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Abstract

This paper develops a model of a dynamic and heterogeneous banking sector,
embedded in a general equilibrium framework. The objective is two-fold. The first is
to offer a model of the banking industry where leverage is a driver of the dynamics,
and where the implied distribution of bank capital closely matches the one that
observed in data. The second objective is to characterize the optimal size-dependent
capital regulation. The rationale for regulation arises because deposit insurance
induces banks to assume more leverage – defined as the ratio of assets to capital – than
what is socially optimal. As such, a limit on leverage improves welfare. Crucially,
the optimal regulation is size-specific – it tighter for larger banks. Intuitively, this
is for three reasons. First, allowing small banks to assume more leverage enables
them to grow faster, leading to a growth effect. Second, although more leverage by
small banks results in a higher failure rate among them, the failing banks are the less
productive ones, leading to a cleansing effect. Third, relative to small banks, large
banks entail more correlated shocks per unit asset, and are therefore, riskier. As
such, tighter regulation for large banks lowers the overall riskiness of banks’ assets,
leading to a stabilization effect. The model provides support for policies – such as the
GSIB framework – that impose tighter regulation on large and systemically important
banks.
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1 Introduction
A bank’s leverage decision,1 where leverage is defined as the ratio of assets to net worth,
or capital, has implications for growth and solvency. On the one hand, higher leverage
increases the potential for higher return on bank capital.2 On the other hand, leverage
increases the variance of returns as well as the probability of failure, that is, an event where
the bank’s capital falls below zero. Thus, leverage has implications not only for individual
banks, but also for industry dynamics such as entry, exit, and size-distribution, and for
such macroeconomic aggregates as output and investment. The first objective of this paper
is to develop a model of a heterogeneous banking industry where leverage is the key driver
of the dynamics. A key design consideration is to have the model be able to generate the
observed distribution of bank capital.

In the presence of deposit insurance, bank leverage decisions can be socially inefficient.
This inefficiency rationalizes capital regulation, defined here as a cap on bank leverage.3
Moreover, heterogeneity in banks’ sizes – as measured by capital – implies that, in general,
the inefficiency depends on the size distribution.4 The intuition is as follows. Consider a
large bank on the one hand, and two small banks obtained by breaking up the large bank
on the other hand. Greater leverage by the large bank can lead to greater variance in
its return on capital compared to the case of smaller banks. This is because in the latter
case, there is some diversification of shock across the two banks’, whereas in the former
case, the bank-wide shock applies to all the assets. As such, optimal regulation is likely
size-dependent, characterizing which is the second objective of this paper.

The question of bank capital regulation gained considerable importance in the after-
math of the great financial crisis, precisely because high leverage played a critical role in
scaling up the crisis. In response, international standards a’la Basel III (BCBS [2011]) en-
visioned not only more stringent regulation relative to Basel II, but also tighter regulation
for global systemically important banks (GSIBs) relative to the smaller banks. In designing
these standards, regulators faced two trade-offs, both of which I study in this paper. The
first relates to the extent by which regulation should be tightened, as also discussed in, for
example Van den Heuvel [2008] and Corbae and D’erasmo [2014]. The second relates to
size-dependence of regulation. If regulators impose relatively tighter regulation on smaller
banks, this might constrain their growth and end up benefiting larger banks, which could
be undesirable from a financial stability as well as competition perspective. Moreover,
if larger banks are allowed to assume higher leverage, they may become more prone to
failures, which can be systemically more costly. Figure 1 documents that failures of larger
banks incur bigger costs which are often borne by tax-payers, via the deposit insurance
framework for instance. Yet, constraining large banks might reduce overall financial in-
termediation, not least because of the scale economies banks might exhibit (see for e.g.

1In this paper, the term bank stands for any financial intermediary.
2Higher leverage may help gain from a tax shield on debt, but this aspect is not pursued here.
3This formulation is in the spirit of the Basel III leverage requirement, as opposed to the risk-weight

capital-ratio requirement.
4I measure bank size via capital. This measurement is of consequence only in the case of size-dependent

policy, and I follow this approach for mathematical convenience. An alternative approach where size is
measured via assets would lead to an equivalent result in terms of optimal policy.
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Figure 1: US savings and commercial banks: Log of net-worth versus log of estimated
losses during 1985 - 2014. Source: FDIC Historical Statistics on Banking, and Call and
Thrift Financial Reports. The net worth is as of the last regulatory filing by the bank
before its failure. The estimated loss is the amount of FDIC funds disbursed to meet the
shortfall in liabilities. In this sense, the estimated loss captures only the idiosyncratic as
opposed to systemic cost of bank failure.

Hughes and Mester [2013]). As a result of these trade-offs, the nature of optimal capital
regulation is not obvious ex-ante .

Model overview To this end, I develop a model of a dynamic and heterogeneous banking
sector embedded in a general equilibrium framework. Industry dynamics are modeled in
the spirit of Hopenhayn [1992], while leverage is introduced as a key driver. Banks are
financial intermediaries that accept deposits from households and purchase shares in firms
that operate a standard production technology to produce consumption goods. There is
no aggregate uncertainty, although banks receive independent shocks to the value of their
assets. A bank fails when its capital falls below zero, which can happen because of a
large shock, or because of high leverage ex-ante. New banks are free to enter the industry
upon paying a fixed cost, and receive a randomly drawn seed-capital. The representative
household supplies labor to the firms in return for wages, It also owns the banks, and
receives dividend income in return. The household saves via bank deposits that are fully
covered by a deposit insurance scheme. Deposit insurance rationalizes capital regulation
in the model by lowering the cost of funding for banks and inducing them to take more
leverage than what is optimal.

