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Abstract

Complementary to the existing literature that extensively studied credence
goods markets in static settings, we develop a dynamic model in which a durable
good breaks down stochastically after treatments, and the customer meets the ex-
pert recurrently. We assume that the minor treatment alleviates the symptom of
the major problem but fails to cure it, increasing the future failure rate. In contrast
to the literature, we show that the truth-telling equilibrium never exists under the
verifiability assumption, because the standard equal-margin condition fails. In our
dynamic setting, the expert has a stronger incentive to undertreat since undertreat-
ment induces more future business. But on the other hand, the customer becomes
less willing to pay for the minor treatment for fear of increased future payments.
Therefore, depending on the relative magnitude of these two opposing forces, ei-
ther undertreatment or overtreatment can emerge in equilibrium. Surprisingly, the
expert’s incentive to undertreat weakens as the increment of failure rates rises.
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1 Introduction

In the credence goods market, the expert has superior knowledge about the customer’s

needs. And even after consuming the good, the customer learns nothing about whether

the purchased quantity/quality is the most desirable for her. Medical treatments and car

repair services are popular examples of credence goods. A medical doctor knows what the

appropriate treatment is following a diagnosis, but the patient has no idea whether the

prescribed treatment is the most suitable even when the symptom disappears after the

treatment. A car mechanic knows whether replacing a nail or the whole engine is sufficient

to fix the breakdown while the driver without any expertise has to rely entirely on the

recommendation. Enjoying such an informational advantage, the expert is often suspected

of behaving dishonestly in recommending inappropriate treatments (undertreatment or

overtreatment) or charging high prices for simple procedures (overcharging), which leads

to market inefficiencies.

It is observed that a consumer would repeatedly purchase credence goods because cre-

dence goods are often associated with durables, such as automobiles, computers, health,

etc. A durable good tends to break down multiple times over its lifetime and thus

maintenance services, credence goods, are frequently required. Referring back to the car

mechanic example, the vehicle as a durable is supposed to break down again after the

repair. And often times, as long as the car is good to drive, the driver would not know

whether only the symptom is alleviated or the problem is fully fixed. For example, re-

placing a wire may still bring a seriously damaged car back to the street when fully fixing

the problem requires the replacement of the whole engine. However, the car would more

easily break down when it is undertreated, increasing the future demand for repair. In

this paper, we explicitly model this dynamic incentive of the expert and investigate its

implications on potential frauds.

The existing literature on credence goods since Darby and Karni (1973), who coined

this term, typically models the interaction between the expert and the customer by a

one-shot game, which we consider insufficient to capture the abovementioned dynamic

incentive. Dulleck and Kerschbamer (2006) provided a comprehensive review and a uni-

fied framework of the one-shot models. They argued that under different assumptions,

various types of expert’s misbehavior may be of concern.1 In particular, if liability rules

are absent, under the verifiability assumption where the type of treatment is observable

to the customer and verifiable to the court, undertreatment and overtreatment are po-

tential misbehaviors. However, with the commitment assumption, i.e., the customer is

committed to accepting the treatment recommendations, it was shown that market forces

1Emons (1997) showed the existence of equilibrium with nonfraudulent behavior under capacity con-
straint and verifiability assumption. Wolinsky (1993) examined the role of second opinion in disciplining
the expert’s behavior. Fong (2005) showed that liability does not necessarily imply frauds and that
heterogeneity among customers can give rise to selective cheating.
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successfully discipline the expert to be honest, because he would find it optimal to set

an equal profit margin for both treatments and hence has no incentive to lie. This is

also confirmed in Fong, Liu, and Wright (2014) who dropped the commitment assump-

tion. Truth-telling coupled with equal-margin prices is always an equilibrium when prices

are exogenous although it may not be the most profitable with endogenous prices. In

contrast, the equal-margin condition falls apart in our model once we incorporate the

dynamic incentive for undertreating, and thus the truth-telling equilibrium is completely

destroyed even under exogenous prices. Intuitively, in our model, honestly treating the

major problem requires a sufficiently higher profit margin for the major treatment to

compensate for the loss of future business which would otherwise be induced through

undertreatment. This dynamic incentive is absent in the static models without recurrent

interactions between the expert and the customer.

Other papers studying the dynamics of the credence goods markets are mostly models

of repeated games. Those models typically consist of a long-lived expert and a sequence

of short-lived customers, and investigate how the reputation concern would prevent the

expert from lying (e.g., Fong and Liu (2018), Fong, Liu, and Meng (2017)). Our model

differs from those repeated games in that the expert and the customer are both long-lived,

and more importantly, their frequency of interactions is affected by the expert’s behavior.

These differences are essential because they are the source of the expert’s incentive for

undertreatment that we consider as an important feature of the credence goods markets.

This dynamic incentive is absent in either the static models or the repeated game models.

The most related theory to this paper is Taylor (1995). Our model shares a similar setup

with his, in which a durable good transits from some good state to a bad one, and that

the time spent in a particular state is governed by an exponential distribution. But we

focus on the potential fraudulent behaviors of the expert whereas Taylor (1995) essentially

assumes away the expert’s misbehavior by making liability assumptions and studies the

ex-ante optimal choice of the maintenance contracts.

The rest of the paper is organized as follows. The dynamic model is introduced in the

next section. We first describe the physical environment and then characterize the first-

best policy in the absence of information asymmetry. Before characterizing the equilibria

with information asymmetry, we examine whether the first-best policy is implementable.

In the characterization of the equilibria, we first consider the case where the expert plays

the stationary recommendation strategy and then relax this assumption to consider more

general strategies. In Section 3, we discuss the case where personalized pricing is not

possible. In the last section, we conclude.
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Figure 1: Dynamic Credence Goods Market

2 The Dynamic Model

2.1 Setup

We now set up a dynamic model in which the durable good stochastically breaks down

after treatments and the customer recurrently interacts with the expert.

Time is continuous, starting at τ = 0 and lasts forever. A durable good K starts its

life at time τ = 0 in a good state g0 and generates a flow of benefits B for its owner until

it breaks down (see Figure 1). The failure of Good K is stochastic. The time spent in

State g0 is governed by an exponential distribution with hazard rate λ0. When it breaks

down from State g0, it enters a bad state b0 in which the good suffers from either the

major problem with probability α, or the minor problem with probability 1 − α. As in

the standard static models, there are two types of treatments, a minor treatment and a

major treatment. The major treatment fully fixes both problems, and brings Good K

to State g0. The minor treatment fully fixes the minor problem and returns Good K to

State g0, while it only partially fixes the major problem and the good transits to another

good state g1. In State g1, the good produces the same instantaneous benefits B, and

the time spent in this state is also exponentially distributed but with a higher hazard

rate λ1(> λ0). If the good breaks down from g1, it enters a bad state b1 with the major

problem for sure. Denote the state by s ∈ {g0, b0, g1, b1}.
In this main analysis, we consider the interaction between a monopolist expert and

a representative customer.2 Whenever Good K breaks down, the owner or the customer

(she) does not know the exact problem, but she can bring it to the expert (he) who

then diagnoses the problem and provides either treatment. If no treatment is performed,

Good K stays in the bad state forever, providing no more services. The expert can

2Formally, there is a continuum of customers and the expert is able to inter-temporal price discrimi-
nate among the customers. In Section 3, we consider the case where inter-temporal price discrimination
is not possible.
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perfectly and costlessly diagnose the problem, but has to incur a cost of c for the minor

treatment and c̄ for the major treatment, where c < c̄. We assume that the performance

of the treatment is observable to the customer and verifiable to the court (the verfiability

assumption). In other words, the expert cannot charge the major treatment price while

performing the minor treatment. Hence, overcharging is ruled out, but undertreatment

and overtreatment remain to be potential sources of inefficiencies.

The timing of the dynamic game is the following:

0. At time τ = 0, the durable good K starts its life in State g0.

1. When it breaks down, the expert posts the price list (p, p̄). After observing the

prices, the customer decides whether to visit the expert.

2. If the customer comes to visit the expert, the expert then diagnoses the problem,

and decides whether to recommend a treatment or to refuse to treat at all.

3. If a recommendation is provided, the customer decides whether to accept or reject it.

If she accepts, the customer pays the corresponding price and the expert performs

the prescribed treatment. Good K returns to some good state according to the rule

described above.

4. When Good K breaks down the next time, the same interactions (1, 2 & 3) ensue.

We assume that the customer and the expert share the same instantaneous discount

rate r, and that both the customer and the expert have a full record of the customer’s

treatment history (including the number of treatments, the types of each treatment, and

the time lapse between every two treatments).

In this dynamic setting, full warranty, such as a long-term maintenance contract, may

solve the incentive problem. With full warranty, the expert has the correct incentive

since he bears all the marginal costs whereas the prices are not to be paid upon each

interaction. However, full warranty is prone to the moral hazard problem from the cus-

tomer side. In the equilibrium with severe customer moral hazard, the customer may not

want to purchase the warranty. In our model, we do not explicitly model warranties and

customer moral hazard, but consider the case where warranties are not provided or not

purchased. Our focus is on the price mechanism alone.

