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1 Introduction

In an economy without arbitrage opportunities, there exists a valid stochastic discount
factor (SDF) such that the price of any security is obtained as the expected value of
the discounted (by the SDF) future payoff. The SDF representation of asset pricing
models has been widely used in the empirical finance literature. It is often the case
that empirical studies using asset returns to estimate the SDF use a small number of
portfolios.1 This paper proposes alternative estimators of the stochastic discount factor
so that empirical researchers can fully exploit useful information on asset prices from a
large panel of individual stock data.

The intuition behind our SDF estimators builds on Hansen and Jagannathan (1997).
Within a set of candidate SDFs, one can search for the one which minimizes the norm
of pricing errors. Pukthuanthong and Roll (2017) propose an interesting “agnostic”
candidate stochastic discount factor estimator (PR–SDF), which utilizes a time series
of returns on a large collection of individual assets. The PR-SDF is agnostic in the
sense that no assumptions are required about agents’ utility functions or about the
nature of systematic risk, such as the number of pervasive factors, in the economy.
Since the approach picks a linear combination of asset returns that assigns the right
prices to the underlying assets, the SDF-mimicking portfolio chooses weights based
on explaining mean returns rather than the covariance matrix of returns. That is,
since Pukthuanthong and Roll derive their SDF estimator to match prices in the cross
section, the estimator favors pervasive factors that matter for pricing. Our estimators
are designed to deal with several issues with the agnostic SDF estimator: it requires
very large samples (larger than available in most empirical studies) to converge to the
true SDF; it requires a balanced panel with its inherent survivorship biases; and it is
biased for small time-series samples. In fact, the agnostic estimator is equivalent to the
pricing error minimizing SDF when the SDF is a linear function of factors estimated
by asymptotic principal components (Connor and Korajczyk (1986)) and the number
of factors is equal to the number of time periods.

We find that imposing a finite factor structure with fewer factors improves the
efficiency of our estimator appreciably. Our estimator can accommodate both prespec-
ified factor models and those estimated by principal-component methods. Applying

1Jagannathan and Wang (1996) is an early example of papers estimating an SDF by imposing the
pricing restrictions on a small number of portfolios.
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statistical factor models in linear asset pricing models raises the issue of rotational in-
determinacy of the estimated factors and factor loadings. The advantage of the SDF
representation in this setting is that the estimated SDF is a function of the estimated
factors and a projection vector. Rotating the factors changes the projection vector so
that the estimated SDF is not affected.

Furthermore, we address the prevalence of short-lived individual stocks. While the
top graph in Figure 1 shows that roughly thousands of individual stocks are traded in
U.S. market at a specific time, the bottom graph reveals that a large portion of the
individual stocks has substantial missing returns. The proportion of individual stocks
with missing observations over the previous five (ten) years averages 36% (60%) over
1977-2016. Therefore, there are few individual assets that have a sufficiently long time
series of returns to match the large T requirements of the agnostic estimator. In tackling
this issue, we introduce a short block structure of unbalanced panel data with the mild
assumption of balanced panel within each short block. We propose a short time-series
bias correction in each short block, which allows us both to eliminate bias and to splice
the estimator across multiple blocks, thus overcoming survivorship biases. Moreover,
exploiting the multiple blocks, we develop a fully operational asymptotic theory for
testing implications of no arbitrage pricing. We apply our novel tests to popular asset
pricing models suggested in the literature (Sharpe, 1964, Fama and French, 1992, Hou
et al. 2015, Fama and French, 2015, Pástor and Stambaugh, 2003, Barillas and Shanken,
2017) and identify which factors command the price of risk in a large cross-section of
short-lived individual stocks.

This paper is not the first attempt to exploit the SDF representations of a large
number of assets. Araújo and Issler (2012) show that the SDF can be summarized by
a scaled inverse of the cross-sectional geometric average of returns. We allow multiple
pervasive risks (possibly priced and non-priced factors) in an economy and let our
estimators find the priced factors among those by observing the price dynamics of the
large panel. As mentioned above, our paper is closely related to the agnostic estimator of
Pukthuanthong and Roll (2017). Alternatively, Kozak et al. (2018) repackage individual
stocks using a vast array of characteristics and suggest various methods to obtain robust
SDF which achieves the bound by Hansen and Jagannathan (1991). In contrast, we
directly use unbalanced panel of individual stocks and allow factors to be non-traded.

We also contribute to a broader literature of using individual stocks for the empir-
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ical studies of asset pricing models. The arbitrage pricing theory of Ross (1976) and
Chamberlain and Rothschild (1983) provides a framework to dichotomize a large cross
section of returns into pervasive factors and diversifiable risks. A long literature derives
methods to extract pervasive factors from a large cross-sectional data (e.g., Connor
and Korajczyk (1986, 1987, 1988), Stroyny (1992), Stock and Watson (1998, 2002), and
Jones (2001)). In a recent effort to extract crucial factors for pricing, Kelly et al. (2018)
propose to apply PCA to individual stock returns projected on dynamic characteristics
and Lettau and Pelger (2018) suggest a novel method of estimating factors that can
explain the covariance matrix as well as fit the pricing equation.2 We contribute to this
literature by providing a simple tool to select factors (priced in unbalanced panels of
individual stocks) among the pervasive common factors extracted from a large panel of
data. As pointed out in Merton (1973), Jagannathan and Wang (1996), Campbell and
Vuolteenaho (2004), Kelly and Pruitt (2013), and Jagannathan and Marakani (2015),
not all pervasive factors (i.e., those that explain common movements in asset returns)
need be important for explaining the cross section of asset prices.

Alternatively, the pricing of a given pervasive factor can be examined with the beta
pricing form. Exploiting a large cross section of assets in estimating beta pricing models,
a series of papers have proposed risk premia estimators using large cross-sections (see
Litzenberger and Ramaswamy (1979), Shanken (1992), and Jagannathan et al. (2010)).
The recent papers by Gagliardini et al. (2016) and Kim and Skoulakis (2018a, 2018b)
obtain the large panel asymptotic distribution of the risk premia estimator along with
an estimator of its variance–covariance matrix. Our paper is differentiated in that we
are using the SDF representation, not a beta pricing representation. This difference
is particularly important when we use large-panel-data setting where the measurement
errors in individual asset betas can severely bias estimated risk premia. Because of
the advantage that we do not need to estimate individual stock betas in the SDF
representation, we are able to develop a formal sampling theory exploiting a large
cross-section of short-lived stocks. Although the equivalence between SDF form and
beta form is well-known in the small-N/large-T setup (Jagannathan and Wang (2002)),

2Interestingly, we find that the agnostic estimator of Pukthuanthong and Roll (2017) is closely
related to the first factor of Lettau and Pelger (2018) in the extreme version where a researcher puts
an infinite weight on the cross-sectional pricing equation. See Proposition 2.1 for details. Lettau
and Pelger (2018) tame the behavior of factors by imposing the additional restrictions in the second
moments. In contrast, we use a prespecified set of a small number of factors implied by a specific asset
pricing model or a finite number of latent factors estimated by multivariate statistical methods.
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more work is required to understand the differences between the two approaches in the
large panel data setting.

In Section 2, we introduce our large cross-sectional economy. Section 2.1 provides
the economic intuition for our SDF estimator. We propose unbalanced panel estimators
of the stochastic discount factor (SDF) for pricing risky assets and develop an inference
framework in Section 2.2. In Section 3, we simulate an economy in which asset risks
match those in the U.S. equity markets and examine the performance of our SDF
estimators across various sample sizes. The estimators perform well and the imposition
of a factor structure improves the estimators’ performance relative to purely agnostic
alternatives. The bias correction for unbalanced panels works. In Section 4, we apply
our methodology to a large cross section of individual stock returns in U.S. equity
markets and provide evidence that profitability and investment factors in Hou et al.
(2015) or Fama and French (2015) are important for pricing individual stocks. Section
5 concludes. All proofs are in the Appendix.

2 Economy

We assume that the gross-return generating process of each individual security follows
a K-factor model. In particular, the gross return of the i-th asset at time t, Ri,t, is
expressed as

Ri,t = αi + β′ift + ei,t, for i = 1, · · · , N and t = 1, · · · , T, (2.1)

where βi is the (K × 1) vector of factor loadings of the i-th asset on the (K × 1) vector
of factors, ft. As is standard, we assume E [ei,t] = 0 and E [ftei,t] = 0K , a (K × 1)
vector of zeros. We allow the factor of ft to be either traded excess returns, traded
gross returns, latent, or nontraded factors.

With some mild assumptions on the cross-sectional dependency among residuals
of ei,t, Ross (1976) and Chamberlain and Rothschild (1983) show that in an economy
without statistical arbitrage, there exist a scalar, λ0, the gross return on the riskless
asset, and a (K × 1) vector, λf , such that

E [Ri,t] ≈ λ0 + β′iλf . (2.2)
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We assume that exact factor pricing holds, so that the equation (2.2) holds as an equality
(as in Connor (1984)). Let the (K × 1) vector µf be µf = E [ft] . By combining the
return generating process of (2.1) and the exact form of the pricing restriction of (2.2),
we have

E [Ri,t] = αi + β′iµf = λ0 + β′iλf ,

implying that
αi = λ0 + β′i (λf − µf ) .

Then, plugging the above expression into the process of (2.1) yields

Ri,t = λ0 + β′i (λf − µf + ft) + ei,t. (2.3)

Equation (2.3) allows for many different specifications of the nature of the factor
vector, ft. If ft is an observed vector of portfolio excess returns, then µf = λf . If ft is
an observed vector of portfolio gross returns, then µf = 1Kλ0 +λf and spanning of the
mean-variance frontier by the factors implies that (2.3) reduces to

Ri,t = β′ift + ei,t, (2.4)

with the added constraint that β′i1K = 1 (see Huberman and Kandel (1987)). If ft
is an observed vector of pre-whitened macroeconomic variables, then µf = 0K . In
the literature, there are a number of papers that use a combination of traded excess
returns and pre-whitened macroeconomic variables (e.g., Chen et al. (1986) or Shanken
and Weinstein (2006)). In this case the expected value of the factors is the factor risk
premium for the excess return factors and zero for the pre-whitened variables. Finally, if
ft is an unobserved vector of latent portfolio excess returns (as in Connor and Korajczyk
(1986)) then µf = λf , but the procedure requires a consistent estimator of the excess
returns on factor-mimicking portfolios.

Next, we specify the stochastic discount factor (SDF) mt in this economy such that

E [Ri,tmt] = 1 for i = 1, · · · , N.
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The realized SDF is a linear function of the realization of the systematic factors:

mt = δ0 + f ′tδf , (2.5)

which satisfies E [Ri,tmt] = 1 when the scalar δ0 and the (K × 1) vector, δf , are given
by

δ0 = 1
λ0

(
1 + µ′fΣ−1

f λf
)

(2.6)

δf = − 1
λ0

(
Σ−1
f λf

)
, (2.7)

where
Σf = E

[
(ft − µf ) (ft − µf )′

]
.

The expected value of mt is λ−1
0 .

So far, we describe an economy with N assets and specify the form of the stochastic
discount factor as a linear function of systematic factors, which prices the gross returns
of the N assets. In many cases, when a risk-free asset exists, empirical research studies
the returns of the N assets in excess of the risk-free return. If there exists a risk-free
asset, then the expression of (2.3) implies that the gross return of the risk-free asset is
λ0, since it has neither any exposure to the factor (βi = 0K) nor residual risk (ei,t = 0).
Hence, from (2.3), the excess return of the i-th asset at time t can be written as

Re,i,t = Ri,t − λ0 = β′i (λf − µf + ft) + ei,t. (2.8)

Now, we characterize a stochastic discount factor me,t, which prices the excess re-
turns of the N assets, i.e.,

E [Re,i,tme,t] = 0 for i = 1, · · · , N.

It can be shown that we can construct a stochastic discount factor

me,t = a+ f ′tδe, (2.9)
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satisfying E [Re,i,tme,t] = 0, with the (K × 1) vector of δe, given by

δe = −a
(
Σf + λfµ

′
f

)−1
λf . (2.10)

We obtain an extra degree of freedom when pricing excess returns, rather than gross
returns, since we do not require the SDF to pin down the mean of m or, equivalently,
the riskless rate of return. Thus, the constant a is not identified and the SDF can be
off in pricing gross returns by a constant that cancels when excess returns are analyzed.
This necessitates a normalization and we choose to set a equal to 1 (see Cochrane (2009,
section 6.3)).

From the expressions of (2.6)-(2.10), when factors are tradable or, equivalently,
when λf = µf , one can estimate the SDF directly utilizing the first two moments of
the factors (see Kozak et al. (2018)). Hence, for the case of traded factors, a researcher
can evaluate a model of interest by comparing the SDF constructed by using only
factor data with our SDF using a large panel data – analogous to the common practice
of comparing the average returns of traded factors with the cross-sectional coefficients
on assets’ associated beta from a Fama and MacBeth (1973) regression.

For the case of observable, but non-tradable, factors or latent factors, researchers
need to construct factor mimicking portfolios in order to estimate λf before estimating
(2.6), (2.7), or (2.10) or they can use our SDF estimators directly. We propose several
alternative SDF estimators which are based on using large cross sections of individual
assets or portfolios. We start with an estimator assuming a balanced panel of asset
returns to provide intuition for the approach and motivate the need for small-T bias
correction.

2.1 Motivation using Balanced Panel Data

For expositional purposes, we assume that we observe the gross returns of Ri,t or the
excess returns of Re

i,t for assets i = 1, · · · , N over the full time period t = 1, · · · , T.
The intuition behind the SDF estimator proposed in this subsection will be cast into a
more realistic data structure later.

It is convenient to represent the gross-return generating process of (2.3) and the
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excess-return generating process of (2.8) in matrix form:

R = λ01N1′T + B (λf − µf ) 1′T + BF′ + E, (2.11)

and
Re = B (λf − µf ) 1′T + BF′ + E, (2.12)

where the (i, t) element of the (N × T ) matrices of R and Re are Ri,t and Re,i,t, re-
spectively, 1N is the (N × 1) vector of ones, the i-th row of the (N ×K) matrix of B is
β′i, the t-th row of the (T ×K) matrix of F is f ′t , and the (i, t) element of the (N × T )
matrix of E is ei,t.

We make standard assumptions on the systematic factors and factor loadings.

Assumption 1. As N → ∞, 1
N

B′1N → µβ and 1
N

B′B → Vβ = Σβ + µβµ
′
β, where

Σβ is a positive definite matrix. Also, as T → ∞, 1
T

F′1T
p→ µf and 1

T
F′F p→ Vf =

Σf + µfµ
′
f , where Σf is a positive definite matrix.

Assumption 1 specifies that loadings on each factor are pervasive across a large number
of assets and that each factor is neither redundant nor nonstationary over time, which
is reasonably acceptable for the return generating process. The assumption does not
imply that all pervasive factors are priced, so that it allows for factors that explain
common variation but are not deemed important (i.e., are not priced) by investors.

Next, we make assumptions on the distributional properties of the residual terms of
ei,t. We use 0m×n to denote the (m× n) matrix of zeros.

Assumption 2. As N, T → ∞, 1′NE1T
NT

p→ 0, F′E′1N
NT

p→ 0K , B′E1T
NT

p→ 0K, and B′EF
NT

p→
0K×K . Also, there exists a positive constant M0 <∞ such that the maximum eigenvalue
of E′E

N
is smaller than M0 for all N, T.

The first four conditions in Assumption 2 state that the average residual terms over the
(N × T ) panel data converge to zero even when the average is weighted by factor real-
izations (in the time-series dimension) or factor loadings (in cross-sectional dimension).
The last condition in Assumption 2 provides a regularity condition on the behavior of
residuals. The conventional assumptions that the probability limit of 1

N
e2
i,t is uniformly

bounded and the probability limit of 1
N
ei,tei,s becomes negligible for any t 6= s are

sufficient to satisfy this regularity condition.

9



The following theorem establishes that we can recover the stochastic discount factor
as a linear function of factors from a large panel of asset return data.

Theorem 2.1. Under Assumptions 1 and 2, as N, T →∞, m̃t = δ̃0 + f ′t δ̃f and m̃e,t =
1+ f ′t δ̃e (using the normalization a =1 in (2.10)) converge to mt and me,t given in (2.5)
and (2.9), respectively, when the ((K + 1)× 1) vector of δ̃ =

[
δ̃0 δ̃′f

]′
and the (K × 1)

vector of δ̃e are constructed by

δ̃ = D̃−1Ũ (2.13)

δ̃e = −D̃−1
e Ũe, (2.14)

where F4 = [1T F] and

D̃ =
F′4R′RF4

NT 2 , Ũ =
F′4R′1N
NT

D̃e = F′R′eReF
NT 2 , Ũe = F′R′eRe1T

NT 2 .

The estimator proposed in Theorem 2.1 can be intuitively understood as follows.
By specifying the (T × 1) vector of the realized SDF, [m1 · · ·mT ]′ , as m = F4δ, the
realized mispricing of the N assets’ gross returns can be formulated by

1N −
Rm
T

= 1N −
RF4
T

δ,

and the estimator δ̃ in (2.13) can be obtained as the solution of minimizing the squared
pricing error:

δ̃ = arg min
δ

(
1N −

RF4
T

δ
)′ (

1N −
RF4
T

δ
)
. (2.15)

Note that δ̃ is the estimate of δ from an OLS regression of 1N on RF4
T

, or the
GMM estimator with an identity weighting matrix. Using the identity matrix for the
weighting matrix allows us to accommodate the situation in which the cross-sectional
sample is much larger than the time series sample, in which case the common efficient
GMM weighting matrix in infeasible (the inverse of a singular matrix).

Similarly, given the (T × 1) vector of the realized SDF, [me,1 · · ·me,t]′ , denoted by
me = 1T +Fδe, with the associated moment condition E

[
Re.me

T

]
= E

[
Re1T
T

+ ReF
T

δe
]

=
0. The estimator δ̃e in (2.14) can be interpreted as the solution of minimizing the sum
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of squared pricing errors:

δ̃e = arg min
δe

(Re1T
T

+ ReF
T

δe

)′ (Re1T
T

+ ReF
T

δe

)
. (2.16)

The formation of δ̃ and δ̃e as in (2.15) and (2.16) implies that they are regression
coefficients (regressing 1N on RF∆

T
for gross returns and regressing Re1T

T
on −ReF

T
for

excess returns). The above interpretation of Theorem 2.1 confirms that the GMM
estimator with identity weighting matrix can be utilized as an SDF estimator even
when the number of moment conditions is very large.

For the estimators in Theorem 2.1, we need the true, but possibly mean-deficient
(i.e., non-traded), factors. An alternative approach is to treat F as latent factors that
are estimated through multivariate statistical techniques. For this case we do not
directly observe factor realizations, F, but estimate those with F∗ = [f∗1 · · · f∗T ]′ with
the following properties.

Assumption 3. The factor estimator F∗ satisfies that f∗t
p→ O′ft for each t and

1
T

(F∗ − FO)′ (F∗ − FO) p→ 0K×K for some rotation matrix of O.

The conventional PCA estimator using the return generating process given by (2.3) or
(2.12) satisfies these properties under commonly used identification assumptions. See
Stock and Watson (2002) for details. It turns out that the consistent estimation of the
stochastic discount factor is still feasible as shown in the following corollary.

Corollary 2.1. Under Assumptions 1, 2 and 3, it holds that m̃∗t = δ̃∗0 + f∗′t δ̃∗f and
m̃∗e,t = 1 + f∗′t δ̃∗e converge to mt and me,t given by (2.5) and (2.9), respectively, when
the ((K + 1)× 1) vector of δ̃∗ =

[
δ̃∗0 δ̃∗′f

]′
and the (K × 1) vector of δ̃∗e are equivalent

to δ̃ and δ̃e with F and F4 are replaced by F∗ = [f∗1 · · · f∗T ]′ and F∗4 = [1T F∗] .

Furthermore, even without taking a stand on a factor structure (or, equivalently, set-
ting the number of factors equal to the number of time periods, T ) we can consistently
estimate the SDF for gross returns with some restrictions on the residual variances and
the sequential asymptotics of N →∞ and then T →∞. It is worth emphasizing that
the SDF estimator for the gross returns in this case is identical to the agnostic estimator
proposed by Pukthuanthong and Roll (2017).
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Proposition 2.1. Let Assumptions 1 and 2 hold. Under the homoskedasticity condition
of 1

N
E′E p→ sIT , it holds that as N → ∞ and then T → ∞, m̆t converges to mt given

by (2.5), when m̆t is defined by

m̆t = ι′t

(
R′R
NT 2

)−1 (R′1N
NT

)
, (2.17)

where ιt is the (T × 1) vector of zeros except the t-th element of one.

The Pukthuanthong and Roll estimator is totally agnostic as to the number of pervasive
factors. Our estimator of (2.5) in Theorem 2.1 is equivalent to that of Pukthuanthong
and Roll when we let K = T .3 Also, this estimator is closely related to the risk-premia
PCA method proposed by Lettau and Pelger (2018). Lettau and Pelger (2018) suggest
to put positive weight to the information of the realized risk premia in extracting
systematic factors. In fact, the estimator by Pukthuanthong and Roll is a multiple of
the first extracted factor by Lettau and Pelger (2018) when the infinite weight is put
on the realized risk premia.

2.2 Unbalanced Panel Estimator

Since the estimators proposed in the previous subsection utilize the full balanced panel,
they are appropriate for the case with a large number of portfolios over a long horizon.
However, if empirical researchers wish to use individual stocks to construct the SDF,
the estimators are problematic due to the survivorship biases induced by requiring a
balanced panel of individual assets. Additionally, the estimators are biased for finite
time series samples. To see this, note that Rm

T
= RF4

T
δ = E

[
Rm
T

]
+ u = 1N +

u. However, −u is the error in the regression of 1N on RF∆
T

, so the error term is
clearly correlated with the regressor. As T approaches to infinity, the pricing error u
approaches zero as does the bias. In our simulation below the bias is substantial for
time series sample sizes typically used in practice.

In this section, we propose estimators that deal with unbalanced panel data by
3Let m̃ = [m̃1 · · · m̃T ] and m̆ = [m̆1 · · · m̆T ] . Then, when K = T, it holds that

m̃ = F4δ̃ = F4
(F′4R′RF4

NT 2

)−1(F′4R′1N
NT

)
= F4F−1

4

(
R′R
NT 2

)−1 (
F′4
)−1 F′4

(
R′1N
NT

)
= m̆.
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estimating the SDF over non-overlapping time periods of length τ with the number of
blocks increasing as T approaches infinity. Since the estimators proposed in Theorem
2.1 (and the estimator of Pukthuanthong and Roll (2017) in Proposition 2.1) are biased
for finite values of T , we propose a bias correction for the SDF estimators.

We formalize the data structure of our unbalanced panel. We split the time period
of length T into B non-overlapping time blocks of length τ such that T = Bτ . We fix
τ . Hence, as T increases, B increases. We use b = 1, · · · , B as an index of time blocks.
For example, the first block of b = 1 covers the time period t = 1, · · · , τ , and the second
block of b = 2 covers the time period t = τ + 1, · · · , 2τ . For a given block, b, we use all
individual stocks with full return data over that time block, t = (b− 1) τ + 1, · · · , bτ.
Although this restriction can be relaxed by assuming missing-at-random within a block
(as in Connor and Korajczyk (1987) and Stock and Watson (1998)), we assume full time
series returns in a single time block for simplicity. Hence, we require balanced panel
within a specific block but allow unbalanced panel across blocks. We relabel stocks in
block b with the index of i[b] = 1, · · · , N[b], where N[b] is the number of individual stocks
with full returns over the b-th time block.

Next, we express the observed return generating process in the b-th time block
similarly to the original full-panel representation of (2.11) and (2.12):

R[b] = λ01N[b]1
′
τ + B[b] (λf − µf ) 1′τ + B[b]F′[b] + E[b], (2.18)

and
Re,[b] = B[b] (λf − µf ) 1′τ + B[b]F′[b] + E[b], (2.19)

where the
(
i[b], s

)
element of the

(
N[b] × τ

)
matrices of R[b] and Re,[b] are Ri[b],(b−1)τ+s

and Re
i[b],(b−1)τ+s, respectively, 1m is the (m× 1) vector of ones, the i[b]-th row of the(

N[b] ×K
)
matrix of B[b] is β′i[b] , the s-th row of the (τ ×K) matrix of F[b] is f ′(b−1)τ+s,

and the
(
i[b], s

)
element of the

(
N[b] × τ

)
matrix of E[b] is ei[b],(b−1)τ+s.

2.2.1 SDF Estimator

To construct a consistent SDF estimator using unbalanced panel data, we need the
following conditions within and across blocks.

Assumption 4. As N, T →∞, the following hold:
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(i) N[b] →∞,
(ii) 1

N[b]
B′[b]1N[b] → µβ,

1
N[b]

B′[b]B[b] → Vβ = Σβ+µβµ
′
β,

1
N[b]

E′[b]1N[b]

p→ 0τ , 1
N[b]

E′[b]B[b]
p→

0τ×K and E′[b]E[b]

N

p→ Ve,[b], where Ve,[b] is a (τ × τ) diagonal matrix. There exists a pos-
itive constant M1 <∞ such that the maximum eigenvalue of Ve,[b] is smaller than M1

for all b,
(iii) 1

B
|| 1
N[b]

B′[b]1N[b] − µβ|| → 0, 1
B
|| 1
N[b]

B′[b]B[b] − Vβ|| → 0, 1
B
|| 1
N[b]

E′[b]1N[b] ||
p→ 0,

1
B
|| 1
N[b]

E′[b]B[b]||
p→ 0, and 1

B
||

E′[b]E[b]

N
−Ve,[b]||

p→ 0, where ||A|| = trace (A′A) .