Calibration I focus on three aspects of dynamics in the US banking industry to discipline
my model. First is the annual failure rate of US savings and commercial banks (see left-
hand panel of figure 2). I target the mean failure rate during 1995-2007 as this period
exhibits fewer structural or regulatory changes in the industry.5 Second, I consider the
mean leverage of these banks, precisely because leverage is central to their business models

5For instance, the Riegle-Neal Interstate Banking and Branching Efficiency Act, which was implemented
in June 1997, but US states were already active in removing geographic limits to banking prior to 1995
(Jayaratne and Strahan [1997])
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Figure 2: Left-hand panel: Annual failure rate of US commercial and savings banks;
The shaded regions mark the two business cycle contractions that also featured financial
crises: (i) the savings and loan crisis of the 1990s and (ii) the great financial crisis of 2008;
Source: FDIC Historical Statistics on Banking. Center panel: Kernel density estimate of
the distribution of log capital. Right-hand panel: Log-normal fit to 2000Q4 data; Source:
FDIC Call and Thrift Financial Reports.

and dynamics. Third, I target the distribution of bank capital (see figure 2, center panel).
Even though the distribution is shifting to the right over time, distributions that are a few
years apart are not statistically significantly different based on the two-sample Kolmogorov-
Smirnov (KS) test. It is useful to note that the distributions are fairly well approximated,
based on the Kolmogorov-Smirnov Goodness of fit test, by a log-normal distribution (right-
hand panel).

Key Results The calibrated model generates a distribution of bank capital that is very
close to what is observed in the US data. In addition, the model provides useful insights
into how industry dynamics respond to a tightening in capital regulation. For one, the
bank failure rate is lower, which increases the mean age of banks. This produces a larger
mass of banks in the equilibrium. Relatedly, the distribution of bank capital shifts to the
right.

The analysis of counter-factual regulation using the calibrated model reveals that op-
timal size-independent regulation is tighter relative to the benchmark, and results in a
welfare gain of 4.05% in consumption equivalent terms. When size-dependent, regulation
is more stringent for larger banks, and the welfare gain is equal to 4.12%. Intuitively, an
overall tightening of regulation lowers the costs associated with industry turnover, which
more than compensates for the lower overall financial intermediation and final output. In
addition, when regulation is size-dependent, it leads to three welfare producing effects.
First, allowing small banks to assume more leverage enables them to grow faster, leading
to a growth effect. Second, although more leverage by small banks results in a higher fail-
ure rate among them, the failing banks are the less productive ones, leading to a cleansing
effect. Third, relative to small banks, large banks entail more correlated shocks per unit
asset, and are therefore, riskier. As such, tighter regulation lowers the overall riskiness of
banks’ assets, leading to a stabilization effect.
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Related Literature The first strand of literature to which this paper is related, aims to
understand how inefficiencies in the banking sector affect the real economy, and to identify
the tools regulators could use to address these inefficiencies. The key contribution of this
paper is to shed light on industry dynamics as a channel through which leverage can affect
aggregate output, consumption, and welfare. Few other papers have this feature. For one,
Corbae and D’erasmo [2014] develop a quantitative model of an imperfectly competitive
banking industry, taking aspects of the distribution as given. Dynamics in their paper
is driven by shocks to borrowers’ production technology, and the authors show how com-
petition between banks affects interest rates and thus borrowers’ lending and risk-taking
decisions. In contrast, I develop a stylized model of a competitive banking industry. This
delivers tractability, and also the ability to generate an empirically consistent distribu-
tion of bank capital. Moreover, because entry, exit and capital distribution respond to
regulation, I am able to study size-dependent policy.

With regards to size-independent policy, Covas and Driscoll [2014] consider capital and
liquidity regulation in a dynamic model of banking, to study their effect on loan supply,
output, and interest rates. In a related paper, Boissay and Collard [2016] show that capital
and liquidity requirement reinforce each other, and must be set relatively high. This leads
to welfare gains from more productive lending, despite lower aggregate supply of credit.
Nguyen [2014] studies the welfare implications of capital requirements in the presence of
moral hazard due to government bailouts. Christiano and Ikeda [2013] study the welfare
implications of leverage restrictions in a macroeconomic model with unobservable banker
effort. Begenau [2016] shows that higher capital requirements might actually increase bank
lending when households value safe and liquid assets, providing another rationale for tighter
regulation. Other papers on this topic, some of which also study time-varying regulation,
include Benes and Kumhof [2011], Zhu [2007], De Nicolo et al. [2014] and Christensen et al.
[2011].

Another strand of the literature of which this paper relates is one that focuses on em-
bedding meaningful financial sectors in macroeconomic models. For example, Gertler and
Kiyotaki [2010] and Gertler and Karadi [2011] develop a model in which financial frictions
arise due to a limited commitment issue, and use this model to study policy questions,
including unconventional monetary policy. Adrian and Boyarchenko [2012] use a value-at-
risk constraint to generate endogenous borrowing constraints that amplify financial shocks.
In contrast, the focus in this paper is on heterogeneity, and in exploring its implications
for macroeconomic aggregates and optimal policy.

This paper is naturally related to studies in industry dynamics. For example, Cooley
and Quadrini [2001], Clementi and Hopenhayn [2006], Albuquerque and Hopenhayn [2004]
and Miao [2005] study the theoretical implications of various forms of borrowing constraints
on firm dynamics, while Lang et al. [1996] for instance, looks at this issue from an empirical
side. But these studies focus on non-financial firms that exhibit lower balance sheet leverage
relative to banks (Kalemli-Ozcan et al. [2012]), making leverage a less important driver of
firm dynamics. In fact, as DeAngelo and Stulz [2013] show and Hanson et al. [2010] argue,
high leverage is at the core of banks’ business models, wherein obtaining cheap funding
is the optimal strategy to surviving the competition. In this spirit, I incorporate leverage
in this paper. Relatedly, focusing on the effect of industry dynamics on the real economy,
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Clementi and Palazzo [2015] show that after a positive aggregate productivity shock, the
number of entrants increases. The surviving entrants generate a wider and longer expansion
– thus amplifying the shock. Relatedly, in my paper, by allowing smaller banks to take on
more leverage, optimal regulation enables surviving entrants to grow faster.

