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Abstract

In a model with endogenous regressors, heteroskedastic and autocorrelated (HAC) errors and
weak instruments, tests that depend on the data only through the Anderson-Rubin (AR) and
Lagrange Multiplier (LM) statistics ignore important information on the regression coefficients.
This is in contrast to the homoskedastic case, where these statistics, together with the rank
statistic, are one-to-one with the maximal invariant. The information loss with heteroskedastic
and/or autocorrelated errors can be so extreme that the LM and conditional quasi-likelihood
ratio (CQLR) tests have power close to size when it is trivial to distinguish the null from
the alternative hypothesis. The severe loss of power can occur if the Hermitian part of the
reduced-form covariance matrix has eigenvalues of opposite signs.

The conditional invariant likelihood (CIL) test proposed by Moreira and Ridder (2018) does
not suffer this power loss. On the contrary, when the CQLR and LM tests fail, the CIL test
can have power close to 1 under the alternative, even if its size is close to 0. This implies that
the total variation distance between the null and subsets of the alternative is large, so that it
is actually easy to distinguish between these hypotheses.

We also show that in the HAC-IV model, there are invariant statistics beyond the triad of
AR, LM and rank statistics, so that the latter are not maximal invariant in the HAC case. We
conclude that the popular LM and CQLR tests use data inefficiently if the equation errors are
HAC.

Keywords: Endogenous regressor, Instrumental variable, Score test, Invariant test, HAC errors
JEL classification: C14, C36



1 Introduction

In an instrumental variable (IV) regression with possibly weak instruments, the practitioner
currently has a choice of statistics for inference when equation errors are homoskedastic and
uncorrelated. In the just-identified case, the Anderson-Rubin statistic (Anderson and Rubin,
1949) is unbiased, and has at least as much power as any other unbiased test; see Moreira (2001,
2009). In the overidentified case, Andrews, Stock, and Sun (2018) suggest using the conditional
likelihood ratio (CLR) test of Moreira (2003), from among the other choices. Many others
have contributed to inference on the structural parameters that is robust to weak instruments,
among them Staiger and Stock (1997), Kleibergen (2002), Moreira (2009), Andrews, Moreira,
and Stock (2006), and Mikusheva (2010). Stock, Wright, and Yogo (2002), Dufour (2003), and
Andrews and Stock (2007) review weak-instrument robust inference.

Allowing for HAC errors in IV regression is important, because ignoring them results in
substantial biases in the inference. That omitted variables are potentially serially correlated
in time-series data is obvious. Newey and West (1987) and Andrews (1991) propose non-
parametric estimators of the variance matrix of the equation error. In cross-sectional and panel
data, HAC errors are also common. In panel data, the usual assumption is that equation errors
are correlated in the time-series, but not in the cross-sectional dimension. Under the random-
effects assumption, the model can be transformed into a model with homoskedastic and serially
uncorrelated errors. If the random-effects assumption is too restrictive, then the robust variance
matrix of the regression coefficients can be estimated, as in White (1980). This estimator makes
assumptions neither on the error correlation within units nor on the conditional variance of the
equation errors. Robust standard errors are routinely used in empirical research; see Angrist
and Pischke (2009) and Wooldridge (2001). Betrand, Duflo, and Mullainathan (2003) show that
in a dif-in-dif model, ignoring the autocorrelation of the equation errors leads to large biases
in the inference. If data is clustered, empirical researchers are keenly aware that standard
errors of regression coefficient estimators are underestimated, if both the equation errors and
the covariates are positively correlated; see Kloek (1981), Moulton (1986), and Cameron and
Miller (2015).

Which test is best for IV regression with heteroskedastic and autocorrelated (HAC) errors
is less obvious. In the just-identified case, the Anderson-Rubin (AR) test is still the best
choice. For the overidentified case, a number of tests have been proposed by Stock and Wright
(2000), Kleibergen (2005), Andrews and Guggenberger (2015), Moreira and Moreira (2015),
Andrews (2016), Andrews and Mikusheva (2016), and Moreira and Ridder (2018). Here we
show that not all tests suggested for the HAC case are created equal. In particular, we show
that tests that depend on the data only through the AR, score, and rank statistics do not use
all relevant information in the data, and therefore can have low power if the errors are HAC.
A preference for tests that depend on the data just through the AR, score, and rank statistics
is informed by the observation that these statistics are equivalent to the maximal invariant in
the homoskedastic and uncorrelated case. In a simulation study, we compare the power of tests
that are functions of the score, AR, and rank statistics –in particular the popular AR, LM, and
conditional quasi-likelihood ratio (CQLR) tests– to that of the conditional invariant likelihood
(CIL) test proposed by Moreira and Ridder (2018). The additional information used by the CIL
test derives from symmetries in the HAC-IV model that had not previously been exploited. In
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fact, with HAC errors, there seem to be no model symmetries, because linear transformations of
the data change the variance matrix of the errors, so that this variance matrix is not invariant.
A key insight of Moreira and Ridder (2018) is that the HAC-IV model has symmetries, if the
variance matrix is considered as given, but not fixed. Because the variance matrix is considered
to be part of both parameter and data spaces, there are symmetries in the HAC-IV model. By
construction, the CIL test is invariant to this transformation (as are the LM and AR statistics).
It maintains good power in many cases in which the LM and CQLR tests have power close to
the size of the test.

We demonstrate the information loss for statistics that depend on the data only through
the AR, LM, and rank statistics in two ways. First, we present simulations in which the CIL
test has power close to 1 even if its size is close to 0. Kraft (1955) derives a necessary and
sufficient condition for the existence of a test with minimal power over the alternative that
exceeds the size by some ε. This condition is that the total variation distance between the
convex combinations of the distributions under the null and (subsets of) under the alternative
is at least ε. Because for our hypotheses ε is near one, the distance between the hypotheses is
large. This means that it is easy to distinguish the null and alternative hypotheses. Since the
LM and CQLR tests have power close to the size, these tests perform poorly in an easy problem,
and therefore must omit relevant information regarding the regression coefficient. Second, we
show that in the HAC-IV model, there exist invariant statistics beyond the triad of the LM,
AR, and rank statistics. The LM and AR statistics are therefore not maximal invariant in
general, and do not use all relevant information.

Because the power function is a very smooth function of the parameters of the HAC-IV
model, the extreme power loss of the LM and CQLR tests extends to neighborhoods of the
low power DGP with power remaining near size, while it is still trivial to make inference on
the structural parameter. These problematic parameter regions are large in a topological sense,
having nonzero Lebesgue measure. Therefore the power loss is sufficiently extensive to dissuade
practitioners tof using the LM and CQLR tests, when errors are HAC. We show theoretically
that the severe loss of power of the LM and CQLR tests can occur if the Hermitian part
of the reduced-form covariance matrix has eigenvalues of opposite signs. In applications, the
convex hull of the spectrum of this Hermitian matrix containing the zero value. For example,
take the problem of making inference on the intertemporal elasticity of substitution (IES) with
weak instruments. Using the data by Yogo (2004), only two of the eleven countries have all
eigenvalues of the same sign.

The paper is organized as follows. In Section 2 we introduce the model and the test statistics.
In Section 3 we show the information loss of test statistics that depend on the data only through
the AR, score, and rank statistics. The asymptotic behavior of the score statistic for sequences
of the variance matrix is analyzed in Section 4. DGP for which, according to the asymptotic
analysis, the score test has low power are characterized in Section 5. Section 6 relates the loss
of power to the correlation matrix of the reduced-form and first-stage errors and shows that
power loss occurs in neighborhoods of the DGP delineated in Section 5. Section 7 concludes.
Appendix A discusses conditions under which power of the LM test is arbitrarily close to zero.
Appendix B contains proofs.
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2 Model and test statistics

We consider the instrumental variable (IV) regression model

y1 = y2β + u

y2 = Zπ + v2

with y1, y2 n× 1 vectors of observations on two endogenous variables, and Z an n×k matrix of
non-random instrumental variables. The n× 1 vectors u, v2 are the mean 0 structural equation
and first-stage errors. The variance and covariance matrices of these errors are unrestricted,
i.e., we allow for heteroskedastic and autocorrelated (HAC) errors. The errors have a normal
distribution. Our objective is to test the null hypothesis H0 : β = β0 against the alternative
H1 : β 6= β0 with π a k × 1 vector of nuisance parameters.

