
Uncertain Technology

Xiaohan Ma∗ Roberto Samaniego†

October 25, 2018

Abstract

We develop a general equilibrium business cycle model with imperfectly observed neutral and

investment-specific technology shocks. Agents are uncertain about the level of each, and learn from

noisy signals. Estimated to match US macroeconomic dynamics, the model implies that neutral

technology shocks generate more volatile responses than in an environment with perfect information,

whereas investment-specific shocks have more persistent and less volatile impact. Noise in the signals

also alters agents’behavior persistently, even when the underlying fundamentals are unchanged and

the noise itself is not persistent. Implications for business cycle analysis are explored.
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1 Introduction

Business cycle research tends to assume that economic fundamentals evolve according to stochastic processes,

but that their current values are correctly observed. The objective of this paper is to explore business cycle

dynamics in an environment where the values of current fundamentals are observed only with noise.

In particular, business cycle research finds that, in addition to the neutral productivity shocks intro-

duced in Kydland and Prescott (1982), investment specific productivity shocks are important drivers of

macroeconomic dynamics.1 This work generally assumes that the value of investment-specific productivity

at any given date is known with certainty. However, there are reasons to believe that the presence of

investment specific technological change (ISTC) introduces uncertainty about economic fundamentals into

the economic environment. The ISTC-uncertainty link has not been explicitly addressed in the literature,

yet the link is evident: consider the disagreements about how to measure the rate of ISTC or about how

to measure the contribution of ISTC to growth among key references such as Hulten (1992), Greenwood

et al (1997), Cummins and Violante (2002) and Whelan (2003).

If there is uncertainty about the extent of ISTC at any given point in time, agents will have to learn

about the quality of the capital they use. For example, when the author editing this paragraph bought

the Lenovo T560 on which these words were first typed, he had a rough idea of the quality of the machine

and its software, based on product descriptions and reviews, but could only begin to have a more precise

idea through use. If there are other imperfectly observed fundamentals as well, observed output will not

be a suffi cient statistic for current ISTC. Thus, the idea of uncertain ISTC raises a more general question

about business cycle models: can uncertainty about current economic fundamentals (such as ISTC) affect

the response of the economy to changes in those fundamentals?

To answer this question, this paper introduces the notion that ISTC is linked to uncertainty about

current fundamentals, and studies the implications of this uncertainty in an otherwise standard business

cycle model. We find that technological uncertainty of this kind has important implications for macroeco-

nomic dynamics. In addition, we find that introducing technological uncertainty can resolve the well-known

"curse" of Barro and King (1984).

To begin, we provide suggestive evidence of the link between uncertainty and ISTC by exploiting the

fact that ISTC is well known to vary across industries.2 We empirically test whether popular measures

of time-varying aggregate uncertainty from the macroeconomic literature are related to measures of un-

certainty particularly in industries with high rates of ISTC. We measure industry uncertainty using the

realized forecast errors of analysts predicting firm-level earnings-to-share ratios twelve months ahead, as

reported in the I/B/E/S database. Using a difference in differences specification, we indeed find that

1See for example Greenwood, Hercowitz and Krusell (2000), Fisher (2006) and Justiniano, Primiceri and Tambalotti
(2010).

2See Cummins and Violante (2002) and Samaniego (2010) inter alia.
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high macroeconomic uncertainty is related to analysts making disproportionately larger forecast errors for

firms in industries with high rate of ISTC compared to other industries, implying that there is uncertainty

particularly associated with ISTC.

We then develop a model where economic agents never perfectly observe the values of the fundamentals

of the economy, which are investment specific productivity shocks and neutral productivity shocks. We

use this specification for several reasons. First, these shocks are known to be important fundamentals

that drive the business cycle, and as shown by the empirical evidence, investment specific technological

change is related to uncertainty. Second, there must be at least two uncertain fundamentals for agents to

be unable to infer their values based on observed output. If there were only neutral technology shocks,

for example, GDP would be a suffi cient statistic for the unseen level of productivity. On the other hand,

when there is uncertainty regarding current and past values of investment specific productivity, we show

that the capital stock measured in effi ciency units is also unknown, which implies that GDP is no longer a

suffi cient statistic for either of the fundamentals. To our knowledge, this is the first paper to observe that

uncertainty about the nature of technology can lead to uncertainty about the capital stock, and the first

paper to explore the implications of such uncertainty for economic dynamics. In addition, the fact that

the level of ISTC at any given date is learned about slowly introduces a trade-off between learning more

about the current capital stock and investing in new capital of uncertain quality —a dynamic consideration

that can only be studied in a model with fundamental uncertainty of this kind.

Since agents do not observe the values of economic fundamentals at any given point in time, their

behavior is guided instead by their beliefs regarding fundamentals, and these beliefs change over time

based on noisy signals the agents receive. One such signal is the observed value of GDP. The other is a

noisy signal of the value of investment specific technological change (ISTC), which is revealed when agents

operate the aggregate production technology to produce GDP. This signal is a function of the actual value

of ISTC and a stochastic noise term which itself may lead to fluctuations in investment and output even

if fundamentals remain unchanged. Since this noise represents a signal that fundamentals have changed

when in fact they have not, we call it a noise shock or a "fake news" shock.

The model is diffi cult to solve. Agents’beliefs about fundamentals are continuous functions, and these

beliefs are state variables of the economy.3 Moreover, these beliefs will not all have analytically tractable

expressions. However, we show that agent beliefs approximately follow a multivariate Gauss-Markov

process after linearization. In addition, the discrepancy between agents’expectations of the unobservables

and their actual values follows a reduced VAR system. Based on this VAR system we demonstrate that the

extent of uncertainty (the variance of agent beliefs about fundamentals) settles down to a constant. Also, in

the absence of noise shocks, beliefs converge to the correct values of the uncertain economic fundamentals

3The learning rule in our paper is similar to that in Sargent and Williams (2005) where Bayesian updating through the
Kalman filter is studied. The process of signal extraction is similar to that introduced in Edge, Laubach, and Williams (2007)
where agents are confused between shocks to the level or to the growth rate of the technology.

3



asymptotically.

Using this approximation strategy, we deliver several analytical results. First, a shock to any of the

fundamentals or a noise shock generates uncertainty about all fundamentals in subsequent periods. This

is because the impact of any change in information or any change in output cannot be attributed with

certainty to any particular source. Second, if there is uncertainty about the value of any particular

fundamental at a given point in time, in subsequent periods uncertainty will spread to all fundamentals, for

the same reason: agents cannot attribute observed macroeconomic outcomes to any particular fundamental.

Third, a "fake news" or noise shock has a persistent impact on beliefs, and hence on behavior, even if the

shock itself is not persistent. Thus, the presence of noise in the economic environment is a potential source

of additional persistence in macroeconomic variables.

We then estimate the critical structural and shock parameters that characterize economic dynamics

and the learning process in the theoretical model, allowing us to quantify the macroeconomic impact of

ISTC uncertainty and of learning. We use Bayesian techniques to match the time series of model-generated

output and consumption to their counterparts in US data. We then use the estimated model to explore

quantitatively the role beliefs play in the transmission mechanism of technology and noise shocks. We find

that the economy with uncertain fundamentals responds more strongly to changes in neutral productivity

(TFP) than a model without fundamental uncertainty. In contrast, the response to an ISTC shock is less

volatile but more persistent. We also find that a "fake news" shock changes agents’behavior persistently,

even though the underlying fundamentals governing the economy remain unchanged. This is because it

takes time for fake beliefs to converge to the true values even if there is no further noise, and because

noise changes the beliefs about all fundamentals (not just ISTC), since imperfect information implies that

agents do not know whether observed outcomes are due to noise or to an actual change in one or other

fundamental. Overall, we find that "fake news" shocks are a significant source of variation, and that their

impact on beliefs is persistent even though these shocks decay rapidly. Based on the estimated persistence

of signals, the half-life of noise is about 1.5 quarters (4.5months). However, because of its persistent impact

on beliefs, the half-life of the change in GDP induced by a noise shock is over 8 quarters (2 years). The

quantity of noise is non-trivial: in the estimated economy, the noise shock accounts for 10% of variation in

output and 41% of variation in investment. This finding echoes Blanchard et al. (2013), which empirically

shows that noise shock explains a sizable portion of US business cycles —although in their case there is no

ISTC. A key puzzle in the business cycle has long been that these models lack strong internal propagation

mechanisms, relying on highly persistent shocks to generate reasonable macroeconomic dynamics,4 such

as productivity shocks with quarterly persitsence well over 0.9. In contrast, the propagation of shocks

through persistent beliefs is so powerful that the model economy matches the dynamics of output and

consumption with a persistence of only about 0.7.

4See for example Cogley and Nason (1995).
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A key application of our model is to provide a solution to the Barro-King (1984) "co-movement" puzzle,

the result that consumption and investment tend to have low or negative comovement in RBC models when

shocks other than TFP shocks (in our model, the ISTC shock) are important driving forces of fluctuations.

This is inconsistent with the highly positive correlation observed in US data. Our model shows that the

introduction of uncertainty about the forms technological progress that the model already contains can

solve this issue, without introducing additional complex model features as in the related literature.5 This

works through the mechanism that, under uncertainty, economic agents do not know for sure whether or

not an ISTC shock has hit at any given moment in time, and always put some weight on the possibility

that any unexpected changes in their observed signals could be due to changes in neutral productivity as

well, or even simply just due to noise. The correlation between consumption and investment in US data is

0.74, whereas in the model economy it is not far off, at 0.62. When we remove technological uncertainty

from the model, the correlation drops to 0.26 if we re-estimate the parameters of the model, or to −0.48

if we do not.

The idea that expectations about the state of the economy could drive economic fluctuations dates back

at least to Pigou’s (1927) theory of "errors of undue optimism or undue pessimism," regaining popularity

in part after the 2000 tech-driven stock market decline. Jermann and Quadrini (2007) relate this event to

beliefs about the advent of a "new economy" of higher productivity growth. Our paper contains a notion

of unwarranted optimism or pessimism regarding the current value of investment-specific productivity, an

ISTC noise or "fake news" shock, that fluctuates and may be present at any time. Lorenzoni (2009) and

Angeletos and La’O (2013) develop models of uncertainty about fundamentals based on private information

about productivity shock. However, those models do not have ISTC, nor do they provide independent

evidence of the form of uncertainty they consider. These papers also hinge on agent heterogeneity as the

source of uncertainty, whereas there is no heterogeneity in our model, which is close to standard business

cycle models except for the dynamics of learning.6 Saijo (2017) assumes informational frictions about the

depreciation rate of capital and about ISTC, so that economic agents use the observed capital stock and

investment to estimate the unobserved shocks. In our paper, uncertainty is qualitatively different as it

originates from the unobservability of different types of productivity shock: as is well known, under full

information, the optimal response of agents to neutral and to investment-specific shocks is very different.

In addition, Saijo (2017) requires nominal rigidities and countercyclical markups as used in other papers to

obtain a reasonable comovement of macroeconomic variables. In contrast, our model shows the confusion

about technologies itself can generate positive comovement, without resort to other frictions.

5To resolve the comovement puzzle, Ascari et al (2016) employ roundabout production and trend growth in neutral and
investment technology; Basu and Bundick (2017) introduce countercyclical markups and sticky prices; Chen and Liao (2018)
extend the standard sticky-price model to a two-sector model with durable goods.

6Also in Lorenzoni (2009) an infinite train of beliefs is the state variable of the aggregate economy, so that solving the
model requires truncation of histories at some point. Our model is more complex in that multiple fundamentals are not
observed, yet simpler in that the model possesses the Markov property: a history of only one period is required.
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Our model features a signal about future ISTC, with noise. The presence of noise bears superficial simi-

larity to models that emphasize non-fundamental business cycles, e.g. due to animal spirits or self-fulfilling

expectations as in Farmer and Guo (1994): however, in our environment there is a unique equilibrium,

and business cycles that are not driven by fundamentals instead occur because of information frictions

and the possibility of error. On the other hand, the fact that there is a signal about future ISTC —albeit

a noisy one — is related to the literature on "news" — information about future fundamentals —such as

Beaudry and Portier (2004) or Schmitt-Grohe and Uribe (2012). In those papers, however, the current

state of the world is known. In our environment, as likely in reality,7 the current values of fundamentals

are not known: rather, they are estimated by economic actors under conditions of imperfect information.

It is not known to what extent business cycle dynamics are sensitive to the presence of uncertainty about

current fundamentals —nor whether shocks to the noise inherent to these signals could generate economic

fluctuations —and our paper provides answers to these questions.

Finally, our paper is related to the extensive literature on the importance of TFP and ISTC for business

cycle dynamics, such as Greenwood et al (2000), Fisher (2006) and Justiniano et al (2010). Unlike those

papers, our focus is on how uncertainty about these fundamentals affects economic dynamics. Jaimovich

and Rebelo (2007) and Görtz and Tsoukalas (2013) consider a two-state Markov switching process for the

evolution of the investment-specific technology, however in those papers the current value of the technology

is always known. Our paper, instead, assumes a continuum of possible states of investment technology,

and the uncertainty is about the current value of ISTC itself, as well as TFP, which implies in addition

that the value of the capital stock is not known. Beliefs are continuous, and the estimation process tells

us how rapid and quantitatively important the impact of learning about fundamentals such as ISTC is in

the economic environment. We also provide empirical evidence that industries where ISTC is important

are subject to greater uncertainty about current fundamentals, and thus ISTC can serve as the source or

conduit of uncertainty

Section 2 reports evidence that there is more uncertainty about conditions in industries where ISTC

is high. Section 3 describes the model and environment. Section 4 develops the solution strategy and

properties of beliefs. Section 5 presents the data and estimation methodology and the quantitative results.

Section 6 concludes with a discussion of suggestive evidence, and suggests direction for future research.

