5 2 10 2.00 −.87 .92 .311 .077
.5 5 15 2.00 −.87 .95 .538 .121
.5 10 20 2.00 −.87 .97 .639 .133
.5 20 25 2.00 −.87 .96 .734 .153
.5 40 25 2.00 −.87 .90 .750 .152
.7 2 7 1.50 −.75 .93 .310 .041
.7 5 10 1.50 −.75 .95 .531 .070
.7 10 15 1.50 −.75 .98 .621 .084
.7 20 20 1.50 −.75 .99 .721 .089
.7 40 22 1.50 −.75 .97 .784 .107
.9 2 3 1.25 −.63 .95 .242 .010
.9 5 3 1.00 −.22 .87 .422 .016
.9 10 5 1.25 −.63 .96 .474 .023
.9 20 5 1.25 −.63 .88 .562 .021
.9 40 7 1.25 −.63 .92 .620 .031

(b) Across ρuv patterns for fixed k

POIS2–LM
k ρuv λmax β0,max ρuv,0 POIS2 max average
2 .0 15 50.00 −1.00 .95 .312 .117
2 .3 15 3.75 −.96 .97 .309 .103
2 .5 10 2.00 −.87 .92 .311 .077
2 .7 7 1.50 −.75 .93 .310 .041
2 .9 3 1.25 −.63 .95 .242 .010
5 .0 20 1000.00 −1.00 .95 .538 .173
5 .3 20 3.25 −.95 .97 .536 .155
5 .5 15 2.00 −.87 .95 .538 .121
5 .7 10 1.50 −.75 .95 .531 .070
5 .9 3 1.00 −.22 .87 .422 .016

10 .0 20 10000.00 −1.00 .89 .611 .174
10 .3 20 3.50 −.96 .92 .628 .161
10 .5 20 2.00 −.87 .97 .639 .133
10 .7 15 1.50 −.75 .98 .621 .084
10 .9 5 1.25 −.63 .96 .474 .023
20 .0 25 10000.00 −1.00 .88 .687 .203
20 .3 25 3.25 −.95 .91 .710 .187
20 .5 25 2.00 −.87 .96 .734 .153
20 .7 20 1.50 −.75 .99 .721 .089
20 .9 5 1.25 −.63 .88 .562 .021
40 .0 25 10000.00 −1.00 .74 .621 .173
40 .3 25 3.25 −.95 .80 .671 .168
40 .5 25 2.00 −.87 .90 .750 .152
40 .7 22 1.50 −.75 .97 .784 .107
40 .9 7 1.25 −.63 .92 .620 .031

2



TABLE SM-V(a). Average (over λ) Power Differences for λ ∈ {2.5, 5.0, ..., 90.0} between the WAP2 and CLR Tests
for k = 2

β0
ρuv,0 WAP2 WAP2–CLR

ρuv = 0 .9 ρuv = 0 .3 .5 .7 .9 ρuv = 0 .3 .5 .7 .9
−10000.00 1.00 1.00 .946 .950 .951 .955 .958 .003 .002 .001 .001 .001
−1000.00 1.00 1.00 .946 .950 .951 .955 .958 .003 .002 .001 .001 .001
−100.00 1.00 1.00 .946 .949 .951 .954 .957 .003 .002 .001 .000 .001
−50.00 1.00 1.00 .946 .949 .950 .953 .956 .003 .002 .001 .001 .001
−10.00 1.00 1.00 .946 .945 .945 .947 .948 .003 .002 .001 .000 .001
−7.50 .99 1.00 .945 .944 .943 .944 .945 .003 .002 .001 .000 .000
−5.00 .98 1.00 .944 .941 .938 .938 .937 .003 .001 .001 .001 .000
−4.00 .97 1.00 .943 .938 .935 .933 .931 .003 .001 .001 .001 .000
−3.75 .97 1.00 .942 .937 .933 .931 .929 .003 .001 .001 .001 .001
−3.50 .96 1.00 .941 .936 .932 .929 .927 .002 .001 .001 .001 .001
−3.25 .96 .99 .940 .934 .930 .926 .923 .002 .001 .001 .001 .001
−3.00 .95 .99 .940 .933 .927 .923 .920 .003 .001 .001 .001 .000
−2.75 .94 .99 .938 .930 .925 .920 .916 .003 .001 .001 .000 .000
−2.50 .93 .99 .937 .928 .922 .916 .911 .002 .001 .001 .001 .000
−2.25 .91 .99 .935 .925 .918 .910 .904 .002 .001 .001 .001 .000
−2.00 .89 .99 .932 .920 .912 .904 .896 .002 .002 .001 .001 .001
−1.75 .87 .99 .928 .914 .904 .895 .885 .002 .001 .001 .001 .000
−1.50 .83 .98 .921 .905 .893 .881 .870 .001 .001 .001 .001 .000
−1.25 .78 .98 .910 .890 .876 .861 .847 .001 .002 .001 .001 .001
−1.00 .71 .97 .895 .866 .845 .827 .809 .002 .002 .001 .001 .001
−0.75 .60 .97 .851 .814 .788 .762 .738 .001 .002 .002 .001 .001
−0.50 .45 .95 .736 .681 .646 .613 .584 .002 .002 .002 .002 .001
−0.25 .24 .94 .366 .329 .310 .293 .279 .002 .002 .002 .001 .001

