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Abstract

This paper quantifies the effects of equity tail risk on the term structure of U.S. government

securities. We combine the downside jump intensity factors of international stock market

indices into a single measure of equity tail risk and show that it is strongly priced in an

affine term structure model for the U.S. interest rates. Consistent with the theory of flight-

to-safety, we find that the response of Treasury bond yields and future excess returns to a

contemporaneous shock to the equity tail factor is negative and opposite to what happens

in the stock market. The significance of these results decreases with the maturity of the

bonds, suggesting that the short end of the U.S. yield curve is more strongly affected by

flight-to-safety than the long end.
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1 Introduction

In times of financial distress, the disengagement from risky assets, such as stocks, and the

simultaneous demand for a safe-haven, such as top-tier government bonds, generate a flight-

to-safety (FTS) event in the capital markets. A large body of literature examines the linkages

between the stock and bond markets during crisis periods and their implications for asset pricing,

see Vayanos (2004), Hartmann et al. (2004), Chordia et al. (2005), Adrian et al. (2015) and

Ghysels et al. (2016), among others. We add to this literature by estimating a model of the term

structure of interest rates that incorporates the effect of extreme events happening in the stock

market. If Treasury bonds are a major beneficiary of the FTS flows occurring when the stock

market is hit by heavy losses, then we expect the downside tail risk of equity to affect bond

risk premia and determine both stock and bond prices during distress periods. We investigate

this conjecture by considering a Gaussian affine term structure model (ATSM) for U.S. interest

rates where the pricing factors are the principal components of the yield curve and an equity

left tail factor derived from options on international stock market indices. This provides, to the

best of our knowledge, the first evidence for the importance of equity tail risk in bond pricing.

Understanding the dynamics of bond yields is particularly useful for forecasting financial and

macro variables, for making debt and monetary policy decisions and for derivative pricing. Most

of these applications require the decomposition of yields into expectations of future short rates

(averaged over the lifetime of the bond) and term premia, i.e. the additional returns required by

investors for bearing the risk of long-term commitment. Gaussian affine term structure models

have long been used for this purpose, see, e.g., Duffee (2002), Kim and Wright (2005) and

Abrahams et al. (2016). In the setup of a Gaussian ATSM, a number of pricing factors that

affect bond yields are selected and assumed to evolve according to a vector autoregressive (VAR)

process of order one. The yields of different maturities are all expressed as linear functions of

the factors with restrictions on the coefficients that prevent arbitrage opportunities, implying
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that long-term yields are merely risk-adjusted expectations of future short rates.

The selection of pricing factors typically starts by extracting from the cross-section of bond

yields a given number of principal components (PCs), which are linear combinations of the

rates themselves. The first three PCs are prime candidates as they generally explain over 99%

of the variability in the term structure and, due to their loadings on yields, may be interpreted

as the level, slope and curvature factor. However, it is well established in the literature that

additional factors are needed to explain the cross-section of bond returns. For this reason, the

first five principal components of the U.S. Treasury yield curve are used as pricing factors in

Adrian et al. (2013), while Malik and Meldrum (2016) adopt a four-factor specification for U.K.

government bond yields. Furthermore, several studies suggest that a great deal of information

about bond risk premia can be found in factors that are not principal components of the yield

curve. Cochrane and Piazzesi (2005) discover a new linear combination of forward rates which

is a strong predictor of future excess bond returns and, based on this evidence, Cochrane and

Piazzesi (2008) use it in an ATSM along with the classical level, slope and curvature factors.

More recently, Duffee (2011) and Joslin et al. (2014) show that valuable information about bond

premia is located outside of the yield curve and contained, for example, in macro variables that

have little or no impact on current yields but strong predictive power for future bond returns.

This paper explores the use of factors, other than combinations of yields, to drive the curve

of U.S. Treasury rates and explain bond returns. In contrast to earlier work, however, we

draw on the literature that deals with comovements in the equity and bond markets and we

consider the possibility that pricing factors of Treasury bonds originate also in the stock market.

The findings of Connolly et al. (2005) and Baele et al. (2010) suggest that measures linked to

stock market uncertainty explain time variation in the stock-bond return relation and have

important cross-market pricing effects.1 Therefore, we select a risk measure which is known to

1Connolly et al. (2005) find that when the implied volatility from equity index options, measured by the VIX,
increases to a considerable extent, bond returns tend to be higher than stock returns (flight-to-quality) and the
correlation between the two assets over the next month is lower. Baele et al. (2010) show that the time-varying
and sometimes negative stock-bond return correlations cannot be explained by macro variables but instead by
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predict equity returns and we examine its role in an ATSM. The existing literature suggests

that the variance risk premium (VRP) forecasts stock returns at shorter horizons than other

predictors like dividend yields or price-to-earning ratios, see Bollerslev et al. (2009), Bollerslev

et al. (2014) and Bekaert and Hoerova (2014), among others. In view of recent studies showing

that the predictive power of the VRP for future equity returns stems from a jump tail risk

component (see, for example, Bollerslev et al. (2015) and Andersen et al. (2017a,b)), we opt for

the jump intensity factor extracted from the Andersen et al. (2015b) model to assess the impact

of equity tail events on U.S. Treasury bonds. Hence, our main contribution is to integrate the

downside tail risk of the stock market into the study of Treasury bond risk premia.

Caballero et al. (2017) describe U.S. government securities as global stores of value in what

they call “safe asset shortage”. They illustrate how U.S. government debt rose between 2007

and 2011 in response to an increased demand for safe assets. During the same years, however,

the supply of safe assets contracted since debt from fiscally weak sovereigns, such as Italy and

Spain, stopped being perceived as safe. The observed surge in cross-border purchases of safe

assets indicate that Treasury bonds may react to tail events that originate in the stock market

of countries other than the U.S. Therefore, in order to analyze the effect of the international

stock market, we follow the methodology of Bollerslev et al. (2014) and define the equity tail

risk measure of this study as the market-capitalization weighted average of the downside jump

intensity factors extracted from U.S., U.K. and Euro-zone equity-index options.

Our empirical analysis relies on monthly data for the U.S. zero-coupon yield curve and the

S&P 500, FTSE 100 and EURO STOXX 50 index options over the period 2007 to 2016. We

obtain the equity tail factor from option data, which are well known to embed rich information

about the pricing of extreme events, and then we estimate an ATSM as in Adrian et al. (2013)

but including also the equity tail factor. Overall, the results show that equity jump tail risk

liquidity factors and the variance risk premium, which represents the compensation demanded by investors for
bearing variance risk and is defined as the difference between the risk-neutral and statistical expectations of the
future return variation. Although the variance risk premium is a major contributor to the stock-bond return
correlation dynamics, Baele et al. (2010) find significant exposures to it only for stock but not for bond returns.
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is strongly priced in the term structure model. This risk premium in the Treasury market is

consistent with the evidence in Krishnamurthy and Vissing-Jorgensen (2012), who document

the existence of a significant price for the safety attribute of Treasuries. Further, we find that

bond prices, which move inversely to yields, increase and future expected excess returns shrink

in response to a contemporaneous shock to the equity tail factor. These observations confirm

the role of U.S. Treasuries as a safe haven and, when combined with the previously documented

positive relationship between jump tail risk and future equity returns, indicate the presence of a

common predictor across the two asset classes. This remark is in line with the findings reported

by Adrian et al. (2015), who show that the same nonlinear function of the VIX can forecast

both stock and bond returns, but in opposite directions as predicted by the theory of FTS.

Finally, we observe that the predictive power of the equity tail factor for lower bond returns is

statistically significant only at the short end of the U.S. yield curve. Based on this evidence,

we claim that short-term bonds are more sensitive to flight-to-safety than are long-term bonds.

This study is related to the work of Kaminska and Roberts-Sklar (2015), who document

the importance of global market sentiment for the term structure of U.K. government bonds.

The authors observe that future excess returns on U.K. bonds load positively on a VRP-based

proxy of risk aversion. Their results are consistent with the findings of Bekaert et al. (2010),

who show that both equity and bond premia increase with risk aversion, but contrast with the

negative relationship between U.S. bond returns and our measure of downside equity tail risk.

Our paper is structured as follows. In section 2 we review the methodology used to identify

a left tail factor for the stock market. Section 3 outlines the term structure modeling approach.

Section 4 covers the empirical application of equity tail risk in an ATSM. Section 5 concludes.