7For example, it is a commonplace to mention in introductory macroeconomics textbooks that one problem with stabi-
lization policy is the inability of the fiscal or monetary authority to know the exact position of "potential GDP" as opposed
to current GDP. Baumol and Blinder (2011) liken stabilization policy to "a poor rifleman shooting through dense fog at an
erratically moving target with an inaccurate gun and slow-moving bullets." This paper is about fog and moving targets. In
a companion paper, Ma (2016) studies the rifleman (in the form of monetary policy).
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2 Motivating Evidence

Our paper explores an economic environment in which there is uncertainty about the value of current

fundamentals, modeled as neutral- and investment-specific technology shocks. It is the inability to observe

these two independently that leads agents to be uncertain as to the value of each productivity. On the

other hand, if ISTC were not relevant for production, then signals such as observed output would be a

suffi cient statistic for current fundamentals.

If there is variation in the economy in production functions regarding the importance of ISTC, we should

expect to observe measures of uncertainty being particularly pertinent for firms in spheres of activity where

ISTC is important. Cummins and Violante (2002) find that the rate of ISTC varies significantly across

industries, based on industry variation in the types of capital used. Thus, we investigate whether there is

support for a link between ISTC and uncertainty by exploring whether uncertainty is particularly related

to the rate of ISTC across industries.

Specifically, we develop firm level measures of uncertainty, and ask whether the firm level uncertainty

varies disproportionately for firms in high-ISTC industries compared to other industries when overall

economic uncertainty is high. The correct specification should (1) condition on all date-related factors that

might affect firm uncertainty, including aggregate uncertainty itself; (2) condition on all firm characteristics

that might affect uncertainty, including ISTC itself; and (3) allow for autocorrelated errors, which are highly

likely to be present in a high-frequency panel.

Our specification is:

FirmUncertaintyit = αi + δt + β × ISTCj(i) × Uncertaintyt + εit (1)

where αi is a firm-level fixed effect, t denotes a month, and j (i) is the industry j where firm i operates.

FirmUncertaintyit is a measure of firm level uncertainty. The firm fixed effect αi accounts for all firm-level

factors (including industry-level factors) that might affect the firm level uncertainty. The time fixed effect

δt captures all time-varying factors that might affect the firm level uncertainty, including cyclical factors

such as aggregate uncertainty itself. The coeffi cient β then captures the interaction between ISTC as

measured in the industry in which firm i operates, and time-varying aggregate uncertainty Uncertaintyt.

Given the concern that the errors εit might be autocorrelated, we use the method of Baltagi and Wu (1999)

that allows for AR(1) autocorrelation in the errors, as well as an unbalanced panel.

To measure time-varying aggregate uncertainty, we draw on several recent papers8:

1. Bachmann et al (2013) measure uncertainty using the extent of dispersion on up/down forecasts

about future business conditions, drawn from the Federal Reserve Bank of Philadelphia’s Business

8All of these measures are available at monthly frequency.
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Outlook Survey. We call this measure Dispersiont.

2. Jurado et al (2015) construct an uncertainty measure using the deviation (conditional variance)

of forecasts from the sample mean of a large number of macroeconomic time series. We call this

Unpredictt.

3. Bachmann et al (2013) also construct a measure of uncertainty using the number of articles in Google

News mentioning "uncertainty" divided by the number of articles containing the word "today". We

call this measure Googlet.

4. Bloom (2009) measures uncertainty using the volatility of the stock market within a month. We call

this measure Stockt.

To measure firm level uncertainty, we draw on the Institutional Brokers’Estimate System or I/B/E/S,

available through aWRDS subscription and managed by Thomson Reuters. I/B/E/S contains the forecasts

by thousands of analysts about financial data for a large number of publicly traded firms. The most widely

reported forecast in I/B/E/S is the 1-year ahead earnings per share (EPS) forecast, which is available from

1981 to 2017. We use EPS forecasts because they are the most widely available in our database, and also

because EPS ratios are a basic indicator of the profitability of a share, and are thus widely understood

and followed both by financial analysts and their clients. I/B/E/S also reports realizations of the forecast

data, collected from a variety of public data sources. Companies are included in the database as long as

at least one analyst provides a forecast for that company. Forecasts are collected each day as they are

released by analysts.9

We define the uncertainty at the firm i as the absolute value of the forecast error, i.e. the difference

between the forecasted and the realized EPS value one year later. We use this measure because a large ex-

post observed forecast error indicates that the forecast was made under conditions of imperfect information.

Of course forecasts about any particular firm will always contain errors, but what we are looking for are

systematic differences in forecast errors by industry, using specification 1. These forecasted and realized

EPS data are available at daily frequency (although it is not the case that forecasts about any particular

firm are necessarily made on a particular day). To generate the monthly measure of firm level uncertainty

(FirmUncertaintyit), we use the last observed value in each month for each firm, on the assumption that

the latest forecast (within a month) was based on the most updated information set about the firm for that

month. We drop the top 5 percent of values of FirmUncertaintyit to avoid the influence of outliers. We

also exclude financial institutions defined as firms with a 2-digit NAICS code of 52. We exclude financials

for two reasons. First, forecasts of financial firms may not relate as much to real conditions (such as their

9For further details, see https://wrdsweb.wharton.upenn.edu/wrds/support
/Data/_001Manuals%20and%20Overviews/_003I-B-E-S/Release%20Notes/
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Table 1: Panel Regression Results
The table reports estimates from the following specification:

FirmUncertaintyit= αi+δt+β × ISTCj(i)×Uncertaintyt+εit.

Here FirmUncertaintyit is the absolute forecast error made at date t about firm i; αi is a firm fixed effect; δt is a time fixed effect;
ISTCj is the rate of ISTC as measured in industry j , drawn from Cummins and Violante (2002); j (i) is the industry where firm i operates;
and Uncertaintyt is a measure of uncertainty at date t. The errors εit may be autocorrelated. Two and three asterisks represent statistical
significance at the five and one percent levels respectively. Sources: I/B/E/S database, authors’calculations, Bloom (2009), Bachmann et al

(2013) and Jurado et al (2015).

Uncertainty measure
Statistic Dispersiont Unpredictt Googlet Stockt
Coeffi cient β 6.52∗∗∗ 15.9∗∗∗ .0122∗∗∗ .0808∗∗∗

S.e. (.258) (.561) (.00057) (.00433)

Obs 446, 621 523, 849 427, 640 446, 621
Groups 8, 173 9, 176 8, 044 8, 173

rate of ISTC) as opposed to their operations that ultimately depend on claims on firms in other industries

inherent in their asset holdings. Second, Ma and Samaniego (2018) find that uncertainty measured in the

financial sector appears to lead uncertainty measured elsewhere. Since financials have high ISTC, we do

not wish our results concerning ISTC to be contaminated by the special properties of the financial sector.

To measure ISTC, we employ the industry-level estimates of ISTC constructed from Cummins and

Violante (2002). The capital flow tables available at the time allow us to distinguish between 62 private

industries.10 We use Compustat to assign an NAICS industry code to each firm in I/B/E/S, and construct

a crosswalk between NAICS codes and the 62 industries in CV. We define ISTCj as the rate of ISTC

reported for industry j.11

The estimation results are displayed in Table 1. All the coeffi cient estimates are positive and very

highly significant, regardless of which aggregate uncertainty measure we use. Based on these results, we

conclude that overall economic uncertainty, as illustrated by the standard measures of aggregate uncertainty

available in the literature, is particularly related to uncertainty in high-ISTC industries. This empirical

finding motivates the notion of uncertainty regarding ISTC in our theoretical model.

We also employ a different empirical approach to demonstrate our motivation. If uncertainty about

10Cummins and Violante (2002) measure the decline in the relative price of capital for 28 types of equipment and machinery
over the period 1970− 2000. Then, they use the capital flow tables from the BEA to construct an industry-specific measure
based on the share of investment in each type of capital good. They report 63 industries, one of which is "Federal Reserve
Banks."
11Compustat reports NAICS codes for each firm at a level of aggregation varying between 2− and 6−digit. If we were

unable to assign a firm to one of the 63 CV industries we discarded that firm. We end up with data for 57 industries, since
we exclude financials.
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ISTC is a significant source of macroeconomic fluctuations, then uncertainty measured in high-ISTC in-

dustries should have a more significant impact on aggregates. We use the approach of Ma and Samaniego

(2018) to develop two measures of uncertainty: one for firms in high-ISTC industries (defined as those

with a reported rate of ISTC above the median) and one for firms in low-ISTC industries. In a standard

recursively identified vector autoregression (VAR) estimation, we indeed find that high-ISTC uncertainty

has a more significant impact on aggregates than uncertainty measured among low-ISTC firms. The details

of this exercise are shown in Appendix 1.

3 Economic Environment

In the description of the economic environment we will focus on the social planner’s problem. This way

there are no ineffi ciencies nor informational problems arising from the choice of decentralization strategy,

only from the information structure of the economy. The social planner suffers from the same informational

frictions as the agents.

3.1 Preferences and Technology

The social planner maximizes the discounted expected utility of a representative agent. Output Ỹt is

produced using an aggregate technology

Ỹt = Ate
ztK̃α

t n
1−α
t

where K̃t is capital, nt ∈ [0, 1] is labor and Atezt is neutral productivity. As discussed below, At captures

the trend in neutral productivity whereas zt captures temporary innovations.

Output may be consumed (Ct) or invested (It), so that Ỹt ≥ Ct + It. Agents earn utility U(Ct, 1− nt)
from consumption and work.

The planner’s problem is
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maxE0

∞∑
t=0

βtU(Ct, nt)

s.t.

Ct + It ≤ Ate
ztK̃α

t n
1−α
t

K̃t+1 = Bte
qt

[
1− S

(
It
It−1

)]
It + (1− δ)K̃t

At = eγt Bt = eγqt

zt+1 = ψzt + εt+1 qt+1 = ρqt + wt+1

εt+1˜N (0, σε) , εt+1˜N (0, σw) , |ψ| < 1, |ρ| < 1.

There is a cost associated with the adjustment of investment, captured by S(·), with S(0) = 0, S ′(·) ≥ 0,

S ′′(·) > 0.

Notice there are two stochastic terms, zt and qt. The evolution of the capital stock is affected by

investment specific technological change (ISTC), qt. Variables At and Bt are respectively the deterministic

trend of TFP and of ISTC. Variables zt and qt are respectively the TFP shock and ISTC shock, both of

which follow persistent AR(1) processes. Variables εt and wt are independent disturbances to the TFP

and ISTC terms respectively. The capital depreciation rate is δ.

In what follows, we assume that:

U(Ct, nt) = log (Ct)− ξnt.

We reformulate the variables of the economy in terms of deviations from a balanced growth path.

Specifically, we divide K̃t by its growth factor egk to obtain the detrended capital stock kt = K̃t
egkt
. We also

divide Ct It and Ỹt by their common growth factor eg to get detrended series ct = Ct
egt
, it = It

egt
, yt = Ỹt

egt
,

where g =
γ+αγq

1−α and gk =
γ+γq
1−α —see Greenwood et al (1997) and Fisher (2006).

Assumption 0 γq > 0 and γ ≥ −αγq.

Assumption 0 is a condition that is necessary and suffi cient for there to be both economic growth and

investment specific technological progress in this model ∀α ∈ (0, 1).

After detrending and rewriting the utility function in terms of detrended variables, the agent’s problem

becomes:

maxE0

∞∑
t=0

βtU(ct, nt)
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subject to the feasibility constraint

ct + it = eztkαt n
1−α
t

and the capital accumulation equation

kt+1e
gk = eqt

[
1− S

(
eg

it
it−1

)]
it + (1− δ)kt (2)

where S
(
eg it

it−1

)
≡ ϕ

2
(eg it

it−1
−eg)2 as in the literature. ϕ ≥ 0 is the investment adjustment cost parameter.

The stochastic processes become

zt+1 = ψzt + εt+1 qt+1 = ρqt + wt+1.

Remark Notice that an implication of this change of variables is that the cyclical behavior of the model
will not depend on the values of the productivity trends γ and γq, regardless of whether or not there

is uncertainty regarding the current value of the cyclical terms qt or zt.

3.2 Imperfect Information

In our paper, there is imperfect information about the values of zt and qt. We capture this as follows.

The true data generating processes for zt and qt are exogenous and known to the agents. However, neither

agents nor the social planner observe the realized values of qt or zt. As we shall see, this implies that

they do not know the capital stock either since in equation (2) the evolution of the capital stock depends

on the value of qt, which is unknown. Notice that this is not an assumption: it is a consequence of not

observing past values of qt. Instead, agents observe noisy signals regarding these shocks, which contain

information about the unobserved fundamentals. The planner’s decisions thus depend on expectations of

future productivity and on beliefs about their current values. Agents develop posterior beliefs about the

values of these fundamentals based on their prior beliefs, and on signals they receive, according to Bayes’

rule.

We consider the case of fully Bayesian learning in the sense that the agents update their beliefs about

the distributions of TFP, ISTC and the capital stock as new information arrives, and make current decisions

knowing that their beliefs may be further updated in the future. In other words, the agents and the social

planner take into account how future realizations of signals may alter their beliefs. This is implemented

by allowing the beliefs to be a state variable of the economy, and by allowing the evolution of the state to

be common knowledge, so agents understand how future signals will affect their beliefs.

The timing of events is as follows. At the beginning of each period t, TFP and ISTC shocks are

realized, but are not observed by the social planner. Once labor input is chosen, labor and capital are
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introduced into the production technology, and output is realized and observed. Thus, one signal is the

realized output yt itself, which is a function of the realized but unobserved TFP level zt, the unobserved

capital stock measured in effi ciency units kt, and labor input nt:

yt = eztkαt n
1−α
t (3)

Since neither zt nor kt are perfectly observed, yt is not a suffi cient statistic for either.

The other signal is a noisy signal φt regarding the value of the current ISTC term qt. It is a combination

of the past signal φt−1, the unobserved realization of ISTC qt and an iid disturbance vt :

φt = πφt−1 + (1− π)qt + vt, vt˜N (0, σv) , π ∈ [0, 1). (4)

Under this formulation the signal φt is a combination of information and noise. As long as π ∈ [0, 1), the

signal contains some information regarding the current value of qt. However, as long as σv > 0, the signal

also contains noise. We refer to the disturbance vt as a noise shock. In so doing, we use the term "noise"

as "random or irregular fluctuations or disturbances which are not part of a signal ... or which interfere

with or obscure a signal. (Oxford English Dictionary). However, since it also represents an element of a

signal that is misleading or false, and to distinguish it from other notions of noise in the literature, we also

refer to it as a "fake news" shock. The noise (or fake news) shock vt is uncorrelated with the technological

errors εt and εt.

