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Abstract

We study a fiscal policy model in which the government is present-biased towards

public spending. Society chooses a fiscal rule to trade off the benefit of committing

the government to not overspend against the benefit of granting it flexibility to react

to privately observed shocks to the value of spending. Unlike prior work, we examine

rules under limited enforcement: the government has full policy discretion and can

only be incentivized to comply with a rule via the use of penalties which are joint

and bounded. We show that optimal incentives must be bang-bang. Moreover,

under a distributional condition, the optimal rule is a maximally enforced deficit

limit, triggering the largest feasible penalty whenever violated. Violation optimally

occurs under high enough shocks if and only if available penalties are weak and such

shocks are rare. If the rule is self-enforced in a dynamic setting, penalties take the

form of temporary overspending.
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1 Introduction

Countries impose rules on their governments to constrain their policy decisions. Increas-

ingly prevalent are fiscal rules, in place in 92 countries in 2015, compared to only seven

countries in 1990.1 Yet, according to the International Monetary Fund, governments com-

ply with their fiscal rules only about 50 percent of the time.2

Whenever a rule is violated, a formal or informal enforcement mechanism is triggered.

In the European Union, an Excessive Deficit Procedure—a formal procedure specifying a

sequence of costly fiscal adjustments and potential sanctions—applies whenever a fiscal

limit is breached.3 In other countries, penalties for rule violation are more informal. In

Chile, for example, the government’s breach of its fiscal rule in 2009 was punished with

lax fiscal policy by the next administration, which continued to ignore the rule despite

criticism of fiscal irresponsibility.4 The use of penalties, formal or informal, is critical to

incentivize governments to respect the fiscal constraints set by society. Penalties however

are harmful to both the government and society, and they are limited in scope.

In this paper, we study the optimal design of fiscal rules under limited enforcement.

What is the optimal structure of fiscal constraints when available penalties for violation

are joint and bounded, and how are these penalties used in an optimal rule? Should the

government violate fiscal constraints when the economy is in distress? And if rules are

self-enforced by the behavior of future governments, what is the form that endogenous

penalties optimally take?

Our analysis of fiscal rules builds on the approach used in Amador, Werning, and

Angeletos (2006) and Halac and Yared (2014).5 We consider a government that is present-

biased towards public spending and privately informed about shocks affecting the value

of this spending. Society chooses a fiscal rule to trade off the benefit of committing the

government to not overspend against the benefit of granting it flexibility to react to shocks.

Motivated by real-world rules and unlike prior work, we posit that this rule can only be

enforced via the use of penalties which are limited and socially costly.

Our environment is a small open economy in which the government makes a borrowing

and spending decision. Prior to the choice of policy, a shock to the social value of deficit-

financed government spending is realized. The government is present-biased: for any given

shock, the government overvalues current spending relative to future welfare compared to

1See IMF Fiscal Rules Data Set, 2015 and Schaechter et al. (2012).
2See Caselli et al. (2018).
3See Lledó et al. (2017, p.81) for a description of this procedure.
4See Halac and Yared (2017b) for a description of this episode and related references.
5See also Athey, Atkeson, and Kehoe (2005), Amador and Bagwell (2013), and Ambrus and Egorov

(2013).
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society. This preference structure results naturally from the aggregation of heterogeneous,

time-consistent citizens’ preferences (Jackson and Yariv, 2014, 2015), or as a consequence of

turnover in a political economy setting (e.g., Aguiar and Amador, 2011).6 We assume that

the shock to the value of spending is privately observed by the government, capturing the

fact that rules cannot explicitly condition on all contingencies in fiscal policy. Furthermore,

the government has full discretion when choosing borrowing and spending. Society can only

specify a schedule of joint penalties, determining the continuation value to the government

and society as a function of the government’s policy choice. A fiscal rule in this setting

therefore consists of an allocation of debt and continuation value for each shock, where this

allocation must satisfy the government’s private information and enforcement constraints.

To describe the forces underlying our model, suppose first that fiscal rules could be

perfectly enforced. Society then chooses a rule to optimally resolve the tradeoff between

commitment and flexibility. Fully committing the government to a contingent debt plan

would allow to implement the first best policy in the absence of private information, whereas

granting the government full flexibility would yield the first best policy in the absence of a

present bias. Given both private information and a present bias, however, a tradeoff arises,

and the first best is not implementable. Amador, Werning, and Angeletos (2006) show

that, under perfect enforcement and certain distributional assumptions, the solution to

this tradeoff is a fiscal rule that takes the form of a deficit limit. The government borrows

within the limit if the shock to the value of spending is relatively low and it borrows at

the limit if the shock is higher, without triggering any penalties.

Our focus is on understanding the optimal fiscal rule when enforcement is limited. As

is also true under perfect enforcement, a rule under limited enforcement must satisfy the

government’s private information constraints: given a realized shock, the government must

prefer its assigned debt level and continuation value to those prescribed for any other shock.

In addition, the rule must satisfy the government’s enforcement constraints: given a realized

shock, the government must prefer its assigned debt level and continuation value to any

other level of debt not prescribed for any shock. Any observable (off-path) deviation—where

the government chooses a debt level corresponding to no shock—is optimally punished with

the worst possible continuation value conditional on the choice of debt. In fact, if penalties

are severe enough, enforcement constraints are non-binding: the government always prefers

to abide to the perfect-enforcement deficit limit to avoid punishment.

Our main result is a characterization of the optimal fiscal rule when enforcement con-

6See also Persson and Svensson (1989), Alesina and Tabellini (1990), Lizzeri (1999), Battaglini and
Coate (2008), and Yared (2018). Our formulation corresponds to the quasi-hyperbolic model; see Laibson
(1997).
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straints are binding. We show that this rule takes the form of a maximally enforced deficit

limit, which, if violated, leads to the maximal penalty for the government. The rule is

thus similar to that under perfect enforcement, although it differs in two aspects. First,

the deficit limit imposed on the government is more relaxed than the perfect-enforcement

limit. Second, the possibility of on-path penalties emerges, with the government breaching

the deficit limit and triggering punishment under sufficiently high shocks.

To obtain this result, we begin by establishing general properties of optimal incentive

provision. Society incentivizes the government not to overborrow by using continuation

values as reward and punishment. We show that in any optimal rule, continuation values

must be bang-bang, so the government receives either the maximal reward or the worst

punishment (conditional on the level of debt), depending on its policy choice. Using milder

penalties would be less socially costly; however, the harshest future punishment maximizes

the range of shocks under which society can impose fiscal discipline in the present, and

we show that this maximizes social welfare. Our bang-bang result relies only on generic

properties of the distribution of shocks, and it applies under both limited and perfect

enforcement. This result thus has implications for other models of delegation with money

burning, including some of those studied in Amador and Bagwell (2013): we find that

optimal delegation requires money burning to take a bang-bang form.

We complete our characterization of optimal incentives by introducing an assumption

on the distribution of shocks.7 We show that under this assumption, optimal bang-bang

continuation values must be monotonic, with the government either always receiving the

maximal reward or receiving the maximal punishment only under high enough shocks.

Moreover, building on monotonicity, we are able to characterize the optimal borrowing al-

location. We establish that our distributional assumption is sufficient, as well as necessary,

for maximally enforced deficit limits to be the unique optimal fiscal rule.

Specifically, we show that the optimal rule takes one of two forms. On the one hand,

society can set a relaxed deficit limit that satisfies the enforcement constraint under all

shocks and thus entails no penalties on path. On the other hand, society can prescribe a

tighter deficit limit with on-path penalties: the government respects the deficit limit and

receives the maximal continuation value under low enough shocks, but it breaches the limit

and receives the worst continuation value under higher shocks. We prove that the optimal

deficit limit is unique, and we provide a necessary and sufficient condition for this limit

to feature on-path penalties. This condition depends on the ease of enforcement and the

7See Assumption 1 in Subsection 3.3. This assumption holds for a broad range of distributions, including
uniform, exponential, log-normal, gamma, and beta for a subset of its parameters. Assumption 1 is similar
to, but stronger than, the assumption used in Amador, Werning, and Angeletos (2006).
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distribution of shocks. In particular, we find that society chooses a tight deficit limit with

punishment on path if and only if available penalties are sufficiently weak and high shocks

are sufficiently unlikely. Intuitively, a deficit limit that is respected under all shocks would

have to be too lax if penalties for violation are not severe. Moreover, tightening the deficit

limit by the use of punishment is optimal when high shocks are rare, as the expected cost

of punishing the government following such shocks is then relatively low.

Our baseline model consists of a two-period environment in which the available penal-

ties, and thus the set of feasible continuation values, is exogenously given. We extend

our analysis to an infinite horizon economy in which penalties are endogenous. That is,

in the absence of an external enforcement authority, we study how a fiscal rule may be

self-enforced by the interaction of a sequence of governments. Under an assumption on pref-

erences, we establish that our main result regarding the unique optimality of maximally

enforced deficit limits extends to this environment. Furthermore, we show that the worst

self-enforcing punishment takes the form of temporary overborrowing, following which the

optimal deficit limit is reinstated. Hence, in an optimal rule with on-path punishment, the

temporary violation of fiscal constraints, as in the Chilean case previously described, is

used as a deterrent for breaking these constraints. The fiscal rule is self-enforced by tran-

sitions in and out of the best and worst equilibria, with the economy fluctuating between

periods of fiscal responsibility and periods of fiscal irresponsibility.

Related literature. Our paper fits into the aforementioned literature on mechanism

design that studies the tradeoff between commitment and flexibility.8 This literature is

mainly concerned with environments with perfect enforcement, whereas we examine the

optimal rule under limited enforcement. Closely related is Amador and Bagwell (2016),

which considers the problem of regulating a privately informed monopolist in the absence

of transfers and given an ex-post participation constraint. The paper shows that optimal

regulation takes the form of a threshold which is imposed unless the monopolist chooses to

shut down. In contrast to their work, our analysis does not rely on the perfect enforcement

of thresholds, and it allows for money burning, which is sometimes optimally used on path.

Also related to our paper is the literature on the political economy of fiscal policy.9

8In addition to the work previously cited, see Sleet (2004). More broadly, our paper relates to the liter-
ature on delegation in principal-agent settings, including Holmström (1977, 1984), Alonso and Matouschek
(2008), and Ambrus and Egorov (2015).

9In addition to Aguiar and Amador (2011) and the work cited in fn. 6, see Krusell and Rios-Rull (1999),
Acemoglu, Golosov, and Tsyvinski (2008), Yared (2010), Azzimonti (2011), and Song, Storesletten, and
Zilibotti (2012). For quantitative analyses of fiscal rules, see Bassetto and Sargent (2006), Alfaro and
Kanczuk (2016), Azzimonti, Battaglini, and Coate (2016), and Hatchondo, Martinez, and Roch (2017),
and for a study of coordinated fiscal rules across countries, see Halac and Yared (2018).
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Dovis and Kirpalani (2017), in particular, examine deficit limits that are endogenously

enforced by reputational concerns. We instead study the enforcement of optimal fiscal

rules under privately observed shocks and no restrictions on their structure.

Our analysis of self-enforcement in an infinite horizon setting contributes to the litera-

ture on hyperbolic discounting and the benefits of commitment devices.10 Bernheim, Ray,

and Yeltekin (2015) is related in that it studies self-enforcing consumption rules for a con-

sumer with quasi-hyperbolic preferences, albeit without any private information. Finally,

the equilibrium dynamics in our infinite horizon economy bear a relationship to the seminal

work of Abreu, Pearce, and Stacchetti (1990), who establish the optimality of bang-bang

continuation values in a class of repeated games. Their analysis however is constrained to

settings with finite actions and a continuous public signal, and thus it does not apply to

our environment in which the action is continuous. Also related is Athey, Bagwell, and

Sanchirico (2004), which studies a repeated Bertrand game with private information.

2 Model

2.1 Setup

We study a simple model of fiscal policy in which the government makes a borrowing

and spending decision. Our setting is similar to that analyzed in Amador, Werning, and

Angeletos (2006) and Halac and Yared (2014). Our departure is in examining the design

of fiscal rules under only limited, as opposed to perfect, enforcement.

Consider a small open economy. A shock to the economy θ > 0 is drawn from a bounded

set Θ ≡
[
θ, θ
]
, with a continuously differentiable probability density function f(θ) > 0 and

associated cumulative density function F (θ). The realization of this shock is privately

observed by the government, so we refer to θ as the government’s type.

The government chooses debt b ∈ [b, b] and public spending g subject to the budget

constraint

g = ω + b, (1)

where ω > 0 denotes the exogenous resources of the government, representing collected tax

revenue net of any debt repayment.11

10See for example Phelps and Pollak (1968), Laibson (1997), Krusell and Smith, Jr. (2003), Krusell,
Kruscu, and Smith, Jr. (2010), Lizzeri and Yariv (2014), Bisin, Lizzeri, and Yariv (2015), Cao and Werning
(2017), and Moser and de Souza e Silva (2017).

11Note that since g − b is independent of θ, cross-subsidization across types is not possible, unlike in
other models such as Atkeson and Lucas (1992), Thomas and Worrall (1990), Phelan (1998), Sleet and
Yeltekin (2006, 2008), and Farhi and Werning (2007).
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Society can influence policy by imposing socially costly penalties on the government as

a function of its choice of borrowing and spending. As discussed in the Introduction, these

penalties may take the form of formal sanctions, or they may arise from the continuation

play of future governments in a dynamic environment (see Section 4). We model penalties

by letting society commit ex ante to a continuation value function V (b) ∈ [V (b), V (b)],

specifying a continuation value for the government and society for each level of debt b ∈
[b, b]. Here V (b) denotes the highest feasible continuation value given debt b, and V (b) is

the lowest such value.

The timing and payoffs are as follows. First, society chooses a continuation value

function V (b) in order to maximize social welfare:

E [θU(g) + δV (b)] , (2)

where θU(g) is the social utility from public spending and δ ∈ (0, 1) is the discount factor.

Second, the government observes the realized shock θ and, given θ and the function V (b),

chooses debt b and spending g subject to (1) in order to maximize government welfare:

θU(g) + βδV (b), (3)

where β ∈ (0, 1).

We take U(g) to be strictly increasing, strictly concave, and continuously differentiable.

We also assume that for all b ∈ [b, b], V (b) and V (b) are bounded and continuous and satisfy

V (b) > V (b).

There are three main features of this environment. First, since β < 1, the govern-

ment’s objective (3) given its realized type does not coincide with the social objective (2).

Compared to society, the government overweighs the importance of current spending rel-

ative to the future continuation value. The government would thus want to overborrow:

for example, if V (b) is decreasing and concave, the government’s preferred policy satisfies

θU ′(g) = −βδV ′(b), whereas the social optimum sets θU ′(g) = −δV ′(b). As mentioned in

the Introduction, this payoff structure arises naturally when the government’s preferences

aggregate heterogeneous citizens’ preferences (see Jackson and Yariv, 2014, 2015). This

formulation can also be motivated by political turnover; for instance, preferences such as

these emerge in settings with political uncertainty where policymakers place a higher value

on public spending when they hold power and can make spending decisions (see Aguiar

and Amador, 2011).12

12For a more detailed discussion of our payoff structure, see Yared (2018).
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The second feature of our environment is that the realization of θ—which affects the

marginal social utility of public spending—is privately observed by the government. One

interpretation is that fiscal rules imposed on the government cannot explicitly condition on

the value of θ, even if this shock were observable.13 An alternative interpretation is that

the exact cost of public goods is only observable to the policymaker, who may be inclined

to overspend on these goods. Another possibility is that citizens have heterogeneous pref-

erences or heterogeneous information regarding the optimal level of public spending, and

the government sees an aggregate that the citizens do not see (see Sleet, 2004; Piguillem

and Schneider, 2016).

The third and most critical feature of our environment is that the government has full

discretion when choosing borrowing and spending. Society can only influence policy by

specifying contingent penalties which are limited and socially costly. This is a main distinc-

tion from prior work, which assumes that available actions can be restricted arbitrarily and

at no cost. The extent of penalties that society can impose on the government is captured

in our model by the difference V (b) − V (b): the larger the difference between the highest

and lowest feasible continuation values, the larger the potential for punishment.14,15 Note

that V (b) and V (b) are exogenous in our benchmark setting and can take on a number of

possible forms. For example, these values may satisfy V (b) = V (b) −m for some m > 0,

in which case m would represent a maximum additive penalty available for any feasible

level of debt b. In the dynamic setting of Section 4, V (b) and V (b) will be endogenously

determined by the set of equilibrium payoffs.

2.2 Fiscal Rules

Using the budget constraint (1), denote the social utility from public spending by U(ω+b).

Given the continuation value function V (b) specified by society and the realization of its

type θ, the government chooses a level of debt b(θ) which maximizes its welfare in (3),

with associated continuation value V (b(θ)) (and spending g(θ) ≡ ω + b(θ)). We refer to

the resulting allocation, {b(θ), V (b(θ))}θ∈Θ, as the fiscal rule imposed by society. This rule

specifies a level of debt and continuation value for each type θ ∈ Θ, and it satisfies private

information, enforcement, and feasibility constraints, as we describe next.

13Halac and Yared (2017a) study a delegation problem in which shocks can be verified by a rule-making
body at a cost.

14A continuation value V (b) ∈ (V (b), V (b)) corresponds to imposing an intermediate penalty on the
government. Intermediate penalties could also be imposed by introducing a public randomization device.
However, such a device will not be used in the optimum, which we will show has a bang-bang nature.

15As we will show in Section 3, previous analyses in which available actions can be arbitrarily restricted
correspond to a special case of our model in which V (b) is sufficiently low.
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The private information constraint captures the fact that the government can misrep-

resent its type. A fiscal rule {b(θ), V (b(θ))}θ∈Θ is such that a government of type θ prefers

to pursue its assigned policy rather than that of any other type θ′ 6= θ:

θU(ω + b(θ)) + βδV (b(θ)) ≥ θU(ω + b (θ′)) + βδV (b(θ′)) for all θ, θ′ ∈ Θ. (4)

The enforcement constraint captures the fact that the government can freely choose any

feasible level of debt, including levels not assigned to any other government type. A fiscal

rule {b(θ), V (b(θ)}θ∈Θ is such that a government of type θ prefers to pursue its assigned

policy rather than any other policy b′ ∈ [b, b] such that b′ 6= b(θ′) for all θ′ ∈ Θ:

θU(ω+b(θ))+βδV (b(θ)) ≥ θU(ω+b′)+βδV (b′) for all θ ∈ Θ and all b′ 6= b(θ′) for all θ′ ∈ Θ.

Note that since the continuation value satisfies V (b′) ≥ V (b′) for all b′ ∈ [b, b], the above

inequality must hold under maximal punishment, i.e. when V (b′) = V (b′). Moreover, since

the inequality must then hold for all b′ ∈ [b, b], it must necessarily hold when b′ corresponds

to type θ’s flexible level of debt conditional on maximal punishment. Specifically, let bp(θ)

be defined by

bp(θ) ∈ arg max
b∈[b,b]
{θU(ω + b) + βδV (b)}.

Then a necessary condition for the enforcement constraint to be satisfied is

θU(ω + b(θ)) + βδV (b(θ)) ≥ θU(ω + bp(θ)) + βδV (bp(θ)) for all θ ∈ Θ, (5)

where note that the right-hand side is the government’s minmax payoff.

Constraints (4) and (5) are clearly necessary for {b(θ), V (b(θ)}θ∈Θ to be incentive com-

patible. Furthermore, if an allocation satisfies these constraints, then it can be supported

by specifying the worst feasible continuation value following any choice b′ ∈ [b, b] by the

government such that b′ 6= b(θ′) for all θ′ ∈ Θ. Since such a choice is off path, it is without

loss to assume that it is maximally punished.

Lastly, the feasibility constraints ensure that the continuation value V (b(θ)) is within

the lowest and highest feasible values given the level of debt:

V (b(θ)) ≥ V (b(θ)) and V (b(θ)) ≤ V (b(θ)) for all θ ∈ Θ. (6)

A fiscal rule is incentive compatible if it satisfies (4)-(5), and it is incentive compatible

and feasible, or incentive feasible for short, if it satisfies (4)-(6). The fiscal rule is optimal
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if it additionally maximizes social welfare, namely if it solves:

max
{b(θ)∈[b,b],V (b(θ))}

θ∈Θ

E
[
θU(ω + b(θ)) + δV (b(θ))

]
(7)

subject to (4), (5), and (6).