Equilibrium Concept. The player’s strategy space allows for history dependent mixed

strategies. Denote the history until the nth breakdown by hn = {(τ1, θ1), (τ2, θ2), ..., (τn, θn)},
where θi is the treatment type of the ith treatment, and τi is the time lapse between the

ith and the (i − 1)th treatments. Let (γm, γM) denote the probabilities of accepting the

minor and the major treatment recommendations respectively by the customer, and let

(βm, βM) denote the probabilities of recommending the major treatment by the expert
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given the minor problem and the major problem respectively. All these probabilities as

well as the price list (p, p̄) are functions of the history hn. Let µn be the customer’s belief

of Good K being in State g1 at the nth breakdown, and let µ′n be the post-treatment belief.

Following the literature on dynamic games, we adopt Perfect Markovian Equilibrium as

the equilibrium concept and consider strategies contingent on the customer’s belief µ′n.

The law of motion of the customer’s belief can be described by

µ′n =

0, if θn = major treatment,

µ′m,n = (µn+(1−µn)α)(1−βM (µn))
(µn+(1−µn)α)(1−βM (µn))+(1−µn)(1−α)(1−βm(µn))

, if θn = minor treatment,

(2.1)

and

µn+1 =
µ′nλ1e

−λ1τn+1

µ′nλ1e−λ1τn+1 + (1− µ′n)λ0e−λ0τn+1
, (2.2)

with initial conditions µ′0 = 0 and µ1 = 0.

The following graph depicts sample paths of beliefs when the expert always recom-

mends the minor treatment, i.e., the expert follows the undertreatment strategy.

parameter values: α = 0.5, λ0 = 1, λ1 = 2

Note that the customer’s belief converges to µ′∞ = 1 but there are places where
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non-monotonicity is observed. Formally, non-monotonicity occurs when µ′n+1 < µ′n, i.e.,

µn+1 + (1− µn+1)α < µ′n

⇒ µ′nλ1e
−λ1τn+1

µ′nλ1e−λ1τn+1 + (1− µ′n)λ0e−λ0τn+1
(1− α) + α < µ′n

⇒ τn+1 >
1

λ1 − λ0

ln
[λ1

λ0

µ′n
µ′n − α

]
. (2.3)

That is, when the time lapse between two treatments are sufficiently large, the belief

reversal happens. This is an intuitive result since after a long enough time lapse, the

customer would be convinced that the state is more likely to be g0.

The customer’s expected payoff after the nth treatment, given her post-treatment

belief µ′n, is given by

U(µ′n) = µ′nU1(µ′n) + (1− µ′n)U0(µ′n), (2.4)

where U0(µ′n) is the expected payoff with the belief µ′n in State g0:

U0(µ′n) =

∫ ∞
0

{
(1− erτn+1)

B

r

+ e−rτn+1

[
α
(
βMγM(U0(0)− p̄) + (1− βM)γm(U1(µ′m,n+1)− p)

)
+ (1− α)

(
βmγM(U0(0)− p̄) + (1− βm)γm(U0(µ′m,n+1)− p)

)]}
λ0e

−λ0τn+1dτn+1,

(2.5)

and U1(µ′n) is the expected payoff with the belief µ′n in State g1:

U1(µ′n) =

∫ ∞
0

{
(1− erτn+1)

B

r
+ e−rτn+1

[
βMγM(U0(0)− p̄)

+ (1− βM)γm(U1(µ′m,n+1)− p)
]}
λ1e

−λ1τn+1dτn+1.

(2.6)

Thus, the customer’s ex-ante expected payoff is given by U(µ′0) = U0(0).

Similarly, the expert’s expected payoff is given by

Π(µ′n) = µ′nΠ1(µ′n) + (1− µ′n)Π0(µ′n), (2.7)

where

Π0(µ′n) =

∫ ∞
0

e−rτn+1

{
α
[
βMγM

(
p̄− c̄+ Π0(0)

)
+ (1− βM)γm

(
p− c+ Π1(µ′m,n+1)

)]
+ (1− α)

[
βmγM

(
p̄− c̄+ Π0(0)

)
+ (1− βm)γm

(
p− c+ Π0(µ′m,n+1)

)]}
λ0e

−λ0τn+1dτn+1,

(2.8)
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and

Π1(µ′n) =

∫ ∞
0

e−rτn+1

{
βMγM

(
p̄−c̄+Π0(0)

)
+(1−βM)γm

(
p−c+Π1(µ′m,n+1)

)}
λ1e

−λ1τn+1dτn+1.

(2.9)

2.2 The First-Best Policy

Before investigating the interactions between the expert and the customer, we derive

the first-best policy where there is no information asymmetry between the two players,

or equivalently, we consider the case where the customer can diagnose the problem and

perform the treatments by herself. We make the following two assumptions on parameter

values:

Assumption 1. B ≥ max {(r + λ1)c, (r + λ0)c̄}.

Assumption 2. c < c̄ <
(

1 + λ1−λ0

r+αλ0

)
c.

Assumption 1 means that the services from Good K are sufficiently valuable. This condi-

tion ensures that any problem is worth fixing, even using the inappropriate treatment. It

also guarantees the feasibility of all strategies analyzed in the next section. Assumption

2 ensures that the relative cost of the major treatment is not too high, making it subopti-

mal to undertreat the major problem. Intuitively, performing the major treatment on the

major problem saves a substantial amount of future expenditures which would otherwise

be induced by undertreating, and the benefit of future cost savings would dominate when

the major treatment is only moderately more costly. Hence, under these two conditions,

which will be assumed throughout the paper, performing appropriate treatments yields

the highest expected surplus. The following proposition formalizes the result.

Proposition 1. Suppose Assumptions 1 and 2 hold, performing appropriate treatments

is the first-best solution. The maximal social surplus in flow terms is rW ∗ = B −
λ0 [αc̄+ (1− α)c].

Proof. We compare the ex-ante expected surpluses achieved by all possible treatment

plans. There are nine treatment plans in total: one plan of treating neither problem, four

plans for treating only one type of problem (e.g., treating only the major problem with

the minor treatment), and four plans for treating both types of problem (e.g., treating

the major problem with the major treatment and the minor problem with the minor

treatment). We denote the ex-ante expected surplus of each treatment plan as:
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Notation Treatment Plan

V n Treating neither problem

V M
M Treating only major problem with major treatment

V M
m Treating only major problem with minor treatment

V m
M Treating only minor problem with major treatment

V m
m Treating only minor problem with minor treatment

V t Treating major problem with major treatment and minor problem with minor treatment

V o Treating major problem with major treatment and minor problem with major treatment

V u Treating major problem with minor treatment and minor problem with minor treatment

V f Treating major problem with minor treatment and minor problem with major treatment

It is clear that V m
m > V m

M because both treatments fully fix the minor problem but

the minor treatment is less costly. For the same reason, V u > V f and V t > V o. Hence,

it suffices to consider the remaining six treatment plans.

Treating neither problem yields an expected surplus equal to the expected value of

services produced by Good K until the first time it breaks down. In flow terms, it is given

by

rV n = r

∫ ∞
0

{
(1− e−rτ )B

r

}
λ0e

−λ0τdτ =
r

r + λ0

B, (2.10)

where the term in the curly brackets is the present value of services produced by Good

K until it fails at time τ .

The expected surplus of treating only the major problem with the major treatment

can be written recursively as

V M
M =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτα

(
V M
M − c̄

)}
λ0e

−λ0τdτ, (2.11)

where the second term in the curly brackets is the present expected continuation value

when Good K breaks down at time τ . Note that only the major problem is treated, and

this happens with probability α. Performing the major treatment incurs a cost of c̄ and

returns Good K to State g0, which generates a surplus of V M
M again. The above equation

can be solved for

rV M
M =

r

r + (1− α)λ0

B − rλ0

r + (1− α)λ0

αc̄. (2.12)

Similarly, we have

rV m
m =

r

r + αλ0

B − rλ0

r + αλ0

(1− α)c. (2.13)

Now consider treating only the major problem with the minor treatment. The ex-

pected surplus can be written as

V M
m =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτα

(
Ṽ M
m − c

)}
λ0e

−λ0τdτ. (2.14)

The continuation value is now the expected surplus in State g1 minus the cost of the
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minor treatment, Ṽ M
m − c. Since Good K remains in State g1 when the minor treatment

is applied repeatedly, we can write Ṽ M
m recursively as

Ṽ M
m =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ

(
Ṽ M
m − c

)}
λ1e

−λ1τdτ. (2.15)

Combining the above two equations, one can obtain

rV M
m =

r + αλ0

r + λ0

B − λ0(r + λ1)

r + λ0

αc. (2.16)

Now we turn to treatment plans in which both types of problems are treated. As

argued above, we only need to calculate V t and V u since V o is dominated by V t and

V f by V u. As appropriate treatments return Good K to State g0, V t can be written

recursively as

V t =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ

[
V t − αc̄− (1− α)c

]}
λ0e

−λ0τdτ, (2.17)

which can be solved for

rV t = B − λ0 [αc̄+ (1− α)c] . (2.18)

In contrast, treating both problems with the minor treatment could possibly transfer

Good K into State g1 and it would never return to State g0. We denote the expected

surplus in State g1 by Ṽ u, which can be written as

Ṽ u =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ

(
Ṽ u − c

)}
λ1e

−λ1τdτ. (2.19)

And the expected surplus in State g0 is given by

V u =

∫ ∞
0

{
(1− e−rt)B

r
+ e−rτ

[
(1− α)V u + αṼ u − c

]}
λ0e

−λ0τdτ. (2.20)

Combining the above two equations yields

rV u = B − (r + αλ1)λ0

r + αλ0

c. (2.21)

We calculate the difference in surpluses between providing appropriate treatments

and every other treatment plan:

rV t − rV u = αλ0

[(
1 +

λ1 − λ0

r + αλ0

)
c− c̄

]
, (2.22)

rV t − rV m
m =

αλ0

r + αλ0

{B − [rc̄+ λ0(αc̄+ (1− α)c)]} ≡ αλ0

r + αλ0

(B −B1), (2.23)
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rV t − rV M
M =

(1− α)λ0

r + (1− α)λ0

{B − [rc+ λ0(αc̄+ (1− α)c)]} ≡ (1− α)λ0

r + (1− α)λ0

(B −B2),

(2.24)

rV t−rV M
m =

(1− α)λ0

r + λ0

{
B −

[
r + λ0

1− α
(αc̄+ (1− α)c)− α(r + λ1)

1− α
c

]}
≡ (1− α)λ0

r + λ0

(B−B3),

(2.25)

rV t − rV n =
λ0

r + λ0

{B − (r + λ0)(αc̄+ (1− α)c)} ≡ λ0

r + λ0

(B −B4). (2.26)

We then show that all these differences are greater than zero.