The potential persistence in the signal is very important. On the one hand, the case in which π = 0 (no

persistence) is interesting for its theoretical implications, because any propagation of noise shocks vt in an

environment with π = 0 will occur purely through the dynamics of the learning process. On the other hand,

if we impose that π = 0, then in any quantitative implementation of the model the role of uncertainty will

be closely tied to the length of a period. In addition, the extent to which the signal is informative (1− π)

is ultimately an empirical matter of independent interest that the calibration or estimation of the model

can speak to. Thus we allow for the general case π ∈ [0, 1), so information may be revealed gradually.

One interpretation of the disturbance vt is that it is related to market sentiment. For example, if agents

are overoptimistic about ISTC because vt > 0, they would believe to some extent that it is the increase

of qt that leads to the increase of φt, even when this is not the case. As a result, agents might react

by increasing investment, which could affect dynamics as agents gradually learn that qt had not in fact

changed. Such a fluctuation in economic activity would not involve any change in fundamentals. However,

we refrain from using the term "sentiment shock" (as in Angeletos and La’O (2013), for example) because

the nature of uncertainty in this model is different. In particular, in our paper the value of the current

ISTC shock is imperfectly observed. The shock is about a perceived (but non-existent) change in the value

of a fundamental, in this case specifically ISTC. This is why we refer to it as a "fake news" shock.

13



3.3 Beliefs

At the beginning of each period t, prior beliefs regarding the distribution of TFP, ISTC and the capital

stock, denoted respectively as hZt , h
Q
t and h

K
t , are taken as given. For the rest of the paper, m(·) denotes

posterior beliefs, whereas h(·) denotes prior beliefs. Upper case variables such as Q,Z,K and Y denote

random variables, whereas lower case variables such as q, z, k, y denote the realized values of the corre-

sponding random variables. Values of zt and qt are drawn, but are not observed by the planner nor the

agents. The capital stock in period t is a given quantity kt, determined by investment and past realizations

of ISTC, however agents do not know this quantity either.

We assume that the choice of labor is made in period t before observing any signals. This "time to

build" assumption on labor is necessary due to the nature of the uncertainty in this economy: output itself

is a signal of the value of fundamentals, and output cannot be observed until after the labor input is used

in production.

After observing the two signals, the agents and the planner update their beliefs about zt, qt and kt,

following Bayes’rule, given their prior beliefs:

mZ,Q,K
t (z, q, k|yt, φt) ∝ h(yt, φt|z, q, k)hZ,Q,Kt (z, q, k)

where mZ,Q,K
t is the joint posterior belief about zt, qt and kt, and h

Z,Q,K
t is the joint prior belief about

zt, qt and kt. Function h(yt, φt|z, q, k) is the likelihood of yt and φt conditional on zt, qt and kt.

In addition, using the known stochastic process for TFP and ISTC, the planner can derive a prior

belief hZt+1 about TFP for period t+ 1, and a prior belief hQt+1 about ISTC for period t+ 1. Knowing the

true evolution process of the capital stock, the planner can also derive a prior belief for capital in period

t+ 1, hKt+1, given the choice of it, which is (ex-ante) optimally chosen based on expectations of how these

choices affect output in period t + 1. The expectation of output yt+1,(the likelihood of a given value of

output conditional on prior beliefs about the unobserved variables and on the choice variables for period

t+ 1 h(yt+1|z, q, k)) are generated according to the known production function (3). Similarly, prior beliefs

about φt+1 are derived from posterior beliefs about φt and the known stochastic processes for φ, q and v.

The calculation of the updating of beliefs is shown in Appendix 3.

3.3.1 Social planner’s problem

To summarize, in each period t the planner’s problem is to:

1. Choose nt before observing signals yt and φt. We find it convenient to characterize this behavior with

the use of two value functions, V
(
hZt , h

Q
t , h

K
t

)
and W

(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

)
. V is the agent’s expected

discounted utility in period t before observing signals, whereas W is the value function after observing

signals and updating beliefs accordingly. Then,
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V
(
hZt , h

Q
t , h

K
t

)
= max

nt

∫ ∫
W
(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

)
hY,Qt (y, φ|hZt , h

Q
t , h

K
t , nt)dydφ (5)

2. Choose consumption and investment to maximize utility after observing yt and φt. This decision

can be specified as a dynamic programming problem.

W
(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

)
= max

ct,it

{
U (ct, nt) + βEtV

(
hZt+1, h

Q
t+1, h

K
t+1

)}
(6)

s.t.

ct + it = yt

hKt+1(k′) =
egk

(1− δ)

∫ ∞
q=0

mK
t

egkk′ − eq
[
1− S

(
eg it

it−1

)]
it

(1− δ)

mQ
t dq

and where hZt+1(z′) and hQt+1(q′) follow the conjugate calculation detailed in Appendix 3.

In equation (6), functional Et(·) is the rational expectation based on prior beliefs pre-determined at
time t. The first constraint is the budget constraint. The second captures the evolutions of beliefs. Note

that agents understand how information revealed in this period will be taken into account in the future

and, given the structure of the value function, they also take into account how information revealed next

period will be taken into account subsequently.

3.3.2 Optimization conditions for V

The first order condition for nt is:

∫
Wy

(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

) δhYt (y, φ|hZt , hKt , nt)
δnt

dy +

∫ δW
(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

)
δnt

hYt (y, φ|hZt , hKt , nt)dy

=

∫
Uc (ct, nt)

δhYt
δnt

dy +
δW

(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

)
δnt

= 0

The Envelope condition for nt is

δW
(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

)
δnt

= Un (ct, nt)

Combining them, we obtain the optimization condition for nt
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∫
[Un (ct, nt) + βUc (ct, nt)

δhYt
δnt

]dy = 0

Here the planner chooses labor input given her beliefs, knowing that the marginal utility of labor will

depend on the choice of consumption, which will depend on how much output is realized as well as on any

other signals.

Next, the first order condition for ct is

−Uc (ct, nt) +
δβEtV

(
hZt+1, h

Q
t+1, h

K
t+1

)
δct

= 0

which balances the marginal utility of consumption now against the expected value of investing in new

capital, given beliefs. The Envelope condition for ct is then

δV
(
hZt , h

Q
t , h

K
t , nt−1

)
δct−1

=

∫
Wy

(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

) δhYt (yt|hZt , h
Q
t , h

K
t , nt−1)

δhKt

δhKt
δct−1

dy

+

∫ δW
(
mZ
t ,m

Q
t ,m

K
t |φt, yt;nt

)
δmK

t

hYt (yt|hZt , h
Q
t , h

K
t , nt−1)

δmK
t

δct−1

dy

=

∫
[Uc (ct, nt)

δhYt
δhKt

δhKt
δct−1

+ Uc (ct, nt)
δct
δmK

t

δmK
t

∂ct−1

hYt ]dy

Combining them, we get the Euler equation for ct

−Uc (ct, nt) + β

∫
Uc (ct+1, nt+1) [

δhYt+1

δhKt+1

δhKt+1

δct
+

δct+1

δmK
t+1

δmK
t+1

δct
hYt ]dy = 0

where δ() denotes a functional derivative and ∂() denotes a univariate derivative. The marginal cost of

investment in period t in terms of consumption goods equals to the expected marginal benefit of capital

in period t+ 1, due to an increase in expected future output and in the expected future capital stock.

Finally, given the adjustment cost function, the first order condition for investment it is

∫
µt

[
1− S

(
eg

it
it−1

)
− S ′

(
eg

it
it−1

)
eg

it
it−1

]
mQ
t dq+β

∫
Uc (ct+1, nt+1)

Uc (ct, nt)
µt+1S

′
(
eg
it+1

it

)(
eg
it+1

it

)2

hQt+1dq = 1

where µt can be interpreted as the value of installed investment in terms of its cost, and is given by

µt = β

∫
Uc (ct+1, nt+1)

Uc (ct, nt)

(
(1− δ)µt+1 +

δhYt+1

δhKt+1

)
hYt+1dy
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3.4 Implications of uncertainty

To shed light on the impact of uncertainty on economic behavior, we can compare the optimal conditions

derived above for our model with those of a standard real business cycle model without uncertainty —i.e.

a model where vt = 0, π = 0 and the values of zt and qt are known before the choice of nt.

For example, the optimality conditions for consumption in a standard RBC framework are

−Uc(ct, nt) + β

∫
Uc(ct+1, nt+1)[

∂Yt+1

∂kt+1

∂kt+1

∂ct
+
∂ct+1

∂kt+1

∂kt+1

∂ct
]dy = 0

In contrast, under the setup with uncertainty, we have

−Uc (ct, nt) + β

∫
Uc (ct+1, nt+1) [

δhYt+1

δhKt+1

δhKt+1

δct
+

δct+1

δmK
t+1

δmK
t+1

δct
hYt ]dy = 0

When there is no uncertainty, an increase in investment (a decrease in consumption) in the current

period increases the capital stock unambiguously, which in turn increases future output. However, when

there is uncertainty regarding the values of the technology shocks and of the capital stock, the effect of an

increase in current investment in the current period is uncertain, as there are non-degenerate beliefs about

fundamentals. Thus agents will be less likely to act on a given piece of information about zt or qt.

This would seem to suggest that macroeconomic variables are likely to be less volatile in an environment

with uncertainty of our kind. There are countervailing effects however. First, we have an additional source

of variation, the noise shock. Second, when a shock to a fundamental occurs, agents’beliefs are unlikely

to have the correct value of fundamentals in expectation due to past shocks. Thus, for example, if agents

believe productivity is high whereas it is actually low, a transition back to the steady state could involve

beliefs first converging to the correct value before returning to the steady state, possibly leading to a boom-

bust cycle as a response to a single shock. Thus it is not a priori clear whether volatility will be enhanced

or ameliorated by the introduction of uncertainty. Indeed, Collard et al (2009) argue that uncertainty has

an ambiguous effect on macroeconomic volatility in environments such as ours where agents solve a signal

extraction problem. In fact, below we show that the impulse responses of the model suggest the presence

of more volatility when agent beliefs are very different from the correct value at the time of shock impact.

At the same time, agents’caution in the face of uncertainty leads the model to display less volatility on

average.

4 Solution method

In our model, agents’prior beliefs about the values of zt, qt and kt are state variables of the economy. In

general these beliefs are continuous functions and, as is well known in the literature, it is generally diffi cult
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to solve problems where state variables include continuous functions.

In our case, calculating the evolution of beliefs following Bayesian learning requires a nonlinear filter.

If the prior and the likelihood function are of the exponential class, then the prior and posterior might

be conjugates with the appropriate choice of distributions, and there will be an analytical solution to the

posterior resulting from Bayesian learning. However, for the updating of the distribution of capital to be

explicitly solvable, the prior and posterior distributions would both have to be of the exponential class.

For example, if we assume the prior distribution is exponential, since the posterior investment technology

has to be log-normal given the shock process is normal, the belief about the sum of depreciated past

capital and new investment using the uncertain investment technology does not belong to the exponential

class anymore. The same argument applies to other conjugate pairs: to our knowledge there is no known

analytical class of probability distributions that spans the positive reals and is robust to summation of a

non-negative random variable from the same or another distribution, certainly not among the distributions

thought to relevant in this context. In addition, since the impact of the agents’or the planner’s decision

regarding investment is multiplied by an unknown q and added to an unknown k, and since agents (or the

planner) must take this into account in their decision making, it implies that the solution of the model

requires the computation of the derivative of one function, such as the utility function, with respect to the

distribution of capital, another continuous function. Functional derivatives would be required to solve the

model, leading to an intractable solution given that beliefs about the capital stock themselves do not have

an analytical solution.

We adopt a methodology to overcome these complications while keeping the main structure of the

model. The method is based on a log-linear approximation using a Taylor expansion, which allows us

to consider the evolution of beliefs about linearized variables rather than that of the original variables.

Through the log-linearization, we are able to transform the Bayesian learning problem into a linear Gauss-

Markov process under certain initial conditions, and implement the computation of the learning process

using the Kalman filter. In this way, the evolution of beliefs can be parameterized such that means and

variances enter in the decision-making, rather than the entire distribution.

We later show that the conditional variances of the unobservables (prediction errors) in the approxi-

mation converge to positive constants, and thereafter the evolution of the variables in the model depend

only on these constants and on the mean beliefs about the capital stock, TFP and ISTC. We will focus on

the economic implications of the model when beliefs about these conditional variances are stable.

4.1 Transformation of beliefs

First, some notation:

1. If Xt is the true value of X at period t, then Xt|t−1 and Xt|t denote respectively the prior and

posterior means of X at period t
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2. ΣK
t ,Σ

Z
t ,Σ

Q
t are respectively the prior covariances of capital, TFP and ISTC at period t, while

σKt , σ
Z
t , σ

Q
t are respectively their posterior variances.

3. For any variable Xt, define Xt ≡ X̄eX̃t, so X̃t = logXt − log X̄, and X̄ is the steady state value of

variable X. Similarly, X̃t|t−1 = logXt|t−1 − log X̄ and X̃t|t = logXt|t − log X̄

Then, we can rewrite the production function (3) and the signal process (4), and capital accumulation

equation (2) as a linear system:

ỹt = zt + αk̃t + (1− α)ñt

φ̃t = πφ̃t−1 + (1− π)qt + vt

k̃t =
(1− δ)
egk

k̃t−1 +
ı̄

k̄egk
ı̃t−1 +

ı̄(1 + β)e2gϕ

k̄egk
qt−1

Together with the stochastic processes for TFP and ISTC:

zt+1 = ψzt + εt, εt ∼ N(µε, σ
2
ε)

qt+1 = ρqt + wt, wt ∼ N(µw, σ
2
w)

We can write a discrete time, linear and time varying state space system state space system of the

original system, where the measurement equations are:

(
ỹt − (1− α)ñt

φ̃t

)
=

(
1 0 α

0 1− π 0

)
·

 zt

qt

k̃t

+

(
π 0

0 0

)
·
(
φ̃t−1

ı̃t−1

)
+

(
0

vt

)

The state equations are: zt

qt

k̃t

 =

 ψ 0 0

0 ρ 0

0 ı̄(1+β)e2gϕ

k̄egk
(1−δ)
egk

 ·
 zt−1

qt−1

k̃t−1

+

 0 0

0 0

0 ı̄
k̄egk

 ·( φ̃t−1

ı̃t−1

)
+

 εt

wt

0


or in matrix notation

st = Hxt + Byt + ηt

xt+1 = Fxt + Gyt + ωt
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where st =
{
ỹt − (1− α)ñt, φ̃t

}
is termed the observation vector, xt =

{
zt, qt, k̃t

}
is the state vector,

yt =
{
φ̃t−1, ı̃t−1

}
includes the observed variables, ηt = {0, vt} is the shock vector on the signals, which

follows N(0,R); and ωt = {εt, wt, 0} is the shock vector on the state variables, which follows N(0,Q). R

and Q are by assumption constant over time, as are matrices H, B, F and G.