2 Equity Left Tail Factor

This section summarizes the estimation of the equity tail risk measure whose impact on

U.S. Treasuries is discussed later in the paper. This measure, which we denote by ŨEquity,
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is obtained as the market capitalization weighted average of downside jump intensity factors

driving the returns of international stock market indices. To identify each of these index-specific

factors, we rely on the Three-Factor Double Exponential Model proposed for option pricing by

Andersen et al. (2015b).2 The authors specify a parametric model for the risk-neutral dynamics

of equity-index returns that includes two volatility factors, V1 and V2, plus a separate jump

intensity factor, U , which is capable of detecting the priced downside risk in the option surface.3

The model features two separate jump components: one captures co-jumps in the level of the

index, X, the first volatility factor, V1, and the tail factor, U , and one captures jumps that

affect U only. The distribution for the size of return jumps is assumed to be double exponential

with two distinct parameters governing the decay of left and right tail. Although the time

variation in positive and negative jumps is not the same, both intensities are affine functions

of the state vector (V1, V2, U). This procedure allows for “cross self-exciting” jumps: a shock

to one factor can increase the jump intensity, which in turns increases the probability of future

jumps in that and all other factors. The Three-Factor Double Exponential Model is represented

by the following equations:

dXt

Xt−
= (rt − δt)dt+

√
V1,t dW

Q
1,t +

√
V2,t dW

Q
2,t + η

√
Ut dW

Q
3,t +

∫
R2

(ex − 1)µ̃Q(dt, dx, dy),

dV1,t = κ1(v̄1 − V1,t)dt+ σ1
√
V1,t dB

Q
1,t + µ1

∫
R2

x21{x<0}µ(dt, dx, dy) ,

dV2,t = κ2(v̄2 − V2,t)dt+ σ2
√
V2,t dB

Q
2,t ,

dUt = −κuUtdt+ µu

∫
R2

[(1− ρu)x21{x<0} + ρuy
2]µ(dt, dx, dy) .

(1)

where rt is the risk-free rate, δt is the dividend yield on the index, and (WQ
1,t,W

Q
2,t,W

Q
3,t, B

Q
1,t, B

Q
2,t)

is a five-dimensional Brownian motion with corr
(
WQ

1,t, B
Q
1,t

)
= ρ1, corr

(
WQ

2,t, B
Q
2,t

)
= ρ2, and

2The interested reader is directed to Andersen et al. (2015b) for an in-depth description of the formulation
since here we limit ourselves to highlighting the distinctive features.

3Nonparametric and seminonparametric approaches to estimating a tail risk measure from option data are
also available, see, e.g., Aı̈t-sahalia and Lo (2000), Bollerslev and Todorov (2011), Bollerslev et al. (2015) and
Andersen et al. (2017a). For tail risk measures that are computed from the cross-section of returns without
relying on option price information see, e.g., Kelly and Jiang (2014) and Almeida et al. (2017)
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mutual independence for the remaining Brownian motions. In addition, µ is the jump counting

measure with instantaneous intensity, under the risk-neutral measure, given by dt⊗ νQt (dx, dy).

The difference µ̃Q(dt, dx, dy) = µ(dt, dx, dy)−dtνQt (dx, dy) constitutes the associated martingale

measure. The contemporaneous co-jumps in X, V1 and, if ρu < 1, also in U are captured by x,

while y represents the independent shocks to the U factor. The jump component x is distributed

according to a double exponential density function with separate tail decay parameters, λ−

and λ+, for negative and positive jumps, respectively. The jump component y is distributed

identically to the negative price jumps. Moreover, c−(t) and c+(t) define the time-varying

intensities of, respectively, negative and positive jumps as follows,

c−(t) = c−0 + c−1 V1,t + c−2 V2,t + c−3 Ut , c+(t) = c+
0 + c+

1 V1,t + c+
2 V2,t + c+

3 Ut . (2)

Finally, the jump compensator characterizes the conditional jump distribution and is given by,

νQt (dx, dy)

dxdy
=

{
(c−(t) · 1{x<0}λ−e

−λ−|x| + c+(t) · 1{x>0}λ+e
−λ+x) , if y = 0

c−(t)λ−e
−λ−|y| , if x = 0 and y < 0

Supported by the data, Andersen et al. (2015b) constrain the statistically insignificant param-

eters to zero and set c−3 to unity for identification purposes.4 The implication of this is that

U becomes a left tail factor that affects the intensity of only negative jumps and does not con-

tribute directly to the diffusive spot variance. Given these characteristics, we are motivated to

formulate the equity tail risk measure of the present paper in terms of the U factor.

The period-by-period estimates of the state variables, (V1,t V2,t Ut), together with values for

the model parameters, are obtained by using the penalized nonlinear least squares estimator

developed by Andersen et al. (2015a). The Andersen et al. (2015b) model is fitted to a panel

of equity-index options by minimizing the weighted sum of squared deviations of the Black-

4The restrictions on the parameters are the same as those shown in Table 1, 2 and 3 of this paper.
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Scholes implied volatilities generated by the model from the observed ones.5 In solving this

minimization problem, the estimator also penalizes for discrepancies between the model-implied

spot volatilities and those estimated, in a nonparametric fashion, from high-frequency data on

the underlying asset returns. Using the same notation as in Andersen et al. (2015b), we denote

the parameter vector of the model by θ and the state vector at time t by Zt = (V1,t V2,t Ut).

Further, we use κ(k, τ,Zt, θ) and κ̄(t, k, τ) to denote, respectively, the model-implied Black-

Scholes implied volatility (IV) and the observed Black-Scholes IV corresponding to the average

of bid and ask quotes of the option with tenor τ and log-forward moneyness k at time t. As for

the diffusive spot variance, we denote the model-implied measure by V (Zt, θ) = V1,t+V2,t+η
2Ut

and its nonparametric estimator constructed from intraday returns by V̂t.
6 Finally, letting Nt

denote the number of option contracts available on day t, the estimator takes the form,

(
{V̂1,t, V̂2,t, Ût}t=1,...,T , θ̂

)
= arg min
{Zt}t=1,...T ,θ∈Θ

T∑
t=1

{
Option Fitt + λ×Vol Fitt

V ATM
t

}
(3)

Option Fitt =
1

Nt

Nt∑
j=1

(
κ̄(t, kj , τj)− κ(kj , τj ,Zt, θ

)2
, Vol Fitt =

(√
V̂t− V (Zt, θ)

)2

(4)

where λ is a calibration parameter that we set to 0.05 as in Andersen et al. (2017b), and V ATM
t

is the squared Black-Scholes IV obtained for the option closest to at-the-money with the shortest

available maturity on day t.7 The standardization by V ATM
t in the estimator is such that days

with high market volatility are underweighted because option pricing errors tend to be larger.

Throughout the rest of the paper, we use the residual of the regression of the U factor on

the spot variance V to construct our equity left tail factor and study the effect of equity tail risk

on bond risk premia. This choice is motivated by the work of Andersen et al. (2015b, 2017b)

5Andersen et al. (2015b) provide in their Supplementary Appendix the conditional characteristic function
of log-returns needed to price options according to the Three-Factor Double Exponential Model. The obtained
option prices are then expressed in Black-Scholes implied volatility units for estimation purposes.

6For jump-robust volatility estimators based on high-frequency data see, for instance, Andersen et al. (2012).
7In practice, the joint optimization over parameters and state vector realizations is performed by concentrat-

ing, or profiling, the state vector and optimizing over the model parameters. Indeed, given a candidate vector θ,
it is easy to obtain estimates of (V1,t V2,t Ut) with local optimization search methods. By contrast, the search of
a global optimum is done for vector θ.
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who have recently shown that the component of the left jump tail intensity factor unspanned by

volatility, the so-called “pure tail” factor, has strong predictive power for future equity returns.

Building on the significant stock-bond return comovements documented in times of elevated risk,

we investigate the explanatory power of this equity “pure tail” factor for future bond returns.

As mentioned earlier, due to the scarcity of safe asset producers other than the United States

(Caballero et al., 2017), we treat U.S. Treasury bonds as global safe haven and examine their

response to the downside tail risk of the international stock market. Therefore, if we denote by

Ũ i the “pure tail” factor relating to the i-th stock market index, we construct the equity left

tail factor of this paper as follows,

ŨEquityt =
I∑
i=1

wit Ũ
i
t , (5)

where wit is the time-t market capitalization of the i-th stock market index divided by the sum

of the market capitalizations of the I indices at time t.8

3 Term Structure Modeling

We now introduce the term structure framework adopted in this paper and we present its

estimation procedure. To set up the model, we rely on the approach suggested by Adrian

et al. (2013), which has the advantage that the pricing factors of bonds are not restricted to

linear combinations of yields. Factors can indeed also be of different origin, such as the equity

tail measure defined in Section 2 and whose use in a model for U.S. interest rates is the main

novelty of this paper. After deriving the data generating process of log excess bond returns from

a dynamic asset pricing model with an exponentially affine pricing kernel, Adrian et al. (2013)

propose a new regression-based estimation technique for the model parameters. The linear

regressions of this simple estimator avoid the computational burden of maximum likelihood

8In results available upon request, we show that the option-implied “pure tail” factor of the U.S. stock market
provides, within the model for the U.S. term structure, qualitatively identical performance to that of ŨEquityt .
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methods, which have previously been the standard approach to the pricing of interest rates.