0.25 −.24 .83 .366 .410 .447 .488 .544 .001 .001 .002 .002 .001
0.50 −.45 .68 .737 .804 .848 .892 .937 .002 .002 .001 .001 .000
0.75 −.60 .33 .851 .899 .928 .959 .989 .002 .001 .001 .001 .000
1.00 −.71 −.22 .892 .928 .951 .975 .997 .001 .001 .001 .001 .000
1.25 −.78 −.63 .911 .942 .959 .979 .997 .001 .002 .001 .001 .000
1.50 −.83 −.81 .921 .948 .963 .980 .995 .001 .002 .002 .001 .000
1.75 −.87 −.89 .928 .950 .965 .979 .993 .002 .002 .002 .002 .000
2.00 −.89 −.93 .932 .953 .965 .978 .991 .001 .002 .002 .002 .000
2.25 −.91 −.95 .935 .953 .965 .976 .989 .002 .002 .002 .001 .000
2.50 −.93 −.96 .937 .954 .964 .975 .986 .002 .003 .002 .001 .000
2.75 −.94 −.97 .938 .955 .964 .973 .985 .003 .003 .002 .001 .000
3.00 −.95 −.98 .939 .955 .963 .973 .983 .002 .003 .002 .001 .000
3.25 −.96 −.98 .940 .954 .963 .972 .982 .003 .003 .002 .001 .000
3.50 −.96 −.99 .941 .954 .962 .970 .980 .003 .003 .002 .000 .000
3.75 −.97 −.99 .942 .955 .962 .970 .979 .003 .003 .002 .001 .000
4.00 −.97 −.99 .942 .954 .962 .969 .978 .003 .002 .002 .001 .000
5.00 −.98 −.99 .944 .954 .960 .967 .974 .003 .002 .002 .001 .000
7.50 −.99 −1.00 .945 .953 .957 .964 .970 .003 .002 .001 .001 .000

10.00 −1.00 −1.00 .946 .952 .956 .961 .967 .004 .002 .002 .001 .000
50.00 −1.00 −1.00 .946 .950 .952 .956 .960 .003 .002 .001 .000 .001

100.00 −1.00 −1.00 .946 .950 .952 .955 .959 .003 .002 .002 .001 .001
1000.00 −1.00 −1.00 .946 .950 .951 .955 .958 .003 .002 .001 .001 .001

10000.00 −1.00 −1.00 .946 .950 .951 .955 .958 .003 .002 .001 .001 .001



TABLE SM-V(b). Average (over λ) Power Differences for λ ∈ {2.5, 5.0, ..., 90.0} between the WAP2 and CLR Tests
for k = 5

β0
ρuv,0 WAP2 WAP2–CLR

ρuv = 0 .9 ρuv = 0 .3 .5 .7 .9 ρuv = 0 .3 .5 .7 .9
−10000.00 1.00 1.00 .923 .924 .929 .939 .953 .005 .002 .001 .001 .000
−1000.00 1.00 1.00 .923 .924 .929 .939 .953 .005 .002 .001 .001 .000
−100.00 1.00 1.00 .923 .923 .929 .939 .952 .005 .002 .001 .001 .000
−50.00 1.00 1.00 .923 .923 .929 .938 .951 .005 .003 .001 .001 .000
−10.00 1.00 1.00 .922 .920 .924 .931 .942 .005 .002 .001 .000 .000
−7.50 .99 1.00 .921 .918 .922 .929 .938 .004 .002 .000 .000 .000
−5.00 .98 1.00 .919 .915 .917 .923 .931 .004 .001 .000 .000 .000
−4.00 .97 1.00 .918 .912 .913 .917 .924 .003 .001 .000 -.000 .000
−3.75 .97 1.00 .917 .911 .911 .915 .922 .003 .002 .000 -.000 -.000
−3.50 .96 1.00 .917 .910 .910 .913 .920 .003 .001 -.000 -.000 .000
−3.25 .96 .99 .916 .909 .908 .910 .917 .003 .001 .000 .000 -.000
−3.00 .95 .99 .916 .907 .906 .907 .914 .003 .001 .000 .000 -.000
−2.75 .94 .99 .914 .905 .903 .904 .910 .002 .001 .000 .000 -.000
−2.50 .93 .99 .913 .902 .899 .900 .904 .002 .001 .001 -.000 .000
−2.25 .91 .99 .910 .898 .895 .894 .897 .002 .000 .001 -.000 -.000
−2.00 .89 .99 .907 .893 .888 .887 .888 .002 .001 .000 .001 -.000
−1.75 .87 .99 .903 .886 .880 .877 .877 .001 .001 .001 .000 .000
−1.50 .83 .98 .896 .877 .868 .863 .863 .001 .001 .001 .000 .000
−1.25 .78 .98 .885 .861 .850 .842 .839 .002 .001 .001 .000 .000
−1.00 .71 .97 .865 .836 .820 .808 .800 .001 .000 -.000 -.000 -.000
−0.75 .60 .97 .823 .783 .760 .741 .727 .000 -.000 .001 -.000 -.000
−0.50 .45 .95 .705 .649 .618 .592 .572 -.000 -.000 -.001 -.001 -.000
−0.25 .24 .94 .340 .311 .294 .282 .272 -.001 -.001 -.001 -.000 -.000

0.25 −.24 .83 .347 .390 .428 .476 .536 -.000 -.001 -.001 -.000 -.001
0.50 −.45 .68 .711 .777 .825 .877 .931 .001 .000 .000 .000 .000
0.75 −.60 .33 .827 .873 .908 .944 .985 .000 .001 .001 .001 .000
1.00 −.71 −.22 .868 .904 .930 .960 .994 .002 .001 .001 .001 .000
1.25 −.78 −.63 .887 .915 .940 .966 .994 .001 .001 .004 .003 .001
1.50 −.83 −.81 .897 .922 .943 .966 .992 .001 .002 .003 .003 .001
1.75 −.87 −.89 .904 .926 .945 .965 .989 .002 .003 .004 .003 -.000
2.00 −.89 −.93 .907 .928 .945 .963 .986 .002 .003 .004 .002 .000
2.25 −.91 −.95 .910 .930 .945 .961 .984 .001 .004 .004 .001 .000
2.50 −.93 −.96 .912 .931 .945 .960 .981 .001 .005 .004 .001 -.000
2.75 −.94 −.97 .914 .931 .944 .958 .979 .003 .005 .004 .001 .000
3.00 −.95 −.98 .915 .931 .943 .957 .977 .003 .005 .003 .001 .000
3.25 −.96 −.98 .916 .931 .942 .956 .976 .003 .004 .003 .001 .000
3.50 −.96 −.99 .917 .931 .942 .955 .974 .003 .005 .003 .001 -.000
3.75 −.97 −.99 .918 .931 .941 .954 .973 .003 .004 .002 .001 .000
4.00 −.97 −.99 .919 .931 .940 .954 .972 .004 .005 .002 .001 .000
5.00 −.98 −.99 .920 .930 .939 .951 .968 .004 .005 .002 .000 .000
7.50 −.99 −1.00 .922 .929 .936 .948 .963 .005 .004 .001 .001 .000

