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Abstract

Empirical studies demonstrate striking patterns in stock market returns in rela-

tion to scheduled macroeconomic announcements. First, a large proportion of the

total equity premium is realized on days with macroeconomic announcements,

despite the small number of such days. Second, the relation between market

betas and expected returns is far stronger on announcement days as compared

with non-announcement days. Finally, these results hold for fixed-income invest-

ments as well as for stocks. We present a model with rare events that jointly

explains these phenomena. In our model, which is solved in closed form, agents

learn about a latent disaster probability from scheduled announcements. We

quantitatively account for the empirical findings, along with other facts about

the market portfolio.
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1 Introduction

Since the work of Sharpe (1964) and Lintner (1965), the Capital Asset Pricing Model

(CAPM) has been the benchmark model of the cross-section of asset returns. While

generalizations have proliferated, the CAPM, with its simple and compelling structure

and tight empirical predictions, remains the major theoretical framework for under-

standing the relation between risk and return. Recently, Savor and Wilson (2014)

document a striking fact about the fit of the CAPM. Despite its poor performance in

explaining the cross section overall, the CAPM does quite well on a subset of trading

days, namely those days in which the Federal Open Market Committee (FOMC) or

the Bureau of Labor Statistics (BLS) releases macroeconomic news.

Figure 1 reproduces the main result of Savor and Wilson (2014) using updated

data. We sort stocks into portfolios based on market beta (the covariance with the

market divided by market variance) computed using rolling windows. We display the

relation between portfolio beta and expected returns on announcement days and non-

announcement days in the data. This relation is known as the security market line. On

non-announcement days (the majority), the slope is indistinguishable from zero. That

is, there appears to be no relation between beta and expected returns. This result holds

unconditionally, and is responsible for the widely-held view of the poor performance

of the CAPM. However, on announcement days, a strong positive relation between

betas and expected returns appears. Moreover, portfolios line up well against the

security market line, suggesting that the relation is not only strong, but that the total

explanatory power is high. Finally, these results appear even stronger for fixed-income

investments than for equities.

We summarize the facts as follows:

1. The equity premium is much higher on announcement days as opposed to non-

announcement days

2. The slope of the security market line is higher on announcement days than on non-

announcement days. The difference is economically and statistically significant.

3. The security market line is essentially flat on non-announcement days.

4. Results 1 and 2 hold for Treasury bonds as well as for stocks.
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In this paper, we build a frictionless model with rational investors that explains

these findings. Our model is relatively simple and solved in closed form, allowing us to

clearly elucidate the elements of the theory that are necessary to explain these results.

Nonetheless, the model is quantitatively realistic, in that we explain not only these

findings above, but also the overall risk and return of the aggregate stock market.

One important aspect of our model is that, despite the lack of frictions, investors

do not have complete information. Macroeconomic announcements matter for stock

prices because they reveal information to investors. This only makes sense if investors

do not have full information in the first place.1 The information that is revealed

matters greatly to investors, which is why a premium is required to hold stocks on

announcement days (the first finding). In our model, the information concerns the

likelihood of economic disaster similar to the Great Depression or what many countries

suffered following the 2008 financial crisis.

We further assume that stocks have differential exposure to macroeconomic risk. We

endogenously derive the exposure on stock returns from the exposure of the underlying

cash flows. We also assume, plausibly, that there is some variability in the probability

of disaster that is not revealed in the macroeconomic announcements. Stocks with

greater exposure have endogenously higher betas, both on announcement and non-

announcement days, than those with lower exposure. They have much higher returns,

in line with the data, on announcement days, because that is when a disproportionate

amount of information is revealed (the second finding). Finally, the presence of disasters

and of time-varying disaster risk implies that a linear relation between expected returns

and betas does not hold. Stocks can have high variances, and covariances with the

market, driven by time-varying disaster risk, without exposure to the actual disasters

rising in proportion. This explains the third finding.

An extension of the model to bonds us to explain the fourth finding. We assume

that some information that is revealed on announcements is informative about expected

inflation. Bonds are exposed to announcements to a greater extent than equities. In

the model, as well as in the data, betas on bonds rise dramatically on announcement

days (they are near zero on non-announcement days), while equity betas do not.

We find that the presence of rare events breaks the traditional relation between

1Another possibility is that macroeconomic announcements themselves create the risk perhaps
because they reflect on the competence of the Federal Reserve. We do not consider that possibility
here.
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risk and return. This is important, because except for bonds, conventional measures of

risk such as variance and covariance do not appear marketdly higher on announcement

days. Our model is consistent with this finding, because of the asymmetric nature of

the rare event. Most likely, investors will learn that the economy continues to be in

good shape and the risk of disaster remains low. There is a small probability, however,

that they will learn that the economy is in worse shape than believed. A sample could

easily feature mainly events of the first type since the second type is rare.

While we focus on macroeconomic announcements, the tools we develop could be

used to address other types of periodic information revelation. There is a vast empir-

ical literature on announcement effects (La Porta et al., 1997; Fama, 1970), of which

the literature on macro-announcements is a part. There is, at present, scant theoret-

ical work (Ai and Bansal (2018) is an important recent exception). In this paper, we

develop a set of theoretical tools to handle the fact that announcements occur at deter-

ministic intervals, and that a finite amount of information is released over a vanishingly

small period of time. Time just before and just after the announcement is connected

through intertemporal optimization conditions. We show that these conditions form a

set of boundary conditions for the dynamic evolution of prices in the interval between

announcements. It is this insight that allows us to solve the model in closed form.

The rest of the paper proceeds as follows. Section 2 discusses the model. Section 3

discusses the fit of the model to the data, and Section 4 concludes.

2 A model of asset prices with macroeconomic an-

nouncements

In the section that follows, we describe the model. Section 2.1 gives the endowment and

preferences, Section 2.2 the relation between cash flows and announcements, Section 2.3

describes state prices, Section 2.4 equity prices, and Section 2.5 risk premia. Finally

Section 2.6 describes the pricing of nominal bonds. Unless otherwise stated, proofs are

contained in the Appendices.
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2.1 Endowment and preferences

We assume an endowment economy with an infinitely-lived representative agent. Ag-

gregate consumption (the endowment) follows the stochastic process

dCt
Ct−

= µCdt+ σdBCt +
(
eZt − 1

)
dNt, (1)

where BCt is a standard Brownian motion and where Nt is a Poisson process. The

diffusion term µCdt + σdBCt represents the behavior of consumption during normal

times. The Poisson term
(
eZt − 1

)
dNt represents rare disasters. The random variable

Zt represents the effect of a disaster on log consumption growth. We assume, for

tractability, that Zt has a time-invariant distribution, which we call ν; that is, Zt is

iid over time, and independent of all other shocks. We use the notation Eν to denote

expectations taken over ν.

We assume the representative agent has recursive utility with EIS equal to 1,

which gives us closed-form solutions up to ordinary differential equations. We use

the continuous-time characterization of Epstein and Zin (1989) derived by Duffie and

Epstein (1992). The following recursion characterizes utility Vt:

Vt = maxEt

∫ ∞
t

f(Cs, Vs)ds, (2)

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log[(1− γ)Vt]

)
. (3)

Here β represents the rate of time preference, and γ represents relative risk aversion.

The case of γ = 1 collapses to time-additive (log) utility. When γ 6= 1, preferences

satisfy risk-sensitivity, the characteristic that Ai and Bansal (2017) show is a necessary

condition for a positive announcement premium.

2.2 Scheduled announcements and the disaster probability

We assume that scheduled announcements convey information about the probability

of a rare disaster (in what follows, we use the terminology probability and intensity

interchangeably). The probability may also vary over time for exogenous reasons; this

creates volatility in stock prices in periods that do not contain announcements.
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To parsimoniously capture these features in the model, we assume the intensity of

Nt is a sum of two processes, λ1t and λ2t.
2 We assume investors observe λ2t, which

follows

dλ2t = −κ(λ2t − λ̄2)dt+ σλ
√
λ2tdBλt, (4)

with Bλt a Brownian motion independent of BCt. The process for λ2t is the same as

the one assumed for the disaster probability in Wachter (2013).

The intensity λ1t follows a latent Markov switching process. Following Benzoni

et al. (2011), we assume two states, λG (good) and λB (bad), with 0 ≤ λG < λB, and

P (λ1,t+dt = λG|λ1t = λB) = ηBGdt

P (λ1,t+dt = λB|λ1t = λG) = ηGBdt.
(5)

Note that ηBG is the probability (per unit of time) of a switch from the bad to the

good state and ηGB is similarly, the probability of a switch from the good to the bad

state.

Announcements convey information about λ1t. Let T be the length of time between

announcements.3 Define τ as the time elapsed since the most recent announcement:

τ ≡ t mod T,

Furthermore, define

A ≡ {t : t mod T = 0} ,

N ≡ {t : t mod T 6= 0} .
(6)

That is, A is the set of announcement times, and N is the set of non-announcement

times. Note that N is an open set, so we can take derivatives of functions evaluated

at times t ∈ N .

Let pt denote the probability that the representative agent places on λ1t = λB. For

2Equivalently, decompose, Nt as
Nt = N1t +N2t,

where Njt, for j = 1, 2, has intensity λjt.
3In the data, announcements are periodic, but, depending on the type of announcement, the

period length is not precisely the same. Our assumption of an equal period length is a convenient
simplification that has little effect on our results.
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t ∈ N , assume

dpt = (−ptηBG + (1− pt)ηGB) dt = (−pt(ηGB + ηBG) + ηGB) dt. (7)

This assumption implies that the agent learns only from announcements.4 Outside of

announcement periods, the agent updates based on (5). If the economy is in a good

state, which it is with probability 1− pt, the chance of a shift to the bad state over the

next instant is ηGB dt. If the economy is in a bad state, which is with probability pt,

the chance of a shift to the good state over the next instant is ηBG dt. Define

λ̄1(pt) ≡ ptλ
B + (1− pt)λG,

as the agent’s posterior value of λ1t.

For simplicity, we assume announcements convey full information, that is, they

perfectly reveal λ1t.
5 We refer to announcements revealing λ1t to be λG as positive and

those revealing it to be λB as negative. The reason for this terminology is intuitive: an

announcement revealing the disaster probability to be low should be good news. The

following sections make this intuition precise.

It is useful to keep track of the content of the most recent announcement, because

of the information it conveys about the evolution of the disaster probability. Let

p0t ≡ pt−τ . (9)

That is, p0t is the revealed probability of a bad state at the most recent announcement.

4Bayesian learning implies

dpt = pt−

(
λB − λ̄1(pt−)

λ̄1(pt−)

)
dN1t +

(
−(pt−)(λB − λ̄1(pt−))− (pt−)ηBG + (1− pt−)ηGB

)
dt (8)

(Liptser and Shiryaev, 2001). The first term multiplying N1t corresponds to the actual effect of
disasters. The term −p(λB − λ̄1(p)) in the drift corresponds to the effect of no disasters. We abstract
from these effects in (8). Because disasters will be very unlikely, the term −p(λB − λ̄1(p)) is small
(agents do not learn much from the fact that disasters do not occur). In what follows, we compare
the data to simulations that do not contain disasters. Therefore ignoring the Poisson term can be
understood as an implementation of realization utility, defined by Cogley and Sargent (2008). We
allow agents to learn from disasters; however, they do not forecast that they will learn from disasters.