Note first that Assumption 2 immediately implies rV t > rV u.

Also note that B1 > B2, and B1 −B4 = r(1− α)(c̄− c) > 0. It then suffices to prove

max{(r + λ1)c, (r + λ0)c̄} ≥ max{B1, B3}. In fact, we can show that min{(r + λ1)c, (r +

λ0)c̄} > max{B1, B3} under Assumption 2:

B1 − (r + λ1)c = (r + αλ0)(c̄− c)− (λ1 − λ0)c < 0; (2.27)

B1 − (r + λ0)c̄ = −λ0(1− α)(c̄− c) < 0; (2.28)

B3 − (r + λ1)c =
α(r + λ0)

1− α
(c̄− c)− λ1 − λ0

1− α
c ≤ −r(λ1 − λ0)

(r + αλ0)
c < 0; (2.29)

B3−(r+λ0)c̄ =
α

1− α
[(r+λ0)c̄−(r+λ1)c]−(r+λ0)(c̄−c) ≤ −[r+(1−α)λ0](c̄−c) < 0,

(2.30)

where the last line uses the fact that (r + λ0)c̄ − (r + λ1)c ≤ (1 − α)λ0(c̄ − c), which is

implied by Assumption 2.

Note that if it is optimal to undertreat the major problem for at least one time, then

it would be optimal to always undertreat. Hence, it is sufficient here to consider the

treatment plan of always performing the minor treatment.

Therefore, performing appropriate treatments yields the highest ex-ante expected sur-

plus under Assumptions 1 and 2.

2.3 Impossibility of First-Best

In this subsection, we show that in the decentralized problem, the First-Best policy where

appropriate treatment is performed is never an equilibrium outcome.

Proposition 2. There exists no “truth-telling equilibrium” in which the expert plays the

truth-telling strategy.

Proof. Suppose to the contrary that such an equilibrium exists. Then the expert strategy

is βM = 1, βm = 0,∀µn. By the evolution of the customer’s belief, we have µn = µ′n =

0,∀n. Then we can simply write the expert’s pricing strategy and the customer’s strategy

as p̄(µn) = p̄, p(µn) = p and γM(µn) = γM , γm(µn) = γm,∀µn respectively.
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Consider the expert incentive compatibility constraints conditioning on the major

problem. His equilibrium payoff is

Πt
on = γM(p̄− c̄+ Πt

0), (2.31)

where

Πt
0 =

∫ ∞
0

e−rτ
{
αγM

(
p̄− c̄+ Πt

0

)
+ (1− α)γm

(
p− c+ Πt

0

)}
λ0e

−λ0τdτ, (2.32)

which can be solved for

Πt
0 =

αλ0γM
αλ0(1− γM) + r

(p̄− c̄) +
(1− α)λ0

αλ0(1− γM) + r
(p− c). (2.33)

Consider a one-shot deviation and his off-equilibrium payoff is given by

Πt
off = γm(p− c+ Πt

1), (2.34)

where

Πt
1 =

∫ ∞
0

e−rτ
{
γM
(
p̄− c̄+ Πt

0

)}
λ1e

−λ1τdτ =
λ1γM
r + λ1

(p̄− c̄+ Πt
0). (2.35)

Hence, the incentive compatibility for truth-telling requires Πt
on ≥ Πt

off, i.e.,

γM [(λ1 + r)− λ1γm] [λ0 + r − (1− α) γmλ0] (p̄− c̄)

≥γm {[(1− γM)λ0 + r] (λ1 + r)− (1− α) γmλ0 [λ1 (1− γM) + r]}
(
p− c

)
.

(2.36)

Similarly, when facing the minor problem, the expert’s equilibrium payoff is

Πt
on = γm(p− c+ Πt

0), (2.37)

and his off-equilibrium payoff is

Πt
off = γM(p̄− c̄+ Πt

0). (2.38)

Hence the incentive compatibility requires that Πt
on ≥ Πt

off, i.e.,

γm [λ0 (1− γM) + r]
(
p− c

)
≥ γM [λ0 (1− γm) + r] (p̄− c̄) . (2.39)

We now show that conditions (2.36) and (2.39) are not compatible. Note that γM and γm

cannot be zero simultaneously, otherwise, the customer always rejects recommendations
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and the market breaks down. Suppose first that γM > 0, then we can write (2.36) as

(p̄−c̄) ≥ γm {[(1− γM)λ0 + r] (λ1 + r)− (1− α) γmλ0 [λ1 (1− γM) + r]}
γM [(λ1 + r)− λ1γm] [λ0 + r − (1− α) γmλ0]

(p−c) ≡ Φ1(p−c),

(2.40)

and (2.39) as

(p̄− c̄) ≤ γm [λ0 (1− γM) + r]

γM [λ0 (1− γm) + r]
(p− c) ≡ Φ2(p− c). (2.41)

But

Φ1 − Φ2 =
γ2
m [(1− α) (1− γm)λ0r + α (1− γM)λ0r + r2] (λ1 − λ0)

γM [(λ1 + r)− λ1γm] [λ0 + r − (1− α) γmλ0] [λ0 (1− γm) + r]
, (2.42)

which is equal to zero if γm = 0 and greater than zero if γm > 0. If γm = 0, then the

customer rejects the minor treatment recommendation, and the expert sets p̄ = c̄ and

earns zero profits. If γm > 0, then the expert sets p = c and p̄ = c̄ which again yields

zero profits.

The case when γm > 0 follows similarly.

Intuitively, the impossibility result is due to the fact that the incremental failure rate

adds to the attractiveness of the minor treatment and thus the equal-margin condition

ceases to be incentive compatible. In order for the expert to honestly recommend the

minor treatment to the minor problem, same as in the standard static models, it requires

the minor margin to be weakly higher than the major margin. However, in order for the

expert to honestly recommend the major treatment to the major problem, it requires

not just a weakly larger profit margin for the major treatment but a sufficiently larger

one. This is because undertreating the major problem increases the failure rate of Good

K (λ1 > λ0) and brings more future business for the expert. For the expert to behave

honestly, the profit margin of the major treatment has to compensate for the reduction

of future revenues. Therefore, the usual equal-margin condition does not guarantee the

honest behavior of the expert in our model. And no prices can satisfy the above two

incentive constraints simultaneously. Thus we conclude that there exists no truth-telling

equilibrium, and that the first-best cannot be achieved.

2.4 Equilibria with Stationary Pure Recommendation Strategy

In this subsection, we focus on the stationary pure recommendation strategy where the

expert plays the same pure recommendation strategy in each interaction.

There are four such recommendation strategies: truth-telling (t), overtreatment (o),

undertreatment (u) and falsehood (f). The expert recommends the appropriate treat-

ment with the truth-telling strategy, i.e., the minor treatment for the minor problem and

the major treatment for the major problem. Under the overtreatment strategy, the expert

13



recommends the major treatment regardless of the problem types. Conversely, under the

undertreatment strategy, the expert always recommends the minor treatment. Finally,

under the falsehood strategy, the expert recommends the minor treatment for the major

problem and the major treatment for the minor problem. We denote the strategy set as

σ ∈ {t, o, u, f}. Let Πσ(Π̃σ) be the expert’s expected profit in State g0(g1) under strategy

σ, and Uσ(Ũσ) be the corresponding expected payoff of the customer.

In the previous subsection, we ruled out the truth-telling strategy (t). We then turn

to characterize the equilibria in which the expert plays each of the remaining three rec-

ommendation strategies. And we name these equilibria after the corresponding strategy.

Lemma 1. There exists an “overtreatment equilibrium” in which the expert sets the price

list (p > 1
r+λ1

B, p̄ = 1
r+λ0

B) in each interaction, and plays the overtreatment strategy

(o). The customer always accepts the recommendation. The expert’s expected profit is

rΠo = λ0

r+λ0
B − λ0c̄. The customer’s expected payoff is rU o = r

r+λ0
B. The social surplus

is rW o = B − λ0c̄.

Proof. See Appendix.

