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That is not my dog: Why doesn’t the log dividend-price ratio
seem to predict future log returns or log dividend growth?

By Philip H. Dybvig and Huacheng Zhang

Abstract

Campbell and Shiller’s “accounting identity” implies that changes in the log dividend-price ratio

must predict either future returns or future log dividend growth. However, neither quantity seems to

be predictable — a well-known puzzle in the literature. We examine this puzzle step-by-step from

theoretical derivation through empirical testing. Stationarity of the log dividend-price ratio is an

important assumption behind the accounting identity, but Campbell and Shiller’s test justifying this

assumption does not make sense, and a corrected test does not reject non-stationarity. Nonetheless,

a truncated accounting identity works reasonably well in the existing sample, and we find that the

log dividend-price ratio predicts log dividend growth, not returns. Traditional tests using one or a

few lags have trouble detecting predictability of log dividend growth because predictability is spread

over many periods. Unfortunately, predictability of log dividend growth is not robust to subsamples,

and it seems unwise to rely too much on the estimates given that the entire sample includes only five

non-overlapping observations.
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Clouseau: Does your dog bite?

Innkeeper: No.

Clouseau: Nice doggy.

(Clouseau tries to pet the dog on the floor and is bitten)

Clouseau (angry): I thought you said your dog did not bite.

Innkeeper: That is not my dog. 1

Often, like Clouseau, we get into trouble because we ask the wrong question. This paper examines the

failure of the log dividend-price ratio (hereafter LDPR) to predict either future log returns or future log

dividend growth. Campbell and Shiller’s (1988) “accounting identity” asserts that the current LDPR

is approximately equal to a constant plus the sum of “present values” of future log returns minus the

sum of “present values” of future log dividend growths.2 This implies that current LDPR should be

able to predict future log returns, or log dividend growth rates, or both. Empirically, however, the

LDPR seems to predict neither. This puzzle was examined by Cochrane (2008), who side-stepped

the puzzle by assuming a just-identified model, using the analogy of the “dog that didn’t bark” from

Sherlock Holmes, but that is not our dog. Since, like Clouseau, we do not know which question to

ask, we go step-by-step through the entire argument to uncover where the problem is. We find that the

analysis fails in two places. First, Campbell and Shiller assume that the long-term mean LDPR exists

and justify this assumption by an empirical test that does not actually test this at all. Our correctly

specified test fails to reject the null that the long-term mean LDPR does not exist. However, in spite

of this, the finite-horizon version of their accounting identity is a very good approximation within

our sample. Second, performing a regression having the form of the finite-horizon version within our

sample (instead of the usual VAR with one or a few lags) has significant predictability of future log

dividend growth but not future log returns. However, we do not want to read too much into this result

because the sample has only five nonoverlapping data points, the results change on subsamples, and

the estimators are inconsistent if the LDPR is indeed nonstationary.

The Campbell-Shiller “accounting identity” can be derived by starting with the single period

definition of returns as the sum of dividends and capital gains. Using algebra, taking logs, and
1Edwards (1976).
2The “present values” in the accounting identity are computed using an artificial interest rate computed using the

long-term mean LDPR, not the market interest rate.
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doing a Taylor series expansion around some typical value for the LDPR, we obtain a one-period

approximation formula linking log returns and log dividend growth with beginning- and end-of-

period LDPR. By telescoping this approximation over many periods, current LDPR can be linearly

approximated in a finite horizon by the sum of weighted log returns and the sum of weighted log

dividend growth rates over future periods plus weighted LDPR in the final period. The accounting

identity is derived by assuming that the long-term mean LDPR exists and expanding around the long-

term mean, which implies that the final term disappears when we take the infinite limit of the finite

horizon versions.

Campbell and Shiller (1988) purport to show the existence of the long-term mean LDPR, but

they use a flawed test of stationarity. They use an augmented Dickey-Fuller test of Phillips and

Perron (1988) in which the null is nonstationarity plus a trend, and the alternative is stationarity plus a

trend. Unfortunately, the trend implies that the process is stationary and has a long-term mean under

neither the null hypothesis nor the alternative hypothesis. Obviously, we cannot test for stationarity

if both the null and alternative hypotheses imply nonstationarity. Instead, we conduct an original

Dickey-Fuller stationarity test in which the null hypothesis is nonstationarity without a trend, which

implies the long-term mean does not exist, and the alternative hypothesis is stationary without a

trend, which implies the long-term mean does exist. Using annual data for the S&P 500 index (with

Shiller’s backfill3 using data from Cowles (1939)) from 1871 to 2015, we cannot reject the null of

nonstationarity, which suggests the long-term mean does not exist. In principle, this is a big problem

for the Campbell-Shiller approximation, which is based on an expansion around the long-term mean,

but the truncated version of the approximation still works well in our sample looking 30 years out. It

is also a big problem for any asymptotic interpretations of the statistical tests, since nonstationarity of

LDPR would mean that the approximation error in the derivation will become unbounded over time

and we also lose the asymptotic justification of estimates and standard errors.

Although we are skeptical about the existence of the long-term mean LDPR, perhaps the

approximation is still useful if we expand around some reasonable value, for example, the sample

mean in our current sample. We perform a regression of the LDPR on the sums over future 30

years and the final log dividend-price ratio. All coefficients on independent variables are close to the

theoretical value (one or minus one) and the R2 is close to 100% (98.91%). The approximation is

3The backfill is described in Shiller (1981) and Campbell and Shiller (1988).
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worse but still acceptable if we drop the final LDPR in year 30 (the R2 drops to 82.25%) . Therefore,

the source of the puzzle is the lack of power in previous tests rather than any intrinsic problem with

the approximation, at least for the truncated identity in our current sample.

We test the predictability of stock returns and dividend growth rates using the finite approxima-

tion itself with many terms rather than using one or a few lags as is common in the literature. Our

estimation uses statistical corrections for the correlation in error terms and for spurious regression

bias. The Campbell-Shiller approximation implies that the current LDPR is able to predict either

future log returns or log dividend growth or both; we find that log dividend growth is significantly

predictable, but log returns are not. The results are robust to expanding the log dividend-price ratio

around alternative points rather than the sample mean.

As noted by Cochrane (2008), dividends are smooth. He concludes that log dividend growth is

not predictable implying under the model restriction that returns are predictable. However, it seems

more accurate to assert that the predictability of log dividend growth is spread over many maturities

and that nearby dividends are not very predictable because dividends are smooth. What is happening

is that there is small predictability of dividend growth spread over many periods, which is buried by

noise in conventional simple regression or vector-autoregressive (VAR) estimation.