5In effect, we assume the government body issuing the announcement has better information,
perhaps because of superior access to data. Stein and Sunderam (2017) model the strategic problem
of the announcer and investors, and show that announcements might reveal more information than a
naive interpretation would suggest.
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By definition, p0t ∈ {0, 1}. The process for pt is right-continuous with left limits. In

the instant just before the announcement it is governed by (7). On the announcement

itself, it jumps to 0 or 1 depending on the true (latent) value of λ1t.

Under these assumptions, pt has an exact solution:

Lemma 1. For t ∈ N , the probability assigned to the bad state satisfies pt = p(τ ; p0t),

where

p(τ ; p0t) = p0te
−(ηBG+ηGB)τ +

ηGB
ηBG + ηGB

(1− e−(ηBG+ηGB)τ ). (10)

Proof. Equation 7 implies that pt is deterministic between announcements. More-

over, pt is memoryless in that it contains no information prior to the most recent

announcement. Because the information revealed at the most recent announcement is

summarized in p0, any solution for (7) takes the form pt = p(τ ; p0t), where τ = t mod T

and p0t ∈ {0, 1}. It follows directly from (7) that p(τ ; p0t) satisfies

d

dτ
p(τ ; p0) = −p(τ ; p0)(ηBG + ηGB) + ηGB, τ ∈ [0, T ). (11)

This has a general solution:

p(τ ; p0) = Kp0e
−(ηBG+ηGB)t +

ηGB
ηBG + ηGB

, (12)

where Kp0 is a constant that depends on p0. The boundary condition p(0; p0) = p0

determines Kp0 .

Equation 10 shows that pt is a weighted average of two probabilities. The first, p0t,

is the probability of the bad state, revealed in the most recent announcement. The

second, ηGB
ηGB+ηBG

, is the unconditional probability of the bad state. As τ , the time

elapsed since the announcement, goes from 0 to 1, the agent’s weight shifts from the

former of these probabilities to the latter.

Agents forecast the outcome of the announcement based on pt. The optimality

conditions connecting the instant before the announcement to the instant after are

crucial determinants of equilibrium. It is thus useful to define notation for pt just
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before the announcement. Let

pG = lim
τ→T

p(τ ; 0)

pB = lim
τ→T

p(τ ; 1).
(13)

Then pG is the probability that the agent assigns to a negative announcement just

before the announcement is realized, if the previous announcement was positive. If the

previous announcement was negative, then the agent assigns probability pB. The values

of pG and pB, which are strictly between 0 and 1, follow from (10). Not surprisingly,

pB > pG.

In what follows, all expectations should be understood to be taken with respect to

the agent’s posterior distribution, unless noted otherwise.

2.3 The state-price density

We will value claims to future cash flows using the state-price density πt. This object

is uniquely determined by the utility function and by the process for the endowment.

Heuristically, we can think of πt as the process for marginal utility.

Theorem 1. For t ∈ N , the evolution of the state price density πt is characterized by

dπt
πt−

= −(rt +
(
λ̄1(pt) + λ2t

)
Eν
[
e−γZt − 1

]
)dt

− γσdBCt + (1− γ)bλσλ
√
λ2tdBλt + [e−γZt − 1]dNt, (14)

where rt is the riskless interest rate,

rt = β + µC − γσ2 +
(
λ̄1(pt) + λ2t

)
Eν
[
e−γZt(eZt − 1)

]
. (15)

and where

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λEν [e
(1−γ)Zt − 1]

)
.

The instantaneous mean growth rate of the state-price density is (as usual) the
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riskfree rate rt (to be characterized below).6 The state-price density jumps upward in

the case of a disaster, corresponding to the effect of a large decline in consumption on

marginal utility. The state-price density also changes due to normal-time changes in

consumption (this term will be small), and because of changes in the disaster probabil-

ity not associated with announcements (1−γ)bλσλ
√
λ2tdBλt. When γ > 1, (1−γ)bλ is

positive and so marginal utility rises when the disaster probability rises. When γ < 1,

marginal utility falls.7

Theorem 1 shows that there is no role for announcements for t ∈ N . For a given

intensity of Nt, πt is the same as it would be without announcements (see, e.g. Tsai and

Wachter (2015)). Announcements enter only indirectly, through the disaster intensity.8

This is because announcements occur at pre-determined intervals. The announcement

cycle does affect the level of the value function, but, because it is deterministic, it does

not affect marginal utilities along the optimal consumption path.

Announcements do however affect the state-price density for t ∈ A.

Theorem 2 (Announcement SDF). For t ∈ A, with probability 1,

πt
πt−

=

(
exp{ζp0t + bppt}

exp{eβT ζp0t− + bppt−}

)1−γ

(16)

where

bp =
(λB − λG)Eν

[
e(1−γ)Zt − 1

]
(1− γ)(β + ηGB + ηBG)

, (17)

and where ζp0t , ζp0t− ∈ {ζ0, ζ1} with

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0 (18a)

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 . (18b)

The ratio of state-price densities just prior to and just after an announcement in

6For notational simplicity, the drift term in (14) is multiplied by time-t variables rather than
time-t− variables. Note that these variables are continuous for t ∈ N (they do not jump in the case
of a disaster) and so this simplification is harmless.

7In a more general model, whether marginal utility falls or rises depends on γ relative to the
inverse of the elasticity of intertemporal substitution. See Tsai and Wachter (2018).

8Note that the term in the drift involving pt acts as compensation for the disaster, ensuring that
rt remains the instantaneous rate of change πt.
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(16) will play an important role in what follows. This ratio can be thought of as an

announcement stochastic discount factor, or Announcement SDF, a concept defined

in a discrete-time setting in Ai and Bansal (2018). Though the announcement is

instantaneous, Theorem 2 shows that a finite amount of news is revealed: πt undergoes

a discrete change and thus the SDF is not trivially equal to one. This is what will

produce a macroeconomic announcement premium in our model.

The Announcement SDF depends on pt− (the posterior probability just before the

announcement) and on pt (the posterior probability just after). It depends also on p0t−

(the previously-announced probability of a bad state). Note that p0t, p0t− ∈ {0, 1} and,

for announcement times t, pt− ∈ {pG, pB} and pt = p0t. Equation 18 is thus simply the

condition that, over an infinitesimal interval, agents’ expectations of the SDF equal

one, or, equivalently, that the state-price density must follow a martingale.9

That the posterior pt should affect the SDF is intuitive. It follows from λB > λG

that bp < 0. Thus for γ > 1, an increase in the posterior probability of being in a bad

state increases marginal utility. Moreover, the increase in marginal utility is higher,

the greater is the persistence of the probability (namely, the lower ηGB +ηBG), and the

lower the discount factor β. In the numerator of this term is the instantaneous effect

of a disaster on utility, multiplied by the incremental probability of disaster from being

in a bad state.

However, the change in the state-price density is not only due to the change in

the posterior probability. There is also an effect of the announcement itself. On the

announcement, the state variable p0t, representing the posterior on the most recent

announcement, also jumps. Recall that this variable can either be 0 or 1, because

the announcement perfectly reveals the state. The effect is thus characterized by

a binary variable ζp0t , whose two values satisfy the system (18). When the agent

receives news about λ1t on the announcement, she changes her pt, and incorporates

the future predictable changes in pt into the SDF (this is why mean reversion enters in

Equation 17). The agent also incorporates forecasts of future announcements through

(18).

Given the interpretation of (18) as the announcement SDF, we would expect it to

9Equation 16 holds “only” with probability 1. That is, there is a theoretical possibility that a
disaster could coincide with an announcement. Because announcements are a set of measure zero the
probability that a disaster and announcement coincide is zero, and so we can ignore the theoretical
possibility when calculating expectations.
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reflect our intuition about agent’s marginal utilities. In fact it does, as Corollary 1

shows. The following technical result is helpful.

Lemma 2. Let ζ0, ζ1, and bp be defined as in Theorem 2. Then bp < 0 and

ζ0 > ζ1 + bp. (19)

Proof. See Appendix A.

Indeed, given Lemma 2, the following corollary shows (assuming a preference for

early resolution of uncertainty) that the announcement SDF exceeds 1 if the announce-

ment is negative and is below 1 if it is positive:10

Corollary 1. For γ > 1, the state-price density falls when the announcement is positive

and rises when the announcement is negative.

For γ < 1, the state-price density falls when the announcement is negative and rises

when it is positive.

Proof. First assume that γ > 1. It follows from Lemma 2 that

e(1−γ)(ζ1+bp) > e(1−γ)ζ0 .

Consider the case where the previous announcement was positive. It follows from

pG ∈ (0, 1) and (18a) that

e(1−γ)ζ0 < e(1−γ)(ζ0eβT+bppG) < e(1−γ)(ζ1+bp),

because the middle expression is a weighted average of the terms on either side, with

weights strictly between 0 and 1. Therefore,(
eζ0

eζ0eβT+bppG

)1−γ

< 1 (20)(
eζ1+bp

eζ0eβT+bppG

)1−γ

> 1 (21)

10This condition is consistent with risk-sensitivity, as defined by Ai and Bansal (2018). In their
setting, as in ours, risk-sensitivity is a necessary condition for a nonzero announcement premium.
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When the time-t announcement is positive, πt/πt− equals the left-hand side of (20).

When it is negative, πt/πt− equals the left hand side of (21). This completes the proof.

The case in which the previous announcement was negative follows the same argu-

ment, using instead pB ∈ (0, 1) and (18b). The proof for γ < 1 follows along the same

lines.

Note that, because the SDF is greater than 1 for a negative announcement and

less than 1 for a positive announcement (Corollary 1), the probability of a negative

announcement is higher under the risk-neutral measure. Less obvious is the fact that

the relation pG < pB also holds for risk-neutral probabilities:

Theorem 3. Let p̃B be the risk-neutral probability of a negative announcement, just

prior to the announcement occurring, provided that the previous announcement was

negative, and p̃G be the analogous quantity, provided that the previous announcement

was positive. Then

p̃B > p̃G.

In the next sections, we will use Theorem 3 to characterize announcement effects

in the prices of bonds and stocks.

2.4 Equity prices

We consider a cross section of equities which differ in their sensitivity to disasters. For

parsimony, we assume the claims are identical in all other respects. Let Dj
t equal the

time-t dividend of claim j, for j = 1, . . . , J . Assume

dDj
t

Dj
t−

= µDdt+ σdBCt + (eφjZt − 1)dNt. (22)

The parameter φj determines the sensitivity of the claim to disasters. Let Sjt denote

the time-t price of the jth claim (that is, the price of stock j). No-arbitrage then

implies

Sjt = Et

∫ ∞
t

πs
πt
Dj
s ds (23)

In (23) and elsewhere in what follows, we take the expectation under the agents’

subjective distribution.
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Our model implies an analytical expression for (23) that, not surprisingly given the

form of (23), takes the form of an integral over s. The expressions in this integral are

equity strips, namely claims to a dividend payment at a single point in time.11 To

simplify the problem, we first give an analytical solution for these equity strips. We

use superscript j to denote quantities that depend on φj and thus are asset specific.