In order to obtain a Gauss-Markov process, we make assumptions on the initial values of the random

variables:

Condition 1 The initial TFP shock z−1 is a random Gaussian variable, independent of the noise processes,

with z−1 ∼ N(z0|−1,Σ
Z
0 )

Condition 2 The initial ISTC shock q−1 is a random Gaussian variable, independent of the noise processes,

with q−1 ∼ N(q0|−1,Σ
Q
0 )

Condition 3 The initial capital k̃−1 is a random Gaussian variable, independent of the noise processes,

with k̃−1 ∼ N(k̃0|−1,Σ
K̃
0 )

The first two conditions are not restrictive from the perspective of the literature. The shock processes

for neutral and investment specific productivity are generally modeled as being log normal. The third is the

key assumption for enabling the approximation procedure implemented in what follows of the paper. Given

these conditions and the assumption for the shock processes, it is straightforward to show that the process

of beliefs {zt, qt, k̃t} and the process of signals {ỹt− (1−α)ñt, φ̃t} are (jointly) Gaussian as well. The proof
is in the Appendix 3. In addition, given the assumption that {vt} is white noise and independent of initial
values of z−1, q−1 and k̃−1, the vector {zt, qt, k̃t} becomes a Markov process, which can be characterized
using the Kalman filter. Thus, means and covariances are suffi cient for the characterization of the linearized

model.

4.2 Evolution of beliefs

Consider period t, after the signals yt and φ̃t regarding zt, qt, and k̃t are observed. Combined with the prior

beliefs regarding these fundamentals, the social planner can derive posterior beliefs about zt, qt and k̃t using

Bayes’rule. Then, given posterior beliefs about zt, qt and k̃t, the social planner can derive prior beliefs for

zt+1, qt+1 and k̃t+1, using the state updating process. This Bayesian learning process is implemented using

a discrete time Kalman filter, which is the optimal minimum mean square error (MMSE) state estimator

of the uncertain state variables, under Conditions 1-3 and given the log-linear approximation12.

The evolution of the means of posterior beliefs about TFP, ISTC and the capital stock, and their joint

posterior covariances are described by13:
12See, for example, Chen (2003).
13The detailed derivations and calculations of prior and posterior beliefs are shown in Appendix 2.
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xt|t = xt|t−1 + ΣtH
T (HΣtH

T + R)−1(st −Byt −Hxt|t−1) (7)

σt = Σt−ΣtH
T (HΣtH

T )−1HΣt (8)

In addition, the updating process for prior beliefs and covariances are:

xt+1|t = Fxt|t + Gyt

Σt+1 = FσtF
T + Q

First, the evolution of covariances, represented by Σt and σt, is dependent on the covariance matrices

of the shocks (Q and R). In this sense, Q and R not only represent the volatility of the stochastic shocks,

but also affect the Bayesian updating process and therefore the decisions of economic agents. Thus, even

in a first-order linearized economy, the size of the shock variances still matter directly for the dynamics of

the model with uncertainty through its impact on the learning process. Second, notice that the prior and

posterior covariances of the unobservablesΣt and σt are stationary processes, provided that the coeffi cients

of the learning matrices (F and H) and the covariances of the shocks (Q and R) are not time-varying. In

order words, Σt and σt do not depend on the realized values of the signals. They can therefore be computed

in advance using the algebraic Riccati Equation, given the system matrices and the shock covariances.

Proposition 1 ∀Σ0, ∃!Σ : limt→∞Σt = Σ where −∞ < ‖Σ‖ <∞.

Proof. Theorem 13.2 in Hamilton (1994) implies the result provided the eigenvalues of F are inside the

unit circle. This reduces to the condition that |ψ| < 1, |ρ| < 1,
∣∣∣ (1−δ)egk

∣∣∣ < 1. The first two are satisfied by

assumption and the third is because δ ∈ (0, 1) and gk > 0, as a consequence of Assumption 0.

However, the evolution of beliefs about means, represented by the unobserved state variables xt, is

dependent on realized signals as well as on the term Pt ≡ ΣtH
T (HΣtH

T + R)−1 which is known as the

optimal Kalman gain. The optimal Kalman gain assigns a measure of uncertainty to the estimation of the

current state. If the gain is high, the learning process places more weight on the observations, and thus

follows them more closely. With a low gain, the learning process follows the model predictions (the prior

beliefs) more closely, smoothing out noise but decreasing the responsiveness to signals. For example, if

the volatility of noise captured by R is large, the information embodied in the signal φ̃t would receive less

weight in the learning process and be followed less closely by agents. In our model, the stationary value of

the Kalman gain matrix P ≡ ΣHT (HΣHT + R)−1 depends on the structural parameters of the economy,

such as α, π and δ, the covariances of the shocks Q and R, and the constant prior covariances Σ. Hence,
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the steady state Kalman gain is also a constant and can be computed based on the values of the model

parameters and the shock covariances: the realizations of the state variables do not matter.

4.3 Properties of beliefs

We now study the role of expectations in economic fluctuations in the context of the model. We can write

out the simplified evolution of posterior beliefs in equation (7) as:

zt|t = zt|t−1 + P1,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P1,2(φ̃t − πφ̃t−1 − qt|t−1)

qt|t = qt|t−1 + P2,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P2,2(φ̃t − πφ̃t−1 − qt|t−1)

k̃t|t = k̃t|t−1 + P3,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P3,2(φ̃t − πφ̃t−1 − qt|t−1)

Here Pi,j is the row i and column j of the Kalman gain once Σt → Σ.

In order to demonstrate the discrepancy between the beliefs and the actual values of the uncertain

fundamentals, we compute the difference between the posterior beliefs and the actual values for TFP,

ISTC and capital respectively. Starting at a steady state, the discrepancy between the beliefs and the

actual values can be summarized by a reduced VAR(1) system, given by14:

Xt = µt + ΞXt−1 + Ωut, ut ∼ N(u,Θ). (9)

where Xt =

 zt|t − zt
qt|t − qt
k̃t|t − k̃t

 is the distance between posterior beliefs and the actual values; µt =

 −πP1,2

−πP3,2

−πP2,2

 φ̃t−1 is the weighted exogenous variable (signal about ISTC); ut =

 εt

wt

vt

 is the reduced

shock, with u as the mean vector and Θ as their variance-covariance matrix; Ξ is a linear function of the

Kalman gain matrix P and the parameters of the model, including the persistence parameters and other

structural parameters:

Ξ=

 (1− P1,1)ψ −(P1,2ρ+ P1,1α
ı̄

k̄egk
) −P1,1α

(1−δ)
egk

−P2,1ψ (1− P2,2)ρ− P2,1α
ı̄

k̄egk
−P2,1α

(1−δ)
egk

−P3,1ψ (1− P3,1α) ı̄(1+β)e2gϕ

k̄egk
− P3,2ρ (1− P3,1α) (1−δ)

egk


and Ω is the coeffi cient for the shock processes

14Appendix 3 shows the details of the calculation.

22



Ω =

 (P1,1 − 1) P1,2 P1,2

P2,1 (P2,2 − 1) P2,2

P3,1 P3,2 −P3,2


We explore the properties of the learning process and its implications for the aggregate dynamics of

the model. For these Propositions we assume:

Assumption 1 Σt= Σ : the variance-covariance matrix has converged to its long run value (steady state

value).

Assumption 1 is not required for the following results: however we adopt Assumption 1 because it

simplifies notation, and because we assume Σt= Σ in the quantitative work that follows. This assumption

is not as strong as it appears. In fact, an empirical estimation of a state space model as the one shown

above with unobserved IST and TFP shocks shows that the variance-covariance matrix of the unobservables

converges to constant steady state values quite fast, within a few quarters. It is nonetheless interesting to

investigate the implications of the model with time-varying variances, which is solvable using our proposed

solution methodology. This is left for future work.

Lemma 1 All the elements of Pt are generically non-zero unless there is no uncertainty (i.e. unless zt
and qt are perfectly observed and there are no unanticipated shocks to either variable.)

Proof. As shown before, P ≡ ΣHT (HΣHT + R)−1, where Σ = FσFT + Q. Since both FσFT and

Q are positive definite, Σ = 0 if and only if FσFT = 0 and Q = 0. If P = 0, i.e., P1,1 = P1,2 =

P2,1 = P2,2 = P3,1 = P3,2 = 0, then it must be that σ = 0 and Q = 0. On the other hand, since

σ = E(Xt−Xt|t)(Xt−Xt|t)
′, it equals to zero only the expected value equals to the actual value, implying

the TFP and ISTC are observed, and since Q is the variance covariance matrix of the unobserved shocks

then Q = 0 also means no disturbances occur. This is contradicts the assumption of the framework.

Therefore in general all the elements of P are not zero unless there is no uncertainty.

Lemma 2 Lemma 1 is true even when the signal is not persistent, i.e., π = 0.

Proof. Again, so long as there is uncertainty, i.e., Q 6= 0 and σ 6= 0, ΣHT and HΣHT + R will not equal

0 even when π = 0.. As a result P 6= 0.

Proposition 2 A shock to either of εt, wt or vt generates a discrepancy between the actual and expected
values of zt, qt and kt, even if agents’expectations were previously correct.
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Proof. Without initial uncertainty, in equation (9) we have ΞXt−1 = 0. Since we assume the economy

starts at a steady state without previous shocks, µt = 0 as well. The change in the expectation is reduced

to Xt = Ωut. Lemma 1 proves that the matrix in front of ut = {εt, wt, vt} is not diagonal in that none of
the Kalman gain factors is zero generically. Therefore if any element of ut 6= 0 there will be a discrepancy

between the expected and true states for all the unobservable variables next period.

This deviation between expectations and actual values can serve as a transmission mechanism for

technology shocks. For example, when there is a shock to TFP, not only will it influence TFP and the

economy in a way similar as in the standard RBC model, it also influences the beliefs about all the three

unobservables. Of course, whether this learning process propagates or weakens fluctuations depends on

how agents understand and filter the information contained in various signals. For example, if agents

observe an increase in the signal φ̃t, they may tend to behave conservatively due to the fact that the signal

could also rise due to a noise shock. As a result, movements in investment and output could be less volatile

than under certainty.

Proposition 3 Under Assumption 1, a discrepancy between actual and expected values for any of z, q,
and k generates uncertainty for all of z, q and k in the subsequent periods, even when there are no shocks

(εt = wt = vt = 0).

Proof. Starting with the stationary Kalman gain, no signals initially, and εt = wt = vt = 0, beliefs evolve

according to Xt = ΞXt−1. Ξ is not diagonal as shown earlier: thus any uncertainty in the initial state

would generate deviations in other variables and thus fluctuations in expectations.

Take the TFP shock z as an example. Suppose initially, the expectation of q and k̃ coincide with

their actual values, so that qt−1|t−1 − qt−1 and k̃t−1|t−1 − k̃t−1 are zero, whereas zt−1|t−1 − zt−1 6= 0. This

initial difference not only leads to a deviation of expectation over z for period t, but also influences the

expectation of qt and k̃t, making all the expectations deviate from their actual values thereafter, which in

turn would influence the decisions of economic agents. As a result, initial uncertainty could still influence

economic dynamics even with no subsequent noise.

Proposition 4 Assuming there is no further noise, after a period with shocks, the discrepancy between
the expectations and the actual values of z̃, q̃ and k̃ converges to zero provided |

∑∞
i=0 Ξi| <∞.15

Proof. The unconditional mean of the discrepancy of Xt using backward substitution yields

lim
t→∞

EXt = E[
∞∑
i=0

Ξiut−i] =
∞∑
i=0

ΞiE[ut−i] = 0.

15Although we cannot prove this property in general, we find that this assumption holds for empirically relevant parameters.
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Starting from arbitrary initial values of the discrepancy, economic agents are able to learn from the

observed signals and update their beliefs gradually. Their expectations will eventually be consistent with

the actual values of these unobserved fundamentals. Thus, only the repeated introduction of noise allows

uncertainty to affect macroeconomic dynamics indefinitely.

Using the above, we now prove an important result. Since any shock affects beliefs regarding all state

variables, and since these beliefs wear away only gradually, a non-fundamental or noise shock can have a

persistent effect on all variables. This is true even when noise itself is not persistent.

Proposition 5 Suppose that π = 0, so that noise shocks are not persistent. A noise shock vt 6= 0 leads

the expected values of z, q and k to deviate from their actual values in all subsequent periods.

Proof. Starting with no expectation errors, when there is a noise shock in period t, we have Xt =

ΞXt−1 +Ωvt. By Lemma 2, the expected values of z, q and k are all influenced by the shock v and therefore

deviate from the actual values at t,Xt 6= 0. For the next period t + 1, we have Xt+1 = µt+1 + ΞXt. No

matter whether the signal is persistent or not (no matter whether µt+1 = 0 or not in the subsequent

periods), since Xt 6= 0, Xt+1 6= 0 before beliefs converge to their actual values.

5 Quantitative Analysis

We now analyze numerically the behavior of the model economy. It is worth noting that, unlike a standard

model where it is assumed that the current values of fundamentals are observed, the basis for approximation

is not the deterministic steady state. Instead, in the baseline agents are uncertain about the values

of fundamentals. The extent of uncertainty (variance) has converged to a positive constant, following

Assumption 1.