The reduced-form model for Y = [y1 y2] is

Y = Zπa′ + V (2.1)

with a = (β 1)′ and V = [v1 v2], v1 = u+ v2β.

Let P = [P1 : P2] be an n× n orthogonal matrix with P1 = Z (Z ′Z)−1/2. By orthogonality
of P , we have P ′2Z = 0. We pre-multiply (2.1) by P ′ and define R = P ′1Y . The statistic P ′2Y is
ancillary, so inference is based on the k × 2 statistic R. The induced model for R is given by

R = µa′ + Ṽ (2.2)

with µ = (Z ′Z)1/2 π and Ṽ = (Z ′Z)−1/2 Z ′V . For finite-sample results, we assume that the

vector vec(Ṽ ) has a normal distribution with variance matrix Σ, so that

vec(R) ∼ N(vec(µa′),Σ).

As usual, we can drop the normality assumption at the cost of asymptotic approximations.
It is convenient to define R0 = RB0, with B0 the non-singular 2× 2 matrix

B0 =

(
1 0
−β0 1

)
.

The induced model for R0 = [R1 : R2] is

vec(R0) ∼ N(vec(µa′∆),Σ0)

with a∆ = (∆, 1)′, ∆ = β−β0 and Σ0 = (B′0⊗ Ik)Σ(B0⊗ Ik). By construction, the first column
of R0 has mean 0 under the null and is a pivotal statistic.

The k × 1 statistics S and T are defined by the 1-1 transformation of R:

S =[(b′0 ⊗ Ik)Σ(b0 ⊗ Ik)]−1/2(b′0 ⊗ Ik)vec(R) and

T =[(a′0 ⊗ Ik)Σ−1(a0 ⊗ Ik)]−1/2(a′0 ⊗ Ik)Σ−1vec(R),

with a0 = (β0, 1)′, b0 = (1,−β0)′.
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Under joint normality of vec(R0), the statistics S, T are independent and have distributions

S ∼N(∆Cβ0µ, Ik)

T ∼N(Dβµ, Ik)

with Cβ0 = [(b′0 ⊗ Ik)Σ(b0 ⊗ Ik)]−1/2 and Dβ = [(a′0 ⊗ Ik)Σ−1(a0 ⊗ Ik)]−1/2(a′0 ⊗ Ik)Σ−1(a⊗ Ik).
Under the null, T is a complete sufficient statistic for µ. For this reason we consider conditional
tests given T = t.

The two-sided score test of β = β0 has test statistic

LM =

(
S ′Cβ0D

−1
β0
T
)2

T ′D−1
β0
C2
β0
D−1
β0
T
, (2.3)

while the one-sided score test has test statistic

LM1 =
S ′Cβ0D

−1
β0
T

(T ′D−1
β0
C2
β0
D−1
β0
T )1/2

. (2.4)

Other tests of β = β0 if the errors are HAC are the Anderson-Rubin (AR) test, the CQLR
test, and the general class of conditional linear combination tests (CLC), of which AR and
CQLR are special cases (Andrews (2016)). The corresponding test statistics are

AR =S ′S (2.5)

CQLR =
AR− T ′T +

√
(AR− T ′T )2 + 4LM · T ′T

2
(2.6)

CLC =m(T )(AR− LM) + (1−m(T )) · AR (2.7)

with 0 ≤ m(T ) ≤ 1.
Except for the AR test, the CLC statistics depend in a non-trivial way on the LM statistic.

Therefore if the LM test has low power in some regions of the parameter space, the power of
all CLC tests is affected. In Section 4, we show that we can find parameter values for which
the power of the LM test is arbitrarily close to size. Hence, the power of CLC tests will be
bounded by the AR test.

Moreira and Ridder (2018) propose a conditional invariant likelihood (CIL) test that is not
in the CLC class of tests. The test is an invariant test for the group g = (g1, g2) with g1 in the
group of k× k non-singular matrices Glk, and g2 in the group of 2× 2 lower triangular matrices
with a positive main diagonal G+

2 . As Moreira and Ridder (2018) argue, it is not obvious that
the IV regression model with HAC errors is invariant to g. In particular, the variance matrix
Σ changes with the transformation g, and this implies that the HAC-IV model is not invariant
with respect to g. The model is invariant to g if we consider the variance matrix as given, but
not fixed. To be precise, if we consider the variance matrix as both a parameter and as part of
the data, then it is obvious that transforming the data changes the variance matrix (data) such
that it is the variance matrix (parameter) of the transformed model. Therefore, if we consider
the variance matrix both as data and as a parameter, we can use invariance arguments in the
IV-model with HAC errors.
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For the just-identified case, the Anderson-Rubin test is uniformly most powerful test, among
unbiased (Moreira (2001, 2009) and Moreira and Moreira (2015)) or invariant (Andrews, Mor-
eira, and Stock (2006) and Moreira and Ridder (2018)) tests. For the over-identified case,
Moreira and Ridder (2018) derive an invariant test that maximizes the weighted average power
(WAP). The test statistic of their conditional invariant likelihood (CIL) test is

IL =

∫ ∞
−∞

e
vec(R0)′Σ−1

0 (a∆⊗Ik)((a′∆⊗Ik)Σ−1
0 (a∆⊗Ik))

−1
(a′∆⊗Ik)Σ−1

0 vec(R0)−T ′T
2 (2.8)

×
∣∣(a′∆ ⊗ Ik)Σ−1

0 (a∆ ⊗ Ik)
∣∣−1/2

.|∆|k−2d∆ .

The test statistic is an integrated likelihood with weights |∆|k−2 that make the test statistic
invariant to the group g given above.

3 Information loss

Kraft (1955) provides that a necessary and sufficient condition for the existence of a test with
a minimal power over the alternative that exceeds the size of the test by ε > 0. Specifically,
this happens when the total variation distance between (convex combinations of) distributions
under the null and under the alternative is at least ε. We use this result to argue that if there
exists a test with size close to 0 and minimum power close to 1, this implies that the total
variation distance between (convex combinations of) distributions under the null and under
the alternative is close to 1. This implies that the null and alternative hypotheses are so far
apart, that there exists a test with type I and type II errors close to 0. In Section 5, we show
that the score and CQLR tests have power close to size for certain DGP and a subset of the
alternative. The CIL test has power close to 1 for this subset, even if the size is close to 0, so
that the total variation distance between the null and alternative hypotheses is close to 1. As
a consequence, there exists for each null and alternatives, a test that can perfectly discriminate
between these distributions. Tests like the score test that have power much smaller than 1
under the alternative, clearly do not use all relevant information. As a result, the power loss is
not restricted to the DGP that we derive in Sections 4 and 6. Indeed, we adapt Theorem 5 of
Kraft (1955) to show a large collection of DGP in which the score test behaves as badly as in
our impossibility design, described in Section 6.