Theorem 4. Consider a claim to a dividend Dj
s+t, where the process for Dt solves

(22). Let Hj(Dj
t , pt, λ2t, τ, s; p0t) denote the time-t price of this claim. That is,

Hj(Dj
t , pt, λ2t, τ, s; p0t) = Dj

tEt

[
πt+s
πt

Dj
t+s

Dj
t

]
. (24)

Then

Hj(Dj
t , pt, λ2t, τ, s; p0t) = Dj

t exp
{
ajφ
(
τ, s; p0t

)
+ bjφp(s)pt + bjφλ(s)λ2t

}
(25)

where

bjφp(s) =
(λB − λG)Eν

[
e(φj−γ)Zt − e(1−γ)Zt

]
ηBG + ηGB

(
1− e−(ηBG+ηGB)s

)
, s ≥ 0, (26)

where bjφλ(s) solves

dbjφλ(s)

ds
=

1

2
σ2
λb
j
φλ(s)

2 +
(
(1− γ)bλσ

2
λ − κ

)
bjφλ(s) + Eν

[
e(φj−γ)Zt − e(1−γ)Zt

]
, (27)

with boundary condition bjφλ(0) = 0. Define the function ajφ such that

ajφ
(
τ, s; p0t

)
= hj

(
τ + s; p0t

)
+∫ s

0

(
−β − µC + µD + λGEν

[
e(φj−γ)Zt − e(1−γ)Zt

]
+ κλ̄2b

j
φλ(u) + ηGBbφp(u)

)
du (28)

for τ ∈ [0, T ), s ≥ 0, p0t ∈ {0, 1}. The function hj uniquely solves

eh
j(u;p0t− )+bjφp(u−T )pt− = Et−

[
e(1−γ)(ζp0t+bppt)

e(1−γ)(eβT ζp
0t−

+bppt− )
eh

j(u−T ;p0t)+b
j
φp(u−T )pt

]
, (29)

for u ≥ T and hj
(
u; ·
)

= 0 for u ∈ [0, T ).

11See Lettau and Wachter (2007).
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Equation 25 gives the price investors will pay today to receive the aggregate divi-

dend s periods in the future. This price depends on s, the probability of the state pt

and the probability of observed disaster λ2t. As is clear from both (26) and 27, the

direction of this dependence varies according to whether φj is greater than or less than

one, reflecting a tradeoff between the effect of the riskfree rate on the one hand and

that of the the risk premium and cash flow expectation on the other.12 The standard

assumption is levered equity, with φj > 1. In this case, the latter effect dominates, and

equity prices fall when the probability of a disaster (as captured by either λ2t or pt)

rises. This dependence is similar what one finds in previous work (Tsai and Wachter,

2015) and so we do not discuss it further here.

More novel is the dependence of the price on disasters, captured in the function

h(τ + s; p0t). This function depends on the sum of the maturity and the time since

the last disaster. When τ + s < T , there are no announcements scheduled before the

equity matures, and this term is zero. Now assume there is just one announcement

left before maturity. The risk-neutral expectation of the discounted price just before

the announcement has to match the price just after the announcement, pinning down

h(τ + s; p0t) for τ + s ∈ [T, 2T ). This is the content of condition (29).

Intuitively, a negative announcement should decrease prices. The following Corol-

lary shows that this is true, provided that φ > 1:

Corollary 2. Assume that φj > 1. Then the price of an equity strip with positive

maturity on the announcement date increases when the announcement is positive and

decreases when the announcement is negative. That is

H(D, 1, λ2, 0, s; 1) < lim
τ→T

H(D, pt− , λ2, τ, s; p0t−) < H(D, 0, λ2, 0, s; 0)

for s > 0.

While a formal proof is in the Appendix, we give a heuristic proof here. When

φj > 1, a higher probability of disaster lowers the value of the dividend claim (this

effect operates through bφp). Consider first the claim with one announcement prior

to maturity. Clearly, this claim will fall in price if the announcement is negative and

rise if it is positive. Because p̃B > p̃G, the price of this claim will be lower prior

12Equivalently: the agent’s desire to substitute across asset classes dominates the need to save
more.
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to announcement if the previous announcement is negative than if it positive (this

is captured by (29), for u ∈ [T, 2T )). Thus a claim with two announcements before

maturity will fall in price if the next announcement is negative, and so on.

To calibrate this model, we will consider a claim to a continuous stream of dividends.

The price of the claim is an integral of prices of the form (25):

Corollary 3. Let Sjt be the time-t price of an asset paying the dividend process (22)

with leverage parameter φj. Then

Sj
(
Dt, pt, λ2t, τ ; p0t

)
=

∫ ∞
0

Hj(Dt, pt, λ2t, τ, s; p0t

)
ds, (30)

where Hj is given by (25).

Proof. The result follows directly from Theorem 4 and the no-arbitrage condition

(23).

Using the characterization of the equity price in Corollary 3, we can sign the re-

sponse to the announcement.

Corollary 4. Assume that φj > 1. Then Sj
(
Dt, pt, λ2t, τ ; p0t

)
increases when the

announcement is positive and decreases when the announcement is negative. That is,

S(D, 1, λ2, 0; 1) < lim
τ→T

S(D, pt− , λ2, τ ; p0t−) < S(D, 0, λ2, 0; 0).

Proof. The result follows directly from Corollaries 2 and 3.

2.5 Risk premia

We first consider risk premiums when t ∈ calN . Let rjt denote the expected return on

asset j per unit dt of time. Note that:

rjt = µSjt +
(
λ̄1(pt) + λ2t

)
Eν [e

φjZt − 1] +
Dj
t

Sjt
, (31)

where µSjt is the drift of Sjt rate and where the expected jump size Eν [e
φjZt−1] follows

from the homogeneity of Sjt in Dj
t .
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Theorem 5. For t ∈ N , the risk premium on an asset with dividend stream (22)

equals

rjt−rt = γσ2−λ2t(1−γ)bλ
1

Sj
∂Sj

∂λ2

σ2
λ−
(
λ̄1(pt) + λ2t

)
Eν
[(
e−γZt − 1

)(
eφjZt − 1

)]
. (32)

The theorem divides the premium into three components: the first is the standard

consumption CAPM term (negligible in our calibration). The second term is the pre-

mium investors require for baring the risk of facing risk in λ2t. Provided that the price

falls when λ2t rises, this is positive for γ > 1. See the discussion following Theorem 1

for further detail. The third term is the premium directly linked to the rare disasters.

Note that the probability of the disaster outcome is the agent’s posterior probability,

λ̄1(pt) +λ2t. The disaster premium is positive provided that agents are risk averse and

that asset has positive exposure to disasters φj > 0.

We now consider the risk premium on announcement dates. On non-announcement

dates, the risk premium earned on the asset is equal to (rjt −rt) dt. Therefore the usual

continuous-time result holds: the risk premium approaches zero for sufficiently small

time periods. This is not true for announcements dates.

Intuitively, the announcement premium should be given by the covariance of returns

with the stochastic discount factor. Both the SDF and the price process jump with

the arrival of a discrete amount of information on the instant of the announcement.

As the following theorem makes precise, this joint behavior creates an announcement

premium.

Theorem 6. For assets defined in Theorem 3, the announcement premium is given by

Et−

[
Sjt − S

j
t−

Sjt−

]
= −Et−

[(
πt − πt−
πt−

)(
Sjt − S

j
t−

Sjt−

)]
(33)

for t ∈ A.

Proof. Expanding the right-hand-side of (33) yields

Et−

[(
πt − πt−
πt−

)(
Sjt − S

j
t−

Sjt−

)]
= Et−

[
πt
πt−

Sjt

Sjt−
− Sjt

Sjt−
−
(
πt
πt−
− 1

)]
(34)
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The process πtS
j
t follows a martingale, as follows from (23). Therefore

πt−S
j
t− = Et−

[
πtS

j
t

]
.

Furthermore, the expected rate of change in πt over any infinitesimal interval must

equal rt multiplied by the length of the interval. When the interval size length is zero,

then

πt− = Et− [πt] .

The result then follows from (34).

Corollary 5. Consider an asset paying dividends given by (22), such that the leverage

parameter φj > 1. The announcement premium is strictly positive if γ > 1 and strictly

negative if γ < 1.

Proof. Corollaries 1 and 4 show that changes in Sj and in π upon announcements

have opposite signs when γ > 1 and the same sign when γ < 1. The result follows.

2.6 Nominal bonds

We now present a model of nominal bonds that incorporates a role for macroeconomic

announcements.

2.6.1 Inflation process

The real return on nominal bonds depends on the inflation process. Following Barro

(2006), Gabaix (2012) and Tsai (2016), we assume that bonds exhibit a loss in the

event of disaster, and we assume, for simplicity that this loss is equal to the percent

decline in consumption. Thus, the price level Pt follows

dPt
Pt−

= qtdt+ σpdBPt +
(
e−Zt − 1

)
dNt, (35)

where qt is the expected inflation process, and is given by

dqt = κq(q̄t − qt)dt+ σqdBqt (36)
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where BPt and Bqt are independent Brownian motion processes that are also indepen-

dent of BCt and Bλt.

Expected inflation q̄t follows a Markov switching process, and, like λ1t, is latent.

Consistent with the data (Tsai, 2016; Dergunov et al., 2018), we assume that elevated

disaster risk and elevated inflation co-occur. That is, q̄t = q̄B when λ1t = λB and q̄t =

q̄G when λ1t = λG, with qB > qG. This implies that the macro-announcements, which

reveal the latent disaster-probability state, also reveal expected inflation. Given that

macro-announcements are often ostensibly about inflation, this seems reasonable.13

2.6.2 The nominal state-price density and bond pricing

It is convenient to define a state-price density connecting nominal cash flows to nominal

prices. As is well-known, the nominal state-price density equals

π$
t =

πt
Pt
. (37)

Thus if H$(pt, qt, τ, s; p0t) denotes the price of a default-free nominal bond with s years

to maturity and a face value of 1, no-arbitrage implies

H$(pt, qt, τ, s; p0t) = Et

[
π$
t+s

π$
t

]
. (38)

Given (37), the evolution of the nominal state-price density follows from Itô’s

Lemma (see Appendix C for more detail).

Theorem 7. For t ∈ N , the evolution of the nominal state price density π$
t is char-

acterized by

dπ$
t

π$
t−

= −(r$
t +

(
λ̄1(pt) + λ2t

)
Eν
[
e(1−γ)Zt − 1

]
)dt

− γσdBCt + (1− γ)bλσλ
√
λ2tdBλt − σPdBPt

+ (e(1−γ)Zt − 1)dNt, (39)

13We continue to assume that the agent infers the state only from announcements, and not from
inflation observations. Because announcements are frequent and informative, this is reasonable.
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where r$
t is the nominal riskless interest rate,

r$
t = rt + qt − σ2

P − (λ̄1t + λ2t)Eν
[
e−γZt(eZt − 1)

]
, (40)

and where bλ is given by Theorem 1.14

Proof. By applying Itô’s Lemma on (37) we get (39).

Our specification implies that the announcement pertains to expected, not actual

inflation. It follows that over the infinitesimal interval defined by the announcement,

the nominal stochastic discount factor – namely the change in the state price density

– is equal to the real stochastic discount factor.

Lemma 3 (Nominal announcement SDF). For t ∈ A, with probability 1,

π$
t

π$
t−

=
πt
πt−

(41)

Zero-coupon nominal bonds are priced in a manner analogous to equity strips in

Theorem 4.15

Theorem 8. The time-t price of a nominal zero-coupon bond maturing in s years is

given by

H$
(
pt, qt, τ, s; p0t

)
= exp

{
a$(τ, s; p0t) + b$

p(s)pt + b$
q(s)qt

}
(42)

where

b$
q(s) =

1

κq
(e−κqs − 1), (43)

and where b$
p(s) solves

∂b$
p(s)

∂s
= −(ηBG + ηGB)b$

p(s) + b$
q(s)κq

(
q̄B − q̄G

)
(44)

14The nominal riskless interest rate (sometimes called the nominal riskfree rate) is the nominal
return on the asset that is instantaneously riskfree when payoffs are expressed in nominal terms.