The condition (i) is for the availability of large cross-sectional data in each time block.
It is worth highlighting that the first two limits of condition (ii) allow the beta at the
individual-stock level to vary over time. We require that only the first two moments of
the cross-sectional distribution factor loadings be stable over time. Also, note that from
the last limit of E′[b]E[b]

N

p→ Ve,[b] in condition (ii), the variance of residuals can vary within
a block as well as across blocks, as in Jones (2001). The condition (iii) simply states
that the block-wise averages of squared errors in the realized cross-sectional moments
disappear with large N, T.

Besides, we need the following regularity condition on the behavior of factors in our
short time-block structure.

Assumption 5. Fix a continuous function of F[b]; g : Rτ×K → Rm. Then, there exists
a positive number Mg <∞ such that limT→∞

1
B

∑B
b=1 g

(
F[b]

)
< Mg.

Assumption 5 simply restricts the behavior of factor realizations to be stationary enough
so that the block-wise averages do not explode as T increases. In fact, Assumptions
5 and 4(iii) guarantees that the block-wise average of the interaction between cross-
sectional errors and a function of factors becomes negligible.

So far, we specified all the necessary assumptions to construct a stochastic discount
factor utilizing unbalanced panel data. Before we present our main theorem, we need
to introduce an estimator of Ve,[b], which will be an essential element of our small-τ
bias correction. A bias correction in a short time series has been addressed in other
papers (Litzenberger and Ramaswamy (1979), Shanken (1992)), and the relation of our
correction to those papers is discussed below. We utilize the estimator of Ve,[b] proposed
by Kim and Skoulakis (2018b).
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Lemma 2.1. Let Assumptions 1, 4, and 5 be in effect. Define V̂e,[b] by

V̂e,[b] = diag
(H[b] �H[b]

)−1
S ′vec

Ê′[b]Ê[b]

N[b]

 , (2.20)

where

H[b] = Jτ − JτF[b]
(
F′[b]JτF[b]

)−1
F′[b]Jτ , (2.21)

Jτ = Iτ −
1
τ

1τ×τ ,

the operator � denotes the Hadamard product (entry-wise product), the (i, j)-th element
of the (τ 2 × τ) selection matrix of S is given by 1 (i = (j − 1) τ + j), and the (N × τ)
matrix of Ê[b] is defined, for the case of using the gross returns, by Ê[b] = R[b]H[b]

and, for the case of using excess returns, by Ê[b] = Re,[b]H[b]. Then, as N, T → ∞,
V̂e,[b]

p→ Ve,[b] for each b = 1, · · · , B.

The intuition of the estimator defined by (2.20) follows. Given the expressions of R[b]

and H[b] in (2.18) and (2.21), respectively, it holds that Ê[b] = R[b]H[b] = E[b]H[b].

Hence, Assumption 4(ii) implies that Ê′[b]Ê[b]

N[b]
= H[b]

(
E′[b]E[b]

N[b]

)
H[b]

p→ H[b]Ve,[b]H[b]. To

extract the diagonal matrix of Ve,[b] in the probability limit of Ê′[b]Ê[b]

N[b]
, we manipulate

the matrix of Ê′[b]Ê[b]

N[b]
as in (2.20).

Lastly, the following theorem asserts that a consistent estimator of the SDF can be
constructed with unbalanced panel data.

Theorem 2.2. Under Assumptions 1, 4, and 5, as N, T → ∞, m̂t = δ̂0 + f ′t δ̂f and
m̂e,t = 1 + f ′t δ̂e converge to mt and me,t given in (2.5) and (2.9), respectively, when the
((K + 1)× 1) vector of δ̂ =

[
δ̂0 δ̂′f

]′
and the (K × 1) vector of δ̂e are constructed by

δ̂ = D̂−1Û (2.22)

δ̂e = −D̂−1
e Ûe, (2.23)

where F4,[b] =
[
1τ F[b]

]
and
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D̂ =
(

F′4F4
T

)
1
B

B∑
b=1

d[b], (2.24)

d[b] =
(F′4,[b]F4,[b]

τ

)−1F′4,[b]R′[b]R[b]F4,[b]
N[b]τ 2 −

F′4,[b]V̂e,[b]F4,[b]
τ 2

 ,
Û = 1

B

B∑
b=1

u[b], (2.25)

u[b] =
F′4,[b]R′[b]1N[b]

N[b]τ
,

D̂e =
(

F′F4
T

)
1
B

B∑
b=1

de,[b], (2.26)

de,[b] =
(F′4,[b]F4,[b]

τ

)−1F′4,[b]R′e,[b]Re,[b]F[b]

N[b]τ 2 −
F′4,[b]V̂e,[b]F[b]

τ 2

 ,
Ûe =

(
F′F4
T

)
1
B

B∑
b=1

ue,[b], (2.27)

ue,[b] =
(F′4,[b]F4,[b]

τ

)−1F′4,[b]R′e,[b]Re,[b]1τ
N[b]τ 2 −

F′4,[b]V̂e,[b]1τ
τ 2

 ,
and V̂e,[b] is given in (2.20).

The intuition behind Theorem 2.2 follows. We focus on the case of δ̂ given by (2.22)
because the underlying intuition can be applied to δ̂e given by (2.23) in a similar
manner. First, compare the expression of δ̂ in (2.22) with that of δ̃ in (2.13). The
matrices D̂ and Û given by (2.24) and (2.25) are designed to mimic D̃ =

(
F′4R′RF4

NT 2

)
and Ũ =

(
F′4R′1N
NT

)
in (2.13), respectively. Note that Û is the average of the block-wise

analogue of F′4R′1N
NT

across blocks. In fact, it turns out that the probability limits of
Û and Ũ are identical under Assumptions 1-5. Next, we provide the intuition that D̂
mimics D̃. For expositional simplicity, we consider the traded-factor case, i.e., λf = µf .

Then, the return generating process of (2.3) can be rewritten as follows:

R[b] = XF′4,[b] + E[b],

where X =
[
λ01N[b] B[b]

]
. Then, with the realized value of the linear SDF over the b-th
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block, denoted by the (τ × 1) vector of m[b] = F4,[b]δ, the realized mispricing can be
written as

1N,[b] −
R[b]m[b]

τ
= 1N,[b] −

R[b]F4,[b]
τ

δ = 1N,[b] −
(

X
F′4,[b]F4,[b]

τ
+ E[b]F4,[b]

τ

)
δ.

Hence, if we simply regress the true price of 1N,[b] on R[b]F4,[b]
τ

to estimate δ, a bias
will be induced by the non-negligible term of E[b]F4,[b]

τ
with the finite τ in the regressor.

That is, even though this term has zero expectation and disappears as τ approaches
infinity, it is nonzero for any finite τ. This is why we need to deduct F′4,[b]V̂e,[b]F4,[b]

τ2

(mimicking F′4,[b]E
′
[b]E[b]F4,[b]
N[b]τ2 ) from F′4,[b]R

′
[b]R[b]F4,[b]
N[b]τ2 as in (2.24), while we do not need

such an adjustment for F′4R′RF4
NT 2 in (2.13). Furthermore, we need a slight adjustment

of multiplying the inverse of the sample moment
(

F′4,[b]F4,[b]
τ

)
over the b-th block to

properly average the adjusted values across blocks, and then we rescale the adjustment
by multiplying the sample moment

(
F′4F4
T

)
calculated over the whole time series. We

incorporate these modifications to D̂ given by (2.25) and find that D̂ using unbalanced
panel data recovers the probability limit of D̃ = F′4R′RF4

NT 2 using balanced panel data.
Recall that, in the previous subsection on the balanced panel estimator, we show

that the stochastic discount factor can be consistently estimated even without observing
the true factors (see Corollary 2.1) through PCA-based methods. We find that the
unbalanced panel estimator also has such a desired property. In fact, we can recover
SDF consistently with the estimated factors using the same SDF estimator for the
unbalanced panel data. The following corollary confirms that the unbalanced panel
estimators in Theorem 2.2 still recover the true stochastic discount factors.

Corollary 2.2. Under Assumptions 1, 3, 4 and 5, it holds that m̂∗t = δ̂∗0 + f∗′t δ̂∗f and
m̂∗e,t = 1+ f∗′t δ̂∗e converge to mt and me,t given by (2.5) and (2.9), respectively, when the
((K + 1)× 1) vector of δ̂∗ =

[
δ̂∗0 δ̂∗′f

]′
and the (K × 1) vector of δ̂∗e are constructed by

δ̂∗ =
(
D̂∗
)−1

Û∗ (2.28)

δ̂∗e = −
(
D̂∗e
)−1

Û∗e. (2.29)

The matrices of D̂∗, Û∗, D̂∗e, and Û∗e are the analogues of D̂, Û, D̂e, and Ûe where
F, F4, F[b], and F4,[b] are replaced by F∗, F∗4 = [1T F∗] , F∗[b], and F∗4,[b] =

[
1τ F∗[b]

]
,
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respectively.

2.2.2 Asymptotic Variance

We examine the asymptotic variance of our SDF estimator for unbalanced panel data.
In particular, we analyze the asymptotic distribution of δ̂ and δ̂e defined in Theorem
2.2.

We require additional regularity conditions on the panel data structure and impose
smoothness on the behavior of cross-sectional and time-series variables.

Assumption 6. As N, T →∞, the following conditions hold:
(i) there exists a small positive constant δ such that and N1−δ

T
→∞ and N[b]

N
> δ for all

b = 1, · · · , B,
(ii)

√
N[b]

(
1
N[b]

B′[b]1N[b] − µβ
)

d→ N
(
0,V1,[b]

)
,
√
N[b]

(
vec

(
1
N[b]

B′[b]B[b] −Vβ

))
d→ N

(
0,V2,[b]

)
,√

N[b]
(

1
N[b]

E′[b]1N[b]

)
d→ N

(
0,V3,[b]

)
,
√
N[b]

(
vec

(
1
N[b]

E′[b]B[b]
))

d→ N
(
0,V4,[b]

)
,√

N[b]

(
vec

(
E′[b]E[b]
N −Ve,[b]

))
d→ N

(
0,V5,[b]

)
, and there exists a positive constant M1 <

∞ such that the maximum eigenvalue of Vi,[b] is smaller than M1 for all i = 1, · · · , 5
and b = 1, · · · , B,
(iii)

√
T vec

(
1
T

F′4F4 −V4,f
)

d→ N (0,Vf2) where limT→∞
F′4F4
T

= V4,f and Vf2 is a
(K + 1)× (K + 1) positive semidefinite matrix.

The condition (i) states that the cross-sectional size in each block does not grow at the
slower rate than the total cross-sectional size and that the size of cross-section grows
at a slightly faster rate than that of time-series, which are reasonable to describe the
structure of the individual stock return data. The condition (ii) strengthens Assumption
4(ii) by constraining that various cross-sectional errors are distributed in a manner such
that the central limit theorem is applied in the cross-sectional dimension. Similarly,
the condition (iii) requires that the product of factors behaves smoothly enough so that
the central limit theorem kicks in over time.

By adding the above assumption, we can identify the asymptotic distribution of δ̂
and δ̂e. Noting that δ̂ = D̂−1Û and δ̂e = D̂−1

e Ûe as shown in Theorem 2.2, we see
that the asymptotic distribution of δ̂ (δ̂e) is determined by the asymptotic distribution
of D̂ and Û (D̂e and Ûe). Denote D, U, De and Ue be the probability limits of D̂,
Û, D̂e and Ûe, respectively. Then, after some algebra (see Lemmas A.31-A.34 in the
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appendix), we find that

√
Tvec

(
D̂−D

)
= ΠD

√
Tvec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

√
T
(
Û−U

)
= ΠU

√
Tvec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

√
Tvec

(
D̂−De

)
= ΠDe

√
Tvec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

√
T
(
Ûe −Ue

)
= ΠUe

√
Tvec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

where the expressions of ΠD, ΠU , ΠDe , ΠUe are given in Lemmas A.31, A.32, A.33,
A.34, respectively.

Next, using the delta method and the above distributions of D̂, Û, D̂e and Ûe, we
establish the asymptotic distribution of δ̂ and δ̂e in the following theorem.

Theorem 2.3. Under Assumptions 1, 4, 5, 6, as N, T →∞,

√
T
(
δ̂ − δ

)
d→ N (0,Σδ)

and √
T
(
δ̂e − δe

)
d→ N (0,Σδe) ,

where
Σδ = ΨΠVf2Π′Ψ, Ψ = [1 − δ′]⊗D−1 Π = [Π′U Π′D]′

and
Σδe = ΨeΠeVf2Π′eΨe, Ψe = − [1 δ′e]⊗D−1

e Πe =
[
Π′Ue Π′De

]′
.

See Lemmas A.31, A.32, A.33, A.34 for the expressions of ΠD, ΠU , ΠDe , ΠUe and
Lemmas A.15, A.16 for the expressions of D, U, De and Ue.

Note that the expressions of Ψ and Ψe are given by the delta method and that the
middle part of ΠVf2Π′ (ΠeVf2Π′e), which is determined by the joint distribution of
D̂ and Û (D̂e and Ûe).

Finally, we propose an estimator for the asymptotic variance. From the above
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theorem, we have the following equation:

√
T
(
δ̂ − δ

)
= Ψ
√
T

 Û−U
vec

(
D̂−D

)
+ op (1) .

Because we can readily construct a consistent estimator for Ψ from Theorem A.5, we

focus on the estimation of the asymptotic variance of
√
T

 Û−U
vec

(
D̂−D

)
 , orΠVf2Π′.

For the estimation for ΠVf2Π′, we assume the block-wise independence of factors as
follows:4

Assumption 7. As T →∞,

1
B

B∑
b=1

vec
(F′4,[b]F4,[b]

τ
−V4,f

)
vec

(F′4,[b]F4,[b]
τ

−V4,f
)′
→ 1

τ
Vf2 .

Note that Û and D̂ in Theorem 2.2 are expressed as the summation across blocks.
Mimicking the summation expressions with proper adjustments, we define a block-wise
error term as

η[b] =

 u[b] − Û

vec
(

F′4F4
T

d[b] − D̂
)

+ vec
(

F′4,[b]F4,[b]
τ

1
B

(∑B
b=1 d[b]

)
− D̂

)  . (2.30)

In fact, η[b] ∼ Πvec
(

F′4,[b]F4,[b]
τ

−V4,f
)
and it turns out that 1

B

∑B
b=1 η[b]η

′
[b]

p→ 1
τ
ΠVf2Π′

(See Lemma A.40 for details). Similarly, for the excess return case, we define

ηe,[b] =


(

F′F4
T

ue,[b] − Ûe

)
+
(

F′[b]F4,[b]
τ

1
B

(∑B
b=1 ue,[b]

)
− Ûe

)
vec

(
F′F4
T

de,[b] − D̂e

)
+ vec

(
F′[b]F4,[b]

τ
1
B

(∑B
b=1 de,[b]

)
− D̂e

)
 , (2.31)

which is motivated by the expressions of Ûe and D̂e in Theorem 2.2. Using this recon-
structed error term, we can achieve that 1

B

∑B
b=1 ηe,[b]η

′
e,[b]

p→ 1
τ
ΠeVf2Π′e.

Collecting the above results, we propose estimators for Σδ and Σδe . The consistency
of those estimator is established in the following theorem.

4We can relax this assumption to incorporate cross block dependency. However, we do not find
a standard approach to handle time series dependency across time series blocks. Hence, we assume
block-wise dependency. We can construct a consistent variance estimator by accordingly modifying
the estimator to reflect the dependency across blocks.
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Theorem 2.4. Under Assumptions 1, 4-7, as N, T →∞,

Σ̂δ = τΨ̂

(
1
B

B∑
b=1

η[b]η
′
[b]

)
Ψ̂′

p→ Σδ

Σ̂δe = τΨ̂e

(
1
B

B∑
b=1

ηe,[b]η
′
e,[b]

)
Ψ̂′e

p→ Σδe ,

where Ψ̂ =
[
1 − δ̂′

]
⊗ D̂−1, Ψ̂e = −

[
1 δ̂′e

]
⊗ D̂−1

e , and η[b] and ηe,[b] are given by (2.30)
and (2.31), respectively.

Finally, combining the results in Theorems 2.2, 2.3, 2.4, we develop a feasible test on
whether the k-th factor of a given asset pricing model requires significant discounting
in the large panel data or not. In particular, under the null that it does not require
discounting, we can use the following distribution to test the null hypothesis:

√
T

δ̂ (k + 1)√
Σ̂δ (k + 1, k + 1)

,
√
T

δ̂e (k)√
Σ̂δe (k, k)

∼ N (0, 1) ,

where x (i) represents the i-th element in the vector x and X (i, j) represents the (i, j)-th
element in the matrix X.

3 Performance of the SDF estimators in a simulated
economy

We provide the simulation evidence on the properties of our SDF estimators. We
simulate economies that are constructed so that returns follow a strict K-factor model
and compare the estimated SDF with the true SDF. The simulation design is similar
to that in Chen et al. (2018).

3.1 Calibration

To simulate returns, we need to take a stance on the return generating process in (2.3).
We consider three return generating processes implied by the CAPM, the Fama and
French (1993) three-factor model (FF3), and the Fama and French (2015) five-factor
model (FF5). For monthly factor returns of the three models as well as the risk-free
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return, we use data from Ken French’s database.5 In particular, we use the U.S. value-
weighted stock market excess returns for all of the three models, SMB (small minus
big) and HML (high minus low) factors for FF3 and FF5, and RMW (robust minus
weak) and CMA (conservative minus aggressive) factors for FF5. We use the factor
realizations over 600 months (January 1967 to December 2016) to estimate the first two
moments of the factors: µf = 1

600
∑600
t=1 ft and Σf = 1

600−1
∑600
t=1 (ft − µf ) (ft − µf )′ . The

riskless gross return is estimated as the average of the gross realized risk-free return
over the same period: λ0 = 1

600
∑600
t=1 Rf,t.

To obtain the parameters for a large number of assets in the simulation, we exploit
all available individual stock returns over 600 months (January 1967 to December 2016)
from the CRSP monthly database. We estimate the factor betas (βi) and the variances
of residual returns

(
σ2
i,ε = E

[
ε2
i,t

])
of individual stocks by regressing the excess returns

of Ri,t −Rf,t on a constant and a vector of factor returns:

Ri,t −Rf,t = αi + β′ift + ei,t.

After this process, we have the estimated betas (βi) and the variance of residual returns(
σ2
i,e = E

[
e2
i,t

])
for each 14,277 individual stocks that have more than 60 observations

over our sample period, January 1967 to December 2016.

3.2 Simulation Evidence

We simulate economies for the three asset pricing models of CAPM, FF3, and FF5 with
N stocks over T periods, where N and T are set by N = 500, 1,000, 2,000, and 4,000
and T =60, 120, 240, and 480. The N stocks are randomly selected, with replacement,
from 14,277 stocks available on CRSP over our sample period. If the j-th asset in the
simulation is chosen to be asset i from CRSP, then it is assigned the beta vector(βi) and
the variance of residual returns

(
σ2
i,e = E

[
e2
i,t

])
calibrated for the i-th stock in CRSP.

We draw ft ∼ N (µf ,Σf ) and ei,t ∼ N
(
0, σ2

i,e

)
for t = 1, · · · , T and j = 1, · · · , N

in each repetition. With the calibrated βi and λ0 and the simulated ft and ei,t, the
return process described in (2.3) can be generated. Note that λf = µf in this economy
because ft is traded for the three asset pricing models under consideration.

We examine the performance of our SDF estimator by comparing the estimated
5See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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SDF with the true SDF given by (2.5) for gross returns and (2.9) for excess returns.
In particular, since the estimated SDF, asymptotically, is the true SDF plus estimation
error, we regress the estimated SDF m̂ on a constant and the true SDF m:

m̂t = a+ b ·mt + errort.

If the fit to the true SDF is perfect, R2 is 1, the intercept (a) is zero, and the coefficient
on the true SDF (b) is 1. We use these three statistics of R2, a, and b as metrics for the
performance of the SDF estimator. We report the mean of the estimated R2, a, and b
across 10,000 repetitions.

Tables 1 (gross returns) and 2 (excess returns) report the SDF estimator perfor-
mance in an economy where the RGP follows FF5. We repeat the same exercise for the
CAPM as well as FF3 and report those results in Tables A1-A4, in the online Appendix.
Panel A of each table shows the performance of the unbalanced panel estimators de-
rived in Theorem 2.2. We set τ = 30. Hence, T =60, 120, 240, and 480 corresponds to
B =2, 4, 8, and 16. Under the infeasible assumption of observability of full panel data,
Panel B of each table reports the results from estimators in Theorem 2.1 to highlight (i)
the good performance of our unbalanced panel estimator (Panel A) over the balanced
(hence infeasible at individual stock level) panel estimator (Panel B) and (ii) the im-
portance of corrections in our unbalanced panel estimator for bias reduction. Note that
the balanced panel estimators in Theorem 2.1 can be interpreted as special cases of the
unbalanced panel estimators in Theorem 2.2 where there is only one block without any
bias correction. Furthermore, to investigate the implication of Corollaries 2.1 and 2.2,
stating that our SDF estimators are robust to the case of using estimated factors, we
consider both cases of using true factors (Panels A-1 and B-1) and estimated factors
(Panels A-2 and B-2). To estimate pervasive factors, we use the asymptotic principal
components (APC) method of Connor and Korajczyk (1986) applied to the simulated
returns. Also, to emphasize the importance of small T bias correction even in the full
panel data (which can be practically applicable to large cross section of portfolios), we
report the results of our SDF estimator with bias correction in Panel B-3 and B-4 by
treating the full panel over T as a single block. Lastly, for comparison, we report the
performance of Pukthuanthong and Roll (2017) estimator in Panel C of Table 1 for
gross returns. Note that Pukthuanthong and Roll’s (2017) estimator is not applicable
to excess returns.
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In terms of R2, the performance using true factors and estimated factors becomes
similar as N and T increase. For example, in Panel A of Table 2, when N = 4000 and
T = 480, the average R2 is 0.91 for the case using the true factors and 0.85 for the
case using estimated factors. The bias for the intercept (a) and slope (b) in Panel B-1
of Table 1 is attenuated in Panel A-1 due to the correction terms in the unbalanced
panel estimator when N and T are large. However, when N is small, the unbalanced
panel estimator still suffers from the bias due to the errors in the estimated factors
(Panels A-1 versus) A-2. Interestingly, the comparison between Panels B-1 and B-3 or
Panels B-2 vs B-4 of Table 1 reveals that the bias correction is quite effective even in
the balanced estimator. We report the performance of Pukthuanthong and Roll (2017)
estimator in Panel C of Table 1. We first note that their estimator has much lower
R2 than ours. For example, for N = 2000 and T = 480, the average R2 is only 13%.
Additionally the average R2 values actually decline as T increases.6 This evidence shows
that being slightly less agnostic by imposing a more restrictive factor structure on asset
returns and using a small number of extracted factors leads to significant improvement
in the performance of the estimated SDF, compared to the fully agnostic approach by
Pukthuanthong and Roll (2017). Also, their estimator has bias in the intercept (a) and
slope (b) especially with small T.

We investigate the SDF specification tests using our unbalanced panel estimator
in Theorem 2.2 and the variance estimator in Theorem 2.4. In particular, we focus
on the empirical rejection frequencies of t-statistics for each coefficient in SDF. Table
3 (4) reports the rejection frequency when the gross (excess) returns follows CAPM
(Panel A), FF3 (Panel B) and FF5 (Panel C). We allow N = 1000, 2000 and (T, τ) =
(450, 30) , (750, 50) , (600, 30) , (1000, 50) to cover various cases of empirically relevant
sample sizes. We consider three nominal levels of significance, 1%, 5%, and 10%, and
compute the corresponding empirical rejection frequencies from 10,000 Monte Carlo
repetitions. The reported figures show that our novel tests yield rejection frequencies
reasonably close to the corresponding nominal levels of significance.

The simulation exercise shows that our SDF estimators have some desirable proper-
ties. As N and T increase to a size typical of financial panel data in developed markets,
R2 in the regression of the estimated SDF on the true SDF approaches 1. Furthermore,

6Some readers may find this result puzzling, given Proposition 2.1. However, untabulated simulation
results show that increasing N to 1 million yields R2 values for the Pukthuanthong and Roll (2017)
estimator close to 1.
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the intercept (slope) converges to 0 (1) with large, but empirically relevant, values of
N and T. Also, we find that SDFs based on APC factor estimates perform similarly to
those using known factors when N is large. The SDF estimators for the excess returns
suffer less from the small T bias and show faster convergence to the true SDF than
the estimators for the gross returns. Resorting to the superior performance of SDF
estimators using excess returns relative to those using gross returns, we mainly focus
on the estimators utilizing excess returns in our empirical results, reported below.

4 Empirical Application

In this section, we apply our SDF estimator to U.S. individual stock return data. Recall
that our SDF estimator can be used either for a set of factors proposed by a specific
asset pricing model (e.g., Sharpe’s (1964) CAPM) or a set of statistical factors (e.g,
Connor and Korajczyk (1986)) or non traded factors. Hence, we consider various cases.