Lemma 1 characterizes “overtreatment equilibrium” where expert always recommends

the major treatment. Knowing that the problems are overtreated and that Good K always

returns to State g0, the customer’s maximum willingness to pay is the expected present

value of services provided by Good K in State g0, or

Ū0 =

∫ ∞
0

{
(1− e−rτ )B

r

}
λ0e

−λ0τdτ =
1

r + λ0

B. (2.43)

This is also the customer’s expected payoff if she never consults the expert, and we call it

her reservation value in g0. Therefore, to attract the customer by playing the overtreat-

ment strategy, the price p̄ at each interaction must not exceed this reservation value. The

expert’s expected profit is equal to the profit margin of the major treatment multiplied

by the frequency of the customer’s visits represented by the failure rate λ0. The maximal

profit is thus obtained by setting p̄ to the highest willingness to pay. Consequently, the

customer only retains the expected value of services produced by Good K until its first

breakdown, which is the lowest payoff she could obtain regardless of the expert’s strat-

egy. This equilibrium is supported by the customer’s off-equilibrium belief that Good

K had the major problem if the minor treatment was ever recommended, and that the

expert would thereafter always recommend the minor treatment. Given this belief, the

condition p > 1
r+λ1

B guarantees that the recommendation of the minor treatment would

be rejected by the customer as the price exceeds the reservation value in State g1.

Lemma 2. There exists a “falsehood equilibrium” in which the expert plays the falsehood

strategy (f) and the customer always accepts the recommendation. The optimal price list

is the same across time. With different parameter values, the price lists vary.
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• Case I: c̄− c < λ1−λ0

r+λ0
c.

The optimal prices are

p̄ =
1

r + λ0

B +

(
c̄− r + λ1

r + λ0

c

)
, p =

1

r + λ1

B. (2.44)

The expert’s expected profit is

rΠf =
λ0

r + λ0

B − λ0(r + λ1)

r + λ0

c. (2.45)

The customer’s expected payoff is

rU f =
r

r + λ0

B +
rλ0(1− α)

r + αλ0

(
r + λ1

r + λ0

c− c̄
)
. (2.46)

• Case II: λ1−λ0

r+λ0
c ≤ c̄− c ≤ λ1−λ0

(r+λ0)(r+λ1)
B.

The optimal prices are

p̄ =
1

r + λ0

B, p =
1

r + λ1

B. (2.47)

The expert’s expected profit is

rΠf =
λ0

r + λ0

B − rλ0(1− α)

r + αλ0

c̄− αλ0(r + λ1)

r + αλ0

c. (2.48)

The customer’s expected payoff is

rU f =
r

r + λ0

B. (2.49)

In this case, the expert obtains his highest possible profit by the falsehood strategy

since the customer receives her lowest possible payoff.

• Case III: c̄− c > λ1−λ0

(r+λ0)(r+λ1)
B.

The optimal prices are

p̄ =
r + αλ0

r(r + λ0) + αλ0(r + λ1)
B +

αλ0(r + λ1)

r(r + λ0) + αλ0(r + λ1)
(c̄− c),

p =
r + αλ0

r(r + λ0) + αλ0(r + λ1)
B − r(r + λ0)

r(r + λ0) + αλ0(r + λ1)
(c̄− c).

(2.50)

The expert’s expected profit is

rΠf =
λ0(r + αλ1)

r(r + λ0) + αλ0(r + λ1)

[
B − r(r + λ0)

r + αλ0

c̄− αλ0(r + λ1)

r + αλ0

c

]
. (2.51)

15



The customer’s expected payoff is

rU f =
r(r + αλ0)

r(r + λ0) + αλ0(r + λ1)
B +

αrλ0(r + λ1)

r(r + λ0) + αλ0(r + λ1)
(c̄− c). (2.52)

For all of the above three cases, the expected social surplus is

rW f = B − λ0

r + αλ0

[α(r + λ1)c+ (1− α)rc̄] = rV f . (2.53)

Proof. See Appendix.

To find the falsehood equilibrium prices, we again need the customer’s participation

constraints and the expert’s incentive compatibility constraints to be satisfied. Knowing

that the expert always “lies” about the problem, the customer, in fact, learns the exact

state of Good K. Thus we may write the customer’s expected payoff in State g0 as

U f =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ

[
(1− α)(U f − p̄) + α(Ũ f − p)

]}
λ0e

−λ0τdτ, (2.54)

where Ũ f is the expected payoff in State g1:

Ũ f =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ (Ũ f − p)

}
λ1e

−λ1τdτ. (2.55)

Thus, the customer’s participation requires p̄ ≤ U f and p ≤ Ũ f . On the other hand, the

expert’s incentive compatibility of playing the falsehood strategy requires p− c ≤ p̄− c̄ ≤
r+λ1

r+λ0
(p − c) (See Appendix for details). In other words, the profit margin of the major

treatment should be at least as large as that of the minor treatment so that the major

treatment is profitable to recommend for the minor problem. However, it should not be

too large so that the higher future profits from undertreating the major problem exceed

the higher immediate profit from the major treatment. Now that the problem boils down

to an optimization program. The expert chooses prices to maximize his expected profit

subject to his own incentive constraints and the customer’s participation constraints. As

the parameter values vary, not all constraints would be binding. The highest possible

profit is obtained in the second case of the above lemma, in which both of the customer’s

participation constraints are binding and thus she is left with the lowest possible ex-ante

expected payoff.

Lemma 3. There exists an “undertreatment equilibrium” in which the expert sets the
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price list (p, p̄) according to

p = µ′m,n
1

r + λ1

B + (1− µ′m,n)
1

r + λ0

B,

p̄ >
1

r + λ0

B,

where µ′m,n is the customer’s post-treatment belief defined in Equation (2.1). The expert

plays the undertreatment strategy (u). The customer always accepts the recommendation.

The expert’s expected profit is rΠu = λ0

r+λ0
B − (r+αλ1)λ0

r+αλ0
c. The customer’s expected payoff

is rUu = r
r+λ0

B. The social surplus is rW u = B − (r+αλ1)λ0

r+αλ0
c.

Proof. See Appendix.

Lemma 3 characterizes the “undertreatment equilibrium” in which the expert always

recommends the minor treatment. Since undertreatment still brings Good K back to

functioning, the customer does not know if it has been treated appropriately, but she

might infer Good K’s state given the record of the treatment history. Formally, the

customer updates her belief according to Equation (2.1) and Equation (2.2) with initial

conditions µ′0 = 0 and µ1 = 0. Since the expert also has the record of treatment history,

the expert is able to extract all future surplus by setting p according to the customer’s

belief so that the customer will just participate while earning the value of her outside

option 0. From the ex-ante point of view, the customer only earns her reservation value

at g0, which is the expected value until the first break down. All the remaining social

surplus goes to the expert.

2.4.1 Expert Optimality

The following proposition characterizes the expert optimal stationary pure strategy equi-

librium.

Proposition 3. The expert optimal stationary pure strategy equilibrium is as follows:

(i) If c̄− c ∈
(

0, αλ1−λ0

r+αλ0
c
)

, then the highest expected profit for the expert is

rΠo =
λ0

r + λ0

B − λ0c̄, (2.56)

which is obtained in “overtreatment equilibrium”. The optimal price list is (p >
1

r+λ1
B, p̄ = 1

r+λ0
B). The customer’s payoff is rU o = r

r+λ0
B. The social surplus is

rW o = B − λ0c̄.
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(ii) if c̄− c ∈
(
αλ1−λ0

r+αλ0
c, λ1−λ0

r+αλ0
c
)

, then the highest profit is

rΠu =
λ0

r + λ0

B − (r + αλ1)λ0

r + αλ0

c, (2.57)

which is obtained in “undertreatment equilibrium”. The optimal price list is (p =

µ′m,n
1

r+λ1
B + (1− µ′m,n) 1

r+λ0
B, p̄ > 1

r+λ0
B). The customer’s payoff is rUu = r

r+λ0
B.

The social surplus is rW u = B − (r+αλ1)λ0

r+αλ0
c.

Proof. See Appendix.

Corollary 1. In terms of the failure rate differential,

(i) If λ1−λ0 >
(c̄−c)(r+αλ0)

αc
, the optimal stationary pure strategy equilibrium is “overtreat-

ment equilibrium”.

(ii) If λ1 − λ0 ∈
(

(c̄−c)(r+αλ0)
c

, (c̄−c)(r+αλ0)
αc

)
, the optimal stationary pure strategy equilib-

rium is “undertreatment equilibrium”.

Proposition 3 establishes the stationary pure strategy equilibrium for the entire game

in which the expert’s profits are maximized. Corollary 1 reinterprets the result in terms of

the failure rate differential. Some implications are worth mentioning. The most surprising

result is that when the failure rate in state g1 is substantially higher than that in g0,

overtreatment actually becomes more profitable. This is counterintuitive at the first

glance because one would expect the expert to have stronger incentives to undertreat

when undertreatment would bring more future business. However, a closer look at the

prices charged in “undertreatment equilibrium” reveals that a higher λ1 forces the expert

to lower the price of the minor treatment. This is because the customer is less willing

to accept the minor treatment since she knows undertreatment leads to more future

expenses. Therefore, the increased failure rate, although brings more future business,

squeezes the profit margin at the same time. In the end, since the expert is able to

extract all the surplus except for the customer’s reservation value in both equilibria, the

expert prefers the equilibrium that maximizes social welfare.