We also show the information loss by finding statistics that are invariant to the transforma-
tion g that we define in Section 2, and that are not a function of the AR and score statistics. If
errors are homoskedastic and serially uncorrelated, the maximal invariant consists of the statis-
tics S ′S, S ′T , and T ′T .1 There is a one-to-one relation between the one-sided score statistic
S ′T/(T ′T )1/2, the AR statistic S ′S, and the statistic T ′T on the one hand, and S ′S , S ′T , and
T ′T on the other. Since we condition on T , statistics that only depend on the data through AR
and score statistics use all relevant information. With HAC errors, the AR and score statistics

1See Andrews, Moreira, and Stock (2006) for a proof. However, they do not rule out the use of the reduced-
form variance itself as part of the maximal invariant. Moreira and Ridder (2018) eliminate the reduced-form
variance as part of the maximal invariant by finding the largest affine group of transformations that preserves
the testing problem.
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are no longer part of the maximal invariant that is (much) larger than these statistics. There-
fore, a test that depends on the data only through the score and AR statistics is expected to
have lower power. The power loss for a class of DGP is shown in Sections 4 and 6. The infor-
mation loss occurs if the error variance matrix Σ does not have a Kronecker-product structure,
i.e., if Σ 6= Ω⊗ Φ, where Ω is a symmetric 2× 2 matrix and Φ is a symmetric k × k matrix.

3.1 Test statistics and the total variation distance between the null
and alternative

Theorem 5 of Kraft (1955) connects the possibility of testing a null against an alternative
hypothesis to the distance between these hypotheses. Let φ(R) be a test of H0 against H1. The
distributions Q of R for the null hypothesis are in a set Q0. The distributions for the alternative
are in a set Q1. The size and power of the test are

sup
Q0∈Q0

EQ0(φ(R))

and
inf

Q1∈Q1

EQ1(φ(R)) .

We also define the convex hull co(Q0) of Q0 as the set of all discrete mixtures of distributions
in Q0. We define co(Q1) in the same way.

Kraft (1955) gives a necessary and sufficient condition for the existence of a test with power
that exceeds the size by ε > 0.

Theorem 1 (Kraft) For ε > 0 there exists a test φ with

inf
Q1∈Q1

EQ1(φ(R)) ≥ ε+ sup
Q0∈Q0

EQ0(φ(R))

if and only if for all Q0 ∈ co(Q0) and Q1 ∈ co(Q1),

d(Q0, Q1) ≥ ε .

The distance between two distributions is measured by the total variation (TV) distance

d(Q0, Q1) = sup
B∈B
|Q0(B)−Q1(B)|,

where B is the Borel sigma-algebra. Kraft’s theorem has been used to study so-called impossible
testing problems, for which the power of any test does not exceed the size of the test. Bertanha
and Moreira (2018) discuss such impossible testing problems, and give examples where inference
with power greater than size is impossible, because the null and alternative hypotheses are very
close.

For the testing problem that we consider, we use the fact that Kraft’s theorem gives a
necessary and sufficient condition for the existence of a test with power exceeding the size by
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ε. In Section 5, we show that the power of the CIL test is close to 1, even if the size of the
test is close to 0. By Kraft’s theorem, this implies that the total variation distance between
the (convex hull of) Q0 and Q1 is close to 1, which is the largest value that the total variation
distance can take. We will apply Theorem 5 of Kraft (1955) by taking Q0 as the null hypothesis
and Q1 as subsets of the alternative (because the closure of our alternative contains the null
β = β0, the TV distance is trivially zero).

Testing problems with a total variation distance between the null and the alternative equal
to one are easy. To give an example, consider distributions that are mixed discrete continuous,
so that they are absolutely continuous with respect to the sum of the Lebesgue and counting
measures. The support of the distributions is [0, 1]. Q0 is the set of discrete distributions
that assign positive probability to 0 and 1, and Q1 is the set of continuous distributions on
the unit interval. The test φ rejects the null if we observe a value that is equal to neither 0
nor 1. If the null is correct, we reject the null with probability Q0([0, 1] \ {0, 1}) = 0 for all
Q0 ∈ Q0. If the alternative is correct, we reject the null with probability Q1([0, 1] \ {0, 1}) = 1
for all Q1 ∈ Q1. Therefore, the type I and type II error probabilities of this test are 0. The
total variation distance between co(Q0) and co(Q1) is 1 if we take B = [0, 1] \ {0, 1} so that
Q0(B) = 0, Q1(B) = 1 for all Q0 ∈ co(Q0) and Q1 ∈ co(Q1) or if we take B = {0, 1} so that
Q0(B) = 1, Q1(B) = 0 for all Q ∈ co(Q0) and Q ∈ co(Q1).

Any reasonable test should have type I and type II error probabilities equal to 0, because the
total variation distance between the hypotheses is 1. Now consider the test that rejects the null
if the observed value is greater than .5. This test has a probability of false rejection of the null
equal to .5 and a probability of false rejection of the alternative also equal to .5. Therefore, the
probabilities of type I and type II errors are large, because the test ignores the information that,
under the null, the support is {0, 1}. By increasing the number of points in the support under
the null, we can create a test with arbitrary size and power over the alternative equal to size.
The test ignores the support information, and that loss of information causes its disappointing
performance.

If Q0 and Q1 are simple hypotheses, then an ideal test is easily found. Let the total variation
distance between Q0 and Q1 be one, and let B be such that Q1(B) = 1 and Q0(B) = 0. The
test that rejects the null if the observed value is in B has both type I and II error probabilities
equal to zero.

As shown in Section 5, the power of the CIL test is close to 1 for a subset of the alternative
even if the size is close to 0. We conclude from Kraft’s theorem that our testing problem is easy,
and that an (almost) ideal test exists. The LM and CQLR tests have power close to size in this
easy testing problem, because these tests ignore relevant information. The loss of information
occurs for all DGP, not just for the DGP in Section 6.

3.2 Invariant statistics in the HAC model that are not a function of
LM and AR statistics

As noted in the homoskedastic and not serially correlated case, there is a one-to-one relation
between the maximal invariant and the score, AR, and the T ′T statistics. Moreira and Ridder
(2018) also consider when Σ has a Kronecker product structure Σ = Ω0 ⊗ Φ with Ω and Φ
known, but not fixed. The group g = (g1, g2) is the same as in Section 2, i.e., g1 is in the group
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of k × k non-singular matrices Glk, and g2 is in the group of 2 × 2 lower triangular matrices
with a positive main diagonal G2. The group action/transformation of g1 in the sample space
is

g1 ◦ (R0,Ω0,Φ) = (g1R0,Ω0, g1Φg′1) (3.9)

and that of g2 is
g2 ◦ (R0,Ω0,Φ) = (R0g

′
2, g2Ω0g

′
2,Φ) . (3.10)

Note that g1 works transitively on Φ, i.e.,

g1Φg′1 = g1Φ̃g′1 ⇔ Φ = Φ̃

and g2 works transitively on Ω0. Therefore Ω0 and Φ are not part of the maximal invariant.
Indeed Moreira and Ridder (2018) show that the maximal invariant is S ′S, T ′T, (S ′T )2 which is
the same as that for the homoskedastic and not autocorrelated case, if we also require invariance
to changes of sign. Therefore, if the error variance has a Kronecker product structure, then all
relevant information is in the AR, LM and T ′T statistics.

We now show that in the case of HAC errors, there exist invariant statistics that do not
depend on the data only through the score, AR and T ′T statistics. If such invariant statistics
exist, then the AR and score test statistics are not part of the maximal invariant statistic, that
is much larger.

We want to find invariant statistics that are not a function of the score and AR statistics.
The statistics S and T depend on the data through (e′1⊗Ik)vec(R0) for S and (e′2⊗Ik)Σ−1

0 vec(R0)
for T (e1, e2 are the two-dimensional unit vectors ), and S and T also depend on Σ0, a statistic
under the known, but not fixed, variance assumption. We first consider the data transformation
on these statistics separately. The transformation applied to vec(R0) and Σ0 is g = g2⊗g1 with

g′2 =

(
g11 g12

0 g22

)
g
′−1
2 =

(
g−1

11 −g−1
11 g12g

−1
22

0 g−1
22

)
and g1 a non-singular K ×K matrix.

