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Abstract

Using a panel of tract-level bilateral commuting flows, I estimate the causal effect of Los An-
geles Metro Rail on commuting between connected locations. This unique data, in conjunction
with a spatial general equilibrium model, isolates commuting benefits from other channels.
A novel strategy interacts local innovations with intraurban geography to identify all model
parameters (local housing and labor elasticities). Metro Rail connections increase commuting
between locations containing (adjacent to) stations by 15% (10%), relative to control routes se-
lected using proposed and historical rail networks. Other margins are not affected. Elasticity
estimates suggest relatively inelastic mobility and housing supply. Metro Rail increases wel-
fare $146 million annually by 2000, less than both operational subsidies and the annual cost of
capital. More recent data show some additional commuting growth.
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1 Introduction

High commuting costs limit consumer choice and mobility within cities. Governments consider a
broad range of interventions to mitigate the costs of distance and congestion. Subway and light
rail systems are increasingly popular: Since the 1980s, Atlanta, Austin, Dallas, Denver, Hous-
ton, Los Angeles, Miami, Phoenix, Portland, and Seattle have all built systems. But rail transit is
expensive, costing far more per mile than roads.! The benefits of urban rail are less certain in poly-
centric cities built around private automobiles. Do these benefits outweigh costs in automobile-
dominated modern cities?

I study the effects of Los Angeles Metro Rail on commuting and welfare. Los Angeles is a large,
car-oriented region that built an extensive rail network within a decade, making LA Metro Rail
particularly relevant for other cities considering rail transit. I assemble unique data that include
all census tract-to-census tract commuting flows and times in 1990 and 2000 and develop an iden-
tification strategy that exploits both the bilateral and panel aspects of the data to provide the first
direct estimates of the effect of transit on commuting flows. The gravity-like estimating equation
includes origin-year and destination-year fixed effects, allaying standard selection concerns due
to non-random placement of transportation infrastructure.? Instead, identification of the commut-
ing effect hinges on selecting pairs of locations that satisfy treatment ignorability. In practice, this
means comparing changes in flows between pairs of locations that both receive treatment to pairs
of locations in which just one, or neither, receive treatment.

I use three complementary strategies to select a plausible counterfactual transit network and
recover causal estimates of transit’s effect of bilateral commuting. The first two strategies exploit
historical maps of streetcar and proposed subway routes, and the third defines control pairs by
adjacency to treated pairs and provides a lower bound on the effect size. The effect of LA Metro
Rail is substantial: commuting increases by 11%-15% between connected tract pairs that both
contain stations by 2000. Slightly more distant pairs show increases of 9%-13%. By measuring
commuting flows (rather than travel time), these results implicitly capture very local effects of
changes in congestion brought about by transit.

I describe and carefully estimate a quantitative economic geography model to translate the
commuting effects to welfare and account for general equilibrium effects. The model casts the
city as a collection of labor and housing markets (census tracts) connected by commuting, and
generates the gravity equation used to estimate commuting effects.> However, the model requires
census-tract scaled labor and housing market elasticities that have not been rigorously estimated

1. Light rail in the US typically costs $50-$150 million per mile, while subways in the US typically cost more that
$500 million per mile. At grade highways typically cost about $10 million per mile.

2. See Redding and Turner (2015) for a review of this challenge and common solutions.

3. I show how the addition of rich commuting data allows this urban economic geography model to be expressed
by a system three linear (in log) equations. In this respect, the model is a within city analog of Roback (1982), but with
commuting. Albouy and Lue (2015) study larger-scale regional patterns using compensating differentials.



before. I therefore develop a new strategy and assemble unique data to identify these parameters.
I first develop a local implementation of a shift-share instrument that exploits tract-level variation
in labor demand within the city. I instrument previously unused data on changes in average wage
at tract of work with this local labor demand shock to estimate a local (tract-level) labor supply
elasticity. This elasticity governs how responsive agents are to changes in prices, amenities, and
commuting costs, and is essential to translate treatment effects to utility. Estimates indicate a low
value, implying agents are heterogeneous in their preferred locations and relatively unwilling to
move in response to changes in local characteristics.

I next interact the tract-specific labor demand shocks with the spatial configuration of the city
to generate additional instruments that identify all remaining labor and housing market elastici-
ties. I find that housing supply is inelastic and estimate reasonable values for other parameters.
In addition to parameterizing the model, this step recovers time-varying, tract-specific fundamen-
tals that correspond to non-commuting primitives that determine housing and labor supply and
demand (such as productivity and amenities). I estimate the effect of transit on these local fun-
damentals with a difference-in-difference strategy; control tracts are selected using the historical
streetcar and proposed subway route data. This provides an explicit test whether transportation
infrastructure alters city structure through commuting or through other channels. The commuting
effect dominates; impacts from non-commuting channels (e.g., amenities) appear minimal.

Transit increases the attractiveness of commuting between connected tracts, leading to sub-
stantial welfare gains. Preferred estimates show that by 2000, LA Metro Rail generates $109-$146
million in annual surplus, or $6-$8 for every ticketed ride. However, these benefits amount to no
more than one-half the annualized cost of construction and net operating expenses, depending
on the discount rate. I draw upon alternative data to test for further changes in commuting after
another fifteen years. Tracts first connected before 2000 see an additional increase in commuting
of 6%-11% by 2015, and tracts connected after 2000 experience a 12%-13% increase in commuting
by 2015. Taking these additional gains into account, benefits exceed operational subsidies, but
only exceed total costs (including capital expenditures) under a very low discount rate. This anal-
ysis suggests that rail transit is unlikely to be cost effective over its first two or three decades as
measured by its primary output, commuting.*

I also assess common methods and assumptions in the growing urban economic geography
literature (e.g., Ahlfeldt et al. 2015; Donaldson 2018; Monte, Redding, and Rossi-Hansberg 2018;
Tsivanidis 2018) with panel data for all tract-tract (bilateral) commuting flows and average work-
place wage; such data are typically unobserved. I compare observed commuting flows to stan-
dard practice, which uses cross-sectional travel survey data to estimate the marginal disutility

of travel time and then infer changes in commuting from computer-modeled changes in travel

4. One important caveat is that while I calculate the commuting effects over a twenty-five year window, I can only
examine other channels between 1990 and 2000. Unmeasured benefits include increased mobility for non-commuters
(those unemployed or not in the labor force) and environmental factors.



time. Flow data are prima facie preferable, as changes in bilateral commuting implicitly reflect
changes in congestion and other factors that are difficult to measure or model (like reliability, cost,
etc.) Panel flow data offer better measurement of the marginal disutility of travel time (gravity);
estimates are smaller than in the cross-section, reflecting the importance of time-invariant, pair-
specific characteristics in determining commuting. Commuting flows are also informative about
the connectivity between locations. Compared to measures of “market access”—which describe
potential connectivity—commuting based measures represent more heterogeneity and thus re-
flect a less smooth, and likely more realistic, urban geography. Finally, common practice recovers
workplace wage by assuming that wage perfectly determines employment (conditional on resi-
dential geography and travel time). These recovered wages poorly explain observed wages, and
identifying assumptions that rely on these recovered wages may be implausible. Using this data,
I find a smaller Fréchet shape parameter (labor supply elasticity) than typical, reflecting greater
idiosyncrasy in location choice.

Quantifying the effects of transit is challenging. A hedonic literature notes that commut-
ing benefits of transit are capitalized into housing and land prices (Baum-Snow and Kahn 2000;
McMillen and McDonald 2004). However, this approach primarily considers homeowner bene-
tits, potentially excluding other commuters. Nor do hedonics easily isolate the commuting ben-
efit; residential amenities (Chen and Whalley 2012; Kahn 2007) or disamenities (Bowes and Ih-
lanfeldt 2001) may play a role. Price spillovers are another concern, potentially violating the sta-
ble unit treatment value assumption (SUTVA).> Metropolitan-level analysis suggests that public
transit expansion may enhance aggregate productivity and employment growth (Chatman and
Noland 2014; Duranton and Turner 2012), but has at most a small effect on population growth
(Gonzalez-Navarro and Turner 2018) and does little to reduce city-level commute times (Duran-
ton and Turner 2011). Such aggregate analysis avoids many issues, but cannot capture local factors
or study urban form.°

The particular research setting is of great interest: Metro Rail installed a relatively large rail
network with forty-six stations on four lines by 2000.” The experience of Los Angeles is more
informative for most cities considering rail-based mass transit than studies from older, denser
cities (e.g., Gibbons and Machin 2005). It is an active line of inquiry whether new mass tran-

sit infrastructure in less dense cities provides appreciable benefits, particularly given the newer

5. Gibbons and Machin (2005) show that transit can displace housing demand elsewhere; Donaldson and Hornbeck
(2016) discuss the importance of modeling general equilibrium when evaluating transportation infrastructure.

6. At the other end of the spectrum, transportation analyses often follow McFadden (1974) to study modal choice.
These models require knowledge of the components of travel costs (travel time, reliability, complementary activities,
etc.), agents’ choice sets, and accurate measures of their value. However, these models typically do not endogenize
agents’ workplace and residence decisions, and empirical estimates vary widely. Summarizing many studies, Small
and Verhoef (2007) notes value of time estimating varying from 35%-84% of wage rate for commuting, and from 20%-
90% of wage rate for personal travel.

7. Metro Rail officially ran three lines during this period, but one line had two branches and was later separated to
form two separate lines.



role of cities as centers of consumption in addition to production (Baum-Snow, Kahn, and Voith
2005; Billings 2011; Glaeser, Kolko, and Saiz 2001). Interest in understanding the economic conse-
quences of Metro Rail has indeed been high, and there is a budding line of research on the topic.®
Relative to this literature, I use new data to study a new outcome (commuting flows), develope a
comprehensive identification strategy, and report credible estimates of welfare impacts.’

The paper proceeds to describe the setting in Section 2 and data in Section 3. Section 4 describes
identification and estimation of the commuting effect. Section 5 then develops and characterizes
the spatial economic geography model. Section 6 discusses the second identification challenge:
recovering the structural elasticities that parameterize the model. I then report estimates of these
elasticities and the non-commuting effects of transit in Section 7. Section 8 describes commuting
welfare estimation and results, and Section 9 discusses extensions. Section 10 concludes.

2 Setting: Commuting and Transit in Los Angeles

In the 1980s, commuting in Los Angeles was dominated by the automobile. Among the five US
Metropolitan Statistical Areas (MSAs) with at least 5 million residents, Los Angeles area residents
were the most likely to commute alone in private vehicles and less than half as likely to take
transit as the next least transit intensive MSA. The dominance of the automobile, in combination
with complex geography prone to bottlenecks, meant that Los Angeles was consistently ranked
the most congested urban area in the United States. The average trip in LA took one-third longer
than the uncongested time, three times the national average (Schrank et al. 2015).

Concerns about congestion were not new. Los Angeles had long been more car-oriented than
other cities in the United States, adopting automobiles in large numbers during the rapid growth
of the 1920s.1° By the 1960s, momentum for a transit solution was growing. After several failed
referendums, Los Angeles passed Proposition A in 1980, which enabled a sales tax increase ded-
icated to transit. Relative to prior proposals, Proposition A only suggested vague corridors to
allow later community involvement. The plan would eventually combine subway and light rail
operations to create an interconnected urban rail transit system. Construction began in 1985.

A heavy subway line was to run west from downtown along Wilshire Boulevard, an impor-
tant employment corridor. Construction of the heavy subway line was altered after unexpected

methane leakage resulted in an explosion in a discount clothing retailer on Wilshire in 1985 (see

8. Schuetz (2015) shows little change in employment near new Metro Rail stations, and Schuetz, Giuliano, and Shin
(2016) asks whether zoning might hinder transit-oriented development near rail stations. Redfearn (2009) studies het-
erogeneity in the capitalization of the transit amenities in Los Angeles. Anderson (2014) uses transit worker strikes to
study congestion spillovers to nearby highways.

9. The use of historical and proposed routes is a mainstay of regional economics (e.g., Baum-Snow 2007), but these
tools are only just beginning to be applied within cities (e.g., Heilmann 2018). The adjacency approach applies the
intuition of Dube, Lester, and Reich (2010) to bilateral flow data.

10. Chicago had fewer cars entering its urban core in a twenty-four period than Los Angeles did in half a day in the
early 1920s, despite having a population more than twice as large (Kelker, De Leuw & Company 1925).



Elkind 2014). As a consequence, the line was instead routed along a more northerly corridor,
although a compromise spur was allowed to extend some of the way along Wilshire. Westward
expansion of this spur (later named the Purple Line) ended four miles before the initially proposed
terminus due to Congressional legislation. The first five stations opened in early 1993. The three
stations along the compromise spur opened in 1996. Three more stations opened along the north-
ern alignment (later named the Red Line) in 1999. Finally, in mid-2000 three additional stations
were added that crossed under the Hollywood Hills, connecting Downtown Los Angeles with the
San Fernando Valley.

The heavy subway line was integrated into a larger network of light rail lines. The Blue Line
opened before the Red/Purple Line in mid-1990 (though construction delays meant it did not
reach its urban termini until early 1991). It was aligned at grade along a previous streetcar right of
way, and was therefore the quickest to construct. The east-west Green Line opened in 1995, pass-
ing through southern Los Angeles county, partially in the median of a new highway alignment.
The Green Line was originally intended to connect the rail system with the international airport,
but was realigned to the south after the Federal Aviation Administration raised concerns about
adverse impacts on flight paths.

Though I primarily focus on the system by 2000, LA Metro Rail continues to grow. Two lines
have already opened and expanded. The Expo Line reached Culver City (another major employ-
ment center) in 2012 and now extends to Santa Monica, connecting the system to both the beach
and another employment hub. The Gold Line first opened in 2003 and now connects downtown
LA with areas to the east and southeast. The system currently operates 6 lines, 93 stations, and
about 106 miles of rail; current construction will add another line and 17 stations.

3 Data

I develop a panel of tract-level outcomes in 1990 and 2000 that covers Los Angeles County and
four adjacent counties (Orange, Riverside, San Bernardino, and Ventura). This five-county area
is economically distinct from other conurbations and captures most relevant local interactions.
While there is a rich amount of data available, there are some difficulties in obtaining consistent
data over the sample period.!! I briefly discuss my solutions to these issues and data sources,
additional details can be found in the Appendix.

Geo-normalization. The standard unit of observation in this paper is a census tract or tract
pair using 1990 Census geography. Tract definitions change over time, and data products that
provide consistent geographies do not include many of the primary variables of interest in this
study. I normalize to 1990 geography because it involves the least amount of data manipulation
and minimizes rounding issues. For data from 2000, I collect data at the block group or tract level.

11. I provide limited additional results using more recent (up to 2015) data despite these challenges.



I overlay the 2000 geographies on 1990 tract definitions to spatially assign them to 1990 tracts. For
block groups that map into multiple tracts, I weight block groups to tracts proportionally by area.

Commuting flow data. The primary sources for tract-to-tract commuting flow data are the
1990 and 2000 Census Transportation Planning Packages (CTPP). The CTPP reports aggregate
commuting flows between traffic analysis zones, average travel time, some modal information,
and various other tabulations. In Los Angeles, traffic analysis zones mostly overlap census tracts;
I adjust where necessary. I normalize geographies to 1990 and construct a panel of tract-to-tract
commuting flows. Data suppression standards change across CTPP waves, so I apply consis-
tent rounding and suppression rules when combining data across years. In Section 9, I develop
a similar dataset covering 2002 and 2015 using LEHD Origin Destination Employment Statistics
(LODES), normalized to 2010 geographies. Because of methodological differences in data collec-
tion, I do not combine CTPP and LODES.

Place of residence and place of work data. I draw aggregate data on residential census tracts
and block groups from the National Historic Geographic Information System (NHGIS). I also
use Geolytics” Neighborhood Change Database (NCDB) to validate identifying assumptions. The
CTPP contains average tract of work wage data unavailable elsewhere, and employment by indus-
try (in 18 aggregate Standard Industrial Classification (SIC) codes). I trim this data to exclude
implausible changes between 1990 and 2000 levels (see Appendix for discussion). More recent
CTPP products do not include workplace wage, which is the primary data limitation that restricts
my primary analysis to the 1990-2000 period.