Throughout our analysis, we assume that the solution to (7) admits a piecewise con-

tinuously differentiable function b(θ), which allows us to establish our results by the use

of perturbations.16 This approach follows Athey, Atkeson, and Kehoe (2005), who use

perturbation arguments to characterize optimal monetary policy rules under perfect en-

forcement. An alternative approach would be to use Lagrangian methods, as in the work

of Amador, Werning, and Angeletos (2003). Since our problem is not globally concave,

however, a Lagrangian approach would not establish uniqueness of the solution, and would

make it difficult to identify necessary and sufficient conditions for the optimality of maxi-

mally enforced deficit limits. We are able to provide these results using perturbations, as

we show in the next section.

3 Optimal Fiscal Rule

We characterize the optimal fiscal rule under limited enforcement by solving program (7).

We will establish conditions under which the unique solution to this program is a deficit

limit with maximal enforcement.

Let br(θ) denote type θ’s flexible level of debt conditional on maximal reward:

br(θ) ∈ arg max
b∈[b,b]
{θU(ω + b) + βδV (b)}. (8)

We define:

Definition 1. {b(θ), V (b(θ))}θ∈Θ is a maximally enforced deficit limit if there exist θ∗ ∈
[0, θ) and finite θ∗∗ > max{θ∗, θ} such that

{b(θ), V (b(θ))} =





{
br(θ), V (br(θ))

}
{
br(θ∗), V (br(θ∗))

}

{bp(θ), V (bp(θ))}

if θ < θ∗,

if θ ∈ [θ∗, θ∗∗],

if θ > θ∗∗,

(9)

16If the program admits multiple solutions that differ only on a countable set of types, we select the
solution that maximizes social welfare for those types.
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where

θ∗∗U(ω + br(θ∗)) + βδV (br(θ∗)) = θ∗∗U(ω + bp(θ∗∗)) + βδV (bp(θ∗∗)). (10)

Figure 1 provides an example.17 We depict the borrowing allocation (top panel) and

the allocation of continuation values (bottom panel) under a maximally enforced deficit

limit with θ∗ > θ and θ∗∗ < θ. Under this rule, types θ ∈ [θ, θ∗) choose their flexible debt

levels conditional on maximal reward, br(θ); types θ ∈ [θ∗, θ∗∗] choose type θ∗’s flexible debt

level conditional on maximal reward, br(θ∗); and types θ ∈
(
θ∗∗, θ

]
choose their flexible

debt levels conditional on maximal punishment, bp(θ). Types θ ≤ θ∗∗ are maximally

rewarded with continuation value V (b(θ)) whereas types θ > θ∗∗ are maximally punished

with continuation value V (b(θ)). By (10), the enforcement constraint holds with equality

for type θ∗∗.

We can verify that the fiscal rule described in Definition 1 is incentive compatible:

Lemma 1. If {b(θ), V (b(θ))}θ∈Θ is a maximally enforced deficit limit, then it satisfies the

private information constraint (4) and the enforcement constraint (5).

In terms of implementation, this fiscal rule can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the borrowing

level br(θ∗). If the government respects the limit, it receives maximal reward given its level

of debt, V (b). If the government breaches the limit, it receives maximal punishment given

its level of debt, V (b). Note that the limit is breached along the equilibrium path if and

only if θ∗∗ < θ; we will provide conditions under which this inequality holds in an optimal

maximally enforced deficit limit.

Our analysis proceeds as follows. First, we present some preliminary results in Subsec-

tion 3.1, which yield a convenient formulation of the objective in program (7). Second, we

show in Subsection 3.2 that any (interior) solution to this program must feature bang-bang

continuation values, so any optimal rule provides high-powered incentives for the govern-

ment not to overborrow. Third, we show in Subsection 3.3 that under a distributional

assumption, optimal bang-bang incentives are monotonic, with either all types receiving

the highest continuation value conditional on debt, or only types above an interior point

being punished with the lowest continuation value conditional on debt. This result facil-

itates our characterization of the optimal borrowing allocation in Subsection 3.4, which

shows that any solution to (7) is a maximally enforced deficit limit. We further establish

that the optimal limit is unique, and provide a necessary and sufficient condition for the

17The examples in our figures take V (b(θ)) and V (b(θ)) both strictly decreasing in b(θ), but this is not
required by our model.
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Optimal Self-Enforcing Rule

max
{g (q),b(q),V (q,b(q))}q2Q

E
⇥
qU(g(q)) + dV (q, b(q))

⇤

subject to

qU(g(q)) + bdV (q, b(q)) � qU(g(q0)) + bdV (q0, b(q0))

(private information constraint)

qU(g(q)) + bdV (q, b(q)) � qU(gp(q)) + bdV (bp(q))

(self-enforcement constraint)

g(q) = t + b(q) and V (q, b(q)) 2
⇥
V (b(q)), V (b(q))

⇤

(feasibility)
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Let
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g

{qU(g) + bdV (g � t)} and br (q) = g r (q) � t
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>>>><
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⇤
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•
R q

qc
(Q(q) �Q(q))dq < 0

• Both hold if q is su�ciently extreme

Phases of fiscal rectitude and fiscal profligacy sustain each other
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I q⇤ and q⇤⇤ independent of debt
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Limited Enforcement

Society determines V (b) 2 [V (b), V (b)] which depends on b

• Assume V (b) and V (b) are each continuous in b, bounded

V (b) � V (b) > 0 captures maximum feasible penalty

• Joint cost to government and society. Eg.: V (b) = V (b) � k

• Determined by continuation game under self-enforcement

{g(q), b(q), V (b(q))} is IC i↵ government prefers it to:

• Unobservable deviation: {g(q0), b(q0), V (q0, b(q0))} for q0 6= q

• Best observable deviation: {gp(q), bp(q), V (bp(q))}, where

gp(q) 2 arg max
g2[g ,g ]

{qU(g) + bdV (g � w)} and bp(q) = gp(q) � w

Definition: Maximally Enforced Deficit Limit
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• Can be implemented with spending or debt limit

Figure 1: An example of a maximally enforced deficit limit. The thick grey line depicts
the borrowing allocation in the top panel and the allocation of continuation values in the
bottom panel. The solid and dashed black lines in the bottom panel depict V (b(θ)) and
V (b(θ)) respectively.

government to violate the limit following high enough shocks. Finally, in Subsection 3.5, we

show that the distributional assumption introduced in Subsection 3.3 is not only sufficient

but also necessary for any solution to (7) to be a maximally enforced deficit limit.

3.1 Preliminaries

The next lemma follows from standard arguments; see Fudenberg and Tirole (1991):

Lemma 2. {b (θ) , V (b(θ))}θ∈Θ satisfies the private information constraint (4) if and only

if: (i) b(θ) is nondecreasing, and (ii) the following local private information constraints are

satisfied:

1. At any point θ at which b(·), and thus V (·), are differentiable,

db(θ)

dθ
(θU ′(ω + b(θ)) + βδV ′(b(θ))) = 0.
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2. At any point θ at which b(·) is not differentiable,

lim
θ′↑θ
{θU(ω + b(θ′)) + βδV (b(θ′))} = lim

θ′↓θ
{θU(ω + b(θ′)) + βδV (b(θ′))} .

Observe that since b(θ) is nondecreasing in θ, satisfaction of (4) requires that V (b(θ))

be nonincreasing in θ.

The local private information constraints imply that the derivative of government wel-

fare with respect to θ is U(ω + b(θ)). Hence, in an incentive compatible rule, government

welfare for type θ ∈ Θ satisfies

θU(ω + b(θ)) + βδV (b(θ)) = θU(ω + b(θ)) + βδV (b(θ)) +

∫ θ

θ

U(ω + b(θ̃))dθ̃. (11)

Following Amador, Werning, and Angeletos (2006), we can substitute (11) into the social

welfare function in (7) to rewrite social welfare as

1

β
θU(ω + b(θ)) + δV (b(θ)) +

1

β

∫ θ

θ

U(ω + b(θ))Q(θ)dθ, (12)

where

Q (θ) ≡ 1− F (θ)− θf (θ) (1− β) .

This formulation will be useful for our characterization of the optimal fiscal rule, which

will appeal to properties of the function Q(θ). For intuition, note that since the govern-

ment is biased towards overborrowing relative to society, higher levels of borrowing can

be attributed to larger distortions. In this sense, Q(θ) represents the weight that society

places on allowing distortions by a government of type θ: the higher Q(θ), the lower the

social welfare cost of distorting type θ’s borrowing. The shape of this function will tell us

how society wishes to allocate distortions across different government types.

3.2 Bang-Bang Incentives

Society uses continuation values as rewards and punishments to discipline the government

and limit overborrowing. The next proposition shows that in any optimal rule, these

rewards and punishments are extreme. That is, continuation values are bang-bang: given

the feasible set [V (b), V (b)], along the equilibrium path V (b(θ)) only travels to the extreme

points in this set.
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Proposition 1 (necessity of bang-bang). Assume Q(θ) satisfies the generic property that

Q′(θ) 6= 0 almost everywhere. If {b(θ), V (b(θ))}θ∈Θ is an optimal rule with b(θ) ∈ (b, b) for

all θ ∈ Θ, then V (b(θ)) ∈
{
V (b(θ)), V (b(θ))

}
for all θ ∈ Θ.

This result shows that the bang-bang property is necessary for social welfare max-

imization. An optimal fiscal rule using only extreme continuation values always exists

in our framework; this is true simply because an interior continuation value V (b(θ)) ∈
(V (b(θ)), V (b(θ))) can be assigned in expectation by randomizing over V (b(θ)) and V (b(θ)).

Proposition 1 proves a stronger result: any rule that prescribes interior continuation values

is strictly dominated by one with high-powered incentives.

Proposition 1 is consistent with other work such as Riley and Zeckhauser (1983) and

Fuchs and Skrzypacz (2015), which also find high-powered incentives to be a feature of

optimal contracting in adverse selection environments. As in those papers, the intuition

for our bang-bang result stems from the linearity of payoffs, together with the richness of the

information structure. Linearity emerges here because the penalties captured by V (b(θ))

are joint for the government and society, entering the objective function and constraint

set linearly in program (7).18 Given a continuum of types, the richness of the information

structure is guaranteed by the condition that we identify in Proposition 1, which says

that the set of types θ for which Q′(θ) = 0 is nowhere dense.19 Intuitively, since Q(θ)

is then either strictly decreasing or strictly increasing over any sufficiently small interval,

society benefits from moving borrowing distortions towards either lower types or higher

types in the interval. As such, spreading out continuation values always allows to reduce

distortions. These values however must be spread out in an incentive feasible manner,

satisfying the constraints in (11) which must hold type by type in our problem together

with the monotonicity of the allocation.

Before we describe the proof of Proposition 1, it is worth commenting on the scope of

this result. The proposition holds regardless of the tightness of enforcement constraints, and

it therefore continues to hold absent constraint (5). Hence, our bang-bang characterization

applies more generally to other delegation problems with money burning. One example

is the widely studied delegation setting in which the agent’s bias and private information

take a multiplicative form; see Amador and Bagwell (2013). In our context, that coincides

with the special case in which the highest and lowest feasible continuation values satisfy

V (b) = V (b) − m for some penalty m > 0. Proposition 1 implies that in any interior

18In Riley and Zeckhauser (1983) and Fuchs and Skrzypacz (2015), the bang-bang property applies to
the probability of trade, which enters symmetrically in the objective functions of the seller and buyers.

19Given f(θ) continuously differentiable, this condition holds generically. Specifically, this condition
fails only if θf ′(θ)/f(θ) = −(2− β)/(1− β) for a positive mass of types θ, but then any arbitrarily small
perturbation of β would render the condition true.
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solution to this problem, each agent type is assigned either no money burning or maximal

money burning.20,21

We next provide a summary of the proof of Proposition 1. The proof makes use of

perturbation arguments and proceeds in three steps.22

Step 1 shows that in any optimal rule, V (b(θ)) is left-continuous at each θ ∈ (θ, θ], a fact

that we utilize for the rest of our analysis. Suppose this were not true at some θ ∈ (θ, θ].

By Lemma 2, type θ must be indifferent between its allocation, {b(θ), V (b(θ))}, and its left-

limit allocation, call it {b(θ−), V (b(θ−))}, where the latter has lower borrowing and higher

continuation value: b(θ−) < b(θ) and V (b(θ−)) > V (b(θ)). Since the government overweighs

borrowing relative to society, it follows that a perturbation that assigns type θ its left-limit

allocation strictly increases social welfare. Moreover, given this type’s indifference, this

perturbation is incentive feasible. Hence, V (b(θ)) must be left-continuous, and we use a

similar logic to show that V (b(θ)) = V (b(θ)) must also hold in any optimal rule.

Step 2 rules out incentive provision via locally increasing penalties. We show that an

optimal rule cannot prescribe a continuation value V (b(θ)) that is continuously strictly

decreasing in θ and strictly interior (i.e. strictly between V (b(θ)) and V (b(θ))) over an

interval [θL, θH ]. Suppose by contradiction that such an interval exists. By Lemma 2, b(θ)

must be strictly increasing over [θL, θH ], and by the generic property in Proposition 1, we

can take an interval with either Q′(θ) > 0 or Q′(θ) < 0 for all θ ∈ [θL, θH ]. We then show

that there exists an incentive feasible perturbation that strictly increases social welfare. If

Q′(θ) < 0, we construct a flattening perturbation that rotates the increasing b(θ) schedule

clockwise over [θL, θH ], which entails reducing incentives with a counterclockwise rotation

of the decreasing V (b(θ)) schedule. This perturbation is socially beneficial because, given

Q′(θ) < 0, society prefers to concentrate distortions on lower rather than higher types.

If instead Q′(θ) > 0, we construct a steepening perturbation that drills a hole in the b(θ)

schedule by making allocations in (θL, θH) no longer available, which entails increasing

incentives by moving interior continuation values towards V (b(θL)) or V (b(θH)). This

perturbation is socially beneficial because, given Q′(θ) > 0, society prefers to concentrate

distortions on higher rather than lower types. Figure 2 illustrates the perturbations.

Step 3 completes the proof by ruling out intermediate penalties. Suppose V (b(θ)) was

strictly interior at some θ ∈ Θ. By the previous steps and Lemma 2, type θ must belong

20Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which borrowing is at a corner and, as a result, interior punishments can be optimal.

21We conjecture that the claims may also extend to the monetary policy model of Athey, Atkeson, and
Kehoe (2005).

22Some of the arguments that we use when Q(θ) is decreasing are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to limited enforcement.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta

Out[72]=

theta
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:
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Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government
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The shape of this function will tell us how society wishes to allocate distortions across
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their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

Graph

In[193]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
Plot[{gfb[theta], gflex[theta], gMEDL[theta], gMEDLp[theta]},
{theta, thetaL, thetaH}, PlotRange 2 {gfb[thetaL], gflex[thetaH]},
BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
AxesOrigin 2 {thetaL, gfb[thetaL]}, PlotStyle 2 {{Gray}, {Gray},

{Blue, Thickness[0.01]}, {Blue, Dashing[Medium], Thickness[0.01]}},
Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

Out[196]=

theta

Daft example.nb     3

Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.

14

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of the optimal self-enforcing fiscal

rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of the optimal self-enforcing fiscal

rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of the optimal self-enforcing fiscal

rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation (top panel) and continuation values (bottom

panel) under a maximally enforced deficit limit with �� > � and ��� < �. Under this

rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their flexible spending rate gf (�) and types

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.

13

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=
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Out[72]=
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits
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(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.
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Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist
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where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that
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where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.
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given, where we assume, for the problem to be interesting, that V > V .25 We show that
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where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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�
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⇤
choose their flexible spending rate gf (�) and types
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amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Definition: Maximally Enforced Deficit Limit

Let

g r (q) 2 arg max
g

{qU(g) + bdV (g � t)} and br (q) = g r (q) � t

Maximally enforced deficit limit if 9 q⇤ 2 [0, q), q⇤⇤ > max {q⇤, q} s.t.

{g (q) , V (q, b(q))} =

8
>>>><
>>>>:

�
g r (q), V (br (q))

 

�
g r (q⇤), V (br (q⇤))

 

{gp(q), V (bp(q))}

if q < q⇤

if q 2 [q⇤, q⇤⇤]

if q > q⇤⇤

Rule consists of flexible, constrained, and penalty regions
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Definition: Maximally Enforced Surplus Limit

Optimal Self-Enforcing Rule

max
{g (q),b(q),V (q,b(q))}q2Q

E
⇥
qU(g(q)) + dV (q, b(q))

⇤

subject to

qU(g(q)) + bdV (q, b(q)) � qU(g(q0)) + bdV (q0, b(q0))

(private information constraint)

qU(g(q)) + bdV (q, b(q)) � qU(gp(q)) + bdV (bp(q))

(self-enforcement constraint)

g(q) = � + b(q) and V (q, b(q)) 2
⇥
V (b(q)), V (b(q))

⇤

(feasibility)
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Bang-Bang Dynamics

Optimal fiscal rule is solution to two problems:

• {q⇤, q⇤⇤} which yield maximum social welfare given V (b) � V (b)

• {q⇤n, q⇤⇤n } which yield minimum social welfare given V (b) � V (b)

• Larger V (b) � V (b) =) Higher max and lower min

Conditions for dynamics incentives

• Self-enforcement constraint su�ciently binding

•
R q

qc
(Q(q) �Q(q))dq < 0

• Both hold if q is su�ciently extreme

Phases of fiscal rectitude and fiscal profligacy sustain each other
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Infinite Horizon

g r (q⇤n) V (br (q⇤n)) i.i.d. shocks, interest rate r , U(g) CRRA

Self-enforcing rule is perfect public equilibrium

• Government chooses gt given {g0, g1, . . . , gt�1} and private info qt

• Strategy profile implies spending sequence {{gt(qt)}qt2Qt }•
t=0

CRRA preferences =) contract scalable in debt

• V (b) and V (b) are continuously di↵erentiable and concave

• All previous results hold. Note g always interior if U(0) = �•
I q⇤ and q⇤⇤ independent of debt
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Self-enforcing rule is perfect public equilibrium

• Government chooses gt given {g0, g1, . . . , gt�1} and private info qt

• Strategy profile implies spending sequence {{gt(qt)}qt2Qt }•
t=0

CRRA preferences =) contract scalable in debt

• V (b) and V (b) are continuously di↵erentiable and concave

• All previous results hold. Note g always interior if U(0) = �•
I q⇤ and q⇤⇤ independent of debt

Limited Enforcement

Society determines V (b) 2 [V (b), V (b)] which depends on b

• Assume V (b) and V (b) are each continuous in b, bounded

V (b) � V (b) > 0 captures maximum feasible penalty

• Joint cost to government and society. Eg.: V (b) = V (b) � k

• Determined by continuation game under self-enforcement

{g(q), b(q), V (b(q))} is IC i↵ government prefers it to:

• Unobservable deviation: {g(q0), b(q0), V (q0, b(q0))} for q0 6= q

• Best observable deviation: {gp(q), bp(q), V (bp(q))}, where

gp(q) 2 arg max
g2[g ,g ]

{qU(g) + bdV (g � w)} and bp(q) = gp(q) � w

Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta

Out[72]=

theta

Daft example.nb     7

Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation (top panel) and continuation values (bottom

panel) under a maximally enforced deficit limit with �� > � and ��� < �. Under this

rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their flexible spending rate gf (�) and types

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.

14

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of the optimal self-enforcing fiscal

rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of the optimal self-enforcing fiscal

rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of the optimal self-enforcing fiscal

rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation (top panel) and continuation values (bottom

panel) under a maximally enforced deficit limit with �� > � and ��� < �. Under this

rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their flexible spending rate gf (�) and types

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.

13

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Since, by Step 1, local dynamic incentives are not provided, we show that any such point
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[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta

Out[72]=

theta

Daft example.nb     7

Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
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where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
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⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with
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These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =
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min{gf (�), gf (��)}, V
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if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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rule in the next section, which will appeal to properties of the function Q(�). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.
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where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Definition: Maximally Enforced Deficit Limit

Let

g r (q) 2 arg max
g

{qU(g) + bdV (g � t)} and br (q) = g r (q) � t

Maximally enforced deficit limit if 9 q⇤ 2 [0, q), q⇤⇤ > max {q⇤, q} s.t.