10.00 −1.00 −1.00 .922 .928 .935 .946 .960 .005 .003 .001 .001 .000
50.00 −1.00 −1.00 .923 .925 .930 .941 .955 .005 .003 .001 .000 -.000

100.00 −1.00 −1.00 .923 .924 .930 .940 .954 .005 .003 .001 .000 .000
1000.00 −1.00 −1.00 .923 .924 .929 .939 .953 .005 .002 .001 .001 .000

10000.00 −1.00 −1.00 .923 .924 .929 .939 .953 .005 .002 .001 .001 .000



TABLE SM-V(c). Average (over λ) Power Differences for λ ∈ {2.5, 5.0, ..., 90.0} between the WAP2 and CLR Tests
for k = 10

β0
ρuv,0 WAP2 WAP2–CLR

ρuv = 0 .9 ρuv = 0 .3 .5 .7 .9 ρuv = 0 .3 .5 .7 .9
−10000.00 1.00 1.00 .901 .903 .910 .924 .946 .011 .006 .003 .001 .000
−1000.00 1.00 1.00 .901 .903 .910 .924 .946 .011 .006 .003 .001 .000
−100.00 1.00 1.00 .901 .902 .910 .924 .945 .011 .006 .003 .002 .001
−50.00 1.00 1.00 .901 .902 .909 .923 .944 .011 .006 .003 .002 .001
−10.00 1.00 1.00 .900 .898 .904 .916 .935 .011 .005 .003 .001 .001
−7.50 .99 1.00 .900 .896 .902 .913 .932 .010 .005 .003 .002 .001
−5.00 .98 1.00 .897 .892 .897 .907 .924 .008 .004 .003 .002 .001
−4.00 .97 1.00 .895 .889 .893 .902 .918 .007 .004 .002 .002 .001
−3.75 .97 1.00 .894 .888 .891 .900 .916 .007 .004 .002 .001 .001
−3.50 .96 1.00 .893 .886 .889 .898 .914 .007 .004 .002 .002 .001
−3.25 .96 .99 .892 .884 .888 .896 .911 .006 .003 .003 .002 .001
−3.00 .95 .99 .891 .882 .885 .893 .908 .006 .004 .002 .001 .001
−2.75 .94 .99 .890 .881 .882 .889 .904 .007 .005 .002 .001 .001
−2.50 .93 .99 .888 .878 .879 .886 .899 .006 .004 .002 .002 .001
−2.25 .91 .99 .885 .874 .874 .881 .892 .006 .003 .002 .002 .001
−2.00 .89 .99 .881 .869 .868 .873 .884 .004 .003 .002 .002 .001
−1.75 .87 .99 .876 .862 .860 .863 .872 .005 .003 .003 .002 .001
−1.50 .83 .98 .869 .853 .847 .848 .857 .005 .003 .002 .001 .002
−1.25 .78 .98 .858 .837 .829 .827 .834 .003 .003 .003 .002 .002
−1.00 .71 .97 .838 .809 .799 .794 .796 .003 .003 .002 .002 .002
−0.75 .60 .97 .793 .756 .738 .727 .724 .003 .003 .003 .002 .002
−0.50 .45 .95 .676 .623 .596 .580 .572 .004 .004 .003 .003 .004
−0.25 .24 .94 .323 .294 .282 .274 .272 .003 .004 .003 .002 .003

0.25 −.24 .83 .326 .370 .408 .460 .530 .004 .004 .004 .003 .002
0.50 −.45 .68 .674 .743 .796 .857 .923 .003 .003 .002 .002 .001
0.75 −.60 .33 .794 .845 .885 .929 .979 .003 .003 .003 .002 .001
1.00 −.71 −.22 .838 .878 .910 .948 .989 .003 .004 .003 .003 .002
1.25 −.78 −.63 .857 .891 .920 .953 .989 .003 .005 .005 .005 .002
1.50 −.83 −.81 .870 .899 .927 .955 .986 .004 .005 .007 .005 .001
1.75 −.87 −.89 .877 .904 .929 .953 .983 .005 .007 .008 .004 .001
2.00 −.89 −.93 .881 .906 .929 .951 .980 .005 .007 .008 .004 .001
2.25 −.91 −.95 .884 .909 .929 .950 .978 .005 .009 .008 .003 .001
2.50 −.93 −.96 .887 .910 .928 .948 .975 .006 .009 .008 .003 .001
2.75 −.94 −.97 .888 .910 .928 .946 .973 .006 .009 .008 .003 .001
3.00 −.95 −.98 .890 .911 .927 .945 .971 .006 .010 .008 .002 .001
3.25 −.96 −.98 .892 .911 .925 .944 .969 .007 .010 .007 .002 .000
3.50 −.96 −.99 .893 .912 .925 .943 .968 .007 .010 .007 .002 .001
3.75 −.97 −.99 .893 .912 .924 .942 .967 .007 .010 .006 .002 .000
4.00 −.97 −.99 .894 .912 .923 .942 .966 .008 .010 .006 .002 .000
5.00 −.98 −.99 .896 .910 .921 .939 .962 .009 .009 .005 .002 .001
7.50 −.99 −1.00 .899 .908 .918 .934 .957 .009 .008 .004 .002 .000