Transit data and treatment; other data sources. I obtain shapefiles with location data on Metro
Rail transit stations and lines from the Los Angeles County Metropolitan Transportation Author-
ity (LACMTA) and combine this with published information on the timing of station and line
openings. To construct labor demand shocks, I draw from IPUMS microdata on all workers out-
side of California from the 1990 and 2000 Censuses. I obtain a panel of spatial land use data from
the Southern California Association of Governments (SCAG). I also draw extensively from Kelker,
De Leuw & Company (1925), which includes maps of a proposed subway system and of former
streetcar lines operated by the Pacific Electric Railroad (PER).

4 Commuting Effects of LA Metro Rail

The number of people commuting from residential tract ¢ to workplace tract j at time ¢, denoted
Niji, depends on residential tract characteristics, 0;;, workplace tract characteristics, w;;, and travel
costs 7;5;. Let T denote some function of proximity to transit. Commuting is:

Nijt = Nijt @it(Tz’t),wJ‘t(Tj ), Tijt(Tit, T )) (1)



The commuting effect of transit captures how connecting ¢ and j changes commuting through
travel costs 7;5;. Equation (1) shows that transit can potentially shift residential or workplace
characteristics in addition to travel costs. Simple regression of commuting flows on transit will not
generally differentiate commuting effects from other margins—even if well identified. I discuss
identification the commuting effect of transit, %—]f g—;, in this section, and separately estimate other
margins in Section 7.

I rely on both the bilateral and temporal aspects of the flow data. Bilateral data provide a flex-
ible way to control for residential and workplace characteristics and shocks. Temporal variation
allows pair-specific fixed effects that control for time-invariant pair characteristics, such as com-
plementarities between certain residential and workplace areas. Let 7;;; be a function of T;; and

T}; that denotes proximity to transit at both origin 7 and destination j. I estimate:
In(Nije) = wje + Oit + sij + A7 Tije + €41 (2)

where ¢;; are pair fixed effects and the error captures unobserved, pair-specific shocks to commut-
ing between two locations. Because residential and workplace tract-by-year fixed effects capture
non-commuting effects of transit, A\” is the average commuting effect of transit. Equation (2) is
a panel gravity equation, where distance is subsumed (and flexibly controlled for) by the time

invariant pair fixed effects (e.g., Baier and Bergstrand 2007).1?

Unlike other gravity-based ap-
proaches, I directly model the effect of transit on commuting flows, rather than inferring effects
from changes in travel time.

Treatment is defined as proximity of both a residential and a workplace tract to LA Metro Rail

stations. I use three binary definitions of treatment:

i) O & D contain station: both tracts either contain a transit station or have the centroid within

500 meters of a transit station,
ii) O & D <250m from station: both tracts have some part within 250 meters of a transit station,
iii) O & D <500m from station: both tracts have some part within 500 meters of a transit station.

For ease of interpretation, these are always mutually exclusive so as to represent sequentially less
access to transit. For example, tracts that satisfy “O & D <250m from station” are recoded to not
satisfy “O & D contain station.” The median tract is 1.38km?, so this bin roughly corresponds to

12. One concern is that NV;;; = 0 for some observations, so In(N;;;) is undefined. In most specifications, I follow much
of the trade literature and exclude pairs with zero flows. There are a few reasons why this reasonable in my setting.
Most pairs connected by transit have non-zero flows, and there is little difference in zero and positive commuting be-
tween treated and untreated pairs. I estimate high-dimension fixed effects Poisson PML models for some specifications,
and results are generally qualitatively and quantitatively similar (see the Appendix). This is because most pairs that are
ever zero (in either 1990 or 2000) are zero in both years. Always zero pairs do not contribute to alternative estimators
(panel Poisson models), and so persistent zeros in panel data are less problematic than in the cross section.



a catchment area of (Okm,1.42km] from the station. Only stations open before the end of 1999 are
used to define treatment.!3
In some specifications, I supplement Equation (2) with additional covariates and fixed effects:

In(Niji) = wjt + Oit + 35 + MN0Tju + ts,,0 + T + €ije 3)

Subcounty-by-subcounty-by-year fixed effects, ¢s,5,¢, capture regional shifts in commuting pat-
terns. This allows flexible trends in economic integration between pairs of regions (e.g., down-
town to west Los Angeles), and limits the variation identifying AP pairs of tracts within the same
pair of subcounties. There are few observable, time-varying, pair specific covariates to include
in x;5;, but two are potentially important. First, I add controls for proximity to the Century Free-
way, which opened in the mid-1990s and along which the Green Line runs (see Brinkman and Lin
(2017) for local effects of highways). Travel time is also important, but I do not have a time varying
measure of travel time for all pairs of locations. Pair-fixed effects ¢;; capture most of this variation.

Further, travel time may respond to transit (i.e., a bad control), as I discuss below.

4.1 Identification

Equation (2) is a bilateral flow analog to difference-in-difference (DD) estimation, supplemented
with origin- and destination-by-year fixed effects. Identification requires parallel counterfactual
trends: In the absence of treatment, commuting between treated tract pairs and control tract pairs
would have evolved similarly on average, conditional on separable changes to residential and workplace
locations. This conditioning substantially relaxes standard DD identification. Time-varying origin
and destination fixed effects largely control for the non-random siting of transportation infrastruc-
ture, as well as other potentially confounding shocks (e.g., to school quality, zoning, etc.)

Identification is instead threatened by the selective placement of transit to connect pairs of
locations that would have experienced increased commuting anyway. I limit selection in route
placement by three complementary methods. The first two use historical data on proposed sub-
way lines and former streetcar routes to restrict the sample to treated pairs of tracts and untreated
(control) pairs of tracts that could have plausibly received transit but did not. The third approach
uses a bilateral adoption of spatial adjacencies.

I draw from Kelker, De Leuw & Company (1925), which details a feasible rail transit network
designed to accommodate Los Angeles’ booming population in the 1920s. The plan was defeated
largely because of skepticism over private rail management and local opposition to elevated por-
tions of the line.'* This document also shows Pacific Electric Railroad (PER) lines installed in 1925.

13. The earliest stations opened in July 1990 along the Blue Line, after enumeration of the 1990 Census (in April).
The Blue Line did not become fully operational until early 1991 after both endpoint stations opened. Three Red Line
stations were completed in each of 1999 and 2000: stations completed in 1999 are included, those completed in 2000
were finished after Census enumeration and so are excluded.

14. The transit system was to be run by Southern Pacific Railroad, which had a significant (and perhaps overlarge)



The PER, colloquially called Red Cars, was an at-grade railway system that served Los Angeles
through 1961. LA Metro Rail has extensively used former PER rights of way. I define control pairs
as those for which either the origin or destination tract (or both) did not receive treatment but are
within 1km of: (i) the Kelker, De Leuw and Co. subway proposal, “1925 Plan Sample”; or (ii) PER
lines, “PER Sample”. Maps from Kelker, De Leuw and Company (1925) are shown in Figure 1;
treated and control tracts are mapped in Figure 2 (pairs are difficult to map).

Selecting these pairs to serve as controls is supported by four pieces of evidence. First, both
treated and selected control tracts tend to be near historical transit corridors. Rail transit requires
and generates relatively linear corridors, as exhibited by both transit and control routes. Proximity
to historical transit also generated persistent changes in urban form that are still visible today
(Brooks and Lutz 2016). Second, many control tracts have since received, or will soon receive,
transit stations as Metro Rail expansions. The staggered rollout of lines and stations was largely to
due to political expediency. Dueling factions of local government (supporting heavy or light rail)
both wanted to claim credit for opening the first line (Elkind 2014). These factors suggest similar
counterfactual evolution of commuting patterns between treatment and control pairs.

Third, the westward expansion of LA Metro Rail was delayed by an unexpected geologic
shock. Original routing of the Red Line was along Wilshire Boulevard to Fairfax Avenue. Methane
seepage into a nearby Ross Dress-for-Less store exploded on March 24, 1985, leading to federal
legislation restricting tunneling along Wilshire. This high density corridor contains substantial
residential development and employment, and appeared in almost every transit plan drawn up
from the 1920s until today, and both 1925 Plan and PER Samples select this corridor as a control
group. Finally, some treated tracts are inconsequentially treated, and some control tracts are in-
cidentally untreated. For example, the Blue Line was meant to connect downtown Los Angeles
and downtown Long Beach. The route had to pass through south-central Los Angeles to accom-
plish this, treating intermediate locations. But stations were not built at high frequency along the
track, leading to some incidentally untreated locations.!> Control pairs exploit this quasi-random
variation in where and when stations opened.

I also adapt the adjacency strategy of Dube, Lester, and Reich (2010) to flow data. Groups are
defined as a treated pair, along with all adjacent pairs for which at least one tract is not treated.
Thus, for each treated group ij there is a group g of #; x #; tract pairs, where # represents the
number of adjacent tracts plus one (the treated tract). I then estimate:

Yijgt = Nije + Sij + Sgt + €ijit (4)

Each group is permitted to have its own time trend, ¢,;. Tracts pairs are thus being compared to
only doubly nearby tract pairs, making the parallel commuting trends assumption more credible.

influence on regional politics (Fogelson 1967).
15. It is generally suboptimal to locate stations too close to each other (Crampton 2000).

10



However, estimates from this adjacency approach are prone to attenuation if the spatial scale of
the effect is mismeasured, so estimates provide a lower bound on the true effect size. To miti-
gate this attenuation, I expand the immediate adjacencies to slightly more distant tracts in some
specifications.

4.2 Commuting Flow Estimates

Table 2 indicates that LA Metro Rail led to an average increase of 10%-16% in commuting between
tracts nearest transit stations by 2000. Results are significant across control group specifications,
and robust to the inclusion of subcounty pair-by-year fixed effects and controls for highway prox-
imity. Only tracts containing or within 250m of a station show a significant effect; more distant
tracts more distant do not change. Results are largest using the 1925 Subway Plan control groups,
varying between 11% and 16%. Estimates are smaller using the PER control group, and small-
est (but still significant) with the full sample. Subcounty pair-by-year fixed effects slightly boost
most point estimates. Columns 1-5 use a ‘loose” network, in which tract pairs with one treated
and one control tract are retained. Column 6 uses a “tight” network that excludes such pairs. This
distinction makes little difference in the 1925 Plan samples, but ‘tight” estimates shrink in the PER
Sample. Standard errors are clustered along three dimensions to be robust to most error structures:
tract pair, residential tract, and workplace tract.

Tract-tract commuting data before 1990 are unavailable, so I cannot provide direct evidence
of parallel pre-trends.!® However, I compare some aspects of average commuting from tract of
residence using NCDB data.!” Tests of parallel pre-trends from 1970-1990 show little evidence
of differences in commuting by automobile and not owning a car (Appendix Table F1). There is
some evidence that selected locations were already experiencing an increase transit (bus) usage,
although this effect goes away when conditioning on positive transit usage. Together these results
suggest that the combination of historical controls and regional fixed effects makes substantial
progress toward identification, and that transit was targeted to locations that were experiencing a
shift from no transit usage to positive transit usage. These tract level characteristics are absorbed
in the fixed effects in Equation 2.

Adjacency based estimates, shown in Table 3, support the finding that the tract pairs nearest
stations experienced increased commuting. Standard errors are clustered by tract pair, residential
tract, and workplace tract; some tract pairs belong to multiple groups. Column 1 uses tracts pairs
both adjacent to those within 500m of a station as the control; the effect of transit is smaller but

significant for tracts nearest a station. Columns 2 and 3 add tracts further away (adjacent to tracts

16. Pairs connected by 2000 had somewhat higher commuting in 1990 than controls, however, I find that higher flows
in 1990 are associated with lower commuting in 2000 (see Appendix). Together, these results suggest that results in the
full sample are downward biased. As expected, Table 2 shows smaller effects in the full sample.

17. NCDB is, by default, normalized to 2010 geographies. I use the same treatment rules, but this results in higher
observations counts due to denser tracts in 2010 than 1990.

11



within 1km of a station), and show larger effects for tracts nearest a station. Comparing specifica-
tions suggests some attenuation of the effect over space, and do not support increased commuting
between slight more distant tracts.

The rich commuting flow data permit modeling heterogeneity by origin and destination prox-
imity and tract connection (reported in the Appendix). Interacting proximity measures for ori-
gin and destination tracts indicate a greater effect of proximity at the destination than the origin
(though estimates are less precise). This suggests commuters are more comfortable traveling a
larger distance to a rail station from home than from a rail station to work. Additional results
show that only pairs connected by the same line show a significant increase in commuting. I do

not evidence of heterogeneous treatment effects by distance between origin and destination.

4.3 Commuting Time Estimates

A common expectation of transit is that it will relieve automobile congestion. I use reported
changes in reported travel times from the CTPP to test whether rail transit decreases congestion:

,2k Ak
Tije = Wit + O + Gij + A7 L within 2 kmt + A7 Lij 2 t0 4 kmyt + Eijit (5)

where 7;;; is the average reported travel time from i to j in year ¢. I use two mutually exclusive
indicators for whether the pair lies within a 2km or 4km corridor of the subway system. Ideally,
I would observe which pairs require driving routes that are potentially affected by transit. Wide
corridors capture routes most likely impacted.

Table 4 shows results for three measures of travel time: average travel time across all modes,
log average travel time across all modes, and average travel time for private cars. For the first two
measures, I include a control for immediate transit station proximity so as to capture confounding
travel time changes for rail commuters. Across all three measures, simpler models yield significant
decreases of 1.3-1.4 minutes, or about 3.2%. Results remain negative but are insignificant with
subcounty pair-by-year fixed effects; these fixed effects absorb potentially useful variation.

These results are also information about the long run attenuation of the results in Anderson
(2014), who finds that a temporary labor strike disrupting LA Metro Rail service in 2003 increased
automobile congestion near transit lines. Travel demand is particularly responsive to short run
changes in congestion, so it is unclear how to map temporary to long run responses. For exam-
ple, Duranton and Turner (2011) find no aggregate evidence that transit decreases congestion in
the long. The commuting time results in Table 4 are roughly one-quarter to one-third those in
Anderson (2014), suggesting substantial, but not complete attenuation of congestion benefits.!®

18. These commuting time results could confound the flow results in Section 4.2. This is unlikely: interacted sub-
county pair-by-year fixed effects eliminate the time effect but not the flow effect, estimates of the flow effect are robust
to including travel time, and adjacency estimates confirm a large flow effect for locations nearest stations. Nonetheless,
including these effects in counterfactual exercises allows bounding the effects of any confounding on welfare.
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4.4 Comparison with Market Access Terms

I compare the direct, commuting based measures of the effect of transit shown above to those
implied by the ‘market access” approach increasingly used to evaluate transportation infrastruc-
ture.! Market access terms abstract from two aspects of urban commuting. First, origin-destination
pair fixed effects control for and retain rich, persistent variation in commuting between locations.
At an urban scale, many idiosyncrasies (e.g., schools, parks, job types) determine commuting pat-
terns. These slowly-evolving patterns are not captured by market access terms. Second, market
access terms weight changes in connectivity by characteristics of the destination (for example, by
population). Increasing connectivity between two populous locations can therefore have a large
impact on market access, even when there is zero commuting between them.

The costs of these omissions can be evaluated with panel commuting flow data. Define two

measures that summarize the relative commuting effect of transit at tract of residence:

AESF — 2 Vi —1, AEMA_ >, e Y —1
' > s(1 = APT) N ’ ' Yo e s (1 — APT) Y,

=MA

=E¢T uses commuting flow data while ZM4 is an employment-weighted market access measure.

Employment at j is captured by Y; = > N,; and, by analogy to the trade literature, is meant to

. . —~MAQ . cpe o ags
represent market size. I construct two variants of market access: =; ¥ is the traditional definition

that assumes all locations are connected, while Efw 4+ excludes locations that never have a positive
flow in any period (as ' does implicitly).