The limitation inherent in using a small number of lags to search for predictability of dividend

growth seems to be a solution of the puzzle of why the theory (based on an accounting identity and an

approximation that is not so bad in the current sample) is hard to verify. In general, the predictability

of log dividend growth is difficult to find because of the large prediction error introduced by the

unpredictable part of future log returns, which is a common factor with future log dividend growth

that cancels in the accounting identity.

Although the best evidence (based on our whole sample) suggests that the LDPR predicts log

dividend growth but not log returns, this result seems fragile. For one thing, this result is reversed

on the second half-period, consistent with Chen’s (2009) “tale of two periods” and explaining an

apparent inconsistentcy with a similar regression of Cochrane (2008, Section 7.2). We also worry

about the statistical properties of the estimators, both because the whole sample has only about five

non-overlapping observations (and subsamples even fewer) and because of the apparent instability

over time. If the LDPR is indeed nonstationary, the estimation will not improve as the sample size
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gets larger, because the Taylor series expansion will become much less accurate as the range of values

increases over time. One interesting aspect of the accounting identity is that it is not an economic

model since its derivation uses only manipulation of identities and approximations. If we think

about the economics, Modigliani-Miller suggests that to first order dividends are irrelevant, which

is consistent with instability of these relationships over time. Therefore, both statistical and economic

arguments call into question the asymptotic stability of the estimation.

The rest of this paper is organized as follows. We review the approximation leading to the

accounting identity in Section 1 and test the quality of this approximation in Section 2. We use a

model-implied approach to test the predictability of returns and dividend growth in Section 3. In

Section 4, we further analyze the approximation error and how that would change if the LDPR moved

away from the current range. Section 5 concludes the paper.

1 Dividend-Price Decomposition

1.1 Theory

We begin by specifying the standard definition relating return, current and future prices, and dividend

payment. Define gross investment return over one period as:

1+Rt+1 =
Pt+1 +Dt+1

Pt
(1)

=
Pt+1

Pt

(
1+

Dt+1

Pt+1

)
,

where Pt and Pt+1 denote start-of-period and end-of-period stock prices, Rt+1 denotes the net return

over the period, and Dt+1 denotes the end-of-period dividend.4 This may seem like a strange way

to write the return, since we would normally look at gross capital gains Pt+1/Pt and dividend yield

Dt/Pt , with information known at the beginning of the period in the denominator. For our purpose,

4For empirical tests, we might treat all dividend payments during the period as coming at the end of the period.
Alternatively, we could try to construct a more accurate return calculation that takes into account the timing of the
dividends and the returns within each period. In practice, these approaches are likely to yield very similar results.
Empirical work must also account for splits and distributions other than dividends, although the data we use has already
made these adjustments and including them in our notation here would not change the substance of the analysis.
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we simply manipulate accounting identities to express returns in this unconventional manner because

placing Pt in both denominators would give us a telescoping series in which the final term cannot

vanish. Taking logs on both sides, (1) becomes:

(2) log(1+Rt+1) = log
(

Pt+1

Pt

)
+ log(1+ exp(δt+1)),

where δt+1 ≡ log(Dt+1/Pt+1). We approximate (2) by a first-order Taylor series expansion around

δt+1 = δ . Traditionally, the constant δ is taken to be the long-term mean of the log dividend-price

ratio, log(Dt/Pt), but we will take a broader perspective and view δ as taking on some reasonable

value. This distinction could be important, given the evidence later in this section that the long-term

mean may not exist. Letting ρ ≡ 1/(1+ exp(δ )), then

d log(1+ exp(δt+1))

dδt+1

∣∣∣∣
δt+1=δ

=
exp(δt+1)

1+ exp(δt+1)

∣∣∣∣
δt+1=δ

= 1−ρ.

Therefore, letting κ ≡ log(1+ exp(δ ))− (1−ρ)δ , the Taylor approximation is:

log(1+Rt+1) = log
(

Pt+1

Pt

)
+ log(1+ exp(δt+1))(3)

≈ log(
Pt+1

Pt
)+ log(1+ exp(δ ))+(1−ρ)(δt+1−δ )

= log(Pt+1)− log(Pt)+ log(1− exp(δ ))

+(1−ρ)(log(Dt+1)− log(Pt+1))− (1−ρ)δ

= κ +ρ log(Pt+1)+(1−ρ) log(Dt+1)− log(Pt)

= κ−ρ log(
Dt+1

Pt+1
)+(log(Dt+1)− log(Dt))+(log(Dt)− log(Pt)).

Rewrite (3) as

(4) log
(

Dt

Pt

)
≈−κ + log(1+Rt+1)+ρ log

(
Dt+1

Pt+1

)
−∆ log(Dt+1).

We can use (4) itself, changing t to t +1, to substitute in for the term ρ log(Dt+1/Pt+1) on the right-

hand side. Doing this repeatedly (changing t to t+1, t+2, ...,T −1 in turn), the expression telescopes

5



to become:

log
(

Dt

Pt

)
≈ − κ

1−ρ
(1−ρ

T−t)+
T

∑
s=t+1

ρ
s−t−1(log(1+Rs)−∆ log(Ds))+ρ

T−t log
(

DT

PT

)
.(5)

This is the essential formula we work with. Campbell and Shiller assume the LDPR is stationary and

set δ equal to its mean. Since 0 < ρ < 1, if the LDPR is stationary, the final term vanishes (converges

to 0 in probability) as T increases, and we have the asymptotic expression:

(6) log
(

Dt

Pt

)
≈− κ

1−ρ
+

∞

∑
s=t+1

ρ
s−t−1(log(1+Rs)−∆ log(Ds)),

often referred to in the literature as the accounting identity. This identity states that, subject to the

quality of the approximation, today’s log dividend-price ratio log(Dt/Pt) is identically equal to a

constant plus a linear combination of future log returns log(1+Rs) and future changes in log dividend

∆ log(Ds). This implies that the log dividend-price ratio must predict one or both of them. It may seem

strange that this is an identity (subject to the approximation) and there is no expectation in (6), since

it would be naive to think that weighted future log returns are perfectly predictable. The point is that

the part of future returns that is not predictable cancels the part of log dividend growth that is not

predictable, as will be explored further in Section 3. What we can say is that if the LDPR is not

constant, then the LDPR must predict either future log returns or future log dividend growth. This

follows from taking the expectation of both sides of (6) conditional on information at time t, since

both Dt and Pt are known at time t.