The remainder of the paper is organized as follows. I present the model in Section
2, define the stationary equilibrium in Section 3, discuss the calibration and numerical
solution of the model in Section 4, and discuss the issue of optimal regulation in Section
5. Section 6 concludes. Proofs are in the appendix.

2 Model
Overview Time is discrete and the horizon is infinite. The model economy is populated
with a representative household, firms, capital producers, banks, and a government. The
household supplies labor and owns the banks. The production side of the economy has an
island setting – there is a continuum of islands, each with an atomistic firm and an atomistic
bank. Firms produce output using physical capital and labor. While firms own the physical
capital located on their respective islands, they rent labor in the national market. Shares
in the firm on a given island are owned by the bank located on that island. Banks are
financial intermediaries who fund themselves using own equity and household deposits in
order to purchase shares in the firm located on its island. There are no contracting frictions
between banks and firms – firms pledge all their profits to their shareholders.

There is no aggregate uncertainty, but physical capital is subject to island-specific
quality shocks. These shocks are uncorrelated across islands, and lead to an increase or
decrease in physical capital stock on each island. As such, these shocks affect firm output
and profitability, by extension, the value of its shares, and thus, the value of banks’ assets.
Banks grow, shrink, or fail and exit the industry depending on these shocks. New bank
are free to enter the industry upon payment of a fixed dead-weight cost. Upon entry,
they receive a random seed funding from the government. The government also runs a
deposit insurance scheme that it funds via lump-sum taxation on the household. And, it
sets capital regulation for banks. The sequence of events within a given time period is as
follows:

1. Quality shocks are realized on each island.

2. Firms produce output, and pay wages to the household and dividends to the banks.

3. The value of banks’ assets is determined. Banks that can pay their liabilities continue
to operate, while those that cannot, are considered failed. Their liabilities are covered
by the government.

4. New banks enter and the distribution of bank capital is determined.

5. All banks choose how much dividends to pay, and decide how much assets and lia-
bilities to assume for the next period. Households consume.
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Representative Household The representative household supplies one inelastic unit of
labor to the firms, and owns the banking sector. It maximizes utility subject to a budget
constraint:

max
Ct,Dt

E0

∞∑
t=0

βtu(Ct)

Ct +Dt = Wt + Et +Rt−1Dt−1 −Ot

where Ct is consumption, Dt is bank deposits, Rt is deposit interest rate, Wt is wages, Et
is dividends received from banks, and Ot is a lump-sum tax.

Firms The firm on a given island produces goods using labor that costs Wt, and using
the physical capital that it owns. I assume that firms across islands operate identical and
constant-returns-to-scale (CRS) production technologies. This assumption implies that
the distribution of capital across islands does not matter, so that aggregate output Yt can
be expressed as a function of aggregate capital Kt. This assumption, combined with the
fact that labor is hired nationally, also implies that the dividend rate Zt that firms pay
to their shareholders banks is the same across islands. Thus, the firms’ problems admit a
representative form:

max
Lt

Kα
t L

1−α
t −WtLt

Shares of the firm are held by the bank on the same island, and each share represents
claim to one unit of capital. Consequently, the price of a firm’s shares is equal to the price
of physical capital. The firm issues new shares to the bank on its own island to purchase
additional physical capital. The dividend rate is:

Zt = Yt −WtLt
Kt

, where Yt = Kα
t L

1−α
t .

Capital producers Firms purchase physical capital from capital producers. These enti-
ties are owned by the household. Moreover, they are identical and are perfectly competitive.
As such, they admit a representative form, and make zero profit in equilibrium. Capital
producers use one unit of numeraire good to produce one unit of physical capital, and
therefore, the price of physical capital in terms of the numeraire good is unity.

Banks The objective of an atomistic bank on island, say j, is to maximize the present
discounted value of the dividends ejt it pays to the household (In what follows, I omit island
specific indexing):

E0

∞∑
t=0

Λtet

where Λt – which equals the discounted ratio of inter-temporal marginal utilities of the
household – is the stochastic discount factor. The date-t decisions of a bank that wakes
up with capital nt include how much dividends to pay, how much assets st to hold, and
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how much deposits dt to raise, subject to cash-flow and capital regulation constraints:

nt + dt = et + st; (2.0.1)
xt = st

nt − et
≤ χ(nt). (2.0.2)

Here χ(nt) is the maximum post-dividend leverage xt the bank is allowed to assume. Note
that χ(nt) reflects the possibility that regulation is size-dependent. Bank capital evolves
as a result of retained earnings and losses that result from cash-inflows due to the bank’s
assets and cash-outflows due to the bank’s liabilities. While outflows in the next period
are pre-determined and equal Rtdt, inflows depend on the performance of the firm whose
shares the bank holds. Formally, the bank’s assets and firm’s end-of-period physical capital
are related as follows:

st =
(
it + (1− δ)kt

)
(2.0.3)

where it is investment and (1−δ) is the fraction of un-depreciated capital. Physical capital
evolves based on randomly distributed quality shocks ψt+1:

kt+1 =
(
it + (1− δ)kt

)
ψt+1 (2.0.4)

and so does the value of bank assets. As such, the bank’s net cash-flow in the subsequent
period, which is also its new capital, is given as follows:

nt+1 = H
(
max

(
0, (Zt+1 + 1− δ)ψt+1st︸ ︷︷ ︸

inflow

− Rtdt︸ ︷︷ ︸
outflow

))
(2.0.5)

The H operator represents the bank’s technology, which I assume exhibits decreasing
returns to scale.6 The max operator denotes the fact that when net cash flow is negative,
the bank fails and exits the market. For brevity, let (Zt+1 + 1 − δ) = Rk

t+1 denote the
expected return on bank assets. Then the shock cutoff for bank failure equals:

ψ∗t+1 = Rtdt
Rk
t+1st

A failed bank’s assets are liquidated by the government, which covers any shortfall in its
liabilities. Liquidated assets are purchased by other banks, including entrants.