The formulation and estimation of the Gaussian ATSM in Adrian et al. (2013) can be

summarized as follows. A K × 1 vector of pricing factors, Xt, is assumed to evolve according

to a VAR process of order one:

Xt+1 = µ + φXt + vt+1 , (6)

where the shocks vt+1 ∼ N (0,Σ) are conditionally Gaussian with zero mean and variance-

covariance matrix Σ. Letting P
(n)
t denote the price of a zero-coupon bond with maturity n at

time t, the assumption of no-arbitrage implies the existence of a pricing kernel Mt+1 such that,

P
(n)
t = Et

[
Mt+1P

(n−1)
t+1

]
. (7)

The pricing kernel Mt+1 is assumed to have the following exponential form:

Mt+1 = exp
(
− rt −

1

2
λ
′
tλt − λ

′
tΣ
−1/2vt+1

)
, (8)

where rt = − lnP
(1)
t is the continuously compounded one-period risk-free rate and λt is the

K × 1 vector of market prices of risk, which are affine in the factors as in Duffee (2002):

λt = Σ−1/2(λ0 + λ1Xt) . (9)

The log excess one-period return of a bond maturing in n periods is defined as follows,

rx
(n−1)
t+1 = lnP

(n−1)
t+1 − lnP

(n)
t − rt . (10)

After assuming the joint normality of {rx(n−1)
t+1 ,vt+1}, Adrian et al. (2013) derive the return
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generating process for log excess returns, which takes the form9,

rx
(n−1)
t+1 = β(n−1)′(λ0 + λ1Xt)−

1

2
(β(n−1)′Σβ(n−1) + σ2) + β(n−1)′vt+1 + e

(n−1)
t+1 , (11)

where the return pricing errors e
(n−1)
t+1 ∼ i.i.d. (0, σ2) are conditionally independently and identi-

cally distributed with zero mean and variance σ2. Letting N be the number of bond maturities

available and T be the number of time periods at which bond returns are observed, Adrian

et al. (2013) rewrite equation (11) in the stacked form,

rx = β
′
(λ0ι

′
T + λ1X )− 1

2
(B∗vec(Σ) + σ2ιN )ι

′
T + β

′
V + E , (12)

where rx is an N ×T matrix of excess bond returns, β =
[
β(1) β(2) ... β(N)

]
is a K×N matrix

of factor loadings, ιT and ιN are a T × 1 and N × 1 vector of ones, X = [X0 X1 ... XT−1] is a

K × T matrix of lagged pricing factors, B∗ =
[
vec(β(1)β(1)′) ... vec(β(N)β(N)′)

]′
is an N ×K2

matrix, V is a K × T matrix and E is an N × T matrix.

The main novelty of the approach taken by Adrian et al. (2013) to model the term structure of

interest rates is the use of ordinary least squares to estimate the parameters of equation (12).

In particular, the authors propose the following three-step procedure:

1. Estimate the coefficients of the VAR model in equation (6) by ordinary least squares.10

Stack the estimates of the innovations v̂t+1 into matrix V̂ and use this to construct an

estimator of the variance-covariance matrix Σ̂ = V̂V̂
′
/T .

2. From the excess return regression equation rx = aι
′
T + β

′
V̂ + cX + E, obtain estimates

of â, β̂ and ĉ. Use β̂ to construct B̂∗. Stack the residuals of the regression into matrix Ê

and use this to construct an estimator of the variance σ̂2 = tr(ÊÊ
′
)/NT .

3. Noting from equation (12) that a = β
′
λ0 − 1

2(B∗vec(Σ) + σ2ιN ) and c = β
′
λ1, estimate

9For the full derivation of the data generating process see Section 2.1 in Adrian et al. (2013).
10For estimation purposes, Adrian et al. (2013) advise to set µ = 0 in case of zero-mean pricing factors.
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the price of risk parameters λ0 and λ1 via cross-sectional regressions,

λ̂0 = (β̂β̂
′
)−1β̂

(
â +

1

2
(B̂∗vec(Σ̂) + σ̂2ιN )

)
, (13)

λ̂1 = (β̂β̂
′
)−1β̂ĉ . (14)

The analytical expressions of the asymptotic variance and covariance of β̂ and Λ̂ = [λ̂0 λ̂1],

which we do not report here to save space, are provided in Appendix A.1 of Adrian et al.

(2013). From the estimated model parameters, Adrian et al. (2013) show how to generate a

yield curve. Indeed, within the proposed framework, bond prices are exponentially affine in the

pricing factors. Consequently, the yield of a zero-coupon bond with maturity n at time t, y
(n)
t ,

can be expressed as follows,

y
(n)
t = − 1

n
[an + b

′
nXt] + u

(n)
t , (15)

where the coefficients an and bn are obtained from the following no-arbitrage recursions,

an = an−1 + b
′
n−1(µ− λ0) +

1

2
(b
′
n−1Σbn−1 + σ2)− δ0 , (16)

b
′
n = b

′
n−1(φ− λ1)− δ

′
1 , (17)

subject to the initial conditions a0 = 0, bn = 0, a1 = −δ0 and b1 = −δ1. The parameters δ0 and

δ1 are estimated by regressing the short rate, rt = − lnP
(1)
t , on a constant and contemporaneous

pricing factors according to,

rt = δ0 + δ1Xt + εt , εt ∼ i.i.d. (0, σ2
ε ) . (18)

By setting the price of risk parameters λ0 and λ1 to zero in equation (16) and (17), Adrian

et al. (2013) obtain aRN
n and bRN

n , which they use to generate the risk-neutral yields, y
(n) RN

t .
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These yields reflect the average expected short rate over the current and the subsequent (n−1)

periods and are computed as follows,

y
(n) RN

t =
1

n

n−1∑
i=0

Et[rt+i] = − 1

n
[aRN
n + bRN′

n Xt] . (19)

Given equation (15) and (19), the term premium TP
(n)
t , which is the additional compensation

required for investing in long-term bonds relative to rolling over a series of short-term bonds,

can be calculated as follows,

TP
(n)
t = y

(n)
t − y(n) RN

t . (20)

Starting from the expressions for the zero-coupon bond yields, it is possible to show that also

forward rates are affine functions of the pricing factors. In particular, we calculate fm,nt , which

denotes the forward rate at time t for an investment that starts m periods after time t and

terminates n periods after time t, as follows,

f
(m,n)
t =

1

n−m

[
(am − an) + (b

′
m − b

′
n)Xt

]
. (21)

By replacing am, an, bm and bn in equation (21) with their risk-neutral counterparts aRN
m , aRN

n ,

bRN
m and bRN

n , we obtain the risk-neutral forward rates f
(m,n) RN

t which we use to calculate the

forward term premium FTP
(m,n)
t according to,

FTP
(m,n)
t = f

(m,n)
t − f (m,n) RN

t . (22)

In the next section we specify and estimate a term structure model for U.S. interest rates

following the procedure outlined above. The main difference between the Gaussian ATSM in

Adrian et al. (2013) and ours is that we use a different set of pricing factors. Indeed, we include

in Xt not only factors of bond-market origin (principal components of the yield curve) but also

the left jump tail risk measure extracted from equity-index options and described in Section 2.
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4 Empirical Application

We provide in this section an application to data of a bond pricing model featuring equity tail

risk. We present empirical results using bond data from the U.S. market and equity option data

from the U.S., U.K. and Euro-zone markets. We start by examining the role of the equity left

tail factor in predicting bond returns for horizons up to one year. We then estimate a Gaussian

ATSM that uses the equity left tail factor, along with the first five principal components of

Treasury yields, to explain the cross-section of one-month excess bond returns. We report the

estimation results for the full sample and we claim that equity jump tail risk is strongly priced

within the model and is a significant predictor of lower expected returns on short-term bonds.

Finally, we discuss how equity tail risk has influenced the Treasury term structure over time.

4.1 Data

All data considered here are sampled at the end of each month, or the previous trading day

if the month-end value is missing, for the period from January 2007 through November 2016. In

this study on bond premia, the start date of the sample is chosen in accordance with Andersen

et al. (2017b), who analyze the impact of market tail risk on the equity risk premium instead.11

To construct the equity left tail factor, we use the closing bid and ask prices reported by

OptionMetrics IvyDB US for the European style S&P 500 equity-index (SPX) options, and the

last prices reported by OptionMetrics IvyDB Europe for the European style FTSE 100 (FTSE)

and EURO STOXX 50 (ESTOXX) equity-index options. We apply the following standard filters

to our dataset. We discard options with a tenor of less than seven days or more than one year.

We discard options with zero bid prices and options with non-positive open interest. We only

use options with non-negative bid-ask spread and options with an ask-to-bid ratio smaller than

five. We retain only options whose prices are at least threefold the minimum tick size. For each

11Since 2007, the available maturity and strike coverage of the option data of this study is broad enough to
estimate the Three-Factor Double Exponential Model discussed in Section 2 instead of the simplified two-factor
model used by Andersen et al. (2017b).
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day in the sample, we retain only option tenors for which we have at least five pairs of call and

put contracts with the same strike price. We exploit these cross sections to derive, via put-call

parity, the risk-free rate and the underlying asset price adjusted for the dividend yield that apply

to a given option tenor on a given day. Finally, we discard all in-the-money options and we use

only out-of-the-money options whose volatility-adjusted log-forward moneyness is between −15

and 5. The option data so obtained are supplemented by the time series of the three indices’

Bipower Variation (5-min) provided by the OxfordMan Institute’s “realised library”. This is the

nonparametric estimator of variance, constructed from high-frequency returns, that we use in

equation (4) to compute Vol Fitt. The estimator belongs to the class of jump-robust measures

of volatility and was introduced by Barndorff-Nielsen and Shephard (2004).