In particular, we consider eight asset pricing models in total. The first set of six
models are those with a specific set of factors and the second set of two models are with
statistical factors. The list of models in the first set is as follows: CAPM, FF3, HXZ4
(Hou et al. 2015), FF5 (Fama and French, 2015), PS5 (Pástor and Stambaugh, 2003),
BS6 (Barillas and Shanken, 2017) and two asset pricing models with statistical factors.
As noted above, the CAPM is a model with a single factor of market excess return. FF3
considers two additional factors of size (SMB) and value (HML). HXZ4 augment the
set of factors by adding profitability (ROE) and investment (I/A). However, they drop
the value factor with the claim that the value factor becomes redundant with their two
new factors. FF5 use different factors for profitability (RMW) and investment (CMA).
Also, we specifically consider PS5 which contains a non-traded liquidity factor. They
propose a five factor model which extends FF3 by including momentum (MOM) and
non-traded liquidity (LIQ) factors. BS6 revive the value factor by using the monthly
updated version (HML devil) in conjunction with the momentum (MOM) factor. Bar-
illas and Shanken (2017) argue that the model with the six factors of market, size,
value, momentum, profitability (ROE) and investment (I/A) performs the best relative
to other potential combinations.7

7We obtain factors for CAPM, FF3, FF5 from French’s database and those for HXZ4 from the
authors of Hou et al. (2015). The non-traded liquidity factor (LIQ) is from Pástor’s web site
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Besides, we exploit Corollary 2.2, confirming that our SDF estimator is applicable to
statistical factors, by using statistical factors from the methods in Connor and Korajczyk
(1986, 1991). In particular, we extract factors from individual stock returns in a single
block. Then, to overcome the rotational indeterminancy, we regress FF3 factors on the
extracted factors to find a proper rotation and splice the rotated factors across blocks.

We explain the filters that we apply to individual stock return data. We consider
all individual stocks which were traded in the three main exchanges of NYSE, AMEX,
and NASDAQ over our sample period of 50 years from January 1967 to December 2016.
The share code is required to be 10 or 11 so that only common stocks are included in
our sample. We apply price filter of five dollars at the beginning of each month. After
applying the three filters, we obtain 10,112 individual stocks. Note that in applying our
SDF estimator in Theorem 2.2 and the associated tests in using the variance estimator
in Theorem 2.4, we need to specify the block structure to the data. We split the total
600 months data from January 1967 to December 2016 into 20 blocks with equal length
of 30 months. The first block is from January 1967 to June 1969 and the last block
is from July 2014 to December 2016.8 The number of stocks are ranged from 1578 to
3443 with the average of 2455 over 20 blocks.

Table 5 reports the estimates δ̂e and the associated t-statistics under the null that
each factor does not enter the SDF. Recall that for the case of traded factors, the coef-
ficients of δe can be interpreted as the price of risk when the risk is measured by second
moments (See (2.10) with λf = µf ). For example, in a CAPM world, if the market risk
premium is 8%/year and the annual standard deviation of market return is 15%, the
coefficient on the market excess returns in the SDF is roughly −3.5

(
' − 0.08

0.152+0.082

)
.

For models only with traded factors, we report the alternative SDF coefficients, the
maximum Sharpe ratio portfolio weights −

(
Σ̂f + µ̂f µ̂

′
f

)−1
µ̂f below t-statistics. In

Panel A, the behavior of the estimated stochastic discount factor tend to align with
intuition. Interestingly, across all models, the coefficient on MKT is significant with the
expected negative sign. This finding is consistent with Gagliardini et al. (2016), which
find significant market risk premium in various models, and which concludes that the
cross-sectional ex-post risk premia on the market are similar to the time series average

https://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2017.txt. Lastly,
HML devil factor is available at https://www.aqr.com/library/data-sets.

8We also try different block sizes of 45 months and 60 months. The results are qualitatively and
quantitatively similar.
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of factor realizations over short horizons. We find that HML becomes almost negligible
in FF3 and the sign of coefficients on HML becomes flipped in FF5, which might be a
reflection of redundancy of HML as Hou et al. (2015) claim. However, it is interesting
to observe that HML or HML(devil) becomes significant along with MOM in PS5 or
BS6, respectively. In HXZ4, every factor is significant in the SDF at least 10% sig-
nificance level. From the results on PS5, we find that the non-traded liquidity factor
does not seem to be significantly priced in the cross-section of individual stocks. All
factors in BS6 except I/A appear to be important for pricing individual stocks. Lastly,
for overall comparison, we allow all factors, except HML to avoid multicollinearity, to
be in SDF and find that significantly priced factors agree with the results in BS6.9 We
turn to Panel B of Table 5. As explained before, we extract statistical factors using
the methods in Connor and Korajczyk (1986, 1991). PC1, PC2 and PC3 are statistical
factors, rotated to mimic MKT, SMB, HML factors, respectively. We find that PC1
is significantly priced in both one-factor and three-factor settings. However, PC2 and
PC3 do not appear to be significantly priced in the cross-section of individual stocks.
To show the robustness of our results to the choice of τ, we repeat the same exercise
with τ = 60 and report the results in Table A5, which are mostly consistent to Table 5.

5 Conclusion

While a large panel of unbalanced individual stock return data are available, the em-
pirical asset pricing literature has tended to utilize small numbers of portfolios in the
cross section to examine asset pricing models. Inspired by the agnostic SDF estimator
of Pukthuanthong and Roll (2017), we propose novel estimators of the stochastic dis-
count factor which are built on the intuition of minimizing the sum of squared pricing
errors across a very large cross section of assets. Our estimators can be applied to
prespecified factor models with either traded or non-traded factors as well as statistical
factor models, such as Asymptotic Principal Components.

Our estimators are designed to extend the agnostic estimator of Pukthuanthong and
Roll in several dimensions. We find that imposing a factor structure, rather than letting
the number of factors equal the number of time periods, as in the agnostic estimator,
leads to significant improvements in the precision of the SDF estimator. We propose

9We also try all factors without HML(devil) and find that HML is not significantly priced.
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a bias correction that allows us to estimate the SDF over shorter time intervals, thus
reducing selection biases from requiring a balanced panel of data. The SDF approach
helps overcome this issue since the estimated SDF is the product of the statistical
factors and a projection vector. Any rotation in the statistical factors is undone by the
projection vector chosen to minimize pricing errors. Simulation evidence shows that
our SDF estimators provide more precise and less biased estimates of the SDF in an
economy with asset risk matching that of the U.S. equity market. The bias correction
for unbalanced panels works well in eliminating the bias associated with small time-
series samples. When applied to actual return data, the relation between the estimated
SDF and the pervasive factors tend to be in line with long-run estimates of risk premia
and factor risks. We find that the market factor commands a significant premium when
pricing individual stocks across various models. The recently proposed factors in Hou
et al. (2015) and Fama and French (2015) command a significant risk premia. The
HML factor appears to be significant along with MOM factor as suggested by Barillas
and Shanken (2017).
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A Figures and Tables

Figure 1: Unbalanced Panel of CRSP Data
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The top graph shows the total number of individual stocks in the CRSP
NYSE/NASDAQ/AMEX database for at the beginning of each year: 1977-2016. The
bottom graph shows the proportion of individual stocks with missing returns over the
past 2.5, 5 or 10 years.
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Table 1: SDF Estimator Performance when Gross Returns Follow FF5

R2 intercept(a) slope(b)
Panel A: Unbalanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.19 0.20 0.23 0.27 -0.74 1.97 -0.30 -0.05 1.75 -1.10 1.30 1.06
1000 0.21 0.23 0.28 0.37 -0.46 0.10 -0.06 -0.01 1.44 0.91 1.06 1.02
2000 0.26 0.30 0.37 0.49 -0.12 -0.07 -0.02 -0.01 1.14 1.08 1.03 1.01
4000 0.31 0.38 0.49 0.63 -0.10 -0.03 -0.02 -0.01 1.12 1.04 1.02 1.02

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.19 0.22 0.27 0.36 0.21 0.30 0.30 0.30 0.80 0.70 0.70 0.70
1000 0.23 0.27 0.36 0.47 0.15 0.20 0.20 0.21 0.86 0.80 0.80 0.79
2000 0.26 0.34 0.45 0.59 0.13 0.12 0.13 0.13 0.88 0.88 0.87 0.87
4000 0.32 0.42 0.56 0.71 0.03 0.06 0.07 0.06 0.98 0.95 0.93 0.94

Panel B: (Infeasible) Balanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.49 0.67 0.81 0.90 0.45 0.28 0.16 0.09 0.56 0.72 0.84 0.91
1000 0.53 0.69 0.83 0.91 0.44 0.28 0.16 0.09 0.56 0.72 0.85 0.92
2000 0.55 0.72 0.84 0.91 0.44 0.28 0.16 0.09 0.56 0.73 0.84 0.91
4000 0.56 0.73 0.84 0.92 0.44 0.27 0.16 0.08 0.56 0.73 0.84 0.92

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.32 0.45 0.56 0.64 0.57 0.47 0.39 0.35 0.43 0.53 0.61 0.65
1000 0.40 0.53 0.65 0.72 0.53 0.41 0.32 0.27 0.47 0.59 0.68 0.73
2000 0.46 0.61 0.72 0.79 0.50 0.36 0.26 0.20 0.51 0.64 0.74 0.80
4000 0.51 0.67 0.78 0.86 0.47 0.32 0.21 0.14 0.53 0.68 0.79 0.86

B-3: With Observed Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.46 0.65 0.80 0.90 -0.13 -0.05 -0.02 -0.01 1.15 1.05 1.03 1.01
1000 0.51 0.69 0.83 0.91 -0.08 -0.03 -0.02 -0.01 1.10 1.03 1.03 1.01
2000 0.53 0.71 0.83 0.91 -0.05 -0.02 -0.01 0.00 1.07 1.03 1.01 1.01
4000 0.55 0.72 0.84 0.91 -0.04 -0.02 -0.01 -0.01 1.06 1.03 1.01 1.01

B-4: With Estimated Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.33 0.45 0.57 0.64 0.33 0.31 0.30 0.30 0.68 0.69 0.70 0.70
1000 0.40 0.54 0.65 0.72 0.22 0.21 0.21 0.21 0.79 0.79 0.80 0.79
2000 0.45 0.61 0.72 0.79 0.14 0.14 0.14 0.14 0.88 0.87 0.86 0.87
4000 0.50 0.66 0.78 0.86 0.07 0.07 0.07 0.06 0.94 0.94 0.93 0.94

Panel C: Pukthuanthong and Roll’s (2017) Estimator
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.11 0.09 0.05 0.00 0.46 0.29 0.17 0.09 0.55 0.71 0.83 0.92
1000 0.17 0.16 0.11 0.06 0.45 0.29 0.16 0.09 0.55 0.71 0.84 0.91
2000 0.24 0.24 0.20 0.13 0.45 0.28 0.17 0.09 0.55 0.72 0.83 0.91
4000 0.32 0.35 0.31 0.23 0.45 0.28 0.17 0.09 0.56 0.72 0.84 0.91

This table summarizes the performance of various SDF estimators for gross returns when the true
return generating process of each individual asset follows FF5. We consider different levels of N =
500, 1000, 2000, and 4000 and T = 60, 120, 240, and 480. We set τ = 30. After obtaining a time
series of estimates m̂t for t = 1, · · · , T , we regress the estimated SDF m̂ on a constant and the true
SDF m: m̂t = a+ b ·mt+ errort. If the fit to the true SDF is perfect, R2 is 1, the intercept (a) is zero,
and the coefficient on the true SDF (b) is 1. We report the mean of the estimated R2, a, and b across
10,000 repetitions. 34



Table 2: SDF Estimator Performance when Excess Returns Follow FF5

R2 intercept(a) slope(b)
Panel A: Unbalanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.38 0.55 0.71 0.83 -0.08 -1.18 -0.01 0.00 0.92 1.97 0.90 0.90
1000 0.46 0.63 0.77 0.87 -0.02 0.00 -0.01 0.00 0.87 0.88 0.90 0.90
2000 0.51 0.67 0.80 0.89 0.00 0.00 0.00 0.00 0.85 0.88 0.89 0.90
4000 0.54 0.70 0.82 0.91 0.00 0.00 0.00 0.00 0.84 0.88 0.89 0.90

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.33 0.45 0.56 0.63 0.28 0.27 0.26 0.26 0.59 0.63 0.65 0.66
1000 0.40 0.53 0.64 0.72 0.20 0.19 0.18 0.18 0.67 0.71 0.73 0.74
2000 0.45 0.60 0.71 0.78 0.13 0.12 0.12 0.12 0.72 0.77 0.78 0.79
4000 0.50 0.65 0.77 0.85 0.08 0.07 0.06 0.06 0.77 0.82 0.83 0.85

Panel B: (Infeasible) Balanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.55 0.70 0.82 0.90 0.00 0.00 0.00 0.00 0.85 0.88 0.89 0.90
1000 0.56 0.71 0.84 0.91 0.00 0.00 -0.01 0.00 0.85 0.88 0.90 0.90
2000 0.56 0.72 0.84 0.91 0.00 0.00 0.00 0.00 0.84 0.88 0.89 0.90
4000 0.57 0.73 0.84 0.92 0.00 0.00 0.00 0.00 0.84 0.88 0.89 0.90

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.34 0.47 0.57 0.64 0.28 0.27 0.26 0.26 0.59 0.63 0.65 0.67
1000 0.41 0.54 0.66 0.73 0.19 0.19 0.18 0.18 0.67 0.71 0.73 0.74
2000 0.46 0.61 0.72 0.79 0.13 0.12 0.12 0.12 0.72 0.77 0.78 0.79
4000 0.50 0.66 0.78 0.86 0.08 0.07 0.06 0.06 0.77 0.82 0.83 0.85

B-3: With Observed Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.47 0.66 0.81 0.90 0.00 0.00 0.00 0.00 0.85 0.88 0.89 0.90
1000 0.52 0.69 0.83 0.91 0.00 0.00 -0.01 0.00 0.85 0.87 0.90 0.90
2000 0.54 0.71 0.83 0.91 0.00 0.00 0.00 0.00 0.84 0.88 0.89 0.90
4000 0.55 0.72 0.84 0.92 0.00 0.00 0.00 0.00 0.84 0.88 0.89 0.90

B-4: With Estimated Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.34 0.47 0.57 0.64 0.28 0.27 0.26 0.26 0.59 0.63 0.65 0.67
1000 0.41 0.54 0.66 0.73 0.19 0.19 0.18 0.18 0.67 0.71 0.73 0.74
2000 0.46 0.61 0.72 0.79 0.13 0.12 0.12 0.12 0.72 0.77 0.78 0.79
4000 0.50 0.66 0.78 0.86 0.08 0.07 0.06 0.06 0.77 0.82 0.83 0.85

This table summarizes the performance of various SDF estimators for excess returns when the true
return generating process of each individual asset follows FF5. We consider different levels of N =
500, 1000, 2000, and 4000 and T = 60, 120, 240, and 480. We set τ = 30. After obtaining a time
series of estimates m̂t for t = 1, · · · , T , we regress the estimated SDF m̂ on a constant and the true
SDF m: m̂t = a+ b ·mt+ errort. If the fit to the true SDF is perfect, R2 is 1, the intercept (a) is zero,
and the coefficient on the true SDF (b) is 1. We report the mean of the estimated R2, a, and b across
10,000 repetitions.
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B Proofs

Proof of Theorem 2.1 First, we show that δ̃ p→ δ, implying m̃t
p→ mt. From Lemma A.2,

we have that

δ̃ = D̃−1Ũ p→
(
V4,fΛ′Vβ4ΛV4,f

)−1
V4,fΛ′

[
1 µ′β

]′
= V4,fΛ−1V−1

β4

[
1 µ′β

]′
. (B.1)

Because

V4,f =

 (1 + µ′fΣ
−1
f µf

)
−µ′fΣ

−1
f

−Σ−1
f µf Σ−1

f


Λ−1 =

 1
λ0

0′K
1
λ0

(µf − λ) IK


V−1
β4

=

 (1 + µ′
βΣ
−1
β µβ

)
−µ′βΣ

−1
β

−Σ−1
β µβ Σ−1

β

 ,
it follows that

V4,fΛ−1V−1
β4

[
1 µ′β

]′
= 1
λ0

 (1 + µ′fΣ
−1
f λf

)
−Σ−1

f λf

 = δ. (B.2)

Combining (B.1) and (B.2), we prove the first claim in the theorem.
Next, in a similar manner, we show that δ̃e p→ δe, implying m̃e

t
p→ me,t. From Lemma A.3,

we have that

δ̃e = D̃−1
e Ũe

p→ −
(
[µf Vf ]Λ′eVβΛe [µf Vf ]′

)−1
[µf Vf ]Λ′eVβΛe

[
1 µ′f

]′
= −

(
Λe [µf Vf ]′

)−1
Λe

[
1 µ′f

]′
= −

(
(λf − µf )µ′f + Vf

)−1
(λf − µf + µf )

= −
(
λfµ

′
f + Σf

)−1
λf = δe. (B.3)

The limits of (B.2) and (B.3) complete the proof of the theorem. �
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Proof of Theorem 2.2 We will show that δ̂
p→ δ and δ̂e

p→ δe, implying m̂t
p→ mt and

m̂e,t
p→ me,t, respectively. From Lemma A.15, we have that

δ̂ = D̂−1Û p→
(
V4,fΛ′Vβ4ΛV4,f

)−1
V4,fΛ′

[
1 µ′β

]′
= 1
λ0

 (1 + µfΣ
−1
f λf

)
−Σ−1

f λf

 = δ,

where the next to the last equality is from (B.2). Also, from Lemma A.16, we have that

δ̂e = −
(
D̂e

)−1
Ûe

p→ −
([

µf Vf

]
Λ′eVβΛe

[
µf Vf

]′)−1 [
µf Vf

]
Λ′eVβΛe

[
1 µ′f

]′
= −

(
Λe

[
µf Vf

]′)−1
Λe

[
1 µ′f

]′
= −

(
(λf − µf )µ′f + Vf

)−1
(λf − µf + µf )

= − (λfµf + Σf )−1 λf = δe.

The above two limits complete the proof of the theorem. �

Proof of Theorem 2.3 Let D and U denote the probability limit of D̂ and Û, respectively.
Note that

Then,

√
T
(
δ̂ − δ

)
=
√
T
(
D̂−1Û− (D)−1 U

)
= D̂−1√T

(
Û−U

)
+
√
T
(
D̂−1 −D−1

)
U

= D−1√T
(
Û−U

)
+
√
T
(
D̂−1 −D−1

)
U + op (1)

= D−1ΠU

√
Tvec

( 1
T

F′4F4 −V4,f
)

+
√
T
(
D̂−1 −D−1

)
U + op (1) , (B.4)

where the fourth equality is from Lemmas A.31 and A.32. From (A.5),

√
T
(
D̂−1 −D−1

)
U =

(
U′ ⊗ IK+1

)√
Tvec

(
D̂−1 −D−1

)
. (B.5)

Furthermore, using delta method,

√
Tvec

(
D̂−1 −D−1

)
= −

(
D−1 ⊗D−1

)√
Tvec

(
D̂−D

)
+ op (1) . (B.6)
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Plugging (B.6) into (B.5), we have that

√
T
(
D̂−1 −D−1

)
U = −

(
U′ ⊗ IK+1

) (
D−1 ⊗D−1

)√
Tvec

(
D̂−D

)
+ op (1)
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)
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)√
Tvec
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)
+ op (1)
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)√
Tvec
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(
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)
ΠD

√
Tvec

( 1
T

F′4F4 −V4,f
)

+ op (1) , (B.7)

where the third equality is from δ′ = U′D−1 and the last equality is from Lemma A.31.
Finally, plugging (B.7) to (B.4) yields that

√
T
(
δ̂ − δ

)
=
(
D−1ΠU +

(
δ′ ⊗D−1

)
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)√
Tvec

( 1
T
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T
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+ op (1) , (B.8)

where

Ψ =
[
1 − δ′

]
⊗D−1

Π =
[
Π′U Π′D

]′
.

Repeating the above procedures while replacing D, U, D̂, Û with De, −Ue, D̂e, −Ûe

yields that

√
T
(
δ̂e − δe

)
=
(
D−1
e ΠUe +

(
δ′e ⊗D−1

e

)
ΠDe

)√
Tvec

( 1
T

F′4F4 −V4,f
)

+ op (1) .

= ΨeΠevec
( 1
T

F′4F4 −Vf

)
+ op (1) , (B.9)

where

Ψe = −
[
D−1
e

(
δ′e ⊗D−1

e

)]
Πe =

[
Π′Ue Π′De

]′
.

The equations of (B.8) and (B.9) complete the proof of the theorem. �

Proof of Theorem 2.4 Note that Lemmas A.15 and A.16 imply Π̂
p→ Π and Π̂e

p→ Πe.

Then, the desired results directly follow from Lemmas A.40 and A.41. This completes the
proof of the theorem. �
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Online Appendix for Large Sample Estimators of
the Stochastic Discount Factor

Supplementary Proofs

Let λmax (A) and tr (A) denote the maximum eigenvalue and the trace of a square matrix A,
respectively. The following properties of eigenvalues and trace operator, vectorize operator
are useful for the proof of the lemmas:

1. Consider a (L× 1) vector of x and a (L× L) symmetric positive semidefinite matrix of
A. Then, it holds that

x′Ax ≤ λmax (A) x′x. (A.1)

2. Consider a (L×M) matrix of A and (M × L) matrix of B. Then, it holds that

tr (AB) = tr (BA) . (A.2)

3. Consider (L× L) positive semidefinite matrices of A, B. Then, it holds that

tr (AB) ≤ λmax (A) tr (B) . (A.3)

4. Consider (L×M) matrices of A and B. Then, it holds that

vec (A)′ vec (B) = tr
(
A′B

)
. (A.4)

5. Consider (L×M) , (M ×N) , (M ×O) matrices of A, B, C. Then, it holds that

vec (ABC) =
(
C′ ⊗A

)
vec (B) . (A.5)
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We introduce the following notations:

Λ =

 λ0 0′K
(λf − µf ) IK

 (A.6)

Λe =
[

(λf − µf ) IK
]

(A.7)

B4 =
[

1N B
]

(A.8)

F4 =
[

1T F
]
. (A.9)

Lemma A.1. Under Assumption 1, it holds that as N,T increases,

B′4B4
N

→

 1 µ′β

µβ Vβ

 = Vβ4 (A.10)

F′4F4
T

p→

 1 µ′f

µf Vf

 = V4,f . (A.11)

Under Assumption 2, it holds that as N,T increases,

B′4EF4
NT

p→ 0(K+1)×(K+1) (A.12)

F′4E′EF4
NT 2

p→ 0(K+1)×(K+1). (A.13)

Proof Assumption 1 implies that

B′4B4
N

=

 1 1′NB
N

B′1N
N

B′B
N

→
 1 µ′β

µβ Vβ


F′4F4
T

=

 1 1′TF
T

F′1T
T

F′F
T

 p→

 1 µ′f

µf Vf

 ,
verifying (A.10) and (A.11). Assumption 2 implies that

B′4EF4
NT

=

 1′NE1T
NT

1′NEF
NT

B′E1T
NT

B′EF
NT

 p→ 0(K+1)×(K+1),

showing (A.12).
We turn to (A.13). Note that F′4E′EF4

NT 2 is a positive semidefinite matrix. Hence, for

2



(A.13), it suffices to show that the trace of F′4E′EF4
NT 2 converges to zero, which is followed by

tr
(

F′4E′EF4
NT 2

)
= 1
T
tr
(

E′E
N

F4F′4
T

)

<
M0
T

tr
(

F4F′4
T

)
p→ 0 · tr (V4,f ) = 0,

where the equality is from (A.2) and the inequality is from Assumption 2 and (A.3). This
completes the proof of the lemma. �

Lemma A.2. Under Assumptions 1 and 2, it holds that as N,T →∞,

D̃ =
F′4R′RF4

NT 2
p→ V4,fΛ′Vβ4ΛV4,f

Ũ =
F′4R′1N
NT

p→ V4,fΛ′
[
1 µ′β

]
.

Proof Rewrite the return generating process of R in (2.11) as

R = 1Nλ01′T + B (λf − µf ) 1′T + BF′ + E = B4ΛF′4 + E,

where Λ, B4 and F4 are given by (A.6), (A.8) and (A.9), respectively.
From Lemma A.1, we have that

F′4R′RF4
NT 2 =

F′4F4
T

Λ′
B′4B4
N

Λ
F′4F4
T

+
F′4E′B4
NT

Λ
F′4F4
T

+
F′4F4
T

Λ′
B′4EF4
NT

+
F′4E′EF4

NT 2
p→ V4,fΛ′Vβ4ΛV4,f

and that

F′4R′1N
NT

=
F′4

(
F4Λ′B′4 + E′

)
1N

NT

=
F′4F4
T

Λ′
B′41N
N

+
F′4E′1N
NT

p→ V4,fΛ′
[
1 µ′β

]′
.

This completes the proof of the lemma. �
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Lemma A.3. Under Assumptions 1 and 2, it holds that as N,T →∞,

D̃e =
F′4R′RF4

NT 2
p→
[
µf Vf

]
Λ′eVβΛe

[
µf Vf

]′
Ũe =

F′4R′1N
NT

p→
[
µf Vf

]
Λ′eVβΛe

[
1 µ′f

]′
.

Proof The return generating process of Re in (2.12) is rewritten as

Re = B (λf − µf ) 1′T + BF′ + E = BΛeF′4 + E,

where Λe and F4 are given by (A.7) (A.9). From Assumption 1 and Lemma A.1, we have
that

F′R′eReF
NT 2 = F′F4

T
Λ′e

B′B
N

Λe

F′4F
T

+ F′E′B
NT

Λe

F′4F
T

+ F′F4
T

Λ′e
B′EF
NT

+ F′E′EF
NT 2

p→
[
µf Vf

]
Λ′eVβΛe

[
µf Vf

]′
and that

F′R′eRe1T
NT 2 = F′F4

T
Λ′e

B′B
N

Λe

F′41T
T

+ F′E′B
NT

Λe

F′41T
T

+ F′F4
T

Λ′e
B′E1T
NT

+ F′E′E1T
NT 2

p→
[
µf Vf

]
Λ′eVβΛe

[
1 µ′f

]′
.