Recursive formulation Given aggregate certainty, it is feasible to assert that all ag-
gregates stay constant despite idiosyncratic uncertainty, and verify this assertion later.
Accordingly, the recursive problem of a bank with capital n can be written as follows:

6The bank’s technology H can be motivated based on the ’span of control’ theory discussed in Lucas Jr
[1978]. This theory points to the increasingly limited ability of a manager to operate the bank at larger
scales. For banks, this motivation is particularly relevant because larger banks operate in more diversified
and complicated financial markets, making the CEO’s job harder, and therefore, potentially resulting in
decreasing returns to scale.
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V (n) = max
s,d,e

(
e+ Λ

∫
ψ∗
V (n′)f(ψ′)dψ′

)

n′ = H
(
Rkψ′s−Rd

)
n+ d = s+ e

0 ≤ s ≤ χ(n)(n− e)

0 ≤ e ≤ n

0 ≤ d

Here, V is the value function of the bank, and f(.) is the density function of the quality
shocks (with the corresponding cumulative distribution function F (.)). Note that the
integral captures the fact that if ψ′ is smaller than ψ∗, then the bank fails. We assume
that bank owners have limited liability, so that they are allowed to simply walk away
from the failed bank with zero continuation value. We also assume that bank cannot issue
debt to pay dividends, which implies that dividends cannot exceed the bank’s capital. In
Appendix 7.1, I prove the following proposition.
Proposition 1. If H is concave and bounded, then there exists a unique value function V
that solves the bank’s problem.

The decision trade-offs the bank faces are as follows. A ceteris paribus increase in
dividends e increases the current payoff for share holders, but reduces n′ and thus decreases
future payoff. A similar increase in leverage increases the expected future payoff, but also
increases its variance. Moreover, the following proposition holds, which I prove in Appendix
7.2.
Proposition 2. Bank failure probability is increasing in leverage.

Given these trade-offs, we find that larger banks assume more leverage: x′(n) ≥ 0. This
is because for larger banks, variance in future cash-flows is less costly due to diminishing
marginal returns. As such, the benefit of higher return that more leverage brings, dominates
the downside from greater variance. Larger banks also pay higher dividends: e′(n) ≥ 0.
This is also because diminishing marginal returns. For larger banks, the value of retained
earnings is smaller, and thus paying out more dividends is optimal.

Entrants Each period, there is an infinite mass of new banks that compete to enter
the market. Entrants pay a fixed cost ce to enter the industry, after which they obtain a
randomly distributed seed capital ne ∼ G(.) from the government. Expected value after
entry is given as:

EV e =
∫
V (ne)dG(ne) (2.0.6)

A potential entrant enters the market if and only if EV e − ce ≥ 0. However, free entry
implies that the net value of entry cannot be positive, otherwise an infinite mass of entrants
would enter the market, implying: EV e − ce ≤ 0. Together, these conditions imply that if
the mass Mt of entrants is strictly positive, it must be that EV e = ce.
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Distribution of bank capital In the recursive formulation of the bank’s problem, let
n ∈ N = [0, n̄] be the state space, where n be an upper bound of N (see Appendix 7.1).
Also let (s, d) : N → R2

+ be the policy functions. Let the distribution of bank capital in
the middle of a period – i.e. after bank entry and exit have occurred but before period
decisions have been made – be given by µt. Specifically, let µt(N) denote the date-t mass
of banks with capital 0 ≤ n ≤ N . Then the evolution of µt is given as follows:

µt+1(N) = Mt+1

∫ N

0
dG(ne)+

∫ n̄

0

∫ ψ

ψ
1

[
0 ≤ H

(
Rkψ′s(n)−Rd(n)

)
≤ N

]
f(ψ′)dψ′


︸ ︷︷ ︸

W (n,N)

dµt(n)

The first term captures the mass Mt+1 of entrant banks that enter during period (t+1)
and have start-up capital less then N . The second term represents the flow of incumbent
banks into the [0, N ] subset of the state space, net of those which fail. As shown, the
integrand can be denoted concisely using a transition function W (n,N) that denotes the
probability of transition from point n on date t to subset [0, N ] on date t+ 1. Formally, it
maps N × B(N )→ R+, where B(N ) is the set of Borel subsets of N .

I will later establish the existence of an invariant distribution of bank capital. For that,
it is useful to express the evolution of bank capital distribution in terms of an operator T:
µt+1 = T (µt,Mt+1), and show that T admits the following property (see Appendix 7.3 for
a proof).

Proposition 3. T is linearly homogeneous in (µ,M), that is:

µM = T (µM ,M) =⇒ M ′µM/M = T (M ′µM/M,M ′).

The key to linear homogeneity is that the failure rate of banks does not change with
the mass of entrants. As such, when the mass of entrants increases for a given steady state
distribution, the mass of incumbents must increase in a way that the mass of failing banks
matches the mass of entrants.

3 Stationary Equilibrium
Since there is no aggregate uncertainty, an equilibrium where aggregates such as total
output, total physical capital stock, and bank capital distribution are time-invariant, can
exist. I refer to such an equilibrium as the stationary equilibrium (SE), define it below,
and later show that it exists.