Table 5 compares each of the market access measures to A= at treated locations for several
values of k. There are three immediate takeaways. First, market access terms require knowledge
of k, and estimates are sensitive to the value chosen. Second, the mean impact is similar for
=CF and 2 A%, but =M A0 has a much smaller mean. Intuitively, =M 49 includes many more
destinations to with which there is no change in commuting, decreasing the average. Third, both
market access terms underpredict the variation in how impacted by transit locations are. Figure 3
visually compares the three terms using x = 0.05.

The consequences of these empirical results are notable. The disutility of commuting time, &,
is typically estimated in the cross-section. I show (in Appendix F) that panel estimation leads to
substantially smaller values.?’ Cross-sectional estimation also ignores pair-specific, time-invariant

determinants of commuting. Distance and travel time only explain about 20% of the variation in

19. Standard practice proceeds: (1) Use a computer-modeled transportation network to evaluate transit infrastruc-
ture’s impact on travel time. (2) Estimate the marginal disutility of travel time from a cross-sectional commuting sur-
vey. (3) Infer changes in commuting by combining (1) and (2). (4) Calculate change in access by interacting (3) with a
characteristic (e.g., population or total income) of a nearby location, then sum over all nearby locations. This approach
is useful because travel times are much easier to model or scrape than to observe in situ.

20. I find standard values of & in the cross-section. With a pair fixed effect, x is almost 0, though this regression is
particularly prone to attenuation from measurement error. Two-step estimation that first estimates pair fixed effects
from the panel then regresses these fixed effects on travel time in the cross-section consistently gives a k = —0.02.

13



these fixed effects. Clearly, other elements matter as much or more than distance or travel time.
Differences in the mean and variance of predicted effects matter as well. In this setting, mean
effects are smaller using market access terms, suggesting that these terms consistently underpre-
dict changes in accessibility. At the same time, smaller variation dampens the effect of treatment
on the most impacted places, generally smoothing the modeled economic impact across space. An
approach based on commuting flows, while more data intensive, leads to a more accurate portrait

of commuting behavior and responses.

5 A model of urban location choice

To translate the effects of transportation infrastructure to welfare, I describe a quantitative urban
model of residential and workplace choice with commuting that rationalizes spatial interactions
between housing and labor markets. The city consists of a collection of N locations, operational-
ized as census tracts, that each contain a labor market and a housing market. There is no restriction
on where agents live and work conditional on being within the city, so agents choose the location
pair that maximizes utility conditional on commuting costs. The model links local, observable
equilibrium outcomes to unobservable economic fundamentals.

The model is similar to that of Ahlfeldt et al. (2015), with five differences: (i) origin-destination
pairs are subject to idiosyncratic preferences, (ii) local housing supply can be exogenously shifted,
(iii) the model can be rewritten as a log-linear system of equations, (iv) land use is exogenously
determined between housing and productive uses, and (v) agglomeration and consumption ex-
ternalities are excluded from the primary model. The first two differences are useful generaliza-
tions that rationalize variation in observed commuting flows. The latter two match the empirical
setting, simplify exposition, and have little impact (there is little scope for land use adjustment
and externalities are essentially time invariant and captured by tract fixed effects). I detail how
relaxing these assumptions alter identification in Section 6; results are generally robust to their

incorporation.

Joint market household decision: Labor supply and housing demand

Atomistic households make location and consumption decisions. For the location decision, house-
holds choose a tract of work and a tract of residence. Conditional on choosing to live in location 1,
households face per unit housing costs @; and receive amenity B;. Conditional on choosing place
of work j, households inelastically provide one unit of labor in exchange for wage W;. Given the
joint location choice and prices, households make decisions over consumption of housing and a
composite good. Specifically, household o chooses location pair ij, consumption C, and housing
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H to maximize the following Cobb-Douglas utility function:

vi- B [C ¢ H 1-¢
max U;;, = max —22— <) <) st. C+Q;H=W,;
ey 70 emfiyy b6y \¢) \1-¢ ¢ !

where v;, is household o’s idiosyncratic preference for location pair ij. The cost of commuting
between ¢ and j is captured by d;; > 1. The share of household expenditures on housing is 1 — (.
Indirect utility conditional on location pair %j is:

vijo BiW; Q5

Volij =
| 5i;

Given this specification, optimal housing consumption for household o conditional on location
pair ij is given by H;jo = (1 — ()W;/Q;.2!

To map indirect utility to choice probabilities, assume v;;(0) is distributed Fréchet with scale
parameter 1~\,-j = T,E;D;; and shape parameter € > 0. The cdf of v is thus:

Fij(v) = €MD

The scale parameter captures mean idiosyncratic preference for location pair ij: 7; captures the
mean utility of residing in ¢, I/; the mean non-wage utility of working in j, and D;; an unobserved
pair-specific shift in the utility of a particular commute. The shape parameter governs the degree
of homogeneity in preferences: for high ¢, agents view location pairs homogeneously, while for
low ¢, their valuations are heterogeneous. With this distributional assumption, utility maximiza-
tion yields a simple proportional formula for commuting flows. The share of the population that
chooses residential location ¢ and place of work j is:

Ay <5ijQ¢17<) h (B;W;)¢

S S (5202 (B

(6)

7Tij

To relate commuting shares to observable commuting flows, multiply 7;; by the population of the
market as a whole (N), so that N;; = 7;; N.

The city can be viewed either as existing in autarky or being nested in a large, open economy.
This assumption makes little difference outside of welfare calculations (due to homothetic prefer-
ences). In an open economy, no spatial arbitrage requires that the average welfare from moving to
the city equal the reservation utility of living anywhere else. The expected value of moving to the

21. Any indirect utility function with a multiplicatively separable idiosyncratic component could be employed. For
example, the sorting literature uses a nested CES parameterization (Epple and Sieg 1999). Davis and Ortalo-Magné
(2011) show that expenditure shares on housing are relatively constant through time in cities in the United States, sup-
porting the Cobb-Douglas assumption. I retain this assumption to maintain comparability with the existing literature.
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city is:

1/e
E[Uso] =T ( - 1) ~ [Z > A (6:0r7) h (Brwsf] )

where I'(+) is the gamma function and the aggregate population N is implicitly defined. Free

mobility thus requires E[U;;,] = U, and aggregate population changes to maintain U.

Production: Labor demand

A continuum of measure zero firms produces a globally tradable commodity in each location j
under perfect competition.?> Firms select competitively available labor NY and land LY inputs
to maximize profits under constant returns to scale.”® Production is multiplicatively separable in

local productivity A; and a technology that is identical across j:
Y = A;F(N),LY) (8)

Because of the atomistic size of firms, land use decisions are made in accordance with profit max-
imization despite the locally fixed available quantity of land.?* Perfect competition in labor mar-
kets implies that firms pay workers the marginal product of labor: W; = A; F (NN JY , L}/) Iassume
Cobb-Douglas production technology: F(NY LY) = (NY)*(LY)!=%. Inverse labor demand is

given by:
Wj = aAj (NJY> (9)

j
Housing supply

Housing is produced by measure zero builders using land for housing L and material inputs
M. A local, multiplicatively separable housing productivity term C; captures local cost drivers
such as geography (e.g., terrain) and regulation. Materials are readily available in all locations

at the same cost, but aggregate local land supply for housing is predetermined.”> Convexity in

22. The primary focus of this study is the flow of people rather than the flow of goods, so I assume that goods are
uniformly available and globally traded.

23. A number of recent papers that compare metropolitan outcomes permit heterogeneity in workforce productivity,
generally by education level (Diamond 2016). Other work has focused on the interaction of skill and the distribution
of economic activity within and across cities (Davis and Dingel 2014). I abstract away from this in an effort to focus on
very local effects — in the empirical application, what is one metropolitan statistical area in other papers is here more
than 2,500 unique locations.

24. Individual firms make unconstrained input decisions, but aggregate land use is predetermined, as is standard in
many urban models, e.g., Glaeser et al. (2008).

25. This simplifies the model while maintaining fidelity to the setting. Strong zoning and the medium time frame of
this study may not match the temporal patterns required for land use change; many studies of land use or housing
supply examine only long-run changes (e.g., Saiz (2010) uses a thirty-year window). Including land use measures does
not greatly change identification or results. There is little evidence of differential land use near transit.
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land pricing serves as a congestive force, driving up prices in desirable locations until agents look
elsewhere. As is standard in the literature, I specify housing production to take Cobb-Douglas
form: H = (L")?M'~%C;.%6 Developers sell housing in location i in a competitive market at per
unit price @; to maximize profit: Q; H — PZ-L LH — PMML. The price of construction materials pM
is exogenous and common to all locations.

Because detailed data on housing production is not available, I utilize the zero profit condition
to develop an empirical formula for housing costs. The first order condition of developer profit

with respect to construction materials gives:

pM M\
(1-¢)Ci \L
Substituting this into into the developer’s profit function and enforcing the zero profit condition
HpL
implied by perfect competition gives construction material demand: M* = %LP%. Enforc-

ing zero profits gives Q; = (PLLY + PMM)/((LF)?M'~?C;). Substituting in M* gives the cost
function: Q; = C;(PF)?, where C; = (PM)'=¢/(1 — ¢)'=?¢?C; captures the inverse efficiency in
housing production.

The price of land, PF. responds to changes in demand and land availability: I parameterize it
as a function of local housing density PL = (H;/L¥ )QL, where the parameter 1) > 0 captures local
price elasticity of land with respect to density.?’ This parameter provides a congestive force to
the model. Combining the expression for land price with Equation (10) and compressing notation
relates housing supply, price, and land availability:

H; \Y
Qi =C; <LZH> (11)

where ¢ = 12(;5. As housing productivity C; increases, C; falls, so increases in housing productivity

(decreases in ;) increase the quantity of housing supplied at any price.

Equilibrium characterization

In equilibrium, labor and housing markets clear in all locations. Labor market clearing requires

that local labor demand equal supply:

NY =3 N (12)
T

26. Ahlfeldt et al. (2015), Combes, Duranton, and Gobillon (2012), and Epple, Gordon, and Sieg (2010) show that
Cobb-Douglas works well for floor space production with land and material inputs in several settings.

27. I discuss an alternate way to close the model in the Appendix. Because I have data on land use, rather than floor
space or use, I frame the model and analysis in terms of land.
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Commuting shares (6) determine employment in any location. With frictional commuting, work-
ers benefit from residing near work locations. Given the assumptions on household preferences,
housing demand is a constant fraction of the ratio of wage to housing price. Aggregate housing
demand in i is the sum of wage-rent ratios weighted by commuting flows—this takes into account
heterogeneity in income stemming from variation in place of work. Housing market clearing re-
quires that the local housing supply equal demand:

W

0; (13)

Hy=(1-¢)> Nm

Given model parameters {a, ¢, (, 1, k}, reservation utility U, vectors of land availability by use
{LY,LH}, vectors of residential fundamentals {B, C, T}, vectors of place of work fundamentals
{A,E}, and matrices of residential-place of work pair fundamentals {D, 7}, an equilibrium is

referenced by price vectors {W, Q}, commuting vector 7, and scalar population measure N.

Proposition 1 (Existence and uniqueness). Consider the equilibrium defined by equations (6), (9), (11),
(12), and (13):

i) At least one equilibrium exists across residential locations with strictly positive quantities of residen-
tial land and work locations with strictly positive quantities of land used in production.

ii) There is at most one equilibrium if

2¢(e+1)(1 — a)(1 — Q)
1+el—a)

-1< (14)

1
¥
Proof. See Appendix. O

Existence makes use of the assumption that land use is predetermined and requires that pos-
itive residential land translates to a positive measure of residents and that positive land in pro-
duction translates to a positive measure of workers. However, existence does not require positive
commuting flows between all locations. The presence of zero commuting flows is a common char-
acteristic of commuting data. The uniqueness condition requires that the elasticity of housing
supply (1/%) be larger than a function of preference homogeneity and other parameters. The left-
hand term is increasing in e: The more homogeneous preferences are, the more elastic housing

supply must be to ensure a single equilibrium.?

Recovering fundamentals

The model may have multiple equilibria (though this is unlikely given the low value of € in Section

6). Regardless, for a given set of parameters, there is a unique mapping from the observed data to

28. In this setting, agglomeration does not alter the equilibrium uniqueness condition; see the Appendix.
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local fundamentals. Model parameters are estimated using these fundamentals and the observed
values of the endogenous variables in combination with instruments to define moment conditions.
B; and T, enter isomorphically; let B; = TZBiE and A;; = B, E; Dij.29 Local fundamentals A, C, and
A can be expressed as unique functions of data and parameters:

Proposition 2 (Residual uniqueness). Given parameters {«,€,(,, k}, observed data {W,Q,w, N},
and commuting times T, then there exists a unique set of fundamentals { A, C, A} that are consistent with
the data being an equilibrium of the model.

Proof. See Appendix. O

6 Identification and estimation

Local labor and housing market elasticities provide the mapping between local fundamentals (and
interventions that shift them) and observed prices and quantities. Consistent estimates of the
elasticities are required to use observable data to learn about changes to local fundamentals and
to simulate counterfactual scenarios. I develop an identification strategy that uses panel variation
in wages at place of work, housing prices, and commuting flows, permitting the incorporation of
tract and tract-pair fixed effects to flexibly control for unobserved, time-invariant characteristics
that confound identification. This is important as persistent, difficult-to-measure characteristics
can play an anchoring role in cities (Lee and Lin 2018).

All components of the model are expressed in the commuting flow (6), wage setting (9), and
housing price (11) equations. Taking logs delivers a tractable linear system:

wj = go+ (a — 1)n) +1In(4)) (15)
Nij = g1 + €w; — 6(1 — C)ql — €RTi¢ + ln(BiEjDij) (16)
¢ = g2 + Yhi +1In(Cy) (17)

where n}/ =In (N o TFTJ'/L}/) is log employment density, h; = In ((1 — (N Yo wiSWs/QiLf{) is
log housing density, and g capture remaining constants. This system is a within city analog of the
Roback (1982) and Rosen (1979) framework (often used to evaluate amenities) with commuting.
Local fundamentals are potentially functions of covariates (A = A(X) and so on) such as transit

proximity. Equation (16) provides structural interpretation of the components in Equation (2).

29. This mapping marks significant divergence from the framework in Ahlfeldt et al. (2015), where local fundamentals
consist of a composite workplace term that combines A and E, a residential term that combines B and T, and omits
any location or pair specific variation in housing supply C or commute utility D. Note that the components of A are
not uniquely identified from the data; I use statistical arguments to separate B, E, and D.

30. That is, go = In(a), g1 = In(N) — In (ZT > Ars (€577 Qifg)f6 W;), and g2 = 0.
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This system can be re-expressed to more clearly represent the supply and demand linkages.
First, separate the unobservables into time varying and time invariant components, so that In(A;;) =
a; + ajt, etc. This leads to the following system (omitting constants):

Labor demand in i: wjt = dn}g +a; +aj (18)

Labor supply to i: Wit = €wjt + €5 + et (19)

Commuting between ¢ and j: Nijt = Wit + Oit — €~y + Jij + diji (20)

Housing demand in i 0i = Cqit + bi + byt (21)

Housing supply in i: qit = Yhit + ¢ + cet (22)

where & = a—1,{ = —¢(1—(). The system resembles standard linear supply and demand models,

but for many interconnected housing and labor markets.

6.1 A general approach to identifying local elasticities

I develop a local implementation of a shift-share (e.g., Bartik 1991) instrument to overcome si-
multaneity in Equations (18) to (22). I leverage plausibly exogenous panel variation in tract-level
labor demand, interacting local labor demand shocks with the distance between tracts to create
exogenous variation in local economic conditions. The moment conditions can identify all four
elasticities, though I focus primarily on € and v, as these two embed information about the local
economic environment and cannot be estimated from microdata.?! I also discuss the robustness

of this strategy to alternative assumptions.