The term structure model of this paper is estimated using the Gürkaynak et al. (2007)

zero-coupon bond yields derived from U.S. Treasuries.12 In line with the range of maturities in

Adrian et al. (2013) and Abrahams et al. (2016), for our analysis we consider bonds maturing

in less than or equal to ten years. More specifically, we extract the principal components, which

we then use as pricing factors in the ATSM, from yields of maturities n = 3, 6, ..., 120 months.

Furthermore, setting the risk-free short rate equal to the n = 1 month yield, we calculate the

one-month excess returns for Treasury bonds with maturities n = 6, 12, ..., 120 months.

4.2 Equity Tail Risk and Bond Pricing

The estimated parameters of the Three-Factor Double Exponential Model applied to S&P

500, FTSE 100 and EURO STOXX 50 equity-index option data are listed, respectively, in Table

1, 2 and 3. We note that our estimates for the S&P 500 index are very close to those reported

by Andersen et al. (2015b) in their Table 4.

Insert Table 1, 2 and 3 here

12These yield data are available at a daily frequency for annually spaced maturities ranging from 1 to 30 years
from the Federal Reserve website https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html. The
parameters used to calculate the yields of any desired maturity are also available.
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Using the index-specific estimated parameter vector θ̂, we recover the month-by-month

realizations of the state variables for the S&P 500, FTSE 100 and EURO STOXX 50 equity-

index returns, which are displayed in Figure 1. The top panel shows the model-implied diffusive

spot variance, which we denote by V and is given by the sum of the two volatility factors, V1

and V2. The middle panel displays the downside jump intensity factor, U . The bottom panel

presents the pure tail factor, Ũ , which corresponds to the residual obtained from the linear

regression of U on V , and then normalized to have mean zero and unit variance. High values of

Ũ reflect a high perception, or fear, of future negative return jumps in the stock market. The

equity left tail risk factor that we use in the term structure model of this paper is given by the

market-capitalization weighted average of the Ũ factor of the three stock market indices.13

Insert Figure 1 here

Inspection of Figure 1 immediately reveals that, as documented in Andersen et al. (2015b,

2017b), the negative jump intensity factor is far more persistent than diffusive volatility in

the years following a crisis. In those studies, the component of the left jump intensity factor

unspanned by volatility, i.e. Ũ , is shown to be a strong predictor of future excess equity-index re-

turns, with predictive power superior to that of the VRP. Starting from this result and inspired

by the theory of flight-to-safety, we explore the relationship of Ũ with the U.S. government

bond market. We start by considering the role of S&P 500 option-implied measures in explain-

ing Treasury risk premia. To this end, we regress the future excess returns of one-, two-, three-,

four-, five-, seven- and ten-year Treasury bonds (n = 12, 24, 36, 48, 60, 84, 120 months, respec-

tively) on the left jump intensity factor (orthogonal to spot variance) of S&P 500 equity-index

returns, ŨSPX, and the variance risk premium orthogonal to ŨSPX, which we denote by V RP⊥.

We calculate the variance risk premium (on a monthly basis) as the difference between the

13All the code has been written in Python to benefit from its computational speed. Also, since the estimation
of state variables in the option pricing exercise is inherently independent from one day to another, we relied on
BlueCrystal, the High Performance Computing (HPC) machine provided by the Advanced Computing Research
Centre at University of Bristol, to exploit the power of multiple CPUs at the same time. Finally, it is a pleasure
to acknowledge the invaluable help and advice received from Nicola Fusari in support of this part of the work.
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square of the VIX index (obtained from the Chicago Board Options Exchange (CBOE)) and

the summation of current and previous 20 trading days’ daily realized variances and overnight

squared returns of the S&P 500 (obtained from the OxfordMan Institute’s “realised library”).14

As is pointed out in Andersen et al. (2017b), there is a strong correlation between the tail factor

and the variance risk premium since the former is part of the risk-neutral measure of expected

return variation used to calculate the latter. For this reason, the auxiliary explanatory power

of the VRP is assessed in the following bivariate regressions,

rx
(n−h)
t+h = c0,h + cu,h · ŨSPX

t + cp,h · V RP⊥t + ξt+h , (23)

where h is the holding period (in months) and rx
(n−h)
t+h = lnP

(n−h)
t+h − lnP

(n)
t − rt is the h-month

excess log-return on a bond with maturity n (in months) at time t. The risk-free rate used

in the calculation of the excess returns is the yield of a zero-coupon bond with maturity h at

time t. We run the predictive regressions using the full sample of monthly data over forecast

horizons h = 1, 2, ..., 12 months. We compute the robust Newey-West standard errors using a

window of twice as many lags as the number of months within the holding period horizon.15

The significance of the regression coefficients and the degree of explanatory power provided by

ŨSPX and V RP⊥ are presented in Figure 2.

Insert Figure 2 here

The immediate point that stands out is that Treasury risk premia load negatively on the

S&P 500 option-implied tail factor, ŨSPX. Hence, as reflecting flight-to-safety, a higher fear of

abrupt negative return shocks to the U.S. equity market forces a contraction in the risk premia

that investors require for holding U.S. government bonds. For bonds with maturity less than

14This is the same methodology used by Bollerslev et al. (2009) and Bollerslev et al. (2014) to approximate
the variance risk premium. This proxy of VRP has the advantage of being directly observable and completely
model-free as the risk-neutral expectation of the future return variation is measured by the CBOE VIX squared,
while the statistical expectation is quantified by the total realized variation over the previous month.

15The regression standard errors so constructed should also account for the estimation error in the projection
generating the pure tail factor, see Andersen et al. (2015b, 2017b).
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five years, we find that the excess returns are significantly related to ŨSPX, for most of the

forecast horizons considered. For longer-term bonds, the explanatory power of ŨSPX is never

statistically significant at the 10% level. Examining the coefficient of V RP⊥, we observe that

the component of the variance risk premium orthogonal to ŨSPX is highly significant for the

longer return horizons of short-term bonds and for the shorter horizons of long-term bonds. The

sign of the coefficient is positive in the former case and negative in the latter. Therefore, since

the variance risk premium captures both jump and diffusive spot volatility, the risk premium

associated with the diffusive part tends to predict lower bond returns at short horizons and

higher returns at long horizons. Thus we can conclude that the component of the variance

risk premium unrelated to the tail factor may have some predictive power for the Treasury

risk premia. However, since the relevant return horizon in this paper is one month and V RP⊥

does not seem to have (at this horizon) predictive power over-and-above ŨSPX for most of the

excess bond returns, it seems reasonable to us to consider the equity tail index, rather than the

variance risk premium, as a potentially relevant pricing factor for the bond market.

Motivated by the global safe haven status of U.S. government bonds (Caballero et al., 2017)

and the commonalities across countries in stock return predictability (Bollerslev et al., 2014;

Andersen et al., 2017b), we now extend our analysis to the explanatory power of the U.K. and

Euro-zone equity tail risk measures.16 We explore predictive regressions for Treasury risk premia

including the option-implied left jump intensity factor (orthogonal to spot variance) of FTSE

100 equity-index returns, ŨFTSE, and the option-implied left jump intensity factor (orthogonal

to spot variance) of EURO STOXX 50 equity-index returns, ŨESTOXX, as single explanatory

variables. Hoping to uncover stronger predictability than the one provided by the individual

country measures, we also use as predictor ŨEquity, which is the market-capitalization weighted

16In their multi-country study, Bollerslev et al. (2014) and Andersen et al. (2017b) find, respectively, that a
country’s equity “pure tail” factor and variance risk premium forecast the future equity market returns of that
country. The predictability pattern that holds true for a number of countries in addition to the United States
leads Bollerslev et al. (2014) to define a “global” variance risk premium, which, they find, is a highly significant
predictor for all of the different country returns.
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average of the option-implied pure tail factor of S&P 500, FTSE 100 and EURO STOXX 50

equity-index returns, calculated from equation (5). The univariate regressions take the form,

rx
(n−h)
t+h = d0,h + dy,h · Yt + ξYt+h , (24)

where Yt denotes one of the possible predictors, and the quantities on the left-hand side are the

same log-returns as those used for equation (23). The results are presented in Figure 3 and 4.17

Insert Figure 3 and 4 here

Inspection of Figure 3 reveals that excess Treasury returns are linked to the left jump tail

intensity factor driving stock index returns in the U.K. and Euro-area markets, for horizons

beyond four-five months and with a peak at around six months. Importantly, the same holds

true for bonds with maturity of five years or longer, for which we failed to find significant

exposures to ŨSPX in Figure 2. Furthermore, examining the short return horizons, we note

that the explanatory power of Yt = ŨESTOXX
t is statistically insignificant. On the contrary, the

option-implied tail factor of the U.K. stock market, Yt = ŨFTSE
t , contains predictive power for

the one-month excess returns on short-term bonds. A potential explanation for the observed

inverse relationship between risk premia in the U.S. government bond market and downside tail

risk in the U.K. equity market can be the role of safe asset producer that the United States play

for many economies, including the United Kingdom. For instance, as reported by the Economist

(2015), the world aggregate demand for safe assets shifted away from the U.K. supply toward

the U.S. one in 1920-45, when Britain ceased to be the world’s pre-eminent power and passed

the safe asset baton to the United States.18 Figure 4 shows qualitative features that are similar

to those of Figure 2 and 3. That is, Treasury risk premia, computed over horizons up to one

year, load negatively on a measure of downside equity tail risk, this time associated with the

17The standard errors are computed in the same way as those for the regression coefficients in equation (23).
18See Chiţu et al. (2014) for a thorough examination of how and why the dollar overtook sterling as the

dominant currency of denomination for international bonds.
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international stock market, Yt = ŨEquityt . Despite the negative sign of the coefficient, which is

in agreement with the theory of flight-to-safety, we note, however, that the results tend to be

statistically significant at the 10% level only for short-maturity bonds.