Therefore, if we denote the transformation of the statistic S by g◦S (and the same for other
statistics), then for S

g ◦ (e′1 ⊗ Ik)vec(R0) = (e′1 ⊗ Ik) (g2 ⊗ g1) vec (R0)

= (e′1g2 ⊗ g1) vec (R0)

= ((g11, 0)⊗ g1) vec (R0)

= g11g1 (e′1 ⊗ Ik) vec (R0)

and for T (both R0 and Σ0 are transformed)

g ◦ (e′2 ⊗ Ik) Σ−1
0 vec (R0) = (e′2 ⊗ Ik)

(
g′−1

2 ⊗ g′−1
1

)
Σ−1

0

(
g−1

2 ⊗ g−1
1

)
(g2 ⊗ g1) vec (R0)

=
(
e′2g
′−1
2 ⊗ g′−1

1

)
Σ−1

0 vec (R0)

=
((

0, g−1
22

)
⊗ g′−1

1

)
Σ−1

0 vec (R0)

= g−1
22 g

′−1
1 (e′2 ⊗ Ik) Σ−1

0 vec (R0) .
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The transformation of Σ0 is given by((
g11 0
g12 g22

)
⊗ g1

)
.

[
Σ11 Σ12

Σ21 Σ22

]
.

((
g11 g12

0 g22

)
⊗ g′1

)
= (I2 ⊗ g1)

[
g11Σ11 g11Σ12

g12Σ11 + g22Σ21 g12Σ12 + g22Σ22

]((
g11 g12

0 g22

)
⊗ g′1

)
= (I2 ⊗ g1)

[
g2

11Σ11 g11 (g12Σ11 + g22Σ12)
g11 (g12Σ11 + g22Σ21) g2

12Σ11 + g12g22 (Σ21 + Σ21) + g2
22Σ22

]
(I2 ⊗ g′1) .

The transformation of Σ−1
0 is the inverse of this matrix((

g−1
11 −g−1

11 g12g
−1
22

0 g−1
22

)
⊗ g′−1

1

)
.

[
Σ11 Σ12

Σ21 Σ22

]
.

((
g−1

11 0
−g−1

11 g12g
−1
22 g−1

22

)
⊗ g−1

1

)
=
(
I2 ⊗ g′−1

1

) [ g−1
11 Σ11 − g−1

11 g12g
−1
22 Σ21 g−1

11 Σ12 − g−1
11 g12g

−1
22 Σ22

g−1
22 Σ21 g−1

22 Σ22

]((
g−1

11 0
−g−1

11 g12g
−1
22 g−1

22

)
⊗ g−1

1

)
=
(
I2 ⊗ g′−1

1

) [ g−2
11

(
Σ11 − g12g

−1
22 (Σ12 + Σ21) + g2

12g
−2
22 Σ22

)
g−1

11 g
−1
22

(
Σ12 − g12g

−1
22 Σ22

)
g−1

11 g
−1
22

(
Σ21 − g12g

−1
22 Σ22

)
g−2

22 Σ22

] (
I2 ⊗ g−1

1

)
.

We use these results to find the transformation of the statistics

C−1
β0
S = (e′1 ⊗ Ik)vec(R0)

Dβ0T = [(a′0 ⊗ Ik)Σ−1
0 (a0 ⊗ Ik)]−1(a′0 ⊗ Ik)Σ−1

0 vec(R)

C−2
β0

= Σ11

that are

g ◦ C−1
β0
S = g11g1C

−1
β0
S (3.11)

g ◦Dβ0T = g−1
22 g

′−1
1 Dβ0 (3.12)

g ◦ C−2
β0

= g2
11g1C

−2
β0
g′1 . (3.13)

The statistic we consider is

F1 =
S ′C−1

β0
Dβ0T(

T ′Dβ0C
−2
β0
Dβ0T

)1/2
. (3.14)

We have

g ◦ F1 =
g11S

′C−1
β0
g′1g
−1
22 g

′−1
1 Dβ0(

g−1
22 T

′Dβ0g
−1
1 g2

11g1C
−2
β0
g′1g
−1
22 g

′−1
1 Dβ0

)1/2
= sign(g11/g22)F1

so that F 2
1 is indeed invariant.

There are many more invariant statistics. For instance, quadratic forms of

Fk+1 =
S ′C−1

β0

(
D2
β0
C−2
β0

)k
Dβ0T(

T ′Dβ0

(
C−2
β0
D2
β0

)k
C−2
β0

(
D2
β0
C−2
β0

)k
Dβ0T

)1/2
for k = 1, 2, . . . ,

are invariant and, in general, not functions of the score statistic.
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4 Asymptotic analysis of the score statistic

We analyze the large sample properties of the one-sided score statistic (2.4) under both strong
and weak instrument assumptions. Without loss of generality, we set β0 = 0, so that

S ∼ N(∆Σ
−1/2
11 µ, Ik) and T ∼ N

(
(Σ22)1/2(Ik −∆Σ21Σ−1

11 )µ, Ik
)
,

with C0 = Σ
−1/2
11 , D0 = (Σ22)1/2, and Σ22 = (Σ22 − Σ21Σ−1

11 Σ12)−1. Therefore,

LM1 =
S ′C0D

−1
0 T

(T ′D−1
0 C2

0D
−1
0 T )1/2

=
S ′Σ

−1/2
11 (Σ22)−1/2T

(T ′22)−1/2Σ−1
11 (Σ22)−1/2T )1/2

The normality of S and T implies that

S =∆Σ
−1/2
11 µ+ US and

T =(Σ22)1/2(Ik −∆Σ21Σ−1
11 )µ+ UT

with US and UT being independent random vectors with distribution N(0, Ik). Substitution in
LM1 gives

LM1 =
(∆Σ

−1/2
11 µ+ US)′Σ

−1/2
11 (Σ22)−1/2((Σ22)1/2(Ik −∆Σ21Σ−1

11 )µ+ UT )

(((Σ22)1/2(Ik −∆Σ21Σ−1
11 )µ+ UT )′22)−1/2Σ−1

11 (Σ22)−1/2((Σ22)1/2(Ik −∆Σ21Σ−1
11 )µ+ UT ))1/2

.

First, we consider strong IV assumptions. We assume

Z ′Z

n

p→ mZ

with mZ a constant k × k matrix. This holds if the rows of Z are an i.i.d. sample from a
population distribution, but also under other assumptions. The other strong IV assumption is
that ∆ = δ/

√
n with δ a constant scalar.

Under these assumptions, we have that

µ =
√
n

(
Z ′Z

n

)1/2

π =
√
n(mZ + op(1))π =

√
n(m+ op(1))

with m = (mZ)1/2 π. Therefore

∆Σ
−1/2
11 µ+ US =

δ√
n

Σ
−1/2
11

√
n(m+ op(1)) + US

= δΣ
−1/2
11 m+ US + op(1)

and

1√
n

[
(Ik −∆Σ21Σ−1

11 )µ+ UT
]

=

(
Ik −

δ√
n

Σ21Σ−1
11

)
(m+ op(1)) +

UT√
n

= m+ op(1) .

10



Hence if we divide numerator and denominator by
√
n we obtain

LM1 =
[δΣ

−1/2
11 m+ US + op(1)]′Σ

−1/2
11 [m+ op(1)](

[m+ op(1)]′Σ−1
11 [m+ op(1)]

)1/2

p→ (δΣ
−1/2
11 m+ US)′Σ

−1/2
11 m

(m′Σ−1
11 m)1/2

∼ N
(
δ
(
m′Σ−1

11 m
)1/2

, 1
)
.