5.1 Estimation

To proceed with the numerical analysis, we must select a functional form for the utility function U . We

follow Hansen (1985) and Rogerson (1988) in assuming that

U (ct, nt) = log (ct)− ξnt

which is equivalent to assuming an environment with a more general utility function and indivisible labor.

Then, following Kydland and Prescott (1982), we assign values to as many model parameters as possible

from exogenous sources. Most of these values are standard. As in the related study of Fisher (2006) the

discount factor is β = 0.99. The capital share is set to α = 0.33, which is a standard value in the literature.

The depreciation rate is δ = 0.025 as in Hansen (1985), which is in the middle of the quarterly depreciation
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rates for equipment and structures estimated in Greenwood et al (1997). The detrending parameter for

the capital stock at a quarterly frequency is egk = 1.0077 and the detrending parameter for investment

is eg = 1.0124. These are consistent with the rate of secular decline in the relative price of capital and

the rate of investment growth in Greenwood et al (1997). We set the disutility of labor ξ = 0.84 so that

employment is 0.91 in the steady state, which is the ratio of employment to working age population in

post-war US data.

The rest of the parameters characterize the evolution of beliefs and productivity shocks. They are

the investment adjustment cost parameter ϕ, and parameters representing the conditional covariances

of the prediction errors and the stochastic shock processes ψ, ρ, π, σv, σw, σε. These parameters not only

directly characterize the dynamics of the linearized economy through the standard shock processes, but also

indirectly influence the behavior of our model with uncertainty and learning, as the values of informational

gain in the learning process are calculated based on the estimates of the persistence of the shocks, as well

as the size of variance of the shocks.

To jointly estimate these parameters, we use the Bayesian estimation technique to match the data of

quarterly US time series to the model-simulated time series of corresponding variables. Specifically, the

correspondence between the data on the left hand side and the variables from the model on the right hand

side is: [
logGDPt − logGDP

logCONSUMPt − logCONSUMP

]
=

[
ỹt

c̃t

]
where GDPt and CONSUMPt are respectively the data for real GDP and real consumption, and GDP

and CONSUMP are their corresponding trends generated by one-sided HP filter. Data are extracted from

National Income and Product Accounts (NIPA) dataset, between 1968Q3 and 2015Q3. Real GDP is ob-

tained by dividing nominal GDP by the chain-weighted deflator for the consumption of nondurables and

services. We define consumption as consumer expenditures on non-durables and services, and construct

the real series for consumption by dividing nominal consumption expenditure by the chain-weighted con-

sumption deflator16. We choose the prior distribution of the parameters as in Smets and Wouters (2007),

such that the prior distribution provides least information for the estimation.

Given the prior distribution and observation variables, we estimate the posterior distribution and the

mode of the structural and shock parameters in the model by maximizing the log posterior likelihood

and then using the Metropolis-Hastings Makov Chain Monte Carlo technique to obtain a complete pos-

terior distribution of the parameters. The estimates of the posterior mode and standard deviation of the

parameters obtained from this procedure are shown in Table 2.

16For robustness, we have also conducted an alternative Bayesian estimation by using the data of real GDP, real consump-
tion, and hours worked. The simulated dynamics of the economy and the statistics of the macroeconomic variables of interest
based on this estimation strategy is similar with those reported in the paper. Results are available on request.

26



Table 2: Calibrated parameters in the model economy
See text for detailed discussions of how these parameters are matched or estimated.

Param Description Prior Posterior
Density Mean S.d. Mode Mean Std. [5th,95th]

ϕ Invest adjustment cost InvG 5 0.5 3.35 3.35 0.21 [3.10, 3.54]
ψ TFP persistence Beta 0.5 0.2 0.69 0.63 0.12 [0.40, 0.82]
ρ ISTC persistence Beta 0.5 0.2 0.79 0.80 0.02 [0.78, 0.83]
π signal persistence Beta 0.5 0.2 0.59 0.60 0.11 [0.35, 0.72]
σε TFP s.d. InvG 0.1 2 0.31 0.31 0.08 [0.22, 0.44]
σw ISTC s.d. InvG 0.1 2 1.83 1.73 0.11 [1.57, 1.92]
σv noise s.d. InvG 0.1 2 1.73 1.89 0.20 [1.62, 2.18]
P1,1 Kalman gain of z from y N/A 0.50
P1,2 Kalman gain of z from φ N/A −0.02
P2,1 Kalman gain of q from y N/A 1.61
P2,2 Kalman gain of q from φ N/A 0.56
P3,1 Kalman gain of k from y N/A 1.52
P3,2 Kalman gain of k from φ N/A 0.07

5.2 Information in the estimated economy

The persistence of TFP is only 0.69, smaller than the common value of 0.95. This difference is likely

due to the fact that in our model, the capital used in the production function is assumed to be the

unobserved effective capital, different from the standard RBC model without uncertainty where the capital

is interpreted as the physical capital stock. The ISTC shock is more persistent (ρ = 0.79). On the other

hand, the signal process of our kind has never been estimated before. We find that the persistence parameter

of signal π equals 0.59, so that the half life of a noise shock is about one and a half quarters. The standard

deviation of the ISTC shock is the largest, so the ISTC shock is more volatile than the TFP shock. The

standard deviation of the noise shock is smaller than that of ISTC but bigger than that of TFP, indicating

that the noise shock is a significant potential source of volatility at business cycle frequencies.

The parameters of the stationary Kalman gain matrix are also of interest as they measure how the

learning process places weight on the two signals and on prior beliefs. P1,1 is the Kalman gain factor

regarding information from output when updating z. The value of 0.50 indicates that the more important

information source for updating beliefs about z is the observation of output. P1,2 is the information from

the observation of φ for the learning, and a value of −0.02 means that an observation of a higher ISTC

signal φ leads to a downward revision of expectations of z. Intuitively, a higher value of φ implies that q

may be higher than was initially expected, and therefore z might not be as high as initially expected to

account for a given observation of GDP. P2,1 and P2,2 are Kalman gain factors regarding information when

updating q. The values are positive, indicating that a higher output and φ will increase the expected value
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of q, and the information from output is more important than information from φ when updating beliefs

about q. P3,1 and P3,2 are the Kalman gain factors regarding information from observed output and from

the signal φ respectively when updating beliefs about k. As for q, the values indicate that a larger portion

of the update on k comes from output than the signal φ.This is because economic agents know that the

dynamics of signal is affected by both ISTC shock and noise.

Based on the estimation, it is also interesting to investigate how the precision of signal φ is dependent

on the noise, measured by σv. A related notion is the "signal-to-noise" ratio (SNR) used in science and

engineering that compares the level of a desired signal to the level of background noise. We can define the

precision of the signal φ as the ratio of meaningful information to noise (an "unwanted signal"). Since the

signal has a zero mean, the ratio can be expressed as a conditional relative volatility of the signal to the

noise:

SNR =
σ2
φ

σ2
v

=
(1− π)2σ2

w + σ2
v

σ2
v

= 1 + (1− π)2σ
2
w

σ2
v

For the baseline estimation, given π = 0.59, σw = 1.83 and σv = 1.73, we obtain an SNR of 1.19. The

ratio is bigger than unity, which means the signal has more information than noise. This is the reason

why beliefs converge to the underlying fundamentals eventually. Another observation is that, when σv
increases, indicating more noise, the signal-to-noise ratio will decrease and therefore the signal will become

less precise.

Finally, a unique feature of our model is that the capital stock is not known with certainty at any date.

The estimated economy yields a measure of the extent of uncertainty about the value of the capital stock,

assuming Assumption 1 holds (convergence of the variance-covariance matrix of beliefs). We find that the

standard deviation of the posterior belief distribution of log capital (relative to its steady state value) is

1.40 percent. Thus uncertainty about the posterior regarding the current value of log kt is non-trivial. In

addition, the standard deviation of the prior of log capital is 2 percent: the signals that agents receive do

little to assuage their uncertainty about the capital stock, as it has accumulated along with the capital

stock itself. In what follows, we explore the implications of this uncertainty for business cycle dynamics.

5.3 Business cycle facts

In order to understand the implications of uncertainty for the business cycle, we compare the business cycle

facts implied by two related models. First, we look at the benchmark model with uncertainty and Bayesian

learning, denoted Model U. We also look at the model without uncertainty and learning (a standard RBC

model with investment adjustment costs), denoted as Model NU, in which there is no uncertainty about

current values and choices of consumption and labor are made after observing these values. In order to

obtain the business cycle statistics implied by Model NU, we estimate parameter values of Model NU with
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Table 3: Business Cycle Statistics in different model economies.
Model U is the model in the paper with uncertainty and learning. Model NU is the standard RBC model with no uncertainty or learning.

x = I C L
Data

σx/σY 3.60 0.82 0.90
corr(x, Y ) 0.91 0.87 0.89

Model U
σx/σY 2.87 0.88 1.11
corr(x, Y ) 0.85 0.93 0.96

Model NU
σx/σY 3.19 0.57 2.24
corr(x, Y ) 0.91 0.63 -0.44

the same types of shocks and using the same dataset as for the benchmark Model U. Table 3 shows the

cyclical statistics calculated from data, and the simulated statistics of the two models with the parameter

values separately estimated based on Model U and Model NU, as described above17.

By comparing the simulated statistics of these two models, we learn what generates differences in

behavior between our model with uncertainty and the model without uncertainty and learning. The main

difference is that the volatility of investment relative to that of GDP is smaller in Model U than Model NU,

whereas that of consumption is larger in Model U than Model NU. This is because the inability to clearly

identify TFP and ISTC shocks leads to more conservative response of investment to perceived changes

in ISTC. At the same time, agents may incorrectly identify ISTC shocks as TFP shocks, and therefore

increase consumption more in response. Overall, our estimated model with uncertainty and learning fits

well with the data18. Furthermore, the log data density generated from the Bayesian estimation of the

two models suggests that Model U has a marginal data density of −384.49, larger than that of Model NU,

−401.67, which implies that Model U overall fits data better compared to Model NU.

5.4 Unobserved shocks

By combining US data with Bayenesian techniques to estimate the model with unobserved TFP, ISTC and

noise shocks, we are able to extract estimates of the structural shocks themselves over the time period of

our dataset. These estimates are derived from the Kalman smoother at the posterior mode of the estimated

parameters that the model needs to match the data.

17The statistics results from a simulation with 1100 periods, dropping the first 100 observations.
18This also suggests that we would likely obtain same conclusions about the dynamics of the economy if we instead choose

to estimate our model using the generalized methods of moments methodology to match key macroeconomic variables directly
(as opposed to our entire series matching procedure).
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Figure 1 plots the time series of the extracted shocks between 1968Q3 and 2015Q3. First, consistent

with the statistics shown in Table 2, the ISTC and noise shocks are generally more volatile compared to

TFP shocks over the sample period. In addition, all the shocks seem to vary more towards the beginning

of the time period, compared to more recent data. TFP shocks and noise shocks appear to settle down

early in the mid-1980s, around the time of the Great Moderation, with ISTC shocks settling down a little

later. Third, two recent periods intriguingly stand out.

One period is around the year 2000, when the US economy experienced a boom-bust cycle related

to the information technology sector. In the literature, this recession has been attributed to an incorrect

perception about the rate of progress of the investment technology, which is strongly related to information

and communication technologies19. The boom started with an over optimistic expectation about the

unobserved progress of ISTC, and ended with downward revision of the expectations and of investment

and output20. The dynamics of the extracted shocks of our model provide evidence in support of this

hypothesis. Around the year 2000, the noise shock regarding the ISTC increased to its highest levels

since the 1990s, leading to an increase of the signal received by agents about ISTC. In fact, according to

these estimates, the level of ISTC did not improve, as shown by the absence of any unusually large ISTC

shocks around that time. Observing a high ISTC signal at that time, yet being unable to distinguish the

true values of ISTC shocks and noise shocks, economic agents at that time would wrongly attribute the

increasing ISTC signals to a higher ISTC shocks to some extent, and invest more than they would have if

they had been able to observe the shocks.

The other period is around 2008, when the US economy experienced the Great Recession, with the

turmoil originated in the housing and financial market and spreaded to the real sectors. Although most

studies attribute this recession to the financial or uncertainty shocks, our evidence suggests the downturn

of ISTC could also have contributed, as ISTC shocks at the time were at their lowest levels since the 1980s.

19See, Jaimovich and Rebelo (2009), and Ben Zeev (2018), among others.
20The stock market performace then is indicative of this episode. During the 2000s recession, the volatility of the NASDAQ

stock index, which measures the expected performance of high-tech and innovation firms. is higher than the Willshire index,
which measures the expected performance of the top 5000 big companies covering all sectors.
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Figure 1 Time Series of Various Extracted Shocks

5.5 Dynamics of the Economy

In order to illustrate the influence of different shocks in the "uncertain" economy, we perform quantitative

experiments by calculating the impulse responses of variables to each individual shock. To do this, we

employ Assumption 1, and also:

Assumption 2 z0|0 − z0 = q0|0 − q0 = k̃0|0 − k̃0 = 0.

In the initial period, the economy is assumed to be in a "correct" steady state where all variables are in

the steady state value of zero and the believed output, capital stock and productivity values are accurate

and identical to the actual output, capital stock and productivity values. When doing this analysis, we

as modelers know that agents’beliefs of economic variables coincide with their true values. The economic

agents, however, do not know this. They continue to expect shocks and also noise, so that the variance of

their beliefs does not trend to zero, rather it converges to the stationary values discussed in the previous

Section, as per Assumption 1. The responses following the shocks are measured using the percentage

deviation from the steady state values. In the following impulse response figures, we record the behavior

of macroeconomic variables responding to current shocks after the observation of output and signals about

ISTC. The responses of beliefs about productivity, however, reflect changes in the posterior beliefs about

the current shocks i.e. the prior beliefs for the following period.
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5.5.1 Total factor productivity shock

In Figure 2, we plot the influence of a one standard deviation shock to TFP. The solid line depicts the mean

impulse response effects under benchmark framework with imperfect information, Model U, and the dash-

dot line depicts Model NU with no uncertainty. We also show the 10 and 90 percent confidence intervals

using shaded area, and the 0 line using dashed line. On impact, the responses of output, investment,

consumption, and hours worked are all stronger under uncertainty compared to the standard model, as if

both positive supply and demand shocks occur in the economy. This is because, in this environment with

uncertainty, both neutral and investment specific productivity are expected to rise, even if the only shock

hitting the economy is the TFP shock. In addition, despite a lower expected value of TFP shock compared

to the realized TFP shock (0.1 versus 0.3 on impact), since the dynamics of the variables are dominantly

contributed by the ISTC shock, the additional expansionary effects due to the higher expected level of

ISTC shock relative to the true investment specific technology (which is zero) outweighs the contractionary

effects due to the lower expected level of TFP shock relative to the true neutral productivity. As a result,

the responses of macroeconomic variables are more significant,

The speed of the convergence between agents’expected values and the actual values is rapid after a

TFP shock. Based on the simulation, the initial difference between zt|t and zt is 67% of its standard

deviation and drops to barely 6% at the fourth quarter. Similarly, the difference between qt|t and qt is 28%

of its standard deviation, and only 3% at the fourth quarter.
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Figure 2 —Effects of a TFP shock.