15In this specification, bond prices do not depend directly on the disaster probability. This is
because the effect of the disaster probability on the nominal riskfree rate and on the risk premium
cancels out. We make this assumption for simplicity: our results do not depend on it.
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with boundary condition b$
p(0) = 0. Define the function a$(τ, s; p0t) such that

a$(τ, s; p0t) = h$(τ + s; p0t) +

∫ s

0

(−β − µC + γσ2 + σ2
p + b$

q(u)κq q̄
G)du, (45)

for τ ∈ [0, T ), s ≥ 0, p0t ∈ {0, 1}. The function h$ uniquely solves

eh
$(u;p0t− )+b$p(u−T )pt− = Et−

[
e(1−γ)(ζp0t+bppt)

e(1−γ)(eβT ζp
0t−

+bppt− )
eh

$(u−T ;p0t)+b$p(u−T )pt

]
, (46)

for u ≥ T and h$
(
u; ·
)

= 0 for u ∈ [0, T ).

Nominal bond prices fall when expected inflation rises (b$
q(s) ≤ 0) and, when there

is an increased probability of the bad state (b$
p(s) ≤ 0, as shown in Appendix C).

Because of the latter property, bond prices also fall upon a negative announcement:

Corollary 6. The price of a zero-coupon bond with positive maturity on the announce-

ment date increases when the announcement is positive and decreases when the an-

nouncement is negative. That is

H$(1, λ2, 0, s; 1) < lim
τ→T

H$(pt− , λ2, τ, s; p0t−) < H$(0, λ2, 0, s; 0)

for s > 0.

The intuition is the same as for equities in Corollary 2.

2.6.3 Bond risk premia

Finally, we describe instantaneous covariances and risk premia on bonds. First note

that the model implies that long-term nominal bonds have zero risk premia relative to

short-term bonds on non-announcement days. That is, relative to the nominal riskfree

rate (40), risk premia on bonds are zero. This is because bonds of all maturities are

equally exposed to realized inflation.

However, long-term bonds have greater exposure than short-term bonds to expected

inflation. Expected inflation is persistent, and thus the total loss, in real terms, on the

nominal bond is greater. In principle, this could generate a risk premium during non-

announcement periods if expected inflation were priced (i.e. if the Brownian motions
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Bq and BC were correlated). Given the low level of risk aversion we assume, however,

this effect would be negligible.

What is not negligible, however, is the risk of changes in the mean of expected infla-

tion due to announcements. The model predicts that the disaster probability is priced.

When an announcement is negative, namely it reveals a high disaster probability, it

simultaneously reveals that inflation is high. Marginal utilities rise on the news of the

instability in the economy, exactly as bond prices fall because they will pay off less in

real terms. This generates a positive premium on announcements that increases with

maturity.

3 Quantitative results

We start by replicating the evidence of Savor and Wilson (2014) in an extended sample.

Section 3.1 describes the data and Section 3.2 the empirical findings. We then simu-

late repeated samples from the model described in the previous section. Section 3.3

describes the calibration of our model and Section 3.4, the simulation results.

3.1 Data

We obtain daily stock returns from the Center for Research in Security Prices (CRSP).

We consider individual stocks traded on NYSE, AMEX, NASDAQ and ARCA from

January 1961 to September 2016. In addition, we also use the daily market excess

returns and risk-free rate provided by Kenneth French. The scheduled announcement

dates before 2010 are provided by Savor and Wilson (2014). Following their approach,

we add target-rate announcements of the FOMC and inflation and employment an-

nouncements of the BLS for the remaining dates.

We define the daily excess return to be the daily (level) return of a stock in excess of

the daily return on the 1-month Treasury bill. We estimate covariances on individual

stock returns with the market return using daily data and 12-month rolling windows.

We include stocks which are available for trading on 90% or more of the trading days.

At the start of each trading month, we sort stocks by estimated betas, and create

deciles. We then form value-weighted portfolios of the stocks in each deciles, and

compute daily excess returns.
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We obtain daily bond returns from CRSP. We use returns on the Fixed Term

Indices. We subtract a daily riskfree rate, obtained from Kenneth french’s website to

obtain daily excess returns.

3.2 Empirical findings

Table 1 presents summary statistics on the ten beta-sorted portfolios. For each portfolio

j, j = 1, . . . , 10, we use the notation E[RXj] to denote the mean excess return, σj the

volatility of the excess return, and βj the covariance with the value-weighted market

portfolio divided by the variance of the market portfolio. Table 1 shows statistics for

daily returns computed over the full sample, over announcement days, and over non-

announcement days.16 There is a weak positive relation between full-sample returns

and market betas. On non-announcement days, there is virtually no relation between

betas and expected returns. However, on announcement days, there is a strong relation

between beta and expected returns.

Figure 1 shows average daily excess returns in each of the ten portfolios, plot-

ted against the betas on the portfolios for announcement days (diamonds) and non-

announcement days (squares). Also shown is the fitted line on both days. This relation,

known as the security market line, is strongly upward-sloping on announcement days,

but virtually flat on non-announcement days.

Table 2 shows that Treasury bonds also feature much higher returns on announce-

ment days. On non-announcement days, the beta on Treasury bond returns with

respect to the market is negative, and there is no discernable relation between risk

and return. However, this beta is strongly positive on announcement days, and a clear

security market line emerges.

3.3 Calibration

We now describe the calibration of the model in Section 2. We choose preference

parameters and normal-times consumption parameters to be the same as in Wachter

16Betas and volatilities are computed in the standard way, as central second moments. An
announcement-day volatility therefore is computed as the mean squared difference between the an-
nouncement return and the mean announcement return. Announcement-day betas are computed
analogously.
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(2013). We also choose the same values for the mean reversion of the λ2-process (κ) and

the volatility parameter of this process, σλ. For simplicity, we assume that, when the

economy is in the good state, the intensity λ1t is zero, that is λG = 0. We choose ηGB so

that the bad state of the economy is a rare event, and ηBG so that it is persistent. The

unconditional probability of the bad state in our calibration is ηGB/(ηGB+ηBG) = 23%.

We then choose λ̄2 and λB with the restriction that the average disaster probability

is 3.6%, as in Barro and Ursúa (2008). The values λ̄2 = 2.1% and λB = 6.2% satisfy

that restriction. The disaster distribution is taken to be multinomial, as measured in

the data by Barro and Ursua. See Wachter (2013) for further detail.

We choose the disaster sensitivity φj to match cash flow betas equal to the range of

return betas given in the data, and so the average exposure is consistent with φ = 3.17

For simplicity, we assume that during normal times firm dividends grow at the same

rate as each other and at the same rate as consumption µD = µC .

We take inflation parameters σq, σP , and κq from Tsai (2016), who chooses them

to match the volatility and autocorrelation of inflation during normal times, as well

as the volatility of the short-term interest rate. Expected inflation in each regime is

chosen so that it equals normal-times expected inflation in the data. Table 3 reports

parameter choices.

3.4 Simulation strategy

To evaluate the fit of the model, we simulate 500 artificial histories, each of length 50

years (240 × 50 days). We assume that announcements occur every 10 trading days.

For each history, we simulate a burn-in period, so that we start the history from a draw

from the stationary distribution of the state variables. We simulate the model using

17Very roughly, the beta during normal times is equal to

βj ≈
Eν

[
e(φj−γ)Zt − e(1−γ)Zt

]
Eν
[
e(φ̄−γ)Zt − e(1−γ)Zt

]
.

(47)

where φ̄ is the target market leverage. This follows because normal-times beta is driven by exposure
to λ2t. For assets of similar maturity structure and Brownian risk, the relative loadings on λ2t are
proportional to the numerator in (47), because it appears as the constant term in the differential
equation for bjφλ (see Equation 27). We solve for φj such that (47) gives us the range of betas
observed in the data. The resultant values of φj range from 1.3 to 10.5. Our results are not at all
sensitive to the precise values of the φj .
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the true (as opposed to the agents’) distribution. We report statistics for the full set

of sample paths.

While time is continuous in our analytical model, it is necessarily discrete in our

simulations. We simulate the model at a daily frequency to match the frequency of

the data. We compute end-of-day prices, and assume the announcement occurs in the

middle of a trading day.

Given a series of state variables and of shocks, we compute returns as follows. For

each asset j, define the price-dividend ratio Gj
t = F j

t /D
j
t . From (30), it follows that

Gj
t is a function of the state variables alone. We approximate the daily return as

Rj
t,t+∆t ≈

F j
t+∆t +Dj

t+∆t∆t

F j
t

=
Dj
t+∆tG

j
t+∆t +Dj

t+∆t∆t

Dj
tG

j
t

=
Dj
t+∆t

Dj
t

Gj
t+∆t + ∆t

Gj
t

≈ exp

{
µ̄D∆t− 1

2
σ2∆t+ σ(BC,t+∆t −BC,t)

}
Gj
t+∆t + ∆t

Gj
t

,

(48)

where ∆t = 1/240. The last line follows because we consider sample paths with no

disasters. The risk free rate is approximated by

Rft = exp(rt∆t). (49)

The daily excess return of asset k is then

RXj
t,t+∆t = Rj

t,t+∆t −Rft. (50)

We define the value-weighted market return just as in the data, namely we take a

value-weighted portfolio of returns. We assume that the assets have the same value

at the beginning of the sample. Because the assets all have the same loading on the

Brownian shock and the same drift, and conditional on a history not containing rare

events, the model implies a stationary distribution of portfolio weights. Given a time

series of excess returns on firms (which, because we have no idiosyncratic risk, we

take as analogous to portfolios), and a time series of excess returns on the market, we
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compute statistics exactly as in the data.

3.5 Stock returns on announcement and non-announcement

days

Figure 2 displays our main result. We overlay the simulated statistics on the empirical

statistics from Figure 1.18 Each dot on the figure represents a statistic for one firm,

for one simulated sample. Blue dots show pairs of average excess returns and betas

on announcement days, while grey dots show pairs on non-announcement days. The

figure shows that average returns on announcement days in the model are much higher

than on non-announcement days. Furthermore, average returns vary with beta on

announcement days in the model, whereas the do not on non-announcement days.

Figure 3 further clarifies the relation between the announcement and non-announcement

days in the model by showing medians and interquartile ranges from the full set of sim-

ulated samples. Median returns closely match the data, whereas interquartile ranges

show that the vast majority of samples with announcements can be clearly distin-

guished from those of non-announcements.

How is it that the model can explain these findings? Announcements convey impor-

tant news about the distribution of future outcomes in the economy. On that day, it is

possible that a bad state of the economy could be revealed. If the bad state is realized,

not only will asset values be affected, but the marginal utility of economic agents will

rise. Thus investors require a premium to hold assets over the risky announcement

period.

In our model, some assets have cash flows that are more sensitive to others. The

sensitivity parameter φj, while not the same as the beta, is closely related. Assets

with high φj have a greater dividend response to disasters. Their prices thus move

more with changes in the disaster probability, and in particular with λ1t and λ2t. The

value-weighted market portfolio of course also moves with the disaster probability, and

thus the higher is φj (over the relevant range), the higher is the return beta with the

market, both on non-announcement days (which reveal information about λ2t, and on

announcement days, which reveal additional information about λ1t.