This derivation is summarized in the following proposition.

Proposition 1 If Z′Z
n

p→ mZ and ∆ = δ/
√
n, then

LM1
d→ N

(
δ
(
m′Σ−1

11 m
)1/2

, 1
)
.

It follows that the two-sided LM test has non-centrality parameter δ2m′Σ−1
11 m, which is

also that of the AR test, that is UMPI if k = 1 but not if k > 1. The key observation from
Proposition 1 is that the mean of the LM1 statistic depends on δ if m′Σ−1

11 m > 0. We next
show that this is not necessarily true under weak IV assumptions.

Other authors have pointed out problems and solutions for the LM test under weak-IV
assumptions. Moreira (2001) shows that the noncentrality parameter for LM can be zero for a
particular alternative with homoskedastic errors, and proposes a switching test based on the AR
and LM tests. Andrews (2016) also notes problems with the LM test in the GMM context with
heteroskedasticity and autocorrelation, and recommends the use of conditional tests based on
linear combinations between the AR and LM statistics. The theory derived below gives more
definitive conclusions regarding the low power of the LM statistic, with implications for other
tests, including the CQLR test.

Under weak-IV assumptions ∆ and µ do not change with the sample size, so that the
numerator and denominator do not have probability limits if the sample size increases without
bounds. Instead, we consider a small-σ approximation analogous to Kadane (1971). Such an
approximation gives us the expected value of the ratio that defines the LM statistic as the ratio
of the expected values of the numerator and denominator. To be precise, we assume a variance
sequence such that

Σ
−1/2
11 (Σ22)−1/2 → 0 . (4.15)

We rewrite the LM1 statistic as

LM1 =
(∆Σ

−1/2
11 µ+ US)′((Σ

−1/2
11 (Ik −∆Σ21Σ−1

11 )µ+ Σ
−1/2
11 (Σ22)−1/2UT )

((Σ
−1/2
11 (Ik −∆Σ21Σ−1

11 )µ+ Σ
−1/2
11 (Σ22)−1/2UT )′(Σ

−1/2
11 (Ik −∆Σ21Σ−1

11 )µ+ Σ
−1/2
11 (Σ22)−1/2UT ))1/2

.

If (4.15) holds, then LM1 converges in probability to a normal random variable with mean

∆µ′Σ−1
11

(
Ik −∆Σ21Σ−1

11

)
µ(

µ′
(
Ik −∆Σ−1

11 Σ12

)
Σ−1

11

(
Ik −∆Σ21Σ−1

11

)
µ
)1/2

.

The numerator is of order ∆2 while the denominator is of order ∆, so that, in general, the
absolute mean increases without bounds if |∆| → ∞. However, if

µ′Σ−1
11 Σ21Σ−1

11 µ = 0, (4.16)
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then the order of the numerator is ∆, the same as that of the denominator. The mean is bounded
by an expression of µ and Σ that does not depend on ∆. This implies that if (4.16) holds, then
the power of the LM1 test is less dependent of ∆. In fact, as the following theorem states under
slightly stronger conditions, the convergence to a normal random variable is uniform in ∆ if
(4.16) holds. The mean is bounded from above by a function of µ and Σ that does not depend
on ∆.

Theorem 2 If (4.15) and (4.16) hold and in addition

Σ−1
11 (Σ22)−1/2 → 0 (4.17)

and for such variance sequences

µ′Σ−1
11 µ+ ∆2µ′Σ−1

11 Σ12Σ−1
11 Σ21Σ−1

11 µ > 0 (4.18)

then uniformly in ∆

LM1
p→ U ′SΣ

−1/2
11 (Ik −∆Σ21Σ−1

11 )µ+ ∆µ′Σ−1
11 µ(

µ′Σ−1
11 µ+ ∆2µ′Σ−1

11 Σ12Σ−1
11 Σ21Σ−1

11 µ
)1/2
∼ N

(
∆µ′Σ−1

11 µ(
µ′Σ−1

11 µ+ ∆2µ′Σ−1
11 Σ12Σ−1

11 Σ21Σ−1
11 µ
)1/2

, 1

)
.

(4.19)
For all ∆ the mean has upper bound

∆µ′Σ−1
11 µ(

µ′Σ−1
11 µ+ ∆2µ′Σ−1

11 Σ12Σ−1
11 Σ21Σ−1

11 µ
)1/2
≤ µ′Σ−1

11 µ(
µ′Σ−1

11 Σ12Σ−1
11 Σ21Σ−1

11 µ
)1/2

. (4.20)

5 Impossibility designs

If (4.16) holds, then the mean of the LM1 test is bounded by a function that depends on the
HAC variance Σ and the first stage parameter µ, but not on ∆. Therefore, the test is unable to
detect large deviations |∆| from the null hypothesis. Worse, if µ and Σ are such that the mean
is close to 0 for all ∆, then the power of the test is close to its size. In this section, we show
that there is a region of the parameter space of µ and Σ where this occurs. We call designs such
that both (4.15) and (4.16) hold as impossibility designs. We give an example of a set of such
designs in this section. In Section 6 we discuss the prevalence of these impossibility designs
that is related to properties of the covariance matrix of the reduced-form and first-stage errors.

Let Jk be the k × k matrix with the anti-diagonal equal to 1 and the other components
equal to 0. We have J2

k = Ik. The HAC variance matrix is the 2k × 2k matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (5.21)

with k × k submatrices

Σ11 = c11Ik, Σ12 = c12Jk, and Σ22 = c22Ik. (5.22)
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The constants c11, c12, and c22 are chosen so that the matrix Σ0 is positive definite. Each
one of the eigenvalues of Σ0,

ς1 =
c11 + c22 +

√
(c11 − c22)2 + 4.c2

12

2
and

ς2 =
c11 + c22 −

√
(c11 − c22)2 + 4.c2

12

2

appear with multiplicity k. As long as c11, c22 ≥ 0 and c11.c22 ≥ c2
12, the matrix Σ0 is semi-

positive definite.
Note that Jke1 = ek with e1, ek the first c.q. k-th unit vector. Therefore, if we set µ = λ1/2e1,

with λ some positive constant, we find that

µ′Σ−1
11 Σ21Σ−1

11 µ = λ
c12

c2
11

e′1Jke1 = λ
c12

c2
11

e′1ek = 0

so that (4.16) holds for this choice of µ and Σ. We also have

Σ22 =

(
c12Ik −

c2
12

c11

JkJk

)
=

c11

c11c22 − c2
12

Ik .

Now set c11 = 1 and c22 = c2
12 + c−3

12 . For this choice, the matrices in (4.15) and (4.17) in
Theorem 2 are

Σ−1
11

(
Σ22
)−1/2

= Σ
−1/2
11

(
Σ22
)−1/2

= c
−3/2
12 Ik

so that (4.15) and (4.17) hold if c12 →∞. Because the conditions of Theorem 2 hold, the upper
bound on the mean of the LM1 statistic is

µ′Σ−1
11 µ(

µ′Σ−1
11 Σ12Σ−1

11 Σ21Σ−1
11 µ
)1/2

=
λ
c11(

λ
c212

c311

)1/2
= c

1/2
11 λ

1/2c−1
12

so that if either c12 is large or λ is small, the mean of LM1 is close to 0 under the alternative
and the test has power equal to size.

If c12 → ∞ the HAC variance matrix Σ converges to a singular matrix. Singularity of the
variance matrix implies that a linear transformation of the S and T statistics has variance 0.
This should improve the power of any test that depends on the data through S and T . By
its structure, however, the power of the LM test is bounded, so that the LM test cannot take
advantage of this information.