{g (q) , V (q, b(q))} =

8
>>>><
>>>>:

�
g r (q), V (br (q))

 

�
g r (q⇤), V (br (q⇤))

 

{gp(q), V (bp(q))}

if q < q⇤

if q 2 [q⇤, q⇤⇤]

if q > q⇤⇤

Rule consists of flexible, constrained, and penalty regions
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Definition: Maximally Enforced Surplus Limit

Optimal Self-Enforcing Rule

max
{g (q),b(q),V (q,b(q))}q2Q

E
⇥
qU(g(q)) + dV (q, b(q))

⇤

subject to

qU(g(q)) + bdV (q, b(q)) � qU(g(q0)) + bdV (q0, b(q0))

(private information constraint)

qU(g(q)) + bdV (q, b(q)) � qU(gp(q)) + bdV (bp(q))

(self-enforcement constraint)

g(q) = � + b(q) and V (q, b(q)) 2
⇥
V (b(q)), V (b(q))

⇤

(feasibility)
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Bang-Bang Dynamics

Optimal fiscal rule is solution to two problems:

• {q⇤, q⇤⇤} which yield maximum social welfare given V (b) � V (b)

• {q⇤n, q⇤⇤n } which yield minimum social welfare given V (b) � V (b)

• Larger V (b) � V (b) =) Higher max and lower min

Conditions for dynamics incentives

• Self-enforcement constraint su�ciently binding

•
R q

qc
(Q(q) �Q(q))dq < 0

• Both hold if q is su�ciently extreme

Phases of fiscal rectitude and fiscal profligacy sustain each other
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Infinite Horizon

g r (q⇤n) V (br (q⇤n)) i.i.d. shocks, interest rate r , U(g) CRRA

Self-enforcing rule is perfect public equilibrium

• Government chooses gt given {g0, g1, . . . , gt�1} and private info qt

• Strategy profile implies spending sequence {{gt(qt)}qt2Qt }•
t=0

CRRA preferences =) contract scalable in debt

• V (b) and V (b) are continuously di↵erentiable and concave

• All previous results hold. Note g always interior if U(0) = �•
I q⇤ and q⇤⇤ independent of debt
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Self-enforcing rule is perfect public equilibrium

• Government chooses gt given {g0, g1, . . . , gt�1} and private info qt

• Strategy profile implies spending sequence {{gt(qt)}qt2Qt }•
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• V (b) and V (b) are continuously di↵erentiable and concave

• All previous results hold. Note g always interior if U(0) = �•
I q⇤ and q⇤⇤ independent of debt

Limited Enforcement

Society determines V (b) 2 [V (b), V (b)] which depends on b

• Assume V (b) and V (b) are each continuous in b, bounded

V (b) � V (b) > 0 captures maximum feasible penalty

• Joint cost to government and society. Eg.: V (b) = V (b) � k

• Determined by continuation game under self-enforcement

{g(q), b(q), V (b(q))} is IC i↵ government prefers it to:

• Unobservable deviation: {g(q0), b(q0), V (q0, b(q0))} for q0 6= q

• Best observable deviation: {gp(q), bp(q), V (bp(q))}, where

gp(q) 2 arg max
g2[g ,g ]

{qU(g) + bdV (g � w)} and bp(q) = gp(q) � w

Figure 2: Examples of a flattening perturbation (left panel) and a steepening perturbation
(right panel), as used in Step 2 of the proof of Proposition 1.

to a stand-alone segment (θL, θH ] such that b(θ) = b and V (b(θ)) = V for all θ ∈ (θL, θH ],

b ∈ (b, b) and V ∈ (V (b), V (b)) (by assumption), and b(θ) jumps at each boundary unless

θH = θ. We then show that there exists an incentive feasible perturbation that changes

b and V slightly and strictly increases social welfare. If
∫ θH
θL

Q(θ)dθ >
∫ θH
θL

Q(θL)dθ, we

perform a segment-shifting steepening perturbation over the interval (θL, θH ] as illustrated

in Figure 3: we marginally increase b and reduce V so as to leave the government welfare

of type θH unchanged, thus letting types arbitrarily close to θL jump down to a lower debt

level. This perturbation is socially beneficial because, given
∫ θH
θL

Q(θ)dθ >
∫ θH
θL

Q(θL)dθ, so-

ciety prefers to concentrate distortions on (θL, θH ] compared to θL. If instead
∫ θH
θL

Q(θ)dθ ≤∫ θH
θL

Q(θL)dθ, the generic property in Proposition 1 ensures that
∫ θh
θL
Q(θ)dθ <

∫ θh
θL
Q(θL)dθ

for some θh ∈ (θL, θH ]. We then perform a segment-shifting flattening perturbation over

the interval (θL, θh]: we marginally reduce b and increase V so as to leave the government

welfare of type θh unchanged, thus letting types arbitrarily close to θL jump up to this al-

location. This perturbation is socially beneficial because, given
∫ θh
θL
Q(θ)dθ <

∫ θh
θL
Q(θL)dθ,

society prefers to concentrate distortions on θL compared to (θL, θh].
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta

Out[72]=

theta

Daft example.nb     7

Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.
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⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.
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where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with �� > � and ��� < �. Under this rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their

flexible spending rate gf (�) and types � 2 [��, ���] choose type ��’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.

17

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.

17

Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z �

�b

�
Q(�) � Q(�)

�
d� � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �b and

��� = �. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with �� 2 (�e, �b) and ��� < �.

When the perfect-enforcement limit gf (�e) is not self-enforcing, society faces the

following tradeo�. On the one hand, society can raise the value of �� to the point

that the associated limit gf (��) satisfies the self-enforcement constraint of type � and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

qL qH This is a figure similar to slides 16, but a few changes

1) Instead of V 0(q) < 0, write
dV (q, b(q))

dq
< 0 and instead of g 0(q) > 0, write

dg (q)

dq

2) Get rid of g f (q) line in the top panel

3) Label the bottom panel y axis V (q, b(q))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (q,b(q))

dq < 0 with
dg (q)
dq > 0

If Q 0(q) < 0,
flattening
perturbation
increases welfare

If Q 0(q) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta

Out[72]=

theta
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Corollary 1. If

�U(gf (�e)) + �W (xf (�e)) + ��V � �U(gf (�)) + �W (xf (�)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with �� = �e and

��� � �.

When condition (24) holds, the highest type �, and therefore all types � 2 �, prefer to

respect the perfect-enforcement limit gf (�e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (�e) is not self-enforcing. In this case, there exists

a unique type �b > �e corresponding to the tightest deficit limit that all types � 2 �

would respect:

�U(gf (�b)) + �W (xf (�b)) + ��V = �U(gf (�)) + �W (xf (�)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit
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sense, Q(�) represents the weight that society places on spending distortions associated
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types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose
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21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

where

Q (�) ⌘ 1 � F (�) � �f (�) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(�). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(�) represents the weight that society places on spending distortions associated

with government type �. The shape of this function will tell us how society would like

to allocate distortions across di�erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that gfb(�)

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with �� > �. Under this rule,

types � 2 [�, ��) choose their flexible spending rate gf (�), types � 2 [��, ���] choose

type ��’s flexible spending rate gf (��), and, if ��� < �, types � 2
�
���, �

⇤
choose their

flexible spending rate gf (�). Furthermore, types � � ��� are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (��). Furthermore, types � � ��� (solid line) are maximally rewarded with continuation

value V whereas types � > ��� (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ���. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (��). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ��� < �; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(�) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(�), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(�) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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levels of spending can be attributed to larger spending distortions. In this sense, Q(�)

represents the weight that society places on allowing spending distortions by a government

of type �: the higher Q(�), the lower the social welfare cost of distorting type �’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di�erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (�) , x (�) , V (�)}��� is a maximally enforced deficit limit if there exist

�� 2
⇥
0, �

�
and finite ��� > max {��, �} such that

{g (�) , V (�)} =

� �
min{gf (�), gf (��)}, V

 
�
gf (�), V

 if � � ���,

if � > ���,
(19)

where

���U(gf (��)) + �W (xf (��)) + ��V = ���U(gf (���)) + �W (xf (���)) + ��V . (20)

Figure 1 illustrates the spending allocation (top panel) and continuation values (bottom

panel) under a maximally enforced deficit limit with �� > � and ��� < �. Under this

rule, types � 2 [�, ��) and � 2
�
���, �

⇤
choose their flexible spending rate gf (�) and types

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (�) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (�) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (�) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [�L, �H ]. By Lemma 2, g(�) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q�(�) > 0 or Q�(�) < 0 for all � 2 [�L, �H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(�) < gf (�), and hence V �(�) < 0, for all � 2 [�L, �H ]. If Q�(�) < 0,

we construct a flattening perturbation that rotates the increasing g(�) schedule clockwise

over [�L, �H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (�) function. This perturbation is socially beneficial because, given

Q�(�) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q�(�) > 0, we construct a steepening perturbation that drills a hole in the

g(�) schedule by making allocations in (�L, �H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (�L) or V (�H). This

perturbation is socially beneficial because, given Q�(�) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (�) must be a step

function, and we also show that V (�) must be left- or right-continuous at each � 2 (�, �).

Step 2 of the proof establishes that V (�) 2 {V , V } at any point � at which dg(�)
d�

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

� must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q�(�) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q�(�) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q�(�) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(�) continuously di�erentiable, condition (i) in Proposition 1 implies that the set of
types � such that Q�(�) = 0 is nowhere dense.
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Optimal Self-Enforcing Rule

max
{g (�),b(�),V (�,b(�))}�2�

E
⇥
�U(g(�)) + �V (�, b(�))

⇤

subject to

�U(g(�)) + ��V (�, b(�)) � �U(g(��)) + ��V (��, b(��))

(private information constraint)

�U(g(�)) + ��V (�, b(�)) � �U(gp(�)) + ��V (bp(�))

(self-enforcement constraint)

g(�) = � + b(�) and V (�, b(�)) 2
⇥
V (b(�)), V (b(�))

⇤

(feasibility)
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8
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Step 1: Rule Out Local Incentives through Penalties

�L �H This is a figure similar to slides 16, but a few changes

1) Instead of V �(�) < 0, write
dV (�, b(�))

d�
< 0 and instead of g �(�) > 0, write

dg (�)

d�

2) Get rid of g f (�) line in the top panel

3) Label the bottom panel y axis V (�, b(�))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (�,b(�))

d� < 0 with
dg (�)
d� > 0

If Q �(�) < 0,
flattening
perturbation
increases welfare

If Q �(�) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=
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Out[72]=
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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In[193]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
Plot[{gfb[theta], gflex[theta], gMEDL[theta], gMEDLp[theta]},
{theta, thetaL, thetaH}, PlotRange 2 {gfb[thetaL], gflex[thetaH]},
BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
AxesOrigin 2 {thetaL, gfb[thetaL]}, PlotStyle 2 {{Gray}, {Gray},

{Blue, Thickness[0.01]}, {Blue, Dashing[Medium], Thickness[0.01]}},
Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

Out[196]=

theta
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and
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Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)
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28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (✓⇤). Furthermore, types ✓  ✓⇤⇤ (solid line) are maximally rewarded with continuation

value V whereas types ✓ > ✓⇤⇤ (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ✓⇤⇤. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (✓⇤). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ✓⇤⇤ < ✓; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(✓) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(✓), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(✓) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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flexible spending rate gf (✓) and types ✓ 2 [✓⇤, ✓⇤⇤] choose type ✓⇤’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
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Step 1: Rule Out Local Incentives through Penalties
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

Graph

In[193]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
Plot[{gfb[theta], gflex[theta], gMEDL[theta], gMEDLp[theta]},
{theta, thetaL, thetaH}, PlotRange 2 {gfb[thetaL], gflex[thetaH]},
BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
AxesOrigin 2 {thetaL, gfb[thetaL]}, PlotStyle 2 {{Gray}, {Gray},

{Blue, Thickness[0.01]}, {Blue, Dashing[Medium], Thickness[0.01]}},
Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

Out[196]=

theta

Daft example.nb     3

Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,
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flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (✓⇤). Furthermore, types ✓  ✓⇤⇤ (solid line) are maximally rewarded with continuation

value V whereas types ✓ > ✓⇤⇤ (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ✓⇤⇤. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (✓⇤). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ✓⇤⇤ < ✓; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(✓) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(✓), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(✓) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:
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be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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be used along the equilibrium path when (24) is not satisfied:
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following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with
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These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

�L �H This is a figure similar to slides 16, but a few changes

1) Instead of V �(�) < 0, write
dV (�, b(�))

d�
< 0 and instead of g �(�) > 0, write

dg (�)

d�

2) Get rid of g f (�) line in the top panel

3) Label the bottom panel y axis V (�, b(�))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (�,b(�))

d� < 0 with
dg (�)
d� > 0

If Q �(�) < 0,
flattening
perturbation
increases welfare

If Q �(�) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit
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When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the
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Graph

In[193]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
Plot[{gfb[theta], gflex[theta], gMEDL[theta], gMEDLp[theta]},
{theta, thetaL, thetaH}, PlotRange 2 {gfb[thetaL], gflex[thetaH]},
BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
AxesOrigin 2 {thetaL, gfb[thetaL]}, PlotStyle 2 {{Gray}, {Gray},

{Blue, Thickness[0.01]}, {Blue, Dashing[Medium], Thickness[0.01]}},
Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

Out[196]=
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (✓⇤). Furthermore, types ✓  ✓⇤⇤ (solid line) are maximally rewarded with continuation

value V whereas types ✓ > ✓⇤⇤ (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ✓⇤⇤. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (✓⇤). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ✓⇤⇤ < ✓; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(✓) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(✓), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(✓) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of the optimal self-enforcing fiscal

rule in the next section, which will appeal to properties of the function Q(✓). For intuition,

note that since the government is biased towards overspending relative to society, higher

levels of spending can be attributed to larger spending distortions. In this sense, Q(✓)

represents the weight that society places on allowing spending distortions by a government

of type ✓: the higher Q(✓), the lower the social welfare cost of distorting type ✓’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di↵erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with ✓⇤ > ✓ and ✓⇤⇤ < ✓. Under this rule, types ✓ 2 [✓, ✓⇤) and ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓) and types ✓ 2 [✓⇤, ✓⇤⇤] choose type ✓⇤’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

Figures with Steps
Step 1: Ruling Out Local Dynamic Incentives

• Suppose that V �(�) < 0 with g �(�) > 0 [Figure depicting contract]
indifferent jump

Step 2: Flattening Perturbation
• If Q �(�) < 0 flattening perturbation increases social welfare [Figure

depicting perturbation with arrows]

Step 1: Steepening Perturbation
• If Q �(�) > 0 steepening perturbation increases social welfare [Figure

depicting perturbation with arrows]

Step 2: Ruling Out Interior Values under Rising Spending
• Suppose that V (�) 2 (V , V ) with g �(�) > 0 [Figure depicting

contract]
• Flattening or steepening perturbation increases social welfare

Step 3: Ruling Out Interior Values under Constant Spending
• Suppose that V (�) 2 (V , V ) with g �(�) = 0 [Figure depicting

contract with a jump at one endpoint]

Step 3: Segment Shifting Perturbation

• Suppose that Q(�L) >
R �H

�L Q(�)d�[Figure depicting segment shifting
perturbation]
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Figure 3: Example of a segment-shifting steepening perturbation, as used in Step 3 of
the proof of Proposition 1.

in Proposition 1 ensures that
R ✓h

✓L Q(✓)d✓ <
R ✓h

✓L Q(✓L)d✓ for some ✓h 2 (✓L, ✓H ]. We then

perform a segment-shifting flattening perturbation over the interval [✓L, ✓h]: we marginally

reduce g and increase V so as to leave the government welfare of type ✓h unchanged,

thus letting types below ✓L, arbitrarily close to ✓L, jump up to this allocation. This

perturbation is socially beneficial because, given
R ✓h

✓L Q(✓)d✓ <
R ✓h

✓L Q(✓L)d✓, society prefers

to concentrate spending distortions on ✓L compared to ✓ 2 (✓L, ✓h].

JUMP

INDIFFERENT

3.3 Monotonic Incentives

To further characterize the schedule of continuation values V (✓, b(✓)), and solve for the

optimal rule in the next subsection, we make the following assumption:

Assumption 2. There exists b✓ 2 ⇥ such that Q0(✓) < 0 if ✓ < b✓ and Q0(✓) > 0 if ✓ > b✓.

This assumption states that Q(✓) has a minimum value Q(b✓)  Q(✓) < 0, being strictly

decreasing for ✓ < b✓ and strictly increasing for ✓ > b✓. Note that the assumption allows for
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Optimal Self-Enforcing Rule

max
{g (�),b(�),V (�,b(�))}�2�

E
⇥
�U(g(�)) + �V (�, b(�))

⇤

subject to

�U(g(�)) + ��V (�, b(�)) � �U(g(��)) + ��V (��, b(��))

(private information constraint)

�U(g(�)) + ��V (�, b(�)) � �U(gp(�)) + ��V (bp(�))

(self-enforcement constraint)

g(�) = � + b(�) and V (�, b(�)) 2
⇥
V (b(�)), V (b(�))

⇤

(feasibility)
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Definition: Maximally Enforced Deficit Limit

Let

g r (�) 2 arg max
g

{�U(g) + ��V (g � �)} and br (�) = g r (�) � �

Maximally enforced deficit limit if 9 �⇤ 2 [0, �), �⇤⇤ > max {�⇤, �} s.t.

{g (�) , V (�, b(�))} =

8
>>>><
>>>>:

�
g r (�), V (br (�))

 

�
g r (�⇤), V (br (�⇤))
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if � > �⇤⇤

Rule consists of flexible, constrained, and penalty regions
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Step 1: Rule Out Local Incentives through Penalties

�L �H This is a figure similar to slides 16, but a few changes

1) Instead of V �(�) < 0, write
dV (�, b(�))

d�
< 0 and instead of g �(�) > 0, write

dg (�)

d�

2) Get rid of g f (�) line in the top panel

3) Label the bottom panel y axis V (�, b(�))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (�,b(�))

d� < 0 with
dg (�)
d� > 0

If Q �(�) < 0,
flattening
perturbation
increases welfare

If Q �(�) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the
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Graph

In[193]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
Plot[{gfb[theta], gflex[theta], gMEDL[theta], gMEDLp[theta]},
{theta, thetaL, thetaH}, PlotRange 2 {gfb[thetaL], gflex[thetaH]},
BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
AxesOrigin 2 {thetaL, gfb[thetaL]}, PlotStyle 2 {{Gray}, {Gray},

{Blue, Thickness[0.01]}, {Blue, Dashing[Medium], Thickness[0.01]}},
Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

Out[196]=

theta

Daft example.nb     3

Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (✓⇤). Furthermore, types ✓  ✓⇤⇤ (solid line) are maximally rewarded with continuation

value V whereas types ✓ > ✓⇤⇤ (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ✓⇤⇤. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (✓⇤). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ✓⇤⇤ < ✓; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(✓) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(✓), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of
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levels of spending can be attributed to larger spending distortions. In this sense, Q(✓)

represents the weight that society places on allowing spending distortions by a government

of type ✓: the higher Q(✓), the lower the social welfare cost of distorting type ✓’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di↵erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with ✓⇤ > ✓ and ✓⇤⇤ < ✓. Under this rule, types ✓ 2 [✓, ✓⇤) and ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓) and types ✓ 2 [✓⇤, ✓⇤⇤] choose type ✓⇤’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.

17

Step 1: Rule Out Local Incentives through Penalties

�L �H This is a figure similar to slides 16, but a few changes

1) Instead of V �(�) < 0, write
dV (�, b(�))

d�
< 0 and instead of g �(�) > 0, write

dg (�)

d�

2) Get rid of g f (�) line in the top panel

3) Label the bottom panel y axis V (�, b(�))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (�,b(�))

d� < 0 with
dg (�)
d� > 0

If Q �(�) < 0,
flattening
perturbation
increases welfare

If Q �(�) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta

Out[72]=
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
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choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.