On the basis of the significant interactions observed between excess Treasury returns and

the Ũ factor of all three equity market indices considered, we deem it best to evaluate the overall

effect of the international stock market on US government securities. Hence, the equity left tail

factor that we use throughout the rest of the paper is ŨEquity, which we interpret as a measure

of international fear of future abrupt negative return shocks to the equity market.

The limited statistical power of the preliminary analysis presented thus far may be justi-

fied by the misspecification of equation (23) and (24) that should logically include additional

explanatory variables of bond risk premia. To go further in the analysis, we now estimate a

Gaussian ATSM for U.S. interest rates that includes as pricing factors the first five principal

components of Treasury yields and the equity left tail factor, ŨEquity. This is a richer framework

that allows us to explore in detail the effect of equity tail risk on contemporaneous bond yields

and future excess bond returns. The first five principal components of the U.S. yield curve

have proven to be remarkably effective in fitting the cross-section of bond yields and returns

in Adrian et al. (2013). Based on this evidence, we let these PCs drive the interest rates of

our model as well, but with a slight modification of the methodology. Indeed, in order to have

pricing factors that are uncorrelated with each other, we follow Cochrane and Piazzesi (2008)

and extract the principal components not from the conventional yields, but instead from the

yields orthogonalized to the extra factor, which in our study is ŨEquity. By doing so, we obtain

yield curve factors that are unrelated to the pricing of tail risk in the stock market, which is

entirely ascribed to the ŨEquity factor. The choice of those state variables for our model is

supported by the following observations. First, we note that the equity left tail factor is poorly

spanned by the first five PCs extracted from the non-orthogonalized yields. Indeed, a regression

of ŨEquity on the traditional level, slope and curvature factors augmented with the fourth and
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fifth principal components results in an R2 of only 28%. We find no significant relationships

between the equity left tail factor and these PCs, as the largest correlation coefficient is −0.35

with the level factor. Therefore, if we want to capture the effect of equity tail risk on bond

risk premia we must include ŨEquity separately in the vector of pricing factors, Xt, and or-

thogonalize for convenience the remaining factors. The second observation that we make about

the choice of the state variables in Xt is that we cannot exclude the fourth and fifth principal

components of the yield curve. The regressions of PC4 and PC5 on the equity left tail factor

yield an R2 of, respectively, 6% and 2%. These results imply that ŨEquity does not subsume

the predictive ability of the fourth and fifth principal components of the yield curve, which are,

therefore, needed to explain the cross-section of bond returns as well as the model of Adrian

et al. (2013). In view of these considerations, we employ the following set of pricing factors in

our Gaussian ATSM,

Xt =
[
ŨEquityt , PC1t, PC2t, PC3t, PC4t, PC5t

]′
, (25)

where ŨEquity is the equity left tail factor from equation (5) and PC1–PC5 are the first five

principal components estimated from an eigenvalue decomposition of the covariance matrix

of zero-coupon bond yields of maturities n = 3, 6, ..., 120 months, orthogonal to ŨEquity. All

factors have mean zero and unit variance, and they are plotted in Figure 5. The panels of

PC1–PC5 also present the principal components of the conventional non-orthogonalized bonds

yields. We find that estimates of the factors extracted using the two yield curves track each

other quite closely, with the largest differences occurring for PC1 at the onset of the financial

crisis. Therefore, the orthogonalization of the rates with respect to ŨEquity does not appear

to significantly alter the interpretation and role of the principal components in describing the

characteristics of the U.S. Treasury yield curve.

Insert Figure 5 here
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Given the vector of state variables in (25), we estimate our Gaussian ATSM using the method

put forward by Adrian et al. (2013) and discussed in Section 3. In particular, we use a total of

N = 20 one-month excess returns for Treasury bonds with maturities n = 6, 12, ..., 120 months

to fit the cross-section of yields. The estimation approach by Adrian et al. (2013) allows for

direct testing of the presence of unspanned factors, i.e. factors that do not help explain variation

in Treasury returns. The specification test is implemented as a Wald test of the null hypothesis

that the exposures of bond returns to a given model factor are jointly equal to zero. Letting

βi be the i-th column of β
′
, the Wald statistic, under the null H0 : βi = 0N×1, is defined as

follows,

Wβi = β̂
′
iV̂−1
βi

β̂i
α∼ χ2(N) , (26)

where V̂βi is an N×N diagonal matrix that contains the estimated variances of the β̂i coefficient

estimates.19 The results of the Wald test on the pricing factors of both the proposed ATSM

with equity tail risk and a benchmark model based on only the first five PCs of the yield curve

are shown in Table 4. As we can see, we strongly reject the hypothesis of unspanned factor

for each of our state variables. This means that the data support the use of the equity left

tail factor ŨEquity, together with the yield curve factors indicated by Adrian et al. (2013), for

pricing bonds in the U.S. market over the period 2007 – 2016.

Insert Table 4 here

The summary statistics of the pricing errors implied by our term structure model, which

accounts for equity tail risk, and the benchmark PC-only specification are provided in Table 5.

Overall the results indicate a good fit between the data and the proposed model with equity

tail risk. Indeed, both the mean and the standard deviation of our yield pricing errors remain

well below half of a basis point for all maturities and they never exceed, in absolute value, those

of the benchmark. As for the return pricing errors, we can see that including our equity tail

19See Appendix A.1 in Adrian et al. (2013) for the analytical expressions of the asymptotic variance of the
estimators.
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risk measure explicitly in the Gaussian ATSM improves the fit especially to the short end of

the U.S. yield curve. Moreover, consistent with the way Adrian et al. (2013) construct their

framework for the term structure of interest rates, we observe a strong autocorrelation in the

yield pricing errors and a negligible one in the return pricing errors. The success of our model

in fitting the yield curve is shown graphically in the left panels of Figure 6. In these plots, the

solid black lines of observed yields are visually indistinguishable from the dashed gray lines of

model-implied yields. Similarly, the right panels of Figure 6 display the tight fit between actual

and fitted excess Treasury returns. The dashed red lines plot the model-implied dynamics of

bond term premia in the left panels and of the expected component of excess returns in the

right panels.

Insert Table 5 and Figure 6 here

We now examine whether the risk factors that we use in our Gaussian ATSM are priced in

the cross-section of Treasury returns. To this end, we follow Adrian et al. (2013) and perform

a Wald test of the null hypothesis that the market price of risk parameters associated with a

given model factor are jointly equal to zero. Letting λ
′
i be the i-th row of Λ = [λ0 λ1], the

Wald statistic, under the null H0 : λ
′
i = 01×(K+1), is defined as follows,

WΛi = λ̂
′
iV̂−1
λi

λ̂i
α∼ χ2(K + 1) , (27)

where V̂λi is a square matrix of order (K + 1) that contains the estimated variances of the

λ̂i coefficient estimates.20 In addition, in order to test whether the market prices of risk are

time-varying, Adrian et al. (2013) propose the following Wald test which focuses on λ1 and

excludes the contribution of λ0. Letting λ
′
1i

be the i-th row of λ1, the Wald statistic of this

20See Appendix A.1 in Adrian et al. (2013) for the analytical expressions of the asymptotic variance of the
estimators.
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second test, under the null H0 : λ
′
1i

= 01×(K), is defined as follows,

Wλ1i
= λ̂

′
1iV̂
−1
λ1i

λ̂1i
α∼ χ2(K) . (28)

In Table 6, we report the estimates and t-statistics for the market price of risk parameters in

the proposed Gaussian ATSM, together with the Wald statistics and p-values for the two tests

just described. Examining the first row of the table, we note that equity tail risk, as measured

by exposure to ŨEquity, is strongly priced in our term structure model with a p-value of 5.7%.

We detect statistically significant time variation in the market price of equity tail risk, which

are mostly explained by the equity left tail factor itself. Furthermore, we find that nearly all

the coefficients in the second column of the table are statistically significant at the 1% level.

These results suggest that ŨEquity is an important driver of the market price of risk related to

the factors that explain the yield curve movements. The only exception is in the risk associated

with PC4, which, however, in accordance with the findings of Adrian et al. (2013), does not

seem to be strongly priced in the bond market. Finally, we observe that the second principal

component carries a significant price of risk in our term structure model. This result, together

with the fact that Adrian et al. (2013) find a significant market price of slope risk only after

adding an unspanned real activity factor to their framework, corroborates the hypothesis that

valuable information about bond premia is located outside of the yield curve.

Insert Table 6 here

We now discuss the impact of the state variables of our Gaussian ATSM on the pricing of

U.S. Treasury bonds. The loadings of the yields on all model factors are reported in Figure 7,

whereas the loadings of the expected one-month excess returns are displayed in Figure 8. From

an examination of the state variables that are in common with the work of Adrian et al. (2013),

we can see that our results are broadly consistent with the well-established role of these factors.