The solid line is the mean impulse response in the

benchmark model with uncertain technology; the shaded

area is the 10 percent and 90 percent posterior intervals;

the dash-dot line is the impulse response in the model with

no uncertainty; the dotted line is the zero line.

5.5.2 Investment specific technology shock

The dynamics of an ISTC shock are richer. In Figure 3, the solid line depicts the mean impulse responses

of economic variables to a one standard deviation shock to ISTC. The evolution of economic variables is

more persistent in Model U than in Model NU. First, even though there is no change in the actual value,

the expected TFP rises gradually and persistently after a slight decrease initially, because subsequent

increases in output are attributed at least partly to a possible increase in TFP. In addition, the expected

value of ISTC according to agents’beliefs does not even return to the steady state within 15 quarters.

Beliefs about ISTC are different from the actual values due to the fact that agents can only observe a

noisy signal for ISTC. As shown, on impact, expected ISTC is smaller than actual ISTC. Consequently,

investment under uncertainty is smaller than without uncertainty, since agents’decisions are influenced by

expected productivity values rather than the realized values. In the subsequent periods, expected ISTC is

persistently lower than its actual value, because when agents observe the increased signal φ, they interpret

it as a combination of changes in the disturbance and in the ISTC shock. As a result, agents tend to
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behave conservatively, leading to less investment and lower output compared to Model NU.

The convergence of agents’beliefs to the actual values of the fundamentals after an ISTC shock is

much slower than when there is an TFP shock as shown in Figure 2. The simulation results suggest that

the initial difference between qt|t and qt is 78% of its standard deviation, dropping to 23% by the fourth

quarter and to 7% by the eighth quarter. The difference between zt|t and zt is also persistent: it increases

to the peak of 23% at the sixth quarter and only declines to 9% by the fifteenth quarter. This explains

why the response of output is also quite persistent when ISTC shocks occur.
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Figure 3 —Effects of an ISTC shock.

The solid line is the mean impulse response in the

benchmark model with uncertain technology; the shaded

area is the 10 percent and 90 percent posterior intervals;

the dash-dot line is the impulse response in the model with

no uncertainty; the dotted line is the zero line.

5.5.3 Noise shock

We now study the impact of noise shocks (or "fake news" shocks) on aggregate dynamics. Figure 4 shows

the effects on economic variables of a one standard deviation (positive) noise shock. On impact, the signal

increases following the increase in noise. Agents know that the observed change in the signal could be due

to noise or to an actual increase in ISTC, and therefore put some weight on both possibilities. However
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they do not know that their initial beliefs about technologies are correct and consistent with the actual

values of ISTC and TFP (which have not changed). As a result, they mistakenly update their beliefs

about ISTC upwards, which leads to an increase in investment and a very slight decrease in consumption.

Interestingly, agents also update their beliefs about TFP downwards initially, even though actual TFP has

not changed. In the following periods, the signal about ISTC is still persistently higher than its steady state

value given the estimated value of π = 0.60, even if the noise shock fades. The misperception of TFP and

ISTC lasts longer, leading to higher level of macroeconomic variables than their steady state values during

the simulated period. This result shows that the noise shock is able to generate economic persistence that

is higher than suggested by similar models with noise shocks in the literature, such as Blanchard et al.

(2013), through the mechanism that a one time noise shock can lead to persistent misperception about

both technologies in this modeled economy.

Compared to when the ISTC shock hits the economy as shown in Figure 3, however, agents update

their beliefs about ISTC more quickly under the noise shock. On impact, the difference between qt|t and

qt is 53% of its standard deviation, dropping to 1% by the fourth quarter, whereas this discrepancy is still

23% at the fourth quarter following the ISTC shock. That is why investment is more persistent in response

to the ISTC shock than the noise shock. The misperception of TFP, however, lasts longer than that of

ISTC. The initial difference between zt|t and zt is 14% and only declines to 12% by the 4th quarter. This

also contributes to the persistence of macroeconomic variables in response to the noise shock, despite the

fact that agents learn quickly about ISTC.
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Figure 4 —Effect of a noise shock

The solid line is the mean impulse response in the

benchmark model with uncertain technology; the shaded

area is the 10 percent and 90 percent posterior intervals;

he dotted line is the zero line.

5.6 Biased beliefs and fluctuations

In the previous simulation we compute impulse response functions under the assumption that agents have

no expectation errors at the moment of shock impact —Assumption 2. However, in our analytical study, we

show that any deviation of the expectation from the actual value of the uncertain economic fundamentals

could persistently affect economic dynamics, even after the discrepancy converges to zero. Thus, we also

study the impact of shocks when beliefs are "biased" at the moment of impact, i.e. when the expected

value of q is not equal to its actual value.

We illustrate the impact of biased beliefs by assuming the economy starts with an expectation of ISTC

that differs from the actual value. Initially, rather than at 0, qt|t is assumed to be at a value equivalent

to one standard deviation of the ISTC shock, i.e., q0|0 = 1.83, whereas the initial expectations of TFP

and effi cient capital are still accurate. At the same time, the economy experiences the same one standard

deviation ISTC shock as in Figure 3. Under this assumption, we calculate the dynamics of macroeconomic

variables in response to the ISTC shock, and compare it to the situation when the initial expectation about

ISTC is accurate.
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Figure 5 —Impact of positively biased beliefs

In Figure 5, when the initial belief about ISTC exceeds the actual value, the dynamics of beliefs back to

the steady state and the impact on beliefs of the shock become convolved. Expected ISTC is significantly

larger when the initial beliefs are positively biased, than when the initial beliefs are accurate, until the

fourth quarter. Expected TFP, however, is not as big, due to the fact that higher beliefs about ISTC

slightly decrease beliefs about TFP in future periods. Overall, the positive change in ISTC dominates the

negative change in TFP. As a result, the overall effect is that output, investment, and consumption are

all higher than in Figure 3. In addition, during the initial periods when the positive bias has the largest

effects on expected TFP and ISTC relative to the "unbiased" benchmark, the difference in investment and

output is also the largest. The difference reduces gradually as the impact of initial bias diminishes after

the fourth quarter.

What if the initial belief of ISTC is smaller than its actual value at the time there is a positive shock to

ISTC? Figure 6 shows this scenario. During the initial periods, expected ISTC is much smaller compared

to that in Figure 3, where the simulated economy also experiences an ISTC shock but the initial belief

about ISTC is correct. Not surprisingly, we get the opposite results compared to the positive bias scenario

in Figure 5: expected TFP is bigger due to lower beliefs about ISTC. As ISTC dominates agents’choices,

output, investment, and consumption all fall short of their counterparts under accurate initial beliefs.
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Figure 6 —Impact of negatively biased beliefs

5.7 The "co-movement" curse

Having studied the role of various shocks on the model economy, we now use our model to address a

key challenge that faces general equilibrium business cycle models: the "co-movement curse." Barro and

King (1984) argue that models with a real business cycle core have diffi culty generating positive co-

movement between consumption and investment, when shocks other than TFP shocks, such as news

shocks, uncertainty shocks, or financial shocks, are the main driving forces of fluctuations. This problem is

particularly stark for models with investment-specific shocks, as these shocks are important demand-side

shocks, as stated in Justiniano et al. (2010, 2011), which change the incentive to invest instead of consuming

without affecting the current capacity of the economy, inducing a strong negative correlation between

consumption and investment: see Campbell (1998) for an early example. The literature tends to address

the co-movement issue by adding more features to standard models, such as roundabout production and

stochastic trends in neutral and investment technology as in Ascari et al. (2016), countercyclical markups

and sticky prices as in Basu and Bundick (2017), a two-sector sticky-price model with durable goods

consumption as in Chen and Liao (2018), among others. In contrast, our model implies that, even without

additional features, uncertainty about the nature of technological progress in an otherwise standard model

(i.e. without additional frictions or changes to the model structure) can aid the resolution of the curse.

Notice first of all that in Figures 2, 3 and 4, the response of the model economy to any type of shock

is to increase (or decrease) both consumption and investment together. As illustrated in Figure 5, the

investment reaction of agents to an investment-specific shock is more muted than for a TFP shock because
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agents are unsure about the nature and value of the shock —yet even then consumption and investment

both rise together. In addition, besides its positive impact on investment, the ISTC shock also leads to a

persistently rising and higher consumption, as agents, after observing the signals, not only expect ISTC to

rise, but also expect a gradual increase in neutral productivity, as implied by Proposition 3. Quantitatively,

given the estimated parameter values, if we assume the ISTC shock were the only shock affecting the

economy, the model implied conditional correlation between investment and consumption following the

ISTC shock would be 0.88. When taking the dynamics generated by all the stochastic shocks (TFP,

ISTC, and noise shocks) into consideration, our model with uncertainty still generates an unconditional

correlation at 0.62. This is quite close to the correlation between (cyclical) consumption and investment

observed in our data (1968Q3 to 2015Q3), which is 0.74, and a significant improvement compared to the

model without uncertainty, which displays a correlation between consumption and investment of 0.26. Note

that 0.26 is obtained using model NU, where we simulate the standard model without uncertainty using

the parameter values estimated when we allow the parameters in the standard model to freely move, i.e.,

we conduct a Bayesian estimation for the standard model with the same shock processes and observables

as when we estimate the model with uncertainty. If we remove the uncertainty from the benchmark model

and simulate it using the benchmark parameter values instead of re-estimating them, the correlation is

−0.48.

These results show that our model is successful at reproducing the positive correlation between con-

sumption and investment. In this way, our model contributes to the RBC literature by providing an

alternative but simple solution to the Barro-King puzzle: the introduction of uncertainty about the nature

of technologies alone is enough to generate co-movement between investment and consumption comparable

to that observed in the US economy, without resort to new elements that are not already a core part of

the shocks and frictions in the business cycle literature.

6 Concluding remarks

In this paper, we first show micro-level evidence that uncertainty is indeed greater in high-ISTC indus-

tries. We then propose a general dynamic stochastic model with uncertain productivity values and Bayesian

learning to study the effects of technology shocks and a noise shock on macroeconomic fluctuations in an

environment with uncertainty about current fundamentals. We show that TFP shocks generate more

volatile responses under uncertainty than certainty, whereas ISTC shocks generate smaller but more per-

sistent responses. In addition, the introduction of uncertainty about technologies yields a co-movement

of consumption and investment in response to ISTC shocks, which cannot be obtained from the stan-

dard model with no uncertainty. Finally, a non-persistent noise shock regarding the investment specific

technology changes agents’behavior persistently, even though the underlying fundamentals governing the
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economy remain unchanged. This is because the noise shock not only affects beliefs about investment

specific technology, but also about neutral productivity.

At a broad level, the paper delivers an important generalization result: the response to ISTC shocks,

which the literature has increasingly emphasized as sources of variation in aggregate time series, and to

noise regarding ISTC, are both persistent. Thus, uncertainty about fundamentals introduces increased

persistence in macroeconomic time series. This persistence is something that a policy authority can do

little to ameliorate unless they have access to information that is not available to private agents. Ma (2015)

studies monetary policy in an environment with uncertainty such as ours, but with additional features of

preferences and technology that are typically incorporated into models for policy analysis. In addition, an

extension of the model might be suitable for addressing is the fact that GDP itself may be observed with

error, which could introduce even more persistence. Collard et al (2009) study an environment with error,

but ISTC is not a feature of that model and, as suggested by the current paper, the implications when

ISTC is observed with error are likely to be significantly different. In addition, it could be that the extent

of noise in the signalling process is time-varying, along the lines of Bloom (2009), which would introduce

possibly interesting interactions between volatility and learning dynamics. Finally, we do not explore how

uncertainty about fundamentals might affect dynamics when agents’information sets might be different.

These extensions are left for future work.

Third, the methodology we propose to solve the benchmark model with uncertain technologies assumes

that the variance-covariances of the unobserved fundamentals are constant. This approach can be applied

to the situation where the variance of beliefs about the unobserved technologies is time varying. It is

interesting to explore the implications for business cycles under this scenario, which could be either due to

economic agents still learning about the signal-to-noise ratio that has not yet settled down to the steady

state level, or to the presence of stochastic shocks to the variance of noise that lead to time-varying higher

moments of beliefs.

Last but not least, the finding that "fake news" (noise in signals) can have a persistent impact on beliefs

and thus on economic outcomes —even when the fake news shocks themselves are not persistent —could

have implications for understanding other environments where informational rigidities or ineffi ciencies are

important. This may apply not just in macroeconomics but perhaps in industrial organization —where

learning is widely believed to be important for productivity dynamics, entry and exit — or in political

economy environments with imperfect information.
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8 Appendix

8.1 Appendix 1: Measuring Uncertainty by ISTC

We hypothesize that, If uncertainty is indeed linked to the rate of ISTC, uncertainty measured in sectors

where ISTC is more rapid, i.e. which use capital goods that experience particularly rapid ISTC —should

bear more importance in accounting for economic fluctuations than uncertainty measured in other sectors

of the economy. Specifically, if we measure uncertainty using forecast errors as before, forecast errors in

high-ISTC industries should have macroeconomic impact, whereas forecast errors in low-ISTC industries

are due to idiosyncratic or other factors that are not as critical for macroeconomic aggregates.