18This figure reports simulated statistics from samples without disasters. As we show below, this
does not affect inference from the model.
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Thus the model predicts a relation between risk and return on both announce-

ment and non-announcement days, but because the risk is so much greater on an-

nouncement days, the premium, and therefore the spread in expected returns between

low and high-sensitivity assets, will also be much greater. A more subtle question is

whether this slope is commensurate with the equity premium on announcement versus

non-announcement days. We will see in fact that, while the equity premium on an-

nouncement days is low, the median slope is lower still, due to model mis-specification.

This is discussed at the end of the next section.

In the discussion above, we focus on results for the cross section. The model

also captures the time series result that most of the equity premium is realized on

announcement days (Savor and Wilson, 2013; Lucca and Moench, 2015). Table 4

shows that the average market return is far higher on announcement days versus non-

announcement days, both in the model and in the data. On the other hand, the increase

in volatility is small. While the median increase in volatility is greater in the model

than in the data, the data is well-within the 90 percent confidence intervals, reflecting

the fact that a substantial fraction of the samples feature no increase in volatility on

non-announcement days at all.

3.6 Bond returns on announcement and non-announcement

days

A crucial difference between bonds and equities is that equities are, by virtue of their

cash flows, exposed to aggregate stock market risk. For bonds, this need not be the

case. Indeed, Table 2 shows that betas on bonds are close to zero on average. It

is well-known that the covariances between Treasury bonds and stocks are unstable

(Campbell et al., 2017), suggesting that the the beta does not reveal much about the

risk in bonds. This makes it all the more striking that bonds exhibit positive betas on

announcement days, and that these betas line up with the expected returns.

Table 5 compares the cross-section of bonds with that of equities. We run the

regression

Ê[RXj
t | t ∈ i] = δiβ

j
i + error, (51)

where i = a (announcement days) or n (non-announcement days). The regression

slope δi is the slope of the security market line. It is simulatenously a measure of
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risk and return, and a measure of the daily market risk premium. Table 5 shows

an economically significant difference between the slope on announcement and non-

announcement days for equities. The measure of the market risk premium is consistent

with that found in Table 4 on both types of days. For bonds, the data reveal a slightly

negative slope on non-announcement days. The slope on announcement days is strongly

positive. To summarize: both equities and bonds exhibit a strong relation between

risk and return on announcement days. Bonds, unlike equities exhibit no relation

on non-announcement days. Furthermore, betas for bonds change substantially on

announcement days versus non-announcement days.

What does the model have to say about these findings? Section 2 shows that, on

non-announcement days, the true instantaneous covariance between bonds and stocks

is equal to zero. This implies that the true security market line is undefined on non-

announcement days. Thus the model is consistent both with negative observed betas

on non-announcement days, and the fact that these betas exhibit no relation with

expected returns. On the other hand, macro-announcements directly reveal news about

bond cash flows, because they are informative about inflation. In our model, news of

higher inflation is interpreted as indicating macroeconomic stability. Losses on bonds

therefore coincide with losses on the stock market. Thus the model predicts both

positive betas on bonds on announcement days, and a strong risk-return relation.

Table 6 shows that, indeed, bonds have much higher betas on announcement days in

simulated data. In contrast, equity betas can increase or decrease, with confidence

intervals generally containing zero. Table 5 shows that the slope of the security market

line in the model, while slightly negative on non-announcement days, is positive and

large on announcement days.

Because betas on announcement days are higher in the model than in the data, the

model does not succeed in capturing the full magnitude of the announcement-day slope.

The model does succeed, however, in capturing the fact that bonds display market risk

on announcement days, and no market risk on non-announcement days, and that this

market risk is priced. In the model, news about disaster directly correlates with that of

expected inflation. Stated differently, the announcements are concerned with inflation;

investors perhaps infer that information concerning inflation also is informative about

disasters. Moreover, because inflation tends to rise when the probability of a disaster

rises, news about inflation is priced. The greater the bond maturity, the greater the

impact of this news, and the greater is the expected return.
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Finally, Table 5 shows that the slope of the security market line for equities pre-

dicted by the model is about half the size of the equity premium on non-announcement

days. That is, while the model predicts that the premium is far lower on non-

announcement days, as compared with announcement days, it also correctly pre-

dicts that the slope of the security market line is below even the premium on non-

announcement days. The reason is that a the relation between normal-times covari-

ance and expected returns is non-linear. Normal-times covariance is proportional to

the premium for bearing risk of changes in the disaster probability, but not the disaster

premium itself. In a sense, large betas are too large given their expected returns, and

small betas are too small – both types of stocks have more similar exposure to disaster

risk than one would think from their betas alone.

4 Conclusion

The Capital Asset Pricing Model has been a major focus of resesarch in financial

economics, and the benchmark model in financial practice for over fifty years. Despite

its pre-eminent status, years of empirical research has found little support for the

CAPM. That is, until quite recently. The CAPM predicts a tight relation between

market beta and expected return, known as the security market line. Recent research

has shown that this security market line, seemingly absent on most days, appears on

days with macro-economic announcements.

This paper builds a general equilibrium model to explain why the security market

line appears on macroeconomic announcement days, but is hard to discern on others.

The model derives the result from underlying economic principles in a frictionless

environment. For this reason, we can explain why the relation between risk and return

is not asset-class specific. It holds for both bonds and equities.

We explain the finding through a combination of two mechanisms. The first is a

preference for early resolution of uncertainty, as described in Epstein and Zin (1989).

The second is rare events. The risk that is realized on announcement days concerns

the probability of a rare negative event to the economy. These mechanisms together

imply that assets that are especially exposed to these events carry high premia, even

though it is not necessary to observe the occurance of the event itself.

While our focus in this paper is on macro-announcements, our the methodology
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can be applied to scheduled announcements more generally, and understanding the

rich array of empirical facts that the announcement literature has uncovered.
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A Solving the representative agent’s value function

Define the vector Brownian motion dBt = [dBCt, dBλt]
>. In what follows, we use Et to

denote expectations taken under the agents’ subjective distribution. The notation Eν

denotes expectations taken with respect to the random variable Z.

A.1 Continuation Value

Lemma A.1. In equilibrium, the representative agent’s continuation value equals

J(Ct, pt, λ2t, τ ; p0t) =
1

1− γ
C1−γ
t I(pt, λ2t, τ ; p0t)

1−γ, (A.1)

with

I(pt, λ2t, τ ; p0t) = exp{a
(
τ ; p0t

)
+ bppt + bλλ2t}, (A.2)

and

bp =
(λB − λG)Eν

[
e(1−γ)Zt − 1

]
(1− γ)(β + ηGB + ηBG)

,

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λ[Eνe
(1−γ)Zt − 1]

)
,

for pt ∈ [0, 1], λ2t ∈ [0,∞), τ ∈ [0, T ), p0t ∈ {0, 1} and where a defined as

a
(
τ ; p0t

)
= ζp0te

βτ +

1

β

(
µC −

1

2
γσ2 + bpηGB + bλκλ̄2 +

λG

1− γ
[
Eνe

(1−γ)Zt − 1
])

. (A.3)

The constant terms ζ0 and ζ1 solve

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,
(A.4)

with pG and pB defined by (13).
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Proof. Conjecture that, at the optimum, the value function can be written as

Vt = J(Ct, pt, λ2t, τ ; p0t). (A.5)

Note that p0t is a discrete variable that changes only for t ∈ A. For t ∈ N , the

Hamilton-Jacobi-Bellman equation applies and

f(Ct, Jt) +
∂J

∂τ
+
∂J

∂C
CtµC +

∂J

∂p
[−pt(ηGB + ηBG) + ηGB]− ∂J

∂λ
κ(λ2t − λ̄2)

+
1

2

∂2J

∂C2
C2
t σ

2 +
1

2

∂2J

∂λ2
λ2tσ

2
λ

+
(
ptλ

B + (1− pt)λG + λ2t

)
Eν
[
J(CeZ , ·)− J(C, ·)

]
= 0. (A.6)

Conjecture a solution of the form (A.1) and (A.2). The conjectured form (A.1) implies

1

J
(J(CeZ , ·)− J(C, ·)) = Eν

[
e(1−γ)Zt − 1

]
. (A.7)

Substituting (A.1) and (A.2) into (A.6) and dividing both sides by J , we obtain

− β(1− γ)
[
a
(
τ ; p0t

)
+ bppt + bλλ2t

]
+(1−γ)

da

dτ
(τ ; p0t)+(1−γ)µC+(1−γ)bp [−pt(ηGB + ηBG) + ηGB]−(1−γ)bλκ(λ2t− λ̄2)

− 1

2
γ(1− γ)σ2 +

1

2
(1− γ)2b2

λσ
2
λλ2t

+ pt(λ
B − λG)Eν

[
e(1−γ)Zt − 1

]
+ λGEν

[
e(1−γ)Zt − 1

]
+ λ2tEν

[
e(1−γ)Zt − 1

]
= 0.

(A.8)

Collecting coefficients on pt and on λ2t, we obtain

−β(1− γ)bp − (1− γ)bp(ηGB + ηBG) + (λB − λG)Eν
[
e(1−γ)Zt − 1

]
= 0

−β(1− γ)bλ − (1− γ)bλκ+
1

2
(1− γ)2b2

λσ
2
λ + Eν

[
e(1−γ)Zt − 1

]
= 0.

(A.9)

The equation for bp in the text follows.

We also have the following quadratic function of bλ:

1

2
(1− γ)σ2

λb
2
λ − (β + κ)bλ +

1

1− γ
Eν
[
e(1−γ)Zt − 1

]
= 0, (A.10)
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which has solution:19

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λEν [e(1−γ)Zt − 1]

)
. (A.11)

Finally we solve a
(
τ ; p0t

)
. Collecting constant terms gives the ODE

− β(1− γ)a (τ ; p0t) + (1− γ)
da

dτ
(τ ; p0t)

+ (1− γ)µC + (1− γ)bpηGB + (1− γ)bλκλ̄2−
1

2
γ(1− γ)σ2 + λGEν

[
e(1−γ)Zt − 1

]
= 0,

which is equivalent to

da

dτ
(τ ; p0t) = βa

(
τ ; p0t

)
−µC +

1

2
γσ2− bpηGB− bλκλ̄2−

λG

1− γ
Eν
[
e(1−γ)Zt − 1

]
. (A.12)

Equation A.12 implies a general form for a
(
τ ; p0t

)
:

a
(
τ ; p0t

)
=

ζp0te
βτ +

1

β

(
µC −

1

2
γσ2 + bpηGB + bλκλ̄+

λG

1− γ
Eν
[
e(1−γ)Zt − 1

])
, (A.13)

where ζp0t ∈ {ζ0, ζ1} for as yet undetermined coefficients ζ0 and ζ1.

To obtain ζ0 and ζ1, we require boundary conditions for (A.12). We obtain these

from the optimality condition at announcements. Along the optimal path, continuation

value must satisfy

Vt− = Et−

[∫ ∞
t

f(Cs, Vs)ds

]
= Et− [Vt].

(A.14)

Equation A.14 is trivial except for t ∈ A. For t ∈ A however, (A.14) yields the required

boundary conditions. First note that, by definition of A and of τ ,

lim
τ→T

J(Ct− , pt− , λ2,t− , τ ; p0t−) = Et− [J(Ct, pt, λ2t, 0; p0t)] . (A.15)

That is, the value function the instant before the announcement must equal the expec-

tation of its value just after the announcement. Furthermore, because Ct and λ2t are

19See Tsai and Wachter (2015) for details about choosing the solution to bλ.
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continuous at t with probability 1,

lim
τ→T

J(Ct, pt− , λ2t, τ ; p0t−) = Et− [J(Ct, pt, λ2t, 0; p0t)] .