Second, in terms of the price list, the expert does not change the price list across

time in “overtreatment equilibrium” while he constantly changes the price list in “under-

treatment equilibrium”. This is because after the major treatment, the customer’s belief

restored to µ′n = 0, whereas after the minor treatment, the customer’s belief updates ac-

cording to Equation (2.1) and Equation (2.2) with initial conditions µ′0 = 0 and µ1 = 0.

In “undertreatment equilibrium”, the customer’s belief in general deteriorates but is not

necessarily so. After a rare event of long enough time interval between treatments, the

customer belief improves. In the limit, the customer’s belief goes to µ′∞ → 1.
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Third, the peculiar “falsehood equilibrium” is always dominated by “undertreatment

equilibrium”. So a profit maximizing monopolist expert will never want to adopt the

falsehood strategy.

2.4.2 Customer Optimality

Despite the fact the expert would not opt for “falsehood equilibrium”, “falsehood equi-

librium” is the only equilibrium that might leave some rent to the customer. According

to Case I and Case III of Lemma 2, to satisfy the expert’s incentive compatibility con-

straints and the customer’s participation constraints, the expert must set p̄ below 1
λ0+r

B

(Case I) or p below 1
λ1+r

B (Case III) and thus cannot extract all surplus.

In “overtreatment equilibrium” and “undertreatment equilibrium”, one of the prices

is never used. The expert could set the never-to-be-used price to be sufficiently high so

that if the treatment with the high price is ever recommended, the customer would reject

this and all future treatments. Customer’s rejection would in turn discipline the expert

from recommending the treatment. With one treatment never recommended, the expert

could set the price for the intended treatment to be the maximum willingness to pay of

the customer and thus leave the customer with no rent.

2.5 The Cutoff Equilibrium

In the previous subsection, we consider the case where the expert plays the same strategy

consistently over time. In this subsection, we relax this constraint and allow the expert

to change strategies across interactions. From the analysis of the stationary strategy, we

know that the optimal strategy is either stationary undertreatment strategy or stationary

overtreatment strategy. Since undertreatment is more appealing in the initial interactions

when the customer is more likely to be endowed with the minor problem and overtreat-

ment would be more efficient when the customer becomes more pessimistic, we conjecture

that the following cutoff strategy might outperform both stationary undertreatment and

overtreatment equilibria. In the cutoff strategy, the expert always undertreats the prob-

lem whenever the customer’s belief about the condition of Good K is sufficiently positive,

i.e., the customer’s belief that the probability of Good K in State g1 is below some cutoff

value, and the expert always overtreats the problem whenever the customer’s belief is

beyond the cutoff value. Proposition 4 below shows that such strategy constitutes an

equilibrium.

Lemma 4. There exists a “cutoff equilibrium” with the cutoff µ̄ ∈ (α, 1] where the ex-

pert recommends the minor treatment whenever the post-treatment belief µ′n ≤ µ̄ and

recommends the major treatment otherwise. The price list while recommending the minor
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treatment which we call the minor price list is given by

p = µ′nU1 + (1− µ′n)U0 = µ′n
1

r + λ1

B + (1− µ′n)
1

r + λ0

B;

p̄ >
1

r + λ0

B,

and the price list while recommending the major treatment which we call the major price

list is given by

p > µ′nU1 + (1− µ′n)U0 = µ′n
1

r + λ1

B + (1− µ′n)
1

r + λ0

B;

p̄ =
1

r + λ0

B.

The customer always accepts the expert’s recommendation on the equilibrium path.

Proof. See Appendix.

Two points are worth noticing. First, “undertreatment equilibrium” and “overtreat-

ment equilibrium” are two extreme cases of “cutoff equilibrium”. “Undertreatment equi-

librium” is equivalent to µ̄ = 1 whereas “overtreatment equilibrium” is equivalent to

µ̄ < α. Second, in “cutoff equilibrium”, same as in “undertreatment equilibrium” and

“overtreatment equilibrium”, the customer obtains her reservation value at g0 only.

Generally, to characterize the value of “cutoff equilibrium” is rather difficult. There

are a continuum of states. Strategies are state dependent and would also in turn affect

the state. The non-monotonicity of the state updating process as indicated in Equation

(2.3) further complicates the problem. The following graphs simulate the values of “cutoff

equilibrium” with parameter values α = 0.5, λ0 = 1, λ1 = 2, c = 1, B = 5, r = 0.05 and

different values of c̄ indicated below the graphs.

c̄ = 1.5 c̄ = 2.2 c̄ = 2.5

Figure 2: Cutoff Equilibrium

Despite the fact that the analytical solutions are generally not possible, we could

find “cutoff equilibrium” that strictly dominates both “undertreatment equilibrium” and

“overtreatment equilibrium” under certain parameter values.
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Proposition 4. When α(λ1−λ0)
r+(1−α)λ1+αλ0

c < c̄ − c < λ1−λ0

λ0
c, there exists µ̄ such that “cutoff

equilibrium” strictly dominates “undertreatment equilibrium” and “overtreatment equilib-

rium”.

Proof. See Appendix.

For the case where “overtreatment equilibrium” is more profitable, the alternating

equilibrium (“cutoff equilibrium” with cutoff α) where the expert alternates between the

undertreatment strategy and the overtreatment strategy dominates “overtreatment equi-

librium” when c̄− c > α(λ1−λ0)
r+(1−α)λ1+αλ0

c. For the case where “undertreatment equilibrium”

is more profitable, the equilibrium with µ̄→ 1 dominates “undertreatment equilibrium”

when Ṽ u < V o, i.e., c̄− c < λ1−λ0

λ0
c.

3 Discussion: No Inter-temporal Price Discrimina-

tion

In the extension, we consider the case where there is a continuum of customers and the

expert is not able to price discriminate among the customers. More specifically, the expert

could not charge personalized prices based on the customer’s beliefs as we discussed in

the main model.

Formally, the main model is modified as follows. Instead of setting price lists at each

interaction, the expert has to set the price list (p, p̄) at time τ = 0. Once the price list is

set, the expert could not alter it.

Without inter-temporal price discrimination, truth-telling is still not sustainable as an

equilibrium outcome. To see this, the analysis in Section 2.3 is applicable to the current

setting since in the original analysis, the expert would not change the price list over time.

Proposition 2 is modified as follows:

Proposition 2’. Without inter-temporal price discrimination, there still exists no “truth-

telling equilibrium” in which the expert plays the truth-telling strategy.

Since the expert does not change prices even if he could in “overtreatment equi-

librium” and “falsehood equilibrium”, Without inter-temporal price discrimination, the

equilibrium outcomes would not change in these two equilibria. Therefore, Lemma 1 and

Lemma 2 still apply.

In “undertreatment equilibrium”, since the customer’s belief converges to µ′∞ = 1, to

invite customer participation, the expert needs to set p = 1
λ1+r

B. In such an equilibrium,

the customer is left with some rent. Lemma 3 is modified as follows:

Lemma 3’. There exists an “undertreatment equilibrium” in which the expert sets the

price lists (p = 1
r+λ1

B, p̄ > 1
r+λ0

B) and plays the undertreatment strategy (u). The
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expert’s expected profit rΠu is λ0(r+αλ1)
r+αλ0

(
1

r+λ1
B − c

)
. The customer’s expected payoff is

rUu =
[
1− λ0(r+αλ1)

(r+αλ0)(r+λ1)

]
B. The social surplus is rW u = B − λ0(r+αλ1)

r+αλ0
c.

Proposition 3 is modified as follows:

Proposition 3’. The expert optimal stationary pure strategy equilibrium is as follows:

(i) If c̄− c ∈
(

0, λ1−λ0

r+λ0
c
)

, then the highest expected profit for the expert is

rΠo =
λ0

r + λ0

B − λ0c̄, (3.1)

which is obtained in “overtreatment equilibrium” by charging p̄ = 1
r+λ0

B and p >
1

r+λ1
B. The customer’s payoff is rU o = r

r+λ0
B. The social surplus is rW o =

B − λ0c̄.

(ii) If B > (r+λ0)(r+λ1)
r+αλ0

c and c̄ − c ∈
(
λ1−λ0

r+λ0
c, λ1−λ0

r+αλ0
c
)

, or if B < (r+λ0)(r+λ1)
r+αλ0

c and

c̄− c ∈
(
λ1−λ0

r+λ0
c, λ1−λ0

(r+λ0)(r+λ1)
B
)

then the highest expected profit is

rΠf =
λ0

r + λ0

B − rλ0(1− α)

r + αλ0

c̄− αλ0(r + λ1)

r + αλ0

c, (3.2)

which is obtained in “falsehood equilibrium” by charging p̄ = 1
r+λ0

B and p = 1
r+λ1

B.

The customer’s payoff is rU f = r
r+λ0

B. The social surplus is rW f = B− rλ0(1−α)
r+αλ0

c̄−
αλ0(r+λ1)
r+αλ0

c.

(iii) if B < (r+λ0)(r+λ1)
r+αλ0

c and c̄− c ∈
(

λ1−λ0

(r+λ0)(r+λ1)
B, λ1−λ0

r+αλ0
c
)

, then the highest profit is

rΠu =
λ0(r + αλ1)

r + αλ0

[
1

r + λ1

B − c
]
, (3.3)

which is obtained in “undertreatment equilibrium” by charging p = 1
r+λ1

B and p̄ >
1

r+λ0
B. The customer’s payoff is rUu = λ0(r+αλ1)

r+αλ0

r
r+λ1

B. The social surplus is

rW u = B − r+αλ1

r+αλ0
λ0c.