This completes the proof of the lemma. �

We need Lemmas A.4-A.8 for Corollary 2.1. We introduce the following notation:

O4 =

 1 0′K
0K O

 . (A.14)

Lemma A.4. Under Assumptions 1-3, there exist positive constants C1, C2 < ∞ such that
as N,T →∞, it holds that λmax

(
R′R
NT

)
< C1 and λmax

(
R′eRe

NT

)
< C2.

Proof First, we show the existence of C1 such that λmax
(

R′R
NT

)
< C1. Because R′R

NT is

positive semidefinite, it suffices to show the existence of C1 such that tr
(

R′R
NT

)
< C1. Recall

that
R = B4ΛF′4 + E,

4



where Λ, B4 and F4 are given by (A.6), (A.8) and (A.9), respectively. Hence,

RR′

NT
= l1 + l2 + l′2 + l3,

where

l1 =
B4ΛF′4F4Λ′B′4

NT
, l2 =

B4ΛF′4E′

NT
, l3 = EE′

NT
.

Note that

tr (l1) = tr
(

B4ΛF′4F4Λ′B4
NT

)
= tr

(
ΛF′4F4Λ′B′4B4

NT

)
= tr

(
Λ

(
F′4F4
T

)
Λ′
(

B′4B4
N

))
p→ tr

(
ΛV4,fΛ′Vβ4

)
, (A.15)

where the second equality is from (A.2) and the last limit is from Lemma A.1, and that

tr (l2) = tr
(

B4ΛF′4E′

NT

)
= tr

(
Λ

F′4E′B4
NT

)
p→ tr

(
Λ0(K+1)×(K+1)

)
= 0, (A.16)

where the second equality is from (A.2) and the limit is from Lemma A.1, and that

tr (l3) = tr
(EE′

NT

)
= 1
T
tr
(E′E
N

)
≤ 1
T
T · λmax

(E′E
N

)
≤ 1
T
T ·M0 = M0, (A.17)

where the second equality is from (A.2), the first inequality is from the positivity of E′E
N and

the second inequality is from Assumption 2.
Lastly, from (A.15)-(A.17), we obtain that with large N,T

tr
(R′R
NT

)
= tr

(RR′

NT

)
< tr

(
ΛV4,fΛ′Vβ4

)
+M0 + 1.

Hence, the first statement of the lemma holds by setting C1 =tr
(
ΛV4,fΛ′Vβ4

)
+M0 + 1.

Next, we turn to the existence of C2 such that λmax
(

R′eRe

NT

)
< C2. As before, we find C2

such that tr
(

R′eRe

NT

)
< C2. Recall that

Re = BΛeF′4 + E,

5



where Λe and F4 are given by (A.7) and (A.9), respectively. Hence,

ReR′e
NT

= m1 +m2 +m′2 +m3,

where

m1 =
BΛeF′4F4Λ′eB′

NT
, m2 =

BΛeF′4E′

NT
, m3 = EE′

NT
.

Note that

tr (m1) = tr
(

BΛeF′4F4Λ′eB′

NT

)
= tr

(
ΛeF′4F4Λ′eB′B

NT

)
= tr

(
Λe

(
F′4F4
T

)
Λ′e

(B′B
N

))
p→ tr

(
ΛeV4,fΛ′eVβ

)
, (A.18)

where the second equality is from (A.2) and the last limit is from Lemma A.1 and Assumption
1, and that

tr (m2) = tr
(

BΛeF′4E′

NT

)
= tr

(
Λe

F′4E′B
NT

)
p→ tr

(
Λ0(K+1)×K

)
= 0, (A.19)

where the second equality is from (A.2) and the limit is from Lemma A.1, and that

tr (m3) = tr
(EE′

NT

)
= 1
T
tr
(E′E
N

)
≤M0, (A.20)

where the second equality is from (A.2) and the inequality is from Assumption 2.
Lastly, from (A.18)-(A.20), it holds that with large N,T

tr
(ReR′e
NT

)
= tr

(R′eRe

NT

)
< tr

(
ΛeV4,fΛ′eVβ

)
+M0 + 1.

Hence, the second statement holds with C2 =tr (ΛeV4,fΛ′eVβ) +M0 + 1. This completes the
proof of the lemma �

Lemma A.5. Under Assumptions 1-3, there exist positive numbers C3, C4 < ∞ such that
as N,T →∞, it holds that 1′NRR′1N

N2T < C3 and 1′TR′eReR′eRe1T
N2T 3 < C4.
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Proof First, we find C3. Note that

1′NRR′1N
N2T

=
( 1√

N
1N
)′ (RR′

NT

)( 1√
N

1N
)

≤ λmax

(RR′

NT

)(( 1√
N

1N
)′ ( 1√

N
1N
))

= λmax

(RR′

NT

)
,

where the inequality is from (A.1). Hence, the inequality of 1′NRR′1N
N2T < C3 holds by setting

C3 = C1 given by Lemma A.4.
Next, we find C4. Note that

1′TR′eReR′eRe1T
N2T 3 =

( 1√
T

1T
)′ (R′eRe

NT

)2 ( 1√
T

1T
)

≤ λmax

((R′eRe

NT

)2)(( 1√
T

1T
)′ ( 1√

T
1T
))

=
(
λmax

(ReR′e
NT

))2
,

where the inequality is from (A.1). Hence, the inequality of 1′NRR′1N
N2T < C4 holds by setting

C4 = C2
2 , where C2 is given by Lemma A.4. This completes the proof of the lemma. �

Lemma A.6. Let Assumption 3 be in effect. Consider a (T × L) matrix X, where L is fixed.
If there exists a positive constant C <∞ such that as N,T →∞, λmax

(
X′X
T

)
< C, then, the

probability limit of F∗′X
T is identical to that of O′F′XT .

Proof Note that F∗′X
T = (FO+F∗−FO)′X

T = O′F′XT + (F∗−FO)′X
T . Hence, it suffices to show

that (F∗−FO)′X
T becomes negligible. Define ιl,L as the (L× 1) vector of zeros except the l-th

element of one and ιk,K as the (K × 1) vector of zeros except the k-th element of one. Then,
it follows that

ι′k,K
(F∗ − FO)′X

T
ιl,L =

((F∗ − FO) ιk,K√
T

)′ (Xιl,L√
T

)

≤

√√√√ι′k,K
(

(F∗ − FO)′ (F∗ − FO)
T

)
ιk,K ·

√
ι′l,L

(X′X
T

)
ιl,L

≤

√√√√ι′k,K
(

(F∗ − FO)′ (F∗ − FO)
T

)
ιk,K ·

√
λmax

(X′X
T

)
ι′l,Lιl,L

p→ ι′k,K0K×Kιk,K · C = 0,

where the first inequality is from Cauchy-Schwarz inequality, the second inequality is from
(A.1) and the last limit is from the assumption of (F∗−FO)′(F∗−FO)

T

p→ 0K×K and λmax
(

X′X
T

)
<

7



C with large N,T . Repeating this exercise for each k = 1, · · · ,K and l = 1, · · · , L completes
the proof of the lemma. �

Lemma A.7. Let Assumption 3 be in effect. Consider a (T × T ) symmetric positive semidef-
inite matrix X. If there exists a positive constant C <∞ such that as N,T →∞, λmax (X)<
C, then, the probability limit of F∗′XF∗

T is identical to that of O′F′XF
T O.

Proof Note that

F∗′XF∗

T
= (FO + F∗ − FO)′X (FO + F∗ − FO)

T

= O′F
′XF
T
O + (F∗ − FO)′XF

T
O +O′F

′X (F∗ − FO)
T

+ (F∗ − FO)′X (F∗ − FO)
T

.

(A.21)

We prove the lemma by showing that (F∗−FO)′XF
T and (F∗−FO)′X(F∗−FO)

T becomes negligible
with large T .

First, we verify (F∗−FO)′XF
T

p→ 0K×K . Because (F∗−FO)′XF
T = F∗′XF

T − O′F′XF
T , from

Lemma A.6, it suffices to show that the boundedness of λmax
(

XFF′X′
T

)
. In fact, we show that

the boundedness of tr
(

XFF′X′
T

)
, implying the boundedness of λmax

(
XFF′X′

T

)
. Note that

tr
(XFF′X′

T

)
= tr

(
X′XFF′

T

)
≤ (λmax (X))2 tr

(FF′

T

)
,

where the equality is from (A.2) and the inequality is from (A.3). Because λmax (X) < C and
tr
(

FF′
T

)
p→ tr (Σf ) , it follows that λmax

(
XFF′X′

T

)
is bounded when N,T are large. Hence,

from Lemma A.6, we have that

(F∗ − FO)′XF
T

p→ 0K×K . (A.22)

Second, we verify (F∗−FO)′X(F∗−FO)
T

p→ 0K×K . Since (F∗−FO)′X(F∗−FO)
T is positive semidef-

inite, it suffices to show that tr
(

(F∗−FO)′X(F∗−FO)
T

)
converges to zero. Note that

tr
(

(F∗ − FO)′X (F∗ − FO)
T

)
= tr

(
X(F∗ − FO) (F∗ − FO)′

T

)

≤ λmax (X) tr
(

(F∗ − FO) (F∗ − FO)′

T

)
,

where the equality is from (A.2) and the inequality is from (A.3). Because λmax (X) < C and

8



tr
(

(F∗−FO)(F∗−FO)′
T

)
p→ tr (0K×K) , it follows that

(F∗ − FO)′X (F∗ − FO)
T

p→ 0K×K . (A.23)

Lastly, plugging (A.22) and (A.23) into (A.21) yields that the limit of F∗′XF∗
T converges

to the limit of O′F′XF
T O. This completes the proof of the lemma. �

Lemma A.8. Under Assumptions 1-3, the probability limits of F∗′4R′RF∗4
NT 2 ,

F∗′4R′1N
NT , F∗′R′eReF∗

NT 2 ,
F∗′R′eRe1T

NT 2 are identical to those of O′4
F′4R′RF4

NT 2 O4, O′4
F′4R′1N
NT , O′F

′R′eReF
NT 2 O, O′F

′R′eRe1T
NT 2 ,

respectively, where O4 is given by (A.14).

Proof Note that when N,T are large, λmax
(

R′R
NT

)
, λmax

(
R′eRe

NT

)
,

1′NRR′1N
N2T ,

1′TR′eReR′eRe1T
N2T 3

are bounded from Lemmas A.4 and A.5. Then, Lemmas A.6 and A.7 guarantess the stated
results. This completes the proof of the lemma. �

Using the above lemmas, we prove Corollary 2.1.

Proof of Corollary 2.1 First, we show that m̃∗t
p→ mt. Because f∗t

p→ O′ft, it suffices to es-

tablish that δ̃∗ p→

 1 0′K
0K O′

 δ. From the following expression of δ̃∗ =
(

F∗′4R′RF∗4
NT 2

)−1 (F∗′4R′1N
NT

)
,

Lemma A.8 shows that δ̃∗ converges to the limit of O′4
(

F′4R′RF4
NT 2

)−1 (F′4R′1N
NT

)
. Us-

ing
(

F′4R′RF4
NT 2

)−1 (F′4R′1N
NT

)
p→ O′4δ given in the proof of Theorem 2.1, we have that

δ̃∗
p→ O′4δ, which in conjunction with f∗t

p→ O′ft implies

m̃∗t
p→ mt. (A.24)

Next, we turn to m̃∗e,t
p→ me,t. In a similar manner, we show that δ̃∗e

p→ O′δe. From the

expression of δ̃∗ = −
(

F∗′R′eReF∗
NT 2

)−1 (F∗′R′eRe1T
NT 2

)
, Lemma A.8 shows that δ̃∗e converges to

the limit of O′
(

F′R′eReF
NT 2

)−1 (F′R′eRe1T
NT 2

)
. Using

(
F′R′eReF
NT 2

)−1 (F′R′eRe1T
NT 2

)
p→ δe given in the

proof of Theorem 2.1, we have that δ̃∗e
p→ O′δe, which in conjunction with f∗t

p→ O′ft implies

m̃∗e,t
p→ me,t. (A.25)

The limits of (A.24) and (A.25) complete the proof of the corollary. �
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Proof of Proposition 2.1 Note that from Assumptions 1, 2, and the limits in Lemma A.1
and the homoskedasticity condition, as N →∞,

R′R
N

= F4Λ′
B′4B4
N

ΛF′4 + E′E
N

+ E′B4
N

ΛF′4 + F4Λ′
B′4E
N

p→ F4Λ′Vβ4ΛF′4 + sIT and (A.26)

R′1N
N

= F4Λ′
B′41N
N

+ E′1N
N

p→ F4Λ′
[
1 µ′β

]′
. (A.27)

From the N -limits of (A.26) and (A.27), after some algebras, we find that as N →∞,

m̆t =ι′t
(R′R
NT

)−1 (R′1N
N

)
p→Tι′t

([
F4Λ′Vβ4ΛF′4

]
+ sIT

)−1
(

F4Λ′
[
1 µ′β

]′)

=ι′t

F4Λ′V
1/2
β4

(
s

T
IK+1 + V1/2

β4
Λ

F′4F4
T

Λ′V1/2
β4

)−1
(V−1/2

β4

[
1 µ′β

]′)

=
[
1 f ′t

]
Λ′V1/2

β4

(
s

T
IK+1 + V1/2

β4
Λ

F′4F4
T

Λ′V1/2
β4

)−1

V−1/2
β4

[
1 µ′β

]′
.

Hence, as N →∞ and then T →∞,

m̆t = ι′t

(R′R
NT 2

)−1 (R′1N
NT

)
p→
[
1 f ′t

] (
V4,fΛ−1

)(
V−1
β4

[
1 µ′β

]′)
=
[
1 f ′t

]
δ = mt,

where the next to the last equality is from (B.2).
This completes the proof of the proposition. �

We define S as the
(
τ2 × τ

)
selection matrix such that the (τ (s− 1) + 1, s) element of S

is 1, for s = 1, · · · , τ and all other elements are zero.

Proof of Lemma 2.1 Define the (τ × 1) vector of ve,[b] such that Ve,[b] = diag
(
ve,[b]

)
.

From the expression of V̂e,[b] given in (2.20), we have that V̂e,[b] = diag
(
v̂e,[b]

)
, where

v̂e,[b] =
(
H[b] �H[b]

)−1
S ′vec

Ê′[b]Ê[b]

N[b]

 .
Hence, it suffices to show v̂e,[b]

p→ ve,[b]. The invertibility of
(
H[b] �H[b]

)
is discussed in

10



footnote 7 of Kim and Skoulakis (2018b).

First, we verify the N -limit of vec
(

Ê′[b]Ê[b]
N[b]

)
. Since 1′τH[b] = 0′τ and F′[b]H[b] = 0K×τ , for

both the gross returns case of (2.18) and the excess return case of (2.19), it holds that

Ê[b] = E[b]H[b].

Using (A.5), we have that

vec

Ê′[b]Ê[b]

N[b]

 = vec
(

H[b]
E′[b]E[b]

N[b]
H[b]

)
=
(
H[b] ⊗H[b]

)
vec

(
E′[b]E[b]

N[b]

)
p→
(
H[b] ⊗H[b]

)
vec

(
Ve,[b]

)
,

where the last limit is from Assumption 4(ii).
Hence, from the above limit and the properties of selection matrix of S such that vec

(
Ve,[b]

)
=

Sve,[b] and that H[b] �H[b] = S ′
(
H[b] ⊗H[b]

)
S, we have that

v̂e,[b] =
(
H[b] �H[b]

)−1
S ′vec

Ê′[b]Ê[b]

N[b]


p→
(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

)
vec

(
Ve,[b]

)
=
(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

)
Sve,[b]

=
(
H[b] �H[b]

)−1 (
H[b] �H[b]

)
ve,[b] = ve,[b],

which completes the proof of the lemma. �

We provide lemmas to prove Theorem 2.2. Define ek,[b] for k = 1, · · · , 5 as follows:

e1,[b] =
(

1
N[b]

B′[b]1N[b] − µβ

)
, e2,[b] = vec

(
1
N[b]

B′[b]B[b] −Vβ

)
, (A.28)

e3,[b] = 1
N[b]

E′[b]1N[b] , e4,[b] = vec
(

1
N[b]

E′[b]B[b]

)
, e5,[b] = vec

(
1
N[b]

E′[b]E[b] −Ve,[b]

)
.

Lemma A.9. Let Assumptions 4 and 5 be in effect. Consider any set of continuous functions
of F[b]; f1 : Rτ×K → RK , f2 : Rτ×K → RK2

, f3 : Rτ×K → Rτ , f4 : Rτ×K → RKτ , and

11



f5 : Rτ×K → Rτ2
. For ek,[b] defined by (A.28), it holds that as N,T →∞,

1
B

B∑
b=1

fk
(
F[b]

)′
ek,[b]

p→ 0

for k = 1, · · · , 5.

Proof Note that from Assumption 4(iii), it holds that

1
B

B∑
b=1

e′k,[b]ek,[b]
p→ 0 (A.29)

for k = 1, · · · , 5.
Fix k. Let fk be the corresponding function. As N,T increases, it follows that

1
B

B∑
b=1

fk
(
F[b]

)′
ek,[b] ≤

1
B

B∑
b=1

(√
fk
(
F[b]

)′
fk
(
F[b]

)√
e′k,[b]ek,[b]

)

= 1
B

B∑
b=1

(√
gk
(
F[b]

)√
e′k,[b]ek,[b]

)

≤


√√√√ 1
B

B∑
b=1

gk
(
F[b]

)
√√√√ 1
B

B∑
b=1

e′k,[b]ek,[b]


≤
√
Mgk ·

√√√√ 1
B

B∑
b=1

e′k,[b]ek,[b]
p→ 0, (A.30)

where the first equality holds by defining gk
(
F[b]

)
=
√
fk
(
F[b]

)′
fk
(
F[b]

)
, the first and second

inequalities are from the Cauchy-Schwarz inequality, the third inequality is from Assumption
5, and the last limit is from (A.29). In a similar manner, we can show that as N,T increases,

− 1
B

B∑
b=1

fk
(
F[b]

)′
e[b] ≤

√
Mgk ·

√√√√ 1
B

B∑
b=1

e′k,[b]ek,[b]
p→ 0. (A.31)

Lastly, combining (A.30) and (A.31) in conjunction with the squeeze theorem, we have that
as N,T →∞,

1
B

B∑
b=1

fk
(
F[b]

)′
ek,[b]

p→ 0.

Repeating this exercise for k = 1, · · · , 5 completes the proof of the lemma. �
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Lemma A.10. It holds that

vec
(

E′[b]E[b]

N[b]
− V̂e,[b]

)
= K[b]vec

(
E′[b]E[b]

N[b]
−Ve,[b]

)
,

where
K[b] =

(
Iτ2 − S

(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

))
,

and V̂e,[b] and H[b] are given by (2.20) and (2.21).

Proof From (2.20),

vec
(
diag

(
v̂e,[b]

))
= Sv̂e,[b] = S

(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

)
vec

(
E′[b]E[b]

N[b]

)
.

Hence,

vec
(

E′[b]E[b]

N[b]
− diag

(
v̂e,[b]

))

=
(

Iτ2 − S
(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

))
vec

(
E′[b]E[b]

N[b]

)

=
(

Iτ2 − S
(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

))
vec

(
E′[b]E[b]

N[b]
−Ve,[b]

)
,

where the last equality is from(
Iτ2 − S

(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

))
vec

(
Ve,[b]

)
=
(

Iτ2 − S
(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

))
Sve,[b]

=Sve,[b] − S
(
H[b] �H[b]

)−1
S ′
(
H[b] ⊗H[b]

)
Sve,[b] = 0τ2.

This completes the proof of the lemma. �

Lemma A.11. The d[b] given in Theorem 2.2 can be expressed as

d[b] = Λ′V4,βΛ
F′4,[b]F4,[b]

τ
+ ED,[b],

where vec
(
ED,[b]

)
is given by (A.35). Under Assumptions 1, 4 and 5, it holds that as N,T →

13



∞,
1
B

B∑
b=1
ED,[b]

p→ 0(K+1)×(K+1).

Proof Rewrite R[b] in (2.18) as

R[b] = B4,[b]ΛF′4,[b] + E[b], (A.32)

where B4,[b] =
[
1N B[b]

]
and Λ is given in (A.6). Plugging the expression of (A.32), we have

F′4,[b]R
′
[b]R[b]F4,[b]
N[b]τ2 −

F′4,[b]V̂e,[b]F4,[b]
τ2

=
F′4,[b]F4,[b]

τ
Λ′

B′4,[b]B4,[b]
N[b]

Λ
F′4,[b]F4,[b]

τ
+

F′4,[b]
τ

(
E′[b]E[b]

N[b]
− V̂e,[b]

)
F4,[b]
τ

+
F′4,[b]
τ

(
E′[b]B4,[b]
N[b]

)
Λ

F′4,[b]F4,[b]
τ

+
F′4,[b]F4,[b]

τ
Λ′
(

E′[b]B4,[b]
N[b]

)′ F4,[b]
τ

,

yielding

d[b] =
(

F′4,[b]F4,[b]
τ

)−1F′4,[b]R
′
[b]R[b]F4,[b]
N[b]τ2 −

F′4,[b]V̂e,[b]F4,[b]
τ2

 (A.33)

= Λ′V4,βΛ
F′4,[b]F4,[b]

τ
+ ED,[b], (A.34)

where

ED,[b] = Λ′
(

B′4,[b]B4,[b]
N[b]

−V4,β

)
Λ

F′4,[b]F4,[b]
τ

+
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

(
E′[b]E[b]

N[b]
− V̂e,[b]

)
F4,[b]
τ

+
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

(
E′[b]B4,[b]
N[b]

)
Λ

F′4,[b]F4,[b]
τ

+ Λ′
(

E′[b]B4,[b]
N[b]

)′ F4,[b]
τ

.
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Using the property of (A.5) and Lemma A.10 for V̂e,[b], we have

vec
(
ED,[b]

)
=
((

F′4,[b]F4,[b]
τ

Λ′
)
⊗Λ′

)
vec

(
B′4,[b]B4,[b]

N[b]
−V4,β

)

+

F′4,[b]
τ
⊗

(F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

K[b]vec
(

E′[b]E[b]

N[b]
−Ve,[b]

)

+

(F′4,[b]F4,[b]
τ

Λ′
)
⊗

(F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

 vec
(

E′[b]B4,[b]
N[b]

)

+
(

F′4,[b]
τ
⊗Λ′

)
vec

(E′[b]B4,[b]
N[b]

)′ . (A.35)

This verifies the first claim of the lemma.
Applying Lemma A.9 to the expression of (A.35), we have that vec

(
ED,[b]

)
p→ 0(K+1)2 ,

which in turn implies that
1
B

B∑
b=1
ED,[b]

p→ 0(K+1)×(K+1),

verifying the second claim of the lemma. This completes the proof of the lemma. �

Lemma A.12. The u[b] given in Theorem 2.2 can be expressed as

u[b] =
(

F′4,[b]F4,[b]
τ

)
Λ′
[
1 µ′β

]
+ EU,[b],

where EU,[b] is given by (A.38). Under Assumptions 1, 4 and 5, it holds that as N,T →∞,

1
B

B∑
b=1
EU,[b]

p→ 0K+1.

Proof Rewrite R[b] in (2.18) as

R[b] = B4,[b]ΛF′4,[b] + E[b], (A.36)

where B4,[b] =
[
1N B[b]

]
and Λ is given in (A.6). Hence, it holds that

F′4,[b]R
′
[b]1N[b]

N[b]τ
=
(

F′4,[b]F4,[b]Λ
′

τ2

)(
B4,[b]1N[b]

N[b]

)
+

F′4,[b]E[b]1N[b]

N[b]τ2

=
(

F′4,[b]F4,[b]
τ

)
Λ′
[
1 µ′β

]
+ EU,[b], (A.37)
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where

EU,[b] =
(

F′4,[b]F4,[b]Λ
′

τ2

)(
B4,[b]1N[b]

N[b]
−
[
1 µ′β

]′)
+
(

F′4,[b]
τ2

)(
E[b]1N[b]

N[b]

)
. (A.38)

Hence, the first claim of the lemma holds.
Applying Lemma A.9 to the expression of (A.38), we have that

1
B

B∑
b=1
EU,[b]

p→ 0(K+1),

verifying the second claim of the lemma. This completes the proof of the lemma. �

Lemma A.13. The de,[b] given in Theorem 2.2 can be expressed as

de,[b] = Λ′eVβΛe

F′4,[b]F[b]

τ
+ EDe,[b],

where vec
(
EDe,[b]

)
is given by (A.42). Under Assumptions 1, 4 and 5, it holds that as N,T →

∞,
1
B

B∑
b=1
EDe,[b]

p→ 0(K+1)×(K+1).