Equation A.15, together with the form of I and Lemma 1, restricts a
(
τ ; p0t

)
. That

is, because value must follow a martingale, and because consumption, and λ2t will

not change in the instant before and after the announcement, a(0; p0t) must adjust to

compensate the expected change in pt. In technical terms,

lim
τ→T

e(1−γ)(a(τ ;p0t− )+bppt− ) = Et−
[
e(1−γ)(a(0;p0t)+bppt

]
,

for t ∈ A. Cancelling out the constant term in a(·, ·) implies

e(1−γ)(ζp
0t−

eβT+bppt− ) = Et−
[
e(1−γ)ζp0t+bppt

]
, t ∈ A.

Immediately following the announcement pt = p0t ∈ {0, 1}. Therefore,

e(1−γ)(ζp
0t−

eβT+bppt− ) = (1− pt−)e(1−γ)ζ0 + pt−e
(1−γ)ζ1+bp (A.16)

Applying (A.16) at p0t− = 0 and p0t− = 1 implies (A.4), uniquely determining ζ0 and

ζ1.

A.2 The state price density

Lemma A.2. The process πt is characterized by

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ; p0t)

1−γ, (A.17)

where I(pt, p0t, λ2t, τ) is defined by (A.2).

Proof. Duffie and Skiadas (1994) show that

πt = exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
∂

∂C
f(Ct, Vt). (A.18)
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The form of f implies

∂

∂C
f(Ct, Vt) = β(1− γ)

Vt
Ct

= β(1− γ)
(1− γ)−1C1−γ

t I(pt, λ2t, τ ; p0t)
1−γ

Ct

= βC−γt I(pt, λ2t, τ ; p0t)
1−γ.

(A.19)

Combining (A.18) and (A.19) implies

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ; p0t)

1−γ.

Proof of Theorem 1. For this proof, assume t ∈ N . Ito’s Lemma and Lemma A.2

imply
dπt
πt−

= µπt dt+ σπt dBt +
πt − πt−
πt−

dNt, (A.20)

for a scalar process µπt and a 1 × 2 vector process σπt.
20 It follows from (A.17) and

Ito’s Lemma that

σπt = [−γσ, (1− γ)bλσλ
√
λ2t], (A.21)

and that, for ti = inf{t|Nt = i}

πti − πt−i
πt−i

= e−γZti − 1. (A.22)

It follows from no-arbitrage that

Et−

[
dπt
πt−

]
= −rt−dt.

It follows from the definition of an intensity that

Et−

[
dπt
πt−

]
= µπt +

(
λ̄1(pt) + λ2t

)
Eν [e

−γZt − 1],

20Lemma A.2 also implies the continuity of µπt and σπt on non-announcement dates. This allows
us to use t rather than t− to subscript these variables in (A.20) and elsewhere.
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implying

µπt = −rt −
(
λ̄1(pt) + λ2t

)
Eν [e

−γZt − 1], (A.23)

where rt = rt− because µπt, and λ2t are continuous.

Finally, we show (15). Note taht

∂

∂V
f(Ct, Vt) =

∂

∂V

(
β(1− γ)Vt logCt − βVt log[(1− γ)Vt]

)
= β(1− γ) logCt − β log[(1− γ)Vt]− β

= −β
{

1 + (1− γ)[a
(
τ ; p0t

)
+ bpp+ bλλ2t]

}
.

(A.24)

It follows from (A.17) and Ito’s Lemma that

µπt =

{
−β
[
1 + (1− γ)a

(
τ ; p0t

)
+ (1− γ)bppt + (1− γ)bλλ2t

]
+ (1− γ)

∂a

∂τ

}
dt

− γµCdt+ (1− γ)bp [−ptηBG + (1− p)ηGB] dt− (1− γ)bλκ(λ2t − λ̄2)dt

+
1

2
γ(γ + 1)σ2dt+

1

2
(1− γ)2b2

λσ
2
λλ2tdt.

Collecting terms and applying the equations for a
(
τ ; p0t

)
, bp and bλ yields

µπt = −
(
β + µC − γσ2 +

(
λ̄1(pt) + λ2t

) [
Eνe

(1−γ)Zt − 1
])
dt. (A.25)

The result then follows from (A.23).

Proof of Theorem 2. Consider t ∈ A, namely announcement times. With probabil-

ity 1, a disaster does not coincide with an announcement. Therefore, it follows from

(A.17) that

πt
πt−

= lim
τ→T

I(pt, λ2t, 0; p0t)

I(pt− , λ2t, τ ; p0t−)
= lim

τ→T

e(1−γ)(a(0;p0t)+bppt)

e(1−γ)(a(τ ;p0t− )+bppt− )
.

The first equality holds except on a set of outcomes of measure zero. We use the fact

that λ2t is continuous. The second inequality follows from the conjecture (A.2). The

result then follows directly from the definition of a(·; ·) in (A.3).
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Proof of Lemma 2. Suppose by contradiction that

ζ0 ≤ ζ1 + bp. (A.26)

Recall the following pair of equations which determine ζ0 and ζ1:

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,
(A.27)

The expressions on the left hand side of (A.27) are weighted averages of e(1−γ)(ζ1+bp)

and e(1−γ)ζ0 with weights between 0 and 1. Thus they must lie between these two

terms. It follows that
ζ0 ≤ ζ0e

βT + bpp
G

ζ1e
βT + bpp

B ≤ ζ1 + bp.
(A.28)

However, (A.28) implies

ζ0(1− eβT ) ≤ bpp
G < 0

ζ1(eβT − 1) ≤ bp(1− pB) < 0,

because bp < 0. Therefore ζ0 > 0 and ζ1 < 0, contradicting (A.26).

Proof of Theorem 3. It follows from (10), applied in the limit as τ → T , that pB >

pG. This is intuitive: because states are persistent, if the previous announcement

revealed a negative state, it is more likely that the next announcement will also reveal

a negative state than if the previous announcement were positive.

Define the notation
πG = e(1−γ)ζ0

πB = e(1−γ)(ζ1+bp)

π̄G = e(1−γ)(ζ0eβT+bppG)

π̄B = e(1−γ)(ζ1eβT+bppB).
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It follows from (16) that

p̃G = pG
πB

π̄G

p̃B = pB
πB

π̄B
.

First consider the case of γ > 1. We want to show that

pB
pG

>
π̄B

π̄G
=
pB + πG

πB−πG

pG + πG

πB−πG

The second inequality follows from (18), or equivalently, πt− = Et−πt. Moreover,

Lemma 2 implies πB > πG. Because pB+x
pG+x

is a decreasing function of x, the result

follows.

Now consider γ < 1. Because πG > πB, π̄G > π̄B. Thus

π̄B

π̄G
< 1 <

pB

pG
.

B Pricing equity

Appendix B.1 derives result for equity strips (namely a claim to a dividend paid at a

single point in time). Appendix B.2 uses these results to derive results for dividend

streams. We suppress the j subscript when not essential for clarity.

B.1 Pricing equity strips

We first derive the no-arbitrage condition on intervals without announcements.

Lemma B.1. Let Ht denote the time-t price of a dividend Dt∗ with t∗ ≥ t, such that

the distribution of Dt∗/Dt is determined by the state vector pt, p0t, λ2t. Define s = t∗−t
and τ = t mod T . Then

Ht = H(Dt, pt, λ2t, τ, s; p0t) = DtEt

[
πt∗

πt

Dt∗

Dt

]
. (B.1)
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Moreover, for t ∈ N , Ht satisfies

dHt

Ht−
= µHtdt+ σHtdBt + (eφZt − 1)dNt, (B.2)

with µHt = µH(pt, λ2t, τ, s; p0t) and σHt = σH(pt, λ2t, τ, s; p0t), satisfying

µHt + µπt + σHtσ
>
πt +

(
λ̄1(pt) + λ2t

)
Eν
[
e(φ−γ)Z − 1

]
= 0. (B.3)

Proof. Equation B.1 follows from the absence of arbitrage and the Markov property

for the dividend process Dt and the state-price density πt. Given that Ht/Dt is a

function of the state variables, (B.2) follows from Ito’s Lemma and the fact that only

Dt changes in a disaster.

Equation (B.1) implies that πtHt is a martingale. Define

ul = inf{t : Nt = l}, (B.4)

as the arrival time of the lth Poisson arrival. Consider t ∈ N and chose ∆t sufficiently

small so that the interval [t, t+ ∆t] does not contain an announcement. It follows from

(B.2) that

Ht+∆tπt+∆t = Htπt+

∫ t+∆t

t

πuHu(µHu+µπu+σHuσ
>
πu)du+

∫ t+∆t

t

πuHu(σHu+σπu)dBu

+
∑

t<ul≤t+∆t

(πulHul − πul−Hul−
). (B.5)
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Rewriting, we have:

Ht+∆tπt+∆t = Htπt+

∫ t+∆t

t

πuHu

(
µHu + µπu + σHuσ

>
πu +

(
λ̄1(pu) + λ2u

)
Eν
[
e(φ−γ)Z − 1

])
du︸ ︷︷ ︸

(1)

+

∫ t+∆t

t

πuHu(σHu + σπu)dBu︸ ︷︷ ︸
(2)

+
∑

t<ul≤t+∆t

(πulHul − πul−Hul−
)−

∫ t+∆t

t

πuHu

(
λ̄1(pu) + λ2u

)
Eν
[
e(φ−γ)Z − 1

]
du︸ ︷︷ ︸

(3)

.

(B.6)

Since Htπt is a martingale, the time-t expectation of Ht+∆tπt+∆t must be Htπt. In

(B.6), (2) and (3) have zero expectation, so that the integrand in (1) must be zero. We

obtain (B.3).

Proof of Theorem 4. Define Ht as in Lemma B.1. Conjecture that Ht takes the

form (25) for as-yet unspecified functions aφ(τ, s; p0), bφp(s) and bφλ(s). No-arbitrage

implies the following boundary condition for the zero-maturity claim:

H(D, p, λ2, τ, 0; p0) = D.

Thus

aφ(τ, 0; p0) = bφp(0) = bφλ(0) = 0. (B.7)

Consider t ∈ N . Define µHt and σHt as in Lemma B.1. Applying Ito’s Lemma to

the conjecture (25) implies

µHt = µD +
∂aφ
∂τ
− ∂aφ

∂s
+ bφp(s)ηGB + bφλ(s)κλ̄2

+

(
−∂bφp
∂s
− bφp(s)(ηBG + ηGB)

)
pt +

(
−∂bφλ

∂s
+

1

2
bφλ(s)

2σ2
λ + κbφλ(s)

)
λ2t, (B.8)

and

σHt =
[
σ, bφλ(s)σλ

√
λ2t

]
. (B.9)
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Substituting (B.8), (B.9), (A.25), and (A.21) into Equation B.3 of Lemma B.1 and

matching coefficients implies

−∂bφp(s)
∂s

− (ηBG + ηGB)bφp(s) + (λB − λG)Eν
[
e(φ−γ)Zt − e(1−γ)Zt

]
= 0 (B.10)

−dbφλ(s)
ds

+
1

2
σ2
λbφλ(s)

2 +
[
(1− γ)bλσ

2
λ − κ

]
bφλ(s) + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
= 0, (B.11)

and

∂aφ
∂τ
− ∂aφ
∂s

= β+µC−µD−λGEν
[
e(φ−γ)Zt − e(1−γ)Zt

]
−κλ̄2bφλ(s)−ηGBbφp(s). (B.12)

Then (26) uniquely solves (B.10) together with the boundary condition (B.7). More-

over, (B.12) and (B.7) ensure that that aφ takes the form (28).