1.2 Stationarity of the LDPR

We now test whether the LDPR is stationary and the long-term mean exists, and the short answer is

no, the LDPR is not stationary and its long-term mean does not seem to exist. Figure 1 shows the

time series of both the annual dividend-price ratio for the backfilled S&P 500 index (dashed line) and

the corresponding LDPR (solid line) between 1871 and 2015. Both are much smaller towards the end

than in the first half of the sample.5 Over the sample period, the average dividend-price ratio is 4.47%

5The data were obtained from Robert Shiller’s website at http://www.econ.yale.edu/~shiller/data.htm. The
early observations are backfilled using data collected by Cowles (1939); see Campbell and Shiller (1988) for details. We
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(corresponding to a ρ of 0.95) with a standard deviation of 1.52% while the average log dividend-price

ratio is−3.18 with a standard deviation of 0.40. The dividend-price ratio varies around 5% during the

Campbell-Shiller period (1871–1986), but declines to around 2% during the post-Campbell-Shiller

period (1987–2015). In short, Figure 1 suggests that the long-term means of the dividend-price and

log dividend-price ratios may not exist, consistent with the results of our “appropriate” stationarity

test.

Figure 1: Dividend-Price Ratio and Log Dividend-Price Ratio (LDPR)

We call our test “appropriate” because unlike the augmented Dickey-Fuller test used by Campbell

and Shiller, we use an original Dickey-Fuller test that actually tests for stationarity. For our test,

the LDPR is nonstationary under the null and stationary under the alternative, unlike the Campbell-

Shiller test under which the LDPR is nonstationary under both null and alternative. The main

difference between the two tests is the inclusion of a trend in the augmented Dickey-Fuller test

used by Campbell and Shiller. Stationarity around a trend is still nonstationary (except in the

degenerate case that the trend is flat, and is not imposed under the null of the augmented Dickey-

Fuller test), and implies that the long-term mean does not exist. The stationarity test is specified

as log(Dt/Pt) = α + β log(Dt−1/Pt−1)+ εt . The results are reported in Table 1. The Dicky-Fuller

statistic is −15.8 over the whole sample period with a 5% critical value of −16.3, so we fail to reject

the hypothesis that the LDPR is a non-stationary series, and nonstationarity would imply the long-

focus on annual data because monthly dividend payments are linearly interpolated from annual and quarterly dividend
payments, and we do not want to deal with the approximation error this might entail.
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term mean LDPR does not exist. It will certainly be a problem over time if the long-term mean

does not exist and the LDPR gets more and more dispersion that will make the Taylor approximation

disintegrate. This also calls into question the asymptotic justifications of estimators and standard

errors. Interestingly, the correct test rejects non-stationarity over the Campbell-Shiller period (statistic

−33.0 with 5% critical value −16.3) but not over the later period (statistic −4.8 with 5% critical

value −14.6), consistent with Chen’s (2009) “tale of two periods.” Possible nonstationarity of the

LDPR weakens the interpretation of the sample mean as an approximation to the long-term mean,

but it doesn’t necessarily invalidate the analysis using the current data. In the following analyses,

we investigate what we can learn about the approximation and predictability with the possibly

nonstationary LPDR data series.

Table 1: LDPR Stationarity Tests
This table reports the results of Dickey-Fuller tests of stationarity of the annual series of the log dividend-
price ratio for the back-filled S&P 500 index. The stationarity test is specified as log(Dt/Pt) = α +
β log(Dt−1/Pt−1)+ εt . We fail to reject nonstationarity for the entire sample and post-Campbell-Shiller, but
but we reject nonstationarity for the Campbell-Shiller subperiod.

dependent variable: 1871−−2015 1871−−1986 1987−−2015
log(Dt/Pt) entire sample Campbell-Shiller post-Campbell-Shiller

constant −0.16 −0.39 −0.34
(0.06) (0.09) (0.15)

log(Dt−1/Pt−1) 0.89 0.71 0.82
(0.04) (0.07) (0.09)

Dicky-Fuller stat −15.78 −32.95 −4.76
Dicky-Fuller 5% critical −16.30 −16.30 −14.60
N 139 111 26
Adj−R2 77.14 49.55 72.37
Reject unit root No Yes No

1.3 Stationarity and the Accounting Identity: Theory

We have seen that the accounting identity (6) of Campbell and Shiller depends only on definitions,

algebra, and two approximations: deleting the final term of (5) in the limit and the Taylor series

expansion (3). In this subsection, we consider what connection (if any) the two approximations have
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with stationarity tests. Interestingly, the stationarity tests are not well-connected to dropping the final

term, but our test without a trend is closely connected to the Taylor series expansion.

To analyze these assumptions under the lens of the stationarity tests, it is useful to write down

the following statistical model of the LDPR:

(7) δt = zt +mt

where

(8) dzt =−kzt + sdZt ,

for some constants m, k≥ 0, and s> 0. Under this structure, the LDPR δt can be stationary (m= 0 and

k > 0), nonstationary without a trend (m = 0 and k = 0), stationary around a trend (m 6= 0 and k > 0),

or nonstationary around a trend (m 6= 0 and k = 0). Perhaps this is not the most interesting economic

model of the LDPR, but it corresponds well with the stationarity tests, and as we vary the parameter

values, we obtain processes in both the null and the alternative of both the original Dickey-Fuller test

and the augmented Dickey-Fuller test.

The final term can be eliminated if plimT↑∞ ρT−tδT = 0. For the Taylor approximation, consider

the error in (4), which equals

(9) ξt = log(1+ exp(δt+1))− log(1+ exp(δ ))− (1−ρ)(δt+1−δ ),

as can be verified by subtracting ξt from the r.h.s. of (4) and simplying using the definition of κ . This

error ξt as a function of δt+1 is strictly convex, nonnegative, and has slope and value equal to zero at

δt+1 = δ .

The following theorem says that the final term vanishes for all of the processes we are currently

considering. However, whether the Taylor approximation blows up over time depends on the

stationarity of the LDPR.

Theorem 1 Suppose the LDPR δt follows the dynamics (7) and (8), for some constants m, k≥ 0, and

s > 0. Further suppose that ρ ∈ (0,1) (as follows from its definition ρ ≡ 1/(1+ exp(δ )). Then the
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final term in (5) vanishes in probability as T ↑ ∞, i.e. plimT↑∞ ρT−tδT = 0. Furthermore, the Taylor

approximation error (9) blows up in the sense that plimT↑∞ ξt = ∞ unless δt is stationary (m = 0 and

k > 0), in which case it does not blow up.