Summary

Identification requires a demand or supply shock that shifts one of Equations (15) to (17) but is
excludable from the others. I construct tract-level labor demand shocks from changes in national
wage and employment levels and ex ante local employment shares by industry. After controlling
for year and census tract fixed effects, the remaining variation consists of changes in wages and
employment determined from ex ante, local industrial composition. These shocks are relevant if
they are correlated with changes in local productivity (Aa;;) and excludable if they are uncorre-
lated with changes in the other local fundamentals. Under these assumptions, the labor demand
shock traces out the labor supply curve. Housing demand in nearby locations shifts in response.
Because this downstream housing demand response will be stronger nearer the workplace origi-
nation of the shock, I take a linear combination of labor demand shocks with weights determined
by a spatial decay function and commuting to map the labor demand shocks to a residential tract.

31. In contrast, o and ¢ could be estimated from microdata. Nonetheless, they are identifiable under some assump-
tions; estimates are reasonable.
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This derived housing demand instrument traces out the housing supply curve.

Identifying housing demand requires an instrument that shifts housing supply. For agents
who work in j and live in ¢, a labor demand shock to agents who work elsewhere (in j') but
live in ¢ shifts effective housing supply in i. That is, a labor demand shock for workers n;;; with
j' # j translates into a housing supply shock to workers n;; (i.e., as long as housing supply is not
perfectly elastic). I again use spatial decay weights and commuting to determine an appropriate
relationship between labor demand shocks and the housing market. Finally, labor demand shocks
in one location alter wages and induce workers to shift employment location. In the absence of
spillovers in labor demand, the labor demand shocks in one location shift labor supply in nearby

locations (conditional on the local shock), tracing out labor demand.

Detailed description of moment condition construction

Let R} Nat e average national wage or total national employment in industry ¢ in year ¢, qu,o be
the number of workers in each two-digit SIC industry ¢ in the initial year (1990) in tract j, and
Nio = >, N}, the ex-ante total employment in tract i. The labor demand shock is formed by
interacting changes in wages or employment with ex ante local employment shares and summing

across industries:

q,Nat q,Nat q
Ry - R Nj 0

LD,R 0 )
Az. ’ = .

Jt Z ,Nat .

q R(q) NJ,O

This demand shock embeds information on ex ante industry shares. When used as an instrument,
an implicit assumption is that changes in non-productivity latent variables (e.g., amenities) are
uncorrelated with prior industry structure. To ensure that local innovations in productivity do
not drive national changes, I exclude all workers in California.

The demand shock instruments the change in wage to identify the slope of labor supply. Place
of residence-by-year fixed effects control for changes in residential amenities that may be corre-
lated with labor demand shocks (see Equation 16). The corresponding moment condition is:

E[Az;PT x (Aeji + Adyjy)] = 0, Vi, j (M-1)

Identification requires that the labor demand shock is uncorrelated with unobservable changes in
labor supply (i.e., changes in workplace amenities, e, or travel costs, d). In fact, this can be weak-
ened further by estimating place of work-by-year fixed effects to use as the dependent variable
measuring labor supply conditional on commuting. I discuss and interpret this and the following
identification assumptions later in this section.

A labor demand shock in one location shifts demand for housing in locations where workers

might live, and thus can be used to instrument changes in housing quantity to identify the slope of
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the housing supply curve. This requires mapping the labor demand shock to residential locations.
I describe a housing shock to residential location i of the form Azg DX _ th DXy, Weights
are treated as parametric decay functions of the modeled travel time between locations that ever

have positive commuting:

TN

APy = 30 T et
’ s ZS e*p5151NiS>O

where 4 is the travel time between j and s, p is the spatial decay parameter, and N;s denotes the
maximum flow value from i to s in any year. The spatial weight, e %1, o, means that labor
demand shocks nearer a residential location with some commuting connection are more important
than labor demand shocks farther away or in places with no commuting connection. The resulting

inverse-distance weighted labor demand shock identifies 1, the inverse price elasticity of housing

supply:
E[AZTPR(p) x Acy] = 0, Vi (M-2)

Although both elements of M-2 relate to tract ¢, the housing demand shock draws on labor demand
shocks from any j; I consider later how selecting particular subsets of these j may be useful.

Residents of a one location commute to different locations for work. Workers who live in i and
work in j are sensitive to the housing demands of workers who work in j' but also live in 7. A
labor demand shock to workers ij’ can change the effective housing supply to workers ij. Thus
labor demand shocks for ij’ workers can be used to instrument changes in housing prices for ij
workers and identify the slope of housing demand. To develop an average measure of the shocks
forij’, j' # j, Il employ inverse weighting as before, but excluding own tract j:

01 . LD,X
e 1y, 500 %

HSR, \ _
Az 7o) = ; S e Pily o
SF]) 8

Using the place of work-by-year fixed effects in Equation (16) to control for changes in workplace
amenities, the following moment condition identifies (1 — ¢):

E[Azf fﬁt(p) X (Abiz + Adije)] = 0, Vi, # j (M-3)

This instrument varies for every commuting pair. It is generally difficult to recover estimates of
housing demand without microdata due to difficulties in quantifying housing services. Nonethe-
less, because tract pairs generate more variation than do individual tracts, this approach (along

with an estimate of €) recovers reasonable estimates of the household expenditure share on hous-
ing1—(.
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Finally, workers employed at j observe the labor demand shock to j’ # j, and may respond by
leaving j for j'. This suggests that a labor demand shock at 5’ can be used to instrument changes
in employment at j, functioning as a labor supply in j and identifying labor demand. But this
is reflected through residential location, rather than through location at place of work. Consider
residents in i: A positive shock to j’ entices more workers from i the closer j’ is to ¢, rather than

the closer j' is to j. The following weighting uses this intuition and interacts with distance twice:

—pdrj] - —pdsrq - LD, X

AZLS,R(p) o € 1Nrj>0 € 1y, 5082
Jt - Z —p6r7 - —p8sr 7

—~\ e’ 1y, >0 vy Do €PN S0

The own tract labor demand shock is excluded in order to remove mechanical correlation with

local changes in productivity. The corresponding moment condition is:
E[AzEP(p) x Aajy)] =0, V) (M-4)

This identifies the share of production income that goes to non-labor expenses, o — 1, and pro-
vides an alternative way to estimate this parameter that is conceptually similar to the competing
characteristics instrument of Berry, Levinsohn, and Pakes (1995).

Because the instruments described above are all weighted averages of the labor demand shock,
the identifying assumptions can be made more transparent. The following reframe M-1 through
M-4 in terms of a labor demand shock (note A-1 is identical to M-1):

E[AzPT x (Aeji + Adyjr)] = 0, V ij (A-1)
E[AzPT x Acy] =0, Vij (A-2)
E[Az " x (Aby + Adijy)] = 0, Vi’ # ij (A-3)
E[Az7 " x Aajy] =0, ¥ j' #j (A-4)

Proposition 3. Assume Al, A2, A3, and A4 are true, p > 0, E[AsztD A, Awji| # 0, housing demand
is downward sloping, and labor and housing supply are upward sloping. Then M1, M2, M3, and M4 are
satisfied and the model is identified.

Proof. Assumptions A-1 to A-4 are derived from M-1 to M-4 using the definitions of the instru-
ments. The requirement that p > 0 ensures variation in the labor demand shock across space. The
requirements are standard regularity conditions for identification in a system of simultaneous

equations. O

Furthermore, the presence of data on wages at place of work and commuting flows in com-

bination with Equation (20) suggests high-dimensional fixed effects may be useful to control for
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unobserved confounders. Assumptions A-1 and A-3 can be weakened to exploit this:

E[Az” x Aejy] =0,V j (A-1a)
E[Az" x Aby] =0, Vi (A-3a)

Discussion and comparison to existing approaches

Assumptions A-1 and A-la require that the local labor demand shocks be uncorrelated with
changes in the local work amenity at j. They are weaker than standard identifying assumptions
using labor demand shocks and than those common in the economic geography literature. When
an aggregate labor demand shock is used to trace out labor supply, identification requires the
shock be orthogonal to any non-wage determinants of labor supply (residential amenities, com-

muting costs, workplace amenities). In my notation, such a condition is
E[Af(z ") - Af(By, 6, D, Ey)] =0

where f averages over locations. In contrast, Assumptions A-1 and A-1a clarify the spatial require-
ments for identification and are robust to local correlation between improvements in residential
amenities and the productivity shocks.

The economic geography literature typically identifies € from cross-sectional variation related
to commuting. For example, Ahlfeldt et al. (2015) and Allen, Arkolakis, and Li (2015) condition on
the time use parameter (x) estimated from auxiliary models, and require that unobserved, origin-
destination specific amenities are orthogonal to travel time. This is problematic because x may be
smaller than typically assumed (see Section 4 and Appendix). Ahlfeldt et al. (2015) also require
that there be no variation in (non-pecuniary) workplace utility (E[In(E;)?] = 0). I later show this
assumption is improbable. Monte, Redding, and Rossi-Hansberg (2018) specify production within
a trade framework and recover productivity from cross-sectional trade flows. They assume the
productivity is orthogonal to workplace and origin-destination specific amenities.*> Such indirect
strategies are necessary because wage at place of work is typically unobserved. By comparison,
Assumptions A-1 and A-la utilize workplace wage data and the census of commuting flows, as
well as rely on panel variation to control potentially confounding, persistent characteristics €.

Assumption A-2 requires labor demand shocks be uncorrelated with changes in (inverse)

housing productivity, Ac;;, which measures how efficiently developers provide housing density.

32. Using my notation, Ahlfeldt et al. (2015) first estimate e, and then use the assumption that E[In(E;)?] = 0 to match
the variation in modeled wages to highly aggregated observable wages. Tsivanidis (2018) estimates x from models of
commuting, and runs additional models instrumenting 7 with plausibly exogenous variation in transit connections
to limit endogeneity concerns. Tsivanidis (2018) also assumes E[In(F;)?] = 0, but it does not impact identification
of € in his framework. Allen, Arkolakis, and Li (2015) estimate ex, but then put more structure around time use to
parameterize « and identify e. Monte, Redding, and Rossi-Hansberg (2018) assume E[In(A;(c)) x In(E;Dsj)|o, k] = 0,
where o comes from the trade model.
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If the labor demand shocks are correlated with these housing productivity innovations, 1 is not
identified. One potential concern with Assumption A-2 is through labor reallocation: If labor de-
mand shocks alter the pool of workers available for construction, there could be cause for concern.

E[Az" x Acy] =0, Vi #j (A-2a)

This requires productivity shocks in a location be uncorrelated with innovations in nearby hous-
ing efficiency. Labor demand shocks have been used to estimate the aggregate housing supply
elasticity (Diamond 2016; Saiz 2010), though the use of spatially heterogeneous labor demand
shocks within cities to identify a local elasticity is novel.

Assumptions A-3 and A-4 are less central, as the parameters they identify (& and {) can be
estimated from microdata. Nonetheless, they can be viewed as providing an additional test of
identification. Assumption A-3 requires that labor demand shocks in one location do not change
amenities and commute utility in other locations, and controls for persistent residential and com-
muting amenities, b; and Jij. That is, any innovations to amenities in j or the unobserved commute
utility between 7 and j must be uncorrelated with national innovations in labor demand and the
share of industry in 1990 in a third location j' # j. A potential cause for concern is that a large labor
demand shock in location j’ could change civic investment in public amenities in nearby locations
i due to fiscal averaging within cities. Assumption A-3a is similar to A-3, but weaker in that the
unobserved commuting shock does not enter. Assumption A-4 requires that labor demand shocks
in one location be uncorrelated with nearby changes in productivity. Though tract fixed effects a;
control for most spatial correlation in industrial location, this identification assumption may not

strictly hold. Nonetheless, estimates appear reasonable.

Identification with Agglomeration and Endogenous Land Use

This model abstracts away from agglomerative forces and endogenous land use determination. I
summarize here how relaxing this alters identification; details are in the Appendix. Identification
of € and 7 is still possible when agglomeration influences productivity and residential amenities,
though @ and ¢ can no longer be identified without ex ante knowledge of the parameters that gov-
ern these forces. Agglomerative forces only confound demand elasticities; given the exogenous
demand shocks, supply elasticities are still identified. Agglomeration tends to be highly path de-
pendent, therefore fixed effects a; and b; control for most of these forces (Davis and Weinstein
2008). Furthermore, Ahlfeldt et al. (2015) show that these forces mostly dissipate within a few
(five) minutes of travel time, limiting their role to confound.

The model phrases labor demand and housing supply in terms of employment and housing
density, respectively. Land use is relatively fixed and primarily captured by the tract fixed effects

a; and ¢;. However, I observe measures of land use (zoning in 1990 and 2001) for housing and
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production that let me measure density and examine changes in land use (they are small). As-
sumptions A-2 and A-4 require productivity shocks to be orthogonal to changes in a location’s
ability to provide employment density and housing density. In other words, because these condi-
tions are framed in terms of observable density by use, endogenous land use determination does
not pose a direct threat to identification.3?

6.2 Estimating the effects of interventions

Estimates of {&, e, Q: , ¥} permit recovery of local economic fundamentals by removing the simul-
taneous components of the supply, demand, and commuting equations. These economic funda-
mentals represent economic characteristics of a place that exist outside of a market equilibrium.
In combination with market forces, fundamentals determine equilibrium prices and the distribu-
tion of people. The fundamentals contain information about local productivity, housing supply,
and transportation networks, and can be used to study how policy interventions shift supply and
demand.

Consider a local intervention, 7'. In general, the intervention could impact any local funda-
mental. The following econometric framework permits estimating the effect of the intervention

on local fundamentals:

Nyt = Wit + Oir — ERTijt + Gg + )\DTijt + €£t (23)

?it =Xl + 6 + i (24)

where A = {A, A8 AC AF} and AP are the effects to be estimated. Y = {&, b, ¢, &} contains the
four non-commuting fundamentals, and Equation 23 corresponds to Equation 2 from the com-
muting analysis. Standard econometric techniques (e.g., difference-in-difference, instrumental
variables) can then be performed on the above system. While the full sample should be used to
estimate the structural elasticities, the effects of interventions can be estimated using a restricted

sample if needed to overcome selection bias.3*

7 Housing and labor elasticities and non-commuting effects of transit

The shape parameter € corresponds to homogeneity in location preference and represents an

elasticity of labor supply that conditions on commuting and residential geography. I first re-

33. Endogenizing land use is not trivial, however. It requires an additional market clearing condition, changes proper-
ties of the model equilibrium, and alters counterfactual simulations. Such changes make a small numerical differences
due to the constancy of land use in this context. Note that if land use were unobserved, identification would become
more challenging as land use becomes a latent term.

34. Context or theory may dictate additional restrictions, i.e., some A may be zero. Interestingly, when some A can be
assumed equal to zero, and others are non-zero, treatment can be used as an instrument to identify some or all of the
structural elasticities. The economic geography literature typically assumes A” # 0and A = {\* A5, A9 A\F} = 0.
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cover workplace by year fixed effects w;; from the Equation 20 (w;; has structural interpretation
wit = ew; + e;). I then estimate e in differences using the wage variant of the labor demand shock
as an instrumental variable (i.e., under M-1). Table 6 shows results using three different methods
of estimating w;;. Column 1 estimates w;; from a linear panel, Column 2 uses a separate PPML
estimator in each year with a measure of bilateral travel costs, and Column 3 uses a panel PPML
estimator with pair fixed effects to control for travel costs. The first stage is sufficiently strong
across all specifications. The value of € is 0.50 under the linear specification, and between 1.83
and 1.85 in using the nonlinear estimator.*® I take ¢ = 1.83 from Column 3 as the preferred es-
timate. The low value of ¢ (relative to the literature) implies workers are quite heterogeneous in
their location preferences.

Identification of e in the economic geography literature sometimes requires w;; = ew;;. Such
an assumption is not supported in my data (see Panel A of Figure 4).%° Instead, w;; is more closely
related to workplace employment levels than wage (Panel B of Figure 4), highlighting the severity
of the simultaneity problem. It is unlikely that that the ad hoc moment restrictions used in the lit-
erature correctly identify this parameter. The estimates presented here are closer to more standard
estimates of labor supply elasticities (e.g., Falch 2010; Suarez Serrato and Zidar 2016). This low
value has important implications for studies of urban structure, as preference heterogeneity limits
the locational responsiveness of agents to changing local conditions.