Finally, we solve for the function h. Recall that a(τ, 0; p0) = 0, for all τ ∈ [0, T ).

Then, from (28), h(τ ; p0) = 0 for all τ ∈ [0, T ). However, h is only defined as a function

of τ + s. Therefore h(u; p0) = 0, for u ∈ [0, T ).

For u ≥ T , (29) iteratively determines h(u; p0). We now derive (29). Absence of

arbitrage and the (almost sure) continuity of Dt, λ2t and s imply, for t ∈ A,

lim
τ→T

H(Dt, pt− , λ2t, τ, s; p0t−) = Et−

[
πt
πt−

H(Dt, pt, λ2t, 0, s; p0t)

]
. (B.13)

We use (25) to write (B.13) more explicitly as

lim
τ→T

exp{aφ(τ, s; p0t−) + bφp(s)pt−} = Et−

[
πt
πt−

exp{aφ(0, s; p0t) + bφp(s)pt}
]

(B.14)

Equation 28 and (B.14) then imply the following restriction on h:

exp{h(T + s; p0t−) + bφp(s)pt−} = Et−

[
πt
πt−

exp{h(s; p0t) + bφp(s)pt}
]
. (B.15)

Defining u = T + s and substituting in for the announcement SDF πt/πt− from (16)

gives us (29).

It remains to show that (29) uniquely characterizes h. The discussion above estab-

lishes h(u, p0) = 0 is the unique solution for u < T . We show uniqueness by induction
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of the number of announcements prior to maturity of the asset. Define

n =
⌊ u
T

⌋
.

Assume by induction that h is unique for u ∈ [(n − 1)T, nT ), n ≥ 1. Then, for each

u ∈ [nT, (n+ 1)T ), (29), applied at p0t− = 0 and p0t− = 1 is a system of two equations

in two unknowns. It therefore uniquely pins down h(u; p0).

We now prove the result on the effect of an announcement:

Proof of Corollary 2. We seek to determine the sign of Ht −Ht− for t ∈ A.

Using (25), (28), and the almost-sure continuity of all variables around announce-

ments, with the exception of pt and p0t, it suffices to show that

h(s; 0) > h(s; 1) + bφp(s) (B.16)

for s > 0. The reason is that (B.16) is equivalent to the result that Ht is lower for a

negative announcement than for a positive announcement. Because Ht− is a weighted

average of these outcomes, it follows that Ht < Ht− when the announcement is positive

and Ht > Ht− when the announcement is negative.

When s < T , (B.16) follows from h(s; 1) = h(s; 0) = 0 and bφp(s) < 0 when

φ > 1. We now show (B.16) for general s > T using induction on the number of

announcements prior to maturity. Assume the condition holds for s ∈ [(n− 1)T, nT ).

Using (29) and the definition of the risk-neutral probabilities from Theorem 3 we have

eh(s;0)+bφp(s−T )pG = p̃Geh(s−T ;1)+bφp(s−T ) + (1− p̃G)eh(s−T ;0)

eh(s;1)+bφp(s−T )pB = p̃Beh(s−T ;1)+bφp(s−T ) + (1− p̃B)eh(s−T ;0).

Theorem 3 shows that p̃B > p̃G. Therefore, by the induction step

h(s; 0) + bφp(s− T )pG > h(s; 1) + bφp(s− T )pB.
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Finally,

h(s; 0) > h(s; 0) + bφp(s− T )pG

> h(s; 1) + bφp(s− T )pB

> h(s; 1) + bφp(s− T )

> h(s; 1) + bφp(s).

The last inequality follows because bφp is a strictly decreasing function. Therefore

(B.16) holds for all s > 0, which completes the proof.

B.2 Stock prices

The following Lemma extends Lemma B.1 to the case of an asset paying a stream of

dividends. We drop the j superscript when not essential for clarity.

Lemma B.2. Let St = S(Dt, pt, λ2t, τ ; p0t) denote the time-t price of a future dividend

stream {Ds}s∈(t,∞) satisfying (22). Then

St = Et

∫ ∞
t

πu
πt
Du du (B.17)

Moreover, for t such that t mod T 6= 0, there exist processes µSt = µS(pt, λ2t, τ ; p0t)

and σSt = σS(pt, λ2t, τ ; p0t) such that

dSt
St−

= µSt dt+ σSt dBt +
St − St−
St−

dNt (B.18)

that satisfy the no-arbitrage restriction

µπt + µSt +
Dt

St
+ σπtσ

>
St +

(
λ̄1(pt) + λ2t

)
Eν
[
e(φ−γ)Zt − 1

]
= 0. (B.19)

Proof. Applying (B.1) and interchanging the position of the integral and the expec-

tation, we have

St =

∫ ∞
0

H(Dt, pt, λ2t, τ, s; p0t) ds, (B.20)

Equation B.18 then follows by Ito’s Lemma and the homogeneity of H in D. Let

µH(s),t = µH(pt, p0t, λ2t, τ, s) and σH(s),t = σH(pt, p0t, λ2t, τ, s), s ∈ [0,∞). It follows
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from Itô’s lemma applied to both sides of (B.20) that

StµSt =

∫ ∞
0

Ht(s)µH(s),tds−Dt

StσSt =

∫ ∞
0

Ht(s)σH(s),tds

πtSt − πt−St− = (πtDt − πt−Dt−)

∫ ∞
0

Ht(s)

Dt

ds

The last term expression from the continuity of Ht(s)/Dt for t ∈ N . Then (B.19)

follows from (B.3).

Proof of Theorem 5. For convenience, we drop the j superscript. The Theorem fol-

lows from the definition of the expected return (31), from Equation B.19 of Lemma B.2,

and from the equation for the riskfree rate (15). We use Itô’s Lemma to note that

σSt =

[
σ,

1

St

∂St
∂λ2

σλ
√
λ2t

]
.

C Pricing nominal bonds

In this section we derive results for nominal zero-coupon bonds. We generalize the

process in the main text. Assume the price level is given by

dPt
Pt

= qtdt+ σpdBPt +
(
eZPt − 1

)
dNt, (C.1)

where qt is the expected inflation process, and is given by

dqt = κq(q̄t − qt)dt+ σqdBqt + ZqtdNt. (C.2)

so that a disaster is allowed to affect both realized and expected inflation. We recover

the case in the main text by setting ZPt = −Zt and Zqt = 0.

We first show the validity of the nominal stochastic discount factor.

Lemma C.1. Let H$
t be the time-t nominal price of a zero-coupon asset at time t.
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Then absence of arbitrage implies that there exists a nominal stochastic discount factor

π$
t = πt/Pt, such that

π$
tH

$
t = Et

[
π$
sH

$
s

]
,∀s ≥ t. (C.3)

Proof. The time-t real price of the asset is given by H$
t /Pt. Absence of arbitrage

implies that

πt
H$
t

Pt
= Et

[
πs
H$
s

Ps

]
. (C.4)

Define π$
t = πt/Pt, then Equation C.4 is equivalent to (C.3), which implies that π$

t can

be used as a nominal stochastic discount factor process.

The following corollary characterizes the dynamics of the nominal pricing kernel

when there is a rare event.

Corollary C.1. Conditioning on dNt = 1, the dynamics of π$
t is given by

π$
t − π$

t−

π$
t−

= e−γZt−ZPt − 1. (C.5)

The following lemma derives a no-arbitrage condition for nominal assets. The proof

is very similar to that of Lemma B.1 and so we omit it.

Lemma C.2. Now let B$
t be the time-t price of unit nominal zero-coupon bond ma-

turing at time t∗, t∗ > t. Define s = t∗ − t and τ = t (mod T ). Then

B$
t = V $(pt, qt, λ2t, τ, s; p0t) = Et

[
π$
t∗

π$
t

]
. (C.6)

Moreover, for t ∈ N , H$
t satisfies

dB$
t

B$
t−

= µ$
Btdt+ σ$

BtdB
$
t +

B$
t −B$

t−

B$
t−

dNt, (C.7)

and

µ$
πt + µ$

Bt + σ$
πtσ

$
Bt

>
+ (λ̄1(pt) + λ2t)

J (π$
tB

$
t )

π$
t−B

$
t−

= 0. (C.8)

Here µ$
πt and σ$

πt are the local drift and (diffusion) volatility of π$
t , respectively.
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Proof of Theorem 8. Define B$
t as the time-t price of asset in Lemma C.2. Conjec-

ture that B$
t takes the form (42) for as-yet unspecified functions a$(τ, s; p0), b$

p(s), b
$
q(s)

and b$
λ(s). No-arbitrage implies the following boundary condition for the zero-maturity

claim:

exp(a$(τ, 0; p0) + b$
p(0)pt + b$

q(0)qt + b$
λ(0)λ2t) = 1.

Thus

a$(τ, 0; p0) = b$
p(0) = b$

q(0) = b$
λ(0) = 0. (C.9)

Consider t ∈ N . Define µHt and σHt as in Lemma C.2. Applying Ito’s Lemma to

the conjecture (42) implies

µ$
Bt =

∂a$

∂τ
− ∂a$

∂s
−
∂b$

p

∂s
pt −

∂b$
q

∂s
qt −

∂b$
λ

∂s
λ2t

+
1

2
b$
λ(s)

2σ2
λλ2t +

1

2
b$
q(s)

2σ2
q

+b$
p(s)[−ptηBG+(1−pt)ηGB]+b$

q(s)[−κq(qt− (q̄G+pt(q̄
B− q̄G)))]+b$

λ(s)[−κ(λ2t− λ̄2)]

=
∂aφ
∂τ
− ∂aφ

∂s
+ b$

pηGB + b$
q(s)κq q̄

G + b$
λ(s)κλ̄2

+

(
−
∂b$

p

∂s
− b$

p(ηBG + ηGB)

)
pt+

(
−
∂b$

q

∂s
− κqb$

q(s)

)
qt+

(
−∂b

$
λ

∂s
+

1

2
b$
λ(s)

2σ2
λ + κbφλ(s)

)
λ2t,

(C.10)

and

σ$
Bt =

[
σ, b$

λ(s)σλ
√
λ2t, 0, b

$
q(s)σq

]
. (C.11)

Moreover, by Itô’s Lemman, π$
t defined in Lemma C.1 has drift and diffusive volatility

given by

µ$
πt = −β − µC + γσ2 − qt + σ2

P − (λ1(pt) + λ2t)Eν
[
e(1−γ)Zt − 1

]
(C.12)

σ$
πt = [−γσ, (1− γ)bλσλ

√
λ2t,−σP , 0]. (C.13)

Finally, (42) and (C.5) imply

J̄ (π$
tB

$
t )

π$
t−B

$
t−

= Eν

[
e−γZt−ZPt+b

$
q(s)Zqt − 1

]
. (C.14)

Combining results above and Lemma C.2, and then collecting the coefficients of the
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random variables yield

0 =
∂a$

∂τ
− ∂a$

∂s
+ b$

p(s)ηGB + b$
λ(s)κλ̄2 + b$

q(s)κq q̄
G +

1

2
b$
q(s)

2
σ2
q (C.15)

− β − µC + γσ2 + σ2
p + λGEν

[
e−γZt

(
eb

$
q(s)Zqt−ZPt − eZt

)]
(C.16)

0 = −
∂b$

p(s)

∂s
− (ηBG + ηGB)b$

p(s) + b$
q(s)κq

(
q̄B − q̄G

)
+ (λB − λG)Eν

[
e−γZt

(
eb

$
q(s)Zqt−ZPt − eZt

)]
(C.17)

0 = −∂b
$
λ(s)

∂s
− κb$

λ(s) +
1

2
b$
λ(s)

2
σ2
λ + (1− γ)bλb

$
λ(s)σ

2
λ + Eν

[
e−γZt

(
eb

$
q(s)Zqt−ZPt − eZt

)]
(C.18)

0 = −
∂b$

q(s)

∂s
− b$

q(s)κq − 1. (C.19)

Then (43) uniquely solves (C.19) together with the boundary condition (C.9). More-

over, (C.15) and (C.9) ensure that that a$ takes the form (45).