Surprisingly, “falsehood equilibrium” would now appear as an optimal equilibrium for

the expert. It only happens when the difference in treatment costs or the increment of

failure rate is within a moderate range.

Regarding the welfare of the expert optimal equilibrium, both “overtreatment equi-

librium” and “falsehood equilibrium” leave the customer with her reservation value in g0,

while she obtains more in “undertreatment equilibrium”. This is because as time goes

by, the customer tends to have the more pessimistic belief that the good is more likely

to be in State g1 and hence she is more likely to quit the market if the price is too high.

Hence, to keep the customer around, the expert has to surrender some rents to her.
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4 Conclusions

We study a dynamic model of a credence goods market where the expert’s performance

of treatment is observable to the customer and verifiable to the court. Previous literature

argues that in a one-shot setting, the expert would set an equal profit margin for both

treatments, which leads to “truth-telling equilibrium”. However, our dynamic model

tells a different story. Here, the expert has additional incentive to undertreat since

undertreatment increases the frequency of the customer’s visits and hence brings more

future business. The equal-margin condition fails because the minor treatment is now

more attractive to the expert, and thus in order for the expert to honestly recommend the

major treatment for the major problem, the profit margin of the major treatment has to

be sufficiently higher than that of the minor treatment to compensate for the less future

revenue. Consequently, “truth-telling equilibrium” no longer exists under the verifiability

assumption.

Nevertheless, we also show that the expert is not necessarily encouraged to undertreat.

In fact, “undertreatment equilibrium” is only optimal for a limited region of parameter

values. This is due to the fact that the customer is less willing to pay for the minor

treatment given a higher increment in the failure rate, which lowers the profit margin

from performing the minor treatment. In our main model where the expert is able to offer

personalized pricing, since the expert is able to extract all surplus in both undertreatment

and overtreatment equilibria, the expert chooses the equilibrium that maximizes social

welfare. In the extended model without inter-temporal price discrimination, the opti-

mal region for “undertreatment equilibrium” is further reduced, since to induce customer

participation, the expert has to leave some rent to the customer in “undertreatment equi-

librium”. Moreover, “falsehood equilibrium”, where the expert offers the inappropriate

treatments to both problems, would now appear as an optimal equilibrium for the expert.
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5 Appendix

5.1 Proof of Lemma 1

Proof. Note that the largest social value under the overtreatment plan can be written

recursively as

V o =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ [V o − c̄]

}
λ0e

−λ0τdτ, (5.1)

which can be solved for

V o = B − λ0c̄. (5.2)

Consider now the customer’s incentive of accepting the major treatment recommenda-

tion. Suppose the customer always does so, and given the expert’s overtreatment strategy,

her expected payoff can be written recursively as

U o =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ [U o − p̄]

}
λ0e

−λ0τdτ, (5.3)

which can be solved for

rU o = B − λ0p̄ =
r

r + λ0

B. (5.4)

Since p̄ ≤ U o, the customer would indeed accept the major treatment recommendation.

Assume that the customer has the off-equilibrium belief that if the minor treatment

is recommended, then Good K suffers from the major problem, and the expert would

thereafter always recommend the minor treatment. Given that p > 1
r+λ1

B, the customer

would reject the minor treatment.

Now consider the expert’s incentive of the recommendation. He would not recommend

the minor treatment since it would be rejected. Hence, he would always recommend

the major treatment. Given that the customer always accepts the major treatment

recommendation, the expert’s expected profit can be written as

Πo =

∫ ∞
0

e−rτ [Πo + (p̄− c̄)]λ0e
−λ0τdτ, (5.5)

which can be solved for

rΠo = λ0(p̄− c̄) =
λ0

r + λ0

B − λ0c̄. (5.6)

This profit is the highest among all overtreatment strategies since the social surplus

achieves its highest possible level rW o = rU o + rΠo = B − λ0c̄ = rV o, and the customer

retains her lowest possible payoff U o = Ū0 = 1
r+λ0

B.
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5.2 Proof of Lemma 2

Proof. First, note that the social value under the falsehood treatment plan can be written

as

V f =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ

[
α(Ṽ f − c) + (1− α)(V f − c̄)

]}
λ0e

−λ0τdτ, (5.7)

where

Ṽ f =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ

[
Ṽ f − c

]}
λ1e

−λ1τdτ. (5.8)

Combining the above two equations yields

rṼ f = B − λ1c, (5.9)

and

rV f = B − λ0

r + αλ0

[α(r + λ1)c+ (1− α)rc̄] . (5.10)

Now we solve for the most profitable falsehood strategy. Consider first the customer’s

incentive to accept recommendations. Suppose the customer always accepts the recom-

mendations under the expert’s falsehood strategy, her expected payoff in State g0 is given

by

U f =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ

[
(1− α)(U f − p̄) + α(Ũ f − p)

]}
λ0e

−λ0τdτ, (5.11)

where

Ũ f =

∫ ∞
0

{
(1− e−rτ )B

r
+ e−rτ (Ũ f − p)

}
λ1e

−λ1τdτ (5.12)

is the expected payoff in State g1. Combining the above two equations, one can obtain

rŨ f = B − λ1p, (5.13)

and

rU f = B −
(

rλ0

r + αλ0

(1− α)p̄+
λ0(r + λ1)

r + αλ0

αp

)
. (5.14)

Given the minor treatment recommendation, inferring that Good K has the major

problem and will enter State g1 after which all future treatments will be minor, the

customer is willing to accept if and only if the price is no greater than her State g1

reservation value, i.e.,

p ≤ 1

r + λ1

B. (5.15)

Given the major treatment recommendation, inferring that Good K has the minor prob-

lem and will return to State g0, the customer is willing to accept it if and only if p̄ ≤ U f ,
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or

p̄ ≤ r + αλ0

r(r + λ0)
B − αλ0(r + λ1)

r(r + λ0)
p. (5.16)

Consider now the expert’s incentive of playing falsehood strategy. Given the minor

problem, since both treatments return Good K to State g0, the expert would have no

incentive to recommend the minor treatment if and only if the profit margin of the major

treatment is higher:

p̄− c̄ ≥ p− c. (5.17)

Given the major problem, the expert’s on-the-path expected profit in State g0 is

Πf
on = p− c+ Π̃f , (5.18)

where Π̃f is his expected profit in State g1 which can be obtained from

Π̃f =

∫ ∞
0

e−rτ
{

Π̃f + (p− c)
}
λ1e

−λ1τdτ, (5.19)

which implies rΠ̃f = λ1(p−c). Suppose now the expert deviates one-time to recommend-

ing the major treatment, then his off-the-path expected profit is

Πf
off = (p̄− c̄) + Πf , (5.20)

where Πf is his equilibrium expected profit in State g0 which can be obtained from

Πf =

∫ ∞
0

e−rτ
{

(1− α)[Πf + (p̄− c̄)] + α[Π̃f + (p− c)]
}
λ0e

−rλ0dτ, (5.21)

which implies

rΠf =
rλ0

r + αλ0

(1− α)(p̄− c̄) +
λ0(r + λ1)

r + αλ0

α(p− c). (5.22)

Hence no deviation requires Πf
on ≥ Πf

off, or

p̄− c̄ ≤ r + λ1

r + λ0

(p− c). (5.23)

In summary, the expert chooses p to maximize (5.22) subject to (5.15) (5.16) (5.17) and

(5.23). We solve this maximization problem graphically under three cases of parameter

values (see Figure 3). The two positively sloped lines represent the two incentive con-

straints for the expert, (5.17) and (5.23), holding in equality, and hence the shaded area

represents all incentive compatible prices. The negatively sloped black line represents the

customer’s participation constraint (5.16) holding in equality. The other participation

constraint is represented by the vertical line at p = 1
r+λ1

. Hence, the shaded area rep-

resents all admissible equilibrium prices. Finally, the y-intercept of the other negatively
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Case I Case II

Case III

Figure 3: Optimal Falsehood Equilibrium

sloped blue line indicates the value of the objective function. We have the following three

scenarios.

• Case I: c̄− c < λ1−λ0

r+λ0
c.

The optimal prices are p̄ = 1
r+λ0

B +
(
c̄− r+λ1

r+λ0
c
)
, p = 1

r+λ1
B, and the maximal

profit is rΠf = λ0

r+λ0
B− λ0(r+λ1)

r+λ0
c. The customer’s expected payoff is rU f = r

r+λ0
B+

rλ0(1−α)
r+αλ0

(
r+λ1

r+λ0
c− c̄

)
. The expected social surplus is

rW f = B − λ0

r+αλ0
[α(r + λ1)c+ (1− α)rc̄] = rV f .

• Case II: λ1−λ0

r+λ0
c ≤ c̄− c ≤ λ1−λ0

(r+λ0)(r+λ1)
B.

The optimal prices are p̄ = 1
r+λ0

B, p = 1
r+λ1

B, and the maximal profit is rΠf =
λ0

r+λ0
B− rλ0(1−α)

r+αλ0
c̄− αλ0(r+λ1)

r+αλ0
c. The customer’s expected payoff is rU f = r

r+λ0
B. The

expected social surplus is rW f = B − λ0

r+αλ0
[α(r + λ1)c+ (1− α)rc̄] = rV f . This

is the highest possible profit that the expert can obtain by the falsehood strategy

since the customer obtains her lowest possible payoff.
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• Case III: c̄− c > λ1−λ0

(r+λ0)(r+λ1)
B.