The remaining structural parameters are identified using instruments constructed from the
labor demand shocks and a spatial decay parameter, p > 0, that governs how the labor demand
shocks propagate across space. I experiment with different values in In(p) € [~10,—2].3” Labor
demand shocks should propagate through the economy following the same decay as commuting,
as these shocks will affect nearby markets only to the extent that workers are willing to commute
to and from those markets. This implies p = ex, and suggests using values of In(p) € [-7.5, —4.5]
based on gravity estimates (see Appendix). I report results for In(p) = —5.5.

Estimates of the inverse housing supply elasticity (Equation 17) appear in Table 7. Results
are estimated in differences using the employment instrument. These estimates imply housing
supply elasticities of about 0.45 when no adjustment is made for income-driven variation in quan-
tity (Columns 1 and 2), and about 0.60 when income can influence housing quantity (Columns
3-6). Including available residential land decreases these estimates.® Column 2, 4, and 6 exclude

35. Unlike the commuting analysis, accounting for zeros makes a large difference in estimates. This is because any
individual work tract has many zeros, and so incorporating this information into the fixed effect is important.

36. I run a regression of w;; on wyy; the R%is only about 0.004. If w;; = ew;, then R? = 1. Kreindler and Miyauchi
(2017) find only a modest cross-sectional relationship between w and w using cell phone data and travel surveys from
Dhaka and Colombo.

37. The value of p impacts efficiency but not identification for p € (0,00). As p — 0, the spatial correlation of the
shocks increases. In the limit, there is no variation in the instrument, and the system is not identified. On the other
hand, as p — oo, shocks do not influence activity elsewhere (autarky), and the system is not identified.

38. If the assumption of Cobb-Douglas housing production is correct, then the coefficient on land should be negative
and equivalent in magnitude to the housing level coefficient, 1. The coefficients are not statistically different in absolute
value from each other (Columns 3 and 4).
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the own tract labor demand shock when aggregating the instrument; this permits local housing
productivity to covary with the local labor demand shock. Estimates are similar. All results sug-
gest that local, tract-level housing provision is inelastic in the Los Angeles region from 1990 to
2000. Saiz (2010) finds the median long-run inverse housing supply elasticity among major U.S.
metropolitan areas to be about 1.75; his estimate for the Los Angeles area is 0.63. My estimates
similarly point to limited medium-run scope for adjustment in local housing stock. This matches
anecdotal and empirical evidence on the highly regulated California housing market (Quigley and
Raphael 2005).

It is difficult to estimate household expenditure shares or labor demand elasticities in urban
models that use aggregated data (e.g., Diamond 2016). However, estimates in Tables 8 and 9
roughly concur with values derived from other sources, lending additional credibility to the iden-
tification strategy as a whole. Table 8 gives estimates of Equation (16) using the employment
variant of Az f{fjﬁ to instrument for housing prices to determine ¢(1 — (), the elasticity of housing
demand. The own tract can be excluded from the regression to limit concerns about the labor
demand shock driving confounding changes in amenities. Results are marginally significant and
vary between -0.66 and -0.87. Using ¢ = 1.83, these imply a housing expenditure share between
36% and 48% of income, somewhat higher than microdata suggest but not unreasonable for high
cost areas.”

Finally, I estimate the inverse elasticity of labor demand (a—1) using demand shocks to nearby
census tracts as an instrument. Results, shown in Table 9 vary between -0.23 and -0.33 when only
employment is taken into account, implying labor’s share of income is roughly 0.7. Column 2
LD,R

of Table 9 includes the own-tract demand shock, Azjt

is AzﬁS’R( p)). This permits limited spatial correlation (to the extent the observed labor demand

, as a control (recall that the instrument

shocks are spatially correlated), and implies a slightly higher labor share of income. Column C
includes the log measure of land zoned for productive uses, but this is measured poorly in the
data.* Similarly, Column D indicates too large estimates.

The ability to generate reasonable estimates of a and ¢ provides confidence in this intercon-
nected approach to identification. Estimation of these parameters is more demanding than € and
1, both in terms of the stringency of the moment conditions and in the amount of exogenous
variation needed to avoid weak instrument problems. Overall, these results suggest that inter-
acting locally defined labor demand shocks with spatial structure can be used to create broad,

omni-purpose tools for identifying local price elasticities.

39. IPUMS microdata indicate that the median household expenditure share on renting is about 0.26 for this time
period, though there are a number of differences in calculating income and housing costs that could explain the mean
difference.

40. Unlike residential land, it is difficult to classify different types of land used in production. For example, it is
unclear whether to add land used for storage. Further, the data show some unusual changes across waves.
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7.1 The effects of the LA Metro on non-commuting fundamentals

I now test whether transit shifts non-commuting fundamentals using Equation (24). For tract-level

analysis, I define transit proximity as

500m _ max{0,500m — ming{dist;(MetroStation;,)} } € [0.1]

Proximity;
roximity; 5001

This normalizes proximity so that it equals one when a tract contains a station, and zero if a tract
is more than 500m from a station. As before, I use the historical subway plan and location of
PER lines to define control groups. I cannot define fundamentals prior to 1990, but I compare
pre-trends on observed market outcomes using NCDB data. The first four columns of Appendix
Table F15 shows that there do not appear to be consistent differences in treated and control loca-
tions among modeled prices and quantities across specifications. I do, however, some evidence
of different trends in socioeconomic characteristics. I include the 1990 levels of these variables as
control in some specification to permit differential trends.

While Section 4 showed strong evidence that transit increases commuting between connected
locations, there is little evidence it affects other margins: Transit does not consistently shift local
fundamentals. Estimates of the effect of transit on productivity, residential amenities, housing pro-
ductivity, and workplace amenities are shown in Table 10. Transit has little non-commuting effect
after conditioning on regional trends and changes in highway structure. There some evidence of
decreasing workplace amenities near transit, though an effect on this margin is unexpected. While
this might represent an effect of transit on non-pecuniary workplace benefits (e.g. reduced park-
ing), this is more likely due to labor match than a direct consequence of transit proximity. Taken
together, these results indicate that transit is not generating large-scale non-commuting benefits
or costs within the immediate proximity of stations.

Surprisingly, there is no apparent effect of LA Metro Rail on (non-commuting) residential
amenities in any specification. An implication is that hedonic estimates of the effect of transit
reflect a commuting benefit rather than other related neighborhood amenities.*! These results
only apply to LA Metro between 1990 and 2000; I cannot extend the non-commuting analysis to
more recent years. The network was limited in size and connectivity at this time. As the transit
network has expanded, it has become more valuable in terms of transportation connectivity. Re-
sponses that depend on scale, or are slower to respond (zoning laws can take decades to evolve),
could potentially manifest in recent years. LA Metro Rail’s primary effect between 1990-2000 is
to expand commuter connectivity in Los Angeles: the city can accommodate more people with
transit.

41. Results are consistent with Schuetz (2015), who shows that retail (a consumption amenity) does not increase near
new rail transit stations in California between 1992 and 2009. Consumption amenities are a common foundation for
residential agglomeration (Ahlfeldt et al. 2015).
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7.2 Robustness checks: sorting and land use

The model assumes predetermined land use. While identification of the structural elasticities and
transit effects are robust to this, counterfactual simulation may or may not be. I use SCAG zoning
maps to test this channel and find little evidence of association between land use change and
treatment. Table F17 indicates the change in residential land use is very small and statistically
insignificant across richer fixed effects specifications. This is unsurprising given strict zoning and
the relatively fixed nature of land use in urban settings due to the slow depreciation of buildings,
and accords with the finding in Schuetz, Giuliano, and Shin (2016) that zoning hinders transit-
oriented development near rail stations.

Transit users may differ from those who do not use transit (Glaeser, Kahn, and Rappaport
2008; LeRoy and Sonstelie 1983). If so, transit could induce equilibrium sorting. While the data
limit the explicit addition of heterogeneity to the model, I find no evidence of differential trends in
median household income between treated and control census tracts. Results in Table F17 show
small, insignificant point estimates. Figure 5 shows the relationship between transit and rail usage

by income centiles in 1990 and 2000, and reveals no relationship between income and rail usage.

8 Welfare calculations and additional quantitative exercises

To estimate counterfactuals, I employ the succinct hat notation of Dekle, Eaton, and Kortum (2008),
letting Xit = X,/ X represent the relative change of an observed or estimated variable X under
the counterfactual X’. This approach avoids using levels of fundamentals. Results are easily inter-
pretable and given as a ratio to the observed price or population level. Furthermore, after solving
the model in terms of updated equilibrium prices and populations, estimation of the counter-
factual proceeds easily via an iterative algorithm that quickly finds a fixed point representing a

counterfactual equilibrium. I'lay out the algorithm in the Appendix.

8.1 LA Metro Rail and welfare

I estimate counterfactual values of W, #, Q (and sometimes N ) relative to observed data in 2000
under various combinations of the estimated structural elasticities {c, €, (,1}. Using estimates
of the fundamental effects of transit from the preceding section, I define alternative scenarios by
adjusting fundamentals so X, =1-)XXT}, for X € {A,B,C, D, E}. The assumption of an open
or closed city plays an important role. In a closed city, total population does not adjust. This
means that there are real utility gains; these gains are equalized across the city through general

equilibrium movements in prices. The model delivers a simple expression for welfare changes as
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a function of changes in local fundamentals and prices—a hat-notation variant of Equation (7):

%A Welfare ~ In U=-I
€

(25)

7’:‘_*

5 A T1ir%€ Ax—<(1—9)
1 BZE]DUW] Qz
(]

for any pair 7§, where X * indicates the equilibrium value of X in the counterfactual under autarky
(that is, fixing N = 1).#2 Because utility is homogeneous of degree one in wage, a proportional
change in utility translates to an equivalent proportional change in wage. To convert this to levels,
I multiply the proportional change in utility by the average annual wage ($31,563) and aggregate
population of workers (6.73 million) in 2000.

Instead, if the city is open, aggregate population adjusts so that the expected utility in the
city is equivalent to U. Thus aggregate welfare for incumbent residents is unchanged: No spatial
arbitrage means that the expected utility of city residence is U both before and after the change in
fundamentals, so I instead report changes in total population. This statistic captures the change in
the population the city can accommodate under transit with no change to utility.

Annualized costs combine two elements: (i) operating subsidies and (ii) annualized capital
expenditures. The annual operating subsidy for the rail portion of LA Metro’s operations for
2001/2 is about $162 million (2016 dollars). Total system cost for lines and stations completed
by 1999 is $8.7 billion (2016 dollars). Annualizing this expense involves an element of taste. LA
Metro’s borrowing terms at the time were about 6%, so the annual payment for a thirty year loan
is roughly $635 million. However, subways often last for a very long time once built. It may be
appropriate to use a much lower social discount rate (see Weitzman 1998). Assuming a social
discount rate of 2.5% and an infinite horizon, capital expenditures are equivalent to $218 million
per year. Combining with the operating subsidy yields an annualized cost between $380 to $797
million per year (details in the Appendix).

Welfare effects by 2000

Table 11 reports the changes in aggregate welfare and population due to LA Metro in percentage
and dollar terms. Estimates of the effect on commuting use results from Table 2, Column 5, the
Subway Plan (All) sample. Columns 1 and 3 exclude travel benefits for automobile users, Columns
2 and 4 include them. All columns use ¢ = 1.83, & = 0.68, and ¢ = 0.65; ¥y = 1.693 in Columns 1
and 2, and ¢ = 2.29 in Columns 3 and 4.

Column 1 indicates an annual benefit of $109 million, an increase of 0.05% relative to base-
line. In an open economy, the employed population of the Los Angeles region is 0.11% higher

42. On a technical note: the expectation underlying this term is infinite for ¢ < 1, even though Equation (25) can be
calculated for any value of € # 0. Instead of enforcing this arbitrary parameter restriction, I show (in the Appendix)
that Equation (25) can be isopmorphically expressed in a multinomial logit framework, with e naturally taking the roll
of marginal utility of income (Train 2009). This expands permissible values of ¢; Equation (25) (and similar expressions)
can be used for € > 0, not just e > 1.
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with Metro Rail. Including travel time increases the closed economy benefit to about $146 million
per yeat, or about 0.07%. Open economy employment would be about 0.15% higher in this case
(roughly ten thousand people). Closed economy results are virtually unchanged with less elastic
housing supply, while open economy results are a bit smaller.

A general conclusion across all specifications is that the commuting benefit of rail transit in Los
Angeles does not exceed its cost by the year 2000. Regardless of the discount rate, annual benefits
are almost equal to the operating subsidy (about $160 million) in some specifications. However,
these commuting benefits cannot cover the capital expenses, except at very low discount rates.

Combining both expenses, costs cleanly outweigh benefits.

Other margins

There are of margins to which the data and framework used for this analysis cannot speak. The
framework does not capture or calculate the benefits for non-workers (as in most analysis of
transportation behavior). This margin is likely quite important, and unfortunately understudied.
Nor can I directly speak to benefits resulting in better transit provision for non-commuting trips,
though this margin would likely show up as a residential amenity if substantial enough. Rail tran-
sit may also enable better bus transit and connectivity, but I cannot measure this. Finally, city-wide
effects are not captured by this approach. For example, decreased air pollution may provide an
additional benefit; a generous estimate using parameters from Gendron-Carrier et al. (2018) and
Los Angeles’ mid-1990s birthrate suggests an additional gain of about $180 million annually.*3

9 Additional commuting effects

I use data from the 2002 and 2015 LEHD Origin-Destination Employment Statistics (LODES) to
look for additional effects of transit on commuting flows in more recent years.** Because LA
Metro Rail expanded during this period, I estimate a variant of Equation (2) on the LODES panel
with two different effects: (i) New Transit is the effect of new stations (built after 2002) on bilateral
commuting flows, while (ii) Existing Transit is the additional increase in commuting experienced
by the stations built earlier (between 1990 and 2002). I retain prior treatment definitions.

Results (shown in Table 12) indicate that new transit connections increase commuting by 10%-
13% between tract pairs that both contained stations by 2015.#° For tract pairs slightly farther
away, the increase is 5%-8%, and is insignificant using the PER sample. While these effects are
substantial, they are smaller than the effects of connections between 1990 and 2000. This is likely

43. The time frame on these benefits is uncertain, as Gendron-Carrier et al. (2018) are unable to measure pollution
responses beyond six to eight years after the opening of a metro system.

44. The 2006/10 CTPP is not compatible with previous CTPPs because of aggressive changes in reporting standards,
aggregation of data across years, and other changes in geographies. Notably, it does not report workplace wage.

45. Note that this includes tract pairs for which one member had been connected before 2000.
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because many of the stations built after 2002 connect locations that are more suburban and less
transit-oriented. Tract pairs that had been previously connected by transit (before 2000) experience
additional commuting growth by 2015: pairs both containing a station show another 8%-11%
increase in commuting, and tract pairs a bit further away show an additional 5-9% in commuting.
This is evidence that either (i) aggregate commuting flows take decades to adjust to new transit
modes (i.e., habituation), and/or (ii) that there are increasing returns in transit network size.

A significant omission of the 1990-2000 welfare analysis in Section 8 is the exclusion of these
later benefits. However, the results in Table 12 can be included in longer run welfare analysis if
I assume that, as was the case between 1990 and 2000, no non-commuting benefits accrue post
2000. There are then two cases to consider: (1) If increased commuting is due to habituation,
the full commuting increase between previously connected stations is attributable to early system
construction; (2) If, however, there are increasing returns in network size, increased commuting
between existing stations is due to new stations and lines. As a lower bound, the additional benefit
is zero. This allows comparing outcomes using the same capital cost basis.

Under habituation, I simply combine the effects from Table 2 and the Existing Station effects
from Table 12 and simulate the new outcome. Accounting for these additional effects, the closed
economy benefit is $216 million annually, or an increase of about 0.10% (using parameters from
Column 2 of Table 11). In an open economy, population is about 0.22% higher because of Metro
Rail. The benefit, while substantial, only exceeds operational subsidies and capital costs if the
social discount rate is very low (about 0.6%).