Definition An SE consists of (i) bank value function V (n), (ii) bank policy functions
s(n), d(n), e(n), (iii) bank capital distribution µ(n), (iv) entrant mass M , (v) aggregates
namely consumption C, physical capital K, deposits D, labor L, investment I, Taxes T ,
and bank dividends E, (vi) prices namely wages W , interest rate R, and firm dividend rate
Z, and (vii) the stochastic discount factor Λ such that:
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1. V (n), s(n), d(n) and e(n) solve the bank’s problem given prices and Λ;

2. Free entry condition is satisfied: EV e ≤ ce; with equality if M > 0;

3. Labor market clears at wage rate W : L = 1;

4. Deposit market clears at interest rate R:∫ n̄

0
d(n)dµ(n) = D;

5. Capital market clears:
∫ n̄

0

(∫ ψ

ψ
ψ′f(ψ′)dψ′

)
s(n)dµ(n) = K;

6. Goods market clears:

Output: Y = KαL1−α = C + I +Mce + co;

Consumption: C = E +W + (R− 1)D −O;

Dividends: E =
∫ n̄

0
e(n)dµ(n);

Investment: I = S − (1− δ)K;

Bank Assets: S =
∫ n̄

0
s(n)dµ(n)

and where co is the loss in output due to bank managers’ limited span of control:

co =
∫ n̄

0

(∫ ψ

ψ

[(
Rkψ′s(n)−Rd(n)

)
−H

(
Rkψ′s(n)−Rd(n)

)]
f(ψ′)dψ′

)
dµ(n);

7. The distribution of bank capital is the unique fixed point of the distribution evolution
operator T given entrant mass M :

µ = T (µ,M)

8. Government’s budget constraint is satisfied:

O = Mce +M
∫ n̄

0
dG(ne) +

∫ n̄

0

(∫ ψ

ψ

(
min

(
0, Rkψ′s−Rd

))
f(ψ′)dψ′

)
dµ(n)

where the first term represents the cost of entry that the government bears on behalf
of the entrants, the second term represents the total seed funding the government
provides to the entrants, and the last term represents the shortfall in liabilities of
failed banks that the government covers.
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Parameters (value set individually) Symbol Value
Discount factor β 0.96
Capital income share α 0.36
Capital depreciation rate δ 0.025
Benchmark regulation χ̂ 33
Expected value of quality shocks µψ 1
Expected value of seed funding µn 1
Parameters (value set jointly using MM) Symbol Value
Span of control A 47.0361
Span of control B -3.0635
S.t.d. of quality shocks σψ 0.0492
S.t.d. of seed funding σn 0.4238
Cost of entry ce 8.2630
Moments Data Model
Interest income to asset ratio 0.0630 0.0530
Failure rate 0.0020 0.0310
Leverage 9.0909 10.301
Consumption to output ratio 0.6973 0.8387
KS distance between observed and model distribution 0 0.0309

Table 1: Summary of parameter values (first two blocks), and a comparison of data mo-
ments and model implies moments (third block). KS = Kolmogorov-Smirnov (KS) distance
between the model and data implied cumulative distribution functions.

Solution strategy I show that an SE with positive entry exists by first solving for such
an SE and then verifying that the equilibrium conditions are satisfied. The first step is to
solve the bank’s problem, for which I need R∗, Λ∗, and Z∗. R∗ can be pinned down from
the household’s first-order conditions, which imply that R∗ = 1/β since C is time-invariant
in an SE. This also implies that Λ∗ = β. To find Z∗, I use the free entry condition (2.0.6).
Basically, I assume a value of Z∗, use it to solve the bank’s problem, and check if the free
entry condition is satisfied. If not, I adjust Z∗ and repeat the previous steps. The following
proposition, which is proved in Appendix 7.4, ensures that this approach converges to the
equilibrium Z∗.

Proposition 4. Given an entry cost ce > E[ne], equilibrium firm dividend rate Z∗ is
uniquely determined.

Once Z∗ is known, I solve the bank’s problem and obtain the policy functions. Then, to
compute K∗, I proceed as follows. First note from the firm’s first order condition, labor
demand L∗ is given as:

L∗ =
(

(1− α)
W ∗

)1/α

K∗ (3.0.7)
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Figure 3: Distribution of bank capital.

Therefore, firm dividends are given as:

Z∗ = Y ∗ −W ∗L∗

K∗
= αY ∗

K∗
= α

(
L∗

K∗

)1−α
=⇒ K∗ =

(
α

Z∗

)1/1−α
L∗ (3.0.8)

Since the labor market clearing condition implies L∗ = 1, K∗ is obtained using (3.0.8), and
subsequently, W ∗ is calculated using (3.0.7).

Next, I compute the invariant distribution µ and the entrant mass M . To calculate
the equilibrium distribution µ∗ and equilibrium entrant mass M∗, I use the capital market
clearing condition as follows. I ‘scale’ µ∗ such that aggregate bank assets corresponding
to the ‘scaled’ distribution sum up to the total physical capital K∗. The scaling factor
equals M∗/M , precisely because of the linear homogeneity property of µ. Intuitively, if
there are too many (few) entrants in the equilibrium, mass of incumbents is proportionally
larger (smaller), and so is the aggregate amount of bank shares relative to K∗. Since the
aggregate amount of bank shares is monotonically increasing in the mass of entrants, it
follows from the Intermediate Value Theorem that there does exist a mass of entrants that
clears the capital market. Finally, assuming Eψ = 1 implies I∗ = δK∗. Subsequently, I
compute all the equilibrium quantities using the conditions listed in the definition of SE,
except the goods market clearing condition. By Walras’ law, this condition is not needed
when solving the equilibrium quantities – as such, it offers a suitable test of the validity of
the solution obtained.

4 Calibration
I divide the model parameters into two sets. For parameters in the first block in Table 1, I
set their values individually based on the literature. The discount factor β is set such that
annual risk free interest rate is close to 4%. Firm production function parameter α is set
such that the income share of physical capital equals 0.36. I set the depreciation rate δ to
a value of 0.025, which is common in the macroeconomic literature. I set the benchmark
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Figure 4: Examples of capital regulation profiles considered.

capital regulation as χ(n) ≡ χ̂ = 33, in line with the Basel III minimum leverage-ratio
requirement of 3%.

With regards to functions used in the model, I assume that households have a log
utility, and that the span of control H has the following form: H(n) = A(1 − e−n/(A+B)).
The capital quality shock is assumed to be normally distributed with mean µψ = 1 and
standard deviation σψ. The distribution of seed capital for entrants is assumed to be
log-normally distributed with mean µn = 1 and standard deviation σn.7 The unknown
parameters herein, along with ce, are denoted by P = (A,B, σψ, σn, ce) (second block in
Table 1), and are calibrated jointly using the method of moments (MM).