13

Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (✓⇤). Furthermore, types ✓  ✓⇤⇤ (solid line) are maximally rewarded with continuation

value V whereas types ✓ > ✓⇤⇤ (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ✓⇤⇤. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (✓⇤). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ✓⇤⇤ < ✓; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(✓) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(✓), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(✓) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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Figure 1 illustrates the spending allocation under a maximally enforced deficit limit

with ✓⇤ > ✓ and ✓⇤⇤ < ✓. Under this rule, types ✓ 2 [✓, ✓⇤) and ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓) and types ✓ 2 [✓⇤, ✓⇤⇤] choose type ✓⇤’s flexible spending rate

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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represents the weight that society places on allowing spending distortions by a government

of type ✓: the higher Q(✓), the lower the social welfare cost of distorting type ✓’s spending.

The shape of this function will tell us how society wishes to allocate distortions across

di↵erent government types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem (11)-

(15). We begin in this section by taking the set of feasible continuation values
⇥
V , V

⇤
as

given, where we assume, for the problem to be interesting, that V > V .25 We show that

the unique optimal rule is a deficit limit with maximal enforcement. The continuation

equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates the spending allocation (top panel) and continuation values (bottom

panel) under a maximally enforced deficit limit with ✓⇤ > ✓ and ✓⇤⇤ < ✓. Under this

rule, types ✓ 2 [✓, ✓⇤) and ✓ 2
�
✓⇤⇤, ✓

⇤
choose their flexible spending rate gf (✓) and types

25If it were the case that V = V , then the unique equilibrium would entail all government types choosing
their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide a su�cient condition
for V > V to hold under the assumptions maintained for our main result in Proposition 2. This condition
amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (�,b(�))

d� < 0 with
dg (�)
d� > 0

If Q �(�) < 0,
flattening
perturbation
increases welfare

If Q �(�) > 0,
steepening
perturbation
increases welfare

Graph for slides

In[66]:= gMEDL[theta_ 0; theta < thetaS] := gflex[theta];
gMEDL[theta_ 0; thetaSS > theta > thetaS] := gflex[thetaS];
gMEDLp[theta_ 0; theta > thetaSS] := gflex[theta];
p1 = Plot[{gflex[theta]}, {theta, thetaL, thetaH},

PlotRange 2 {gfb[thetaL], gflex[thetaH]}, BaseStyle 2 {FontSize 2 14},
AxesLabel 2 {"theta", ""}, Axes 2 True, AxesOrigin 2 {thetaL, gfb[thetaL]},
PlotStyle 2 {{Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaS, thetaSS}]

V[theta_ 0; thetaSS > theta] := 2;
Vp[theta_ 0; thetaSS < theta] := 0.5;
p2 = Plot[{2, 0.5}, {theta, thetaL, thetaH}, PlotRange 2 {0, 2.4},

BaseStyle 2 {FontSize 2 14}, AxesLabel 2 {"theta", ""}, Axes 2 True,
PlotStyle 2 {{Gray}, {Gray}}, Ticks 2 {{}, {}}, Exclusions 2 {thetaSS}]

Out[69]=

theta

Out[72]=

theta

Daft example.nb     7

Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (✓⇤). Furthermore, types ✓  ✓⇤⇤ (solid line) are maximally rewarded with continuation

value V whereas types ✓ > ✓⇤⇤ (dashed line) are maximally punished with continuation

value V . As shown in equation (20), the self-enforcement constraint holds with equality for

type ✓⇤⇤. It is immediate that this rule satisfies the private information constraint (12) and

the self-enforcement constraint (13).

The fiscal rule described in Definition 1 can be implemented using a maximum deficit

limit, spending limit, or debt limit, where this limit would be associated with the spending

rate gf (✓⇤). If the limit is satisfied, the government receives maximal reward V ; if the

limit is breached, the government receives maximal punishment V . Note that the limit is

breached along the equilibrium path if and only if ✓⇤⇤ < ✓; we will provide conditions under

which this inequality holds in an optimal deficit limit.

To establish our results, we proceed as follows. First, we show in Subsection 4.1 that

any solution to (11)-(15) must feature bang-bang continuation values, so the rule provides

high-powered incentives for the government not to overspend. This result relies only on

generic properties of the function Q(✓) that weighs spending distortions in the social welfare

representation in (18). Next, we show in Subsection 4.2 that under additional assumptions

on Q(✓), optimal bang-bang incentives must be monotonic, with higher types receiving

weakly lower continuation value than lower types. This facilitates our characterization of

optimal spending allocations in Subsection 4.3, which shows that any solution to (11)-(15)

is a maximally enforced deficit limit. We further establish that the optimal limit is unique,

and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(✓) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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amounts to the discount factor � 2 (0, 1) being high enough.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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Step 1: Rule Out Local Incentives through Penalties

�L �H This is a figure similar to slides 16, but a few changes

1) Instead of V �(�) < 0, write
dV (�, b(�))

d�
< 0 and instead of g �(�) > 0, write

dg (�)

d�

2) Get rid of g f (�) line in the top panel

3) Label the bottom panel y axis V (�, b(�))

4) Have only one single downward sloping blow line in the bottom panel

5) Kill the V and V axis labels

6) Make lines non-squiggly. The reason for this is consistency with step 2 and also with example of rule previously

Suppose
dV (�,b(�))

d� < 0 with
dg (�)
d� > 0

If Q �(�) < 0,
flattening
perturbation
increases welfare

If Q �(�) > 0,
steepening
perturbation
increases welfare
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Corollary 1. If

✓U(gf (✓e)) + �W (xf (✓e)) + ��V � ✓U(gf (✓)) + �W (xf (✓)) + ��V , (24)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓e and

✓⇤⇤ � ✓.

When condition (24) holds, the highest type ✓, and therefore all types ✓ 2 ⇥, prefer to

respect the perfect-enforcement limit gf (✓e) and receive maximal reward V rather than

spend above the limit and receive maximal punishment V . The optimal self-enforcing

rule therefore coincides with that under perfect enforcement and features no dynamic

incentives. As shown in Amador, Werning, and Angeletos (2006), there is no benefit in

using dynamic incentives to satisfy private information constraints, as any punishment

along the equilibrium path would hurt society and the government equally.28

Our interest is in characterizing the optimal rule when condition (24) does not hold,

so the perfect-enforcement limit gf (✓e) is not self-enforcing. In this case, there exists

a unique type ✓b > ✓e corresponding to the tightest deficit limit that all types ✓ 2 ⇥

would respect:

✓U(gf (✓b)) + �W (xf (✓b)) + ��V = ✓U(gf (✓)) + �W (xf (✓)) + ��V . (25)

The next proposition provides a necessary and su�cient condition for punishments to

be used along the equilibrium path when (24) is not satisfied:

Proposition 3 (use of punishment). Suppose (24) does not hold, i.e. the optimal deficit

limit under perfect enforcement is not self-enforcing. If

Z ✓

✓b

�
Q(✓) � Q(✓)

�
d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point

that the associated limit gf (✓⇤) satisfies the self-enforcement constraint of type ✓ and

28This result relies on the assumption that shocks are i.i.d. See Halac and Yared (2014) for an
analysis of optimal fiscal rules under perfect enforcement and persistent shocks.

21

where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Q(✓) � Q(✓)
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d✓ � 0, (26)

the unique solution to (11)-(15) is a maximally enforced deficit limit with ✓⇤ = ✓b and

✓⇤⇤ = ✓. Otherwise, the unique solution to (11)-(15) is a maximally enforced deficit limit

with ✓⇤ 2 (✓e, ✓b) and ✓⇤⇤ < ✓.

When the perfect-enforcement limit gf (✓e) is not self-enforcing, society faces the

following tradeo↵. On the one hand, society can raise the value of ✓⇤ to the point
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where

Q (✓) ⌘ 1 � F (✓) � ✓f (✓) (1 � �) .

This formulation will be useful for our characterization of optimal self-enforcing

rules in the next section, which will appeal to properties of the function Q(✓). For

intuition, note that since the government is biased towards overspending relative to

society, higher levels of spending can be attributed to larger spending distortions. In this

sense, Q(✓) represents the weight that society places on spending distortions associated

with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist

✓⇤ 2
⇥
0, ✓

�
and finite ✓⇤⇤ > max {✓⇤, ✓} such that

{g (✓) , V (✓)} =

( �
min{gf (✓), gf (✓⇤)}, V

 
�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
(19)

where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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with government type ✓. The shape of this function will tell us how society would like

to allocate distortions across di↵erent types.

4 Maximally Enforced Deficit Limits

We characterize the optimal self-enforcing fiscal rule by solving the recursive problem

(11)-(15). We begin in this section by taking the set of feasible continuation values⇥
V , V

⇤
as given, where we assume, for the problem to be interesting, that V > V .21

We show that the unique optimal rule is a deficit limit with maximal enforcement. The

continuation equilibrium induced by this rule is examined in Section 5.

We define a maximally enforced deficit limit as follows:

Definition 1. {g (✓) , x (✓) , V (✓)}✓2⇥ is a maximally enforced deficit limit if there exist
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�
gf (✓), V

 if ✓  ✓⇤⇤,

if ✓ > ✓⇤⇤,
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where

✓⇤⇤U(gf (✓⇤)) + �W (xf (✓⇤)) + ��V = ✓⇤⇤U(gf (✓⇤⇤)) + �W (xf (✓⇤⇤)) + ��V . (20)

Figure 1 illustrates a maximally enforced deficit limit with ✓⇤ > ✓. Under this rule,

types ✓ 2 [✓, ✓⇤) choose their flexible spending rate gf (✓), types ✓ 2 [✓⇤, ✓⇤⇤] choose

type ✓⇤’s flexible spending rate gf (✓⇤), and, if ✓⇤⇤ < ✓, types ✓ 2
�
✓⇤⇤, ✓

⇤
choose their

flexible spending rate gf (✓). Furthermore, types ✓  ✓⇤⇤ are maximally rewarded with

21If it were the case that V = V , then the unique equilibrium would entail all government types
choosing their flexible spending rate gf (✓) at all dates. In the Online Appendix, we provide su�cient
conditions for V > V to hold under the assumptions maintained for our main result in Proposition 2.
These conditions amount to the discount factor � 2 (0, 1) being large enough.
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Figure 1: Spending allocation under a maximally enforced deficit limit.

gf (✓⇤). Furthermore, types ✓  ✓⇤⇤ (solid line) are maximally rewarded with continuation

value V whereas types ✓ > ✓⇤⇤ (dashed line) are maximally punished with continuation
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and provide a necessary and su�cient condition for the government to violate the limit

following high enough shocks. Finally, in Subsection 4.4, we show that our assumptions

on Q(✓) are not only su�cient but also necessary for any solution to (11)-(15) to be a

maximally enforced deficit limit.
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required for our characterization.29 We conjecture that the arguments may also extend to

the monetary policy model of Athey, Atkeson, and Kehoe (2005).

The formal proof of Proposition 1 in the Appendix makes use of perturbation argu-

ments.30 We establish the result in three steps; we next provide a summary which may give

intuition and serve as a guide to follow the proof.

Step 1 shows that V (✓) is a step function, so dynamic incentives are not provided

locally to the government. Suppose instead that V (✓) was strictly increasing or strictly

decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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decreasing, and thus strictly interior, over an interval [✓L, ✓H ]. By Lemma 2, g(✓) must

be strictly increasing over the interval, and by condition (i) in Proposition 1, we can take

a subinterval such that Q0(✓) > 0 or Q0(✓) < 0 for all ✓ 2 [✓L, ✓H ].31 We then show

that there exists an incentive feasible perturbation that strictly increases social welfare.

To illustrate, take g(✓) < gf (✓), and hence V 0(✓) < 0, for all ✓ 2 [✓L, ✓H ]. If Q0(✓) < 0,

we construct a flattening perturbation that rotates the increasing g(✓) schedule clockwise

over [✓L, ✓H ], which entails reducing dynamic incentives with a counterclockwise rotation

of the decreasing V (✓) function. This perturbation is socially beneficial because, given

Q0(✓) < 0, society prefers to concentrate spending distortions on lower rather than higher

types. If instead Q0(✓) > 0, we construct a steepening perturbation that drills a hole in the

g(✓) schedule by making allocations in (✓L, ✓H) no longer available, which entails increasing

dynamic incentives by moving interior continuation values towards V (✓L) or V (✓H). This

perturbation is socially beneficial because, given Q0(✓) > 0, society prefers to concentrate

spending distortions on higher rather than lower types. We obtain that V (✓) must be a step

function, and we also show that V (✓) must be left- or right-continuous at each ✓ 2 (✓, ✓).

Step 2 of the proof establishes that V (✓) 2 {V , V } at any point ✓ at which dg(✓)
d✓

> 0.

Since, by Step 1, local dynamic incentives are not provided, we show that any such point

✓ must belong to an interval with flexible spending and constant continuation value V 2
[V , V ]. However, if V 2 (V , V ), we can construct incentive feasible perturbations similar to

those above: if Q0(✓) < 0 over the interval, we perform a flattening perturbation that rotates

the spending schedule clockwise; if Q0(✓) > 0, we perform a steepening perturbation that

drills a hole in the spending schedule. By the logic in Step 1, these perturbations strictly

increase social welfare, so V 2 (V , V ) cannot be optimal.

29Ambrus and Egorov (2013) provide examples in the setting of Amador, Werning, and Angeletos (2006)
in which spending is at a corner and, as a result, interior punishments can be optimal.

30Some of the arguments we use for regions where Q0(✓) < 0 are similar to those employed by Athey,
Atkeson, and Kehoe (2005) in their analysis of optimal inflation rules. Unlike in their work, where rules
are perfectly enforced, our arguments take into account the constraints due to self-enforcement.

31Note that given f(✓) continuously di↵erentiable, condition (i) in Proposition 1 implies that the set of
types ✓ such that Q0(✓) = 0 is nowhere dense.
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Figures with Steps
Step 1: Ruling Out Local Dynamic Incentives

• Suppose that V �(�) < 0 with g �(�) > 0 [Figure depicting contract]
indifferent jump

Step 2: Flattening Perturbation
• If Q �(�) < 0 flattening perturbation increases social welfare [Figure

depicting perturbation with arrows]

Step 1: Steepening Perturbation
• If Q �(�) > 0 steepening perturbation increases social welfare [Figure

depicting perturbation with arrows]

Step 2: Ruling Out Interior Values under Rising Spending
• Suppose that V (�) 2 (V , V ) with g �(�) > 0 [Figure depicting

contract]
• Flattening or steepening perturbation increases social welfare

Step 3: Ruling Out Interior Values under Constant Spending
• Suppose that V (�) 2 (V , V ) with g �(�) = 0 [Figure depicting

contract with a jump at one endpoint]

Step 3: Segment Shifting Perturbation

• Suppose that Q(�L) >
R �H

�L Q(�)d�[Figure depicting segment shifting
perturbation]
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Figure 3: Example of a segment-shifting steepening perturbation, as used in Step 3 of
the proof of Proposition 1.

in Proposition 1 ensures that
R ✓h

✓L Q(✓)d✓ <
R ✓h

✓L Q(✓L)d✓ for some ✓h 2 (✓L, ✓H ]. We then

perform a segment-shifting flattening perturbation over the interval [✓L, ✓h]: we marginally

reduce g and increase V so as to leave the government welfare of type ✓h unchanged,

thus letting types below ✓L, arbitrarily close to ✓L, jump up to this allocation. This

perturbation is socially beneficial because, given
R ✓h

✓L Q(✓)d✓ <
R ✓h

✓L Q(✓L)d✓, society prefers

to concentrate spending distortions on ✓L compared to ✓ 2 (✓L, ✓h].

JUMP

INDIFFERENT

3.3 Monotonic Incentives

To further characterize the schedule of continuation values V (✓, b(✓)), and solve for the

optimal rule in the next subsection, we make the following assumption:

Assumption 2. There exists b✓ 2 ⇥ such that Q0(✓) < 0 if ✓ < b✓ and Q0(✓) > 0 if ✓ > b✓.

This assumption states that Q(✓) has a minimum value Q(b✓)  Q(✓) < 0, being strictly

decreasing for ✓ < b✓ and strictly increasing for ✓ > b✓. Note that the assumption allows for
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Definition: Maximally Enforced Deficit Limit

Let

g r (q) 2 arg max
g

{qU(g) + bdV (g � t)} and br (q) = g r (q) � t

Maximally enforced deficit limit if 9 q⇤ 2 [0, q), q⇤⇤ > max {q⇤, q} s.t.

{g (q) , V (q, b(q))} =

8
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if q < q⇤
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Rule consists of flexible, constrained, and penalty regions
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Definition: Maximally Enforced Surplus Limit

Optimal Self-Enforcing Rule

max
{g (q),b(q),V (q,b(q))}q2Q

E
⇥
qU(g(q)) + dV (q, b(q))

⇤

subject to

qU(g(q)) + bdV (q, b(q)) � qU(g(q0)) + bdV (q0, b(q0))

(private information constraint)

qU(g(q)) + bdV (q, b(q)) � qU(gp(q)) + bdV (bp(q))

(self-enforcement constraint)

g(q) = � + b(q) and V (q, b(q)) 2
⇥
V (b(q)), V (b(q))

⇤

(feasibility)

Definition: Maximally Enforced Deficit Limit

Let

g r (q) 2 arg max
g

{qU(g) + bdV (g � �)} and br (q) = g r (q) � �

Maximally enforced deficit limit if 9 q⇤ 2 [0, q), q⇤⇤ > max {q⇤, q} s.t.

{g (q) , V (q, b(q))} =

8
>>>><
>>>>:

�
g r (q), V (br (q))

 

�
g r (q⇤), V (br (q⇤))

 

{gp(q), V (bp(q))}

if q < q⇤

if q 2 [q⇤, q⇤⇤]

if q > q⇤⇤

Rule consists of flexible, constrained, and penalty regions

Bang-Bang Dynamics

Optimal fiscal rule is solution to two problems:

• {q⇤, q⇤⇤} which yield maximum social welfare given V (b) � V (b)

• {q⇤n, q⇤⇤n } which yield minimum social welfare given V (b) � V (b)

• Larger V (b) � V (b) =) Higher max and lower min

Conditions for dynamics incentives

• Self-enforcement constraint su�ciently binding

•
R q

qc
(Q(q) �Q(q))dq < 0

• Both hold if q is su�ciently extreme

Phases of fiscal rectitude and fiscal profligacy sustain each other
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g r (q⇤n) V (br (q⇤n)) i.i.d. shocks, interest rate r , U(g) CRRA

Self-enforcing rule is perfect public equilibrium

• Government chooses gt given {g0, g1, . . . , gt�1} and private info qt

• Strategy profile implies spending sequence {{gt(qt)}qt2Qt }•
t=0

CRRA preferences =) contract scalable in debt

• V (b) and V (b) are continuously di↵erentiable and concave

• All previous results hold. Note g always interior if U(0) = �•
I q⇤ and q⇤⇤ independent of debt
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Limited Enforcement

Society determines V (b) 2 [V (b), V (b)] which depends on b

• Assume V (b) and V (b) are each continuous in b, bounded

V (b) � V (b) > 0 captures maximum feasible penalty
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Figure 3: Example of a segment-shifting steepening perturbation, as used in Step 3 of
the proof of Proposition 1.

3.3 Monotonic Incentives

To further characterize the schedule of continuation values V (b(θ)), and solve for the op-

timal fiscal rule in the next subsection, we make the following assumption:

Assumption 1. There exists θ̂ ∈ Θ such that Q′(θ) < 0 if θ < θ̂ and Q′(θ) > 0 if θ > θ̂.

This assumption states that Q(θ) has a minimum value Q(θ̂) ≤ Q(θ) < 0, being strictly

decreasing for θ < θ̂ and strictly increasing for θ > θ̂. Note that the assumption allows

for Q(θ) to be strictly decreasing or strictly increasing over the whole set Θ; in this case

θ̂ is defined as either the upper bound or the lower bound of the set Θ. Assumption 1

implies the generic property required in Proposition 1, and it holds for a broad range of

distribution functions, including uniform, exponential, log-normal, gamma, and beta for a

subset of its parameters. This assumption is similar to, but stronger than, the distributional

assumption used in Amador, Werning, and Angeletos (2006). We show in Subsection 3.5

that Assumption 1 is necessary for our characterization of optimal rules.