Proof Rewrite Re,[b] in (2.19) as

Re,[b] = B[b]ΛeF′4,[b] + E[b]. (A.39)

Hence, it follows that

F′4,[b]R
′
e,[b]R[b]F[b]

N[b]τ2 −
F′4,[b]V̂e,[b]F[b]

τ2

=
F′4,[b]F4,[b]

τ
Λ′e

B′[b]B[b]

N[b]
Λe

F′4,[b]F[b]

τ
+

F′4,[b]
τ

(
E′[b]E[b]

N[b]
− V̂e,[b]

)
F[b]
τ

+
F′4,[b]
τ

(
E′[b]B[b]

N[b]

)
Λe

F′4,[b]F[b]

τ
+

F′4,[b]F4,[b]
τ

Λ′e

(
E′[b]B[b]

N[b]

)′ F[b]
τ
,
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yielding

de,[b] =
(

F′4,[b]F4,[b]
τ

)−1F′4,[b]R
′
e,[b]Re,[b]F[b]

N[b]τ2 −
F′4,[b]V̂e,[b]F[b]

τ2

 (A.40)

= Λ′eVβΛe

F′4,[b]F[b]

τ
+ EDe,[b], (A.41)

where EDe,[b] is given by

EDe,[b] = Λ′e

(
B′[b]B[b]

N[b]
−Vβ

)
Λe

F′4,[b]F[b]

τ

+
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

(
E′[b]E[b]

N[b]
− V̂e,[b]

)
F[b]
τ

+
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

(
E′[b]B[b]

N[b]

)
Λe

F′4,[b]F[b]

τ
+ Λ′e

(
E′[b]B[b]

N[b]

)′ F[b]
τ
.

Using the property of (A.5) and Lemma A.10 for V̂e,[b], we have

vec
(
EDe,[b]

)
=
(

F′[b]F4,[b]
τ

Λ′e ⊗Λ′e

)
vec

(
B′[b]B[b]

N[b]
−Vβ

)

+

F′[b]
τ
⊗
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

K[b]vec
(

E′[b]E[b]

N[b]
−Ve,[b]

)

+

F′[b]F4,[b]
τ

Λ′e ⊗
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

 vec
(

E′[b]B[b]

N[b]

)

+
(

F′[b]
τ
⊗Λ′e

)
vec

(E′[b]B[b]

N[b]

)′ . (A.42)

This verifies the first claim of the lemma.
Applying Lemma A.9 to the expression of A.42, we have that vec

(
EDe,[b]

)
p→ 0(K+1)2 ,

which in turn implies that
1
B

B∑
b=1
EDe,[b]

p→ 0(K+1)×(K+1),

verifying the last claim of the lemma. This completes the proof of the lemma. �

Lemma A.14. The ue,[b] given in Theorem 2.2 can be expressed as

ue,[b] = Λ′eVβΛe

F′4,[b]1τ
τ

+ EUe,[b],
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where EUe,[b] is given by (A.45). Under Assumptions 1, 4 and 5, it holds that as N,T →∞,

1
B

B∑
b=1
EUe,[b]

p→ 0K+1.

Proof Rewrite Re,[b] in (2.19) as

Re,[b] = B[b]ΛeF′4,[b] + E[b]. (A.43)

Hence, it holds that

F′4,[b]R
′
e,[b]Re,[b]1τ
N[b]τ2 −

F′4,[b]V̂e,[b]1τ
τ2

=
F′4,[b]F4,[b]

τ
Λ′e

B′[b]B[b]

N[b]
Λe

F′4,[b]1τ
τ

+
F′4,[b]
τ

(
E′[b]E[b]

N[b]
− V̂e,[b]

)
1τ
τ

+
F′4,[b]
τ

(
E′[b]B[b]

N[b]

)
Λe

F′4,[b]1τ
τ

+
F′4,[b]F4,[b]

τ
Λ′e

(
E′[b]B[b]

N[b]

)′
1τ
τ
,

yielding

(
F′4,[b]F4,[b]

τ

)−1F′4,[b]R
′
e,[b]Re,[b]1τ
N[b]τ2 −

F′4,[b]V̂e,[b]1τ
τ2

 = Λ′eVβΛe

F′4,[b]1τ
τ

+ EUe,[b],

(A.44)

where

EUe,[b] = Λ′e

(
B′[b]B[b]

N[b]
−Vβ

)
Λe

F′4,[b]1τ
τ

+
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

(
E′[b]E[b]

N[b]
− V̂e,[b]

)
1τ
τ

+
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

(
E′[b]B[b]

N[b]

)
Λe

F′4,[b]1τ
τ

+ Λ′e

(
E′[b]B[b]

N[b]

)′
1τ
τ
.
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Using the property of (A.5) and Lemma A.10 for V̂e,[b], we have

EUe,[b] =
(

1′τF4,[b]
τ

Λ′e ⊗Λ′e

)
vec

(
B′[b]B[b]

N[b]
−Vβ

)

+

1′τ
τ
⊗
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

K[b]vec
(

E′[b]E[b]

N[b]
−Ve,[b]

)

+

1′τF4,[b]
τ

Λ′e ⊗
(

F′4,[b]F4,[b]
τ

)−1 F′4,[b]
τ

 vec
(

E′[b]B[b]

N[b]

)

+
(1′τ
τ
⊗Λ′e

)
vec

(E′[b]B[b]

N[b]

)′ . (A.45)

This verifies the first claim of the lemma.
Applying Lemma A.9 to the expression of A.45, we have that

1
B

B∑
b=1
EUe,[b]

p→ 0K+1

verifying the last claim of the lemma. This completes the proof of the lemma. �

Lemma A.15. Under Assumptions 1, 4 and 5, as N,T →∞, it holds that

D̂ =
F′4F4
T

1
B

B∑
b=1

d[b]
p→ D = V4,fΛ′Vβ4ΛV4,f

Û = 1
B

B∑
b=1

u[b]
p→ U = V4,fΛ′

[
1 µ′β

]
,

where d[b] and u[b] are given in Lemmas A.11 and A.12, respectively.

Proof From Lemmas A.1 and A.11, it follows that

F′4F4
T

1
B

B∑
b=1

d[b] =
F′4F4
T

Λ′V4,βΛ
F′4F4
T

+
F′4F4
T

1
B

B∑
b=1
ED,[b]

p→ V4,fΛ′Vβ4ΛV4,f .

19



Also, from Lemmas A.1 and A.12, it follows that

1
B

B∑
b=1

u[b] =
F′4F4
T

Λ′
[
1 µ′β

]
+ 1
B

B∑
b=1
EU,[b]

p→ V4,fΛ′Vβ4ΛV4,f .

This completes the proof of the lemma. �

Lemma A.16. Under Assumptions 1, 4 and 5, as N,T →∞, it holds that

D̂e = F′F4
T

1
B

B∑
b=1

de,[b]
p→
[
µf Vf

]
Λ′eVβΛe

[
µf Vf

]′
Ûe = F′F4

T

B∑
b=1

ue,[b]
p→
[
µf Vf

]
Λ′eVβΛe

[
1 µ′f

]′
,

where de,[b] and ue,[b] are given in Lemmas A.13 and A.14, respectively.

Proof From Lemmas A.1 and A.13, it follows that

F′F4
T

1
B

B∑
b=1

de,[b] = F′F4
T

Λ′eVβΛe

F′4F
T

+ F′F4
T

1
B

B∑
b=1
EDe,[b]

p→
[
µf Vf

]
Λ′eVβΛe

[
µf Vf

]′
.

Also, from Lemmas A.1 and A.14, it follows that

F′F4
T

B∑
b=1

ue,[b] = F′F4
T

Λ′eVβΛe

F′4,[b]1τ
τ

+ F′F4
T

1
B

B∑
b=1
EUe,[b]

p→
[
µf Vf

]
Λ′eVβΛe

[
1 µ′f

]′
.

This completes the proof of the lemma. �
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We introduce notations. Let D̂∗, Û∗, D̂∗e and D̂∗e denote the followings:

D̂∗ =
(F∗′4F∗4

T

)
1
B

B∑
b=1

(F∗′4,[b]F∗4,[b]
τ

)−1(F∗′4,[b]R′[b]R[b]F∗4,[b]
N[b]τ2 −

F∗′4,[b]V̂∗e,[b]F∗4,[b]
τ2

) , (A.46)

Û∗ = 1
B

B∑
b=1

F∗′4,[b]R′[b]1N[b]

N[b]τ
, (A.47)

D̂∗e =
(F∗′F∗4

T

)
1
B

B∑
b=1

(F∗′4,[b]F∗4,[b]
τ

)−1(F∗′4,[b]R′e,[b]Re,[b]F∗[b]
N[b]τ2 −

F∗′4,[b]V̂∗e,[b]F∗[b]
τ2

) , (A.48)

Û∗e =
(F∗′F∗4

T

)
1
B

B∑
b=1

(F∗′4,[b]F∗4,[b]
τ

)−1(F∗′4,[b]R′e,[b]Re,[b]1τ
N[b]τ2 −

F∗′4,[b]V̂∗e,[b]1τ
τ2

) , (A.49)

where

V̂∗e,[b] = diag
(
v̂∗e,[b]

)
v̂∗e,[b] =

(
H∗[b] �H∗[b]

)−1
S ′vec

Ê∗′[b]Ê
∗
[b]

N[b]


and Ê∗[b] is defined by for the case of using the gross returns Ê∗[b] = R[b]H∗[b] and for the case
of using excess returns Ê[b] = Re,[b]H∗[b]and

H∗[b] = Jτ − JτF∗[b]
(
F∗′[b]JτF

∗
[b]

)−1
F∗′[b]Jτ (A.50)

Jτ = Iτ −
1
τ

1τ×τ .

Also, we express the return process as

R[b] = B4,[b]ΛO4F∗′4,[b] + E∗[b] (A.51)

Re,[b] = B[b]ΛeO′4F∗′4,[b] + E∗e,[b], (A.52)

where

E∗[b] = B4,[b]Λ
(
F4,[b] − F∗4,[b]O

′
4

)′
+ E[b]

E∗e,[b] = B[b]Λe

(
F4,[b] − F∗4,[b]O

′
4

)′
+ E[b].

We need the following lemmas for Corollary 2.2.

21



Lemma A.17. Under Assumption 3, as T →∞,

1
B

B∑
b=1

(
F∗4,[b] − F4,[b]O

)′ (
F∗4,[b] − F4,[b]O

)
p→ 0(K+1)×(K+1)

and

tr
(

1
B

B∑
b=1

(
F∗4,[b] − F4,[b]O

)′ (
F∗4,[b] − F4,[b]O

) (
F∗4,[b] − F4,[b]O

)′ (
F∗4,[b] − F4,[b]O

))
p→ 0.

Proof Note that

(
F∗4 − F4O

)′ (
F∗4 − F4O

)
=

B∑
b=1

(
F∗4,[b] − F4,[b]O

)′ (
F∗4,[b] − F4,[b]O

)
.

Hence,

1
B

B∑
b=1

(
F∗4,[b] − F4,[b]O

)′ (
F∗4,[b] − F4,[b]O

)
= τ

1
T

(
F∗4 − F4O

)′ (
F∗4 − F4O

)
p→ τ0(K+1)×(K+1) = 0(K+1)×(K+1),

where the limit is from the second condition in Assumption 3. Furthermore, note that the
first condition in Assumption 3 yields that

F∗4,[b]
p→ F4,[b]O.

Hence, it holds that when N,T are large,

tr
((

F∗4,[b] − F4,[b]O
)′ (

F∗4,[b] − F4,[b]O
))

>

(
tr
((

F∗4,[b] − F4,[b]O
)′ (

F∗4,[b] − F4,[b]O
)))2

>tr
((

F∗4,[b] − F4,[b]O
)′ (

F∗4,[b] − F4,[b]O
) (

F∗4,[b] − F4,[b]O
)′ (

F∗4,[b] − F4,[b]O
))

,

which in turn implies that

1
B

B∑
b=1

tr
((

F∗4,[b] − F4,[b]O
)′ (

F∗4,[b] − F4,[b]O
))

>
1
B

B∑
b=1

tr
((

F∗4,[b] − F4,[b]O
)′ (

F∗4,[b] − F4,[b]O
) (

F∗4,[b] − F4,[b]O
)′ (

F∗4,[b] − F4,[b]O
))

.
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Noting that the LHS of the above inequality converges to zero and the RHS is non-negative,
we conclude that the second claim of the lemma holds. This completes the proof of the lemma.
�

Lemma A.18. Let Assumption 3 be in effect. As T →∞,

F∗′4F∗4
T

= 1
B

B∑
b=1

F∗′4,[b]F
∗
4,[b]

τ

p→ O′4V4,fO4.

Proof This follows from Lemma A.7. �

Lemma A.19. Let Assumption 3 and 5 be in effect. Consider a continuous function of F∗[b];
g : Rτ×K → Rm. Then, there exists a positive number M∗g <∞ such that

lim
T→∞

1
B

B∑
b=1

g
(
F∗[b]

)
< M∗g .

Proof Due to the continuity of g, Assumption 3 yields that

g
(
F∗[b]

)
< g

(
F[b]O

)
+ 1.

Hence,

1
B

B∑
b=1

g
(
F∗[b]

)
<

1
B

B∑
b=1

g
(
F[b]O

)
+ 1.

From Assumption 5, 1
B

∑B
b=1 g

(
F[b]O

)
is bounded. Hence, we can always find M∗g such that

limT→∞
1
B

∑B
b=1 g

(
F∗[b]

)
< M∗g . This proves the lemma. �

Lemma A.20. It holds that

vec
(

E∗′[b]E
∗
[b]

N[b]
− V̂∗e,[b]

)
= K∗[b]vec

(
E∗′[b]E

∗
[b]

N[b]
−Ve,[b]

)
,
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where

V̂∗e,[b] = diag

(H∗[b] �H∗[b]
)−1
S ′vec

Ê∗′[b]Ê
∗
[b]

N[b]


Ê∗[b] = R[b]H∗[b] or Ê∗[b] = Re,[b]H∗[b]

K∗[b] =
(

Iτ2 − S
(
H∗[b] �H∗[b]

)−1
S ′
(
H∗[b] ⊗H∗[b]

))
H∗[b] = Jτ − JτF∗[b]

(
F∗′[b]JτF

∗
[b]

)−1
F∗′[b]Jτ

Jτ = Iτ −
1
τ

1τ×τ .

Proof The proof is identical to that of Lemma A.10 where V̂e,[b], H[b] and E[b] are replaced
by V̂∗e,[b], H∗[b] and E∗[b], respectively. �

Lemma A.21. Let Assumptions 1, 3-5 be in effect. Consider any set of continuous functions
of F∗[b]; f1 : Rτ×K → RK , f2 : Rτ×K → RK2

, f3 : Rτ×K → Rτ , f4 : Rτ×K → RKτ , and
f4 : Rτ×K → Rτ2

. Then, as N,T →∞, it holds that

1
B

B∑
b=1

f1
(
F∗[b]

)′( 1
N[b]

B′[b]1N[b] − µβ

)
p→ 0

1
B

B∑
b=1

f2
(
F∗[b]

)′
vec

(
1
N[b]

B′[b]B[b] −Vβ

)
p→ 0

1
B

B∑
b=1

f3
(
F∗[b]

)′( 1
N[b]

U∗′[b]1N[b]

)
p→ 0

1
B

B∑
b=1

f4
(
F∗[b]

)′
vec

(
1
N[b]

U∗′[b]B[b]

)
p→ 0

1
B

B∑
b=1

f5
(
F∗[b]

)′
vec

(
1
N[b]

U∗′[b]U
∗
[b] −Ve,[b]

)
p→ 0,

where U∗[b] is either E∗[b] or E∗e,[b].

Proof The lemma is proved by going through the following steps. We define e[b] locally as
e[b] = F4,[b] − F∗4,[b]O

′
4.

Step 1. Let X[b] either B4,[b]Λ or B[b]Λe. Then, there exits a positive constant c0 < ∞

such that λmax

(
X′[b]X[b]
N[b]

)
< c0 : This directly follows from

B′4,[b]B4,[b]
N[b]

→ V4,β.

Step 2. It holds that U∗[b] = X[b]
(
F4,[b] − F∗4,[b]O

′
4

)′
+ E[b] for X[b] in Step 1: Recall that

E∗[b] = B4,[b]Λ
(
F4,[b] − F∗4,[b]O

′
4

)′
+ E[b] and E∗e,[b] = B[b]Λe

(
F4,[b] − F∗4,[b]O

′
4

)′
+ E[b].
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Step 3. There is a positive constant c1 <∞ such that λmax

((
X′[b]1N[b]
N[b]

)′ (X′[b]1N[b]
N[b]

))
< c1:

Note that

λmax

(X′[b]1N[b]

N[b]

)′(X′[b]1N[b]

N[b]

) < tr

(X′[b]1N[b]

N[b]

)′(X′[b]1N[b]

N[b]

)
= 1
N[b]

tr
((

X[b]X′[b]
N[b]

)
1N[b]1

′
N[b]

)
< λmax

(
X[b]X′[b]
N[b]

)
= λmax

(
X′[b]X[b]

N[b]

)
< c0 ≡ c1,

where the first inequality is due to the positivity of the matrix, the first and third equalities
are from (A.2), the second equality is from (A.3), the last inequality is from Step 2.

Step 4. There is a positive constant c2 <∞ such that λmax

((
X′[b]B[b]
N[b]

)′ (X′[b]B[b]
N[b]

))
< c2:

Note that

λmax

(X′[b]B[b]

N[b]

)′(X′[b]B[b]

N[b]

) < tr

(X′[b]B[b]

N[b]

)′(X′[b]B[b]

N[b]

)
=tr

((
X[b]X′[b]
N[b]

)(B[b]B′[b]
N[b]

))
< λmax

(
X[b]X′[b]
N[b]

)
tr
(B[b]B′[b]

N[b]

)

<λmax

(
X[b]X′[b]
N[b]

)
Kλmax

(B[b]B′[b]
N[b]

)
< Kc0λmax (Vβ) + 1 ≡ c2, (A.53)

where the first inequality is due to the positivity of the matrix, the first equality is from (A.2),
the second inequality is from (A.3), the last inequality is from Step 2.

Step 5. There is a positive constant c3 <∞ such that λmax

((
X′[b]E[b]
N[b]

)′ (X′[b]E[b]
N[b]

))
< c3:

Note that

λmax

(X′[b]E[b]

N[b]

)′(X′[b]E[b]

N[b]

) < tr

(X′[b]E[b]

N[b]

)′(X′[b]E[b]

N[b]

)
=tr

((
X[b]X′[b]
N[b]

)(E[b]E′[b]
N[b]

))
< tr

(
X[b]X′[b]
N[b]

)
λmax

(E[b]E′[b]
N[b]

)

<Kλmax

(
X[b]X′[b]
N[b]

)
λmax

(E′
[b]

E[b]

N[b]

)
< Kc1 (M1 + 1) ≡ c3. (A.54)

where the first and third inequalities are due to the positivity of the matrix, the second
inequality from (A.2), the last inequality is from Step 2 and Assumption 4(ii).
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Step 6. Let a1,[b] = e[b]

(
X′[b]1N[b]
N[b]

)
. It holds that a′1,[b]a1,[b] < c1tr

(
e′[b]e[b]

)
: Note that

a′1,[b]a1,[b] =
(

1
N[b]

X′[b]1N[b]

)′
e′[b]e[b]

(
1
N[b]

X′[b]1N[b]

)

= tr
((

1
N[b]

X′[b]1N[b]

)(
1
N[b]

X′[b]1N[b]

)′
e′[b]e[b]

)
< c1tr

(
e′[b]e[b]

)
,

where the second equality is from (A.2) and the inequality is from (A.3) and Step 3.
Step 7. Let a2,[b] = vec

(
e[b]

(
X′[b]B[b]
N[b]

))
. It holds that a′2,[b]a2,[b] < c2tr

(
e′[b]e[b]

)
: Note

that

a′2,[b]a2,[b] = tr
((

1
N[b]

X′[b]B[b]

)′
e′[b]e[b]

(
1
N[b]

X′[b]B[b]

))

= tr
((

1
N[b]

X′[b]B[b]

)(
1
N[b]

X′[b]B[b]

)′
e′[b]e[b]

)
< c2tr

(
e′[b]e[b]

)
,

where the second equality is from (A.2) and the inequality is from (A.3) and Step 4.
Step 8. Let a3,[b] = vec

(
e[b]

(
X′[b]E[b]
N[b]

))
. It holds that a′3,[b]a3,[b] < c3tr

(
e′[b]e[b]

)
: Note

that

a′3,[b]a3,[b] = tr
((

1
N[b]

X′[b]E[b]

)′
e′[b]e[b]

(
1
N[b]

X′[b]E[b]

))

= tr
((

1
N[b]

X′[b]E[b]

)(
1
N[b]

X′[b]E[b]

)′
e′[b]e[b]

)
< c3tr

(
e′[b]e[b]

)
,

where the second equality is from (A.2) and the inequality is from (A.3) and Step 5.
Step 9. Let a4,[b] = vec

(
e[b]

(
X′[b]X[b]
N[b]

)
e′[b]

)
. It holds that a′4,[b]a4,[b] < c2

0tr
(
e′[b]e[b]e

′
[b]e[b]

)
:
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Note that

a′4,[b]a4,[b] = tr
(
e[b]

(
X′[b]X[b]

N[b]

)
e′[b]e[b]

(
X′[b]X[b]

N[b]

)
e′[b]

)

= tr
((

X′[b]X[b]

N[b]

)
e′[b]e[b]

(
X′[b]X[b]

N[b]

)
e′[b]e[b]

)

< c0tr
(
e′[b]e[b]

(
X′[b]X[b]

N[b]

)
e′[b]e[b]

)
= c0tr

((
X′[b]X[b]

N[b]

)
e′[b]e[b]e

′
[b]e[b]

)
< c2

0tr
(
e′[b]e[b]e

′
[b]e[b]

)
,

where the first equality is from (A.4), the second and third equalities are from (A.2) and the
inequalities are from (A.3) and Step 1.

Step 10. 1
B

∑B
b=1 f3

(
F∗[b]

)′ ( 1
N[b]

U∗′[b]1N[b] −
1
N[b]

E′[b]1N[b]

)
= 1

B

∑B
b=1 f3

(
F∗[b]

)′
a1,[b] : This is

trivial.
Step 11. 1

B

∑B
b=1 f4

(
F∗[b]

)′ (
vec

(
1
N[b]

U∗′[b]B[b]
)
− vec

(
1
N[b]

E′[b]B[b]
))

= 1
B

∑B
b=1 f4

(
F∗[b]

)′
a2,[b] :

This is trivial.
Step 12. 1

B

∑B
b=1 f5

(
F∗[b]

)′ (
vec

(
1
N[b]

U∗′[b]U
∗
[b]

)
− vec

(
1
N[b]

E′[b]E[b]
))

= 2 1
B

∑B
b=1 f5

(
F∗[b]

)′
a3,[b]+

1
B

∑B
b=1 f3

(
F∗[b]

)′
a4,[b] : This is trivial.

Step 13. 1
B

∑B
b=1 fk

(
F∗[b]

)′
al,[b]

p→ 0 for (k, l) = (3, 1) , (4, 2) , (5, 3) : Note that

1
B

B∑
b=1

fk
(
F∗[b]

)′
al,[b] ≤

1
B

B∑
b=1

√
fk
(
F∗[b]

)′
fk
(
F∗[b]

)√
a′l,[b]al,[b]

≤ 1
B

B∑
b=1

√
fk
(
F∗[b]

)′
fk
(
F∗[b]

)√
cltr

(
e′[b]e[b]

)

≤

√√√√ 1
B

B∑
b=1

fk
(
F∗[b]

)′
fk
(
F∗[b]

)√√√√cltr
(

1
B

B∑
b=1

e′[b]e[b]

)
,

where the first and third inequalities are from Cauchy-Schwarz inequility and the second
inequality is from Steps 6-8. Lastly, Assumption 3 confirms that the upper bound goes to
zero. Similarly, we can show that the lower bound goes to zero.
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Step 14. 1
B

∑B
b=1 fk

(
F∗[b]

)′
al,[b]

p→ 0 for (k, l) = (5, 4) : Note that

1
B

B∑
b=1

fk
(
F∗[b]

)′
al,[b] ≤

1
B

B∑
b=1

√
fk
(
F∗[b]

)′
fk
(
F∗[b]

)√
a′l,[b]al,[b]

≤ 1
B

B∑
b=1

√
fk
(
F∗[b]

)′
fk
(
F∗[b]

)√
c2

0tr
(
e′[b]e[b]e

′
[b]e[b]

)

≤

√√√√ 1
B

B∑
b=1

fk
(
F∗[b]

)′
f3
(
F∗[b]

)√√√√c2
ktr
(

1
B

B∑
b=1

e′[b]e[b]e
′
[b]e[b]

)
,

where the first and third inequalities are from Cauchy-Schwarz inequility and the second
inequality is from Step 9. Lemma A.17 confirms that the upper bound goes to zero. We can
show that the lower bound goes to zero in a similar manner.

Step 15. The following equalities hold:

1
B

B∑
b=1

f3
(
F∗[b]

)′( 1
N[b]

U∗′[b]1N[b]

)
= 1
B

B∑
b=1

f3
(
F∗[b]

)′( 1
N[b]

E′[b]1N[b]

)
+ op (1)

1
B

B∑
b=1

f4
(
F∗[b]

)′
vec

(
1
N[b]

U∗′[b]B[b]

)
= 1
B

B∑
b=1

f4
(
F∗[b]

)′
vec

(
1
N[b]

E′[b]B[b]

)
+ op (1)

1
B

B∑
b=1

f5
(
F∗[b]

)′
vec

(
1
N[b]

U∗′[b]U
∗
[b] −Ve,[b]

)
= 1
B

B∑
b=1

f5
(
F∗[b]

)′
vec

(
1
N[b]

E′[b]E[b] −Ve,[b]

)
+ op (1) .