For the MM, I begin with a guess for P , and compute the corresponding SE. Based
on this SE, I compute the values of the target moments listed in the third block in Table
1, and compare with their estimates in data. The idea is to find a set of parameters P∗
that minimizes the Euclidean distance between model and data moment vectors.8 Note
that the fifth ‘moment’ nests several of them since the target is a cumulative distribution
function. In this sense, the estimation of parameters in P is over-identified, and the model
moments may not exactly match the data moments.

Empirical estimates of the moments are based on data on US commercial and savings
banks. This data is sourced from: (a) the FDIC Call and Thrift Financial (CTR) reports,
(b) the FDIC failed banks list, (c) FDIC Historical Statistics on Banking (HSOB) reports,
and (d) S&P Global SNL database. In addition, I source US macroeconomic aggregates
from the Federal Reserve Economic Database (FRED). As motivated in the introduction, I
focus on 1995-2007 as the calibration period, while assuming that one period in the model
corresponds to an year in the data. For interest-income to asset ratio, failure rate, and
leverage, I compute the mean during 1995-2007, while for the ratio of personal consumption
expenditure to GDP, and for the distribution of bank capital, I use data as of the start
and end of 2007, respectively.

7Normalizing µψ and µn to unity is a simplifying assumption. While the former would simply scale Z∗,
the latter would scale the distribution.

8For this part, I use the Nelder-Mead simplex optimization algorithm which is available via the fmin-
search function in MATLAB.
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Figure 5: Response in bank capital distribution and macroeconomic aggregates due to
changes in size-independent regulation.

Numerical solution Since analytical solution of the bank’s problem is not possible given
the heterogeneity involved, I use numerical methods. For the bank’s problem, I use value
function iteration. The state space for n has 576 log-spaced grid points in [0.01, 50]. I
use linear interpolation to evaluate the value function at off-grid points. To obtain the
invariant distribution of bank capital, I construct the transition matrix using the banks’
policy functions, and compute the corresponding ergodic distribution. To handle entry
and exit, I introduce a dump state in the transition matrix – a failing bank would enter
the dump state from the actual state space, while an entrant would leave the dump state
to enter the actual state space. This approach works precisely because in the stationary
equilibrium, the mass of entrants equals the mass of failures, implying that the mass of
banks in the dump state equals the mass of entrants (or failures). In Figure 3, I compare
the model generated capital distribution with that in data. The comparison shows that
the model is able to closely match the distribution observed in data. Other aspects of
the numerical solution, such as the banks’ value and policy functions, are presented in
Appendix 7.5.

5 Optimal capital regulation
The rationale for capital regulation in this model is deposit insurance. Deposit insurance
drives down the cost of deposit based funding for banks, and induces them to take more
leverage than what is socially optimal. Thus far, I took capital regulation to be given ex-
ogenously, and to be the same for banks of different sizes. In this section, I characterize the
capital regulation that maximizes social welfare, while considering both size-independent
and size-dependent policies. I restrict attention to continuous, differentiable and mono-
tonic functions χ(n) that satisfy the following conditions: χ(n) ≥ 1, limn→n χ

′(n) = 0.
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Figure 6: For size-independent policy, I consider a one-dimensional grid for the level of
regulation (left-hand panel). For size-dependent policy, I consider a two-dimensional grid
for (χ0, χl) (center panel). Each point on this grid represents a specific capital regulation
χ(n) as per equation (5.0.9).

Given that leverage cannot be less than 1, the first condition rules out absurd regulations.
The second condition ensures that regulation does not diverge to +∞ or −∞.

For size-dependent regulation, I assume that χ(n) is of the quadratic form: χ(n) =
χ0 + χ1n+ χ2n

2.9 Note that although a quadratic function is generally described by three
parameters, the limiting condition on the slope of χ(n) at n bring down the number of free
parameters by one. Thus, χ(n) can be expressed in terms of regulation χ0 for the smallest
banks, and regulation χ

l for the limiting size banks, as follows:

χ(n) = (χ0 − χl)
(
n/n

)2
− 2(χ0 − χl)

(
n/n

)
+ χ0. (5.0.9)

Examples of valid regulation functions χ(n) are given in Figure 4. Before posing the
optimal regulation problem, to gain intuition, I discuss how banks in particular and the
economy in general respond to changes in regulation around the benchmark.

Bank policy choices and capital distribution: As capital regulation tightens, overall, banks
shrink their assets and liabilities. At the same time, they pay lower dividends to house-
holds. The distribution of bank capital shifts to the right (see Figure 5, top left-hand
panel). This is driven in part by the lower failure rate (top center panel), which follows
from the lower leverage banks assume. A lower failure rate drives up the mass of incumbent
banks (top right-hand panel).

Macroeconomic aggregates: As capital regulation tightens, overall, banks are able to in-
termediate less. The physical capital stock shrinks, and so does total output (bottom
left-hand panel). Yet, household consumption increases (bottom center panel). This in-

9I rule out more complicated regulation functions as optimizing over a richer class of of functions is a
higher dimensional problem that is more difficult to handle computationally. Moreover, the choice of the
quadratic form is not restrictive. This is because the Weierstrass Approximation Theorem implies that
quadratic functions are dense in the space of bounded, differentiable and continuous functions on a closed
set.
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Figure 7: Optimal regulation and corresponding bank capital distribution.

crease is primarily driven by the lower need for funding entrants (there is less entry and
exit, as discussed above), and the lower shortfall in the liabilities of failing banks – both
of which reduce the tax bill on households (bottom right-hand panel).

Welfare I assume that the regulator is benevolent, and cares about the household’s
welfare in the stationary equilibrium. As such, the regulator chooses χ(n) in order to
maximize the lifetime utility of the representative household:

max
χ(n)

u(C)
(1− β)

Size-independent regulation: The optimal is tighter relative to the benchmark. While
maximising welfare on a grid of potential capital requirements, I find that welfare is max-
imized when χ(n) = 26 (see Figure 6, left-hand panel).10 While not directly comparable,
this result points in the same direction (which is that of tightening) as that proposed in
other studies, including Admati and Hellwig [2014], Begenau [2016], and Nguyen [2014].