10 Conclusion

This paper develops and estimates an equilibrium model of a city wherein costly commuting
connects housing and labor markets, and uses this model to estimate the welfare impacts of Los
Angeles Metro Rail. The model is sufficiently parsimonious to permit transparent identification
and estimation of all parameters, yet better reflects the observed spatial distribution of economic
activity than commonly used market access approaches. The elasticity of labor supply plays a key
role governing homogeneity in location preference. A small value indicates agents are relatively
unwilling to relocate and are not very responsive to changes in local conditions or policies. Con-
versely, it also implies that observed responses to transit correspond to significant utility gains.
Estimates of the remaining elasticities are in line with previous studies, and support the view that
Southern California has a constrained housing supply.

I provide new insights into how transit influences city structure by isolating the commuting
benefit of transit from other margins. LA Metro Rail increases commuting between the census
tracts nearest to stations by 15% in the first decade after construction, relative to control groups
selected by proposed and historical transit locations. Nearby stations also experience a more mod-
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est increase of about 10%. There is some evidence that Metro Rail has a small medium to long run
effect on congestion, reducing travel times in nearby areas by about 3%. There is little support of
effects through other channels (such as non-commuting amenities).

Welfare estimates point to a range of positive annual benefits of the system from $109 mil-
lion to $146 million by 2000. These welfare benefits are smaller than the operational and capital
costs of LA Metro’s light rail and subway lines. I also provide evidence of dynamic effects due
to increasing returns or habituation. if these effects are because of slow habituation, the annual
benefits of LA Metro Rail’s network are about $216 million. This benefit is greater than the opera-
tional subsidy, but only approaches the cost of capital under very low social discount rates. While
these welfare estimates leave out some other benefits of transit (such as benefits for non-workers),
results warrant a note of caution to cities expecting rail investment to lead to large increases in

worker welfare within ten to twenty-five years.
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Figure 1: Map of Proposed LA Metro Lines and PER Lines in Kelker, De Leuw and Co. (1925)
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Figure 2: Map of LA Metro lines, stations, and the 1925 Plan and PER Lines
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Figure 5: Take-up of LA Metro Rail for commuting does not vary by income, but overall take-up
of transit (including bus) does.
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Table 1: Descriptive statistics on transportation in Los Angeles and station placement

LA County Full Sample

Centroid  Any  Centroid  Any
<500m < 500m < 500m < 500m

1) 2) 3) 4)
A. Pre-treatment tract characteristics (1990)
% workers at POW tract that receive treatment 11.3% 19.5% 7.2% 12.3%
% workers at RES tract that receive treatment 2.7% 8.1% 1.6% 4.8%
% workers that receive transit connection RES-POW 0.6% 2.9% 0.4% 1.7%
% workers commuting via: Drive alone 71.8% 74.5%
% workers commuting via: Carpool 15.8% 15.8%
% workers commuting via: Bus 6.9% 4.6%
B. Commuting characteristics
Commute time (minutes, 1990) 26.3 [16.8]
Commute time (minutes, 2000) 28.0 [18.3]

Data from Census micro records (from IPUMS) and 1990 CTPP. LA County restricts analysis only to workers both
living and residing in Los Angeles county, while the full sample includes all five counties in the main sample.
Brackets indicate standard deviation. Commute times are weighted by flows.
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Table 2: Effect of Transit on Commuting Flows (by 2000) - Linear

1) (2) ) (4) (5) (6)

Subway Plan (Immediate) Sample

O & D contain station 0.106* 0.142* 0.153* 0.157* 0.149* 0.154*
(0.052) (0.059) (0.060) (0.061) (0.061) (0.066)
O & D <250m from station 0.127*  0.138* 0.128* 0.137*
(0.063) (0.064) (0.065) (0.069)
O & D <500m from station 0.058 0.017 0.016 0.012 0.018
(0.048) (0.053) (0.053) (0.053) (0.055)
N 19238 19238 19238 19222 19222 18296
Subway Plan (All) Sample
O & D contain station 0.127** 0.147** 0.152** 0.162** 0.146** 0.152**
(0.044) (0.044) (0.044) (0.046) (0.044) (0.047)
O & D <250m from station 0.115*  0.122* 0.101*  0.109*
(0.049) (0.050) (0.051) (0.053)
O & D <500m from station 0.054 0.018 0.023 0.013 0.018
(0.035) (0.044) (0.042) (0.042) (0.043)
N 74046 74046 74046 74040 74040 71844
PER Sample
O & D contain station 0.098* 0.116** 0.119** 0.129** 0.113* 0.084*
(0.042) (0.043) (0.043) (0.045) (0.044) (0.046)
O & D <250m from station 0.104* 0.109* 0.088% 0.037
(0.049) (0.050) (0.051) (0.050)
O & D <500m from station 0.054 0.025 0.030 0.019 -0.027
(0.034) (0.041) (0.040) (0.040) (0.043)
N 99074 99074 99074 99054 99054 95382
Full Sample
O & D contain station 0.102** 0.101** 0.112* 0.117** 0.101**
(0.038) (0.037) (0.038) (0.040) (0.038)
O & D <250m from station 0.074  0.077+ 0.054
(0.046) (0.046) (0.047)
O & D <500m from station 0.028 0.000 -0.003 -0.014
(0.031) (0.037) (0.036) (0.036)
N 291000 291000 291000 290580 290580
Control Network Loose  Loose Loose Loose  Loose Tight
Tract Pair FE Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y
Sbcty-X-Sbety-X-Yr FE - - - Y Y Y
Highway Control - - - - Y Y

High-dimensional fixed effects estimates of A”. Treatment variables are mutually exclusive with others
in each column. All estimates include tract of work-by-year, tract of residence-by-year, and tract pair
fixed effects. Standard errors clustered by tract pair, tract of residence, and tract of work in parentheses:
T p<0.10,* p < 0.05,** p < 0.01
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Table 3: Effect of Transit on Commuting Flows (by 2000) - Adjacencies

1) ) 3)
O & D contain station 0.087* 0.171** 0.170**
(0.041) (0.060)  (0.060)
O & D <250m from station -0.022 -0.032 -0.032
(0.046) (0.059) (0.059)
O & D <500m from station -0.015 -0.049 -0.049
(0.039) (0.050) (0.050)
O & D <1000m from station -0.005
(0.031)
Adjacency Base 500m  1000m  1000m
Tract Pair FE Y Y Y
Group-X-YrFE Y Y Y
N 217517 301662 301662

High-dimensional fixed effects estimates of A estimated from adjacen-
cies (see text). Treatment variables are mutually exclusive with others in
each column. All estimates include tract pair and group-by-year fixed
effects. Standard errors clustered by tract pair, tract of residence, and
tract of work in parentheses: T p < 0.10, * p < 0.05, ** p < 0.01

Table 4: Does transit decrease travel time?

In(A))
1) 2 3) “4) ) (6) ) (8)
Within 2km of tracks -1.277**  -1.243**  -0.748 -0.032* -0.033* -0.026 -1.417* -0.766
(0.402) (0.426) (0.481) (0.013) (0.014) (0.016) (0.631) (0.719)
Within 4km of tracks -0.305 -0.304 0.050 -0.006  -0.006  -0.002 0.150 0.293
(0.364) (0.364) (0.398) (0.012) (0.012) (0.013) (0.556) (0.612)
Control Network All All All All All All All All
Tract Pair FE Y Y Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y Y Y
Near station control - Y Y - Y Y - -
Sbcty-X-Sbety-X-Yr FE - - Y - - Y - Y
Highway Control - - Y - - Y - Y
N 311340 311340 310904 311314 311314 310878 96098 95884

High-dimensional fixed effects estimates of track proximity on driving time. Control network is ‘loose’ (see text).
Treatment variables are mutually exclusive with others in each column. All estimates include tract of work-by-year,
tract of residence-by-year, and tract pair fixed effects. Standard errors clustered by tract pair, tract of residence, and

tract of work in parentheses: T p<0.10,* p <0.05* p<0.01
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Table 5: Comparing commuting flow and market access measures

K | Mean SD. Min Max
EZCF - 0390 .0132 .0186 .0866

=MAT 005 | .0408 .0108 .0253 .0904
=AY 002 | 0379 0099 0232 .0818
=MAT 001 | 0368 0096 .0220 .0788
=MAT 0005 | 0362 0094 .0213 0773

=MAD 005 | 0169 0024 .0126 .0199
MAO 002 | 0133 0018 .0107 .0152
=140 001 | 0121 0016 .0099 .0136
EMAO 0,005 | 0114 .0015 .0095 .0128

7

=

1] [1] [1

There are 93 treated observations in each case, simu-
lated using the statistically significant estimates Table 2,
Column 5, in the Subway Plan (All) Sample.

Table 6: IV estimates of labor supply elasticity (¢)

Wit Wit Wit
1) (2) 3)
In(W;¢) 0498  1.846*  1.830*

(0.411)  (0.835)  (0.783)
F-stat (KP) 15277 16883  17.328

w estimated: Linear, PPML PPML
Panel Yr-by-yr Panel
N 2354 2432 2433

Panel instrument variable (IV) estimates of regres-
sion of w;t on wy;. Estimated in differences using
wage instrument. KP refers to the Kleinbergen-
Papp F-statistic. Variables are trimmed to exclude
extreme values (see text). Column 1 uses a linear
specification, columns 2 and 3 assume a Poisson
model. Place of work-by-year fixed effects (w;t)
estimated from a panel specification in columns
1 and 3, relying on ij fixed effects to control for
distance. Column 2 uses w;t estimated year-by-
year, using network distance to control for dis-
tance. Standard errors clustered by tract in paren-
theses: T p < 0.10, * p < 0.05, ** p < 0.01
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Table 7: IV estimates of inverse housing supply elasticity (¢)

(1) (2) (3) (4) (©) (6)

In(Density) 2.221**  2.292**
(0.706)  (0.738)
In(Hous. Consump.) 1.693**  1.610**
(0.483) (0.442)
In(Res. Land) -1.396+7  -1.318*
(0.790)  (0.778)
In(Hous. Density) 1.814**  1.693**

(0.648)  (0.504)

Housing Supply Elasticity (1/¢) 0.450** 0.436™ 0.591** 0.621** 0.551** 0.591**
(0.143) (0.140) (0.169) (0.170)  (0.197) (0.176)

F-stat (KP) 14.830 14.234 12944 14.218 8.138 11.887
Empl. instrument All Not 7 All Not 7 All Not ¢
N 4550 4548 4500 4498 4500 4498

Panel instrument variable (IV) estimates of regression of median house value on population, housing
consumption, and residential land, using In(p) = —5.5 and employment IV. KP refers to the Kleinbergen-
Papp F-statistic. Variables are trimmed to exclude extreme values (see text). Columns 2, 4, and 6 exclude
own tract during instrument construction. Standard errors clustered by tract in parentheses: T p<0.10,
*p<0.05 " p<0.01

Table 8: IV estimates of housing demand elasticity (—e(1 — ())

) (2) ©)
In(House Value) -0.662% -0.659" -0.871*
(0.353)  (0.353)  (0.356)

F-stat (KP) 260.99 26128 258.84
Sample All All not ig

Travel Time - Y -

N 287598 287598 282754

Panel instrument variable (IV) estimates of regression
of flows on median housing values, using In(p) =
—5.5. Estimated in differences using employment
instrument. KP refers to the Kleinbergen-Papp F-
statistic. Variables are trimmed to exclude extreme val-
ues (see text). All estimates include tract-of-work-by-
year and tract-pair fixed effects. Standard errors clus-
tered by tract in parentheses: Tp<0.10, * p < 0.05, **
p < 0.01
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Table 9: IV estimates of inverse labor demand elasticity (o — 1)

(1) (2) (3) (4)

In(Employment) -0.329**  -0.226**  -0.835
(0.125)  (0.082)  (0.698)
In(Prod. Land) 1.210
(0.980)
In(Emp. Density) -0.553
(0.368)
F-stat (KP) 3.586 2.955 1.798  3.439
Own shock as control - Y Y Y
N 4882 4882 4766 4766

Panel instrument variable (IV) estimates of regression of employment,
employment density and land in production, using In(p) = —5.5 and
wage IV. KP refers to the Kleinbergen-Papp F-statistic. Variables are
trimmed to exclude extreme values (see text). Columns 2-4 incllude the
own tract labor demand shock as a control. Standard errors clustered
by tract in parentheses: ™ p < 0.10, * p < 0.05, ** p < 0.01
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Table 10: Transit and non-commuting fundamentals (other effects of transit)

) 2 (3) (4) ©) (6) (7) (8)

A. Effect on productivity A4, « — 1 = —0.226
Proximity??”" x ¢ -0.089** 0.009 -0.009 0.008  -0.034 0.006 -0.050"  0.011
(0.027)  (0.030) (0.031) (0.034) (0.028) (0.030) (0.027)  (0.030)

N 4882 4858 780 776 1828 1826 2288 2284

B. Effect on residential amenity AB, ¢(1 — ¢) = 0.662
Proximity?”™ x ¢ 0.107** -0.002  0.030 -0.042 0.070* -0.007 0.076**  0.012
(0.029)  (0.032) (0.032) (0.035) (0.029) (0.033) (0.029)  (0.033)

N 4534 4518 712 710 1700 1700 2094 2092

C. Effect on inverse housing efficiency AC, ) = 1.693
Proximity?””” x ¢  0.070%  0.006 -0.096* -0.044  0.024 -0.025 0.051 0.003
(0.041) (0.046) (0.047) (0.054) (0.042) (0.048) (0.042)  (0.048)

N 4484 4476 694 692 1670 1670 2058 2056

D. Effect on workplace amenity AE, e = 1.83
500m

Proximity; xt -0.203** -0.058 -0.092 -0.154* -0.103t -0.103 -0.104t -0.115%
(0.058) (0.062) (0.066) (0.073) (0.060) (0.066) (0.059) (0.062)
N 4866 4842 780 776 1830 1828 2286 2282
Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y
Controls - Y - Y - Y - Y

Results from thirty-two regressions of transit proximity on estimated local fundamentals. All regressions include
tract fixed effects. Controls include changes in highway proximity and 1990 levels of log household income, share
of residents with at least a high school degree, and manufacturing employment. Standard errors clustered by tract
in parentheses: * p < 0.10, * p < 0.05, ** p < 0.01
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Table 11: Welfare estimates in 2000 (in $2016)

1) (2) (3) (4)

Parameters
a 0.680 0.680 0.680 0.680
€ 1.830 1.830 1.830 1.830
¢ 0.650 0.650 0.650 0.650
¥ 1.693 1.693 2.290 2.290
€K - -0.020 - -0.020
Change in fundamentals
AP, O & D contain station 0.146 0.146 0.146 0.146
AP, O & D <250m from station 0.101 0.101 0.101 0.101
A7, O & D <2km from station - -0.033 - -0.033
Closed Economy
Annual A in welfare 0.051% 0.069% 0.051% 0.069%
(in millions of $2016) 108.9 145.7 108.9 145.6
Open Economy
Population A 0.109% 0.146% 0.106% 0.141%
Op. subsidy + capital cost (6%, 30yy) -$797 mil.
Op. subsidy + capital cost (5%, 50yr) -$641 mil.
Op. subsidy + capital cost (5%, co) -$597 mil.
Op. subsidy + capital cost (2.5%, o) -$380 mil.
Operation subsidy only -$162 mil.