10.00 −1.00 −1.00 .900 .907 .916 .932 .954 .011 .008 .004 .002 .000
50.00 −1.00 −1.00 .901 .903 .912 .926 .948 .010 .006 .003 .002 .001

100.00 −1.00 −1.00 .901 .903 .911 .925 .947 .011 .006 .003 .002 .001
1000.00 −1.00 −1.00 .901 .903 .910 .925 .946 .011 .006 .003 .001 .000

10000.00 −1.00 −1.00 .901 .903 .910 .924 .946 .011 .006 .003 .001 .000



TABLE SM-V(d). Average (over λ) Power Differences for λ ∈ {2.5, 5.0, ..., 90.0} between the WAP2 and CLR Tests
for k = 20

β0
ρuv,0 WAP2 WAP2–CLR

ρuv = 0 .9 ρuv = 0 .3 .5 .7 .9 ρuv = 0 .3 .5 .7 .9
−10000.00 1.00 1.00 .862 .865 .878 .901 .934 .013 .008 .004 .001 .000
−1000.00 1.00 1.00 .862 .865 .878 .900 .934 .013 .008 .004 .001 .000
−100.00 1.00 1.00 .862 .864 .877 .900 .933 .013 .007 .003 .002 .000
−50.00 1.00 1.00 .862 .864 .876 .899 .932 .013 .007 .003 .002 .000
−10.00 1.00 1.00 .860 .860 .870 .892 .923 .012 .007 .002 .002 .001
−7.50 .99 1.00 .859 .858 .867 .889 .919 .012 .007 .002 .002 .000
−5.00 .98 1.00 .856 .853 .862 .881 .911 .010 .006 .003 .001 .000
−4.00 .97 1.00 .854 .849 .858 .876 .905 .009 .005 .003 .002 .000
−3.75 .97 1.00 .853 .847 .856 .875 .902 .009 .005 .003 .003 -.000
−3.50 .96 1.00 .852 .845 .854 .872 .900 .009 .004 .003 .003 .000
−3.25 .96 .99 .851 .843 .852 .869 .897 .009 .004 .003 .002 -.000
−3.00 .95 .99 .849 .841 .849 .866 .893 .008 .004 .003 .002 .000
−2.75 .94 .99 .847 .839 .846 .862 .889 .008 .005 .003 .001 -.000
−2.50 .93 .99 .845 .836 .842 .857 .884 .007 .004 .003 .002 .000
−2.25 .91 .99 .842 .832 .837 .851 .877 .006 .004 .002 .002 .000
−2.00 .89 .99 .838 .826 .830 .843 .869 .006 .004 .003 .002 .000
−1.75 .87 .99 .833 .818 .820 .832 .857 .005 .004 .003 .002 .000
−1.50 .83 .98 .825 .807 .806 .817 .841 .005 .005 .003 .002 .000
−1.25 .78 .98 .811 .789 .787 .794 .816 .005 .004 .004 .002 .001
−1.00 .71 .97 .787 .760 .752 .757 .776 .004 .004 .003 .001 .001
−0.75 .60 .97 .739 .701 .688 .688 .704 .004 .002 .002 .001 .000
−0.50 .45 .95 .615 .567 .549 .543 .556 .002 .002 .001 .001 .001
−0.25 .24 .94 .286 .263 .258 .257 .263 .001 .001 .002 .001 .000

0.25 −.24 .83 .286 .328 .367 .428 .512 .002 .003 .001 .001 .001
0.50 −.45 .68 .617 .692 .757 .829 .912 .004 .003 .003 .002 .000
0.75 −.60 .33 .743 .800 .849 .906 .971 .004 .004 .003 .003 .001
1.00 −.71 −.22 .790 .837 .877 .927 .983 .004 .005 .004 .003 .002
1.25 −.78 −.63 .812 .853 .889 .936 .983 .004 .005 .005 .007 .002
1.50 −.83 −.81 .824 .861 .897 .936 .980 .004 .006 .008 .007 .001
1.75 −.87 −.89 .832 .867 .900 .934 .976 .006 .007 .010 .006 .001
2.00 −.89 −.93 .838 .870 .900 .931 .972 .006 .009 .010 .004 .001
2.25 −.91 −.95 .842 .872 .900 .930 .969 .007 .010 .010 .004 .001
2.50 −.93 −.96 .845 .873 .899 .927 .967 .008 .011 .010 .003 .001
2.75 −.94 −.97 .848 .874 .897 .925 .965 .008 .011 .009 .002 .001
3.00 −.95 −.98 .849 .875 .896 .924 .963 .008 .011 .008 .002 .001
3.25 −.96 −.98 .851 .875 .895 .922 .961 .009 .012 .008 .002 .000
3.50 −.96 −.99 .852 .875 .894 .921 .960 .009 .012 .007 .002 .001
3.75 −.97 −.99 .853 .875 .893 .920 .958 .009 .012 .007 .002 .001
4.00 −.97 −.99 .854 .875 .893 .919 .957 .009 .012 .007 .002 .001
5.00 −.98 −.99 .857 .874 .890 .916 .954 .010 .012 .006 .002 .001
7.50 −.99 −1.00 .859 .872 .887 .911 .948 .012 .010 .005 .002 .001

10.00 −1.00 −1.00 .860 .870 .885 .909 .945 .012 .010 .005 .002 .001
50.00 −1.00 −1.00 .862 .866 .879 .902 .936 .013 .008 .004 .002 .001

100.00 −1.00 −1.00 .862 .865 .879 .901 .935 .013 .008 .004 .001 .000
1000.00 −1.00 −1.00 .862 .865 .878 .901 .934 .013 .008 .004 .001 .000

10000.00 −1.00 −1.00 .862 .865 .878 .901 .934 .013 .008 .004 .001 .000



TABLE SM-V(e). Average (over λ) Power Differences for λ ∈ {2.5, 5.0, ..., 90.0} between the WAP2 and CLR Tests
for k = 40