Proof: From (7) and (8), we have that

δT = δ0 exp(−kT )+mT + s
∫ T

t=0
e−k(T−t)dZt ,

and since m, k≥ 0, and s> 0 are all constant, δT is normally distributed with mean δ0 exp(−kT )+mT

and variance

VT ≡
∫ T

t=0
s2exp(−2k(T − t))dt

=

 s2

2k (1− exp(−2kT )) for k < 0

s2T for k = 0

which is positive for T > 0 and increasing in T . When k > 0, V∞ ≡ limT↑∞VT = 1/(2k)< ∞, while if

k = 0 then limT↑∞VT = ∞.

When does the final term vanishing as T ↑∞? Since δT is distributed N(δ0 exp(−kT )+mT,VT ),

the final term ρT−tδT is N(ρT−t(δ0 exp(−kT )+mT ),ρ2(T−t)VT ). Whatever the parameters m, k > 0,

and s > 0, both the mean and the variance of the final term converges to 0 as T ↑ ∞, which implies

that the final term converges in L2 and therefore in probability.

Now consider whether the Taylor approximation blows up. The Taylor approximation error

converges in probability to infinity if, for all K > 0, limT↑∞ prob(ξT < K) = 0. Now ξt is for all

t the same strictly convex differentiable function of δt+1, where ξt achieves a minimum with zero

value and zero slope at δt+1 = δ . Therefore, there exists a finite nondegenerate interval [δ D,δU ]

(where δt+1 = δ D and δt+1 = δU are the two solutions to ξt = K) such that ξt ≤ K if and only if

δt+1 ∈ [δ D,δU ]. Therefore, plimT↑∞ ξt = ∞ if and only if limT↑∞ prob(δT ∈ [δ D,δU ]) = 0. Now

prob(δT ∈ [δ D,δU ]) = N
(

δU −δ0e−kT −mT√
VT

)
−N

(
δ D−δ0e−kT −mT√

VT

)
.

For m = 0 and k > 0, the right-hand side converges to N(δU/
√

V∞)− N(δU/
√

V∞) > 0, and
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the approximation error does not blow up. For k = 0, the right-hand side has the same limit

as N(−
√

T m/s)− N(−
√

T m/s), which is 0− 0 = 0 if m > 0, 1/2− 1/2 = 0 if m = 0, and

1− 1 = 0 if m < 0. Finally, if k < 0 and m 6= 0, the right-hand side has the same limit as

N((δU −mT )/
√

V∞)−N((δ D−mT )/
√

V∞), which is 0− 0 = 0 if m > 0 and is 1− 1 = 0 if m < 0.

Therefore, the approximation blows up in all the cases except when m = 0 and k > 0, in which case it

does not blow up. �

The theorem says that failure to reject nonstationarity in either the augmented Dickey-Fuller test

used by Campbell and Shiller or the original Dickey-Fuller test we use is not compelling evidence

about the impact of discarding the final term in the limit, even leaving issues of power aside. We do

not want to interpret this result as saying that we think the term would disappear for any reasonable

assumptions; recall that (7) and (8) are chosen to be in the spirit of the Dickey-Fuller tests, not on

economic grounds.

The theorem also says that for this set of processes, our original Dickey-Fuller test should identify

correctly when the approximation error blows up over time, since a process with a trend will look like

a nonstationary process to the test. Specifically, failure to reject nonstationarity is evidence that the

approximation will blow up over time, although there is an issue of power (for example, if mean

reversion is weak and is significant only over a much larger time scale than our sample).

Although the results of this subsection assume a particular class of processes defined by (7)

and (8), the results are easy to generalize using an ergodic theorem. For example, for the stationary

case (without trend) m = 0 and k > 0, we could assume instead that the LDPR is a stationary ergodic

process and the ergodic theorem would give us the necessary asymptotics. For the nonstationary cases

(with or without a trend), we could assume instead stationary ergodic changes.

2 Approximation Test

In this section, we test the quality of the LDPR approximation in (5) using the current data. Campbell

and Shiller (1988) suggest a vector autoregression (VAR) approach to test (6). They find that the

LDPR series is persistent and able to predict both future stock returns and future dividend growth,

but the associated R2s in their tests are small. Unfortunately, the VAR approach suffers several
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shortcomings. A VAR procedure with a limited number of lags imposes a restriction that does

not sufficiently capture the long-term relationship among current dividend-price ratio, future returns

and future dividend growth rates. Cochrane (2011) shows that VAR estimates can be biased and

significantly different from those in the true linear regressions. In general, the analysis in Campbell

and Shiller (1988) does not tell us whether (5) holds empirically.

An improved approach that avoids such shortcomings is to conduct a test of the approximations

(5) and (6) with and without the final term. We could perform this test taking all the right-hand side

coefficients to be free parameters, but instead, we perform a parsimonious regression of the current

LDPR on the sum of weighted future log returns, the sum of weighted log dividend growth rates and

the weighted log dividend-price ratio in the last period:

log
(

Dt

Pt

)
= α +β1

(
T

∑
s=t+1

ρ
s−t−1(log(1+Rs))

)
+β2

(
T

∑
s=t+1

ρ
s−t−1

∆ log(Ds)

)
(10)

+β3

(
ρ

T−t log(
DT

PT
)

)
+ εt .

We choose ρ to be the value implied by setting δ equal to the sample mean LDPR; we show later

(in Table 4) that the results are insensitive to this choice. By construction, this regression overcomes

the shortcomings of both conventional linear and VAR estimations and is more parsimonious. If the

approximation of (5) is accurate, we should expect that the estimated β1 and β3 in (10) to have values

close to one and β2 close to minus one. The corresponding R2 should be close to 100%.