We maintain Assumption 1 for the remainder of our analysis. The next lemma shows

that, given the implied shape of Q(θ), optimal incentives are monotonic.
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Lemma 3. If {b(θ), V (b(θ))}θ∈Θ is an optimal rule with b(θ) ∈ (b, b) for all θ ∈ Θ, then

either V (b(θ)) = V (b(θ)) for all θ ∈ Θ, or there exists θ∗∗ ∈ (θ, θ) such that V (b(θ)) =

V (b(θ)) for all θ ∈ [θ, θ∗∗] and V (b(θ)) = V (b(θ)) for all θ ∈ (θ∗∗, θ].

The intuition for this result is related to the shape of the Q(θ) function, which tells

us how society wishes to allocate borrowing distortions across types. For types θ > θ̂,

where θ̂ is defined in Assumption 1, society prefers to concentrate distortions on relatively

high types. This is achieved by using high-powered incentives that punish high levels of

borrowing by lowering the continuation value from V (b(θ)) to V (b(θ)). In contrast, for

types θ < θ̂, society prefers to concentrate distortions on relatively low types. This is

achieved by using flat incentives that keep the continuation value constant at V (b(θ)).

The proof of Lemma 3 consists of three steps, which we summarize here. Step 1

shows that any interval of types receiving the maximal penalty V (b(θ)) must lie above

θ̂. Suppose by contradiction that this were not true, so that an optimal rule prescribes

V (b(θ)) = V (b(θ)) over an interval [θL, θH ] with Q′(θ) < 0 for θ ∈ [θL, θH ]. Note that the

enforcement constraint requires b(θ) = bp(θ) for all types θ in the interval. We then show

that there exists an incentive feasible perturbation that strictly increases social welfare. If
dbp(θ)
dθ

> 0 for θ ∈ [θL, θH ], we perform a flattening perturbation that rotates the borrowing

schedule clockwise; by the logic in Step 2 in the proof of Proposition 1 and Q′(θ) < 0, this

perturbation is socially beneficial. If instead bp(θ) is constant over [θL, θH ], we perform a

segment-shifting flattening perturbation; by the logic in Step 3 in the proof of Proposition 1

and Q′(θ) < 0, this perturbation is socially beneficial.

Step 2 establishes that incentives are monotonic. We show that if V (b(θ∗∗)) = V (b(θ∗∗))

for some type θ∗∗ ≥ θ̂ in an optimal rule, then V (b(θ)) = V (b(θ)) for all types θ ≥ θ∗∗.

Suppose by contradiction that V (b(θ)) = V (b(θ)) for some type θ > θ∗∗. By our left-

continuity and bang-bang results, there must exist an interval (θL, θH ], θL ≥ θ∗∗, such

that V (b(θ)) = V (b(θ)) for all θ ∈ (θL, θH ]. We then show that there exists an incentive

feasible perturbation that strictly increases social welfare. If db(θ)
dθ

> 0 for θ ∈ (θL, θH ], we

perform a steepening perturbation that drills a hole in the b(θ) schedule; by the logic in

Step 2 in the proof of Proposition 1 and Q′(θ) > 0, this perturbation is socially beneficial.

If instead b(θ) is constant over (θL, θH ], we can take a stand-alone segment with constant

borrowing lying above θ̂. Using similar logic as in Step 3 in the proof of Proposition 1 and

Q′(θ) > 0, we show that there exists a segment-shifting steepening perturbation that is

socially beneficial.

The previous steps, Proposition 1, and Step 1 in the proof of that proposition imply

the following: if V (b(θ)) = V (b(θ)) for some type θ ∈ Θ, then there exists θ∗∗ ∈ [θ, θ)

such that V (b(θ)) = V (b(θ)) for all θ ∈ [θ, θ∗∗] and V (b(θ)) = V (b(θ)) for all θ ∈ (θ∗∗, θ].
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Step 3 completes the proof of Lemma 3 by showing that θ∗∗ > θ. The idea is simple: if

θ∗∗ = θ, we can perform a global perturbation that increases the continuation value of

types θ ∈ (θ, θ] by a constant amount ∆ > 0 and assigns type θ the limit allocation to

its right. This perturbation keeps the borrowing level of types θ ∈ (θ, θ] unchanged and is

incentive feasible for ∆ > 0 small enough. Moreover, using the representation in (12), we

show that the perturbation increases social welfare by δ∆ > 0.

3.4 Maximally Enforced Deficit Limit

Proposition 1 and Lemma 3 characterize the schedule of continuation values in any optimal

rule. To provide a characterization of the borrowing schedule, we require:

Assumption 2. For all b ∈ [b, b], V (b) is continuously differentiable and strictly concave.

This assumption ensures that the government’s flexible level of debt conditional on

maximal reward, br(θ), is continuous in its type θ. We maintain this assumption for the

remainder of our analysis.23 The next proposition states the main result of the paper:

Proposition 2 (optimal rule). If {b(θ), V (b(θ))}θ∈Θ is an optimal rule with b(θ) ∈ (b, b)

for all θ ∈ Θ, then it satisfies (9)-(10) for some θ∗ ∈
[
0, θ
)

and finite θ∗∗ > max {θ∗, θ}.
Hence, any interior solution is a maximally enforced deficit limit.

Recall from Lemma 3 that in any optimal rule, either all government types θ ∈ Θ

receive the highest continuation value V (b(θ)), or the continuation value jumps down

from V (b(θ)) to V (b(θ)) at a point θ∗∗ ∈ (θ, θ). To establish Proposition 2, we take

θ∗∗ as given and solve for the optimal borrowing allocation above and below this point.

If θ ∈ (θ∗∗, θ], the allocation is characterized by the binding enforcement constraint with

{b(θ), V (b(θ))} = {bp(θ), V (bp(θ))}. If θ ∈ [θ, θ∗∗], we show that the borrowing schedule

b(θ) must be continuous, so the allocation takes the form of bounded discretion. Since a

minimum borrowing requirement would reduce social welfare (given the government’s bias

towards overborrowing), a maximum borrowing limit br(θ∗) is optimal for types in this

range. Such a borrowing limit necessarily keeps type θ∗∗ indifferent between the alloca-

tions {br(θ∗), V (br(θ∗))} and {bp(θ∗∗), V (bp(θ∗∗))}.
The proof that b(θ) is continuous over [θ, θ∗∗] builds on perturbation arguments similar

to those used in the previous subsections. Given the absence of penalty incentives below

θ∗∗, a discontinuity would entail a hole in some range
[
θL, θH

]
. That is, b(θ) would jump

at a point θM ∈
(
θL, θH

)
, such that types θ ∈

(
θL, θM

)
borrow at br(θL) < br(θ) and

23This assumption holds in our infinite horizon setting in which V (b) is endogenous; see Lemma 4.
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types θ ∈
(
θM , θH

)
borrow at br(θH) > br(θ). However, if θM < θ̂, an incentive feasible

perturbation that slightly closes the hole by raising θL (and thus also raising θM) would

strictly increase social welfare, by similar logic as in Step 2 in the proof of Proposition 1

and Q′(θ) < 0. Moreover, if θM ≥ θ̂, the interval
(
θM , θH

]
must belong to a stand-alone

segment with constant borrowing.24 An incentive feasible segment-shifting perturbation

would then strictly increase social welfare, by similar logic as in Step 2 in the proof of

Lemma 3 and Q′(θ) > 0. It follows that b(θ) cannot be discontinuous below θ∗∗.

Proposition 2 shows that any interior solution must be a maximally enforced deficit

limit, but it is silent on whether this limit is violated along the equilibrium path, namely

whether θ∗∗ < θ. To address this issue, consider first the problem under perfect enforce-

ment, as in the work of Amador, Werning, and Angeletos (2006). If the enforcement

constraint (5) can be ignored, and given Assumption 1 and Assumption 2, it follows from

Proposition 2 that the optimal rule solves:

max
θ∗∈[0,θ)

{∫ θ∗

θ

(
θU(ω + br(θ)) + δV (br(θ))

)
f(θ)dθ +

∫ θ

θ∗

(
θU(ω + br(θ∗)) + δV (br(θ∗))

)
f(θ)dθ

}
.

Denote the solution by θe ∈
[
0, θ
)
. Using the definition of br(θ) and integration by parts,

the first-order condition can be shown to be equivalent to25

∫ θ

θe

Q(θ)dθ = 0. (13)

The optimal deficit limit under perfect enforcement is such that, on average, the distortion

above the limit is zero. Clearly, if this limit can be enforced given {V (b), V (b)}, then it is

also optimal under limited enforcement:

Corollary 1. Suppose

θU(ω + br(θe)) + βδV (br(θe)) ≥ θU(ω + bp(θ)) + βδV (bp(θ)). (14)

If {b(θ), V (b(θ))}θ∈Θ is an optimal rule with b(θ) ∈ (b, b) for all θ ∈ Θ, then it is the

perfect-enforcement deficit limit, with θ∗ = θe and θ∗∗ ≥ θ.

When condition (14) holds, the highest type θ, and therefore all types θ ∈ Θ, prefer

to respect the perfect-enforcement limit br(θe) and receive maximal reward rather than

24Otherwise, by the same logic as in Step 2 in the proof of Lemma 3, social welfare could be increased
by drilling a hole in the borrowing allocation above θ̂.

25Note that Q(θ) = 1 for θ < θ.
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spend above the limit and receive maximal punishment. The optimal rule under limited

enforcement therefore coincides with that under perfect enforcement and features no on-

path penalties.

Our interest is in characterizing the optimal rule when condition (14) does not hold,

so the perfect-enforcement limit br(θe) is not enforceable given {V (b), V (b)}. To this end,

we can define a unique type θc as corresponding to the tightest deficit limit that all types

θ ∈ Θ would be willing to respect:

θU(ω + br(θc)) + βδV (br(θc)) = θU(ω + bp(θ)) + βδV (bp(θ)). (15)

Note that θc ≤ θe whenever the perfect-enforcement limit is enforceable, and θc > θe

otherwise. The value of θc increases if V (b) is increased for every b, holding all else fixed.

Intuitively, if the severity of the penalties that can be imposed on the government is

diminished, then the tightest deficit limit that can be enforced becomes less stringent.

Moreover, note that the value of θc is only a function of preferences (including {V (b), V (b)})
and the value of θ, and is thus independent of the distribution of types over the support

[θ, θ]. Using this definition of θc, the next proposition provides a necessary and sufficient

condition for penalties to be optimally used along the equilibrium path.

Proposition 3 (use of punishment). If {b(θ), V (b(θ))}θ∈Θ is an optimal rule with b(θ) ∈
(b, b) for all θ ∈ Θ, then it is the unique such rule. Moreover, if

∫ θ

θc

(Q(θ)−Q(θ))dθ ≥ 0, (16)

this rule a maximally enforced deficit limit with θ∗ = max{θc, θe} and θ∗∗ ≥ θ. Otherwise,

this rule is a maximally enforced deficit limit with θ∗ ∈ (θe, θc) and θ∗∗ < θ.

Whenever the perfect-enforcement limit br(θe) is enforceable, i.e. θc ≤ θe, Assumption 1

guarantees that
∫ θ
θc
Q(θ)dθ ≥

∫ θ
θe
Q(θ)dθ = 0. Hence, in this case, condition (16) is satisfied

and the optimal rule coincides with that under perfect enforcement, as noted in Corollary 1.

If instead the perfect-enforcement limit br(θe) is not enforceable, i.e. θc > θe, then

society faces the following tradeoff. On the one hand, society can raise the value of θ∗

to the point that the associated limit br(θ∗) satisfies the enforcement constraint of type θ

and thus of all types θ ∈ Θ. This option entails setting θ∗ = θc and θ∗∗ = θ and has the

benefit of avoiding socially costly penalties along the equilibrium path, albeit at the cost

of potentially allowing significant overborrowing within the relaxed deficit limit. On the

other hand, society can impose a tighter limit br(θ∗) which does not satisfy the enforcement
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constraint of all types. This option sets θ∗ < θc and θ∗∗ < θ and induces higher discipline

on types θ ≤ θ∗∗, but at the cost of imposing penalties whenever a shock θ > θ∗∗ is realized.

Proposition 3 shows that which of these two options is optimal for society depends on

whether the inequality in (16) holds or not. The proof of this proposition uses the properties

of Q(θ) to show that there exist a unique threshold θ∗ and associated θ∗∗ satisfying (10) that

optimally resolve the tradeoff between imposing fiscal discipline and avoiding punishments.

The intuition for condition (16) is familiar by now: it tells us how society wishes to allocate

borrowing distortions, and in particular whether society prefers to concentrate distortions

on types θ ∈ [θc, θ) versus θ. A relaxed deficit limit that avoids punishments concentrates

distortions on [θc, θ), whereas tightening the deficit limit by the use of punishment moves

distortions towards θ.

Holding fixed the distribution of shocks, condition (16) shows that the use of punishment

depends on the ease of enforcement. Recall that θc increases if V (b) is increased for every

b. Moreover, if θ̂ in Assumption 1 is interior, then given this assumption, (16) holds for

θc low enough but cannot be satisfied if θc becomes sufficiently high. Therefore, we find

that for any fixed distribution of shocks admitting an interior value of θ̂, we can make

penalties sufficiently severe that punishment is not imposed on path, or sufficiently weak

that on-path punishment is optimally used. When penalties are weak, the tightest deficit

limit that all government types would be willing to respect is too lax, so society prefers to

set a tighter limit and let high enough types violate it.

Additionally, holding fixed the support [θ, θ] and the value of θc (which, as noted, is

determined by preferences), condition (16) tells us how the use of punishment depends on

the distribution of shocks. To see this, rewrite (16) as follows (see the proof of Proposition 3

for a derivation):

E[θ|θ ≥ θc]

θc
≥ 1

β
−
(
θ

θc
− 1

)
θf
(
θ
)

1− F (θc)

(
1

β
− 1

)
. (17)

For any fixed [θ, θ] and θc, we can find a distribution of shocks such that on-path punishment

is or is not optimal. Specifically, (17) implies that punishment is not imposed on path if

high shocks are likely and expected fiscal needs conditional on the tightest enforceable limit

are large, namely if f(θ)/(1−F (θc)) and E [θ|θ ≥ θc] /θc are sufficiently high. This situation

arises, for example, under a uniform distribution of shocks. Society in this case benefits

from setting a relaxed deficit limit that is never violated, as punishing the government

following high shocks would be too costly. In contrast, punishment is optimally imposed

on path if f(θ)/(1 − F (θc)) and E [θ|θ ≥ θc] /θc are sufficiently low. This situation arises

whenever the perfect-enforcement limit is not enforceable (i.e., θc > θe) and limθ→θ f (θ) =
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0, as is true for example under a beta distribution with beta shape parameter greater

than one.26 Society in this case benefits from setting a tight deficit limit that is violated

following high enough shocks, as such events are sufficiently rare that the cost of punishing

the government is then relatively low.

3.5 Discussion of Distributional Assumption

Our characterization in Subsection 3.4 is derived under Assumption 1, which pins down

the shape of the function Q(θ). Assumption 1 is sufficient to obtain the unique optimality

of maximally enforced deficit limits, among interior solutions, under any (bounded and

continuous) functions V (b) and V (b) satisfying Assumption 2. In this section, we explore

the necessity of Assumption 1 for our findings.

Definition 2. Assumption 1 is weakly violated if there exist θL, θH ∈ Θ, θH > θL, and

∆ > 0 such that (i) Q′(θ) ≥ 0 for θ ∈ [θL, θL + ∆] and (ii) Q′(θ) ≤ 0 for θ ∈ [θH −∆, θH ].

Assumption 1 is strictly violated if the inequalities in (i)-(ii) are strict.

We find that both weak and strict violations of Assumption 1 would affect our results:

Proposition 4 (necessity of distributional assumption). Consider functions V (b) and V (b)

satisfying Assumption 2. If Assumption 1 is weakly violated, then for any function V (b),

there exists a function V (b) under which not every optimal rule with b(θ) ∈ (b, b) for all

θ ∈ Θ is a maximally enforced deficit limit. Moreover, if Assumption 1 is strictly violated,

then for any function V (b), there exists a function V (b) under which no such optimal rule

is a maximally enforced deficit limit.

This proposition shows that Assumption 1 is necessary for maximally enforced deficit

limits to be uniquely optimal (among interior solutions) given any functions {V (b), V (b)}.
In this sense, our analysis identifies the minimal structure that guarantees the unique

optimality of this class of rules, a class that resembles fiscal rules commonly used in practice

in the form of deficit, spending, and debt limits. Note that both weak and strict violations

of Assumption 1 are possible even when the generic property in Proposition 1 is satisfied.

Under these violations, an optimal rule under limited enforcement would feature bang-bang

incentives yet induce an allocation that is not implementable by a deficit limit. We prove

the first part of Proposition 4 by construction and the second part by contradiction.27

26Note that for limθ→θ f (θ) = 0, condition (17) becomes E[θ|θ≥θc]
θc

≥ 1
β . Thus, given θc and β < 1, this

condition is violated under distributions of shocks with sufficiently low mass above θc.
27As noted in Subsection 3.3, Assumption 1 is stronger than the distributional assumption used in

Amador, Werning, and Angeletos (2006). Define θa as the lowest value such that
∫ θ
θ
Q(θ̃)dθ̃ ≤ 0 for all
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4 Self-Enforcing Fiscal Rule

We have characterized the optimal fiscal rule under limited enforcement when the extent of

penalties that can be imposed on the government is exogenously given. In this section, we

extend our analysis to an infinite horizon environment in which the set of feasible penalties

is endogenously determined. To focus our analysis, we assume that there is no external

enforcement authority that inflicts sanctions. Instead, the government’s policy decision in

each period is self-enforced by the behavior of future governments.

Specifically, we define a self-enforcing fiscal rule as a perfect public equilibrium of the

interaction between successive governments. Such a rule must satisfy a sequence of private

information and self-enforcement constraints which are analogous to those in Section 3.

In fact, the recursive representation of the optimal rule is equivalent to that in our static

environment, where the highest and lowest feasible continuation values given the level of

debt, V (b) and V (b), are now determined by the set of perfect public equilibria of the

game. As such, we are able to establish that our results in Section 3 extend to this

infinite horizon setting, yielding a characterization of the allocation that corresponds to

maximal reward V (b). Additionally, we provide a characterization of the allocation that

corresponds to maximal punishment V (b), and we describe the dynamics of fiscal policy

under the optimal self-enforcing rule.

4.1 Infinite Horizon Setting

Consider an infinite horizon setting with periods t = {0, 1, . . .}. At the beginning of

each period, the government privately observes a shock θt, independent and identically

distributed (i.i.d.) according to f(θt) and F (θt). We denote by bt and gt respectively the

government’s choices of debt and spending in period t. The government’s budget constraint

is the dynamic analog of (1), given by

gt = τ −Rbt−1 + bt, (18)

where τ > 0 is the exogenous tax revenue at every date and R > 1 is the exogenous gross

interest rate on government bonds.

θ ≥ θa. Then using our notation and taking f(θ) to be differentiable, Amador, Werning, and Angeletos
(2006) assume Q′(θ) ≤ 0 for all θ ≤ θa. One can verify that there are distributions F (θ) satisfying this
assumption for which Assumption 1 is strictly violated, and therefore for which there exist continuation
value functions such that no optimal rule with interior borrowing is a maximally enforced deficit limit.
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Social welfare at the beginning of date t is

∞∑

k=0

δkE [θt+kU(gt+k)] ,

whereas the government’s welfare following the realization of its type θt at date t is

θtU(gt) + β

∞∑

k=1

δkE [θt+kU(gt+k)] . (19)

To make the analysis tractable (as we explain subsequently), we take a social utility of

public spending with constant relative risk aversion (CRRA):

U(g) =





g1−γ − 1

1− γ for γ > 0, γ 6= 1,

log(g) for γ = 1.