Indeed, given the sign of the yield loadings on PC1, PC2 and PC3, we can argue that the first
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three principal components of yields preserve in our study the interpretation of, respectively,

level, slope and curvature of the term structure. Moreover, the yield loadings on PC4 and PC5

are both quite small, reflecting the modest variability of bond rates explained by these factors.

As can be seen from Figure 8, however, all the principal components, including the higher order

ones, are important to explain variation in Treasury returns. Specifically, in line with previous

findings concerning the predictability of bond returns with yield spreads, our evidence suggests

that an increase in the slope factor forecasts higher expected excess returns on bonds of all

maturities. Now turning to the new pricing factor that we propose in this paper, we observe

from the top left panel of Figure 7 that the yield loadings on ŨEquity are negative across all

maturities. These results imply that bond prices, which move inversely to yields, rise in response

to a contemporaneous shock to the equity left tail factor. And since, by construction, ŨEquity is

associated with a downturn in the international stock market, we confirm the hypothesis that

U.S. Treasury bonds benefit from flight-to-safety flows during periods of turmoil. Further, it

is worth noting that, according to the size of the loadings, the contemporaneous effect of the

equity left tail factor on the yield curve is not negligible compared to that of the first three

principal components. Additional evidence of flight-to-safety is provided in the top left panel of

Figure 8 where the expected excess return loadings on ŨEquity are displayed. The coefficients

are negative and tend to decrease with the maturity of the bond. Therefore, calculation of the

second term in equation (11) suggests that the risk premium required by investors for holding

U.S. Treasury securities for one month shrinks in response to a contemporaneous shock to the

equity left tail factor. In particular, we find that a one standard deviation increase in the

ŨEquity factor reduces the annualized expected excess return by up to about 2% for short-

maturity and medium-maturity bonds. These observations about Treasury returns, combined

with the previously documented positive relationship between the “pure tail” factor and future

equity returns (Andersen et al., 2015b, 2017b), indicate a common predictor across the two

asset classes, whose existence can be justified by the safe haven potential of U.S. Treasuries.
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Insert Figure 7 and 8 here

In order to assess the significance of our results, we report in Table 7 the estimates and t-

statistics of the expected excess return loadings associated with the N = 20 Treasury maturities

used to fit the cross-section of yields.21 To ease visual interpretation of the results, Figure 9 plots

the absolute value of the t-statistics against the critical value of 1.64 for the 10% significance

level. From an examination of the loadings on ŨEquity, it seems that, although the equity left tail

factor predicts lower future returns across the whole yield curve, the significance of the results

decreases with the maturity of the bonds. Indeed, we find that the ŨEquity factor has highly

significant explanatory power for future returns only on Treasuries with maturities ranging from

one to four years. Based on this evidence, we argue that when the equity market tumbles, the

short end of the U.S. yield curve is more strongly affected by flight-to-safety than the long end.

When looking at the return loadings on the remaining pricing factors of the Gaussian ATSM,

we note a remarkably strong predictive ability of PC1 and PC2 over a wide range of maturities.

By contrast, the higher order principal components have significant forecast power for future

returns on Treasuries with either only short maturity or only long maturity.

Insert Table 7 and Figure 9 here

The analysis presented thus far can be related to the work of Kaminska and Roberts-Sklar

(2015), who assess the importance of global market sentiment for the term structure of U.K.

government bonds. The authors use the variance risk premium of U.S., U.K. and Euro-area

equity markets to construct a proxy of global risk aversion, which then they introduce explicitly

as a pricing factor into a Gaussian ATSM.22 However, by studying the impact of risk aversion

21We use a delta method approach to estimate the standard errors of the expected excess return loadings on
the pricing factors of the model. The coefficients are calculated as β(n)′λ

(i)
1 and represent the response of the

expected one-month excess return on the n-month bond to a contemporaneous shock to the i-th factor. The
use of β(n)′ in place of b

′
n is allowed since the derivation of log bond prices in the ATSM is exact conditional

on the equivalence of the two measures. Standard errors are calculated using the analytical expressions for the
asymptotic variance and covariance of β̂ and Λ̂ provided in Appendix A.1 of Adrian et al. (2013).

22Kaminska and Roberts-Sklar (2015) obtain the global measure of risk aversion either as the market capital-
ization weighted average or as the first principal component of the individual VRPs. As the authors claim, the
results are not sensitive to the choice of the aggregation method.

25



on U.K. bond data, Kaminska and Roberts-Sklar (2015) reach a different conclusion from ours:

future excess bond returns for all maturities load positively on the equity market factor. We

can interpret this as evidence of “weak” FTS affecting the U.K. term structure if we believe

that their VRP-based measure and our equity left tail factor capture similar attributes of the

stock market. Alternatively or concomitantly, the different conclusions drawn can be traced to

differences in the equity factor used in the Gaussian ATSM of the two studies.

We conclude this subsection by discussing how equity tail risk has affected bond term premia

over the course of time. To conduct the analysis, we use forward rates because, as suggested by

Abrahams et al. (2016), their variation may be ascribed more to changes in risk premia than to

changes in the expected future short rate. The left panels of Figure 10 show the dynamics of

the 2-3y, 2-5y and 5-10y forward Treasury rates and their components, whereas the right panels

illustrate the effect of the equity left tail factor on the term premia of those forward rates. We

determine the contribution of ŨEquity to FTP in equation (22) as the difference between the

component of fitted forward rates and the component of their risk-neutral counterparts that the

model attributes to the equity left tail factor. The following remarks can be made by observing

Figure 10. As anticipated, we confirm that the expectations of future short spot rates embedded

in forward yields (and represented by the risk-neutral forward rates) remain stable throughout

time, especially in the case of far in the future forwards. Therefore it follows that oscillations in

forward rates reflect, in large part, adjustments in the required term premia. We note that the

outburst of the 2008-09 financial crisis marks the beginning of a long period of declining rates

which was interrupted only briefly by the Federal Reserve’s “taper tantrum” in 2013. Although

the same pattern is observed for all yields presented in Figure 10, it is interesting to see how

the ŨEquity factor influenced the downward trend of term premia differently depending on the

maturity. Indeed, from the right panels of Figure 10, it appears that the term premium of short-

maturity forward rates was strongly affected by equity tail risk, whereas the response of far in

the future forward rates was consistently very small. This further corroborates our previous
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conclusion that short-term bonds provide a more effective shelter against equity market losses

than long-term bonds do. For the 2-3y and 2-5y forward Treasury rates, we measure the impact

of ŨEquity on FTP to be as large as −100 and −75 basis points, respectively, at the peak of

the crisis. The forward term premia show strong downward oscillations also in the first half

of 2010 and second half of 2011, when the equity left tail factor increased in response to the

intensification of the European sovereign debt crisis. In both these instances, the extent of the

reduction in bond term premia that can be credited to equity tail risk is approximately 50 basis

points. In conclusion, we can state that equity jump tail risk has played a central role in shaping

the short end of the U.S. Treasury yield curve since the outburst of the recent financial crisis.

Insert Figure 10 here

5 Conclusion

In this paper, we study the response of U.S. Treasury bonds to extreme events happening

in the international stock market. We propose an affine term structure model in which the

main drivers of interest rates are the principal components of the zero-coupon yield curve and

a downside jump intensity factor extracted from S&P 500, FTSE 100 and EURO STOXX

50 equity-index options. While earlier approaches to pricing bonds with factors other than

combinations of yields have proven useful when macro variables are considered, we focus here

on the safe haven potential of U.S. Treasuries and use a factor that originates in the equity

option markets of developed countries.

The results of our main application to U.S. bond market and international stock market

data are summarized as follows. First, equity jump tail risk is strongly priced and exhibits

significant time variation within the term structure model. Second, consistent with the theory

of flight-to-safety, bond prices increase and future expected excess returns shrink in response

to a contemporaneous shock to the equity left tail factor. Third, the equity left tail factor has
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significant explanatory power for future returns on Treasuries with maturities ranging from one

to four years. Finally, large drops in term premia at the short end of the U.S. yield curve are

attributable to equity tail risk since the outburst of the recent financial crisis.

A natural direction for future research is to apply the methodology outlined in this paper

to the yield curve of a wide range of developed countries. In particular, the model would allow

to explore in detail the effect of equity tail risk and, therefore, uncover evidence of FTS in the

government bond market of countries other than the U.S.