The optimal prices are p̄ = r+αλ0

r(r+λ0)+αλ0(r+λ1)
B + αλ0(r+λ1)

r(r+λ0)+αλ0(r+λ1)
(c̄− c),

p = r+αλ0

r(r+λ0)+αλ0(r+λ1)
B − r(r+λ0)

r(r+λ0)+αλ0(r+λ1)
(c̄− c), and the maximal profit is

rΠf = λ0(r+αλ1)
r(r+λ0)+αλ0(r+λ1)

[
B − r(r+λ0)

r+αλ0
c̄− αλ0(r+λ1)

r+αλ0
c
]
.

The customer’s expected profit is rU f = r(r+αλ0)
r(r+λ0)+αλ0(r+λ1)

B+ αrλ0(r+λ1)
r(r+λ0)+αλ0(r+λ1)

(c̄−c).
The expected social surplus is rW f = B − λ0

r+αλ0
[α(r + λ1)c+ (1− α)rc̄] = rV f .
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5.3 Proof of Lemma 3

Proof. The largest social value under the undertreatment plan is given by

rV u = B − λ0(r + αλ1)

r + αλ0

c. (5.24)

Consider now the customer’s incentive of accepting the minor treatment recommendation.

Given the expert’s undertreatment strategy and the customer’s post-treatment belief

µ′m,n, the customer obtains

Uu(µ′m,n) = µ′m,n
1

r + λ1

B + (1− µ′m,n)
1

r + λ0

B (5.25)

if the customer expects to obtain no surplus from all future interactions. The expert then

sets

p(µ′m,n) = Uu(µ′m,n) = µ′m,n
1

r + λ1

B + (1− µ′m,n)
1

r + λ0

B (5.26)

so that the customer indeed obtains no surplus from this and all future interactions. By

extracting all surplus from the first interaction onwards, this pricing strategy also gives

the expert the highest possible profit.

Assume that the customer has the off-equilibrium belief that if the major treatment is

recommended, then the expert would thereafter always recommend the major treatment.

Given that p̄ > 1
r+λ0

B, the customer would reject the major treatment recommendation.

Knowing this, the expert would never recommend the major treatment.

In this equilibrium, the customer retains her reservation value at g0, i.e., rU0 = r
r+λ0

B,

and the expert obtains

rΠu = rV u − rU0 =
λ0

r + λ0

B − λ0(r + αλ1)

r + αλ0

c. (5.27)
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5.4 Proof of Proposition 3

Proof. First, we show that “falsehood equilibrium” is always dominated by “undertreat-

ment equilibrium”. In terms of social welfare,

rW u − rW f =
[
B − (r + αλ1)λ0

r + αλ0

c
]
−
[
B − rλ0(1− α)

r + αλ0

c̄− αλ0(r + λ1)

r + αλ0

c
]

=
rλ0(1− α)

r + αλ0

(c̄− c) > 0. (5.28)

Also,

rU f ≥ r

r + λ0

B,

rUu =
r

r + λ0

B.

Therefore,

rΠu − rΠf = [rW u − rUu]− [rW f − rU f ] ≥ rW u − rW f > 0.

So “falsehood equilibrium” is dominated.

For “undertreatment equilibrium” and “overtreatment equilibrium”, since the expert’s

extract all surplus except for the customer’s reservation value in both equilibria, we only

need to compare the expected surplus in State g0.

rW u − rW o = λ0c̄−
(r + αλ1)λ0

r + αλ0

c

= λ0

{
c̄−

[
1 + α

(λ1 − λ0)

r + αλ0

]
c
}

(5.29)

Therefore, when c̄ >
[
1 + α (λ1−λ0)

r+αλ0

]
c, “undertreatment equilibrium” is more profitable

than “overtreatment equilibrium” and vice versa. Together with the cutoff established

by Assumption (2), we arrive at Proposition 3.
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5.5 Proof of Lemma 4

Proof. The equilibrium is supported by the customer’s off-equilibrium belief described as

follows. For a deviation in treatment strategies, we assume that if the major treatment

is recommended whenever µ′m,n ≤ µ̄, the customer believes that the expert would always

recommend the major treatment thereafter with price list (p, p̄ > 1
r+λ0

B); if the minor

treatment is recommended whenever µ′m,n > µ̄, the customer believes that Good K had

the major problem and that the expert would thereafter always recommend the minor

treatment with price list (p > 1
r+λ1

B, p̄). This off-equilibrium belief ensures that the

customer would reject the expert’s off-equilibrium treatment recommendation at the un-

dertreatment stage if p̄ > 1
r+λ0

B and at the overtreatment stage if p > 1
r+λ1

B. These two

conditions on prices are satisfied with the equilibrium price lists proposed in Proposition

4. For a deviation in prices, if the expert deviates to a lower price, the customer would

accept the recommendation as long as the expert adopts the on-equilibrium-path recom-

mendation strategy whereas if the expert deviates to a higher price, the customer would

assume that the high price strategy would be recommended and thus would restrain from

visiting the expert.

Given the belief of the customer that in the future interactions, the expert would set

price lists and use recommendation strategies such that the customer obtains no surplus,

the maximum price the customer would accept for the minor treatment recommendation

when µ′m,n ≤ µ̄ is

p = µ′nU1 + (1− µ′n)U0 = µ′n
1

r + λ1

B + (1− µ′n)
1

r + λ0

B

and the maximum price for the major treatment recommendation when µ′m,n > µ̄ is

p̄ =
1

r + λ0

B.

At the same time, similar to the proof in the “overtreatment equilibrium” and “un-

dertreatment equilibrium”, the expert needs to set the never-to-be-used price to be high

enough such that the customer would reject the treatment if the treatment is ever rec-

ommended.
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5.6 Proof of Proposition 4

Proof. Case I: c̄ =
[
1 + α (λ1−λ0)

r+αλ0

]
c, i.e., c̄− c = α (λ1−λ0)

r+αλ0
c

Under this constraint, “undertreatment equilibrium” gives the same value as “overtreat-

ment equilibrium”, i.e., V u = V o.

Consider an equilibrium where the expert performs the minor treatment until some

µ̄ and performs the major treatment forever thereafter, and call this equilibrium “µ̄1

equilibrium”. In general, we define “µ̄n equilibrium” as an equilibrium where the

minor treatment until µ̄ happens n rounds. More specifically, for the first n− 1 rounds,

the expert performs the minor treatment until µ̄ and performs the major treatment

exactly once to bring Good K back to State g0, and in the nth round, the expert performs

the minor treatment until µ̄ and performs the major treatment forever thereafter.

When c̄ − c = α (λ1−λ0)
r+αλ0

c, for any µ̄ ∈ [α, 1], “µ̄1 equilibrium” has the same value

as the hypothetical case where the expert performs undertreatment until µ̄, then Good

K restores to g0 and the expert performs the minor treatment thereafter. The value of

this hypothetical case is higher than that of “undertreatment equilibrium” since the two

values before µ̄ are the same while after µ̄, the hypothetical case has a higher value.

Specifically,

V u > (1− µ̄)V u + µ̄Ṽ u.

Therefore, “µ̄1 equilibrium” has a higher value compared to both “undertreatment equi-

librium” and “overtreatment equilibrium”. Now consider “µ̄2 equilibrium”. since “µ̄1

equilibrium” has a higher value than “overtreatment equilibrium”, then “µ̄2 equilib-

rium” has a higher value than “µ̄1 equilibrium”. We can repeatedly apply this logic and

“cutoff equilibrium” obtains a higher value compared to “undertreatment equilibrium”,

“overtreatment equilibrium” and “µ̄n equilibrium” for any n <∞.

Case II: c̄− c < α (λ1−λ0)
r+αλ0

c

Under this constraint, “overtreatment equilibrium” is more profitable than “under-

treatment equilibrium”, i.e., V o > V u.

Consider “α1 equilibrium”. This is an equilibrium where the minor treatment is

performed exactly once before the major treatment is performed forever. Let the value
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of such equilibrium be V α1 , and the value of the later overtreatment forever part be Ṽ α1 .

Ṽ α1 =(1− α)

∫ ∞
0

[(1− e−rτ )B
r

+ e−rτ (V o − c̄)]λ0e
−λ0τdτ

+ α

∫ ∞
0

[(1− e−rτ )B
r

+ e−rτ (V o − c̄)]λ1e
−λ1τdτ

=(1− α)V o + α[
r

λ1 + r

B

r
+

λ1

λ1 + r
(V o − c̄)]

=
B

r
− [(1− α)

λ0

r
+ α

λ1

λ1 + r

λ0 + r

r
]c̄

V α1 =

∫ ∞
0

[(1− e−rτ )B
r

+ e−rτ (Ṽ α1 − c)]λ0e
−λ0τdτ

=
r

r + λ0

B

r
+

λ0

λ0 + r
(Ṽ α1 − c)

=
B

r
− [(1− α)

λ0

λ0 + r
+ α

λ1

λ1 + r
]
λ0

r
c̄− λ0

λ0 + r
c

V α1 − V o =
{B
r
− [(1− α)

λ0

λ0 + r
+ α

λ1

λ1 + r
]
λ0

r
c̄− λ0

λ0 + r
c
}
−
{B
r
− λ0

r
c̄
}

=
{

1− [(1− α)
λ0

λ0 + r
+ α

λ1

λ1 + r
]
}λ0

r
c̄− λ0

λ0 + r
c

=
λ0

λ0 + r

{
[1− αλ1 − λ0

λ1 + r
]c̄− c

}
=

λ0

λ0 + r
[1− αλ1 − λ0

λ1 + r
]
{
c̄− λ1 + r

r + (1− α)λ1 + αλ0

c
}

=
λ0

λ0 + r
[1− αλ1 − λ0

λ1 + r
]
{

(c̄− c)− α(λ1 − λ0)

r + (1− α)λ1 + αλ0

c
}

Therefore, V α1 − V o > 0 if and only if

c̄− c > α(λ1 − λ0)

r + (1− α)λ1 + αλ0

c.