β0
ρuv,0 WAP2 WAP2–CLR

ρuv = 0 .9 ρuv = 0 .3 .5 .7 .9 ρuv = 0 .3 .5 .7 .9
−10000.00 1.00 1.00 .817 .819 .835 .869 .919 .024 .013 .006 .004 .001
−1000.00 1.00 1.00 .817 .819 .835 .869 .919 .023 .013 .006 .004 .001
−100.00 1.00 1.00 .817 .818 .834 .867 .917 .023 .013 .006 .004 .001
−50.00 1.00 1.00 .817 .817 .833 .867 .916 .023 .012 .005 .004 .001
−10.00 1.00 1.00 .814 .810 .826 .858 .905 .022 .010 .005 .003 .000
−7.50 .99 1.00 .812 .807 .823 .853 .901 .020 .010 .005 .003 .001
−5.00 .98 1.00 .808 .802 .816 .845 .892 .018 .009 .005 .003 .000
−4.00 .97 1.00 .804 .797 .810 .838 .884 .016 .008 .004 .003 .000
−3.75 .97 1.00 .802 .796 .808 .836 .882 .015 .008 .004 .004 .000
−3.50 .96 1.00 .801 .794 .806 .834 .879 .014 .008 .004 .003 -.000
−3.25 .96 .99 .799 .792 .803 .831 .876 .013 .008 .004 .003 .000
−3.00 .95 .99 .797 .790 .800 .828 .872 .012 .008 .004 .004 .000
−2.75 .94 .99 .795 .786 .796 .823 .867 .012 .007 .004 .003 .001
−2.50 .93 .99 .792 .783 .792 .817 .861 .011 .007 .005 .002 .001
−2.25 .91 .99 .788 .777 .786 .811 .854 .011 .006 .004 .003 .000
−2.00 .89 .99 .783 .772 .778 .802 .846 .009 .007 .005 .004 .001
−1.75 .87 .99 .777 .761 .767 .790 .833 .009 .006 .004 .003 -.000
−1.50 .83 .98 .768 .749 .754 .773 .816 .008 .006 .004 .003 .001
−1.25 .78 .98 .752 .730 .730 .750 .791 .007 .006 .004 .003 .000
−1.00 .71 .97 .727 .698 .694 .709 .751 .007 .007 .004 .003 -.000
−0.75 .60 .97 .672 .633 .624 .632 .675 .006 .005 .004 .001 -.000
−0.50 .45 .95 .536 .490 .480 .489 .524 .004 .004 .002 .001 -.002
−0.25 .24 .94 .233 .217 .215 .221 .242 .001 .001 -.000 -.001 -.002

0.25 −.24 .83 .237 .275 .318 .383 .491 .001 .000 .000 -.002 -.002
0.50 −.45 .68 .539 .621 .697 .788 .892 .004 .004 .004 .003 .001
0.75 −.60 .33 .672 .741 .804 .876 .958 .004 .005 .005 .004 .001
1.00 −.71 −.22 .727 .784 .837 .901 .974 .005 .006 .006 .006 .003
1.25 −.78 −.63 .754 .803 .853 .911 .974 .006 .008 .010 .009 .004
1.50 −.83 −.81 .769 .815 .861 .913 .969 .007 .012 .014 .011 .002
1.75 −.87 −.89 .779 .824 .865 .910 .965 .008 .016 .016 .008 .001
2.00 −.89 −.93 .785 .828 .866 .905 .961 .009 .017 .016 .006 .001
2.25 −.91 −.95 .790 .831 .866 .903 .958 .010 .019 .017 .006 .001
2.50 −.93 −.96 .794 .833 .864 .901 .955 .011 .020 .016 .005 .001
2.75 −.94 −.97 .797 .834 .862 .898 .953 .012 .020 .015 .004 .001
3.00 −.95 −.98 .799 .834 .861 .896 .950 .013 .021 .014 .004 .001
3.25 −.96 −.98 .801 .834 .859 .894 .949 .014 .021 .013 .004 .001
3.50 −.96 −.99 .803 .835 .858 .893 .947 .015 .021 .013 .004 .001
3.75 −.97 −.99 .805 .834 .857 .892 .946 .016 .021 .013 .004 .001
4.00 −.97 −.99 .806 .834 .855 .890 .944 .016 .021 .012 .004 .001
5.00 −.98 −.99 .810 .831 .852 .887 .940 .018 .019 .011 .004 .001
7.50 −.99 −1.00 .814 .828 .847 .881 .933 .021 .017 .009 .004 .001

10.00 −1.00 −1.00 .815 .826 .844 .878 .929 .022 .016 .009 .004 .002
50.00 −1.00 −1.00 .817 .820 .837 .871 .921 .023 .014 .007 .004 .001

100.00 −1.00 −1.00 .817 .820 .836 .870 .920 .023 .014 .007 .005 .001
1000.00 −1.00 −1.00 .817 .819 .836 .869 .919 .024 .013 .006 .004 .001

10000.00 −1.00 −1.00 .817 .819 .835 .869 .919 .024 .013 .006 .004 .001



TABLE SM-VI(a). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2n and CLR
for ρuv = .0 and n = 100, 500 and 1000