The follows from applying the results in Steps 13-14 to the expressions in Steps 10-12.
Step 16. The claim holds: From Step 15, we can use Lemma A.9 while replacing F[b]

with F∗[b] and substituting Assumption 5 with Lemma A.19. This completes the proof of the
lemma. �

Lemma A.22. Define d∗[b] as

d∗[b] =
(

F∗′4,[b]F
∗
4,[b]

τ

)−1F∗′4,[b]R
′
[b]R[b]F∗4,[b]
N[b]τ2 −

F∗′4,[b]V̂
∗
e,[b]F

∗
4,[b]

τ2

 .
Then, it holds that

d∗[b] = O′4Λ′V4,βΛO4
F∗′4,[b]F

∗
4,[b]

τ
+ E∗D,[b],

where vec
(
E∗D,[b]

)
is given by (A.58). Under Assumptions 1, 3, 4 and 5, it holds that as

N,T →∞,
1
B

B∑
b=1
E∗D,[b]

p→ 0(K+1)×(K+1).
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Proof We rewrite (A.51) here:

R[b] = B4,[b]ΛO′4F∗′4,[b] + E∗[b]. (A.55)

Using the expression of (A.55), we have

F∗′4,[b]R
′
[b]R[b]F∗4,[b]
N[b]τ2 −

F∗′4,[b]V̂
∗
e,[b]F

∗
4,[b]

τ2

=
F∗′4,[b]F

∗
4,[b]

τ

(
O′4Λ′

B′4,[b]B4,[b]
N[b]

ΛO4

)
F∗′4,[b]F

∗
4,[b]

τ
+

F∗′4,[b]
τ

(
E∗′[b]E

∗
[b]

N[b]
− V̂∗e,[b]

)
F∗4,[b]
τ

+
F∗′4,[b]
τ

(
E∗′[b]B4,[b]
N[b]

)
ΛO4

F∗′4,[b]F
∗
4,[b]

τ
+

F∗′4,[b]F
∗
4,[b]

τ
O′4Λ′

(
E∗′[b]B4,[b]
N[b]

)′ F∗4,[b]
τ

,

yielding

d∗[b] =
(

F∗′4,[b]F
∗
4,[b]

τ

)−1F∗′4,[b]R
′
[b]R[b]F∗4,[b]
N[b]τ2 −

F∗′4,[b]V̂
∗
e,[b]F

∗
4,[b]

τ2

 (A.56)

= O′4Λ′V4,βΛO4
F∗′4,[b]F

∗
4,[b]

τ
+ E∗D,[b], (A.57)

where

E∗D,[b] = O′4Λ′
(

B′4,[b]B4,[b]
N[b]

−V4,β

)
ΛO4

F∗′4,[b]F
∗
4,[b]

τ

+
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

(
E∗′[b]E

∗
[b]

N[b]
− V̂∗e,[b]

)
F∗4,[b]
τ

+
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

(
E∗′[b]B4,[b]
N[b]

)
ΛO4

F∗′4,[b]F
∗
4,[b]

τ
+O′4Λ′

(
E∗′[b]B4,[b]
N[b]

)′ F∗4,[b]
τ

.
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Using the property of (A.5) and Lemma A.20 for V̂∗e,[b], we have

vec
(
E∗D,[b]

)
=
((

F∗′4,[b]F
∗
4,[b]

τ
(ΛO4)′

)
⊗ (ΛO4)′

)
vec

(
B′4,[b]B4,[b]

N[b]
−V4,β

)

+

F∗4,[b]
τ
⊗

(F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

K∗[b]vec
(

E∗′[b]E
∗
[b]

N[b]
−Ve,[b]

)

+

(F∗′4,[b]F
∗
4,[b]

τ
(ΛO4)′

)
⊗
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

 vec
(

E∗′[b]B4,[b]
N[b]

)

+
(

F∗4,[b]
τ
⊗ (ΛO4)′

)
vec

(E∗′[b]B4,[b]
N[b]

)′ . (A.58)

Hence, the first claim of the lemma holds.
From Lemma A.21 and the expressions of (A.58), we have that vec

(
E∗D,[b]

)
p→ 0(K+1)2 ,

which in turn implies that
1
B

B∑
b=1
E∗D,[b]

p→ 0(K+1)×(K+1),

verifying the last claim of the lemma. This completes the proof of the lemma. �

Lemma A.23. Define u∗[b] as

u∗[b] =
F∗′4,[b]R

′
[b]1N[b]

N[b]τ
.

Then, it holds that

u∗[b] =
(

F′4,[b]F4,[b]
τ

)
(ΛO4)′

[
1 µ′β

]
+ E∗U,[b],

where EU,[b] is given by (A.60). Under Assumptions 1, 3, 4 and 5, it holds that as N,T →∞,

1
B

B∑
b=1
E∗U,[b]

p→ 0(K+1).

Proof Recall the expression of (A.51):

R[b] = B4,[b]ΛO4F∗′4,[b] + E∗[b].
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Hence, it holds that

F∗′4,[b]R
′
[b]1N[b]

N[b]τ
=
(

F∗′4,[b]F
∗
4,[b]

τ
(ΛO4)′

)(
B4,[b]1N[b]

N[b]

)
+

F∗′4,[b]E
∗
[b]1N[b]

N[b]τ

=
(

F∗′4,[b]F
∗
4,[b]

τ

)
(ΛO4)′µβ + E∗U,[b], (A.59)

where

E∗U,[b] =
(

F∗′4,[b]F
∗′
4,[b]

τ
(ΛO4)′

)(
B4,[b]1N[b]

N[b]
− µβ

)
+
(

F∗′4,[b]
τ

)(
E∗[b]1N[b]

N[b]

)
. (A.60)

Hence, the first claim of the lemma holds.
Applying Lemma A.21 to the expressions of (A.60), we have that

1
B

B∑
b=1
E∗U,[b]

p→ 0(K+1),

verifying the last claim of the lemma. This completes the proof of the lemma. �

Lemma A.24. Define d∗e,[b] as

d∗e,[b] =
(

F∗′4,[b]F
∗
4,[b]

τ

)−1F∗′4,[b]R
′
e,[b]Re,[b]F∗4,[b]
N[b]τ2 −

F∗′4,[b]V̂
∗
e,[b]F

∗
4,[b]

τ2

 .
Then, it holds that

d∗e,[b] = O4Λ′eVβΛeO′4
F∗′4,[b]F

∗
[b]

τ
+ E∗De,[b],

where vec
(
E∗De,[b]

)
is given by (A.64). Under Assumptions 1, 3, 4 and 5, it holds that as

N,T →∞,
1
B

B∑
b=1
E∗De,[b]

p→ 0(K+1)×(K+1).

Proof Rewrite Re,[b] in (A.52) as

Re,[b] = B[b]ΛeO′4F∗′4,[b] + E∗[b]. (A.61)
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Hence, it follows that

F∗′4,[b]R
′
e,[b]R[b]F∗[b]

N[b]τ2 −
F∗′4,[b]V̂

∗
e,[b]F

∗
[b]

τ2

=
F∗′4,[b]F

∗
4,[b]

τ
O4Λ′e

B′[b]B[b]

N[b]
ΛeO′4

F∗′4,[b]F
∗
[b]

τ
+

F∗′4,[b]
τ

(
E∗′[b]E

∗
[b]

N[b]
− V̂∗e,[b]

)
F∗[b]
τ

+
F∗′4,[b]
τ

(
E∗′[b]B[b]

N[b]

)
ΛeO′4

F∗′4,[b]F
∗
[b]

τ
+

F∗′4,[b]F
∗
4,[b]

τ
O4Λ′e

(
E∗′[b]B[b]

N[b]

)′ F∗[b]
τ
,

yielding

d∗e,[b] =
(

F∗′4,[b]F
∗
4,[b]

τ

)−1F∗′4,[b]R
′
e,[b]R[b]F∗[b]

N[b]τ2 −
F∗′4,[b]V̂

∗
e,[b]F

∗
[b]

τ2

 (A.62)

= O4Λ′eVβΛeO′4
F∗′4,[b]F

∗
[b]

τ
+ E∗De,[b], (A.63)

where

E∗De,[b] = O4Λ′e

(
B′[b]B[b]

N[b]
−Vβ

)
ΛeO′4

F∗′4,[b]F
∗
[b]

τ

+
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

(
E∗′[b]E

∗
[b]

N[b]
− V̂∗e,[b]

)
F∗[b]
τ

+
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

(
E∗′[b]B[b]

N[b]

)
ΛeO′4

F∗′4,[b]F
∗
[b]

τ
+O4Λ′e

(
E∗′[b]B[b]

N[b]

)′ F∗[b]
τ
.

Using the property of (A.5) and Lemma A.21 for V̂∗e,[b], we have

vec
(
E∗De,[b]

)
=
((

F∗′4,[b]F
∗
[b]

τ

(
O4Λ′e

))
⊗
(
O4Λ′e

))
vec

(
B′[b]B[b]

N[b]
−Vβ

)

+

F∗′[b]
τ
⊗
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

K[b]vec
(

E∗′[b]E
∗
[b]

N[b]
−Ve,[b]

)

+

(F∗′4,[b]F
∗
[b]

τ

(
O4Λ′e

))
⊗

(F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

 vec
(

E∗′[b]B[b]

N[b]

)
(A.64)

+
(

F∗′[b]
τ
⊗
(
O4Λ′e

))
vec

(E∗′[b]B[b]

N[b]

)′ .
Hence, the first claim of the lemma holds.
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Applying Lemma A.21 to the expressions of (A.64), we have that vec
(
E∗De,[b]

)
p→ 0K2 ,

which in turn implies that
1
B

B∑
b=1
E∗De,[b]

p→ 0K×K ,

verifying the last claim of the lemma. This completes the proof of the lemma. �

Lemma A.25. Define u∗e,[b] as

u∗e,[b] =
(

F∗′4,[b]F
∗
4,[b]

τ

)−1F∗′4,[b]R
′
e,[b]Re,[b]1τ
N[b]τ2 −

F′4,[b]V̂
∗
e,[b]1τ

τ2

 .
Then, it holds that

u∗e,[b] = O4Λ′eVβΛeO′4
F∗′4,[b]1τ

τ
+ E∗Ue,[b],

where E∗Ue,[b] is given by (A.66). Under Assumptions 1, 3, 4 and 5, it holds that as N,T →∞,

1
B

B∑
b=1
E∗Ue,[b]

p→ 0(K+1).

Proof Rewrite Re,[b] of (A.52):

Re,[b] = B[b]ΛeO4F∗′4,[b] + E∗[b].

Hence, it holds that

F∗′4,[b]R
′
e,[b]Re,[b]1τ
N[b]τ2 −

F′4,[b]V̂e,[b]1τ
τ2

=
F∗′4,[b]F

∗
4,[b]

τ

(
ΛeO′4

)′ B′[b]B[b]

N[b]
ΛeO′4

F∗′4,[b]1τ
τ

+
F∗′4,[b]
τ

(
E∗′[b]E

∗
[b]

N[b]
− V̂∗e,[b]

)
1τ
τ

+
F∗′4,[b]
τ

(
E∗′[b]B[b]

N[b]

)
ΛeO′4

F∗′4,[b]1τ
τ

+
F∗′4,[b]F

∗
4,[b]

τ

(
ΛeO′4

)′(E∗′[b]B[b]

N[b]

)′
1τ
τ
,

yielding

(
F∗′4,[b]F

∗
4,[b]

τ

)−1F∗′4,[b]R
′
e,[b]Re,[b]1τ
N[b]τ2 −

F′4,[b]V̂
∗
e,[b]1τ

τ2

 (A.65)

=O4Λ′eVβΛeO′4
F∗′4,[b]1τ

τ
+ E∗Ue,[b],
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where

E∗Ue,[b] = O4Λ′e

(
B′[b]B[b]

N[b]
−Vβ

)
ΛeO′4

F∗′4,[b]1τ
τ

+
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

(
E∗′[b]E

∗
[b]

N[b]
− V̂∗e,[b]

)
1τ
τ

(A.66)

+
(

F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

(
E∗′[b]B[b]

N[b]

)
ΛeO′4

F∗′4,[b]1τ
τ

+O4Λ′e

(
E∗′[b]B[b]

N[b]

)′
1τ
τ
.

Hence, the first claim of the lemma holds.
Applying Lemma A.21 to the expressions of (A.66), we have

E∗Ue,[b] =

(ΛeO′4
F∗′4,[b]1τ

τ

)′
⊗
(
O4Λ′e

) vec
(

B′[b]B[b]

N[b]
−Vβ

)

+

1′τ
τ
⊗

(F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

K∗[b]vec
(

E∗′[b]E
∗
[b]

N[b]
−Ve,[b]

)

+

(ΛeO′4
F∗′4,[b]1τ

τ

)′
⊗

(F∗′4,[b]F
∗
4,[b]

τ

)−1 F∗′4,[b]
τ

 vec
(

E∗′[b]B[b]

N[b]

)

+
(1′τ
τ
⊗
(
O4Λ′e

)′) vec

(E∗′[b]B[b]

N[b]

)′ ,
implying that

1
B

B∑
b=1
E∗Ue,[b]

p→ 0(K+1)

verifying the last claim of the lemma. This completes the proof of the lemma. �

Lemma A.26. Under Assumptions 1, 3, 4 and 5, as N,T →∞, it holds that

D̂∗ =
F∗′4F∗4
T

1
B

B∑
b=1

d∗[b]
p→ O′4V4,fΛ′Vβ4ΛV4,fO4

Û∗ = 1
B

B∑
b=1

u∗[b]
p→ O′4V4,fΛ′

[
1 µ′β

]′
,

where d∗[b] and u
∗
[b] are given in Lemmas A.22 and A.23, respectively.
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Proof From Lemmas A.17 and A.22, it follows that

F∗′4F∗4
T

1
B

B∑
b=1

d[b] =
F∗′4F∗4
T
O′4Λ′V4,βΛO4

F∗′4,[b]F
∗
4,[b]

τ
+

F∗′4F∗4
T

1
B

B∑
b=1
E∗D,[b]

p→ O′4V4,fΛ′Vβ4ΛV4,fO4.

Also, from Lemmas A.17 and A.12, it follows that

1
B

B∑
b=1

u∗[b] =
F∗′4F∗4
T

(ΛO4)′
[
1 µ′β

]
+ 1
B

B∑
b=1
E∗D,[b]

p→ O′4V4,fΛ′
[
1 µ′β

]′
.

This completes the proof of the lemma. �

Lemma A.27. Under Assumptions 1, 3, 4 and 5, as N,T →∞, it holds that

D̂∗e =
F∗′F∗4
T

1
B

B∑
b=1

d∗e,[b]
p→ O′ [µf Vf ]Λ′eVβΛe [µf Vf ]′O

Û∗e =
F∗′F∗4
T

1
B

B∑
b=1

u∗e,[b]
p→ O [µf Vf ]Λ′eVβΛe

[
1 µ′f

]′
,

where d∗e,[b] and u
∗
e,[b] are given in Lemmas A.24 and A.25, respectively.

Proof From Lemmas A.1 and A.13, it follows that

F∗′F∗4
T

1
B

B∑
b=1

d∗e,[b] =
F∗′F∗4
T
O4Λ′eVβΛeO′4

F∗′4F∗

τ
+

F∗′F∗4
T

1
B

B∑
b=1
E∗De,[b]

p→ O′ [µf Vf ]Λ′eVβΛe [µf Vf ]′O

Also, from Lemmas A.1 and A.14, it follows that

F∗′F∗4
T

1
B

B∑
b=1

u∗e,[b] =
F∗′F∗4
T

Λ′eVβΛe

F∗′41T
T

+
F∗′F∗4
T

1
B

B∑
b=1
E∗De,[b]

p→ O [µf Vf ]Λ′eVβΛe

[
1 µ′f

]′
.

This completes the proof of the lemma. �
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Proof of Corollary 2.2 Note that from Lemma A.26

(
D̂∗
)−1

Û∗ p→ O′4
(
V4,fΛ′Vβ4ΛV4,f

)−1
V4,fΛ′

[
1 µ′β

]′
= O′4δ

and that from Lemma A.27

(D∗e)
−1 U∗e

p→−O′
(
[µf Vf ]Λ′eVβΛe [µf Vf ]′

)−1
[µf Vf ]Λ′eVβΛe

[
1 µ′f

]′
=−O′

(
Λe

[
µf Vf

]′)−1
Λe

[
1 µ′f

]′
= −O′δe.

Hence, given the consistency of factor estimators in Assumption 3, the claim of the corollary
is true. �

Lemma A.28. Under Assumption 6, for ek,[b] defined by (A.28), it holds that as N,T →∞,

B∑
b=1

e′k,[b]ek,[b]
p→ 0

for k = 1, · · · , 5.

Proof Fix k. Pick any c > 0. From Assumption 6(ii), when N[b] is large, it holds that

N−δ[b]

(
N[b]e

′
k,[b]ek,[b]

)
< c (A.67)

for all b with δ given in Assumption 6(i). Then, it follows that

B∑
b=1

e′k,[b]ek,[b] = 1
N1−δ

B∑
b=1

(
N

N[b]

)1−δ

N−δ[b]

(
N[b]e

′
k,[b]ek,[b]

)

<
1

N1−δB
B∑
b=1

(1
δ

)1−δ
c

= c

τ

T

N1−δ

(1
δ

)1−δ
p→ 0,

where the first inequality is from Assumption 6(i) and (A.67) and the last limit is from
Assumption 6(i).

Repeating this exercise for k = 1, · · · , 5 completes the proof of the lemma. �

Lemma A.29. Let Assumptions 1, 4, 5 and 6 be in effect. Consider any set of continuous
functions of F[b]; f1 : Rτ×K → RK , f2 : Rτ×K → RK2

, f3 : Rτ×K → Rτ , f4 : Rτ×K → RKτ ,
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and f4 : Rτ×K → Rτ2
. For ek,[b] defined by (A.28), it holds that as N,T →∞,

√
T

1
B

B∑
b=1

fk
(
F[b]

)′
ek,[b]

p→ 0

for k = 1, · · · , 5.

Proof Fix k. Let fk be the corresponding function. As N,T increases, it follows that

√
T

1
B

B∑
b=1

fk
(
F[b]

)′
ek,[b] ≤

√
T

1
B

B∑
b=1

(√
fk
(
F[b]

)′
fk
(
F[b]

)√
e′k,[b]ek,[b]

)

=
√
T

1
B

B∑
b=1

(√
gk
(
F[b]

)√
e′k,[b]ek,[b]

)

≤
√
T


√√√√ 1
B

B∑
b=1

gk
(
F[b]

)
√√√√ 1
B

B∑
b=1

e′k,[b]ek,[b]


≤
√
Mgk ·

√√√√τ B∑
b=1

e′k,[b]ek,[b]
p→ 0, (A.68)

where the first equality holds by defining gk
(
F[b]

)
=
√
fk
(
F[b]

)′
fk
(
F[b]

)
, the first and second

inequalities are from the Cauchy-Schwarz inequality, the third inequality is from Assumption
5, and the last limit is from Lemma A.28. In a similar manner, we can show that as N,T
increases,

−
√
T

1
B

B∑
b=1

fk
(
F[b]

)′
e[b] ≤

√
Mgk ·

√√√√τ B∑
b=1

e′k,[b]ek,[b]
p→ 0. (A.69)

Lastly, combining (A.68) and (A.69) in conjunction with the squeeze theorem, we have that
as N,T →∞,

√
T

1
B

B∑
b=1

fk
(
F[b]

)′
ek,[b]

p→ 0,

Repeating this exercise for k = 1, · · · , 5 completes the proof of the lemma. �

Lemma A.30. Under Assumptions 1, 4, 5 and 6, it holds that

√
T

B

B∑
b=1
ED,[b],

√
T

B

B∑
b=1
EDe,[b]

p→ 0(K+1)×(K+1),

√
T

B

B∑
b=1
EU,[b],

√
T

B

B∑
b=1
EUe,[b]

p→ 0K+1,

where vec
(
ED,[b]

)
, vec

(
EDe,[b]

)
, EU,[b], EUe,[b] are given by (A.35), (A.42), (A.38) and (A.45),

respectively.
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Proof From the expressions of vec
(
ED,[b]

)
, vec

(
EDe,[b]

)
, EU,[b], EUe,[b] are given by (A.35),

(A.42), (A.38) and (A.45), Lemma A.29 implies the desired result. �

Lemma A.31. Under Assumptions 1, 4, 5 and 6, it holds that

√
T
(
vec

(
D̂
)
− vec (D)

)
= ΠD

√
T vec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

where D is the probability limit of D̂ and

ΠD =
(
IK+1 ⊗V4,fΛ′VβΛ

)
+
(
V4,fΛ′VβΛ⊗ IK+1

)
.

Proof From the expression of D̂ in Theorem 2.2, the expressions of d[b] in Lemma A.11
and the limit of D̂ in Lemma A.15,

D̂−D =
F′4F4
T

1
B

B∑
b=1

d[b] −V4,fΛ′Vβ4ΛV4,f

=
F′4F4
T

Λ′V4,βΛ
F′4F4
T

+
F′4F4
T

1
B

B∑
b=1
ED,[b] −V4,fΛ′Vβ4ΛV4,f .

From Lemma A.30, we have that

F′4F4
T

√
T

B

B∑
b=1
ED,[b] = op (1) ,

implying that

√
T
(
D̂−D

)
=
√
T

(
F′4F4
T

Λ′V4,βΛ
F′4F4
T

−V4,fΛ′Vβ4ΛV4,f

)
+ op (1) . (A.70)

Besides, noting that

F′4F4
T

Λ′V4,βΛ
F′4F4
T

−V4,fΛ′Vβ4ΛV4,f

=V4,fΛ′VβΛ

(
F′4F4
T

−V4,f

)
+
(

F′4F4
T

−V4,f

)
Λ′Vβ4ΛV4,f+

+
(

F′4F4
T

−V4,f

)
Λ′VβΛ

(
F′4F4
T

−V4,f

)
,
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we use (A.5) to obtain

√
Tvec

(
F′4F4
T

Λ′V4,βΛ
F′4F4
T

−V4,fΛ′Vβ4ΛV4,f

)

=
((

I⊗V4,fΛ′VβΛ
)

+
(
V4,fΛ′VβΛ⊗ I

))√
Tvec

( 1
T

F′4F4 −Vf

)
+
(
T 0.25

(
F′4F4
T

−V4,f

)
⊗ T 0.25

(
F′4F4
T

−V4,f

))
vec

(
Λ′VβΛ

)
=
((

I⊗V4,fΛ′VβΛ
)

+
(
V4,fΛ′VβΛ⊗ I

))√
Tvec

( 1
T

F′4F4 −Vf

)
+ op (1) , (A.71)

where the last equality holds from Assumption 6(iii). Plugging (A.71) into (A.70) completes
the proof of the lemma. �

Lemma A.32. Under Assumptions 1, 4, 5 and 6, it holds that

√
T
(
Û−U

)
= ΠU

√
T vec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

where U is the probability limit of Û and

ΠU =
(
Λ′µβ

)′ ⊗ IK+1.

Proof From the expression of Û in Theorem 2.2, the expressions of u[b] in Lemma A.12
and the limit of Û in Lemma A.15,

Û−U = 1
B

B∑
b=1

u[b] −V4,fΛ′
[
1 µ′β

]

=
F′4F4
T

Λ′
[
1 µ′β

]
+ 1
B

B∑
b=1
EU,[b] −V4,fΛ′

[
1 µ′β

]
.

From Lemma A.30, we have that

√
T

B

B∑
b=1
EU,[b] = op (1) ,

implying that

√
T
(
Û−U

)
=
√
T

(
F′4F4
T

Λ′
[
1 µ′β

]
−V4,fΛ′

[
1 µ′β

])
+ op (1) . (A.72)
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Besides, noting that

F′4F4
T

Λ′
[
1 µ′β

]
−V4,fΛ′

[
1 µ′β

]
=
(

F′4F4
T

−V4,f

)
Λ′
[
1 µ′β

]
,

we use (A.5) to obtain

√
T

(
F′4F4
T

Λ′
[
1 µ′β

]
−V4,fΛ′

[
1 µ′β

])

=
((
Λ′µβ

)′ ⊗ IK+1
)√

Tvec
( 1
T

F′4F4 −Vf

)
. (A.73)

Plugging (A.73) into (A.72) completes the proof of the lemma. �

Lemma A.33. Under Assumptions 1, 4, 5 and 6, it holds that

√
T
(
vec

(
D̂e

)
− vec (De)

)
= ΠDe

√
T vec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

where De is the probability limit of D̂e and

ΠDe =
(
[0K IK ]⊗ [0K IK ] V4,fΛ′eVβΛe

)
+
(
[0K IK ] V4,fΛ′eVβΛe ⊗ [0K IK ]

)
.

Proof From the expression of D̂e in Theorem 2.2, the expressions of de,[b] in Lemma A.13
and the limit of D̂e in Lemma A.16,

D̂e −De = F′F4
T

1
B

B∑
b=1

de,[b] −
[
µf Vf

]
Λ′eVβΛe

[
µf Vf

]′
= F′F4

T
Λ′eVβΛe

F′4F
T

+ F′F4
T

1
B

B∑
b=1
EDe,[b] −

[
µf Vf

]
Λ′eVβΛe

[
µf Vf

]′
.

From Lemma A.30, we have that

F′F4
T

√
T

B

B∑
b=1
EDe,[b] = op (1) ,

implying that

√
T
(
D̂e −De

)
=
√
T [0K IK ]

(
F′4F4
T

Λ′eVβΛe

F′4F4
T

−V4,fΛ′eVβΛeV4,f

)
[0K IK ]′+op (1) .