Note

α(λ1 − λ0)

r + (1− α)λ1 + αλ0

c < α
(λ1 − λ0)

r + αλ0

c.

Case III: c̄− c > α (λ1−λ0)
r+αλ0

c

Under this constraint, “undertreatment equilibrium” is more profitable than “overtreat-

ment equilibrium”, i.e., V u > V o.

Consider Ṽ u < V o, i.e., c̄ − c < λ1−λ0

λ0
c and the equilibrium with µ̄ → 1. Under
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this case, at µ̄ → 1, undertreatment forever gives lower value compared to overtreat-

ment forever. Therefore, the value of “undertreatment equilibrium” is lower than the

value of “µ̄1 equilibrium”. Since “undertreatment equilibrium” is more profitable than

“overtreatment equilibrium”, the value of “µ̄1 equilibrium” is also higher than that of

“overtreatment equilibrium”. Then consider “µ̄2 equilibrium”. The profit in “µ̄2 equilib-

rium” is higher than that in “µ̄1 equilibrium” since “µ̄1 equilibrium” has a higher value

than “overtreatment equilibrium”. We can repeatedly apply this logic and “cutoff equilib-

rium” obtains a higher value compared to “undertreatment equilibrium”, “overtreatment

equilibrium” and “µ̄n equilibrium” for any n <∞.
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5.7 Proof of Lemma 3’

Proof. The expert sets p = 1
r+λ1

B to induce the customers always accept the minor treat-

ment recommendation even when they become extremely pessimistic, then the customer’s

expected payoff in State g0 can be written as with

Uu =

∫ ∞
0

{
(1− erτ )B

r
+ e−rτ

[
α(Ũu − p) + (1− α)(Uu − p)

]}
λ0e

−λ0τdτ, (5.30)

where

Ũu =

∫ ∞
0

{
(1− erτ )B

r
+ e−rτ (Ũu − p)

}
λ1e

−λ1τdτ (5.31)

is the expected payoff in State g1. Note that the value functions does not depend on

the customer’s belief but only on the state of Good K since the expert would always

recommend the minor treatment and the customer would always accept. Combining the

above two equations, one can solve for

rŨu = B − λ1p =
r

r + λ1

B ≥ rp, (5.32)

and

rUu = B − λ0(r + αλ1)

r + αλ0

p =

[
1− λ0(r + αλ1)

(r + αλ0)(r + λ1)

]
B ≥ rp. (5.33)

Hence, the customer indeed will always accept the minor treatment recommendation.

Similarly, the expert’s expected profit is given by

Πu =

∫ ∞
0

e−rτ
{

(1− α)
[
Πu + (p− c)

]
+ α

[
Π̃u + (p− c)

]}
λ0e

−λ0τdτ, (5.34)

where

Π̃u =

∫ ∞
0

e−rτ
{

Π̃u + (p− c)
}
λ1e

−λ1τdτ. (5.35)

Combining the above two equations, one can obtain

rΠ̃u = λ1(p− c) = λ1

(
1

r + λ1

B − c
)

(5.36)

and

rΠu =
λ0(r + αλ1)

r + αλ0

(p− c) =
λ0(r + αλ1)

r + αλ0

(
1

r + λ1

B − c
)
, (5.37)

which is the expert’s expected profit.

We assume that the customer has an off-equilibrium belief that if the major treatment

is recommended, the expert would always recommend the major treatment thereafter.

Given this belief, the customer rejects the major treatment recommendation as long as

p̄ > 1
r+λ0

B.
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5.8 Proof of Proposition 3’

Step 1. rΠo > rΠu if and only if

c̄− c < λ1 − λ0

r + αλ0

[
r(1− α)

(r + λ0)(r + λ1)
B + αc

]
. (5.38)

Proof. Since

rΠo − rΠu =

{
λ0

r + λ0

B − λ0c̄

}
−
{
λ0(r + αλ1)

r + αλ0

[
1

r + λ1

B − c
]}

=
rλ0(1− α)(λ1 − λ0)

(r + αλ0)(r + λ0)(r + λ1)
B − λ0c̄+

λ0(r + αλ1)

r + αλ0

c

=
λ0(λ1 − λ0)

r + αλ0

[
r(1− α)

(r + λ0)(r + λ1)
B + αc

]
− λ0(c̄− c),

(5.39)

the result follows immediately.

Step 2. λ1−λ0

r+λ0
c < λ1−λ0

r+αλ0

[
r(1−α)

(r+λ0)(r+λ1)
B + αc

]
< λ1−λ0

(r+λ0)(r+λ1)
B.

Proof. By Assumption 1, direct calculation yields

λ1 − λ0

r + αλ0

[
r(1− α)

(r + λ0)(r + λ1)
B + αc

]
− λ1 − λ0

r + λ0

c >
λ1 − λ0

r + αλ0

[
r(1− α)

r + λ0

c+ αc

]
− λ1 − λ0

r + λ0

c

=
α(λ1 − λ0)

r + αλ0

(c̄− c)

> 0,

(5.40)

and

λ1 − λ0

(r + λ0)(r + λ1)
B − λ1 − λ0

r + αλ0

[
r(1− α)

(r + λ0)(r + λ1)
B + αc

]
=

α(λ1 − λ0)

(r + αλ0)(r + λ1)
[B − (r + λ1)c]

> 0.

(5.41)

Step 3. If c̄− c < λ1−λ0

r+λ0
c, then rΠo > rΠf and rΠo > rΠu.

Proof. rΠo > rΠu follows immediately from Steps 1 and 2. And direct calculation gives

rΠo − rΠf =

{
λ0

r + λ0

B − λ0c̄

}
−
{

λ0

r + λ0

B − λ0(r + λ1)

r + λ0

c

}
= λ0

[
λ1 − λ1

r − λ0

c− (c̄− c)
]

> 0.

(5.42)
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Suppose first that λ1−λ0

(r+λ0)(r+λ1)
B > λ1−λ0

r+αλ0
c, or B > (r+λ0)(r+λ1)

r+αλ0
c. Then Case III of

“falsehood equilibrium” does not exist, and Case II reduces to λ1−λ0

r+λ0
c ≤ c̄− c ≤ λ1−λ0

r+αλ0
c

Step 4. If c̄− c ∈
(
λ1−λ0

r+λ0
c, λ1−λ0

r+αλ0
c
)

, then rΠf > rΠo and rΠf > rΠu.

Proof. Direct calculation gives

rΠf − rΠo =

{
λ0

r + λ0

B − rλ0(1− α)

r + αλ0

c̄− αλ0(r + λ1)

r + αλ0

c

}
−
{

λ0

r + λ0

B − λ0c̄

}
=
αλ0(r + λ0)

(r + αλ0)

(
c̄− c− λ1 − λ1

r + λ0

c

)
> 0,

(5.43)

and

rΠf − rΠu =

{
λ0

r + λ0

B − rλ0(1− α)

r + αλ0

c̄− αλ0(r + λ1)

r + αλ0

c

}
−
{
λ0(r + αλ1)

r + αλ0

[
1

r + λ1

B − c
]}

=
λ0(1− α)

r + αλ0

[
λ1 − λ0

(r + λ0)(r + λ1)
B − (c̄− c)

]
>
λ0(1− α)

r + αλ0

[
λ1 − λ0

r + αλ0

c− (c̄− c)
]

> 0.

(5.44)

Suppose now that λ1−λ0

(r+λ0)(r+λ1)
B < λ1−λ0

r+αλ0
c, or B < (r+λ0)(r+λ1)

r+αλ0
c.

Step 5. If c̄− c ∈
(
λ1−λ0

r+λ0
c, λ1−λ0

(r+λ0)(r+λ1)
B
)

, then rΠf > rΠo and rΠf > rΠu.

Proof. This follows immediately from Step 4.

Step 6. If c̄− c > λ1−λ0

(r+λ0)(r+λ1)
B, then rΠu > rΠf and rΠu > rΠo.

Proof. Direct calculation gives

rΠu − rΠf =

{
λ0(r + αλ1)

r + αλ0

[
1

r + λ1

B − c
]}
−{

λ0(r + αλ1)

r(r + λ0) + αλ0(r + λ1)

[
B − r(r + λ0)

r + αλ0

c̄− αλ0(r + λ1)

r + αλ0

c

]}
=

rλ0(r + αλ0)(r + λ0)

[r(r + λ0) + αλ0(r + λ1)](r + αλ0)

[
c̄− c− λ1 − λ0

(r + λ0)(r + λ1)
B

]
>0.

(5.45)

Then by Steps 1 and 2, rΠu > rΠo.
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