(20)

Following Bernheim, Ray, and Yeltekin (2015), we also require the level of debt in each

period t to satisfy

bt ∈ [b(bt−1), b(bt−1)], (21)

where b(bt−1) = τ
R−1
− (1− ν)R

(
τ

R−1
− bt−1

)
and b(bt−1) = τ

R−1
− νR

(
τ

R−1
− bt−1

)
for

some small ν ∈ (0, 1
2
). Equation (21) thus defines lower and upper bounds on the fraction

of lifetime resources that the government can borrow or save at any time. Note that for

γ ≥ 1, (20) yields U(0) = −∞, and therefore (21) is necessary to guarantee that payoffs

(and thus punishments) are bounded. We then take ν > 0 small enough that this constraint

is otherwise non-binding.28

4.2 Equilibrium Definition

We consider the interaction between the governments in each period t = {0, 1, . . .}. Our

equilibrium concept is perfect public equilibrium. Let ht−1 = {b−1, b0, . . . , bt−1} denote the

public history of debt through time t− 1 and Ht−1 the set of all possible such histories. A

public strategy for the government in period t is σt (ht−1, θt), specifying, for each history

ht−1 ∈ Ht−1 and current government type θt ∈ Θ, a feasible level of debt bt (ht−1, θt). Note

that given the budget constraint (18), a public history of debt also pins down the public

history of spending, and the government’s strategy also pins down its choice of spending.

28See Laibson (1994) for further discussion of the necessity of these bounds in the quasi-hyperbolic
model.
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Specifically, denoting by ωt(h
t−1) ≡ τ −Rbt−1(ht−1) the available resources at history ht−1,

spending given ht−1 and θt is gt (ht−1, θt) = ωt(h
t−1) + bt (ht−1, θt). We define a perfect

public equilibrium as a profile of public strategies σ = (σt (ht−1, θt))
∞
t=0 such that, for each

t ∈ {0, 1, . . .}, σt (ht−1, θt) maximizes the t-period government’s welfare (19) given the

continuation strategies
(
σt+k

(
ht+k−1, θt+k

))∞
k=1

of all future governments. We henceforth

refer to perfect public equilibria as simply equilibria.

Given an equilibrium, let Vt(h
t−1) denote the continuation value to society at date t

starting from a history ht−1. At any (on- or off-path) history ht−1, the continuation value

given the equilibrium strategies can be represented recursively:

Vt(h
t−1) = E

[
θtU(ωt(h

t−1) + bt(h
t−1, θt)) + δVt+1(ht−1, bt(h

t−1, θt)))
]
. (22)

Analogous to constraints (4) and (5) in our static environment, a profile of strategies

(σt (ht−1, θt))
∞
t=0 constitutes an equilibrium if and only if, for all t ∈ {0, 1 . . .} and all (on-

and off-path) histories ht−1, the following private information and enforcement constraints

are satisfied:

θtU(ωt(h
t−1) + bt(h

t−1, θt)) + βδVt+1(ht−1, bt(h
t−1, θt)) (23)

≥ θtU(ωt(h
t−1) + bt(h

t−1, θ′t)) + βδVt+1(ht−1, bt(h
t−1, θ′t)) for all θt, θ

′
t ∈ Θ

and

θtU(ωt(h
t−1) + bt(h

t−1, θt)) + βδVt+1(ht−1, bt(h
t−1, θt)) (24)

≥ θtU(ωt(h
t−1) + bpt (h

t−1, θt)) + βδV t+1(ht−1, bpt (h
t−1, θt)) for all θt ∈ Θ.

Here V t+1(ht−1, bpt (h
t−1, θt)) denotes the lowest continuation value that can be supported

by equilibrium strategies at history (ht−1, bpt (h
t−1, θt)), and bpt (h

t−1, θt) denotes type θt’s

flexible debt level given maximal punishment following history (ht−1, bt) for any feasi-

ble bt. That is, analogous to our definition in the static environment, bpt (h
t−1, θt) ∈

arg maxbt∈[b(bt−1),b(bt−1)]{θtU(ω(ht−1) + bt) + βδV t+1(ht−1, bt)}.
We examine the equilibrium that maximizes social welfare at date 0; we call this equi-

librium the optimal self-enforcing fiscal rule. Let V (b) and V (b) denote respectively the

lowest and highest levels of date-0 social welfare that can be sustained by equilibrium

strategies given an initial level of debt b−1 = b, where we assume V (b) < V (b).29 Note

that given the repeated nature of the game and the fact that shocks are i.i.d., we can

29That is, we assume the equilibrium set is not a singleton. Halac and Yared (2017b) analyze a specific
case of our model and show that this assumption amounts to the discount factor δ being high enough.

25



represent initial policies under an optimal self-enforcing rule recursively starting from date

0. That is, as shown in Chade, Prokopovych, and Smith (2008), the recursive structure

of the continuation values implies that the techniques of Abreu, Pearce, and Stacchetti

(1990) can be applied to our setting. Thus, rather than optimizing over an entire debt

sequence, we can assign each type θ0 ∈ Θ a date-0 level of debt b0(θ0) and continuation

value V1(b0(θ0)), where these must satisfy the private information and self-enforcement con-

straints, and where the continuation value is itself drawn from the set of continuation values[
V (b0(θ0)), V (b0(θ0))

]
that satisfy the private information and self-enforcement constraints.

Letting {b(θ), V (b(θ))}θ∈Θ ≡ {b0(θ0), V1(b0(θ0))}θ0∈Θ and ω ≡ ω0(h−1), it therefore follows

that an optimal self-enforcing rule in the infinite horizon setting solves our static program

in (7).

4.3 Optimal Self-Enforcing Fiscal Rule

Define the savings rate at date t, st, as the fraction of lifetime resources that are not spent

at t:

1− st =
τ −Rbt−1 + bt

Rτ/(R− 1)−Rbt−1

, (25)

where, by (21), feasibility requires st ∈ [ν, 1−ν]. Note that for any period t ∈ {0, 1, . . .} and

public history of debt ht−1 = {b−1, b0, . . . , bt−1}, there is a corresponding public history of

initial debt and subsequent savings rates, h̃t−1 = {b−1, s0, . . . , st−1}. Moreover, a strategy

for the government in period t can be equivalently defined as specifying either a debt level

bt(h
t−1, θt) for each history ht−1 and current type θt, or a savings rate st(h̃

t−1, θt) for each

history h̃t−1 and current type θt.

In the Online Appendix, we consider the representation of our problem using savings

rates and prove the following results. First, given our assumption on preferences in (20),

we show that whether or not a profile of savings rate strategies constitutes an equilibrium

is independent of the initial level of debt b−1. The reason is that, while social welfare

does depend on b−1, the private information and enforcement constraints (23) and (24) are

scalable in debt under (20), and therefore only depend on the sequence of savings rates.

Second, as a consequence, we establish that the sequences of savings rates that sustain the

lowest and highest continuation values V (b) and V (b) given initial debt b are independent

of b. Finally, using this result and (20), we show:

Lemma 4. V (b) and V (b) are continuously differentiable and strictly concave in b.

Combined with our observations in the previous subsection and our results in Section 3,

this lemma implies that the optimal date-0 policies, {b(θ), V (b(θ))}θ∈Θ, are characterized
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as follows:

Proposition 5 (infinite horizon). If {b(θ), V (b(θ))}θ∈Θ is an optimal rule in the infinite

horizon economy with b(θ) ∈ (b(b−1), b(b−1)) for all θ ∈ Θ, then it satisfies (9)-(10) for

some θ∗ ∈
[
0, θ
)

and finite θ∗∗ > max {θ∗, θ}. Hence, any interior solution for the max-

imal reward is a maximally enforced deficit limit. Moreover, θ∗ and θ∗∗ are unique and

independent of b−1.

The first part of the proposition, on the optimality of maximally enforced deficit limits,

is a direct application of Proposition 2, taking into account the properties established in

Lemma 4. Observe that given preferences as specified in (20), if γ ≥ 1, then the borrowing

allocation is always interior. The reason is that the bounds on savings rates are defined

as [ν, 1 − ν] for ν arbitrarily close to zero, and thus a corner allocation with st = ν or

st = 1 − ν would imply arbitrarily low social welfare under γ ≥ 1. Hence, any optimal

fiscal rule features interior debt and, as a result, is a maximally enforced deficit limit.

The second part of Proposition 5 shows that the thresholds θ∗ and θ∗∗ that define an

optimal maximally enforced deficit limit are unique and independent of the initial level of

debt b−1. Uniqueness follows from the results in Proposition 3. To see why the thresholds

do not depend on b−1, recall that we can represent an optimal fiscal rule as a sequence

of savings rates, and given (20), such a sequence is independent of initial debt. A simple

implementation of this rule is a maximally enforced minimal savings rate s∗, where s∗

corresponds to type θ∗’s flexible savings rate under maximal reward (which is independent

of the level of debt). That is, under this rule, types θ ≤ θ∗ choose a savings rate weakly

higher than s∗, types θ ∈ (θ∗, θ∗∗] are constrained and choose s∗, and types θ > θ∗∗

choose a savings rate strictly lower than s∗. Types θ ≤ θ∗∗ are rewarded at date 1 with a

continuation value V 1(b0) whereas types θ > θ∗∗ are punished at date 1 with a continuation

value V 1(b0).

Proposition 5 describes the policies that maximize social welfare given an initial level

of debt, and thus those that sustain the maximal reward V 1(b0). To complete our charac-

terization, we next proceed to describe the policies that minimize social welfare given an

initial level of debt, namely those that sustain the worst punishment V 1(b0).

4.4 Optimal Punishment

In principle, different continuation equilibria could serve as punishment for a government

breaking the deficit limit in a given period. In fact, the result in Proposition 5 holds

independently of the exact structure of V (·). However, the optimal self-enforcing deficit
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limit requires that the worst punishment be used, as such a punishment maximally relaxes

the constraints of the problem and thus maximizes social welfare.

Given initial debt b−1 = b, the worst punishment solves an analogous recursive problem

to that in (7), with the only difference that social welfare is now minimized rather than

maximized. The solution to this problem yields that the date-0 policies {b(θ), V (b(θ))}θ∈Θ

corresponding to maximal punishment are characterized as follows:

Proposition 6 (characterization of punishment). If {b(θ), V (b(θ))}θ∈Θ minimizes social

welfare in the infinite horizon economy with b(θ) ∈ (b(b−1), b(b−1)) for all θ ∈ Θ, then there

exist finite θ∗n > θ and θ∗∗n ∈ [θ,min
{
θ∗n, θ

}
) such that

{b(θ), V (b(θ))} =





{
br(θ), V (br(θ))

}
{
br(θ∗n), V (br(θ∗n))

}

{bp(θ), V (bp(θ))}

if θ > θ∗n,

if θ ∈ [θ∗∗n , θ
∗
n],

if θ < θ∗∗n ,

where

θ∗∗n U(ω + br(θ∗n)) + βδV (br(θ∗n)) = θ∗∗n U(ω + bp(θ∗∗n )) + βδV (bp(θ∗∗n )). (26)

Hence, any interior solution for the worst punishment is a maximally enforced surplus

limit. Moreover, θ∗n and θ∗∗n are unique and independent of b−1.

In the absence of enforcement constraints, the worst punishment would entail forcing all

government types in all future periods to choose the highest or lowest borrowing level that

is feasible, so as to minimize the value of social welfare. However, such a harsh punishment

would not be self-enforcing. Proposition 6 shows that the worst punishment that is self-

enforcing takes the form of a maximally enforced surplus limit, associated with a minimum

debt level br(θ∗n).30 Government types that respect the surplus limit by choosing debt

weakly above br(θ∗n) are maximally rewarded; government types that violate the surplus

limit by choosing debt strictly below br(θ∗n) are maximally punished. Because a positive

mass of types θ ≥ θ∗∗n respect the limit, the equilibrium transitions back to the optimal

deficit limit yielding maximal reward V (·) with strictly positive probability. Figure 4

provides an illustration.

A maximally enforced surplus limit minimizes social welfare by incentivizing overbor-

rowing. Intuitively, given a government type θ, there are two ways in which society can

reduce welfare: either by inducing too little borrowing or by inducing too much borrowing.

Since the government is biased towards overborrowing in the present, the latter relaxes

self-enforcement constraints, and it is thus a more efficient means of reducing welfare. As

30This surplus limit can be shown to be incentive compatible by analogous logic as in Lemma 1.
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Optimal Self-Enforcing Rule

max
{g (q),b(q),V (q,b(q))}q2Q

E
⇥
qU(g(q)) + dV (q, b(q))

⇤

subject to

qU(g(q)) + bdV (q, b(q)) � qU(g(q0)) + bdV (q0, b(q0))

(private information constraint)

qU(g(q)) + bdV (q, b(q)) � qU(gp(q)) + bdV (bp(q))

(self-enforcement constraint)

g(q) = t + b(q) and V (q, b(q)) 2
⇥
V (b(q)), V (b(q))

⇤

(feasibility)

Bang-Bang Dynamics

Optimal fiscal rule is solution to two problems:

• {q⇤, q⇤⇤} which yield maximum social welfare given V (b) � V (b)

• {q⇤n, q⇤⇤n } which yield minimum social welfare given V (b) � V (b)

• Larger V (b) � V (b) =) Higher max and lower min

Conditions for dynamics incentives

• Self-enforcement constraint su�ciently binding

•
R q

qc
(Q(q) �Q(q))dq < 0

• Both hold if q is su�ciently extreme

Phases of fiscal rectitude and fiscal profligacy sustain each other
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Definition: Maximally Enforced Deficit Limit

Let

g r (q) 2 arg max
g

{qU(g) + bdV (g � t)} and br (q) = g r (q) � t

Maximally enforced deficit limit if 9 q⇤ 2 [0, q), q⇤⇤ > max {q⇤, q} s.t.
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8
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Figure 4: An example of a maximally enforced surplus limit. The thick grey line depicts
the borrowing allocation in the top panel and the allocation of continuation values in the
bottom panel. The solid and dashed black lines in the bottom panel depict V (b(θ)) and
V (b(θ)) respectively.

a result, in the worst-punishment allocation, all types borrow above the socially optimal

level, and in fact weakly above the level preferred by the government.31 Moreover, consis-

tent with Proposition 1, overborrowing is incentivized by the use of bang-bang continuation

values, with the maximal reward for types that respect the surplus limit and the maximal

punishment for those that violate it. High-powered incentives allow society to maximize

distortions.

The characterization in Proposition 6 follows from analogous arguments to those used

to obtain Proposition 2. As noted, the key difference is that instead of maximizing the

social welfare function in (12), the worst punishment minimizes this function. As a result,

recalling our definition of θ̂ in Assumption 1, our claims are now reversed: the arguments

that apply to types θ < θ̂ when maximizing welfare—which make use of the fact that Q(θ)

31These features are related to the results of Bernheim, Ray, and Yeltekin (2015), who study self-enforcing
consumption rules in an environment without private information. The worst punishment in their model
takes the form of over-consumption.
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in (12) is strictly decreasing in this region—instead apply to types θ > θ̂ when minimizing

welfare—since −Q (θ) is strictly decreasing in this region. The same is true with regards

to the arguments that apply to types θ > θ̂ in the maximization of welfare, which apply

to types θ < θ̂ in the minimization of welfare. This explains why the worst punishment is

a maximally enforced surplus limit while the optimal rule is a maximally enforced deficit

limit.

One step in the proof of Proposition 6 that requires additional care is establishing

that the optimal surplus limit is indeed respected by a positive mass of government types.

That is, we prove that the worst punishment is not an absorbing state in which V (·) is

sustained by all governments choosing bp(θ) for all θ ∈ Θ. The proof consists of showing

that a surplus limit that is respected by types θ ∈ [θ∗∗n , θ], for θ∗∗n < θ, achieves lower social

welfare than such an absorbing state in which all types choose their optimum flexibly given

a continuation value V (·). That is, we show that the social cost of increasing overborrowing

outweighs the benefit of increasing the continuation value for high enough types.

The result that any interior solution for the worst punishment is a maximally enforced

surplus limit does not rely on the preference structure in (20), and it requires only the

assumptions introduced in our static setting to obtain Proposition 2. By assuming that

preferences do satisfy (20), we obtain that the thresholds θ∗n and θ∗∗n that define an optimal

surplus limit are independent of the initial level of debt b−1 and thus associated with a

maximal savings rate s∗n. Moreover, when such preferences feature γ ≥ 1, the borrowing

allocation is always interior, implying that the worst punishment is always a maximally

enforced surplus limit as described in Proposition 6.

4.5 Dynamics

Proposition 5 and Proposition 6 above imply specific dynamics for the economy under

the optimal self-enforcing fiscal rule. To begin with, the bang-bang property tells us that,

along the equilibrium path, continuation values travel only to extreme points in the feasible

set [V (b), V (b)]. The maximal reward and the maximal punishment therefore sustain each

other, being jointly determined in equilibrium. These features remind one of the seminal

work of Abreu, Pearce, and Stacchetti (1990), who establish the optimality of bang-bang

continuation values in a class of repeated games (see Theorem 7, p.1055 in their paper).

However, their analysis restricts attention to settings with finite actions and a rich con-

tinuous public signal, whereas our model features a continuous action. Thus, while the

implications are related, their results do not apply to our environment.

Given the bang-bang property, the dynamics induced by the optimal fiscal rule are
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determined by primitives. Specifically, by our results in Proposition 3, the dynamics of

the economy depend on whether condition (16) holds or not, which in turn depends on

the government’s deficit bias and the distribution of shocks. If condition (16) holds (which

includes the case where the perfect-enforcement limit is self-enforcing), then the equilibrium

implements the same deficit limit in every period, associated with the flexible debt level of

a type θ∗ under maximal reward V (·). In contrast, if condition (16) does not hold, then

the economy transitions in and out of the best equilibrium with value V (·) and the worst

punishment with value V (·).
The transitions are stochastic as they depend on the realization of shocks. In particular,

starting from the initial period, the government is subject to a deficit limit associated with

the flexible debt level of a type θ∗. If the realized shock is θ ≤ θ∗∗ (with θ∗∗ given by (10)),

the government respects the deficit limit and the best equilibrium restarts in the second

period; if the realized shock is θ > θ∗∗, the government violates the deficit limit and the

equilibrium transitions to punishment in the second period. Starting from a punishment

period, the government is subject to a surplus limit associated with the flexible debt level

of a type θ∗n. If the realized shock is θ ≥ θ∗∗n (with θ∗∗n given by (26)), the government

respects the surplus limit and the equilibrium transitions to the best equilibrium in the

next period; if the realized shock is θ < θ∗∗n , the government violates the surplus limit and

the equilibrium remains in punishment in the next period. Consequently, in resemblance

with real-world experiences such as that of Chile mentioned in the Introduction, we find

that the economy fluctuates between periods of fiscal responsibility and periods of fiscal

irresponsibility, with transitions being triggered by shocks given the optimal self-enforcing

fiscal rule.

5 Concluding Remarks

We have studied the optimal design of fiscal rules when enforcement is limited. Under per-

fect enforcement, the optimal rule is a deficit limit which is never breached in equilibrium.

Under limited enforcement, the optimal rule is a maximally enforced deficit limit, which, if

violated, leads to the maximal penalty for the government. We established necessary and

sufficient conditions under which the optimal deficit limit is violated on path, following

bad enough shocks to the economy. We also showed that if penalties are not externally en-

forced but endogenously imposed by future governments, then punishment takes the form

of overspending, and periods of reward and punishment self-enforce each other.

We believe there are potentially interesting directions for future research. For example,

one could explore the generality of our result that optimal incentives are bang-bang. As
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we discussed, this result does not rely on the presence enforcement constraints and may

apply to other models of delegation and repeated adverse selection. It would be useful to

understand whether this result is robust to different specifications of continuation values:

while joint penalties (as we have assumed) are natural given our focus on fiscal policy, and

are also consistent with the formalization of money burning in delegation models, one could

consider settings in which penalties are experienced asymmetrically by a principal and an

agent. Another possible direction for future work would be to explore environments in

which a group of countries or subnational regions are subject to a coordinated fiscal rule.

The properties of an optimal common rule would depend on governments’ enforcement

constraints and on the nature of feasible collective punishments.