Above, we identified regions of the parameter space where we expect the score test to have
low power, even power close to size. We confirm this suspicion in a simulation experiment.
Data are generated as in (2.2) with k = 10, i.e., we have 10 instruments. The normal errors
are HAC with a variance matrix as in (5.21) and (5.22). As the approximations in Theorem 2
are more accurate if c12 is large, we set c12 = 100. Further, c11 = 1, c22 = c2

12 + c−3
12 . We test

H0 : β = β0 = 0.
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Figure 1: Power curves AR, LM, CQLR, and CIL tests for model with HAC errors with
c12 = 100, c11 = 1 and c22 = c2

12 + c−3
12 ; varying instrument strength λ, α = .05.
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Impossible Design, k=10, c 12=100, c11=1, c22=c122+(c12)-3, 2=1,  = 0.05

In Figures 1 and 2 we report the power functions for the AR, CQLR, LM, and CIL tests for
levels of instrument strength λ ranging from .01 (very weak) to 1000 (borderline strong) and
for the 5% significance level.

For values of λ of 1000 or less, the power of the LM test is approximately equal to the
size of the test. The AR test does not have the same lack of power for the designs where the
LM test fails. However, the power of the AR test is known to deteriorate when the number of
instruments increases. All other tests in the class of CLC tests have power smaller than the AR
test. This is because they are conditional convolutions between the AR statistic and another
statistic that is approximately ancillary.

The CIL test proposed by Moreira and Ridder (2018) is not in the CLC class of tests, and
depends on the data not just through the AR and LM statistics. This test may therefore avoid
the loss of power of the LM and CQLR tests. This is confirmed in Figures 1 and 2. The CIL
test performs better than the LM and CQLR tests, and even improves on the AR test.

The flat power curves of the LM and CQLR tests are surprising. These tests are often applied
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Figure 2: Power curves AR, LM, CQLR, and CIL tests for models with HAC errors with
c12 = 100, c11 = 1 and c22 = c2

12 + c−3
12 ; varying instrument strength λ, α = .001.
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in nonlinear models and heteroskedastic and correlated errors, and their use is so common that
the citations number in the thousands.2 On the other hand, Moreira and Moreira (2015) report
power comparisons that show that the CIL, CLR and strongly unbiased (SU) tests perform
better than the LM and CQLR tests. One could perhaps argue that that we should not discard
these tests yet, because it is possible that there are regions in the parameter space where they
outperform the other tests. As we argue next, the problems with these tests are much more
fundamental.

Figure 2 shows even more clearly the information loss of the LM and CQLR tests. It turns
out we can nearly perfectly distinguish the null from alternatives far enough from the null.
To show this we choose a very small probability of a type I error, and we find regions of the
alternative where the probability of making a type II error is very small as well. Specifically,
we choose the significance level α = .001 and show that the power of the CIL test remains

2See Finlay and Magnussoni (2009) for a reference on their implementation in Stata.
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close to one when β is distant enough from the null. From Andrews (2016), we can show the
CIL test gives a lower bound for the total variation distance between the null hypothesis and
those regions of the alternative hypothesis. Hence, like testing a Bernoulli against a continuous
distribution, the testing problem is easy and we should have no problem distinguishing the null
from distant alternatives. Nevertheless, the score and the CQLR tests have power close to size,
and cannot separate the null from these alternatives at all.

6 Regions of low power

Regions of low power are present in many designs, not only the specific one presented in Section
5. For example, equation (4.16) is equivalent to the existence of standardized instruments
coefficients µ so that µ′Σ−1

11 Σ21Σ−1
11 µ = 0. What properties of the 2k×2k matrix Σ and µ imply

that the noncentrality parameter of the L statistic is bounded for any value of ∆? The next
proposition gives necessary and sufficient conditions for this to happen.3

Proposition 2 For a k× k matrix A, define the Hermitian part of A by the symmetric matrix
H = (A+ A′) /2. Then there exists x 6= 0 so that x′Ax = 0 if and only if the conex hul of H
contains the zero value.

We can apply this proposition to (4.16) by taking x = µ and A = Σ−1
11 Σ21Σ−1

11 . Proposition
2 shows why it is not possible to have an impossibility design in a Kronecker product design (in
particular, when the errors are homoskedastic). When Σ = Ω⊗ Φ for a positive definite 2× 2
matrix Ω and a symmetric positive definite matrix k × k matrix Φ, the matrix Σ−1

11 Σ21Σ−1
11 is

proportional to Φ and positive or negative definite.
This proposition also explains the findings in Section 5. There the matrix Σ−1

11 Σ21Σ−1
11 is

symmetric and proportional to the anti-diagonal Jk matrix. The trace of this matrix is 0 or
1 (depending on whether k is even or odd) and the determinant is negative. Therefore, there
exist at least one positive eigenvalue and one negative eigenvalue. As a result, we have the
reassurance there are coefficients µ so that the noncentrality parameter of the LM statistic is
bounded, i.e., (4.16) holds.

Note that, if Σ11 is singular, it is in general trivial to separate the null and alternative
hypotheses. For example, the AR test has a noncentrality parameter going to infinity under
the alternative if one of the eigenvalues of Σ11 approaches zero for most parameter choices µ.
If Σ11 is positive definite, we can apply Proposition 2 to x = Σ−1

11 µ and A = Σ21. Hence, the
impossibility design holds for all matrices Σ21 so that Σ21 + Σ′21 does not have all eigenvalues of
the same sign. For a given matrix Σ21, we can choose Σ11 and Σ22 so that the variance matrix Σ
is semi-positive definite. Hence, there exists a vast range of designs in which the non-centrality
parameter of the LM statistic is bounded. In Appendix A, we also discuss cases in which (4.15)
holds. and we have the impossibility design with the bound in (4.20) being arbitrarily close to
zero.

3We are grateful to Leandro Gorno for suggesting the connection between this problem and the spectral
decomposition of a symmetric matrix.
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Table 1: Eigenvalues of Σ21 + Σ′21 for model and data in Yogo (2004)

Australia 0.0014 0.0008 0.0001 0.0003
Canada 0.0030 0.0009 -0.0001 0.0002
France -0.0011 0.0001 0.0008 0.0013
Germany -0.0019 -0.0003 0.0005 0.0002
Italy -0.0022 0.0013 0.0006 -0.0005
Japan 0.0027 -0.0006 0.0010 0.0008
Netherlands 0.0006 -0.0005 -0.6000 -0.0005
Sweden 0.0008 0.0003 -0.0004 0.0001
Switzerland 0.0005 0.0001 -0.0001 -0.0003
United Kingdom -0.0032 0.0016 0.0003 0.0001
United States 0.0009 0.0006 0.0003 0.0011

Could we test whether this occurs by estimating π itself? If the instruments are weak, we
consider π = hπ/

√
n. Because the parameter hπ is not consistently estimable, we cannot be

sure whether the noncentrality parameter of the LM statistic is bounded for any value of ∆.
The impossibility designs were constructed such that the commonly used LM and CQLR

tests have no power. When errors are homoskedastic, there exists a minimax result justifying
the use of those tests. Andrews, Moreira, and Stock (2006) and Chamberlain (2007) implicitly
use the Hunt-Stein theorem to justify the focus on tests that depend on the data only through
S ′S, (S ′T )2, and T ′T . Andrews (2016) further shows there is no loss of generality from looking
at conditional (on T statistic) tests that are linear combinations of the AR statistic S ′S and
the LM statistic (S ′T )2 /T ′T . Our total variation argument, building on Kraft (1955), shows
that conditional tests depending only on AR and LM statistics are not minimax tests in the
general HAC model.