Finally, we solve for the function h$. Recall that a$(τ, 0; p0) = 0, for all τ ∈ [0, T ).

Then, from (45), h$(τ ; p0) = 0 for all τ ∈ [0, T ). However, h$ is only defined as a

function of τ + s. Therefore h(u; p0) = 0, for u ∈ [0, T ).

For u ≥ T , (46) iteratively determines h$(u; p0). We now derive (46). Absence of

arbitrage and the (almost sure) continuity of qt, λ2t and s imply, for t ∈ A,

lim
τ→T

B$
(
pt− , qt, λ2t, τ, s; p0t

)
= Et−

[
π$
t

π$
t−

B$
(
pt, qt, λ2t, τ, s; p0t

)]
. (C.20)

We use (42) to write (C.20) more explicitly as

lim
τ→T

exp{a$(τ, s; p0t−) + b$(s)pt−} = Et−

[
π$
t

π$
t−

exp{a$(0, s; p0t) + b$(s)pt}

]
(C.21)

Equation 45 and (C.21) then imply the following restriction on h:

exp{h$(T + s; p0t−) + b$(s)pt−} = Et−

[
π$
t

π$
t−

exp{h$(s; p0t) + b$(s)pt}

]
. (C.22)

Defining u = T + s and substituting in for the nominal announcement SDF π$
t /π

$
t−

from (41) gives us (46).
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It remains to show that (46)) uniquely characterizes h$. The discussion above

establishes h$(u, p0) = 0 is the unique solution for u < T . We show uniqueness by

induction of the number of announcements prior to maturity of the asset. Define

n = b u
T
c.

Assume by induction that h$ is unique for u ∈ [(n − 1)T, nT ), n ≥ 1. Then, for each

u ∈ [nT, (n+ 1)T ), (46), applied at p0t− = 0 and p0t− = 1 is a system of two equations

in two unknowns. It therefore uniquely pins down h$(u; p0).

Corollary C.2. When q̄B > q̄G, 0 < κq < 1, 0 < ηBG < 1 and 0 < ηGB < 1, b$
p(s) ≤ 0.

Proof. We prove the corollary by contraditcion.

We know that

∂b$
p(0)

∂s
= 0 (C.23)

b$
q(s)κq(q̄

B − q̄G) < 0, s > 0. (C.24)

Then there is a sufficiently small but positive s1, such that

b$
p(s1) < 0

.

Suppose ∃s0, such that b$
p(s2) > 0. Then there must exists s∗, such that

b$
p(s
∗) = 0 (C.25)

∂b$
p(s
∗)

∂s
> 0. (C.26)

However, as b$
p(s
∗) = 0,

∂b$
p(s
∗)

∂s
= −0 + b$

q(s
∗)κq(q̄

B − q̄G) < 0,

which is a contradiction.
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Figure 1: Portfolio excess returns against CAPM betas
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Notes: The figure shows average excess returns on announcement days (diamonds) and
non-announcement days (squares) on beta-sorted portfolios in daily data from 1961.01-
2016.09. On the horizontal axis is CAPM beta. Also shown are estimated regression
lines for announcement day returns against beta (solid red) and non-announcement
day returns against beta (dashed red).
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Figure 2: Portfolio excess returns against CAPM betas on announcement and non-
announcement days
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Notes: The figure shows average excess returns on announcement days (diamonds)
and non-announcement days (squares) on beta-sorted portfolios in daily data from
1961.01-2016.09 as a function of the CAPM beta. Also shown are estimated regression
lines for announcement day returns against beta (solid red) and non-announcement
day returns against beta (dashed red). We simulate 500 samples of artificial data
from the model, each containing a cross-section of firms. We use samples that do not
contain announcements. The blue and grey dots show average announcement day and
non-announcement day returns for each sample as a function of beta, respectively.
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Figure 3: Boxplots of simulated portfolio average excess returns on announcement and
non-announcement days
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Notes: We compute average excess returns on announcement and non-announcement
days for a cross-section of assets in data simulated from the model. The red line shows
the median for each portfolio across samples; the box corresponds to the interquartile
range (IQR), and the whiskers correspond to the highest and lowest data value within
1.5 × IQR of the highest and lowest quartile. Medians and interquartile ranges are
computed using all samples (those with and without disasters). We plot returns
against the median CAPM beta across samples for each portfolio. The red solid and
dashed lines are the empirical regression lines of portfolio mean excess returns against
market beta on announcement and non-announcement days, respectively.
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Table 1: Statistics on excess returns of 10 beta-sorted portfolios

Unconditional Announcement day Non-announcement day

k E[RXk] σk βk E[RXk] σk βk E[RXk] σk βk

1 1.53 53.1 0.20 3.32 52.8 0.18 1.30 53.2 0.20
2 1.91 59.2 0.44 6.64 58.8 0.42 1.30 59.2 0.44
3 2.64 69.2 0.57 7.31 70.8 0.57 2.04 69.0 0.58
4 2.63 77.4 0.69 8.00 77.1 0.67 1.94 77.4 0.69
5 2.53 87.9 0.81 7.56 87.6 0.78 1.88 87.9 0.81
6 2.52 96.2 0.90 8.54 96.7 0.88 1.75 96.1 0.91
7 2.56 105.4 1.00 8.58 107.5 0.99 1.79 105.1 1.00
8 2.34 118.9 1.14 10.31 121.8 1.13 1.32 118.5 1.14
9 2.36 136.5 1.31 12.88 139.1 1.30 1.01 136.2 1.31
10 2.25 176.2 1.67 17.86 176.9 1.63 0.25 176.0 1.67

Notes: Sample statistics for excess returns of ten beta-sorted portfolios. The sample
period is 1961.01-2016.09. We show the sample mean excess returns (E[RXk]), and
CAPM beta (βk). Each portfolio is labelled by k. Column 1-3 report estimates with
all data available. Column 4-6 and column 7-9 use returns on announcement and non-
announcement days, respectively. The unit is bps per day.
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Table 2: Statistics on excess bond returns

Maturity Unconditional Announcement day Non-announcement day

k E[RXk] βk E[RXk] βk E[RXk] βk

1 0.363 0.000 −0.043 0.007 0.415 −0.001
5 0.855 −0.007 3.211 0.029 0.549 −0.013
10 0.779 −0.010 3.882 0.051 0.376 −0.019
20 1.122 −0.021 4.988 0.060 0.620 −0.033
30 0.986 −0.045 5.219 0.046 0.437 −0.058

Notes: Sample statistics for excess returns on Treasury bonds. The sample period
is 1961.01-2016.09. We show the sample mean excess returns (E[RXk]) and CAPM
beta (βk). Returns and betas are computed using the full sample (first two columns),
announcement days (second two columns), and non-announcement days (last two
columns). Maturity is in units of years; returns are in units of basis points per day.
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Table 3: Parameter values for the simulated model

Panel A: Basic parameters
Expected normal-times log growth in consumption µ̄C(%) 2.52
Expected normal-times growth in dividend µ̄D(%) 2.52
Volatility of consumption growth σ(%) 2.00
Rate of time preference β 0.012
Relative risk aversion γ 3.00
Average leverage φ 3.00

Panel B: The process for λ1t

Probability of disaster in the good state λG 0
Probability of disaster in the bad state λB 0.062
Probability of switching to bad state ηGB 0.10
Probability of switching to good state ηBG 0.33

Panel C: The process for λ2t

Average probability of disaster λ̄2 0.021
Mean reversion in disaster probability κ 0.08
Volatility for disaster probability σλ 0.067

Panel D: Inflation
Expected inflation in the good state q̄G 0.014
Expected inflation in the bad state q̄G 0.070
Mean reversion in expected inflation κq 0.09
Volatility for expected inflation σq 0.013
Volatility for realized inflation σP 0.008

Notes: Parameter values for the calibrated model, expressed in an-
nual terms.
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Table 4: The equity premium and volatility on announcement and non-
announcement days

Statistic Data Simulation Median 90 % CI

E[RXmkt
t | A] 10.79 8.69 [3.16, 12.73]

std[RXmkt
t | A] 101.2 99.8 [70.2, 168.4]

E[RXmkt
t | N ] 1.16 2.39 [1.09, 4.47]

std[RXmkt
t | N ] 97.8 68.9 [35.7, 104.8]

E[RXmkt
t | A]− E[RXmkt

t | N ] 9.63 6.21 [0.45, 10.51]
std[RXmkt

t | A]− std[RXmkt
t | N ] 3.4 33.1 [−22.6, 112.3]

Notes: Ea[RX
mkt
t ] and En[RXmkt

t ] denote the average excess return on the mar-
ket portfolio on announcement days and non-announcement days respectively.
stda[RX

mkt
t ] and stdn[RXmkt

t ] denote analogous statistics for the standard de-
viation. The first column reports the empirical estimate. The second column
reports the median across samples simulated from the model. The third col-
umn reports the two-sided 90% confidence intervals from simulated samples.
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Table 5: Cross-sectional regressions on announcement and
non-announcement days

Panel A: Equity Portfolios

Coefficient Data Simulation Median 90 % CI
δa 10.30 8.21 [2.95, 12.88]
δn 1.23 1.70 [0.24, 4.36]
δa − δn 9.07 6.40 [0.59, 10.96]

Panel B: Nominal Bonds

Coefficient Data Simulation Median 90 % CI
δa 93.33 8.44 [1.53, 32.69]
δn −0.51 −2.54 [−643.09, 510.38]
δa − δn 93.84 14.58 [−494.50, 676.07]

Notes: For each sample, the regression E[RXk
t | t ∈ i] = δiβ

k
i +

ηki is estimated, where i = A,N stands for sets of announce-
ment and non-announcement days, respectively. These regres-
sions are estimated for beta-sorted equity portfolios (Panel A)
and for Treasury bonds (Panel B). The first column reports
regression slopes in daily data from 1961.01-2016.09. The sec-
ond column reports medians in simulated samples. The third
column reports 90% confidence intervals computed using sim-
ulations.
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Table 6: Difference in announcement and non-announcement day betas in simulated
data

Panel A: Equity Portfolios

Portfolio 1 2 3 4 5 6
Median −0.18 −0.07 0.04 0.12 0.20 0.28
90% CI [−0.30,−0.04] [−0.22, 0.10] [−0.14, 0.27] [−0.05, 0.45] [−0.01, 0.61] [−0.05, 0.82]

Panel B: Bonds

Maturity 1 3 5 7 10
Median 0.01 0.22 0.49 0.81 0.95
90% CI [0.00, 0.02] [0.06, 0.29] [0.14, 0.66] [0.23, 1.11] [0.27, 1.29]

Notes: In data simulated from the model, we compute betas on announcement days and non-
announcement days. We do this for beta-sorted equity portfolios (Panel A) and for zero-coupon bonds
(Panel B). The table reports the median difference and 90% confidence intervals for the difference.
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