To obtain sector-specific measures of uncertainty, we draw on recent work by Ma and Samaniego (2018).

The premise behind the Ma and Samaniego (2018) strategy for measuring uncertainty is that changes in

the uncertainty, and thus the unpredictability of the economic environment —at the aggregate and at the

industry level —will be reflected in the analyst forecasts being less accurate than usual on average. Ma and

Samaniego (2018) thus develop a measure of aggregate uncertainty based on the median forecast errors of

the swarm of analysts making predictions every day about financial data for different firms21. Since their

uncertainty measure is constructed using firm level data, and since the industry codes of most of these

firms are available in the CRSP database, one can measure uncertainty about a particular industry or

sector by simply focusing on forecasts made about the relevant subset of firms. We will use this strategy

to measure uncertainty in industries where the rate of ISTC is high, and uncertainty in industries where

the rate of ISTC is not high.

Here we focus on US firms. This yields almost 2 million forecasts issued by roughly 1300 different

brokers. For each firm at each date we compute the average forecast error.22 Then we take the median

forecast error across firms within each month, starting in September 1981.23 Thus it is the median forecast

error by firm-day pair. We calculate the absolute values of these median forecast errors and deflate them

by the monthly CPI in order to ensure our measures are reported in real terms24.

We then obtain industry codes from CRSP.25 Thus, we can define the set of firms of interest I as being

either high-ISTC firms or low-ISTC firms. We define high-ISTC firms using the data in Cummins and

21They also draw I/B/E/S forecasts of the earnings-per-share ratios (EPS) of individual companies, and measure sector
uncertainty using the absolute value of the median EPS forecast error for firms in that sector within each month.
2286 percent of them are single forecasts about a firm on a given day. The rest have 2 forecasters making forecasts about

a firm on the same day, except for 0.29 percent of the sample which has 3− 5 forecasts.
23This is the first month after which continuous series may be computed. The date is based on the month and year of the

variable anndats.
24Notice that the uncertainty is defined based on the absolute value of the median forecast error. This way uncertainty is

measured as lack of correctness —regardless of the direction. Not doing so would lead to a measure of relative optimism or
pessimism compared to the realization, not uncertainty.
25CRSP reports the NAICS and SIC codes of these firms. We use SIC codes because NAICS codes did not exist early in

our sample.
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Violante (2002). They partition the private economy into 62 non-overlapping industries, and construct

ISTC rates for each industry by weighing measures of ISTC for each type of capital using the composition

of investment in each industry from the US capital flow tables. We measure high-ISTC industries as those

above the median.26 The remainder are low-ISTC industries.

Ma and Samaniego (2018) find that uncertainty in the financial sector is more important for aggregates

than uncertainty outside the financial sector. Again, the financial sector is among the high-ISTC industries

so that, in order to ensure that our results are not simply detecting the impact of financial uncertainty, we

remove all firms that are in the financial sector before computing our uncertainty measures.

Figure A1 displays the HP filtered uncertainty series for high- and low-ISTC industries. Both series

are somewhat similar in that certain key events are visible, including the recession of the early 1980s, the

popping of the tech bubble in 2001 and the financial crisis of 2008. The contemporaneous correlation is 0.20,

significant at the 5 percent level. At the same time, it is also notable that the two series are by no means

identical, so the two may have different time series properties. First, there are several events identified as

uncertainty shocks by the low-ISTC measure to which the high-ISTC measure does not respond. Second,

intriguingly, when we examine the cross-correlogram of the two uncertainty series, we find that the highest

correlation is 0.3430 when high-ISTC uncertainty is lagged by 3 months. This suggests that high-ISTC

uncertainty lags low-ISTC uncertainty, consistent with the notion that uncertainty shocks originate in the

high-ISTC sectors, or that high-ISTC industries experience uncertainty earlier.

26These industries are air transportation; pipeline transportation; motion picture and sound recording; broadcast-
ing and telecommunications; information and data processing services; credit intermediation and related activities; secu-
rities, commodity contracts, and investments; insurance carriers and related activities; funds, trusts, and other financial ve-
hicles; rental and leasing services and lessors of intangible assets; computer systems design and related services; miscella-
neous professional, scientific, and technical services; administrative and support services; ambulatory health care services;
and hospitals.
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Table 4: Correlations between different measures of Uncertainty
Correlations between the high- and low-ISTC uncertainty measures based on I/B/E/S/ forecasts on the one hand, and uncertainty measures

drawn from the literature on the other. See text for definitions. Two and three asterisks represent statistical significance at the five and one

percent levels respectively. Sources: I/B/E/S database, authors’calculations, Bloom (2009), Bachmann et al (2013) and Jurado et al (2015).

Uncertainty measure High ISTC Low ISTC
Dispersiont .118** .146
Unpredictt .319*** .095
Googlet .047 .128
Stockt -.075 -.020
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Figure A1 —Monthly uncertainty measured separately for high-

and low- ISTC industries.

In addition, we find that the correlation between the high- and low-ISTC uncertainty measures and

the other aggregate uncertainty measures mentioned earlier are informative. The high-ISTC uncertainty

is statistically significantly related to some of the aggregate measures. In contrast, the low-ISTC measure

is not related to these other uncertainty measures.

We then use standard, recursively identified VAR model to investigate the dynamic responses of key

macro variables to innovations in our uncertainty measures. For brevity in discussing the results, we will

often refer to these innovations to uncertainty as uncertainty shocks. As is the case in all VAR analyses,

the impulse responses and variance decompositions depend on the identification scheme, which is based on

the ordering of the variables in our exercise.
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Existing empirical research on uncertainty has often found important dynamic relationships between

real activity and various uncertainty proxies. In particular, these proxies are often countercyclical and VAR

estimates suggest that they have a significant impact on output and employment in the months after an

innovation in these measures. A key finding is that a rise in some proxies of aggregate uncertainty depresses

real activity in the short run, consistent with the predictions of some theoretical models where uncertainty

is a driving force of macroeconomic fluctuations27. Instead, we wish to see whether the high- and low-ISTC

uncertainty measures behave differently in the sense that one has a more significant aggregate effect than

the other. For this purpose, we choose a specification similar to that studied in Bloom (2009), as to which

variables to include in the VAR and how to order the variables. Following Bloom (2009), we use 12 lags

of monthly data of the log S&P 500 index, federal funds rate, log wages, log CPI, log hours worked in the

manufacturing sector, log employment for the manufacturing sector, and log industrial production. The

macroeconomic dynamics of these variables have been extensively studied in the literature. All variables

are included in levels. The variables are ordered as follows:

log (S&P 500 Index)

uncertainty1

uncertainty2

federal funds rate

log (wages)

log (CPI)

log (hours)

log (employment)

log (industrial production)


The difference with a standard VAR in the uncertainty literature is the inclusion of two uncertainty

measures in the VAR in place of one. The measure of uncertainty will be computed using either high-

ISTC firms or low-ISTC firms. The reason we include both of them is that we wish to see the role of

each uncertainty measure in macroeconomic dynamics conditional on the other. Thus, we perform our

estimation twice: once with high-ISTC ordered first, and once with low-ISTC ordered first.

Figure A2 displays results when we put high-ISTC uncertainty before low-ISTC uncertainty. An in-

crease in both uncertainty measures reduces the stock index, but the magnitude of the high-ISTC uncer-

tainty impact is larger and considerably more persistent. The same is true of industrial production: the

impact of low-ISTC uncertainty is smaller and wears off after about 15 months, whereas the impact of

27See Ma and Samaniego (2018) for a survey. In particular, they find that that an aggregate uncertainty measure that uses
all firms (instead of splitting the sample as we do) behaves in this way.
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high-ISTC uncertainty lasts much longer and has a much larger peak magnitude.
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Figure A2 —Impulse response of stock market and industrial production

from estimation of VAR with high-ISTC uncertainty and low-ISTC uncertainty.

The VAR includes both forms of uncertainty, with high-ISTC uncertainty ordered

before low-ISTC uncertainty.

Figure A3 repeats the estimation, but ordering low-ISTC uncertainty before high-ISTC uncertainty.

Results are broadly similar. Now low-ISTC uncertainty has a larger short term impact on the stock

market, but it wears off rapidly. In contrast, the high-ISTC uncertainty impact takes longer to develop

and is considerably more persistent. Both types of uncertainty measures have similar peak impact on

industrial production, but again the impact of low-ISTC uncertainty wears off after about 18 months,

whereas the impact of high-ISTC uncertainty lasts much longer. We conclude that uncertainty measured

in high-ISTC industries is more economically significant.

To summarize, we find evidence that ISTC is the source or a conduit of uncertainty. This is interesting

because it suggests that uncertainty may have a technological origin —not with productivity, as hypothe-

sized in Bloom et al (2012), but with ISTC. In what follows we develop a model where this uncertainty is
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due to the presence of imperfectly observed ISTC and neutral technological shocks.

­.04

­.02

0

.02

0 10 20 30 40 50 60
Month

Stock Market to High­ISTC Uncertainty

­.04

­.02

0

.02

0 10 20 30 40 50 60
Month

Stock Market to Low­ISTC Uncertainty

­.01

­.005

0

.005

0 10 20 30 40 50 60
Month

Industrial Production to High­ISTC Uncertainty

­.01

­.005

0

.005

0 10 20 30 40 50 60
Month

Industrial Production to Low­ISTC Uncertainty

Figure A3 —Impulse response of stock market and industrial production

from estimation of VAR with high-ISTC uncertainty and low-ISTC uncertainty.

The VAR includes both forms of uncertainty, with low-ISTC uncertainty ordered

before high-ISTC uncertainty.

8.2 Appendix 2: Calculation of the update of beliefs

For the ISTC and TFP, given their posterior beliefs, and their known true processes of evolution that

follow AR(1) processes:

zt+1 = ψzt + εt+1

qt+1 = ρqt + wt+1

We can derive the prior belief of TFP for period t + 1, hZt+1, and the prior belief of ISTC for period

t+ 1, hQt+1by conjugate distribution calculation as:

zt+1˜N(ψzt|t, ψ
2σ2

z + σ2
ε)

qt+1˜N(ρqt|t, ρ
2σ2

q + σ2
w)
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For the capital, given the posterior belief, and the known true process of evolution:

kt+1e
gk = eqt

[
1− S

(
eg

it
it−1

)]
it + (1− δ)kt

We can calculate the cumulative density function for a random variableKt+1 =
eQt

[
1−S

(
eg

it
it−1

)]
it+(1−δ)Kt

egk
≤

k′as

FK
t+1(k′|mK

t ,m
q
t ) = Prob

eQt
[
1− S

(
eg it

it−1

)]
it + (1− δ)Kt

egk
≤ k′


=

∫ ∫
eq
[
1−S

(
eg

it
it−1

)]
it+(1−δ)k

egk
≤k′

mK
t m

q
tdkdq

where k is the realized value of Kt, q is the realized value of Qt

=

∫ ∞
q=0

∫ egkk′−eq
[
1−S

(
eg

it
it−1

)]
it

(1−δ)

k=0

mK
t m

Q
t dkdq

=

∫ ∞
k=0

∫ log

 egkk′−k(1−δ)[
1−S

(
eg

it
it−1

)]
it


q=0

mK
t m

Q
t dkdq

and therefore the prior belief of capital for period t+ 1, hKt+1, the probability density function is

hKt+1(k′) =

∫ ∞
k=0

egk

egkk′ − k(1− δ)m
K
t m

Q
t

log

 egkk′ − k(1− δ)[
1− S

(
eg it

it−1

)]
it

 dk

=
egk

(1− δ)

∫ ∞
q=0

mK
t

egkk′ −
[
1− S

(
eg it

it−1

)]
ite

q

(1− δ)

mQ
t dq

Meantime, we can also derive an expectation for the next period signals (the likelihood of the signals

conditional on prior distributions of unobserved variables, h(yt+1, φt+1|z, q, k)). That is, for next period

output, the cumulative density function is

50



F Y
t+1

(
y′|hZt+1, h

K
t+1, n

′) = Prob (eZt+1Kα
t+1n

1−α
t+1 ≤ y′)

=

∫ ∫
ez′k′αn′1−α≤y′

hKt+1h
Z
t+1dk

′dz′

=

∫ ∞
z′=0

∫ (
y′

ez
′
n′1−α

)1/α
k′=0

hKt+1h
Z
t+1dk

′dz′

=

∫ ∞
k′=0

∫ log
(

y′

k
′αn′1−α

)
z′=0

hKt+1h
Z
t+1dk

′dz′

and therefore the prior belief of output for period t+ 1, hYt+1, the probability density function is

hYt+1(y′) =
1

α
y
′ 1
α
−1n′

α−1
α

∫ ∞
z′=0

(
1

ez′

)1/α

hKt+1

([
y′

ez′n′1−α

]1/α
)
hZt+1dz

′

=

∫ ∞
k′=0

k
′αn

′1−α

y′
hKt+1h

Z
t+1

(
log

(
y′

k′αn′1−α

))
dk′

8.3 Appendix 3: Calculation of evolution of linearized beliefs

The calculation can be done through the Kalman filter as follows.