Size-dependent regulation: The optimal χ(n) in this case imposes a capital requirement
of χ∗0 = 33 for the smallest banks and of χ∗l = 25 for the largest banks, while varying
monotonically for banks of intermediate sizes. Welfare as a function of regulation is shown
in Figure 6 (right-hand panel), while the optimal regulation is plotted in the left-hand
panel in Figure 7. This result reinforces the higher capital surcharges for larger, systemi-
cally important banks a’la the Basel III GSIB framework. In Figure 7, right-hand panel,
I document the capital distribution under the optimal (size-dependent) capital regulation
regime. The key insight is that optimal regulation leads to a larger mass of better capital-
ized banks, while the tail of the distribution is lighter. Below I provide intuition for the
channels through which size-dependent capital regulation generates welfare gains.

10I work with a coarse instead of a fine grid because of computational constraints. The discontinuity
in the welfare profile follows from the fact that when regulation tightens beyond a certain point, there is
a substantial shift in the bindingness of the regulatory constraint for banks. Specifically, at this point,
regulation induces a large fraction of the banks to delever substantially.
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Channels of welfare gain The intuition for why the optimum regulation is tighter rel-
ative to the benchmark, is two-fold. First, the dead-weight costs associated with industry
turnover is lower as tighter regulation leads to less levered banks that fail less often and ne-
cessitate lower entry. This saving more than compensates for the lower bank intermediation
and thus lower overall output that tighter regulation entails. Second, tighter regulation
increases the mass of banks in the stationary equilibrium, and also pushes the distribution
of bank capital to the right. As a result, even though each bank is more constrained, there
are more banks, and with more capital on an average.

The intuition for why the optimum regulation is tighter for large banks relative to small
banks, is three-fold. First, by allowing the small banks to assume more leverage, they fail
more often. However, the mean shock that fails these banks is lower compared to the mean
shock entrant banks receive, which is unity. Formally, the mean shock of failed banks is
given as:

∫ n

0

(∫ ψ∗(n)

ψ
ψ′f(ψ′)dψ′

)
dµ(n)

/∫ n

0

(∫ ψ∗(n)

ψ
f(ψ′)dψ′

)
dµ(n) (5.0.10)

Assuming that bank failure probability is less than half for all banks – a reasonable as-
sumption given the calibration – implies that ψ∗(n) < 1 ∀n, which then leads to the claim
given (5.0.10). In this sense, there is a cleansing of the less productive banks. Second, by
allowing the smaller banks to take on more leverage, the regulator allows them to grow
faster conditional on survival. Naturally, more small banks end up failing this way, but
their failure is less costly. Finally, large banks are not born as such – smaller banks become
large by growing over time, but in the process, incur a dead-weight loss in each period due
to the limited managerial span of control. As such, large bank failures are more costly for
tax-payers, and tighter regulation that reduces their probability of failure generates welfare
gains.

Welfare gain in consumption equivalent terms The gain in welfare from impos-
ing regulation can be expressed in terms of consumption equivalence. Let A denote the
benchmark regime and let B denote the optimal regime. Then welfare gain in consump-
tion equivalent (CE) units is defined as the fractional increase ωU in consumption that the
household would receive should it live in the optimal regime forever:

u
(
(1 + ωU)CA

)
(1− β) =

u
(
CB

)
(1− β)

The lifetime welfare gain in CE terms from the optimal size-independent regulation is
4.05%, while that from the optimal size-dependent regulation is 4.12%. To gauge these
magnitudes, I compare them to the estimated lifetime cost of the Great Financial Crisis
(GFC) which, according to Luttrell et al. [2013] for instance, is in the range of 40 − 90%
of US GDP. Assuming that capital regulation can play a role in avoiding crises, a back of
the envelope calculation suggests that capital requirements can reduce the lifetime cost of
future crises by somewhere between 4− 10%.
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6 Conclusion
I provide a general equilibrium framework for studying the response of a dynamic and
heterogeneous banking industry to changes in regulation. A key feature of the framework
is that industry dynamics such the entry rate, the exit rate, and the size distribution of
banks are determined endogenously. Despite being tractable, I show that the calibrated
version of the model is able to match closely the observed distribution of bank capital in
the US.

Another key feature of the framework is that there is an explicit rationale for capital
regulation, which allows for a meaningful welfare analysis, and permits a characterization
of optimal regulation, including size-dependent regulation. As such, the model provides a
basis for the appraisal of size-dependent policies, such as the GSIB framework that imposes
tighter regulation on large and systemically important banks. Quantitatively, the results
suggest that there may be room for a general tightening of capital requirements relative
to the levels envisioned under Basel III. This is in line with empirical research reported by
Fender and Lewrick [2016].

The paper contributes to the literature by being one of the few papers to develop
a model of a heterogeneous banking industry in order to study size-dependent policy.
In addition, as opposed to the firm dynamics literature where the dynamics is generally
driven by an exogenous process, this paper introduces leverage – which is central to banks’
business models – as the key driver.

The model can be useful for addressing important questions of theoretical as well as
policy interest. For one, it is possible to allow banks to choose the riskiness of its assets –
this would not only make the bank’s problem more realistic, but also facilitate the study
of an interplay between risk-insensitive and risk-sensitive regulations, such as leverage and
value-at-risk constraints, respectively. It is also possible to study anti-trust policies in
this framework, and relatedly, characterize the optimal size-distribution of banks from a
competition as well as sectoral efficiency perspective. This, I believe, is a fundamental
question, one that has become particularly relevant for policy-makers in current times as
the financial sector is becoming more concentrated in certain dimensions, not least because
of the advent of financial-technology (FinTech) companies.
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7 Appendix

7.1 Proof of proposition 1
Proof. I follow Stokey [1989] to prove that a unique value function exists. I reproduce
the bank’s problem below, while assuming that the economy is already in a stationary
equilibrium so that Λ = β, R = 1/β, and Rk = Z + 1− δ are time-invariant.