Op. subsidy refers to the annual operation subsidy. See text and appendices for details.
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Table 12: Dynamic effects of transit on flows (2002-15), Linear

(1) 2) ©) (4) (5) (6)

Subway Plan (Immediate) Sample, N = 105794

New: O & D contain station 0.101** 0.103** 0.121** 0.123** 0.131** 0.133**
(0.035)  (0.035) (0.035) (0.035) (0.036) (0.036)

New: O & D <250m from station 0.053* 0.053* 0.075 0.076"* 0.082** 0.083**
0.027)  (0.026) (0.028) (0.027) (0.028)  (0.027)

New: O & D <500m from station 0.026 0.026  0.053* 0.054* 0.043" 0.045"
(0.026) (0.026) (0.025) (0.025) (0.025) (0.025)
Existing: O & D contain station 0.108**  0.112**
(0.030)  (0.030)
Existing: O & D <250m from station 0.086**  0.091**
(0.029)  (0.029)

Existing: O & D <500m from station 0.058** 0.061**  0.029 0.032

(0.022) (0.022) (0.028) (0.029)
Subway Plan (All) Sample, N = 385290

New: O & D contain station 0.109* 0.102** 0.113** 0.106™ 0.119** 0.112**
(0.031) (0.031) (0.032) (0.031) (0.032) (0.031)

New: O & D <250m from station 00417 0036 0.050* 0.044t 0.052*  0.046*
(0.023) (0.023) (0.024) (0.023) (0.024)  (0.023)

New: O & D <500m from station 0.019 0.016  0.034*  0.029 0.029 0.025
(0.020)  (0.020) (0.020) (0.020)  (0.020)  (0.020)
Existing: O & D contain station 0.107**  0.098**
(0.033)  (0.032)

Existing: O & D <250m from station 0.066"  0.0617"
(0.035)  (0.035)

Existing: O & D <500m from station 0.056*  0.049* 0.035 0.028

(0.023) (0.023) (0.025) (0.025)

continued...
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Table 12 — continued from previous page

PER Sample, N = 514110

New: O & D contain station 0.101**  0.097** 0.103** 0.100** 0.108"* 0.105**
(0.033)  (0.032) (0.034) (0.033) (0.034) (0.033)

New: O & D <250m from station 0.030 0.026 0.037 0.033 0.039 0.035
(0.024) (0.024) (0.025) (0.024) (0.025) (0.024)

New: O & D <500m from station 0.025 0.024 0.039* 0.038" 0.036" 0.035"
(0.020) (0.020) (0.021) (0.020) (0.021)  (0.020)
Existing: O & D contain station 0.098**  0.099**
(0.035)  (0.034)

Existing: O & D <250m from station 0.058%  0.059*
(0.031)  (0.032)

Existing: O & D <500m from station 0.055*  0.056*  0.040 0.041

(0.022)  (0.023) (0.025) (0.025)
Full Sample, N = 1993198

New: O & D contain station 0.109**  0.092** 0.108** 0.092** 0.110**  0.094**
(0.033) (0.031) (0.034) (0.032) (0.034) (0.032)
New: O & D <250m from station 0.034 0.017 0.038 0.021 0.038 0.022
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)
New: O & D <500m from station 0.022 0.008 0.032 0.019 0.031 0.017
(0.022)  (0.020) (0.022) (0.020) (0.023) (0.021)
Existing: O & D contain station 0.091*  0.084*
(0.038)  (0.036)
Existing: O & D <250m from station 0.049t  0.048"
(0.027)  (0.029)
Existing: O & D <500m from station 0.056*  0.052* 0.048"  0.043"
(0.022)  (0.022) (0.025) (0.025)
Tract Pair FE Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y
Sbcty-X-Sbety-X-Yr FE - Y - Y - Y

High-dimensional fixed effects estimates of \”. Treatment variables are mutually exclusive with others in each
column. All control networks are ‘loose’ (see text). All estimates include tract of work-by-year, tract of residence-
by-year, and tract pair fixed effects. Standard errors clustered by tract pair, tract of residence, and tract of work in
parentheses: T p < 0.10, * p < 0.05, ** p < 0.01
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A Discussion of data

In this Appendix section, I discuss all the sources of data that this project draws from and details relevant
to sample construction. I pay particular attention to normalization. I also compare the CTPP and LEHD
LODES data sources, and explain why they are not suitable to be used together.

A.1 Sources

o Census Transportation Planning Project (CTPP)

1990 Urban Part II: Place of Work, Census Tract
1990 Urban Part III: Journey-to-Work, Census Tract
2000 Part 2

2000 Part 3

2006/10 Part 3 (not used in current draft)

o National Historical Geographic Information System (NHGIS)

— Shapefiles, Block Group and Census Tract, 1990, 2000, and 2010
- Census, Block Group and Census Tract aggregates, 1990 and 2000

¢ Longitudinal Employer-Household Dynamics (LEHD) Origen-Destination Employment Statistics (LODES)
- Aggregated to tract-to-tract flows, 2002 and 2015, using constant 2010 geographies

o Geolytics Neighborhood Change Database (NCDB)
— Census aggregates in constant 2010 geographies from 1970-2010

o Los Angeles County Metropolitan Transportation Authority (LACMTA)

Shapefiles on LA Metro stations and lines

Opening dates for stations and lines
Ridership data

Kelker, De Leuw and Company (1925). I georeference this map in ArcGIS, and then processe it
in R to provide geographic data to delineate the 1925 Plan and PER Line samples.

o IPUMS USA

- Microdata on employment, wage, and industry by MSA for all non-CA residents, 1980-2000.

— Microdata on transit in the 1990 and 2000 Censuses for LA area residents.
e Southern California Association of Governments

- Land use and zoning maps: 1990, 1993, 2001, 2005.
o National Highway Planning Network

— Shapefiles for the Century Freeway (I-105)

A.2 Data construction details

See data map on following pages. Where there have been significant and arbitrary data processing deci-
sions, I denote this by P#. See Figure ?? to reference data processing.

A-1



Geographic normalization

Through my primary analysis (all results from 1990 and 2000, excluding the check on pre-trends), the unit
of observation is the census tract according to 1990 Census geographies. The Transportation Analysis Zones
used in Southern California in the 1990 CTPP are equivalent to census tracts from the 1990 Census that have
been subdivided by municipal boundaries if they overlay multiple jurisdictions. I merge TAZs in 1990 that
cross municipal boundaries and assign them to the corresponding census tract. Data from the 2000 CTPP
and 2000 Census are both in 2000 geographies. I therefore overlay shapefiles delineating 2000 geographies
on 1990 census tracts to develop a crosswalk that translates 2000 data into 1990 geographies."! Where
possible, I use 2000 block group data and shapefiles to refine the crosswalk. More precisely, to create the
crosswalk, I intersect the 2000 census tracts and census block group files with 1990 census tracts, and then
clean to provide a set of weights to be used in converting 2000 data to the 1990 geographies. Note that the
intersection method varies according to whether summation or averaging is desired. If summing, weights
are the portion of a 2000 geography that overlays the 1990 census tract. If averaging, weights are the portion
of the 1990 census tract that is covered by a 2000 geography. In all cases, I excluded intersected values that
cover less than 0.5% of the targeted area to reduce noise (P1).F

To normalize 2000 flows and travel times to 1990 geographies, the crosswalk is merged twice into the
data, once by origin and once by destination (using the Stata command joinby to ensure all combinations
were made). I then collapse this data by 1990 origin-destination pairs, taking the raw sum areal weights
as the 1990 flow counts and using the areal weights to determine travel times. Many travel times are not
disclosed in the 2000 data, and are treated as missing and are ignored. The 2000 CTPP data do not report
actual counts, instead rounding to the nearest 5 (except for 1-7, which is labeled 4). In order to treat 1990 and
2000 data similarly, I develop two approaches that are conservative, though they throw away potentially
useful variation. Both are similar, but differ in how they treat small numbers. In approach (P2a), I divide
flows by 5, and round to the nearest digit. In approach (P2b), I change any flow values between 1 and
4 inclusive to be 4, and divide by 5 and round to the nearest digit. Small digits are different in the two
years: in 1990, digits <4 have actual meaning, whereas in 2000 digits <4 can only have been created through
the areal weighting process. Both approaches accommodate these differences in a different way, and offer
different truncation points (2.5 for approach (a), and 1 for approach (b)). Approach (b) is my preferred
specification. For all flows-by-mode, I follow approach (b), as not doing so would result in significant left-
truncation. I also drop all pairs with a value of 0 in both 1990 and 2000 for approach (b) (P4). A small
number of locations failed to merge. The flows in these amounted to 0.4% of the population.

I exclude census tracts from the eastern edges of San Bernardino and Riverside counties on the Channel
Islands.

Labor demand shock construction

I construct wage and employment variants of the Bartik (1991) labor demand shock using Census microdata
from 1990 and 2000. I exclude all workers in California. To create measures of national changes in labor
demand, I calculate the change in wage or employment by two digit SIC industry from 1990 to 2000. I
then interact this with the 1990 employment share by industry at each census tract of work to create a
local measure of (plausibly exogenous) change in labor demand. While it would be preferable to use 1980
employment share by industry at tract of work, I have not been able to locate such data.

I then follow the approach described in Section 4 and interact the labor demand shock with the distance
between tracts to model how the shock dissipates into adjacent markets. Because each tract may be joined
to a different number of tracts, I weight by distance and exclude tracts that experience zero commuting
flows (P3).

E.1. This is essentially the reverse process of the Longitudinal Tract Data Base in Logan, Xu, and Stults (2014); I bring
current data to 1990 geographies because merging tracts induces less error than (perhaps incorrectly) splitting tracts.

E2. There are constant small realignments of census blocks (which aggregate to tracts) to account for roads, construc-
tion, lot mergers, etc. I choose the 0.5% threshold because it is unlikely that this represented a substantive change in the
census tract, but rather just a minor border adjustment.
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Data trimming

The various processes above produce relatively standardized data that accords reasonably well with ad
hoc probes of quality. However, there are instances of extreme values that becomes influential observations
during estimation. I experimented with a number of approaches to deal with this: (i) doing nothing, (iia)
winsorizing in levels, (iib) trimming in levels, (iiia) winsorizing in changes, and (iiib) trimming in changes,
where all winsorizing and trimming takes places at the 1st and 99th centiles. I ultimately settled on (iiib)
trimming in changes, because it reduces the number of influential observations and removes observations
with implausible-seeming characteristics from the data. I also remove observations with top-coded data
where applicable. If a variable was top-coded differently in different years, I standardized the top code to
the most conservative year.

Construction of treatment and control groups

The Dorothy Peyton Gray Transportation Library of LACMTA hosts historical data on proposed transit
plans for the Los Angeles area, including the Kelker, De Leuw and Company (1925) plan. I obtain high-
resolution digital copies of Plates 1 and 2 of this document and georeference them in ArcGIS using im-
mutable landmarks and political boundaries.™ I then trace the proposed lines and the existing PER lines
from this map, and convert these traces into shapefiles.

To define treatment status, I spatially join shapefiles on actual LA Metro Rail stations from LACMTA to
both census tract centroids and boundaries. I define treatment in two ways:

e A narrower definition that requires that either (i) the distance from a tract boundary to a station be
exactly O, or (ii) the distance from a tract centroid to a station be less than 500 meters. Condition (i)
implies that the stations lies within the census tract.

o Abroader definition that requires just that the distance from a tract boundary to a station be less than
500 meters.

All treated tracts are included in all estimates. To develop a set of control tracts, I spatially join the shapefiles
descended from the Kelker, De Leuw and Company (1925) document to the census tract shapefiles, and
keep all tracts that have boundaries within 500 meters of the tracks. This assigns non-treated tracts to a
control group for three different reasons: (i) they lie along spurs of proposed track that were never built, (ii)
they are near a built track but distant from a station, (iii) they lie slightly farther away from stations than
nearby treated tracts. Previous iterations of this paper have used alternative definitions of these control
groups, but the use of a 500 meter boundary seems to provide the closest comparison. I perform this
separately for 1990 tract geographies (for the main specifications) and 2010 tract geographies (for use with
the NCDB and LEHD LODES).

A.3 CTPP vs. LODES

I draw data primarily from the CTPP. There are a number of advantages and a few disadvantages of
the CTPP over another popular source of data, the Longitudinal Employer-Household Dynamic (LEHD)
Origin-Destination Employment Statistics (LODES). The benefits of CTPP data:

1. In CTPP data, place of work is determined from household responses to a particular set of census
questions. The response indicates where an individual worked in the week prior to the census, which
may or may not correspond to a fixed establishment. LODES data come from federal tax records,
and so identify people as working at the address on a firm’s tax statement. Thus for firms with
several establishments, there may be clustering at the mailing location that is not indicative of actual
workplace. This is particularly true for large, multi-establishment firms.

E3. Maps available through the LACMTA library and online at https://www.metro.net/about/library/
archives/visions—-studies/mass-rapid-transit—-concept-maps/.
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2. The CTPP included median and mean wage at place of work prior in the 1990 and 2000 enumerations.
LODES provides only a few large bins. Accurate measures of local wage at place of work are key to
this analysis, and a novel contribution to the urban trade literature.

3. CTPP data include reported travel times. Thus, these estimates take into account congestion and
other item unobservable to route planning GIS systems that may induce measurement error.

4. CTPP location data is accurately reported, while there is some geographic randomization (within
block group) in LODES data to preserve confidentiality.

5. The CTPP data go back to 1990, while LODES does not begin until 2002. Thus, with CTPP I can fully
capture commuting in ‘pre’ and ‘post” periods.

Benefits of LODES data:

1. LODES data provide annual measures of commuting between locations since 2002, and the geocod-
ing of workplace mailing address has a higher match rate than in the CTPP.

2. The CTPP has rather odd rounding rules that induce more measurement error in low commute-flow
tract pairs. LODES has no such rounding rules (though there is geographic jittering).

3. LODES is calculated with consistent geography over time, while the CTPP is estimated using what-
ever geographies are decided upon by state census and transportation entities. This means that CTPP
data must undergo geographic normalization, while LODES data does not.

There are two further disadvantages to the CTPP data: (i) not all fields from the 1990 and 2000 CTPP are
reported in the 2006/10 CTPP. Important for this paper is the lack of wage at place of work data in 2006 /10.
(ii) Industry coding changed between the 1990 and 2000 census reports.

I'have tried combining data sources to provide a more complete panel of commuting flows across time.
There are a number of issues with this approach, namely concern that measurement error in flows drowns
out meaningful variation in observed commuting flow changes over time. In fact, this seems to be the case
when combining the 1990 CTPP with 2002 LODES data, or the 1990 and 2000 CTPP data with more recent
LODES data. Further, the lack of wage at place of work data in LODES is a severe disadvantage. While I
have experimented with alternative (fixed effects) methods to estimate wage at place of work, measurement
error swamps meaningful measurement.
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B Proofs

Proposition 1

To establish Proposition 1i (existence), I utilize a fixed point argument and homogeneity. To establish Propo-
sition 1ii, I make use of Theorem 1ii from Allen, Arkolakis, and Li (2014) (AAL) and the Perron-Frobenius
Theorem.

Existence in a closed economy: Land use is assumed to be predetermined. Denote the set of location pairs
with positive land use for housing and production as ¢ = {ij : L{’ > 0and L} > 0}, and the cardinality
of C as Ne. Assume that L/ > 0 < > m > 0and LY > 0 & Y 7,; > 0. The model can be entirely
expressed in terms of the aggregate population N, the data on land use, local fundamentals, travel costs,
and commuting shares {L, L}/, Aj, B;,C;, D;;, E;,T;, 0;,mi; }vijec. Note that the commuting shares and
aggregate population are endogenous, all else is given.

The commuting share from ij can be written as an implicit function of the vector of all commuting

shares, population, exogenous variables, and models parameters: Define 7;;(7; N):

u s
Aij A; A NC,- S miaAs
_ % (N, ) ( s (N, )
ﬂj(ﬂ;N) = - - —cp(1-¢)
A Ai . NT /Y . s EIAS/ e
2or s 5 (NS m) <NCT 2 Ny, n)>

with A4; = ozAijl_(y and C; = (1 — ¢)C/YLE ™. An equilibrium of the model is the vector 7 and
aggregate population N such that  is a fixed point of 7;;(; N) and the no spatial arbitrage condition is
satisfied. First, note that 7;;(m; N) is homogeneous of degree zero in N, so T;;(m; N) = T;;(w) and the
existence of commuting shares is independent of aggregate population.