Given our findings with a downside jump intensity factor related to the international stock

market, it would also be worth assessing the impact on the yield curve of a tail factor implied

by Treasury options. For instance, it would be interesting to see whether the downside tail

risk of the bond market receives compensation in a term structure model and how its pricing

differs from that of equity jump tail risk. This would contribute to the recent literature on the

auxiliary role of Treasury variance risk premium in predicting higher expected bond returns

(Mueller et al., 2016). We leave investigation of such possibilities to future research.
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Table 1 – SPX – Three-Factor Double Exponential Model - Estimation Results

Parameter Estimate Constrained Parameter Estimate Constrained

ρ1 −0.961 - ρu 0.530 -

v̄1 0.003 - c−0 0.000

κ1 11.425 - c+0 0.353 -

σ1 0.580 - c−1 115.137 -

µ1 12.962 - c+1 24.943 -

ρ2 −0.978 - c−2 0.000

v̄2 0.010 - c+2 84.677 -

κ2 1.881 - c−3 1.000

σ2 0.192 - c+3 0.000

η 0.000 λ− 26.016 -

µu 7.492 - λ+ 37.235 -

κu 0.096 -

Notes: This table provides the in-sample estimates of parameter vector θ of the Three-Factor Double Exponential
Model discussed in Section 2 and applied to S&P 500 equity-index options. All parameters are expressed in
annualized terms. A in the “Constrained” column means that the corresponding parameter is not freely
estimated, but instead is set to the value reported in the “Estimate” column. Model is estimated using data
sampled at the end of each month over the period from January 2007 through November 2016.
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Table 2 – FTSE – Three-Factor Double Exponential Model - Estimation Results

Parameter Estimate Constrained Parameter Estimate Constrained

ρ1 −0.956 - ρu 0.505 -

v̄1 0.004 - c−0 0.000

κ1 14.282 - c+0 0.286 -

σ1 0.425 - c−1 189.405 -

µ1 11.220 - c+1 20.163 -

ρ2 −0.984 - c−2 0.000

v̄2 0.005 - c+2 83.979 -

κ2 1.540 - c−3 1.000

σ2 0.247 - c+3 0.000

η 0.000 λ− 23.894 -

µu 5.865 - λ+ 44.372 -

κu 0.093 -

Notes: This table provides the in-sample estimates of parameter vector θ of the Three-Factor Double Exponential
Model discussed in Section 2 and applied to FTSE 100 equity-index options. All parameters are expressed in
annualized terms. A in the “Constrained” column means that the corresponding parameter is not freely
estimated, but instead is set to the value reported in the “Estimate” column. Model is estimated using data
sampled at the end of each month over the period from January 2007 through November 2016.
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Table 3 – ESTOXX – Three-Factor Double Exponential Model - Estimation Results

Parameter Estimate Constrained Parameter Estimate Constrained

ρ1 −0.921 - ρu 0.786 -

v̄1 0.009 - c−0 0.000

κ1 13.173 - c+0 0.581 -

σ1 0.557 - c−1 118.055 -

µ1 14.306 - c+1 19.145 -

ρ2 −0.024 - c−2 0.000

v̄2 0.034 - c+2 52.345 -

κ2 0.000 - c−3 1.000

σ2 0.385 - c+3 0.000

η 0.000 λ− 24.926 -

µu 11.636 - λ+ 40.905 -

κu 0.654 -

Notes: This table provides the in-sample estimates of parameter vector θ of the Three-Factor Double Exponential
Model discussed in Section 2 and applied to EURO STOXX 50 equity-index options. All parameters are expressed
in annualized terms. A in the “Constrained” column means that the corresponding parameter is not freely
estimated, but instead is set to the value reported in the “Estimate” column. Model is estimated using data
sampled at the end of each month over the period from January 2007 through November 2016.
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Table 4 – Gaussian ATSM - Factor Risk Exposures

Equity Tail Risk ATSM PC-only ATSM

Factor Wβi p-value Wβi p-value

ŨEquity 25905227.061 0.000 - -

PC1 87227968.158 0.000 74933420.309 0.000

PC2 19231616.842 0.000 19299290.011 0.000

PC3 3162887.185 0.000 2823467.516 0.000

PC4 370962.032 0.000 359581.671 0.000

PC5 32999.643 0.000 31014.780 0.000

Notes: This table provides the Wald statistics and corresponding p-values for the Wald test of whether the
exposures of bond returns to a given model factor are jointly zero. Under the null H0 : βi = 0N×1 the i-th
pricing factor is unspanned, i.e. Treasury returns are not exposed to that factor. The p-values of the statistics are
obtained from a chi-squared distribution with N = 20 degrees of freedom. The test is conducted on the pricing
factors of both the proposed ATSM specified with equity tail risk and a benchmark PC-only model specification.
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Table 5 – Gaussian ATSM - Fit Diagnostics

Panel A: Equity Tail Risk ATSM

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

Panel A1: Yield Pricing Errors

Mean −0.001 0.000 0.000 0.000 0.000 0.000
Standard Deviation 0.002 0.001 0.001 0.001 0.001 0.002
Skewness −0.915 1.959 1.772 −0.771 1.311 −1.001
Kurtosis 5.639 9.615 7.100 5.510 6.819 6.021
ρ(1) 0.751 0.741 0.822 0.756 0.751 0.775
ρ(6) 0.184 0.195 0.286 0.137 0.137 0.053

Panel A2: Return Pricing Errors

Mean −0.001 0.001 0.001 −0.002 0.001 −0.004
Standard Deviation 0.023 0.019 0.025 0.058 0.035 0.191
Skewness −0.232 −0.876 −1.208 0.180 −0.555 0.110
Kurtosis 5.355 13.607 9.911 5.072 11.396 4.474
ρ(1) −0.089 −0.207 −0.067 −0.122 −0.174 −0.033
ρ(6) 0.021 0.194 0.178 0.032 0.194 0.023

Panel B: PC-only ATSM

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

Panel B1: Yield Pricing Errors

Mean 0.002 0.000 0.001 0.000 0.000 0.000
Standard Deviation 0.004 0.002 0.001 0.002 0.001 0.002
Skewness −1.179 2.066 2.584 −0.925 0.290 −1.229
Kurtosis 3.845 8.830 10.829 2.977 2.488 5.495
ρ(1) 0.893 0.836 0.856 0.856 0.898 0.779
ρ(6) 0.520 0.381 0.325 0.461 0.519 0.121

Panel B2: Return Pricing Errors

Mean 0.000 −0.004 0.000 0.000 −0.007 0.006
Standard Deviation 0.028 0.020 0.029 0.057 0.041 0.178
Skewness −0.247 −0.067 −1.884 −0.220 −0.090 −0.195
Kurtosis 14.254 13.450 16.218 11.378 6.291 5.735
ρ(1) −0.106 −0.177 −0.110 −0.189 −0.097 −0.078
ρ(6) 0.123 0.267 0.244 0.120 0.158 0.067

Notes: This table contains the summary statistics of the pricing errors implied by the Gaussian ATSM that
includes equity tail risk (Panel A) and by the benchmark model that only uses the first five PCs of the yield
curve (Panel B). Models are estimated over the period 2007 to 2016. Reported are the sample mean, standard
deviation, skewness, kurtosis and the autocorrelation coefficients of order one and six. Panels A1 and B1:
properties of the yield pricing errors û. Panels A2 and B2: properties of the return pricing errors ê. n denotes
the maturity of the bonds in months.
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Table 6 – Gaussian ATSM - Market Prices of Risk

Factor λ0 λ1,1 λ1,2 λ1,3 λ1,4 λ1,5 λ1,6 WΛi Wλ1i

ŨEquity 0.112 0.776 0.031 −0.140 0.207 −0.075 −0.217 13.675 13.464
(0.697) (3.548) (0.193) (−0.885) (1.269) (−0.459) (−1.343) (0.057) (0.036)

PC1 0.007 0.325 −0.037 −0.104 0.067 0.009 −0.047 16.401 16.400
(0.107) (3.817) (−0.589) (−1.658) (1.035) (0.134) (−0.730) (0.022) (0.012)

PC2 −0.065 −0.264 0.009 −0.015 −0.072 0.087 0.075 15.748 14.955
(−1.058) (−3.457) (0.148) (−0.241) (−1.165) (1.414) (1.218) (0.028) (0.021)

PC3 0.106 −0.180 0.040 0.071 −0.131 0.054 0.010 25.002 20.674
(2.081) (−3.356) (0.790) (1.398) (−2.558) (1.069) (0.200) (0.001) (0.002)

PC4 −0.172 −0.035 0.035 −0.045 0.055 −0.168 0.035 11.931 6.704
(−2.308) (−0.399) (0.480) (−0.614) (0.739) (−2.255) (0.464) (0.103) (0.349)

PC5 0.047 0.223 −0.017 −0.026 0.123 −0.177 −0.118 39.019 38.271
(0.905) (4.116) (−0.331) (−0.507) (2.364) (−3.423) (−2.260) (0.000) (0.000)

Notes: This table provides the estimates of the market price of risk parameters λ0 and λ1 in equation (9) for
the Gaussian ATSM specified with equity tail risk. Estimated t-statistics are reported in parentheses. Wald
statistics for tests of the rows of Λ and of λ1 being different from zero are reported along each row, with the
corresponding p-values in parentheses below. The null hypothesis underlying WΛi is that the risk related to a
given factor is not priced in the term structure model. The null hypothesis underlying Wλ1i

is that the price of
risk associated with a given factor does not vary over time.
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Table 7 – Gaussian ATSM - Expected Excess Return Loadings

Maturity ŨEquity PC1 PC2 PC3 PC4 PC5

6m −0.005 0.023 0.002 0.015 −0.010 −0.014
(−0.902) (3.909) (0.400) (2.544) (−1.684) (−2.302)