k λ CLR CLR2100–CLR SD CLR2500–CLR SD CLR21000–CLR SD
2 1 .868 -.0011 .0001 -.0013 .0001 -.0014 .0000
2 3 .687 -.0021 .0002 -.0025 .0001 -.0025 .0001
2 5 .508 -.0019 .0002 -.0025 .0001 -.0028 .0001
2 7 .358 -.0009 .0002 -.0023 .0001 -.0025 .0001
2 10 .195 -.0011 .0002 -.0017 .0001 -.0019 .0001
2 15 .063 .0002 .0002 -.0005 .0001 -.0006 .0001
2 20 .017 .0001 .0001 -.0002 .0000 -.0002 .0000
5 1 .905 .0002 .0002 .0001 .0001 -.0001 .0001
5 3 .789 .0017 .0003 .0005 .0001 .0002 .0001
5 5 .659 .0028 .0003 .0008 .0002 .0005 .0001
5 7 .529 .0031 .0004 .0005 .0002 .0003 .0001
5 10 .350 .0041 .0003 .0009 .0002 .0004 .0001
5 12 .257 .0043 .0003 .0011 .0001 .0007 .0001
5 15 .156 .0029 .0003 .0007 .0001 .0004 .0001
5 20 .059 .0020 .0002 .0005 .0001 .0002 .0001
5 1 .905 .0002 .0002 .0001 .0001 -.0001 .0001
5 3 .789 .0017 .0003 .0005 .0001 .0002 .0001
5 5 .659 .0028 .0003 .0008 .0002 .0005 .0001
5 7 .529 .0031 .0004 .0005 .0002 .0003 .0001
5 10 .350 .0041 .0003 .0009 .0002 .0004 .0001
5 12 .257 .0043 .0003 .0011 .0001 .0007 .0001
5 15 .156 .0029 .0003 .0007 .0001 .0004 .0001
5 20 .059 .0020 .0002 .0005 .0001 .0002 .0001
5 25 .021 .0011 .0002 .0001 .0001 .0000 .0000
10 1 .920 .0006 .0003 .0003 .0001 .0002 .0001
10 5 .751 .0042 .0004 .0009 .0002 .0006 .0001
10 10 .496 .0068 .0005 .0011 .0002 .0005 .0001
10 15 .279 .0077 .0004 .0016 .0002 .0007 .0002
10 17 .212 .0067 .0004 .0013 .0002 .0006 .0002
10 20 .135 .0065 .0004 .0013 .0002 .0006 .0001
10 25 .060 .0039 .0003 .0008 .0001 .0003 .0001
10 30 .024 .0020 .0002 .0003 .0001 .0001 .0000
20 1 .932 .0009 .0003 .0004 .0002 .0003 .0001
20 5 .824 .0044 .0005 .0007 .0002 .0006 .0001
20 10 .632 .0099 .0006 .0023 .0003 .0014 .0002
20 15 .436 .0126 .0006 .0030 .0003 .0020 .0002
20 20 .268 .0141 .0006 .0031 .0003 .0015 .0002
20 25 .149 .0107 .0005 .0024 .0002 .0012 .0001
20 30 .077 .0067 .0004 .0014 .0002 .0006 .0001
20 40 .017 .0025 .0002 .0005 .0001 .0003 .0001
40 1 .938 .0011 .0004 .0004 .0002 .0003 .0001
40 5 .872 .0057 .0005 .0010 .0002 .0007 .0002
40 10 .750 .0125 .0006 .0027 .0003 .0017 .0002
40 15 .599 .0201 .0007 .0033 .0003 .0021 .0002
40 20 .443 .0235 .0008 .0047 .0003 .0028 .0002
40 30 .198 .0194 .0006 .0039 .0003 .0021 .0002
40 40 .068 .0113 .0005 .0020 .0002 .0012 .0002
40 60 .005 .0013 .0002 .0002 .0001 .0001 .0001



TABLE SM-VI(b). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2n and CLR
for ρuv = .3 and n = 100, 500 and 1000

k λ CLR CLR2100–CLR SD CLR2500–CLR SD CLR21000–CLR SD
2 1 .868 -.0015 .0002 -.0016 .0001 -.0017 .0000
2 3 .684 -.0023 .0002 -.0026 .0001 -.0026 .0001
2 5 .501 -.0024 .0002 -.0030 .0001 -.0029 .0001
2 7 .347 -.0016 .0002 -.0025 .0001 -.0027 .0001
2 10 .184 -.0004 .0002 -.0014 .0001 -.0015 .0001
2 15 .056 -.0001 .0001 -.0006 .0001 -.0006 .0001
2 20 .015 -.0001 .0001 -.0002 .0000 -.0002 .0000
5 1 .905 .0001 .0002 .0001 .0001 .0001 .0001
5 3 .785 .0010 .0003 .0003 .0001 .0002 .0001
5 5 .647 .0019 .0003 .0007 .0002 .0003 .0001
5 7 .510 .0028 .0003 .0007 .0002 .0003 .0001
5 10 .330 .0034 .0004 .0007 .0001 .0003 .0001
5 12 .235 .0029 .0003 .0006 .0002 .0001 .0001
5 15 .137 .0020 .0003 .0001 .0001 .0000 .0001
5 20 .048 .0015 .0002 .0001 .0001 .0000 .0001
5 25 .016 .0007 .0002 .0002 .0001 .0001 .0000
10 1 .920 .0000 .0003 .0001 .0001 .0000 .0001
10 5 .744 .0030 .0004 .0004 .0002 .0001 .0001
10 10 .472 .0055 .0005 .0005 .0002 -.0000 .0001
10 15 .248 .0052 .0004 .0008 .0002 .0003 .0001
10 17 .184 .0049 .0004 .0006 .0002 .0000 .0001
10 20 .114 .0038 .0003 .0007 .0001 .0002 .0001
10 25 .046 .0018 .0002 .0003 .0001 .0002 .0001
10 30 .017 .0013 .0002 .0002 .0001 .0002 .0001
20 1 .931 .0007 .0004 -.0000 .0001 .0001 .0001
20 5 .819 .0032 .0005 .0013 .0002 .0008 .0001
20 10 .615 .0080 .0006 .0017 .0002 .0012 .0002
20 15 .406 .0104 .0006 .0019 .0003 .0010 .0002
20 20 .236 .0100 .0005 .0017 .0002 .0007 .0002
20 25 .122 .0075 .0004 .0018 .0002 .0010 .0001
20 30 .057 .0050 .0003 .0010 .0002 .0007 .0001
20 40 .011 .0015 .0002 .0004 .0001 .0001 .0001
40 1 .937 .0009 .0004 .0002 .0002 .0003 .0001
40 5 .869 .0046 .0005 .0014 .0002 .0009 .0002
40 10 .737 .0114 .0007 .0027 .0003 .0016 .0002
40 15 .572 .0164 .0007 .0033 .0003 .0019 .0002
40 20 .409 .0189 .0007 .0036 .0003 .0019 .0002
40 30 .164 .0147 .0006 .0023 .0003 .0011 .0002
40 40 .048 .0079 .0004 .0015 .0002 .0008 .0001
40 60 .002 .0010 .0001 .0002 .0001 .0001 .0000