Finally, while we have focused on fiscal policy, the insights of this paper may be applied

to other settings featuring a commitment-versus-flexibility tradeoff and limited enforce-

ment. For example, consider an individual who suffers from a self-control problem and

establishes rules for herself to curb her consumption of a temptation good such as televi-

sion or alcohol. Such an individual values discipline as well as the flexibility to increase

her consumption when highly valuable. Furthermore, any rule the individual imposes on

herself must be enforced by penalties that either originate from a third party or are sus-

tained by her own future behavior. We find that the optimal such rule is a consumption

threshold, which the individual may violate when her value of the temptation good is high

enough. If penalties are endogenous, then they entail over-consumption, and the individual

may transition in and out of periods of self-enforcing binging.
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A Appendix: Proofs

This Appendix contains the proofs of Lemma 1, Proposition 1, Lemma 3, and Proposition 2.

See the Online Appendix for the remaining proofs.
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A.1 Preliminaries

We describe two functions that we will use in our proofs.

Lemma 5. Given θ ≤ θL ≤ θM ≤ θH ≤ θ, define the functions

SL(θL, θM) =

∫ θM

θL

(
βθ − θL

)
f (θ) dθ + (1− β) θMf(θM)(θM − θL),

SH(θH , θM) =

∫ θH

θM

(
βθ − θH

)
f(θ)dθ + (1− β) θMf(θM)(θH − θM).

Then SL(θL, θM) > 0 if Q′(θ) < 0 for all θ ∈ (θL, θM), SL(θL, θM) < 0 if Q′(θ) > 0 for

all θ ∈ (θL, θM), SH(θH , θM) > 0 if Q′(θ) > 0 for all θ ∈ (θM , θH), and SH(θH , θM) < 0 if

Q′(θ) < 0 for all θ ∈ (θM , θH).

Proof. Consider the claims about SL(θL, θM). Note that SL(θ, θM)|θ=θM = 0, and hence

SL(θL, θM) = −
∫ θM
θL

dSL(θ,θM )
dθ

dθ. Moreover,

dSL(θ, θM)

dθ
= −

∫ θM

θ

f(θ̃)dθ̃ + (1− β) θf(θ)− (1− β) θMf(θM),

and thus dSL(θ,θM )
dθ

|θ=θM = 0. Therefore, SL(θL, θM) =
∫ θM
θL

∫ θM
θ

d2SL(θ̃,θM )

dθ̃
2 dθ̃dθ, where

d2SL(θ, θM)

dθ2 = (2− β) f (θ) + (1− β) θf ′ (θ) .

Note that d2SL(θ,θM )

dθ2 > 0 if Q′(θ) < 0, d2SL(θ,θM )

dθ2 = 0 if Q′(θ) = 0, and d2SL(θ,θM )

dθ2 < 0 if

Q′(θ) > 0. The claims about SL(θL, θM) follow.

The proof for the claims about SH(θH , θM) is analogous and thus omitted.

A.2 Proof of Lemma 1

We proceed in three steps.

Step 1. Suppose θ∗ ≥ θ. We show that constraints (4) and (5) are satisfied for types

θ ∈ [θ, θ∗].

The claim follows immediately from the fact that all types θ ∈ [θ, θ∗] are assigned their

flexible debt levels with maximum continuation value. Thus, given θ ∈ [θ, θ∗], type θ’s

welfare cannot be increased, and (4) and (5) are trivially satisfied.
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Step 2. We show that constraints (4) and (5) are satisfied for types θ ∈ (θ∗, θ∗∗].

Take first the enforcement constraint (5). We can rewrite this constraint for θ ∈ (θ∗, θ∗∗]

as

θU(ω + br(θ∗)) + βδV (br(θ∗))− θU(ω + bp(θ))− βδV (bp(θ)) ≥ 0. (27)

Differentiating the left-hand side with respect to θ, given θ∗ and the definition of bp(θ),

yields

U(ω + br(θ∗))− U(ω + bp(θ)), (28)

which is weakly decreasing in θ, since bp(θ) is nondecreasing. This means that the left-

hand side of (27) is weakly concave. Since (27) holds as a strict inequality for θ = θ∗

and as an equality for θ = θ∗∗ (by (10)), this weak concavity implies that (27) holds as a

strict inequality for all θ ∈ (θ∗, θ∗∗). Thus, the enforcement constraint is satisfied for all

θ ∈ (θ∗, θ∗∗].

Consider next the private information constraint (4). This constraint is trivially satis-

fied for all θ ∈ (θ∗, θ∗∗] given θ′ ∈ [θ∗, θ∗∗], since all types θ ∈ [θ∗, θ∗∗] are assigned the same

allocation. We next show that the constraint is also satisfied given θ′ > θ∗∗ and θ′ < θ∗:

Step 2a: We show that (4) is satisfied for all θ ∈ (θ∗, θ∗∗] given θ′ > θ∗∗. Note that

{b(θ′), V (b(θ′)} = {bp(θ′), V (bp(θ′))} for all θ′ > θ∗∗, and by the definition of bp(θ),

θU(ω + bp(θ)) + βδV (bp(θ)) ≥ θU(ω + bp(θ′)) + βδV (bp(θ′))

for all θ′ ∈ Θ. Thus, the fact that the enforcement constraint (5) is satisfied for all

θ ∈ (θ∗, θ∗∗] implies that (4) is satisfied for all such types given θ′ > θ∗∗.

Step 2b: We show that (4) is satisfied for all θ ∈ (θ∗, θ∗∗] given θ′ < θ∗. Suppose by

contradiction that this is not the case, that is,

θ(U(ω + br(θ∗))− U(ω + br(θ′))) < βδ
(
V (br(θ′))− V (br(θ∗))

)
(29)

for some θ ∈ (θ∗, θ∗∗] and θ′ < θ∗. Note that by Step 1, (4) holds as a strict inequality for

type θ∗ given θ′ < θ∗:

θ∗(U(ω + br(θ∗))− U(ω + br(θ′))) > βδ
(
V (br(θ′))− V (br(θ∗))

)
. (30)

Combining (29) and (30) yields

(θ∗ − θ)(U(ω + br(θ∗))− U(ω + br(θ′))) > 0,
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which is a contradiction since θ > θ∗ and br(θ′) ≤ br(θ∗). Therefore, (4) is satisfied for all

types θ ∈ (θ∗, θ∗∗] given θ′ < θ∗.

Step 3. Suppose θ∗∗ < θ. We show that constraints (4) and (5) are satisfied for types

θ ∈ (θ∗∗, θ].

Constraint (5) holds as an equality for all θ ∈ (θ∗∗, θ] and is thus satisfied for all

these types. It is also immediate that constraint (4) is satisfied for all θ ∈ (θ∗∗, θ] given

θ′ ∈ (θ∗∗, θ], since all such types are assigned their flexible debt level with minimum con-

tinuation value. Consider next constraint (4) for θ ∈ (θ∗∗, θ] given θ′ ∈ [θ∗, θ∗∗]. Note

that {b(θ′), V (b(θ′)} = {br(θ∗), V (br(θ∗))} for all θ′ ∈ [θ∗, θ∗∗]. Thus, satisfaction of this

constraint is ensured if (27) is violated for θ ∈ (θ∗∗, θ]. The latter follows from the fact

that, as shown above, the left-hand side of (27) is weakly concave and (27) holds as an

equality for θ = θ∗∗ and a strict inequality for θ ∈ (θ∗, θ∗∗).

Finally, consider constraint (4) for θ ∈ (θ∗∗, θ] given θ′ < θ∗. Since (4) is satisfied given

θ′ ∈ [θ∗, θ∗∗], satisfaction of this constraint given θ′ < θ∗ is ensured if

θ(U(ω + br(θ∗))− U(ω + b(θ′))) ≥ βδV (br(θ′))− V (br(θ∗))

for θ ∈ (θ∗∗, θ]. The latter follows from the same logic as in Step 2b above.

A.3 Proof of Proposition 1

Take any solution to program (7) with b(θ) ∈ (b, b) for all θ ∈ Θ. We proceed in three

steps.

Step 1. We show that V (b(θ)) is left-continuous at each θ ∈ (θ, θ] and V (b(θ)) = V (b(θ)).

Consider the first claim. Suppose by contradiction that there exists θ ∈ (θ, θ] at which

V (b(θ)) is not left-continuous. Denote the left limit by {b(θ−), V (b(θ−))} = limθ′↑θ{b(θ′), V (b(θ′))}.
By Lemma 2,

0 < θ
(
U(ω + b(θ))− U(ω + b(θ−))

)
= βδ

(
V (b(θ−))− V (b(θ))

)
.

Given β ∈ (0, 1), this implies

θ
(
U(ω + b(θ))− U(ω + b(θ−))

)
< δ

(
V (b(θ−))− V (b(θ))

)
.

It follows that a perturbation that assigns {b(θ−), V (b(θ−))} to type θ is incentive feasible,
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strictly increases social welfare from type θ, and does not affect social welfare from types

other than θ. Hence, V (b(θ)) must be left-continuous at each θ ∈ (θ, θ].

Consider next the second claim. Suppose by contradiction that V (b(θ)) < V (b(θ)).

Then we can perform a perturbation where we change b(θ) ∈ (b, b) by db(θ) < 0 arbitrarily

small and increase V (b(θ)) so as to keep type θ equally well off:

−θU ′(ω + b(θ)) + βδ
dV (b(θ))

db(θ)
= 0.

This perturbation is incentive feasible and does not affect social welfare from types θ ∈
(θ, θ]. The change in social welfare from type θ is equal to

−θU ′(ω + b(θ)) + δ
dV (b(θ))

db(θ)
= −θU ′(ω + b(θ))

(
1− 1

β

)
> 0.

Hence, the perturbation strictly increases social welfare, yielding a contradiction.

Step 2. We show that V (b(θ)) is a step function over any interval [θL, θH ] with V (b(θ)) ∈
(V (b(θ)), V (b(θ))) for θ ∈ [θL, θH ].

By the private information constraints, V (b(θ)) is piecewise continuously differentiable

and nonincreasing. Suppose by contradiction that there is an interval [θL, θH ] over which

V (b(θ)) is continuously strictly decreasing in θ and satisfies V (b(θ)) < V (b(θ)) < V (b(θ)).

By Lemma 2, b(θ) must be continuously strictly increasing over the interval, and without

loss we can take an interval over which b(θ) is continuously differentiable. Moreover, by

the generic property in Proposition 1, we can take an interval with either Q′(θ) > 0 or

Q′(θ) < 0 for all θ ∈ [θL, θH ]. We consider each possibility in turn.

Case 1: Suppose Q′(θ) < 0 for all θ ∈ [θL, θH ]. We show that there exists an incentive fea-

sible flattening perturbation that rotates the increasing borrowing schedule b(θ) clockwise

over [θL, θH ] and strictly increases social welfare. Define

U =
1(

θH − θL
)
∫ θH

θL
U(ω + b(θ))dθ.

For given κ ∈ [0, 1], let b̃ (θ, κ) be the solution to

U(ω + b̃ (θ, κ)) = κU + (1− κ)U (ω + b(θ)) , (31)
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which clearly exists. Define Ṽ (̃b(θ), κ) as the solution to

θU(ω + b̃ (θ, κ)) + βδṼ (̃b(θ, κ), κ)

= θLU(ω + b(θL)) + βδV (b(θL)) +

∫ θ

θL
U(ω + b̃(θ̃, κ))dθ̃. (32)

The original allocation corresponds to κ = 0. We consider a perturbation where we

increase κ marginally above zero if and only if θ ∈ [θL, θH ]. Note that differentiating (31)

and (32) with respect to κ yields

db̃ (θ, κ)

dκ
=

U − U(ω + b(θ))

U ′(ω + b̃ (θ, κ))
, (33)

db̃ (θ, κ)

dκ
θU ′(ω + b̃ (θ, κ)) + βδ

dṼ (̃b(θ, κ), κ)

dκ
=

∫ θ

θL

db̃(θ̃, κ)

dκ
U ′(ω + b̃(θ̃, κ))dθ̃. (34)

Substituting (33) in (34) yields that for a type θ ∈ [θL, θH ], the change in government

welfare from a marginal increase in κ, starting from κ = 0, is equal to

D (θ) ≡
∫ θ

θL

(
U − U(ω + b(θ̃))

)
dθ̃.

We begin by showing that the perturbation satisfies constraints (4)-(6). For the private

information constraint (4), note that D(θL) = D(θH) = 0, so the perturbation leaves the

government welfare of types θL and θH (and that of types θ < θL and θ > θH) unchanged.

Using Lemma 2 and the representation in (11), it then follows from equation (32) and the

fact that b̃(θ, κ) is nondecreasing that the perturbation satisfies constraint (4) for all θ ∈ Θ

and any κ ∈ [0, 1].

To prove that the perturbation satisfies the enforcement constraint (5), we show that

the government welfare of types θ ∈ [θL, θH ] weakly rises when κ increases marginally.

Since D(θL) = D(θH) = 0, it is sufficient to show that D(θ) is concave over (θL, θH) to

prove that D(θ) ≥ 0 for all θ in this interval. Indeed, we verify:

D′(θ) = U − U(ω + b (θ)),

D′′(θ) = −U ′(ω + b (θ))
db(θ)

dθ
< 0.

Lastly, observe that constraint (6) is satisfied for κ > 0 small enough. This follows from

V (b(θ)) and V (b(θ)) being continuous and the fact that V (b(θ)) ∈ (V (b(θ)), V (b(θ))) for

θ ∈ [θL, θH ] in the original allocation.
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We next show that the perturbation strictly increases social welfare. Using the repre-

sentation in (12), the change in social welfare from an increase in κ is equal to

1

β

∫ θH

θL

db̃ (θ, κ)

dκ
U ′(ω + b̃ (θ, κ))Q(θ)dθ.

Substituting with (33) and the expression for Q(θ) yields that at κ = 0, this is equal to

1

β

∫ θH

θL

(
U − U (ω + b(θ))

)
(1− F (θ)− θf (θ) (1− β)) dθ.

This is an integral over the product of two terms. The first term is strictly decreasing in

θ since b(θ) is strictly increasing over [θL, θH ]. The second term is also strictly decreasing in

θ; this follows from Q′(θ) < 0 for all θ ∈ [θL, θH ]. Therefore, these two terms are positively

correlated with one another, and thus the change in social welfare is strictly greater than

1

β

∫ θH

θL

(
U − U (ω + b(θ))

)
dθ

∫ θH

θL
(1− F (θ)− (1− β) θf(θ)) dθ,

which is equal to 0. It follows that the change in social welfare from the perturbation is

strictly positive. Hence, if V (b(θ)) is strictly interior and Q′(θ) < 0 over a given interval,

then V (b(θ)) must be a step function over the interval.

Case 2: Suppose Q′(θ) > 0 for all θ ∈ [θL, θH ]. Recall that b(θ) is continuously strictly

increasing over [θL, θH ]. We begin by showing that the enforcement constraint cannot bind

for all θ ∈ [θL, θH ]. Suppose by contradiction that it does. Using the representation of

government welfare in (11), this implies

∫ θH

θ

(U(ω + bp(θ̃))− U(ω + b(θ̃)))dθ̃ = 0

for all θ ∈ [θL, θH ], which requires {b(θ), V (b(θ))} = {bp(θ), V (bp(θ))} for all θ ∈ (θL, θH).

However, this contradicts the assumption that V (b(θ)) ∈ (V (b(θ)), V (b(θ))) for all θ ∈
[θL, θH ]. Hence, the enforcement constraint cannot bind for all types in the interval, and

without loss we can take an interval with this constraint being slack for all θ ∈ [θL, θH ].

We next show that there exists a steepening perturbation that is incentive feasible and

strictly increases social welfare. Specifically, consider drilling a hole around a type θM

within [θL, θH ] so that we marginally remove the allocation around this type. That is, type

θM can no longer choose {b(θM), V (b(θM))} and is indifferent between jumping to the lower

or upper limit of the hole. With some abuse of notation, denote the limits of the hole by θL
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and θH , where the perturbation marginally increases θH from θM . Since the enforcement

constraint is slack for all θ ∈ [θL, θH ], the perturbation is incentive feasible. The change in

social welfare from the perturbation is equal to

∫ θH

θM

db(θH)

dθH
(
θU ′(ω + b(θH)) + δV ′(b(θH))

)
f(θ)dθ

+
dθM

dθH
(
θMU(ω + b(θL)) + δV (b(θL))− θMU(ω + b(θH))− δV (b(θH))

)
f(θM).

Note that by the private information constraint for type θH ,

db(θH)

dθH
(
θHU ′(ω + b(θH)) + βδV ′(b(θH))

)
= 0, (35)

and by indifference of type θM ,

θMU(ω + b(θL)) + βδV (b(θL)) = θMU(ω + b(θH)) + βδV (b(θH)). (36)

Substituting with these expressions, the change in social welfare is equal to

db(θH)

dθH
U ′(ω + b(θH))

∫ θH

θM

(
θ − θH

β

)
f(θ)dθ (37)

+
dθM

dθH
θM
(
U(ω + b(θL))− U(ω + b(θH))

)(
1− 1

β

)
f(θM).

Differentiating (36) with respect to θH and substituting with (35) yields

dθM

dθH
=
db(θH)

dθH
U ′(ω + b(θH))

(θH − θM)

U(ω + b(θH))− U(ω + b(θL))
.

Substituting back into (37) and dividing by 1
β
db(θH)

dθH
U ′(ω + b(θH)) > 0, we find that the

change in social welfare takes the same sign as

SH(θH , θM) =

∫ θH

θM

(
βθ − θH

)
f(θ)dθ + (1− β) θMf(θM)(θH − θM).

Since Q′(θ) > 0 for all θ ∈ [θM , θH ], Lemma 5 implies SH(θH , θM) > 0, and thus the

perturbation strictly increases social welfare. Hence, if V (b(θ)) is strictly interior and

Q′(θ) > 0 over a given interval, then V (b(θ)) must be a step function over the interval.

Step 3. We show that V (b(θ)) ∈ {V (b(θ)), V (b(θ))} for all θ ∈ Θ.
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Suppose by contradiction that V (b(θ)) ∈ (V (b(θ)), V (b(θ)) for some θ ∈ Θ. By the

previous steps and Lemma 2, type θ belongs to a stand-alone segment (θL, θH ], such that

b(θ) = b and V (b(θ)) = V for all θ ∈ (θL, θH ], b ∈ (b, b) and V ∈ (V (b), V (b)) (by

assumption), b(θ) jumps at θL, and b(θ) jumps at θH unless θH = θ.

We first show that the enforcement constraint must be slack for all θ ∈ (θL, θH). Express

the enforcement constraint as the difference between the left-hand and right-hand sides of

(5), so that this constraint must be weakly positive and it is equal to zero if it binds.

By the private information constraints, the derivative of the enforcement constraint with

respect to θ is equal to U(ω + b(θ)) − U(ω + bp(θ)). Since b(θ) is constant over (θL, θH ]

and bp(θ) is nondecreasing, it follows that the enforcement constraint is weakly concave

over the interval. Then the constraint can only bind at a point θ′ ∈ (θL, θH) if it binds at

all θ ∈ (θL, θH). However, by the arguments used in Case 2 in Step 2 above, that would

require b = bp(θ) and V = V (b) for θ ∈ (θL, θH), contradicting the assumption that V is

strictly interior.

We next show that there exists an incentive feasible perturbation that strictly increases

social welfare. We consider segment-shifting perturbations that marginally change the

constant borrowing level b and continuation value V . As we describe next, the perturbation

that we perform depends on the shape of the function Q(θ) over (θL, θH ]:

Case 1: Suppose
∫ θH
θL

Q(θL)dθ <
∫ θH
θL

Q(θ)dθ. Consider a perturbation that marginally

changes the borrowing level by db > 0 and reduces V in order to keep type θH equally well

off. This means that dV
db

is given by

θHU ′(ω + b) + βδ
dV

db
= 0. (38)

Note that for any arbitrarily small db > 0, this perturbation makes the lowest types in

(θL, θH ], arbitrarily close to θL, jump either to the allocation of type θL or to their flexible

allocation under maximal punishment {bp(θ), V (bp(θ))}, where we let the perturbation

introduce the latter. In the limit as db goes to zero, the change in social welfare due to the

perturbation is thus equal to32

∫ θH

θL

(
θU ′(ω + b) + δ

dV

db

)
f (θ) dθ (39)

+
dθL

db

(
θLU(ω + b(θL)) + δV (b(θL))− θLU(ω + b)− δV

)
f(θL),

32The arguments that follow are unchanged if {b(θL), V (b(θL))} is replaced with {bp(θL), V (bp(θL))} for
the cases where the enforcement constraint binds.
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where the following indifference condition holds:

θLU(ω + b) + βδV = θLU(ω + b(θL)) + βδV (b(θL)).