(A.74)
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Besides, noting that

F′4F4
T

Λ′eVβΛe

F′4F4
T

−V4,fΛ′eVβΛeV4,f

=V4,fΛ′eVβΛe

(
F′4F4
T

−V4,f

)
+
(

F′4F4
T

−V4,f

)
Λ′eVβΛeV4,f+

+
(

F′4F4
T

−V4,f

)
Λ′eVβΛe

(
F′4F4
T

−V4,f

)
,

we use (A.5) to obtain

√
Tvec

(
[0K IK ]

(
F′4F4
T

Λ′eVβΛe

F′4F4
T

−V4,fΛ′eVβΛeV4,f

)
[0K IK ]′

)

=ΠDe

√
Tvec

( 1
T

F′4F4 −Vf

)
+
(

[0K IK ]T 0.25
(

F′4F4
T

−V4,f

)
⊗ [0K IK ]T 0.25

(
F′4F4
T

−V4,f

))
vec

(
Λ′eVβΛe

)
=ΠDe

√
Tvec

( 1
T

F′4F4 −Vf

)
+ op (1) , (A.75)

where the last equality holds from Assumption 6(iii). Plugging (A.75) into (A.74) completes
the proof of the lemma. �

Lemma A.34. Under Assumptions 1, 4, 5, 6, it holds that

√
T
(
Ûe −Ue

)
= ΠUe

√
T vec

( 1
T

F′4F4 −Vf

)
+ op (1) ,

where Ue is the probability limit of Ûe and

ΠUe =
([

1 0′K
]
⊗
(
[0K IK ] V4,fΛ′eVβΛe

))
+
(([

1 0′K
]
V4,fΛ′eVβΛe

)
⊗ [0K IK ]

)
.

Proof From the expression of Ûe in Theorem 2.2, the expressions of ue,[b] in Lemma A.14
and the limit of Ûe in Lemma A.16,

Ûe −Ue = F′F4
T

B∑
b=1

ue,[b] −
[
µf Vf

]
Λ′eVβΛe

[
1 µ′f

]′
= F′F4

T
Λ′eVβΛe

F′41T
T

+ F′F4
T

1
B

B∑
b=1
EUe,[b] −

[
µf Vf

]
Λ′eVβΛe

[
1 µ′f

]′
.
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From Lemmas A.1 and A.30, we have that

F′F4
T

√
T

B

B∑
b=1
EUe,[b] = op (1) .

Hence, using the above equality with the following identities F = F4 [0K IK ]′ , 1T = F4 [1 0′K ]′ ,[
µf Vf

]′
= V4,f [0K IK ]′ ,

[
1 µ′f

]′
= V4,f [1 0′K ]′ , we have that

√
T
(
Ûe −Ue

)
=
√
T [0K IK ]

(
F′4F4
T

Λ′eVβΛe

F′4F4
T

−V4,fΛ′eVβΛeV4,f

) [
1 0′K

]′+op (1) .

(A.76)
Besides, noting that

F′4F4
T

Λ′eVβΛe

F′4F4
T

−V4,fΛ′eVβΛeV4,f

=V4,fΛ′eVβΛe

(
F′4F4
T

−V4,f

)
+
(

F′4F4
T

−V4,f

)
Λ′eVβΛeV4,f+

+
(

F′4F4
T

−V4,f

)
Λ′eVβΛe

(
F′4F4
T

−V4,f

)
,

we use (A.5) to obtain

√
Tvec

(
[0K IK ]

(
F′4F4
T

Λ′eVβΛe

F′4F4
T

−V4,fΛ′eVβΛeV4,f

) [
1 0′K

]′)

=ΠUe

√
Tvec

( 1
T

F′4F4 −Vf

)
+
([

1 0′K
]
T 0.25

(
F′4F4
T

−V4,f

)
⊗ [0K IK ]T 0.25

(
F′4F4
T

−V4,f

))
vec

(
Λ′eVβΛe

)
=ΠUe

√
Tvec

( 1
T

F′4F4 −Vf

)
+ op (1) , (A.77)

where the expression of ΠUe is given in the statement of the lemma, the last equality holds
from Assumption 6(iii). Plugging (A.77) into (A.76) completes the proof of the lemma. �

Lemma A.35. Let Assumptions 1, 5 be in effect. Consider a continuous function of F[b]

and F′4F4
T ; h :

(
Rτ×K × R(K+1)×(K+1)

)
→ R. Then, there exists a positive number Mh <∞

such that

lim
T→∞

1
B

B∑
b=1

h

(
F[b],

F′4F4
T

)
< Mh.
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Proof Due to the continuity of h, Lemma A.1 yields that

h

(
F[b],

F′4F4
T

)
< h

(
F[b],V4,f

)
+ 1,

implying that

1
B

B∑
b=1

h

(
F[b],

F′4F4
T

)
<

1
B

B∑
b=1

h
(
F[b],V4,f

)
+ 1.

From Assumption 5, 1
B

∑B
b=1 h

(
F[b],V4,f

)
is bounded. Hence, we can always find Mh such

that limT→∞
1
B

∑B
b=1 h

(
F[b], V̂f4

)
< Mh. This proves the lemma. �

Lemma A.36. Let Assumptions 4 and 5 be in effect. Consider any set of continuous func-
tions of F[b] and

F′4F4
T ; h1 : Rτ×K×R(K+1)×(K+1) → RK , h2 : Rτ×K×R(K+1)×(K+1) → RK2

,

h3 : Rτ×K × R(K+1)×(K+1) → Rτ , h4 : Rτ×K × R(K+1)×(K+1) → RKτ , and h5 : Rτ×K ×
R(K+1)×(K+1) → Rτ2

. For ek,[b] defined by (A.28), it holds that as N,T →∞,

1
B

B∑
b=1

hk

(
F[b],

F′4F4
T

)′
ek,[b]

p→ 0

for k = 1, · · · , 5.

Proof Note that from Assumption 4(iii), it holds that

1
B

B∑
b=1

e′k,[b]ek,[b]
p→ 0 (A.78)

for k = 1, · · · , 5.
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Fix k. Let fk be the corresponding function. As N,T increases, it follows that

1
B

B∑
b=1

hk

(
F[b],

F′4F4
T

)′
ek,[b] ≤

1
B

B∑
b=1


√√√√hk

(
F[b],

F′4F4
T

)′
hk

(
F[b],

F′4F4
T

)√
e′k,[b]ek,[b]


= 1
B

B∑
b=1


√√√√gk

(
F[b],

F′4F4
T

)√
e′k,[b]ek,[b]

 (A.79)

≤


√√√√ 1
B

B∑
b=1

gk

(
F[b],

F′4F4
T

)
√√√√ 1
B

B∑
b=1

e′k,[b]ek,[b]


≤
√
Mgk ·

√√√√ 1
B

B∑
b=1

e′k,[b]ek,[b]
p→ 0, (A.80)

where the first equality holds by defining gk
(
F[b]

)
=
√
hk

(
F[b],

F′4F4
T

)′
hk

(
F[b],

F′4F4
T

)
, the

first and second inequalities are from the Cauchy-Schwarz inequality, the third inequality is
from Lemma A.35, and the last limit is from (A.78). In a similar manner, we can show that
as N,T increases,

− 1
B

B∑
b=1

fk
(
F[b]

)′
e[b] ≤

√
Mgk ·

√√√√ 1
B

B∑
b=1

e′k,[b]ek,[b]
p→ 0. (A.81)

Lastly, combining (A.80) and (A.81) in conjunction with the squeeze theorem, we have that
as N,T →∞,

1
B

B∑
b=1

fk
(
F[b]

)′
ek,[b]

p→ 0,

Repeating this exercise for k = 1, · · · , 5 completes the proof of the lemma. �

We introduce the (K + 1) (K + 2)× 1 vectors of E[b] and Ee,[b] which are defined by

E[b] =
[
E ′U,[b] vec

(
ED,[b]

)′]
(A.82)

Ee,[b] =
[
E ′Ue,[b] vec

(
EDe,[b]

)′]
, (A.83)

where EU,[b], vec
(
ED,[b]

)
, EUe,[b], vec

(
EDe,[b]

)
are given by (A.38), (A.35), (A.45) and (A.42),

respectively.

Lemma A.37. Consider a continuous function of F[b] and
F′4F4
T ; h : Rτ×K×R(K+1)×(K+1) →
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R(K+1)(K+2). Under Assumptions 1, 4, 5 and 6, it holds that

1
B

B∑
b=1

h

(
F[b],

F′4F4
T

)′
E[b],

1
B

B∑
b=1

h

(
F[b],

F′4F4
T

)′
Ee,[b]

p→ 0.

Proof Note that E[b] and Ee,[b] can be expressed as
∑5
k=1 Hk

(
F[b]

)
ek,[b] for some matrix

valued continuous functions of Hk for k = 1, · · · , 5 from the definitions ek,[b] given by (A.28)
for k = 1, · · · , 5. Then, it follows that

1
B

B∑
b=1

h

(
F[b],

F′4F4
T

)′ 5∑
k=1

Hk

(
F[b]

)
ek,[b]

=
5∑

k=1

(
1
B

B∑
b=1

h

(
F[b],

F′4F4
T

)′
Hk

(
F[b]

)
ek,[b]

)
p→ 0,

where the last limit is from Lemma A.36. �

Lemma A.38. Under Assumptions 1, 4, 5 and 6, it holds that

1
B

B∑
b=1
E[b]E ′[b],

1
B

B∑
b=1
Ee,[b]E ′e,[b]

p→ 0(K+1)(K+2)×(K+1)(K+2).

Proof We prove the lemma in the following steps.

Step 1. For ek,[b] defined by (A.28) for k = 1, · · · , 5, it holds that
∑B
b=1

(
e′
k,[b]ek,[b]

)2

B

p→

0 : Because ek,[b] is small from Assumption 4(ii),
(
e′k,[b]ek,[b]

)2
< e′k,[b]ek,[b], implying that

∑B
b=1

(
e′
k,[b]ek,[b]

)2

B <
∑B
b=1

e′
k,[b]ek,[b]
B . Also, Assumption 4(iii) states that

∑B
b=1

e′
k,[b]ek,[b]
B

p→ 0.

Hence, it follows that
∑B
b=1

(
e′
k,[b]ek,[b]

)2

B

p→ 0.
Step 2. Pick any k, k′ = 1, · · · , 5. Consider a conformable matrix valued continuous func-

tion G (·) such e′k,[b]G
(
F[b]

)
ek′,[b] is well defined. Then, it holds that

∑B
b=1

e′
k,[b]G(F[b])ek′,[b]

B

p→
0 : Note that

1
B

B∑
b=1

(
e′k,[b]G

(
F[b]

)
ek′,[b]

)

≤ 1
B

B∑
b=1

(√
e′k,[b]G

(
F[b]

)
G
(
F[b]

)′
ek,[b]

√
e′k′,[b]ek′,[b]

)

≤


√√√√ 1
B

B∑
b=1

e′k,[b]G
(
F[b]

)
G
(
F[b]

)′
ek,[b]


√√√√ 1
B

B∑
b=1

e′k′,[b]ek′,[b]

 , (A.84)
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where inequalities are from the Cauchy-Schwartz inequality. Assumption 4(iii) implies that

1
B

B∑
b=1

e′k′,[b]ek′,[b]
p→ 0. (A.85)

Also, we have that

e′k,[b]G
(
F[b]

)
G
(
F[b]

)′
ek,[b] =

(
ek,[b] ⊗ ek,[b]

)′
vec

(
G
(
F[b]

)
G
(
F[b]

)′)

<

√(
ek,[b] ⊗ ek,[b]

)′ (
ek,[b] ⊗ ek,[b]

)√√√√tr
((

G
(
F[b]

)
G
(
F[b]

)′)2
)

=
√(

e′k,[b]ek,[b]
)2
√√√√tr

((
G
(
F[b]

)
G
(
F[b]

)′)2
)
, (A.86)

where the first equality is from (A.5), the inequality is from the Cauchy-Schwartz inequality
and (A.4). From (A.86) and the Cauchy-Schwartz inequality, we have that

1
B

B∑
b=1

e′k,[b]G
(
F[b]

)
G
(
F[b]

)′
ek,[b] <


√√√√√ B∑
b=1

(
e′k,[b]ek,[b]

)2

B



√√√√ 1
B

B∑
b=1

tr
(

G
(
F[b]

)
G
(
F[b]

)′)2
 .

Because 1
B

∑B
b=1 tr

(
G
(
F[b]

)
G
(
F[b]

)′)2
is bounded from Lemma 5, and

∑B
b=1

(
e′
k,[b]ek,[b]

)2

B

p→
0 from Step 1, we have that

1
B

B∑
b=1

e′k,[b]G
(
F[b]

)
G
(
F[b]

)′
ek,[b]

p→ 0. (A.87)

By plugging (A.85) and (A.87) into (A.84), we have that
∑B
b=1

e′
k,[b]G(F[b])ek′,[b]

B

p→ 0.
Step 3. E[b] =

∑5
k=1 Hk

(
F[b]

)
ek,[b] for some matrix valued continuous functions of Hk for

k = 1, · · · , 5 : This follows from the definitions ek,[b] given by (A.28) for k = 1, · · · , 5, and the

expressions of E[b] =
[
E ′U,[b] vec

(
ED,[b]

)′]
given by (A.38), (A.35), respectively.

Step 4. 1
B

∑B
b=1 E ′[b]E[b]

p→ 0 : Note that

E ′[b]E[b] =
( 5∑
k=1

e′k,[b]Hk

(
F[b]

)′)( 5∑
k′=1

Hk′

(
F[b]

)
ek,[b]

)

=
5∑

k,k′=1
e′k,[b]Hk

(
F[b]

)′
Hk′

(
F[b]

)
ek′,[b].
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Hence,
1
B

B∑
b=1
E ′[b]E[b] =

5∑
k,k′=1

1
B

B∑
b=1

(
e′k,[b]Hk

(
F[b]

)′
Hk′

(
F[b]

)
ek′,[b]

)
p→ 0

from Step 2.
Step 5. 1

B

∑B
b=1 E[b]E ′[b]

p→ 0(K+1)(K+2)×(K+1)(K+2) : Note that tr
(

1
B

∑B
b=1 E[b]E ′[b]

)
=

1
B

∑B
b=1 E ′[b]E[b]

p→ 0 from Step 4. Because 1
B

∑B
b=1 E[b]E ′[b] is positive semidefinite, tr

(
1
B

∑B
b=1 E[b]E ′[b]

)
p→

0 implies 1
B

∑B
b=1 E[b]E ′[b]

p→ 0(K+1)(K+2)×(K+1)(K+2). The result on the limit of 1
B

∑B
b=1 Ee,[b]E ′e,[b]

similarly follows by repeating the above steps with proper adjustments. This completes the
proof of the lemma. �

Lemma A.39. Define ζ[b] define as

ζ[b] = ζ[b],1 + ζ[b],2 + ζ[b],3,

where

ζ[b],1 = Ξvec
(

F′4,[b]F4,[b]
τ

−V4,f

)

ζ[b],2 = H
(

F[b],
F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

ζ[b],3 = G
(

F′4F4
T

)
Z[b] + L

(
F[b],

F′4F4
T

)
1
B

B∑
b=1
Z[b]

and Ξ is a conformable constant matrix, H, G and L are some conformable matrix valued
continuous functions, Z[b] is either E[b] or Ee,[b], given by (A.82) and (A.83), respectively.
Under Assumptions 1, 4, 5 and 6, it holds that

1
B

B∑
b=1

ζ[b]ζ
′
[b]

p→ 1
τ
ΞVf2Ξ′.

Proof The following property of Z[b] is useful:

1
B

B∑
b=1
Z[b] = op (1) , (A.88)

which directly follows from Lemmas A.11, A.12, A.13, A.14. For simplicity, we locally define
a (K + 1)× (K + 1) vector x by x = vec

(
F′4,[b]F4,[b]

τ −V4,f
)
. Note that

x = op (1) , (A.89)
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from Lemma A.1.
Let (L× 1) be the size of ζ[b]. Note that 1

B

∑B
b=1 ζ[b]ζ

′
[b] =

∑3
i,j=1

(
1
B

∑B
b=1 ζ[b],iζ

′
[b],j

)
.

Hence, we examine 1
B

∑B
b=1 ζ[b],iζ

′
[b],j for i, j = 1, 2, 3. We find that

1
B

B∑
b=1

ζ[b],1ζ
′
[b],1 = Ξ

1
B

B∑
b=1

vec(F′4,[b]F4,[b]
τ

−V4,f

)
vec

(
F′4,[b]F4,[b]

τ
−V4,f

)′Ξ′

p→ 1
τ
ΞVf2Ξ′, (A.90)

where the last limit is from Assumption 7 and that

vec
(

1
B

B∑
b=1

ζ[b],1ζ
′
[b],2

)

=vec
(

1
B

B∑
b=1

(
Ξvec

(
F′4,[b]F4,[b]

τ
−V4,f

)
x′H

(
F[b],

F′4F4
T

)′))

=
(

1
B

B∑
b=1

H
(

F[b],
F′4F4
T

)
⊗
(
Ξvec

(
F′4,[b]F4,[b]

τ
−V4,f

)))
x

p→0L2 , (A.91)

where the second equality is from (A.5) and the limit follows from the boundedness of
1
B

∑B
b=1 H

(
F[b],

F′4F4
T

)
⊗ vec

(
F′4,[b]F4,[b]

τ −V4,f
)

(Lemma A.35) and (A.89) and that

vec
(

1
B

B∑
b=1

ζ[b],1ζ
′
[b],3

)

=vec
(
Ξ

(
1
B

B∑
b=1

vec
(

F′4,[b]F4,[b]
τ

−V4,f

)
Z ′[b]

)
G
(

F′4F4
T

)′)

+ vec

 1
B

B∑
b=1

Ξvec
(

F′4,[b]F4,[b]
τ

−V4,f

)(
1
B

B∑
b′=1
Z[b′]

)′(
L
(

F[b],
F′4F4
T

))′
=vec

(
Ξ

(
1
B

B∑
b=1

vec
(

F′4,[b]F4,[b]
τ

−V4,f

)
Z ′[b]

)
G
(

F′4F4
T

)′)

+
(

1
B

B∑
b=1

(
L
(

F[b],
F′4F4
T

)
⊗Ξvec

(
F′4,[b]F4,[b]

τ
−V4,f

)))(
1
B

B∑
b′=1
Z[b′]

)
p→0L2 , (A.92)

where the second equality is from (A.5), the first object in RHS shrinks by Lemma A.37
and the second object in RHS evaporates due to Lemma A.35 (for the boundedness of
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1
B

∑B
b=1

(
L
(

F[b],
F′4F4
T

)
⊗Ξvec

(
F′4,[b]F4,[b]

τ −V4,f
))

) and (A.88) and that

vec
(

1
B

B∑
b=1

ζ[b],2ζ
′
[b],2

)

=vec
(

1
B

B∑
b=1

H
(

F[b],
F′4F4
T

)
xx′H

(
F[b],

F′4F4
T

)′)

=
(

1
B

B∑
b=1

H
(

F[b],
F′4F4
T

)
⊗H

(
F[b],

F′4F4
T

))
vec

(
xx′

)
p→0L×L, (A.93)

due to the boundedness of 1
B

∑B
b=1 H

(
F[b],

F′4F4
T

)
⊗ H

(
F[b],

F′4F4
T

)
(Lemma A.35) and

(A.89) and that

vec
(

1
B

B∑
b=1

ζ[b],2ζ
′
[b],3

)

=vec
(

1
B

B∑
b=1

H
(

F[b],
F′4F4
T

)
xZ ′[b]G

(
F′4F4
T

)′)
(A.94)

+ vec

 1
B

B∑
b=1

H
(

F[b],
F′4F4
T

)
x
(

1
B

B∑
b′=1
Z[b′]

)′
L
(

F[b],
F′4F4
T

)′
=vec

((
x′ ⊗ IL

)( 1
B

B∑
b=1

(
vec

(
H
(

F[b],
F′4F4
T

))
Z ′[b]

))
G
(

F′4F4
T

)′)

+
(

1
B

B∑
b=1

L
(

F[b],
F′4F4
T

)
⊗
(

H
(

F[b],
F′4F4
T

)
x
))(

1
B

B∑
b′=1
Z[b′]

)
p→0L2 , (A.95)

where the second equality is from (A.5), the first object in RHS shrinks because of Lemma
A.37 and the second object in RHS evaporates due to Lemma A.35 (for the boundedness of
1
B

∑B
b=1 L

(
F[b],

F′4F4
T

)
⊗
(

H
(

F[b],
F′4F4
T

)
x
)
) and (A.88) and that

G
(

F′4F4
T

)(
1
B

B∑
b=1
Z[b]Z ′[b]

)
G
(

F′4F4
T

)′
p→ 0L×L (A.96)
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from Lemma A.38 and that

vec

 1
B

B∑
b=1

G
(

F′4F4
T

)
Z[b]

(
1
B

B∑
b′=1
Z[b′]

)′
L
(

F[b],
F′4F4
T

)′
=
(

1
B

B∑
b=1

L
(

F[b],
F′4F4
T

)
⊗
(

G
(

F′4F4
T

)
Z[b]

))(
1
B

B∑
b′=1
Z[b′]

)
p→ 0L2 , (A.97)

where the equality is from (A.5), the limit is from Lemma A.37 and (A.88) that

vec

 1
B

B∑
b=1

L
(

F[b],
F′4F4
T

)(
1
B

B∑
b′=1
Z[b′]

)(
1
B

B∑
b′′=1
Z[b′′]

)′
L
(

F[b],
F′4F4
T

)′
=
(

1
B

B∑
b=1

L
(

F[b],
F′4F4
T

)
⊗ L

(
F[b],

F′4F4
T

))
vec

( 1
B

B∑
b′=1
Z[b′]

)(
1
B

B∑
b′′=1
Z[b′′]

)′ p→ 0L2

(A.98)

from Lemma A.35 (for the boundedness of 1
B

∑B
b=1 L

(
F[b],

F′4F4
T

)
⊗ L

(
F[b],

F′4F4
T

)
) and

(A.88) and that

1
B

B∑
b=1

ζ[b],3ζ
′
[b],3

p→ 0(K+1)(K+2)×(K+1)(K+2), (A.99)

from (A.96), (A.97) and (A.98).
Lastly combining (A.90)-(A.99), we have that

1
B

B∑
b=1

ζ[b]ζ
′
[b]

p→ 1
τ
ΞVf2Ξ′,

which completes the proof of the lemma. �

Lemma A.40. Under Assumptions 1, 4, 5 and 6, it holds that

1
B

B∑
b=1

η[b]η
′
[b]

p→ 1
τ
ΠVf2Π′,

where

η[b] =

 u[b] − Û

vec
(

F′4F4
T d[b] − D̂

)
+ vec

(
F′4,[b]F4,[b]

τ
1
B

(∑B
b=1 d[b]

)
− D̂

)  ,
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and Π = [Π′U Π′D]′, ΠD and ΠU are given in Lemmas A.31 and A.32.

Proof First, we show that

η[b] = η[b],1 + η[b],2 + η[b],3, (A.100)

where

η[b],1 = Πvec
(

F′4,[b]F4,[b]
τ

−V4,f

)

η[b],2 = H
(

F[b],
F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

η[b],3 = G
(

F′4F4
T

)
E[b] + L

(
F[b],

F′4F4
T

)
1
B

B∑
b=1
E[b]

and H, G and L are some conformable matrix valued continuous functions.
We examine u[b] − Û. From Lemmas A.12 and A.15, we have that

u[b] − Û =
(

F′4,[b]F4,[b]
τ

)
Λ′
[
1 µ′β

]
+ EU,[b] −

(
F′4F4
T

)
Λ′
[
1 µ′β

]
− 1
B

B∑
b=1
EU,[b]

=
((
Λ′µβ

)′ ⊗ IK+1
)
vec

(
F′4,[b]F4,[b]

τ
−V4,f

)
+

−
((
Λ′µβ

)′ ⊗ IK+1
)
vec

(
F′4F4
T

−V4,f

)
+ EU,[b] −

1
B

B∑
b=1
EU,[b]

= ΠUvec
(

F′4,[b]F4,[b]
τ

−V4,f

)
−ΠUvec

(
F′4F4
T

−V4,f

)
+ EU,[b] −

1
B

B∑
b=1
EU,[b].