TABLE SM-VI(c). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2n and CLR
for ρuv = .5 and n = 100, 500 and 1000

k λ CLR CLR2100–CLR SD CLR2500–CLR SD CLR21000–CLR SD
2 1 .867 -.0019 .0001 -.0018 .0001 -.0018 .0001
2 3 .675 -.0025 .0002 -.0027 .0001 -.0028 .0001
2 5 .486 -.0024 .0002 -.0028 .0001 -.0029 .0001
2 7 .327 -.0013 .0002 -.0020 .0001 -.0021 .0001
2 10 .166 -.0012 .0002 -.0018 .0001 -.0018 .0001
2 15 .046 -.0004 .0001 -.0007 .0001 -.0007 .0000
2 20 .012 -.0001 .0001 -.0001 .0000 -.0002 .0000
5 1 .904 .0003 .0002 .0000 .0001 .0001 .0001
5 3 .776 .0010 .0003 -.0000 .0001 -.0001 .0001
5 5 .624 .0010 .0004 .0001 .0002 -.0000 .0001
5 7 .476 .0013 .0004 .0000 .0002 -.0000 .0001
5 10 .289 .0008 .0004 -.0000 .0001 -.0001 .0001
5 12 .196 .0009 .0003 .0000 .0001 -.0001 .0001
5 15 .104 .0012 .0003 -.0002 .0001 -.0003 .0001
5 20 .032 .0008 .0002 .0001 .0001 -.0001 .0001
5 25 .009 .0003 .0001 .0000 .0000 -.0000 .0000
10 1 .919 .0004 .0003 .0000 .0001 -.0001 .0001
10 5 .725 .0008 .0004 .0001 .0002 .0001 .0001
10 10 .423 .0026 .0005 .0001 .0002 -.0002 .0001
10 15 .194 .0030 .0004 .0001 .0002 -.0001 .0001
10 17 .136 .0026 .0004 .0002 .0002 -.0001 .0001
10 20 .077 .0022 .0003 .0004 .0001 .0001 .0001
10 25 .026 .0012 .0002 .0001 .0001 -.0000 .0001
10 30 .008 .0007 .0001 .0003 .0001 .0000 .0000
20 1 .931 .0006 .0004 .0003 .0002 .0003 .0001
20 5 .804 .0033 .0005 .0011 .0002 .0009 .0002
20 10 .571 .0055 .0006 .0012 .0003 .0010 .0002
20 15 .340 .0065 .0006 .0017 .0003 .0011 .0002
20 20 .172 .0059 .0005 .0013 .0002 .0005 .0001
20 25 .076 .0046 .0004 .0007 .0002 .0004 .0001
20 30 .030 .0027 .0003 .0005 .0001 .0003 .0001
20 40 .004 .0005 .0001 .0001 .0001 .0001 .0000
40 1 .937 .0007 .0004 -.0001 .0002 .0001 .0001
40 5 .862 .0032 .0005 .0009 .0002 .0005 .0002
40 10 .706 .0059 .0007 .0012 .0003 .0008 .0002
40 15 .513 .0094 .0007 .0013 .0003 .0011 .0002
40 20 .335 .0099 .0007 .0021 .0003 .0013 .0002
40 30 .103 .0085 .0005 .0011 .0002 .0007 .0002
40 40 .022 .0036 .0003 .0006 .0001 .0002 .0001
40 60 .001 .0003 .0001 .0000 .0000 .0000 .0000



TABLE SM-VI(d). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2n and CLR
for ρuv = .7 and n = 100, 500 and 1000

k λ CLR CLR2100–CLR SD CLR2500–CLR SD CLR21000–CLR SD
2 1 .864 -.0017 .0002 -.0018 .0001 -.0018 .0000
2 3 .658 -.0026 .0003 -.0028 .0001 -.0028 .0001
2 5 .456 -.0026 .0003 -.0029 .0001 -.0030 .0001
2 7 .295 -.0026 .0002 -.0025 .0001 -.0025 .0001
2 10 .140 -.0009 .0002 -.0012 .0001 -.0013 .0001
2 15 .035 -.0002 .0001 -.0004 .0000 -.0004 .0000
2 20 .009 -.0000 .0001 -.0000 .0000 -.0001 .0000
5 1 .901 -.0000 .0002 -.0001 .0001 .0000 .0001
5 3 .753 .0001 .0003 .0000 .0001 -.0003 .0001
5 5 .575 -.0010 .0004 -.0007 .0002 -.0006 .0001
5 7 .410 -.0011 .0004 -.0015 .0002 -.0014 .0001
5 10 .219 .0003 .0003 -.0006 .0002 -.0009 .0001
5 12 .137 -.0001 .0003 -.0006 .0001 -.0008 .0001
5 15 .064 .0005 .0002 -.0001 .0001 -.0002 .0001
5 20 .016 .0003 .0002 .0000 .0001 -.0001 .0001
5 25 .004 .0001 .0001 .0000 .0000 -.0000 .0000
10 1 .918 -.0002 .0003 .0000 .0001 -.0001 .0001
10 5 .676 -.0008 .0005 -.0006 .0002 -.0008 .0002
10 10 .322 .0004 .0005 -.0006 .0002 -.0008 .0002
10 15 .115 .0010 .0004 -.0005 .0002 -.0005 .0001
10 17 .073 .0007 .0003 -.0002 .0001 -.0003 .0001
10 20 .034 .0009 .0002 .0000 .0001 -.0000 .0001
10 25 .009 .0004 .0001 -.0001 .0001 -.0001 .0001
10 30 .002 .0002 .0001 .0000 .0000 .0000 .0000
20 1 .930 -.0005 .0004 .0001 .0001 .0001 .0001
20 5 .771 .0001 .0005 -.0002 .0002 -.0002 .0002
20 10 .470 .0025 .0006 .0002 .0003 -.0001 .0002
20 15 .220 .0013 .0005 -.0004 .0002 -.0004 .0002
20 20 .083 .0027 .0004 .0004 .0002 .0002 .0001
20 25 .027 .0019 .0003 .0002 .0001 .0001 .0001
20 30 .008 .0009 .0002 .0001 .0001 .0000 .0000
20 40 .001 .0001 .0001 .0000 .0000 .0000 .0000
40 1 .936 .0008 .0004 .0004 .0002 .0003 .0001
40 5 .841 -.0005 .0006 .0002 .0003 .0000 .0002
40 10 .624 -.0003 .0008 -.0006 .0003 -.0002 .0002
40 15 .382 .0042 .0008 .0003 .0004 -.0001 .0003
40 20 .197 .0052 .0006 .0005 .0003 .0000 .0002
40 30 .033 .0036 .0003 .0005 .0001 .0001 .0001
40 40 .004 .0009 .0001 .0001 .0001 .0001 .0001
40 60 .000 .0000 .0000 .0000 .0000 .0000 .0000