We take T −t to be 30 years, which is reasonably long and gives us 115 overlapping observations

(years) for analysis. We use (10) to test (5), and the results are reported in the first regression in Table 2

and suggest that the LDPR approximation is accurate, with an R2 of 99%. The sum of discounted log

returns and the final term both have coefficients close to one, and the discounted log dividend growth

rates has a coefficient close to minus one, all as predicted by the theory. All coefficients are statistically

significant at the 1% level. This regression uses Newey and West (1987) (hereafter Newey-West)

standard errors to adjust for serial correlation (including that due to overlapping observations) and

heteroscedasticity.6 The high R2 suggests that current LDPR predicts at least one regressor but does

6We report the Newey-West standard errors with 4 lags. In an untabulated analysis, we find that the Newey-West
standard errors based on 10, 20 or 30 lags are similar.
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Table 2: Test of the LDPR Approximation

This table reports the results of a regression testing the accuracy of the approximations of the log dividend-price
ratio in (5) and (6) using (10) with and without the final term. The results are based on the annual prices and
dividend payments of the S&P 500 index from 1871 to 2015, with T − t set to be 30 years. The associated
Newey-West standard errors, computed using four lags, are in parentheses. ∗∗∗ denotes statistical significance
at the 1% level.

dependent variable: log(Dt/Pt) with the final term without the final term

constant −2.96∗∗∗ −3.64∗∗∗

(0.05) (0.08)

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 0.96∗∗∗ 0.88∗∗∗

(0.02) (0.08)

∑
T
s=t+1 ρs−t−1∆ log(Ds) −0.99∗∗∗ −1.08∗∗∗

(0.02) (0.08)

ρT−t log(DT
PT
) 1.19∗∗∗

(0.05)

N 115 115

Adj-R2 (%) 98.91 82.25
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not indicate which one(s). Note that we have not adjusted for spurious regression bias (which could

be caused by low frequency series on both sides). For now, it suffices to note that the fit is very good.

We will correct for spurious regression bias when we conduct predictive regressions.

We use (10) to test the approximation without the final term, which can be viewed as a test of (6)

using a finite approximation. The results are reported in the second regression in Table 2 and suggest

that leaving out the LDPR 30 years from now has an impact that is neither trivial nor particularly

large. The coefficients on the sum of discounted log returns and log dividend growth are still very

significant and relatively close to the theoretical values (1 and −1). The R2 drops significantly by

17%, from 99% to 82%, but is still large enough to suggest that moves in today’s LDPR should

predict future log returns, log dividend growth, or both. This seems to address the concern Kleidon

(1986), Marsh and Merton (1986), and Merton (1987) expressed about dropping the final term, at

least in the finite approximation in the current sample. Our failure to find evidence of stationarity

of the LDPR suggests that their concern about dropping the final term in the asymptotic result (6) is

likely to become more important over time.

3 Predictability

3.1 Predictability Test

The high R2 (82.25%) in the test of the approximation without the final term (the second regression in

Table 2) suggests that the variation of current LDPR is not primarily from the error term εt in (10), but

rather from either the variation of cumulative future log returns or the variation of future cumulative

log dividend growth rates, or both, implying that either future log returns or future dividend growth

or both are predictable by current LDPR. This argument motivates the following log return and log

dividend predictive analyses:

(11)
T

∑
s=t+1

ρ
s−t−1(log(1+Rs)) = c1 +λ1 log

(
Dt

Pt

)
+ηT,1.
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(12)
T

∑
s=t+1

ρ
s−t−1

∆ log(Ds) = c2 +λ2 log
(

Dt

Pt

)
+ηT,2.

For completeness, we also test the predictability of LDPR 30 years out:

(13) ρ
T−t log

(
DT

PT

)
= c3 +λ3 log

(
Dt

Pt

)
+ηT,3.

The log return predictive regressions in (11) and (12) are presented in Cochrane (2008), although

his regressions are based on a subset of our sample period (1926–2004 rather than 1871–2015).

Cochrane’s sample period is similar to our second half-sample analysis. A significant coefficient

on log(Dt/Pt) in (11) (resp. in (12) or (13)) suggests that the LDPR predicts future log returns (resp.

future dividend growth or final term).

The use of cumulative present values of the predicted variable in future periods has advantages

over a conventional predictive specification, in which one-period leading predicted variable is mostly

used, in that it can capture the total predictability across horizons. In other words, (11) and (12)

capture both short-run and long-run predictabilities (if any).

The finite horizon version of accounting identity in (5) implies that the sum of the absolute

coefficients of the LDPR across all three predictive tests (i. e. λ1− λ2 + λ3) should be one if our

predictive specification is exact. Over the sample period from 1871 to 2015, Panel A in Table 3 shows

that the sum is indeed close to one, (0.19− (−0.60)+0.17 = 0.96). Future log dividend growth rates

are significantly predictable but future log returns are not. The lack of predictability of stock returns

supports the argument by Lanne (2002), Valkanov (2003), and Boudoukh, Richardson and Whitelaw

(2008) that conventional analysis of long-term predictability of stock returns is spurious.

It may be surprising that predictability of the LDPR 30 years out (Panel A of Table 3) is both

economically and statistically significant, leading us to ask what we know now about what will happen

30 years in the future. This view might be compelling if we took the dividend process as exogenous,

but as Modigliani and Miller (1958) point out, dividends are somewhat arbitrary (and in their model

almost completely arbitrary). Although new information today may be primarily about cash flows

in the coming ten years, this cash may go into repurchasing shares rather than paying dividends,
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meaning that the future increase of dividends may be spread over decades. The predictability of the

LDPR out 30 years only depends on (1) the predictability of cash flows over a short horizon, and

(2) firm policies implying that it takes a very long time for these increased cash flows to appear in

dividends. Consistent with the arguments of Chen, Da, and Priestley (2012), all of these observations

are consistent with the smoothness of dividends as noted by Lintner (1956) and others.

Panels B and C in Table 3 present the predictive analysis results for the two equal-long subsample

periods. In the first subsample, covering the period from 1871 to 1928 (Panel B), we see that

cumulative discounted dividend growth rates are significantly predictable by the current LDPR but

cumulative discounted returns are not, consistent with the results over the whole sample period.

However, the results for the second subsample from 1929 to 1985 (Panel C) reverse the results for

the whole sample. In this subsample, the cumulative discounted dividend growths are not predictable

by the LDPR while the cumulative discounted log returns are significantly predictable. The results in

the second subperiod are consistent with a similar test in Cochrane (2008, Section 7.2) on a similar

sample period.

Given the inconsistent findings across subperiods, we do not want to push any of the results.

We have only five non-overlapping observations over the whole sample period and even fewer

nonoverlapping observations (2 1/2 instead of 5) over each subsample period, casting doubt on on

the the asymptotic properties of the statistical estimates. In particular, the significance of coefficients

in Table 3 may tell us more about the size of the test than about the predictability we are trying to

test. In Section 1, we could not reject that the LDPR is a non-stationary process. However, both

the original approximation and asymptotic properties of the statistical estimates in Table 3 depend on

the stationarity of the LDPR. If pressed to take a stand, we are more comfortable with predictability

tests over the whole sample period, but it is not very reassuring to say we have five nonoverlapping

observations instead of 2 1/2.