To verify that the perturbation is incentive feasible, note that the enforcement con-

straint is slack for all θ ∈ (θL, θH), V is strictly interior, and the government welfare of

types θL and θH remains unchanged with the perturbation. Hence, the perturbation is

incentive feasible for db arbitrarily close to zero.

To verify that the perturbation strictly increases social welfare, substitute (38) and the

indifference condition of type θL into (39) to obtain:

U ′(ω+b)

∫ θH

θL

(
θ − θH

β

)
f(θ)dθ+

dθL

db
θL
(
U(ω + b(θL))− U(ω + b)

)(
1− 1

β

)
f(θL). (40)

Differentiating the indifference condition of type θL and substituting with (38) yields

dθL

db
= −U ′(ω + b)

(
θH − θL

)

U(ω + b(θL))− U(ω + b)
.

Substituting back into (40) and dividing by 1
β
U ′(ω + b) > 0, we find that the change in

social welfare takes the same sign as

SH(θH , θL) =

∫ θH

θL

(
βθ − θH

)
f(θ)dθ + (1− β) θLf(θL)(θH − θL),

which can be rewritten as

SH(θH , θL) =

∫ θH

θL

∫ θ

θL
Q′(θ̃)dθ̃dθ =

∫ θH

θL
(Q(θ)−Q(θL))dθ.

By the assumption that
∫ θH
θL

Q(θL)dθ <
∫ θH
θL

Q(θ)dθ, the above expression is strictly posi-

tive. The perturbation therefore strictly increases social welfare, yielding a contradiction.

Case 2: Suppose
∫ θH
θL

Q(θL)dθ ≥
∫ θH
θL

Q(θ)dθ. By the generic property in Proposition 1,

there must exist θh ∈ (θL, θH ] such that
∫ θh
θL
Q(θL)dθ >

∫ θh
θL
Q(θ)dθ. Then consider a per-

turbation where, for θ ∈ (θL, θh], we marginally change the borrowing level by db < 0

and increase V in order to keep type θh equally well off. This perturbation makes types

arbitrarily close to θL jump up to the allocation of the stand-alone segment. Arguments

analogous to those in Case 1 above imply that the perturbation is incentive feasible. More-

over, following analogous steps as in that case yields that the implied change in social
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welfare takes the same sign as

−SH(θh, θL) = −
∫ θh

θL

(
βθ − θh

)
f(θ)dθ − (1− β) θLf(θL)(θh − θL),

which can be rewritten as

−SH(θh, θL) = −
∫ θh

θL

∫ θ

θL
Q′(θ̃)dθ̃dθ = −

∫ θh

θL
(Q(θ)−Q(θL))dθ.

By the assumption that
∫ θh
θL
Q(θL)dθ >

∫ θh
θL
Q(θ)dθ, the above expression is strictly positive.

The perturbation therefore strictly increases social welfare, yielding a contradiction.

A.4 Proof of Lemma 3

Take any solution to program (7) with b(θ) ∈ (b, b) for all θ ∈ Θ. We proceed in three

steps.

Step 1. We show that if V (b(θ∗∗)) = V (b(θ∗∗)), then θ∗∗ ≥ θ̂.

By Proposition 1 and Step 1 in the proof of that proposition, if V (b(θ∗∗)) = V (b(θ∗∗))

for some θ∗∗ ∈ Θ, then V (b(θ)) = V (b(θ)) over an interval (θL, θH ] that contains θ∗∗. Take

the largest such interval. We establish that θL ≥ θ̂. Suppose by contradiction that θL < θ̂.

Note that the enforcement constraint (5) requires b(θ) = bp(θ) for all θ ∈ (θL, θH ]. There

are two cases to consider:

Case 1: Suppose bp(θ) is strictly increasing over a subset of (θL, θH ] below θ̂, and without

loss take a subset over which bp(θ) is continuously differentiable. Then we can perform

a flattening perturbation that rotates the borrowing schedule clockwise over this subset,

analogous to the perturbation used in Step 2 in the proof of Proposition 1. By the argu-

ments in that step, this perturbation is incentive feasible. In particular, note that since

the perturbation weakly increases the government welfare of all types θ in the subset

while simultaneously changing their borrowing allocation, it follows from the definition of

bp(θ) that the perturbation must necessarily increase V (b(θ)) above V (b(θ)). Moreover, by

Q′(θ) < 0 for all types θ in the subset (by the subset being below θ̂ and Assumption 1),

the perturbation strictly increases social welfare, yielding a contradiction.

Case 2: Suppose bp(θ) is constant for θ ∈ (θL, θM ], where θM ≡ min{θH , θ̂}. Then we can

perform an incentive feasible segment-shifting perturbation analogous to that described in

Step 3 in the proof of Proposition 1: for θ ∈ (θL, θM ], we marginally reduce the constant
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borrowing level and increase the constant continuation value so as to keep the government

welfare of type θM unchanged. Since Q′(θ) < 0 over (θL, θM ] implies
∫ θM
θL

Q(θL)dθ >∫ θM
θL

Q(θ)dθ, this perturbation strictly increases social welfare, yielding a contradiction.

Step 2. We show that if V (b(θ∗∗)) = V (b(θ∗∗)), then V (b(θ)) = V (b(θ)) for all θ ≥ θ∗∗.

Suppose by contradiction that V (b(θ∗∗)) = V (b(θ∗∗)) for θ∗∗ ∈ Θ and V (b(θ)) > V (b(θ))

for some θ > θ∗∗. By Step 1, θ∗∗ ≥ θ̂. Moreover, by Proposition 1 and Step 1 in the proof of

that proposition, there exist θH > θL ≥ θ∗∗ such that V (b(θ)) = V (b(θ)) for all θ ∈ (θL, θH ].

We begin by establishing that b(θ) = b for all θ ∈ (θL, θH ] and some b ∈ (b, b). Suppose

by contradiction that the borrowing schedule b(θ) is strictly increasing at some point θ′ ∈
(θL, θH ]. Note that the private information constraint (4) implies b(θ) = br(θ), and thus a

slack enforcement constraint, in the neighborhood of such a type θ′. Then we can perform

an incentive feasible steepening perturbation that drills a hole in the b(θ) schedule in this

neighborhood, as that described in Step 2 (Case 2) in the proof of Proposition 1. By

the arguments in that step, this perturbation strictly increases social welfare, yielding a

contradiction.

We next show that a segment (θL, θH ] with b(θ) = b and V (b(θ)) = V (b) for all θ ∈
(θL, θH ] and θL ≥ θ∗∗ cannot exist. Suppose by contradiction that it does. Take θL to be

the lowest point weakly above θ∗∗ at which V (b(θ)) jumps, and take θH to be the lowest

point above θL at which V (b(θ)) jumps again, or θH = θ if V (b(θ)) does not jump above θL.

Then (θL, θH ] is a stand-alone segment with constant borrowing b and continuation value

V (b). Note that by arguments analogous to those in Step 3 of the proof of Proposition 1,

the enforcement constraint must be slack for all θ ∈ (θL, θH). We then show that there

exists an incentive feasible segment-shifting perturbation that is socially beneficial. There

are three cases to consider:

Case 1: Suppose θHU(ω+b)+βδV (b) ≤ θHU(ω+b′)+βδV (b′) for b′ = b+ε, ε > 0 arbitrarily

small. Then we perform a segment-shifting perturbation as that in Step 3 in the proof of

Proposition 1, where we increase b marginally to b′ and set V (b′) weakly below V (b′) so as

to keep type θH ’s welfare under this allocation unchanged. This perturbation is incentive

feasible. Moreover, since θL ≥ θ∗∗ and Assumption 1 imply
∫ θH
θL

Q(θL)dθ <
∫ θH
θL

Q(θ)dθ,

this perturbation strictly increases social welfare, yielding a contradiction.

Case 2: Suppose θHU(ω + b) + βδV (b) > θHU(ω + b′) + βδV (b′) for b′ = b + ε, ε > 0

arbitrarily small, and θH < θ. Then we perform a segment-shifting perturbation where we

reduce b marginally to b′′ = b− ε and set V (b′′) weakly below V (b′′) so as to keep type θL’s

welfare under this allocation unchanged. This perturbation is incentive feasible. Denote by
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{b(θh), V (b(θh))} the allocation above θH over which type θH is initially indifferent. Note

that analogous to the perturbation in Step 3 in the proof of Proposition 1, this perturbation

makes the highest types in (θL, θH ], arbitrarily close to θH , jump either to {b(θh), V (b(θh))}
or to their flexible allocation under maximal punishment {bp(θ), V (bp(θ))}, where we let

the perturbation introduce the latter. In the limit as ε goes to zero, the change in social

welfare due to the perturbation is thus equal to33

∫ θH

θL

(
−θU ′(ω + b) + δ

dV

db

)
f (θ) dθ (41)

−dθ
H

db

(
θHU(ω + b(θh)) + δV (b(θh))− θHU(ω + b)− δV

)
f(θH),

where V = V (b), dV
db

solves

− θLU ′(ω + b) + βδ
dV

db
= 0, (42)

and the following indifference condition holds:

θHU(ω + b) + βδV = θHU(ω + b(θh)) + βδV (b(θh)).

To verify that the perturbation strictly increases social welfare, substitute (42) and the

indifference condition of type θH into (41) to obtain:

− U ′(ω + b)

∫ θH

θL

(
θ − θL

β

)
f(θ)dθ − dθH

db
θH
(
U(ω + b(θh))− U(ω + b)

)(
1− 1

β

)
f(θH).

(43)

Differentiating the indifference condition of type θH and substituting with (42) yields

dθH

db
= −U ′(ω + b)

(
θH − θL

)

U(ω + b(θh))− U(ω + b)
.

Substituting back into (43) and dividing by 1
β
U ′(ω + b) > 0, we find that the change in

social welfare takes the same sign as

−SL(θL, θH) = −
[∫ θH

θL

(
βθ − θL

)
f(θ)dθ + (1− β) θHf(θH)(θH − θL)

]
.

33The arguments that follow are unchanged if {b(θh), V (b(θh))} is replaced with {bp(θH), V (bp(θH))}
for the cases where the enforcement constraint binds.
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By θL ≥ θ∗∗, Assumption 1, and Step 1 above, Q′(θ) > 0 for all θ ∈ (θL, θH). It then

follows from Lemma 5 that SL(θL, θH) < 0. Hence, the perturbation strictly increases

social welfare, yielding a contradiction.

Case 3: Suppose θHU(ω + b) + βδV (b) > θHU(ω + b′) + βδV (b′) for b′ = b + ε, ε > 0

arbitrarily small, and θH = θ. Then we perform a segment-shifting perturbation as that

in Case 2 above, where we reduce b marginally to b′′ = b − ε and set V (b′′) weakly below

V (b′′) so as to keep type θL’s welfare under this allocation unchanged. This perturbation

is incentive feasible. Note that analogous to Case 2, this perturbation makes the highest

types in (θL, θH ], arbitrarily close to θH , either jump to their flexible allocation under

maximal punishment {bp(θ), V (bp(θ))} or remain with the perturbed allocation. In the

former case, the same arguments as in Case 2 apply, yielding that the perturbation strictly

increases social welfare by −SL(θL, θH) > 0. In the latter case, those arguments imply

that the change in social welfare is equal to

−
∫ θH

θL

(
βθ − θL

)
f(θ)dθ > −SL(θL, θH) > 0.

Hence, the perturbation strictly increases social welfare, yielding a contradiction.

Step 3. We show that V (b(θ)) is right-continuous at θ.

Suppose by contradiction that this is not the case. Then by the previous steps, Propo-

sition 1, and Step 1 in the proof of Proposition 1, V (b(θ)) = V (b(θ)) for all θ ∈ (θ, θ] and

V (b(θ)) jumps down at θ from V (b(θ)). Note that the enforcement constraint (5) implies

b(θ) = bp(θ) for all θ ∈ (θ, θ], and indifference of θ requires

θU(ω + b(θ)) + βδV (b(θ)) = lim
θ↓θ
{θU(ω + bp(θ)) + βδV (bp(θ))}.

Take ∆ ∈ (0,minθ∈Θ{V (b(θ)) − V (b(θ))}). Then consider a global perturbation that

assigns V (b(θ)) = V (b(θ)) + ∆ to all θ ∈ (θ, θ] and assigns type θ the limit allocation to

its right. This perturbation keeps the borrowing allocation of types θ ∈ (θ, θ] unchanged

and is incentive feasible. Moreover, using the representation in (12), the change in social

welfare from this perturbation is equal to δ∆. Thus, the perturbation strictly increases

social welfare, yielding a contradiction.
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A.5 Proof of Proposition 2

Take any solution to program (7) with b(θ) ∈ (b, b) for all θ ∈ Θ. By Lemma 3 and the en-

forcement constraint (5), there exists θ∗∗ > θ such that {b(θ), V (b(θ))} = {bp(θ), V (bp(θ))}
for all θ > θ∗∗ and V (b(θ)) = V (b(θ)) for all θ ≤ θ∗∗ (where it is possible that θ∗∗ > θ).

Moreover, since the enforcement constraint holds with equality at θ∗∗, this type’s allocation

satisfies

θ∗∗U(ω + b(θ∗∗)) + βδV (b(θ∗∗)) = θ∗∗U(ω + bp(θ∗∗)) + βδV (bp(θ∗∗)). (44)

These results characterize the allocation for types θ ≥ θ∗∗. To characterize the allocation

for types θ < θ∗∗, we proceed in three steps.

Step 1. We show that b(θ) is continuous over [θ, θ∗∗].

Recall from Step 1 in the proof of Lemma 3 that θ∗∗ ≥ θ̂. There are two cases to

consider:

Case 1: Suppose by contradiction that b(θ) has a point of discontinuity below θ̂: there is

a type θM < θ̂ which is indifferent between choosing lim
θ↑θM

b(θ) and lim
θ↓θM

b(θ) > lim
θ↑θM

b(θ).

Note that given V (b(θ)) = V (b(θ)) for all θ ∈ [θ, θ∗∗] and θ∗∗ ≥ θ̂, there must be a hole

with types θ ∈ [θL, θM) bunched at br(θL) and types θ ∈ (θM , θH ] bunched at br(θH), for

some θL < θM < θH . Now consider perturbing the rule by marginally increasing θL, in an

effort to slightly close the hole. This perturbation leaves the government welfare of types

strictly above θM unchanged and is incentive feasible. The change in social welfare from

the perturbation is equal to

dbr(θL)

dθL

∫ θM

θL

(
θU ′(ω + br(θL)) + δV

′
(br(θL))

)
f (θ) dθ

+
dθM

dθL
[
θMU(ω + br(θL)) + δV (br(θL))− θMU(ω + br(θH))− δV (br(θH))

]
f(θM).

By the definition of br(θ), we have θLU ′(ω + br(θL)) = −βδV ′(br(θL)). Moreover, by

indifference of type θM , we have

θMU(ω + br(θL)) + βδV (br(θL)) = θMU(ω + br(θH)) + βδV (br(θH)). (45)

Substituting these into the expression above yields that the change in social welfare due
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to the perturbation is equal to

dbr(θL)

dθL
U ′(ω + br(θL))

∫ θM

θL

(
θ − θL

β

)
f (θ) dθ (46)

+
dθM

dθL

(
1

β
− 1

)
θMf(θM)

(
U(ω + br(θH))− U(ω + br(θL))

)
.

Note that differentiating the indifference condition (45) with respect to θL (and substituting

again with θLU ′(ω + br(θL)) = −βδV ′(br(θL))) yields

dθM

dθL
=
dbr(θL)

dθL
U ′(ω + br(θL))

(θM − θL)

U(ω + br(θH))− U(ω + br(θL))
.

Substituting this back into (46) and dividing by 1
β
dbr(θL)

dθL
U ′(ω + br(θL)) > 0, we find that

the change in social welfare takes the same sign as

SL(θL, θM) =

∫ θM

θL

(
βθ − θL

)
f (θ) dθ + (1− β) θMf(θM)(θM − θL).

If θL ≥ θ, it follows from θM < θ̂, Assumption 1, and Lemma 5 that SL(θL, θM) > 0.

Moreover, if θL < θ, then SL(θL, θM) > SL(θ, θM) > 0. Thus, the perturbation strictly

increases social welfare, showing that b(θ) cannot jump at a point below θ̂.

Case 2: Suppose by contradiction that b(θ) is discontinuous at a point θ ∈ [θ̂, θ∗∗]. Note

that since V (b(θ)) = V (b(θ)) for all θ ∈ [θ̂, θ∗∗], we can apply the same logic as in Step 2 in

the proof of Lemma 3 to show that db(θ)
dθ

= 0 over any continuous interval in [θ̂, θ∗∗]. Hence,

if b(θ) jumps at a point θ ∈ [θ̂, θ∗∗], then there exists a stand-alone segment (θL, θH ] with

constant borrowing b ∈ (b, b) and continuation value V = V (b), satisfying θL ≥ θ̂. However,

using again the arguments in Step 2 in the proof of Lemma 3, we can then perform an

incentive feasible segment-shifting perturbation that strictly increases social welfare. Thus,

b(θ) cannot jump at a point θ ∈ [θ̂, θ∗∗].

Step 2. We show that b(θ) ≤ br(θ) for all θ ∈ [θ, θ∗∗].

By Step 1 above, the allocation over [θ, θ∗∗] must be bounded discretion, with either

a minimum borrowing level or a maximum borrowing level or both. We next show that

a binding minimum borrowing requirement is strictly suboptimal. Suppose by contradic-

tion that this is not the case, namely there exist θ? > θ and an optimal rule prescrib-

ing {b(θ), V (b(θ))} = {br(θ?), V (br(θ?))} for all θ ∈ [θ, θ?], where br(θ) < br(θ?) for all
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θ ∈ [θ, θ?). Consider a perturbation where we remove this minimum borrowing require-

ment, that is, we set {b(θ), V (b(θ))} = {br(θ), V (br(θ))} for all θ ∈ [θ, θ?). Clearly, this

perturbation is incentive feasible, and it keeps the allocation of types θ ∈ [θ?, θ], and thus

the social welfare from these types, unchanged. The change in social welfare from each

type θ ∈ [θ, θ?) is equal to

θU(ω + br(θ)) + δV (br(θ))− θU(ω + br(θ?))− δV (br(θ?)).

Note that by the definition of br(θ),

δV (br(θ))− δV (br(θ?)) ≥ 1

β
[θU(ω + br(θ?))− θU(ω + br(θ))] .

Substituting back into the previous expression, we obtain that the change in social welfare

from each θ ∈ [θ, θ?) is greater than

(
1

β
− 1

)
[θU(ω + br(θ?))− θU(ω + br(θ))] ,

which is strictly positive. Thus, the perturbation strictly increases social welfare, implying

that a binding minimum borrowing requirement is strictly suboptimal.

Step 3. We show that b(θ) < br(θ) for some θ ∈ Θ.

By Step 1 and Step 2, the allocation for types θ ∈ [θ, θ∗∗] is as described in Definition 1

for some θ∗ ≥ 0. That is, equation (44) necessarily holds for b(θ∗∗) = br(θ∗). All that

remains to be shown is that θ∗ < θ. Suppose by contradiction that this is not true, which

implies {b(θ), V (b(θ))} = {br(θ), V (br(θ))} for all θ ∈ Θ. Consider an incentive feasible

perturbation that assigns {b(θ), V (b(θ))} = {br(θ − ε), V (br(θ − ε))} to all θ ∈ [θ − ε, θ],
where ε > 0 is chosen to be small enough as to continue to satisfy the enforcement constraint

(5) for all types θ ∈ Θ. Using the representation in (12), the change in social welfare from

this perturbation is equal to

1

β

∫ θ

θ−ε
(U(ω + br(θ − ε))− U(ω + br(θ)))Q(θ)dθ.

For ε > 0 arbitrarily small, br(θ− ε) < br(θ) and Q(θ) < 0 for all θ ∈ (θ− ε, θ). Thus, the

perturbation strictly increases social welfare.
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