12m −0.029 0.050 0.016 0.021 −0.012 −0.030
(−2.108) (3.723) (1.173) (1.525) (−0.901) (−2.227)

18m −0.058 0.078 0.036 0.018 −0.012 −0.047
(−2.537) (3.400) (1.596) (0.775) (−0.509) (−2.022)

24m −0.087 0.106 0.062 0.011 −0.014 −0.063
(−2.588) (3.140) (1.835) (0.336) (−0.426) (−1.862)

30m −0.112 0.133 0.090 0.005 −0.024 −0.080
(−2.470) (2.939) (1.986) (0.107) (−0.520) (−1.757)

36m −0.132 0.160 0.121 0.001 −0.040 −0.098
(−2.279) (2.774) (2.093) (0.010) (−0.703) (−1.692)

42m −0.146 0.185 0.153 0.000 −0.065 −0.117
(−2.060) (2.628) (2.173) (−0.002) (−0.924) (−1.654)

48m −0.154 0.208 0.187 0.003 −0.096 −0.137
(−1.836) (2.494) (2.238) (0.038) (−1.155) (−1.631)

54m −0.157 0.229 0.222 0.011 −0.133 −0.157
(−1.620) (2.367) (2.291) (0.110) (−1.376) (−1.615)

60m −0.157 0.247 0.257 0.022 −0.173 −0.178
(−1.419) (2.244) (2.335) (0.199) (−1.577) (−1.602)

66m −0.153 0.262 0.293 0.037 −0.216 −0.197
(−1.236) (2.124) (2.371) (0.296) (−1.752) (−1.588)

72m −0.148 0.275 0.329 0.054 −0.260 −0.217
(−1.074) (2.007) (2.401) (0.392) (−1.898) (−1.571)

78m −0.141 0.285 0.365 0.074 −0.304 −0.235
(−0.934) (1.894) (2.425) (0.485) (−2.016) (−1.549)

84m −0.135 0.294 0.402 0.094 −0.346 −0.252
(−0.815) (1.786) (2.444) (0.569) (−2.107) (−1.522)

90m −0.128 0.300 0.439 0.116 −0.387 −0.268
(−0.717) (1.682) (2.459) (0.644) (−2.172) (−1.491)

96m −0.123 0.304 0.475 0.137 −0.425 −0.282
(−0.640) (1.584) (2.470) (0.709) (−2.213) (−1.456)

102m −0.120 0.308 0.511 0.159 −0.460 −0.294
(−0.580) (1.492) (2.479) (0.763) (−2.235) (−1.417)

108m −0.119 0.309 0.547 0.179 −0.493 −0.305
(−0.538) (1.407) (2.486) (0.807) (−2.240) (−1.376)

114m −0.120 0.310 0.583 0.198 −0.521 −0.314
(−0.511) (1.327) (2.491) (0.840) (−2.231) (−1.332)

120m −0.124 0.310 0.618 0.216 −0.546 −0.321
(−0.498) (1.255) (2.496) (0.865) (−2.210) (−1.287)

Notes: This table provides the estimates and t-statistics (in parentheses) of the expected excess return loadings on

the factors of the proposed ATSM with equity tail risk. These coefficients are calculated as β(n)′λ
(i)
1 and can be

interpreted as the response of the expected one-month excess return on the n-month bond to a contemporaneous
shock to the i-th pricing factor. Results are provided for the N = 20 Treasury returns used for model estimation.
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Figure 1 – Monthly option-implied state variables for the S&P 500, FTSE 100 and EURO STOXX 50 equity-
index returns. Estimates are obtained using the model parameter values from Table 1, 2 and 3. Top panel:
annualized spot variance. Middle panel: annualized negative jump intensity factor. Bottom panel: component
of the negative jump intensity factor orthogonal to spot variance and normalized to have mean zero and unit
variance. The equity left tail risk factor that we use in the Gaussian ATSM for U.S. interest rates is obtained as
the market-capitalization weighted average of the Ũ factor of the three stock market indices.
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Figure 2 – Results of the regressions of excess returns of U.S. Treasury bonds with 1-, 2-, 3-, 4-, 5-, 7- and
10-year maturities on the option-implied left jump intensity factor (orthogonal to spot variance) of S&P 500

equity-index returns, ŨSPX, and the variance risk premium orthogonal to ŨSPX, V RP⊥. Regressions are run for
holding periods from 1 to 12 months using the full sample of data from 2007 to 2016. Left panels: Newey-West
t-statistics for the regression slopes, along with regions of statistical insignificance at the 10% level (shaded area).

Right panels: regression R2 obtained using just V RP⊥ (dashed line) and both ŨSPX and V RP⊥ (solid line).
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Figure 3 – Results of the regressions of excess returns of U.S. Treasury bonds with 1-, 2-, 3-, 4-, 5-, 7- and
10-year maturities on the option-implied left jump intensity factor (orthogonal to spot variance) of FTSE 100,

ŨFTSE, and of EURO STOXX 50 equity-index returns, ŨESTOXX. Regressions are run separately on each intensity
factor, for holding periods from 1 to 12 months using the full sample of data from 2007 to 2016. Left panels:
Newey-West t-statistics for the regression slopes, along with regions of statistical insignificance at the 10% level
(shaded area). Right panels: R2 of the regressions on ŨFTSE (solid line) and on ŨESTOXX (dashed line).
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Figure 4 – Results of the regressions of excess returns of U.S. Treasury bonds with 1-, 2-, 3-, 4-, 5-, 7- and
10-year maturities on a constant and ŨEquity, which is the market-capitalization weighted average of the option-
implied left jump intensity factor (orthogonal to spot variance) of S&P 500, FTSE 100 and EURO STOXX 50
equity-index returns. Regressions are run for holding periods from 1 to 12 months using the full sample of data
from 2007 to 2016. Left panels: Newey-West t-statistics for the coefficient of ŨEquity, along with regions of
statistical insignificance at the 10% level (shaded area). Right panels: R2 of the regressions.
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Figure 5 – Monthly time series of the pricing factors of our Gaussian ATSM. The top-left panel shows the equity
left tail factor associated with the S&P 500, FTSE 100 and EURO STOXX 50 index returns, calculated from
equation (5) and then normalized to have mean zero and unit variance. The remaining panels show the first five
standardized principal components extracted from the U.S. Treasury yields of maturities n = 3, 6, ..., 120 months,
orthogonal to the ŨEquity factor. The light-colored dashed lines show the principal components extracted from
non-orthogonalized yields, which, however, are not used as pricing factors in our model.
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Figure 6 – Observed and model-implied time series of yields and one-month excess returns on U.S. Treasury
bonds with 1-, 5- and 10-year maturities. In the left panels, the solid black lines show the observed yields,
the dashed gray lines plot the model-implied yields, while the dashed red lines indicate the model-implied term
premia. In the right panels, the solid black lines show the observed excess returns, the dashed gray lines plot the
model-implied excess returns, while the dashed red lines indicate the model-implied expected excess returns.
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Yield Loadings

Figure 7 – Model-implied yield loadings on the pricing factors of the proposed ATSM with equity tail risk.
These coefficients are calculated as −(1/n)bn and can be interpreted as the response of the n-month yield to a

contemporaneous shock to the respective factor. ŨEquity represents the equity left tail factor associated with the
S&P 500, FTSE 100 and EURO STOXX 50 index returns, calculated from equation (5) and then standardized.
PC1 – PC5 denote the first five standardized principal components extracted from the U.S. Treasury yields
orthogonal with respect to the ŨEquity factor.
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Expected Excess Return Loadings

Figure 8 – Model-implied expected excess return loadings on the pricing factors of the proposed ATSM with

equity tail risk. These coefficients are calculated as b
′
nλ1 and can be interpreted as the response of the expected

one-month excess return on the n-month bond to a contemporaneous shock to the respective factor. ŨEquity

represents the equity left tail factor associated with the S&P 500, FTSE 100 and EURO STOXX 50 index
returns, calculated from equation (5) and then standardized. PC1 – PC5 denote the first five standardized

principal components extracted from the U.S. Treasury yields orthogonal with respect to the ŨEquity factor.
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Significance of Expected Return Loadings

Figure 9 – Significance of expected return loadings on the pricing factors of the proposed ATSM with equity
tail risk. The absolute value of the t-statistic is reported for the N = 20 one-month excess Treasury returns used
to fit the cross-section of yields. The solid red lines depict the critical value of the statistics for the significance
level of 10%. ŨEquity represents the equity left tail factor associated with the S&P 500, FTSE 100 and EURO
STOXX 50 index returns, calculated from equation (5) and then standardized. PC1 – PC5 denote the first five

standardized principal components extracted from the U.S. Treasury yields orthogonal with respect to ŨEquity.
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Figure 10 – Contribution of changes in equity tail risk to the term premia embedded in the 2-3y, 2-5y and
5-10y forward Treasury rates. In the left panels, the solid black lines show the model-implied m-n forward rates,
the dashed gray lines plot the risk-neutral m-n forward rates (the average expectation of the short rates over
the next m to n periods), while the dashed red lines indicate the model-implied term premia embedded in the
m-n forward rates. In the right panels, the solid dark gray lines show the impact over time of the equity left tail
factor ŨEquity on the model-implied term premium of the m-n forward Treasury rates.
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