One may wonder if it is usual that empirical estimates of Σ21 have eigenvalues of Σ21 + Σ′21

that are of opposite signs. As an example we take the estimation of IES in Yogo (2004). He
considers four instruments and three different models. As Moreira and Moreira (2015) do, we
focus on the model where the endogenous variable is the real stock return and the instruments
are genuinely weak. Out of the eleven original countries considered by Yogo (2004) (Australia,
Canada, France, Germany, Italy, Netherlands, Sweden, Switzerland, United Kingdom, and the
United States), nine have eigenvalues with opposite signs. Eigenvalues of the estimates of
Σ21 + Σ′21, using the popular Newey-West estimator (Newey and West (1987)), are in Table
1. The condition for the LM non-centrality parameter to be bounded is satisfied for most
countries.

Finally, someone can argue that the values of µ for which the LM non-centrality parameter
is bounded, i.e., µ′Σ−1

11 Σ21Σ−1
11 µ = 0, are too special. For example, for a given matrix Σ21, the

set of µ so that the LM non-centrality is bounded, has Lebesgue measure zero. This defense is
questionable. Take for example the theory of limit experiments. If a family of models is locally
asymptotically quadratic (LAQ) then it is locally asymptotically mixed normal (LAMN) except
for a set with Lebesgue measure 0. Yet, there is a vast literature analyzing those special models
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of which the weak-IV model itself is a special case.
However, even if µ does not satisfy µ′Σ−1

11 Σ21Σ−1
11 µ = 0, the problems with the LM and

CQLR tests remain. Because of Theorem 3, the information loss also occurs in a neighborhood
of the impossibility designs.

Figure 3: Power curves AR, LM, CQLR, and CIL tests for models with HAC errors with
c12 = 100, c11 = 1 and c22 = c2

12 + c−3
12 ; varying instrument strength λ, α = .05; perturbed

variance matrix.
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Theorem 3 In the HAC-IV model:
(i) the power function ρφ (β, µ) for any test φ is analytic in (β, µ); and
(ii) the power function ρφ (β, µ) is uniformly continuous over any compact set.

Part (i) shows the power function is analytic for any test. Close inspection of the proof
shows that the expectation of any statistic (assuming the expectation exists) is also analytic
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Figure 4: Power curves AR, LM, CQLR, and CIL tests for models with HAC errors with
c12 = 100, c11 = 1 and c22 = c2

12 + c−3
12 ; varying instrument strength λ, α = .001; perturbed

variance matrix.
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so that the result can be generalized for other (curved) exponential families. This is a stronger
result than the differentiability of the expectation obtained by Hirano and Porter (2012, 2015)
for such models. We apply part (ii) of Theorem 3 for compact sets containing values of µ
such that µ′Σ−1

11 Σ21Σ−1
11 µ = 0 and to values of β large enough that the total variation distance

between the null and that specific alternative is close to 1. Small changes in both parameters
change the power function by little. Let us consider the CIL and LM tests. The power function
over the alternative of the CIL test gives a lower bound on the total variation distance of the
hypotheses. Therefore for small changes in the parameters, the total variation distance remains
close to one. Applying Theorem 3 to the LM test, the power of that test will be close to size
for small changes in β.

In a simulation, we confirm that the LM and CQLR tests have power close to size, if
µ′Σ−1

11 Σ21Σ−1
11 µ is only close to 0. We use a variance matrix Σδ = Σ + Ψδ with Σ a variance

matrix of the impossibility design and Ψδ a small positive definite matrix. The 2k× 2k matrix
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Ψδ is obtained by drawing the columns of the 2k × 2k matrix X = [X1 . . . X2k] independently

from N(0, δ2 · I2k), so that vec(X) ∼ N(0, δ2I4k2). Define P0 = X (X ′X)−1/2, which is by
construction an orthogonal matrix. Let λδ be the diagonal matrix of the eigenvalues of X ′X
that are non-negative. We take Ψδ = P0λδP

′
0, which is positive-definite with probability one.

For each repetition, we first draw Σδ and next draw the equation errors of the HAC model
using Σδ as their variance matrix. The power plots are averaged over the draws of X. Figures
3 and 4 show power curves for the AR, LM, CQLR, and CIL tests for δ2 = 0.1 at significance
levels 5% and 0.1%, respectively. The power curves for the LM and CQLR tests are no longer
flat, but the power problems of these tests remain. This confirms that the smoothness of the
power function as stated in Theorem 3, implies loss of power of the LM and CQLR tests in a
neighborhood of DGP, as in the impossibility design.

7 Conclusion

In a model with endogenous regressors and HAC errors, Moreira and Ridder (2018) find the
largest transformation group that preserves the model and the hypothesis testing problem.
They show symmetries in the HAC-IV model exist as long as the variance matrix of the HAC
errors is taken as part of both the parameter and the data spaces.

When errors are homoskedastic, the theory simplifies to that of Andrews, Moreira, and
Stock (2006) who show that the Anderson-Rubin, score, and rank statistics are one-to-one
transformations of the maximal invariant. This finding contrasts with the model with HAC
errors. In the HAC-IV model, tests that are a function of just the Anderson-Rubin, score, and
rank statistics suffer from information loss. We show this by finding invariant statistics that
are not functions of the AR, LM, and rank statistics, so that this triad is not maximal invariant
in general. This information loss can be so extreme that the LM and CQLR tests can have
power close to size. We give a set of necessary and sufficient conditions for the noncentrality
parameter of the LM statistic to be bounded. If the value of the rank statistic is large, the
CQLR essentially reduces to the LM statistic and can have power equal to size as well.

Applying the theory of Kraft (1955), we show that if a nearly perfect test exists, the (total
variation) distance between the null and alternative is large. Because for a class of DGP the
LM statistic has no information on the structural parameter, it fails to distinguish the null
from the alternative. In testing contexts in which it is trivial to separate the null from the
alternative, it is embarrassing that, if the instruments are weak, the LM and CQLR tests act
as if there is no information at all. This efficiency loss in finite samples is particularly striking,
because both tests are asymptotically efficient under the usual strong IV asymptotic theory.
As a general remark, it is not enough to find tests with asymptotically efficient under the usual
asymptotics and with correct size. Our theoretical framework and simulations findings highlight
the importance of studying power under weak identification as well.

If we consider conditional tests that are functions of only the Anderson-Rubin and score
statistics, their power will be bounded from above by the Anderson-Rubin test itself. To
do better, we need to use tests that depend on the data beyond these statistics. Natural
choices are the CIL test proposed by Moreira and Ridder (2018), and the SU and CLR tests
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derived by Moreira and Moreira (2015) for the HAC-IV model.4 There are some numerical
and theoretical advantages of the CIL test over the other tests. First, the CLR test requires
numerical optimization to find the LR statistic. The SU test requires additional boundary
conditions and linear programming methods to be implemented. Second, the CIL test uses
model symmetries that yield a minimax result for HAC errors, in the same way that this
literature was built on a minimax result for homoskedastic errors. The CIL test implicitly
integrates the likelihood with respect to an associated Haar measure. It nicely connects to
Kraft (1955) who establishes an affinity between the maximal smallest power and size of all
tests and the total variation distance between the (convex hull of the) null and alternative
hypotheses. Third, the CIL test gives more weight to distant alternatives. This can decrease
the probability that the confidence set is uninformative, i.e. is the whole real line. These and
other advantages of the CIL test will be discussed in greater detail in a separate paper.
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8 Appendix A: Impossibility Design

In this appendix, we will find impossibility designs with an upper as in (4.20) that is arbitrarily
close to zero. We already gave a necessary and sufficient condition on the Hermitian part of
the matrix Σ12 for (4.16) to hold. We will give here conditions in terms of Σ12 itself so that
(4.16) holds and the bound in (4.20) to be arbitrarily close to zero.

First of all, let us give necessary and sufficient conditions for Σ0 to be positive definite. Note
that[

Σ11 Σ12

Σ′12 Σ22

]
=

[
Ik 0k×k

−Σ−1
11 Σ12 Ik

]
.