V (n) = max
s,d,e

(
e+ β

∫
ψ∗
V (n′)f(ψ′)dψ′

)

n′ = H
(
Rkψ′s−Rd

)
n+ d = s+ e

0 ≤ s ≤ χ(n)(n− e); 0 ≤ e ≤ n; 0 ≤ d.

I begin by noting that when the reward function in a Bellman equation is unbounded,
existence of a fixed point of the Bellman operator is not guaranteed. The bank’s problem
above is subject to this issue because the dividend payment e is unbounded per-se. However,
if I can show that the state space is bounded, then since dividends cannot exceed capital
(e ≤ n), the reward function would, in effect, be bounded. This can be achieved by
assuming that H is bounded above by, say n, that is, H(n) ≤ n, ∀ n ≥ 0.

Next, I verify the Blackwell sufficient conditions (BSC) to conclude that the Bellman
operator is a contraction mapping. To this end, let N be the state space, let C be the class
of continuous functions on N , and define the Bellman operator for q ∈ C as:

Q(q(n)) = max
s,d,e

(
e+ β

∫
ψ∗
q(n′)f(ψ′)dψ′

)

subject to the constraints listed above. The first BSC is regarding the Monotonicity prop-
erty of Q:

∀ l, q ∈ C s.t. l(x) ≤ q(x) ∀x ∈ N =⇒ Q(l(x)) ≤ Q(q(x)) ∀x ∈ N

To show this, consider l(x) ≤ q(x) ∀x ∈ χ. Let (sl, dl, el) and (sq, dq, eq) be the maximands
of Q(l(n)) and Q(q(n)) respectively for n ∈ N . Since the feasibility set for the maximands
does not depend on l or q, (sl, dl, el) is a feasible point for the Bellman operator on q at n.
But this implies that:

Q(l(n)) =
(
e+ β

∫
ψ∗
l(n′)f(ψ′)dψ′

)∣∣∣∣∣
at (sl,dl,el)

≤
(
e+ β

∫
ψ∗
q(n′)f(ψ′)dψ′

)∣∣∣∣∣
at (sl,dl,el)

≤

(
e+ β

∫
ψ∗
q(n′)f(ψ′)dψ′

)∣∣∣∣∣
at (sq ,dq ,eq)

= Q(q(n))
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The second BSC is regarding the Discounting property of Q:

∃∆ ∈ (0, 1) s.t. ∀q ∈ C, ∀a ≥ 0, ∀x ∈ N =⇒ Q(q(x) + a) ≤ Q(q(x)) + ∆a

The left-hand-side of the last inequality is given as:

Q(q(x) + a) = max
s,d,e

(
e+ β

∫
ψ∗

(
q(n′) + a

)
f(ψ′)dψ′

)

≤ Q(q(x)) + max
s,d,e

(
e+ β

∫
ψ∗
af(ψ′)dψ′

)
The inequality follows from the fact that a maximization of the sum of two or more func-
tions cannot be greater than the sum of the maximized values of the individual functions
(Principle of the Maximum). In the second maximization, choosing e = 0, d = 0, s = n,
which is a feasible choice, results in ψ∗ = 0, which in turn implies that the second term is
equal to βa. Since 0 < β < 1, this verifies the second BSC.

The verification of the BSCs implies that there exists a unique fixed point of the Bellman
operator. As such, I can use value function iteration to obtain an arbitrarily close estimate
of the value function. �

7.2 Proof of proposition 2
Proof. The failure probability of a bank with capital n is given as:

p(n) =
∫ ψ∗

ψ
f(ψ′)dψ′

The failure cutoff ψ∗ = Rd/Rks = R(s+ e−n)/Rks = R/Rk−R(n− e)/Rks = R/Rk(1−
1/x). It then follows trivially that the cutoff is increasing in leverage x. �

7.3 Proof of proposition 3
Proof. Let µM be the stationary distribution corresponding to M : µM = T (µM ,M). Then,

µM(N) = M
∫ N

0
dG(ne) +

∫ n̄

0
W (n,N)dµM(n)

Multiplying both sides by M ′/M gives the following

µM(N)M
′

M
= M ′

∫ N

0
dG(ne) +

∫ n̄

0
W (n,N)dµM(n)M

′

M

Interpreting
[
M ′µM

M

]
as the new measure implies the proposition. �
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Figure 8: Bank value and policy functions.

7.4 Proof of proposition 4
Proof. An application of the envelope theorem to the Bellman equation in the bank’s
problem implies that V (n;Z) is strictly increasing in Z. Define g(Z) as:

g(Z) =
∫ n

0
V (ne;Z)dG(ne)

which is the expected value of entry as a function of Z. Then

∂V (n;Z)
∂Z

> 0 =⇒ dg(Z)
dZ

> 0.

Now,
Z → 0 =⇒ V (ne;Z)→ ne =⇒ g(Z)→

∫ n

0
nedG(ne) = E[ne].

In addition, Z → ∞ =⇒ g(Z) → ∞. Then, by the intermediate value theorem ∃ Z∗ 3
g(Z∗) = ce. �

7.5 Bank value and policy functions
In Figure 8, I plot the banks’ value and policy functions in terms of their capital n.
The value function V is (weakly) concave and increasing in n. The post-dividend value
function U , defined as the optimized value of the bank after dividends have been paid
but before asset and liabilities have been chosen, is (strictly) concave and increasing in n.
Dividends exhibit a phase shift: when n is low, banks do not pay any dividend, while pay
an increasingly larger fraction of their capital as dividends thereafter. Assets, deposits, and
leverage are increasing in n, and also exhibit phase shifts: when n is low, banks maintain
a leverage that is below the maximum allowed limit, but when n is high, banks operate at
the maximum limit.
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