(A.101)
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We turn to F′4F4
T d[b] − D̂. From Lemmas A.11 and A.15, we have that

F′4F4
T

d[b] − D̂

=
F′4F4
T

Λ′V4,βΛ
F′4,[b]F4,[b]

τ
−

F′4F4
T

Λ′V4,βΛ
F′4F4
T

+
F′4F4
T

(
ED,[b] −

1
B

B∑
b=1
ED,[b]

)

=V4,fΛ′V4,βΛ
(

F′4,[b]F4,[b]
τ

−V4,f

)
+
(

F′4F4
T

−V4,f

)
Λ′V4,βΛ

(
F′4,[b]F4,[b]

τ
−V4,f

)

−
F′4F4
T

Λ′V4,βΛ
(

F′4F4
T

−V4,f

)
+

F′4F4
T

(
ED,[b] −

1
B

B∑
b=1
ED,[b]

)
,

which in turn yields

vec
(

F′4F4
T

d[b] − D̂
)

=
(
IK+1 ⊗V4,fΛ′VβΛ

)
vec

(
F′4,[b]F4,[b]

τ
−V4,f

)
+

+ H0

(
F[b],

F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

+
(

IK+1 ⊗
F′4F4
T

)
vec

(
ED,[b] −

1
B

B∑
b=1
ED,[b]

)
, (A.102)

where H0 is a conformable matrix valued continuous function.
We inspect

F′4,[b]F4,[b]
τ

1
B

(∑B
b=1 d[b]

)
−D̂. From Lemmas A.11 and A.15, after some algebra,

we find that

F′4,[b]F4,[b]
τ

1
B

(
B∑
b=1

d[b]

)
− D̂ =

(
F′4,[b]F4,[b]

τ
−

F′4F4
T

)
1
B

(
B∑
b=1

d[b]

)

=
(

F′4,[b]F4,[b]
τ

−
F′4F4
T

)(
Λ′V4,βΛ

F′4F4
T

+ 1
B

B∑
b=1
ED,[b]

)

=
(

F′4,[b]F4,[b]
τ

−V4,f

)
Λ′V4,βΛV4,f +

(
F′4,[b]F4,[b]

τ
−V4,f

)
Λ′V4,βΛ

(
F′4F4
T

−V4,f

)

−
(

F′4F4
T

−V4,f

)
Λ′V4,βΛ

F′4F4
T

+
(

F′4,[b]F4,[b]
τ

−
F′4F4
T

)
1
B

B∑
b=1
ED,[b],
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which implies

vec
(

F′4,[b]F4,[b]
τ

1
B

(
B∑
b=1

d[b]

)
− D̂

)

=
(
V4,fΛ′VβΛ⊗ IK+1

)
vec

(
F′4,[b]F4,[b]

τ
−V4,f

)

+ H1

(
F[b],

F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

+
(

IK+1 ⊗
(

F′4,[b]F4,[b]
τ

−
F′4F4
T

))
vec

(
1
B

B∑
b=1
ED,[b]

)
, (A.103)

where H1 is a conformable matrix valued continuous function. Combining (A.101), (A.102)
and (A.103) yields the expression of (A.100).

Next, note that given the expression of η[b] in (A.100), Lemma A.39 implies that

1
B

B∑
b=1

η[b]η
′
[b]

p→ 1
τ
ΠVf2Π′.

This completes the proof of the lemma. �

Lemma A.41. Under Assumptions 1, 4, 5 and 6, it holds that

1
B

B∑
b=1

ηe,[b]η
′
e,[b]

p→ 1
τ
ΠeVf2Π′e,

where

ηe,[b] =


(

F′F4
T ue,[b] − Ûe

)
+
(

F′[b]F4,[b]
τ

1
B

(∑B
b=1 ue,[b]

)
− Ûe

)
vec

(
F′F4
T de,[b] − D̂e

)
+ vec

(
F′[b]F4,[b]

τ
1
B

(∑B
b=1 de,[b]

)
− D̂e

)
 ,

and Πe =
[
Π′Ue Π′De

]′
, ΠDe and ΠUe are given in Lemmas A.33 and A.34.

Proof First, we show that

ηe,[b] = ηe,[b],1 + ηe,[b],2 + ηe,[b],3, (A.104)
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where

ηe,[b],1 = Πevec
(

F′4,[b]F4,[b]
τ

−V4,f

)

ηe,[b],2 = He

(
F[b],

F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

ηe,[b],3 = Ge

(
F′4F4
T

)
Ee,[b] + Le

(
F[b],

F′4F4
T

)
1
B

B∑
b=1
E[b]

and He, Ge and Le are some conformable matrix valued continuous functions.
The following identities are useful:

F′4F4
T

Λ′eVβΛe

(
F′4,[b]F4,[b]

τ
−

F′4F4
T

)

=V4,fΛ′eVβΛe

(
F′4,[b]F4,[b]

τ
−V4,f

)
−V4,fΛ′eVβΛe

(
F′4F4
T

−V4,f

)

+
(

F′4F4
T

−V4,f

)
Λ′eVβΛe

(
F′4,[b]F4,[b]

τ
−

F′4F4
T

)
(A.105)

and (
F′4,[b]F4,[b]

τ
−

F′4F4
T

)
Λ′eVβΛe

F′4F4
T

=
(

F′4,[b]F4,[b]
τ

−V4,f

)
Λ′eVβΛeV4,f −

(
F′4F4
T

−V4,f

)
Λ′eVβΛeV4,f

+
(

F′4,[b]F4,[b]
τ

−
F′4F4
T

)
Λ′eVβΛe

(
F′4F4
T

−V4,f

)
. (A.106)

We examine F′F4
T ue,[b] − Ûe. From Lemmas A.14 and A.16, we have that

F′F4
T

ue,[b] − Ûe = F′F4
T

Λ′eVβΛe

F′4,[b]1τ
τ

+ F′F4
T
EUe,[b]

− F′F4
T

Λ′eVβΛe
F′1τ
T
− F′F4

T

1
B

B∑
b=1
EUe,[b],
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which in turn yields

F′F4
T

ue,[b] − Ûe = [0K IK ]
(

F′4F4
T

Λ′eVβΛe

(
F′4,[b]F4,[b]

τ
−

F′4F4
T

)) [
1 0′K

]′
+ F′F4

T

(
EUe,[b] −

1
B

B∑
b=1
EUe,[b]

)
.

Plugging (A.105) to the above and using (A.5), we have that

F′F4
T

ue,[b] − Ûe = vec
(F′F4

T
ue,[b] − Ûe

)
=
([

1 0′K
]
⊗ [0K IK ] V4,fΛ′eVβΛe

)
vec

(
F′4,[b]F4,[b]

τ
−V4,f

)

+ HUe,0

(
F[b],

F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

+ F′F4
T

(
EUe,[b] −

1
B

B∑
b=1
EUe,[b]

)
, (A.107)

where HUe,0 is a conformable matrix valued continuous function.
We turn to

F′[b]F4,[b]
τ

1
B

(∑B
b=1 ue,[b]

)
− Ûe. From Lemmas A.14 and A.16,

F′[b]F4,[b]
τ

1
B

(
B∑
b=1

ue,[b]

)
− Ûe

=
(

F′[b]F4,[b]
τ

− F′F4
T

)
1
B

(
B∑
b=1

ue,[b]

)

=
(

F′[b]F4,[b]
τ

− F′F4
T

)
Λ′eVβΛe

F′4,[b]1τ
τ

+
(

F′[b]F4,[b]
τ

− F′F4
T

)
1
B

B∑
b=1
EUe,[b]

= [0K IK ]
(

F′4,[b]F4,[b]
τ

−
F′4F4
T

)
Λ′eVβΛe

F′4F4
T

[
1 0′K

]′ + (
F′[b]F4,[b]

τ
− F′F4

T

)
1
B

B∑
b=1
EUe,[b].
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Plugging (A.106) to the above and using (A.5), we get

F′[b]F4,[b]
τ

1
B

(
B∑
b=1

ue,[b]

)
− Ûe

=
(([

1 0′K
]
V4,fΛ′eVβΛe

)
⊗ [0K IK ]

)
vec

(
F′4,[b]F4,[b]

τ
−V4,f

)

+ HUe,1

(
F[b],

F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

+
(

F′[b]F4,[b]
τ

− F′F4
T

)
1
B

B∑
b=1
EUe,[b], (A.108)

where HUe,1 is a conformable matrix valued continuous function.
Next, we examine vec

(
F′F4
T de,[b]

)
− vec

(
D̂e

)
. From Lemmas A.13 and A.16, we have

that

F′F4
T

de,[b] − D̂e

=F′F4
T

Λ′eVβΛe

F′4,[b]F[b]

τ
−

F′4F4
T

Λ′eVβΛe

F′4F
T

+ F′F4
T

(
ED,[b] −

1
B

B∑
b=1
ED,[b]

)
,

which in turn yields

F′F4
T

de,[b] − D̂e = [0K IK ]
(

F′4F4
T

Λ′eVβΛe

(
F′4,[b]F4,[b]

τ
−

F′4F4
T

))
[0K IK ]′

+ F′F4
T

(
ED,[b] −

1
B

B∑
b=1
ED,[b]

)
.

Plugging (A.105) to the above and using (A.5), we have that

vec
(F′F4

T
de,[b] − D̂e

)
=
(
[0K IK ]⊗ [0K IK ] V4,fΛ′eVβΛe

)
vec

(
F′4F4
T

−V4,f

)

+ HDe,0

(
F[b],

F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

+
(

IK+1 ⊗
F′F4
T

)
vec

(
EDe,[b] −

1
B

B∑
b=1
EDe,[b]

)
, (A.109)

where HDe,0 is a conformable matrix valued continuous function.

Lastly, we check vec
(

F′[b]F4,[b]
τ

1
B

(∑B
b=1 de,[b]

)
− D̂e

)
. From Lemmas A.13 and A.16, we
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have that

F′[b]F4,[b]
τ

1
B

(
B∑
b=1

de,[b]

)
− D̂e =

(
F′[b]F4,[b]

τ
− F′F4

T

)
1
B

(
B∑
b=1

de,[b]

)

=
(

F′[b]F4,[b]
τ

− F′F4
T

)(
Λ′eVβΛe

F′4F
T

+ 1
B

(
B∑
b=1
EDe,[b]

))

= [0K IK ]
(

F′4,[b]F4,[b]
τ

−
F′4F4
T

)
Λ′eVβΛe

F′4F4
T

[0K IK ]′

+
(

F′[b]F4,[b]
τ

− F′F4
T

)
1
B

(
B∑
b=1
EDe,[b]

)
.

Plugging (A.105) to the above and using (A.5), we have that

vec
(

F′[b]F4,[b]
τ

1
B

(
B∑
b=1

de,[b]

)
− D̂e

)

=
(
[0K IK ]⊗V4,fΛ′eVβΛe

)
vec

(
F′4,[b]F4,[b]

τ
−V4,f

)
+ HDe,1

(
F[b],

F′4F4
T

)
vec

(
F′4F4
T

−V4,f

)

+
(

F′[b]F4,[b]
τ

− F′F4
T

)
1
B

(
B∑
b=1
EDe,[b]

)
, (A.110)

where HDe,1 is a conformable matrix valued continuous function. Combining (A.107), (A.108),
(A.109) and (A.110) yields the expression of (A.104).

Next, note that given the expression ofηe,[b] in (A.104), Lemma A.39 implies that

1
B

B∑
b=1

ηe,[b]η
′
e,[b]

p→ 1
τ
ΠeVf2Π′e.

This completes the proof of the lemma. �
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Supplementary Tables

Table A1: SDF Estimator Performance when Gross Returns Follow CAPM

R2 intercept(a) slope(b)
Panel A: Unbalanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 -0.05 -0.06 0.00 0.01 1.07 1.06 1.01 0.99
1000 N.A. -0.12 -0.02 0.00 0.00 1.14 1.03 1.01 1.00
2000 -0.06 -0.02 0.00 0.01 1.08 1.03 1.01 1.00
4000 -0.07 -0.03 -0.01 0.00 1.09 1.04 1.01 1.00

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.90 0.91 0.92 0.92 0.14 0.08 0.12 0.12 0.87 0.93 0.88 0.88
1000 0.96 0.96 0.97 0.98 -0.02 -0.03 0.02 0.03 1.04 1.04 0.98 0.97
2000 0.99 0.99 0.99 0.99 -0.04 0.01 0.01 0.01 1.06 1.00 1.00 0.99
4000 0.99 1.00 1.00 1.00 -0.03 -0.02 -0.01 0.00 1.05 1.03 1.01 1.00

Panel B: (Infeasible) Balanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.58 0.36 0.21 0.11 0.43 0.64 0.79 0.89
1000 N.A. 0.58 0.37 0.21 0.11 0.42 0.64 0.79 0.89
2000 0.57 0.36 0.21 0.11 0.43 0.64 0.79 0.89
4000 0.58 0.35 0.21 0.11 0.43 0.65 0.79 0.89

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.90 0.91 0.92 0.92 0.60 0.43 0.30 0.21 0.40 0.57 0.70 0.79
1000 0.96 0.96 0.97 0.98 0.59 0.39 0.24 0.15 0.41 0.61 0.76 0.85
2000 0.99 0.99 0.99 0.99 0.57 0.37 0.22 0.12 0.43 0.63 0.78 0.88
4000 0.99 1.00 1.00 1.00 0.58 0.36 0.21 0.12 0.43 0.65 0.79 0.88

B-3: With Observed Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 -0.06 -0.02 0.00 -0.01 1.08 1.03 1.00 1.01
1000 N.A. -0.05 -0.02 -0.01 0.00 1.07 1.02 1.01 1.01
2000 -0.05 -0.02 0.00 0.00 1.07 1.02 1.01 1.00
4000 -0.05 -0.03 0.00 0.00 1.07 1.04 1.01 1.00

B-4: With Estimated Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.90 0.91 0.92 0.92 0.13 0.13 0.13 0.12 0.89 0.88 0.87 0.88
1000 0.96 0.96 0.97 0.98 0.04 0.05 0.05 0.04 0.98 0.95 0.95 0.96
2000 0.99 0.99 0.99 0.99 -0.02 0.01 0.02 0.01 1.04 1.00 0.99 0.99
4000 0.99 1.00 1.00 1.00 -0.03 -0.02 0.00 0.00 1.05 1.03 1.00 1.00

Panel C: Pukthuanthong and Roll’s (2017) Estimator
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.04 0.02 0.01 0.00 0.55 0.32 0.17 0.07 0.46 0.68 0.83 0.93
1000 0.06 0.04 0.02 0.01 0.56 0.34 0.18 0.09 0.44 0.66 0.82 0.92
2000 0.09 0.06 0.04 0.02 0.56 0.35 0.20 0.10 0.44 0.65 0.81 0.90
4000 0.14 0.11 0.07 0.04 0.57 0.34 0.20 0.10 0.43 0.66 0.80 0.90

This table summarizes the performance of various SDF estimators for gross returns when the true
return generating process of each individual asset follows CAPM. We consider different levels of N =
500, 1000, 2000, and 4000 and T = 60, 120, 240, and 480. We set τ = 30. After obtaining a time
series of estimates m̂t for t = 1, · · · , T , we regress the estimated SDF m̂ on a constant and the true
SDF m: m̂t = a+ b ·mt+ errort. If the fit to the true SDF is perfect, R2 is 1, the intercept (a) is zero,
and the coefficient on the true SDF (b) is 1. We report the mean of the estimated R2, a, and b across
10,000 repetitions.
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Table A2: SDF Estimator Performance when Excess Returns Follow CAPM

R2 intercept(a) slope(b)
Panel A: Unbalanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 -0.01 0.00 0.01 0.00 1.00 0.99 0.98 0.99
1000 N.A. -0.01 0.01 0.00 0.00 1.00 0.98 0.99 0.99
2000 -0.01 0.01 0.01 0.00 1.00 0.99 0.98 0.99
4000 -0.01 -0.01 0.01 0.00 1.00 1.00 0.99 0.99

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.90 0.91 0.92 0.92 0.09 0.09 0.10 0.08 0.90 0.90 0.90 0.91
1000 0.96 0.96 0.97 0.98 0.04 0.04 0.03 0.02 0.95 0.95 0.96 0.97
2000 0.99 0.99 0.99 0.99 0.00 0.02 0.02 0.01 0.99 0.98 0.97 0.98
4000 0.99 1.00 1.00 1.00 0.00 -0.01 0.01 0.01 0.99 1.00 0.98 0.99

Panel B: (Infeasible) Balanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 -0.01 0.00 0.01 0.00 1.00 0.99 0.98 0.99
1000 N.A. -0.01 0.01 0.00 0.00 1.00 0.98 0.99 0.99
2000 -0.01 0.00 0.01 0.00 1.00 0.99 0.98 0.99
4000 -0.01 -0.01 0.01 0.00 1.00 1.00 0.99 0.99

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.90 0.91 0.92 0.92 0.09 0.09 0.10 0.08 0.90 0.90 0.90 0.91
1000 0.96 0.96 0.97 0.98 0.04 0.04 0.03 0.02 0.95 0.95 0.96 0.97
2000 0.99 0.99 0.99 0.99 0.00 0.02 0.02 0.01 0.99 0.98 0.97 0.98
4000 0.99 1.00 1.00 1.00 0.00 -0.01 0.01 0.01 0.99 1.00 0.98 0.99

B-3: With Observed Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 -0.01 0.00 0.01 0.00 1.00 0.99 0.98 0.99
1000 N.A. -0.01 0.01 0.00 0.00 1.00 0.98 0.99 0.99
2000 -0.01 0.00 0.01 0.00 1.00 0.99 0.98 0.99
4000 -0.01 -0.01 0.01 0.00 1.00 1.00 0.99 0.99

B-4: With Estimated Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.90 0.91 0.92 0.92 0.09 0.09 0.10 0.08 0.90 0.90 0.90 0.91
1000 0.96 0.96 0.97 0.98 0.04 0.04 0.03 0.02 0.95 0.95 0.96 0.97
2000 0.99 0.99 0.99 0.99 0.00 0.01 0.02 0.01 0.99 0.98 0.97 0.98
4000 0.99 1.00 1.00 1.00 0.00 -0.01 0.01 0.01 0.99 1.00 0.98 0.99

This table summarizes the performance of various SDF estimators for excess returns when the true
return generating process of each individual asset follows CAPM. We consider different levels of N =
500, 1000, 2000, and 4000 and T = 60, 120, 240, and 480. We set τ = 30. After obtaining a time
series of estimates m̂t for t = 1, · · · , T , we regress the estimated SDF m̂ on a constant and the true
SDF m: m̂t = a+ b ·mt+ errort. If the fit to the true SDF is perfect, R2 is 1, the intercept (a) is zero,
and the coefficient on the true SDF (b) is 1. We report the mean of the estimated R2, a, and b across
10,000 repetitions.
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Table A3: SDF Estimator Performance when Gross Returns Follow FF3

R2 intercept(a) slope(b)
Panel A: Unbalanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.36 0.38 0.40 0.44 -1.12 -1.26 -0.14 -0.03 2.09 2.29 1.15 1.03
1000 0.39 0.40 0.44 0.50 -0.32 -0.03 -0.03 -0.01 1.34 1.05 1.03 1.01
2000 0.41 0.44 0.50 0.59 -0.29 -0.07 -0.03 -0.01 1.31 1.08 1.03 1.01
4000 0.44 0.50 0.58 0.69 -0.04 -0.03 -0.02 -0.01 1.06 1.04 1.02 1.01

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.28 0.31 0.35 0.41 0.35 0.33 0.32 0.33 0.66 0.68 0.68 0.67
1000 0.33 0.38 0.45 0.55 0.21 0.21 0.19 0.18 0.80 0.79 0.81 0.82
2000 0.39 0.45 0.55 0.66 0.11 0.11 0.10 0.10 0.91 0.90 0.90 0.90
4000 0.44 0.53 0.65 0.77 0.04 0.03 0.03 0.03 0.98 0.98 0.97 0.97

Panel B: (Infeasible) Balanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.47 0.62 0.77 0.88 0.52 0.33 0.19 0.10 0.49 0.67 0.81 0.90
1000 0.48 0.63 0.79 0.89 0.52 0.34 0.19 0.10 0.48 0.67 0.81 0.90
2000 0.50 0.66 0.80 0.90 0.52 0.32 0.19 0.10 0.48 0.68 0.81 0.90
4000 0.51 0.66 0.81 0.90 0.51 0.32 0.19 0.10 0.49 0.68 0.81 0.90

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.29 0.39 0.51 0.60 0.66 0.54 0.44 0.39 0.34 0.46 0.56 0.61
1000 0.36 0.49 0.63 0.73 0.60 0.46 0.34 0.27 0.40 0.54 0.66 0.73
2000 0.42 0.57 0.71 0.81 0.57 0.39 0.27 0.19 0.44 0.61 0.73 0.80
4000 0.47 0.63 0.77 0.87 0.53 0.35 0.22 0.13 0.47 0.65 0.78 0.87

B-3: With Observed Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.51 0.65 0.79 0.88 -0.10 -0.03 -0.02 -0.01 1.12 1.04 1.03 1.01
1000 0.53 0.66 0.80 0.89 -0.06 -0.02 -0.01 0.00 1.07 1.02 1.02 1.01
2000 0.55 0.69 0.81 0.90 -0.05 -0.03 -0.01 0.00 1.07 1.03 1.01 1.01
4000 0.56 0.69 0.82 0.91 -0.05 -0.02 -0.01 -0.01 1.07 1.03 1.02 1.01

B-4: With Estimated Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.33 0.42 0.53 0.61 0.37 0.36 0.33 0.33 0.64 0.65 0.67 0.67
1000 0.40 0.52 0.65 0.73 0.24 0.22 0.20 0.20 0.77 0.78 0.80 0.80
2000 0.47 0.60 0.73 0.81 0.13 0.11 0.11 0.11 0.89 0.89 0.89 0.90
4000 0.52 0.66 0.79 0.87 0.04 0.04 0.03 0.03 0.98 0.97 0.97 0.97

Panel C: Pukthuanthong and Roll’s (2017) Estimator
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.06 0.04 0.02 0.00 0.51 0.32 0.17 0.08 0.49 0.68 0.83 0.92
1000 0.09 0.08 0.05 0.03 0.52 0.33 0.18 0.09 0.49 0.67 0.82 0.91
2000 0.14 0.13 0.10 0.06 0.52 0.32 0.19 0.10 0.49 0.68 0.82 0.90
4000 0.20 0.20 0.17 0.12 0.51 0.32 0.19 0.10 0.49 0.68 0.82 0.90

This table summarizes the performance of various SDF estimators for gross returns when the true
return generating process of each individual asset follows FF3. We consider different levels of N =
500, 1000, 2000, and 4000 and T = 60, 120, 240, and 480. We set τ = 30. After obtaining a time
series of estimates m̂t for t = 1, · · · , T , we regress the estimated SDF m̂ on a constant and the true
SDF m: m̂t = a+ b ·mt+ errort. If the fit to the true SDF is perfect, R2 is 1, the intercept (a) is zero,
and the coefficient on the true SDF (b) is 1. We report the mean of the estimated R2, a, and b across
10,000 repetitions. 60



Table A4: SDF Estimator Performance when Excess Returns Follow FF3

R2 intercept(a) slope(b)
Panel A: Unbalanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.47 0.59 0.73 0.84 -0.01 0.00 -0.01 0.00 0.94 0.94 0.96 0.96
1000 0.50 0.63 0.77 0.87 0.01 0.01 0.00 0.00 0.92 0.94 0.95 0.96
2000 0.53 0.67 0.79 0.89 0.00 0.00 0.00 0.00 0.93 0.95 0.95 0.95
4000 0.55 0.68 0.81 0.90 -0.01 0.00 0.00 0.00 0.93 0.95 0.96 0.96

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.33 0.43 0.53 0.61 0.32 0.30 0.28 0.28 0.62 0.65 0.69 0.69
1000 0.41 0.52 0.65 0.73 0.21 0.19 0.17 0.16 0.72 0.76 0.79 0.80
2000 0.47 0.60 0.72 0.81 0.12 0.10 0.09 0.09 0.81 0.85 0.86 0.87
4000 0.52 0.66 0.78 0.87 0.05 0.04 0.03 0.03 0.88 0.91 0.92 0.93

Panel B: (Infeasible) Balanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.55 0.68 0.80 0.89 0.00 0.00 0.00 0.00 0.93 0.94 0.96 0.96
1000 0.56 0.68 0.81 0.90 0.00 0.01 0.00 0.00 0.92 0.94 0.95 0.96
2000 0.56 0.70 0.82 0.90 0.00 0.00 0.00 0.00 0.93 0.95 0.95 0.96
4000 0.57 0.70 0.82 0.91 -0.01 0.00 0.00 0.00 0.93 0.95 0.96 0.96

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.34 0.44 0.55 0.63 0.32 0.30 0.28 0.28 0.62 0.65 0.68 0.69
1000 0.42 0.53 0.66 0.74 0.21 0.19 0.17 0.16 0.72 0.76 0.79 0.80
2000 0.48 0.61 0.73 0.82 0.12 0.10 0.09 0.09 0.81 0.85 0.86 0.87
4000 0.53 0.66 0.79 0.88 0.05 0.04 0.03 0.03 0.88 0.91 0.92 0.93

B-3: With Observed Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.51 0.65 0.79 0.89 0.00 0.00 0.00 0.00 0.93 0.94 0.96 0.96
1000 0.53 0.67 0.80 0.89 0.01 0.01 0.00 0.00 0.92 0.94 0.95 0.96
2000 0.55 0.69 0.82 0.90 0.00 0.00 0.00 0.00 0.93 0.95 0.95 0.96
4000 0.56 0.70 0.82 0.91 -0.01 0.00 0.00 0.00 0.94 0.95 0.96 0.96

B-4: With Estimated Factors + Bias Correction
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.34 0.44 0.55 0.63 0.32 0.30 0.28 0.28 0.62 0.65 0.68 0.69
1000 0.42 0.53 0.66 0.74 0.21 0.19 0.17 0.16 0.72 0.76 0.79 0.80
2000 0.48 0.61 0.73 0.82 0.12 0.10 0.09 0.09 0.81 0.85 0.86 0.87
4000 0.53 0.66 0.79 0.88 0.05 0.04 0.03 0.03 0.88 0.91 0.92 0.93

This table summarizes the performance of various SDF estimators for excess returns when the true
return generating process of each individual asset follows FF3. We consider different levels of N =
500, 1000, 2000, and 4000 and T = 60, 120, 240, and 480. We set τ = 30. After obtaining a time
series of estimates m̂t for t = 1, · · · , T , we regress the estimated SDF m̂ on a constant and the true
SDF m: m̂t = a+ b ·mt+ errort. If the fit to the true SDF is perfect, R2 is 1, the intercept (a) is zero,
and the coefficient on the true SDF (b) is 1. We report the mean of the estimated R2, a, and b across
10,000 repetitions.
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