Measurement update: Since ỹt = zt+αk̃t+(1−α)ñt, φ̃t = πφ̃t−1 +(1−π)qt+vt, the conditional vector

(
zt

qt

k̃t

ỹt − (1− α)ñt

φ̃t − πφ̃t−1

)
|Yt−1,Φt−1, ñt

is Gaussian, with mean and variance:
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[
 zt|t−1

qt|t−1

k̃t|t−1


(
zt|t−1 + αk̃t|t−1

qt|t−1

)],

[
 ΣZ

t ΣZ,Q
t ΣK̃,Z

t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t

 ,

 ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0


(

1 0 α

0 1− π 0

) ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t

 ,

(
1 0 α

0 1− π 0

) ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0


+

(
0 0

0 σv

)

]

To compute

 zt

qt

k̃t

|Yt,Φt, ñt

 =

 zt

qt

k̃t

|yt, Yt−1, φt,Φt−1, ñt

, which are the posterior beliefs on zt, qt,
and k̃t, we apply the formula for conditional expectation of Gaussian random variables, with everything

preconditioned on Yt and Φt. It follows that

 zt

qt

k̃t

|Yt,Φt, ñt

 is Gaussian, with mean
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 zt|t

qt|t

k̃t|t

 = E


 zt

qt

k̃t

 |Yt,Φt, ñt



=

 zt|t−1

qt|t−1

k̃t|t−1

+

 ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0



(

1 0 α

0 1− π 0

) ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0

+

(
0 0

0 σv

)
−1

[
ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1

φ̃t − qt|t−1 − πφ̃t

]

=

 zt|t−1

qt|t−1

k̃t|t−1

+ Pt

[
ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1

φ̃t − qt|t−1 − πφ̃t−1

]

and covariance

 ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t

 = cov


 zt

qt

k̃t

 |Yt,Φt, ñt



=

 ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t

−
 ΣZ

t ΣZ,Q
t ΣK̃,Z

t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0



(

1 0 α

0 1− π 0

) ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0

+

(
0 0

0 σv

)
−1

[
1 0 α

0 1− π 0

] ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


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where

Pt =

 ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0

×

(

1 0 α

0 1− π 0

) ΣZ
t ΣZ,Q

t ΣK̃,Z
t

ΣZ,Q
t ΣQ

t ΣK̃,Q
t

ΣK̃,Z
t ΣK̃,Q

t ΣK̃
t


 1 0

0 1− π
α 0

+

(
0 0

0 σv

)
−1

Pt converges very quickly to a stationary matrix P . Therefore we will use the converged values (steady

state) of P for the calculation and simulation.

Time update: Recall that zt+1 = ψzt + εt+1. qt+1 = ρqt + wt+1, k̃t+1 = (1−δ)
egk

k̃t + ı̄
k̄egk

ı̃t + ı̄(1+β)e2gϕ

k̄egk
qt.

Furthermore, zt+1 and εt+1 are independent, and qt+1 and wt+1 are independent given Yt,Φt. Therefore,

posterior beliefs of the means are zt+1|t

qt+1|t

k̃t+1|t

 = E


 zt+1

k̃t+1

qt+1

 |Yt,Φt, ñt

 =

 ψ 0 0

0 ρ 0

0 ı̄(1+β)e2gϕ

k̄egk
(1−δ)
egk


 zt|t

qt|t

k̃t|t

+

 0

0
ı̄

k̄egk

 ı̃t
posterior beliefs of the covariances are

 ΣZ
t+1 ΣZ,Q

t+1 ΣK̃,Z
t+1

ΣZ,Q
t+1 ΣQ

t+1 ΣK̃,Q
t+1

ΣK̃,Z
t+1 ΣK̃,Q

t+1 ΣK̃
t+1

 = cov


 zt+1|t

qt+1|t

k̃t+1|t

 |Yt,Φt, ñt



=

 ψ 0 0

0 ρ 0

0 ı̄(1+β)e2gϕ

k̄egk
(1−δ)
egk


 σZt σQ,Zt σK̃,Zt

σQ,Zt σQt σK̃,Qt

σK̃,Zt, σK̃,Qt σK̃t


 ψ 0 0

0 ρ ı̄(1+β)e2gϕ

k̄egk

0 0 (1−δ)
egk

+

 σε 0 0

0 σw 0

0 0 0


The conditional covariance matrices do not depend on the measurement ỹt and φ̃t. They can therefore

be computed in advance, given the noise variances and model parameters.

We can simplify this process, by plugging in the posterior beliefs to the next period prior beliefs, and

we get
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zt+1|t = ψzt|t

= ψ[zt|t−1 + P1,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P1,2(φ̃t − πφ̃t−1 − qt|t−1)]

qt+1|t = ρqt|t

= ρ[qt|t−1 + P2,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P2,2(φ̃t − πφ̃t−1 − qt|t−1)]

k̃t+1|t =
(1− δ)
egk

k̃t|t +
ı̄(1 + β)e2gϕ

k̄egk
qt|t +

ı̄

k̄egk
ı̃t

=
(1− δ)
egk

[k̃t|t−1 + P3,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P3,2(φ̃t − πφ̃t−1 − qt|t−1)]

+
ı̄(1 + β)e2gϕ

k̄egk
[qt|t−1 + P2,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P2,2(φ̃t − πφ̃t−1 − qt|t−1)]

+
ı̄

k̄egk
ı̃t

8.4 Appendix 4:

We have the posterior beliefs as:

zt|t = zt|t−1 + P1,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P1,2(φ̃t − πφ̃t−1 − qt|t−1)

qt|t = qt|t−1 + P2,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P2,2(φ̃t − πφ̃t−1 − qt|t−1)

k̃t|t = k̃t|t−1 + P3,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P3,2(φ̃t − πφ̃t−1 − qt|t−1)

The difference between the actual value zt and the posterior belief zt|t is then given by:
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zt|t − zt
= −P1,2πφ̃t−1 + zt|t−1 + P1,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P1,2(φ̃t − qt|t−1)− zt
= −P1,2πφ̃t−1 + zt|t−1 − zt + P1,1[zt + αk̃t + (1− α)ñt − (1− α)ñt − zt|t−1 − αk̃t|t−1]

...+ P1,2(qt + vt − qt|t−1)

= −P1,2πφ̃t−1 + zt|t−1 − zt + P1,1(zt − zt|t−1) + P1,1(αk̃t − αk̃t|t−1) + P1,2(qt − qt|t−1 + vt)

= −P1,2πφ̃t−1 + (1− P1,1){[Et−1(ψzt−1 + εt)]− (ψzt−1 + εt)}+ P1,2{ρqt−1 + εt

...− [Et−1(ρqt−1 + εt)] + vt}+ α[
(1− δ)
egk

k̃t−1 +
ı̄

k̄egk
ı̃t−1 +

ı̄(1 + β)e2gϕ

k̄egk
qt−1 −

(1− δ)
egk

k̃t−1|t−1

...− ı̄(1 + β)e2gϕ

k̄egk
qt−1|t−1 −

ı̄

k̄egk
ı̃t]

= −P1,2πφ̃t−1 + (1− P1,1)[ψ(zt−1|t−1 − zt−1)− εt] + P1,2[ρ(qt−1 − qt−1|t−1) + εt + vt] +

...+ P1,1α[
(1− δ)
egk

(k̃t−1 − k̃t−1|t−1) +
ı̄(1 + β)e2gϕ

k̄egk
(qt−1 − qt−1|t−1)]

= −P1,2πφ̃t−1 + (1− P1,1)ψ(zt−1|t−1 − zt−1) + (P1,2ρ+ P1,1α
ı̄(1 + β)e2gϕ

k̄egk
)(qt−1 − qt−1|t−1)

...+ P1,1α
(1− δ)
egk

(k̃t−1 − k̃t−1|t−1)− (1− P1,1)εt + P1,2(εt + vt)

Therefore, we have

zt|t − zt = −P1,2πφ̃t−1 + (1− P1,1)ψ(zt−1|t−1 − zt−1)− (P1,2ρ+ P1,1α
ı̄(1 + β)e2gϕ

k̄egk
)(qt−1 − qt−1|t−1)

...− P1,1α
(1− δ)
egk

(k̃t−1 − k̃t−1|t−1)− (1− P1,1)εt + P1,2(εt + vt)

Similarly, the difference between the actual value qt and the posterior belief qt|t is
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qt|t − qt
= −P2,2πφ̃t−1 + qt|t−1 + P2,1(ỹt − (1− α)ñt − qt|t−1 − αk̃t|t−1) + P2,2(φ̃t − qt|t−1)− qt
= −P2,2πφ̃t−1 + qt|t−1 − qt + P2,1[zt + αk̃t + (1− α)ñt − (1− α)ñt − zt|t−1 − αk̃t|t−1] + P2,2(qt + vt − qt|t−1)

= −P2,2πφ̃t−1 + qt|t−1 − qt + P2,2(qt − qt|t−1) + P2,1(αk̃t − αk̃t|t−1) + P2,1(zt − zt|t−1) + P2,2vt

= −P2,2πφ̃t−1 + (1− P2,2)(ρqt−1|t−1 − ρqt−1 − εt) + P2,1α[
(1− δ)
egk

(k̃t−1 − k̃t−1|t−1) +
ı̄(1 + β)e2gϕ

k̄egk
(qt−1 − qt−1|t−1 )] +

...+ P2,1(ψzt−1 + εt − ψzt−1|t−1) + P2,2vt

= −P2,2πφ̃t−1 + [(1− P2,2)ρ− P2,1α
ı̄(1 + β)e2gϕ

k̄egk
](qt−1|t−1 − qt−1) + P2,1ψ(zt−1 − zt−1|t−1)

...+ P2,1α
(1− δ)
egk

(k̃t−1 − k̃t−1|t−1) + P2,1εt − (1− P2,2)εt + P2,2vt

Therefore we have

qt|t − qt = −P2,2πφ̃t−1 + [(1− P2,2)ρ− P2,1α
ı̄(1 + β)e2gϕ

k̄egk
](qt−1|t−1 − qt−1)− P2,1ψ(zt−1|t−1 − zt−1)

−P2,1α
(1− δ)
egk

(k̃t−1|t−1 − k̃t−1) + P2,1εt − (1− P2,2)εt + P2,2vt

Similarly, the difference between the actual value k̃t and the posterior belief k̃t|t is

k̃t|t − k̃t
= −P3,2πφ̃t−1 + k̃t|t−1 − k̃t + P3,1(ỹt − (1− α)ñt − zt|t−1 − αk̃t|t−1) + P3,2(φ̃t − qt|t−1)− k̃t
= −P3,2πφ̃t−1 + k̃t|t−1 − k̃t + P3,1α(k̃t − k̃t|t−1) + P3,1(zt − zt|t−1) + P3,2(qt − qt|t−1 + vt)

= −P3,2πφ̃t−1 + (1− P3,1α)(k̃t|t−1 − k̃t) + P3,1(zt − zt|t−1) + P3,2(qt − qt|t−1 + vt)

= −P3,2πφ̃t−1 + (1− P3,1α)[
(1− δ)
egk

k̃t−1|t−1 +
ı̄(1 + β)e2gϕ

k̄egk
qt−1|t−1 +

ı̄

k̄egk
ı̃t−1 −

(1− δ)
egk

k̃t−1 −
ı̄

k̄egk
ı̃t−1

...− ı̄(1 + β)e2gϕ

k̄egk
qt−1] + P3,1ψ(zt−1 − zt−1|t−1) + P3,2ρ(qt−1 − qt−1|t−1) + P3,1εt + P3,2(εt − vt)

= −P3,2πφ̃t−1 + (1− P3,1α)
(1− δ)
egk

(k̃t−1|t−1 − k̃t−1) + P3,1ψ(zt−1 − zt−1|t−1)

...+ [(1− P3,1α)
ı̄(1 + β)e2gϕ

k̄egk
− P3,2ρ](qt−1|t−1 − qt−1) + P3,1εt + P3,2(εt − vt)

Therefore, we have
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k̃t|t − k̃t = (1− P3,1α)
(1− δ)
egk

(k̃t−1|t−1 − k̃t−1)− P3,1ψ(zt−1|t−1 − zt−1)

...+ [(1− P3,1α)
ı̄(1 + β)e2gϕ

k̄egk
− P3,2ρ](qt−1|t−1 − qt−1) + P3,1εt + P3,2(εt − vt)

8.5 Appendix 5: Linearized equations characterizing the economy

Since the evolution of beliefs are in log-linearized form, it will be convenient if the FOCs and budget

constraints are also in log-linearized form. Thus we transform the equations before doing the estimation

and simulation into the following linearized system of equations, after assuming the utility function follows

U = log ct − Ant:
Evolution of beliefs:

zt+1|t = ψ[zt|t−1 + P1,1(zt + αk̃t − zt|t−1 − αk̃t|t−1) + P1,2(φ̃t − πφ̃t−1 − qt|t−1)]

qt+1|t = ρ[qt|t−1 + P2,1(zt + αk̃t − zt|t−1 − αk̃t|t−1) + P2,2(φ̃t − πφ̃t−1 − qt|t−1)]

k̃t+1|t = (1−δ)
egk

[k̃t|t−1 + P3,1(zt + αk̃t − zt|t−1 − αk̃t|t−1) + P3,2(φ̃t − πφ̃t−1 − qt|t−1)]+

+ ı̄(1+β)e2gϕ

k̄egk
[qt|t−1 + P2,1(zt + αk̃t − zt|t−1 − αk̃t|t−1) + P2,2(φ̃t − πφ̃t−1 − qt|t−1)] + ı̄

k̄egk
ı̃t

Resources:

ỹt = c̄
ȳ
c̃t + ī

ȳ
ĩt

ỹt|t−1 = c̄
ȳ
c̃t|t−1 + ı̄

ȳ
ı̃t|t−1

Household optimization:

0 = c̃t − Etc̃t+1 + β
egk

(r̄Etr̃t+1 − (1− δ)qt+1|t) + qt|t

0 = c̃t|t−1| + w̃t|t−1

ı̃t = 1
1+β

ı̃t−1 + (1− 1
1+β

)Etı̃t+1 + 1
(1+β)e2gϕ

p̃t + qt|t

p̃t = β
1−δEtp̃t+1 + (1− β

1−δ )Etr̃t+1 − rt
Production optimization:

ỹt = zt + αk̃t + (1− α)ñt

ỹt|t−1 = zt|t−1 + αk̃t|t−1 + (1− α)ñt

r̃t|t−1 = (1− β(1− δ))(zt|t−1 + (α− 1)k̃t|t−1 + (1− α)ñt)

w̃t|t−1 = zt|t−1 + αk̃t|t−1 − αñt
r̃t = (1− β(1− δ))(zt + (α− 1)k̃t + (1− α)ñt)

w̃t = zt + αk̃t − αñt
Capital evolution

k̃t = (1−δ)
egk

k̃t−1 + ı̄
k̄egk

ı̃t−1 + ı̄(1+β)e2gϕ

k̄egk
qt−1

Shock processes:

φ̃t = πφ̃t−1 + (1− π)qt + vt
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zt = ψzt−1 + εt

qt = ρqt−1 + wt
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