We use two adjustments to the inference in the predictability tests: a Newey-West adjustment of

the standard errors for heteroskasticity and serial correlation of the errors, and a Stambaugh (1999)

adjustment of the coefficients for spurious regression bias (SRB). Serial correlation of the errors is

likely to be present given the moving averages used in the estimation, and might be present even

without the moving averages. We report the Newey-West standard errors with 4 lags in Table 3. The
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Table 3: Predictability Tests
This table reports the results of three regressions testing whether the current log-dividend-price ratio is able
to predict the sum of discounted future log returns, the sum of discounted future log dividend growths, or the
discounted terminal log dividend-price ratio, all with T −t set to 30 years. Panel A contains the results based on
the annual S&P 500 index data from 1871 to 2015. Panels B and C report the results over equal non-overlapping
subsamples. The spurious regression bias-adjusted coefficient on log(Dt/Pt) — labeled SRB in the panels —
is estimated following Stambaugh (1999). The associated Newey-West standard errors with four lags are in
parentheses. ∗∗∗, ∗∗ and ∗ denote statistical significance at the 1% , 5% and 10% levels, respectively.

dependent variable constant log(Dt/Pt) SRB Adj-R2 (%)

Panel A: Whole Sample Period

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 1.98∗∗ 0.19 0.17 0.43

(0.76) (0.24) (0.24)

∑
T
s=t+1 ρs−t−1∆ log(Ds) −1.26∗ −0.60∗∗∗ −0.56∗∗∗ 14.79

(0.66) (0.20) (0.20)

ρT−t log(DT
PT
) −0.19 0.17∗∗ 0.17∗∗ 17.31

(0.19) (0.07) (0.07)

Panel B: First Subsample Period (1871–1928)

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 1.64∗ 0.18 0.17 0.66

(0.86) (0.29) (0.29)

∑
T
s=t+1 ρs−t−1∆ log(Ds) −2.21∗∗ −0.85∗∗∗ −0.81∗∗∗ 33.01

(0.91) (0.31) (0.31)

ρT−t log
(

DT
PT

)
−0.74∗∗∗ −0.03 −0.03 0.33

(0.16) (0.05) (0.05)

Panel C: Second Subsample Period (1929–1985)

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 4.00∗∗∗ 0.75∗∗∗ 0.69∗∗∗ 34.15

(0.39) (0.13) (0.13)

∑
T
s=t+1 ρs−t−1∆ log(Ds) 0.59∗∗ −0.08 −0.07 −1.01

(0.23) (0.07) (0.07)

ρT−t log(DT
PT
) −0.25 0.17∗∗ 0.16∗∗ 25.09

(0.20) (0.07) (0.07)
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Newey-West standard errors based on 10, 20 or 30 lags are similar. SRB, studied by Granger and

Newbold (1974), Stambaugh (1999), and Ferson, Sarkissian, and Simin (2003), is a small sample bias

for linear regressions with lagged stochastic regressors. Stambaugh shows that this bias is pronounced

in the predictive coefficient but not in the standard error of the predictive coefficient or the R2. By

assuming log
(

Dt
Pt

)
to be a first-order autoregressive process as log

(
Dt
Pt

)
= c + τ log

(
Dt−1
Pt−1

)
+ νt ,

Stambaugh shows that the magnitude of SRB in the predictive coefficient in (11) equals −σην

σ2
ν

(1+3τ

N ),

where σην is the covariance of ηt and νt , σ2
ν the variance of νt , and N the number of observations of

the sample. Interestingly, the Stambaugh adjustment does not seem very important for any of these

tests.

3.2 Why is Predictability Much Weaker than the Approximation?

It is worth exploring why the coefficient on stock returns in Table 2 is consistently close to one and

statistically significant, while the predictor coefficient (of the LDPR) in the stock return predictability

test in Table 3 is small and insignificant. After all, in a univariate regression, the standard algebra

implies the R2 is unchanged if you interchange dependent and independent variables. Furthermore,

since the univariate and multivariate regression coefficients are the same when the independent

variables are uncorrelated, we know the explanation must come from nonzero correlation between

the independent variables. The explanation lies in the high correlation between the weighted sum of

future stock returns and the weighted sum of future dividend growth rates rather than any information

in the LDPR about future stock returns. We can think of the significant coefficient on future log

returns in Table 2 as a correction to the future log dividends (by removing common noise) rather than

any correlation between today’s LDPR and future log returns. To illustrate this argument, let us start

with the assumption that the weighted sum of future log returns is just equal to some noise Z that is

uncorrelated with the LDPR:

(14)
T

∑
s=t+1

ρ
s−t−1(log(1+Rs))≈ Zt .
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Now, use this expression and (5) without the final term and ignoring the constant (which does not

affect variance and covariance) to approximate the weighted sum of future dividend growth rates:

(15)
T

∑
s=t+1

ρ
s−t−1

∆ log(Ds)≈− log(
Dt

Pt
)+Zt .

Then the covariance matrix between the LDPR and sum of discounted future dividend growth rates

is:

(16) var

(
log
(

Dt

Pt

)
,

T

∑
s=t+1

ρ
s−t−1

∆ log(Ds)

)
=

 σ2
δ

−σ2
δ

−σ2
δ

σ2
δ
+σ2

Z

 .

When we regress current LDPR on the sum of discounted future dividend growth rates alone, the

regression coefficient (ignoring estimation error) is β = −σ2
δ
/(σ2

δ
+σ2

Z). The coefficient is biased

towards zero compared to what it would be without the noise Zt (the standard errors-in-variables

result), and when the noise σ2
Z in stock returns is large compared to σ2

δ
(which is consistent with the

data), then the bias is large. However, if we run the LDPR on both the weighted sum of future log

returns and the weighted sum of future log dividend growth rates, we obtain a coefficient of −1 on

the dividend sum and a weight of 1 on the return sum (a perfect fit given our approximations (14) and

(15)). Including returns allows the regression to cancel the noise in the dividend sum.

To confirm the common factor in returns and dividends, consider this both theoretically and

empirically. Given (14) and (15), we have that:

(17) var

(
T

∑
s=t+1

ρ
s−t−1(log(1+Rs)),

T

∑
s=t+1

ρ
s−t−1

∆ log(Ds)

)
=

 σ2
δ

σ2
Z

σ2
Z σ2

δ
+σ2

Z

 .