[
Σ11 0k×k
0k×k Σ22 − Σ′12Σ−1

11 Σ12

]
.

[
Ik −Σ′12Σ−1

11

0k×k Ik

]
.

Therefore, Σ0 is positive definite if and only if Σ11 is positive definite and Σ22 − Σ21Σ−1
11 Σ12 is

positive definite. Consider the Singular Value Decomposition (SVD) of Σ12 = CΛ12D
′, where

C and D are orthogonal matrices and Λ12 is a diagonal matrix with singular values of Σ12.
Consider the design in which Σ11 = CΛ11C

′ and Σ22 = DΛ22D
′, where Λ11 and Λ22 are the

eigenvalues of Σ11 and Σ22, respectively. For Σ0 to be positive definite, we then need the
matrices Λ11 and Λ11Λ22 − Λ2

12 only have strictly positive components.

Now, we can easily have Σ
−1/2
11 (Σ22)−1/2 → 0 because

Σ
−1/2
11 (Σ22)−1/2 = Σ

−1/2
11 (Σ22 − Σ21Σ−1

11 Σ12)1/2

= CΛ
−1/2
11 C ′.D

(
Λ22 − Λ2

12Λ−1
11

)1/2
D′.

For example, we can have Λ11 bounded and each component of Λ22 − Λ2
12Λ−1

11 going to zero,
or each component of Λ11 going to infinity and Λ22 − Λ2

12Λ−1
11 bounded. For the latter case in

which Σ12 is fixed, we can have the bound

µ′Σ−1
11 µ(

µ′Σ−1
11 Σ12Σ−1

11 Σ21Σ−1
11 µ
)1/2

go to zero as well.

9 Appendix B: Proofs

Proof of Proposition 2. The LM1 statistic is

LM1 =

U ′SΣ
−1/2
11 µ−∆U ′SΣ

−1/2
11 Σ21Σ−1

11 µ+ U ′SΣ
−1/2
11 (Σ22)−1/2UT+

∆2µ′Σ−1
11 Σ21Σ−1

11 µ+ ∆µ′Σ−1
11 µ+ ∆µ′Σ−1

11 (Σ22)−1/2UT(
µ′Σ−1

11 µ+ ∆2µ′Σ−1
11 Σ12Σ−1

11 Σ21Σ−1
11 µ− 2∆µ′Σ−1

11 Σ12Σ−1
11 µ+ 2µ′Σ−1

11 (Σ22)−1/2UT
−2∆µ′Σ−1

11 Σ12Σ−1
11 (Σ22)−1/2UT + U ′22

T )−1/2Σ−1
11 (Σ22)−1/2UT

)1/2
.
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Divide the numerator and denominator by 1 + |∆|. For all ∆

1

1 + |∆|

∣∣∣U ′SΣ
−1/2
11 (Σ22)−1/2UT

∣∣∣ ≤ ∣∣∣U ′SΣ
−1/2
11 (Σ22)−1/2UT

∣∣∣
|∆|

1 + |∆|
∣∣µ′Σ−1

11 (Σ22)−1/2UT
∣∣ ≤ ∣∣µ′Σ−1

11 (Σ22)−1/2UT
∣∣

1

(1 + |∆|)2

∣∣µ′Σ−1
11 (Σ22)−1/2UT

∣∣ ≤ ∣∣µ′Σ−1
11 (Σ22)−1/2UT

∣∣
∆2

(1 + |∆|)2

∣∣µ′Σ−1
11 Σ12Σ−1

11 (Σ22)−1/2UT
∣∣ ≤ ∣∣µ′Σ−1

11 Σ12Σ−1
11 (Σ22)−1/2UT

∣∣
1

1 + |∆|

∣∣∣Σ−1/2
11 (Σ22)−1/2UT

∣∣∣ ≤ ∣∣∣Σ−1/2
11 (Σ22)−1/2UT

∣∣∣ .
For variance sequences that satisfy (4.15) and (4.17), the bounds are op(1), so that the left-hand
sides converge to 0 in probability uniformly in ∆. By the continuous mapping theorem that
extends to sequences that converge uniformly, we find that uniformly in ∆

LM1
p→ U ′SΣ

−1/2
11 µ−∆U ′SΣ

−1/2
11 Σ21Σ−1

11 µ+ ∆µ′Σ−1
11 µ+ ∆2µ′Σ−1

11 Σ21Σ−1
11 µ(

µ′Σ−1
11 µ+ ∆2µ′Σ−1

11 Σ12Σ−1
11 Σ21Σ−1

11 µ− 2∆µ′Σ−1
11 Σ12Σ−1

11 µ
)1/2

∼

N

(
∆µ′Σ−1

11 µ+ ∆2µ′Σ−1
11 Σ21Σ−1

11 µ(
µ′Σ−1

11 µ+ ∆2µ′Σ−1
11 Σ12Σ−1

11 Σ21Σ−1
11 µ− 2∆µ′Σ−1

11 Σ12Σ−1
11 µ
)1/2

, 1

)
because by (4.16)

µ′Σ
−1/2
11 (Ik−∆Σ

−1/2
11 Σ12Σ

−1/2
11 )(Ik−∆Σ

−1/2
11 Σ21Σ

−1/2
11 )Σ

−1/2
11 µ = µ′Σ−1

11 µ+∆2µ′Σ−1
11 Σ12Σ−1

11 Σ21Σ−1
11 µ

The mean is bounded by∣∣∣∣∣ ∆µ′Σ−1
11 µ(

µ′Σ−1
11 µ+ ∆2µ′Σ−1

11 Σ12Σ−1
11 Σ21Σ−1

11 µ
)1/2

∣∣∣∣∣ ≤ µ′Σ−1
11 µ(

µ′Σ−1
11 Σ12Σ−1

11 Σ21Σ−1
11 µ
) .

2

Proof of Proposition 2. Note that x′Ax = x′A′x. Therefore,

x′Ax = x′Hx, where H =
A+ A′

2
.

Write H = CΛC ′, where C is an orthogonal matrix composed by the eigenvectors of H and Λ
is a diagonal matrix with the associated eigenvalues λi and. By writing y = C ′x, we have

x′Bx = y′Υy =
∑k

i=1
λiy

2
i ,

where yi is the i-th entry of the vector y. Because C is invertible, x = 0 if and only if y = 0.

25



Assume that all λi > 0. Then
∑k

i=1 λiy
2
i > 0 for all y 6= 0. Analogously, if all λi < 0, then∑k

i=1 λiy
2
i > 0 for all y 6= 0.

On the other hand, suppose there exists no y = (y1, ..., yk) 6= 0 such that
∑k

i=1 λiy
2
i = 0.

Choose the canonical vectors e(i) for y. Then, each λi has to be either larger or smaller than zero.
Now, assume that there exists one i and j so that λi.λj < 0 (that is, they have different signs).
Then, we can choose the vector y so that yk = 0 for all k 6= i, j, y2

i = 1 and y2
j = −λi/λj > 0.

Contradiction. 2

Proof of Theorem 3. The IV model belongs to a curved exponential family. We can write
the likelihood of R as

f (r; δ, µ,Σ) = (2.pi)−k exp

{
−1

2
vec (R− [δ : µ])′Σ−1vec (R− [δ : µ])

}
,

where δ = µβ. Importantly, the model is well-defined even when δ 6= µβ. The model can the
be written as an exponential family for the parameter (δ, µ). From Theorem 2.7.1 of Lehmann
and Romano (2005), the power function is analytic (because the test φ is bounded between
zero and one). Because the transformation δ = µβ is an analytic function, the power function
is analytic as well. This proves part (i). Part (ii) follows from the fact that any continuous
function is uniformly continuous over any compact set. 2
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