TABLE SM-VI(e). Differences in Probabilities of Infinite-Length Confidence Intervals between CLR2n and CLR
for ρuv = .9 and n = 100, 500 and 1000

k λ CLR CLR2100–CLR SD CLR2500–CLR SD CLR21000–CLR SD
2 1 .854 -.0023 .0002 -.0020 .0001 -.0020 .0001
2 3 .617 -.0026 .0003 -.0028 .0001 -.0027 .0001
2 5 .410 -.0029 .0003 -.0027 .0001 -.0025 .0001
2 7 .258 -.0019 .0003 -.0019 .0001 -.0020 .0001
2 10 .119 -.0011 .0002 -.0011 .0001 -.0011 .0000
2 15 .029 -.0003 .0001 -.0004 .0000 -.0004 .0000
2 20 .006 -.0001 .0000 -.0001 .0000 -.0001 .0000
5 1 .887 -.0006 .0003 -.0004 .0001 -.0003 .0001
5 3 .675 -.0026 .0004 -.0018 .0002 -.0016 .0001
5 5 .462 -.0026 .0004 -.0018 .0002 -.0018 .0001
5 7 .297 -.0022 .0004 -.0020 .0002 -.0021 .0001
5 10 .140 -.0002 .0003 -.0011 .0001 -.0011 .0001
5 12 .083 .0003 .0003 -.0005 .0001 -.0007 .0001
5 15 .036 -.0001 .0002 -.0003 .0001 -.0004 .0001
5 20 .008 .0000 .0001 -.0000 .0000 -.0001 .0000
5 25 .002 .0000 .0000 -.0000 .0000 -.0000 .0000
10 1 .907 -.0008 .0003 -.0002 .0001 -.0002 .0001
10 5 .533 -.0035 .0005 -.0026 .0002 -.0024 .0002
10 10 .176 -.0004 .0004 -.0014 .0002 -.0016 .0001
10 15 .047 .0006 .0002 -.0003 .0001 -.0004 .0001
10 17 .026 .0001 .0002 -.0002 .0001 -.0003 .0001
10 20 .011 .0002 .0002 -.0001 .0001 -.0002 .0000
10 25 .002 -.0000 .0001 -.0000 .0000 -.0000 .0000
10 30 .000 .0000 .0000 -.0000 .0000 -.0000 .0000
20 1 .923 -.0005 .0004 -.0001 .0002 -.0001 .0001
20 5 .625 -.0016 .0006 -.0012 .0003 -.0009 .0002
20 10 .243 .0019 .0005 -.0010 .0002 -.0012 .0002
20 15 .072 .0024 .0004 -.0006 .0002 -.0005 .0001
20 20 .019 .0006 .0002 -.0002 .0001 -.0003 .0001
20 25 .004 .0004 .0001 -.0000 .0000 -.0001 .0000
20 30 .001 .0001 .0001 .0000 .0000 .0000 .0000
20 40 .000 .0000 .0000 .0000 .0000 .0000 .0000
40 1 .932 .0004 .0005 .0004 .0002 .0002 .0001
40 5 .727 -.0035 .0007 -.0012 .0003 -.0011 .0002
40 10 .358 .0019 .0007 -.0013 .0003 -.0016 .0002
40 15 .130 .0048 .0006 .0000 .0002 -.0004 .0002
40 20 .039 .0030 .0004 .0000 .0001 -.0000 .0001
40 30 .003 .0004 .0001 .0001 .0000 .0000 .0000
40 40 .000 .0000 .0000 .0000 .0000 .0000 .0000
40 60 .000 .0000 .0000 .0000 .0000 .0000 .0000



FIGURE SM-I(a). Power of the significance level .05 CLR, LM, and AR tests and the POIS2 power envelope for
fixed null value β0 = 0, varying true value β∗, k = 2, ρΩ = 0, and λ = 5, 20
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FIGURE SM-I(b). Power of the significance level .05 CLR, LM, and AR tests and the POIS2 power envelope for
fixed null value β0 = 0, varying true value β∗, k = 5, ρΩ = 0, and λ = 5, 20
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(i) λ = 5
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FIGURE SM-I(c). Power of the significance level .05 CLR, LM, and AR tests and the POIS2 power envelope for
fixed null value β0 = 0, varying true value β∗, k = 10, ρΩ = 0, and λ = 5, 20
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(i) λ = 5
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