(18) corr

(
T

∑
s=t+1

ρ
s−t−1(log(1+Rs)),

T

∑
s=t+1

ρ
s−t−1

∆ log(Ds)

)
=

σ2
Z

σ2
Z +σ2

δ

.

When σ2
Z is large compared to σ2

δ
, the correlation between the return sum and the dividend sum should

be large. Figure 2 shows that the evolutions of cumulative log returns and log dividend growth rates

are closely correlated. In fact, the correlation between the log return and the log dividend growth
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is 0.63, and the correlation between (∑T
s=t+1 ρs−t−1(log(1+Rs))) and (∑T

s=t+1 ρs−t−1∆ log(Ds)) is

0.84. Moreover, the standard deviations of the cumulative returns and log dividend growth rates are

respectively 38.1% and 34.3% which implies that the sum of the two terms’ variances is as high as

37.2%, or 61.0% in terms of standard deviation, while the standard deviation of the log dividend-

price ratio over the same period is 23.6%. This relationship is also observed by Ferson, Sarkissian

and Simin (2003) and Valkanov (2003) with simulated data.

Figure 2: Cumulative Discounted Log Returns and Log Dividend Growth Rates

One concern about the results in this section is that our sample includes only about five non-

overlapping observations of the weighted sums. Although it is impressive that the estimates (with

Newey-West and Stambaugh corrections) are significant in spite of this, this puts a lot of demand on

the Newey-West adjustment and we are far from its asymptotic justification.

4 Alternative Expansion Points

In the log linear approximation in (3), we approximate log(1+exp(δt+1)) around some value δ using

a first-order Taylor expansion. After telescoping this expression and dropping the final term, we arrive

at (6) or its finite horizon version (5). In this section, we examine the impact of the approximation

error and dropping the final term on the approximation and predictability tests, with a special focus



on how the error depends on the expansion point δ . This is especially important because the LDPR

may not be stationary.

4.1 Single Period Taylor Approximation Error

We first look at the possible magnitude of the approximation error in a single period. Recall that the

accounting identity (6) was derived by taking a limit of the discrete version (5) and discarding the

final term. In turn, (5) was derived from telescoping the single-period approximate LDPR expression

(4). The error in (4) comes from the Taylor expansion and we wrote it down explicitly in (9).

The approximation error ξt is zero when δt+1 = δ and positive everywhere else. Given δ , ξt

is a convex function of δt+1 that gets more positive as δt+1 moves away from δ .7 To see how ξt is

influenced by the selection of expanding point δ as well as the LDPR (δt+1), we plot the relationship

of ξt as a function of δt+1 for different δ , theoretically as well as using the data. The data land exactly

on the theoretical curves because we have an exactly expression for the error. Specifically, we consider

expanding δt+1 around its sample mean, which is around −3.18 (corresponding to a dividend-price

ratio of 4.17%), as well as four alternative expanding points to take into account the declining trend in

the dividend-price ratio: 2%, 3%, 7% and 8%, which correspond to LDPRs of −3.91, −3.51, −2.66

and−2.53. The results are illustrated in Figure 3. Regardless of expanding points, Figure 3 shows that

the approximation error ξt is close to zero when the LDPR is close to the expanding point. However,

Figure 3 also shows that ξt is far from zero if the LDPR deviates too much from the expanding point.

Consider −3.88 (or a corresponding dividend-price of 2.06%), the LDPR in 2008, as an example.

The approximation error ξt in this year is almost zero when the LDPR is expanded around −3.9,

and becomes 0.8% for expansion around its sample mean (−3.18), and 4.45% for expansion around

−2.53 (corresponding to a dividend-price ratio of 8%).

7When δt+1 is far from δ , ξt is roughly affine, with slope ρ−1 if δt+1� δ and slope ρ when δt+1� δ .
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Figure 3: Return Approximation Error

4.2 Multiple-Period Approximation Error and Dropping the Final Term

In the case of approximation over multiple periods as shown in LDPR equation (5) or (6), we define

the approximation error as the following:

(19) ζt =−
κ

1−ρ
+

T

∑
s=t+1

ρ
s−t−1(log(1+Rs)−∆ log(Ds))− log(

Dt

Pt
),

where ρ ≡ 1/(1+ exp(δ )) and κ ≡ log(1+ exp(δ ))− (1−ρ)δ .

(19) and (6) suggest that ζt contains two sources of errors: the accumulation of the approximation

errors (9) in (4), and the omission of the final term ρT−t log(DT
PT
) in (5). When δ approaches negative

infinity and ρ approaches one, the weight on the final term, ρT−t , tends to be one, which may lead

to a large ζt . Table 4 gives us some idea how much deterioration we can expect in the approximation

if the LDPR continues to wander away from the past values in the next one or two hundred years.

Overall, the approximations still seem useful. The most striking problem is that as δ falls, omitting

the final term has more and more impact. In Table 5, we see that changing the expansion point δ has

little impact on the predictability regressions in our current sample.
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Table 4: LDPR Approximation Test: Alternative Expansion Points
This table reports the sensitivity to the expansion point δ of the tests of the approximation tests in Table 2. The
regression is specified as: log(Dt/Pt) = α + β1(∑

T
s=t+1 ρs−t−1(log(1+Rs)))+ β2(∑

T
s=t+1 ρs−t−1∆ log(Ds))+

β3(ρ
T−t log(DT/PT )) + εt , with and without the final term. The results are based on annual data from the

S&P 500 index from 1871 to 2015, with T − t set to be 30 years. The associated Newey-West standard errors
with four lags are in parentheses. ∗∗∗ denotes statistical significance at the 1% level.

Model constant ∑
T
s=t+1 ρs−t−1(log(1+Rs)) ∑

T
s=t+1 ρs−t−1∆ log(Ds) ρT−t log(DT

PT
) Adj-R2 (%)

Panel A: Expanding point: δ =−3.91 (ρ ≈ 0.98, D/P = 2%)

w/final −2.71∗∗∗ 0.92∗∗∗ −0.87∗∗∗ 0.82∗∗∗ 93.79
term (0.08) (0.04) (0.04) (0.05)

w/o final −3.60∗∗∗ 0.62∗∗∗ −0.80∗∗∗ 55.62
term (0.07) (0.08) (0.08)

Panel B: Expanding point: δ =−3.51 (ρ ≈ 0.97, D/P = 3%)

w/final −2.82∗∗∗ 0.95∗∗∗ −0.93∗∗∗ 0.92∗∗∗ 98.12
term (0.04) (0.02) (0.02) (0.05)

w/o final −3.66∗∗∗ 0.74∗∗∗ −0.93∗∗∗ 67.37
term (0.09) (0.07) (0.08)

Panel C: Expanding point: δ =−2.66 (ρ ≈ 0.94, D/P = 7%)

w/final −3.00∗∗∗ 0.95∗∗∗ −1.02∗∗∗ 1.53∗∗∗ 96.17
term (0.08) (0.04) (0.04) (0.14)

w/o final −3.58∗∗∗ 0.93∗∗∗ −1.13∗∗∗ 85.67
term (0.07) (0.09) (0.08)

Panel D: Expanding point: δ =−2.53 (ρ ≈ 0.93, D/P = 8%)

w/final −3.02∗∗∗ 0.95∗∗∗ −1.03∗∗∗ 1.80∗∗∗ 94.36
term (0.09) (0.05) (0.05) (0.22)

w/o final −3.54∗∗∗ 0.94∗∗∗ −1.14∗∗∗ 85.83
term (0.06) (0.09) (0.08)
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Table 5: Predictability Test: Alternative Expansion Points
This table explores the robustness of the results of three regressions in Table 3 to the choice of expansion point
for the Taylor approximation. The results are based on annual data from the S&P 500 index from 1871 to 2015.
The associated Newey-West standard errors with four lags are in parentheses. ∗∗∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

dependent variable constant log(Dt/Pt) SRB Adj-R2 (%)

Panel A: Expanding point: δ =−3.91 (ρ ≈ 0.98, D/P =2%)

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 1.78∗ −0.08 −0.07 −0.75

(0.98) (0.32) (0.32)

∑
T
s=t+1 ρs−t−1∆ log(Ds) −1.48∗ −0.76∗∗∗ −0.70∗∗∗ 14.83

(0.86) (0.27) (0.27)

ρT−t log
(

DT
PT

)
−0.48 0.43∗∗ 0.41∗∗ 17.31

(0.47) (0.17) (0.17)

Panel B: Expanding point: δ =−3.51 (ρ ≈ 0.97, D/P=3%)

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 1.87∗∗ −0.08 −0.08 −0.87

(0.90) (0.29) (0.29)

∑
T
s=t+1 ρs−t−1∆ log(Ds) −1.42∗ −0.71∗∗∗ −0.65∗∗∗ 15.14

(0.79) (0.25) (0.25)

ρT−t log(DT
PT
) −0.36 0.32∗∗∗ 0.30∗∗∗ 17.31

(0.35) (0.12) (0.12)

Panel C: Expanding point: δ =−2.66 (ρ ≈ 0.94, D/P=7%)

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 2.01∗ 0.28 0.26 2.36

(0.67) (0.21) (0.21)

∑
T
s=t+1 ρs−t−1∆ log(Ds) −1.14∗ −0.53∗∗∗ −0.51∗∗∗ 13.80

(0.58) (0.18) (0.18)

ρT−t log
(

DT
PT

)
−0.14∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 17.31

(0.18) (0.04) (0.04)

Panel D: Expanding point: δ =−2.53 (ρ ≈ 0.93, D/P=8%)

∑
T
s=t+1 ρs−t−1(log(1+Rs)) 2.01∗∗∗ 0.31 0.28 3.48

(0.64) (0.20) (0.20)

∑
T
s=t+1 ρs−t−1∆ log(Ds) −1.08∗∗ −0.49∗∗∗ −0.46∗∗∗ 13.14

(0.54) (0.17) (0.17)

ρT−t log
(

DT
PT

)
−0.09 0.08∗∗∗ 0.08∗∗∗ 17.31

(0.08) (0.03) (0.03)
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5 Conclusion

Whether stock returns are predictable is an important and challenging question for both academia

and industry. Campbell and Shiller (1988) argue, based on accounting definitions and some

approximations, that the log dividend-price ratio must predict future log returns, future log dividend

growth, or both. However, in past literature neither prediction has been found to be economically or

statistically significant, creating a well-known puzzle. We check each step of Campbell and Shiller’s

argument, from the accounting definition through the approximation to the statistical tests. We find

that Campbell and Shiller’s test of existence of the long-term average log dividend-price ratio is

fatally flawed. This is important because existence of the long-term mean is a critical assumption in

deriving their main result. A correct test reverses the Campbell-Shiller result and cannot reject the

null hypothesis that the long-term mean does not exist.

If the long-term mean log dividend-price ratio does not exist, Campbell and Shiller’s “accounting

identity” will not hold, and the approximation in Campbell and Shiller’s theory can be expected to get

worse and worse over time. However, a truncated version of the LDPR approximation may still be

useful in our existing sample if we replace the long-term mean in the theory by a reasonable value,

such as the mean in the sample we do have. We find that the approximation does work reasonably well

in our sample and is not too sensitive to the choice of log dividend-price ratio to expand around. Our

findings show that the source of the failure to find a significant relationship arises from a mismatch

between the small lags in the traditional tests and the many terms in the theoretical expression. When

we conduct a test closer to the theoretical expression, with appropriate correction for serial correlation

due to overlapping data, possible heteroscedasticity, and spurious regression bias, we find that future

log dividend growth is significantly predictable but future returns are not, which seems to resolve the

puzzle.

While this is the best conclusion given the data currently available, this result does not seem to

be robust for several reasons. For one, there are only a few (about five) non-overlapping observations

of the truncated identity for the whole period, so we are asking a lot of the Newey-West adjustment.

Also, the results are different over two subperiods, which calls into question our assumption of a

stable relationship over time and reliance on asymptotic properties of the statistical estimates. Perhaps

we should not expect stability of the dividend process over time, since, according to Modigliani
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and Miller, dividends are irrelevant. Even if Modigliani-Miller’s arguments should not be taken too

literally, they do mean that seemingly small changes in taxes or transaction costs can have a big impact

on dividend policy and affect the time series properties of log returns, log dividend growth, and log

dividend-price ratios. Possible nonstationarity of the LDPR, which we cannot reject for the whole

sample or for the second half of the sample, is a serious problem for the theory because the Taylor

series approximation worsens as the range of the log dividend-price ratio increases. For these reasons,

it seems that the limitations of this approach may be intrinsic, and the accounting identity may never

tell us much about return predictability, even as we collect more and more data.
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