Consider T;;(m). By assumption, for all ij € C, we have L > 0, L}/ > 0,and > m; > 0 and
> Tis > 0. This implies that 7;; > 0, and m;; < 1 because 7 represent shares. Stacking equations, equilib-
rium commuting shares are a fixed point 7 (wf'*) = w#'F. The function 7 : [0, 1]V¢ — [0, 1]¥¢ is continuous
and maps a compact, convex set into itself. Therefore, by the Brouwer fixed point theorem, an equilibrium
vector w&'F exists. In a closed economy, aggregate population is fixed, so this establishes existence.

Existence in an open economy: In an open economy, existence of equilibrium follows from Existence in a closed

econony, but also the no spatial arbitrage that requires expected utility to be equalized to U in equilibrium.
Denote element ij of w/'F be ;;. Rewriting the no spatial arbitrage condition:

U

_E"fﬂ[o 1/e
- A Ag o ot A
L) - (2,2, )6(10¢)'<NC’T'ZS/(7‘—I,1L!>

57:: . (N S Tt N 2 Tr'r/s/)

Given P, existence requires that the preceding equation give a real, finite value of N. This is the case so

longase>1anda7é$2¢io.

Uniqueness: Rearranging the system in Equations (6), (9), (12), (13), and (11) into a more convenient form
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gives:

14e(l—a)

W, T Q= N7 K Yy W,

J
s

Q= K, Q9

—e(1-0)— 15

Q, ;= N""Ky » WiQ,

;= Ky Wt

where Ky; = fl}/(l_a), K = Ay 6;6, and Ky; = é’i_l/wz are functions of predetermined parameters.
This transforms the model into the form of Equation 1 in AAL. Let G represent the matrix of exponents
on the left hand side of the above system in the order (W, €2, (), ®), and let B be the corresponding exponents

on the right hand side:

1+e(l—a)

e | 0 0 e 1 0 0
G _ 0 1 0 0 B _ 0 0 —€1-¢) 0
0 0 —e(1—¢) -2 1| e 1 0 0
0 0 0 1 e+1 0 0 0

Note that G is invertible. To address uniqueness, define A = BG~! and A™ to be the element-wise absolute
value of A. That is,

eld—a)—p] 1
1+e(l—a) 1+e(l—a) 0 0
0 0 1-0) 1-Q)
At — ey =) +2  c1—¢)+E2

el(l—a)—p 1

1+e(l1—a) 14e(l—a) 0 0
(e+D[(1—a)p]  (e+D(1-a) 0 0

1+e(l1—a) 1+e(l—a)

Theorem 1ii in AAL establishes that there is a unique equilibrium to the model if the spectral radius (largest
eigenvalue) of A* is less than or equal to one. Thus, uniqueness is established when p(A™) < 1.

Because A" corresponds to a strongly connected graph and is nonnegative, it is irreducible. The Perron-
Frobenius Theorem states that a nonnegative, irreducible matrix has a positive spectral radius with corre-
sponding strictly positive eigenvector. So finding a condition under which p(A™) < 1 is identical to de-
termining conditions under which A*x < x for x > 0. Solving the implied system of inequalities gives
condition (14).B!

Proposition 2

Existence: A; is uniquely determined from:52

a2 (Bl

« LZY

B.1. To ensure the algebra is correct,  have numerically verified p(A") < 1 iff Equation (14) holds.
B.2. Uniqueness of A holds under agglomeration, the other terms are unaffected.
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and C; is uniquely determined from:

LH v
Ci= QI (o
) ¢ ZS Nﬂ‘is I/VS
Define an excess demand function:
Ay W (%‘Q%%) B

S AW (3.009)

Dij(A) = mij

Note that D is continuous and homogeneous of degree zero. Homogeneity implies that A can be rescaled
and restricted to the unit simplex: {A : 3, 3, A, = 1}. This means that D : [0, 1]¥" — [0,1]¥". So D is
a continuous function from a compact, convex set into itself; the Brouwer fixed point theorem guarantees
existence.

Uniqueness: To establish uniqueness, note that by homogeneity of degree zero, we have > >~ D, (A) = 0.
Define M;; = W5 (5ij Q; 7C> . The Jacobian of D has diagonal elements:

M (G0, 30 ArsMis) — Ay M) _

(ZT ZS A’I'SMTS)2

and off-diagonal elements
Aij Mg Myijy

(ZT Zs A"'SMTS)2 g 0

where {ij}’ refers to an origin destination pair such that i’ # i and/or j # j. Thus the aggregate excess
demand function exhibits gross substitution, and equilibrium is unique.?3

Proposition 3

H

is are fixed terms, Az 7%, Az5%

(=)t
of AsztD’X. Therefore, A2 maps directly into M2, and A4 maps directly into M4. Condition M3 imples
E[Az}"X Aln(B;;Dyje)] = 0, Vi, 5’ # j, which holds given M1.

—Kd

Under the assumption that e and AziLtS’X are linear combinations

B.3. See Proposition 17.F.3 in Mas-Colell, Whinston, and Green. An alternative approach could be to use weak diagonal
dominance of this positive matrix (following Bayer and Timmins (2005) but for weaker conditions).
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Welfare under ¢ < 1 (Frechet is Multinomial Logit)

First, I show that the expression in Equation (25) has an equivalent log-sum representation. Begin by divid-
ing counterfactual and factual expected utilities (from Equation 7):

~ € 1/e
E[U},] P (Z{”’}A;ﬂ' <5§ng1 C) (B’{Wﬁ)
1/e

r(<h) (Z{m} Ros (6,,Q7) <BTWS>6)
) ]\f.(gf,Qf,l—C)*e(Bfwf)e e

_ {ig} g \Vigwi - i (F-1)
S Ao (00@17) (B

where {ij} = {rs} track summation sets. Substituting in Equation (6) for some particular ij into the above
twice (once for 7;; and once for 7;;) and taking logs gives Equation (25).

From Train (2009), the change in consumer welfare due to changes of the characteristics of the elements
in the choice set are:

v
EWV] — EV] = %ln (%) (F-2)
€Ko

where here p is the marginal utility of income.?* Let:
vi=m (&, (0,0 ) " @)

Vi=1n (A (s ¢) (B’TWs)e)

p=ce
Ko = Ky = {ij} = {rs}
Taking logs of Equation F-1 then delivers Equation F-2. Note that ;1 = ¢ is natural as ¢ already captures

the utility effect of wage dollars. Thus the Frechet framework is identical to a multinomial logit framework
where the utility from choice ij is:

Uijo =1n ([X;] (5;jQ;17<) (B;WJ’)E> + €ijo

for €;;, distributed iid extreme value. In fact, this is very precisely (up to interpretation of amenity terms
and trade costs) the specification often used in the discrete location choice literature (e.g. Bayer, Keohane,
and Timmins 2009). To map interpretation of the change in consumer welfare between the two frameworks,
note:

EW'] — E)WV] = mE[U};,] — mE[U;;0] = InU ~ %A Welfare
That is, welfare change is naturally expressed in relative terms (rather than monetary terms) when used
with Frechet framework. Equation F-2 only requires ¢ > 0, and so Equation (25) can be used for welfare

B.4. Thanks to Wei You for noting that (25) and a log-sum expression are interchangeable:

2 2 . ~ 1/e 1/e
o Aii(B;W; eQi—€(1—C) N R
U= ( it ;) = D miudi (%’Q; C) (BiW;)
i

{is}
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evaluation when e € (0,1] and well as € > 1.
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C Cost-benefit calculations

This section details the costs of the subway built by 2000. I do not track costs since 2000, as the calculation
becomes much less clear with more recent data. To compare the costs and benefits of transportation inter-
ventions, I require annualized estimates of costs to compare with the annualized welfare benefits calculated
in the text. Costs consist of two components: (i) the annualized cost of capital investment in rail, rail cars,
stations, and similar expenses, and (ii) net operating expenses (operating costs less revenues). Spreadsheet
available by request.

Total Annual Cost = Operating Subsidy + Annualized Capital Expenditure

C.1 Annualized Capital Expenditure

Cost information is from a consolidation of capital expenditures on lines built before 2000 from fiscal bud-
gets.“1 After adjusting all costs to 2015 dollars, the total capital expenditure for the rail, rolling stock, and
stations built prior to 2000 is $8.7 billion. To annualized this, I assume annual payments are made on this
principal balance over a 30-year horizon with 6% interest rate (the interest rate used for some internal cal-
culations by LA Metro). This gives an annualized capital cost of $634.6 million. This does not include other
financing charges, the cost of planning, or some other expenses.

However, LA Metro’s internal cost of borrowing may not be a suitable social discount rate, and the
30-year horizon may be too short. I provide several alternative definitions: (i) 5% interest over a 50-year
horizon, (ii) 5% over an infinite horizon, and (iii) 2.5% over an infinite horizon. For (i) and (ii), the 5% rate
is roughly equal to a low-yielding municipal bonds in 2000. For (iii), the 2.5% rate is low, roughly equal to
the recent cost of borrowing, and is meant to represent a policy maker that highly values future generation
or is uncertain about future discount rates (see Weitzman 1998). Once built, subways typically remain in
operation for the long run (perhaps forever).

C.2 Operating Subsidies

Like most transit systems in the United States, LA Metro has incomplete farebox recovery, meaning that it
subsidizes a portion of every ride. For rail in 2001, the farebox recovery ratio was about 20%. To estimate
the welfare effects, I use the net subsidy: operating costs less fare revenue. Operating expenses from 1999
or 2000 are unavailable, so I use operating expenses from 2001 and 2002 as a proxy. Rail (light and heavy)
operations total $202.4 million in 2015 dollars, and rail fare revenue is $40.2 million. The net subsidy is
$162.2 million per year.

C.1. Source: http://demographia.com/db-rubin-la-transit.pdf.
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D Counterfactual Estimation

First, note that the following hold:

~ a—1
W, — Aot ((ZnTrifri
Zr Trq
2 . Ao\ ¥/ (A+Y)
Qi = CM 0+ N Y2, misTis W W
Zs WisWs
. E,bingé—e(l—C)
Tij =

S S e By D WeQr O

where N = 1 in a closed economy. In the case of the open economy, aggregate population can adjust,
ensuring no arbitrage between the city and outside locations. To account for this, define:

¥ S N ) Tt 6Tt a1\
N = ET:ES:WTSBTDM (AS (%”;) ) x
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~ N a—1
Zs/ Tps! Tps! Ws’As’ (ZTZ/ el )

! Trls

-
2 Trs W

Simulating counterfactuals

Simulate closed economy counterfactual, then use that as the initial guess for the open economy counter-
factual:

1. Make an initial guess of wages and housing prices: {Wi(o) } {QEO)}. It is useful to set these equal to 1.
2. Estimate {fri(?)} using {Wi(o)}, {QEO)}, and {m;;}.
3. Main Loop:
(a) Define {Q"*"} using {W" "V}, (W}, {fr(tfl)}, and {m;;}
(b) Define {W """} using {7r ~Y}, and {m;;}
(c) Define {wg;emp)} using {W "1, {Q\"}, and {m;;}.
)

(d) Update X = ¢X(temp) (1 — €)X~ for X € {Q, W, %, where ¢ is a weight that disciplines
updating.

(e) Estimate movement as:
&= S D Y - Q8 Ve Y S A

(f) Stop when movement is below convergence criterion

4. Tnitial guess for N© using {W"*"P}, (W}, {Q\*™P)y, {73; A(temP)y and {m;;}
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5. Main Loop:
(a) Define {Q\""'} using N, {W "V}, {w;}, {#(1"V}, and {r;;}
(b) Define {I"“"")} using N(-D), {frgf_l)}, and {m;;}
(c) Define {frgem”)} using {W”}, {0\"}, and {m;;}.
(d) Define (™) using {W"}, {W;}, {Q\"}, {# )}, and {r,;}
(e) Update X() = ¢X(temp) 4 (1 — &)X (=D for X € {Q,W,#, N}, where ¢ is a weight that disci-
plines updating.

(f) Estimate movement as:

A = IO WD FTIQW - QD 3 STIRY — AL IR0 - KO

(g) Stop when movement is below convergence criterion
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E Identification under alternative assumptions

In this section, I discuss identification under more general settings that those in the simplest version of the
model presented in the paper. The two modification I consider are: (i) endogenous land use determination
(no zoning), and (ii) the presence of agglomeration and other forces. As discussed in the paper, it is unlikely
that either of these plays a significant role in the environment presented in the paper. Nonetheless, it is
illustrative to work through these variations.

I first display the identification assumptions from the main text. Though these will continue to be
necessary, they will not be sufficient.

E[Az}”" x Aln(Ej;Dyj0)] =0, YV ij (A-1)
E[Az;P " x Aln(Cy)] = 0, Vij (A-2)
E[Az)"" x Aln(ByDiji)] = 0, Vij’ # ij (A-3)
E[Az x Aln(A4;,)] =0,V j' # (A-4)

and their simplified versions that accomodate the presence of rich fixed effects:

E[Az”" x Aln(Ej,)] =0, V j (A-1a)
E[Az;;”" x Aln(Ci)] =0, Vi #j (A-2a)
E[Azj"" x Aln(By)] =0, Vi (A-3a)

Below, I describe additional conditions for identification, and their plausibility, under various changes to
model form and data availability.

E.1 Agglomeration in Productivity and Residential Amenity

To describe how the presence of agglomerative forces change identification assumption, define residential
and productive spillovers as in Ahlfeldt et al. (2015):

NY

Productive agglomeration (A-augmenting): Y= (Z ky s <L$)>
st

Residential agglomeration (B-augmenting): U= (Z kg ir < TH >>
rt

where k here represent distance kernals and N7 = N 3", is residential (employed) population.
If the parameters for the spillovers are known (of both the effects and the distance functions), then it is
not necessary to develop new identification assumptions. Instead, the following substitutions can be made:

wj; — In(Y ;) for wj, in the labor demand equation
;¢ — In(Ty;) for 6 in the housing demand equation

Note that these equations reveal why the presence of these forces has little effect in this setting: they are
mostly captured by the fixed effects a; and b;.

If the spillovers are omitted from the model, additional moment conditions are required. Moment con-
ditions presented in Assumptions A-1, A-la, A-2, and A-2a do not change. Recall that those assumptions
identify the key parameters of interest. Moment conditions corresponding to A-3, A-3a, and A-4 are tight-
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ened:

E[AZ;;?’R X AIH(th\IJ”D,Jf)] = 0, V’L]/ # Z_]
E[Az 7 x Aln(ByWy)] =0, Vi
E[Azj " x Aln(AjX5)] =0,V j' # j

For these to hold, two additional assumptions are required in addition to Assumptions A-3 (or A-3a) and
A-4:

E[Az] " x Aln(¥y)] =0, Vi (S-3)
E[Az " x Aln(T5,)] =0, ¥ j' # j (S-4)

If these conditions hold in addition to Assumptions A, the model is identified.

However, recall that instrument relevant requires E[AzﬁD’R x Aln(A;¢)] # 0. Both ¥ and Y depend
on nearby density, so to the extent location j’ is near i or j, productivity shocks influence density and
Assumptions S-3 and S-4 are unlikely to hold in a strict sense. However, they may hold approximately:
There is significant autocorrelation in the population mass in locations from decade to decade. While this
makes separately identifying agglomeration force difficult, in the context of the model presented here, this
stickiness aids identification because much of AV and AT are captured by time-invariant tract fixed effects.

E.2 Endogenous Land Use

If land use is observed (as here) and the amount of land used in housing and production is determined by
market forces, no additional assumptions need be made for identification. This is not true for the theoretical
model or counterfactual simulations; both would need to be modified with an additional market clearing
condition to account for the additional degree of freedom.

One minor change in interpretation of parameter values must be made if land use is endogenous. The
assumption of congestion in the relationship between land price and residential density can no longer be
supported: Pl # (H;/LH)?¥. This is because of the price of land also depends on the demand for land
for production (and so congestion occurs through displacing employment instead of density costs). ¢ has
no role in this alternate model. However, because total output (housing) is observable, we can modify the
model to derive an estimating equation very similar to that in the main paper.

Consider the developer’s problem. Zero profits implies Q;H; = P*L# + PM ), and the first order
conditions deliver an expression for M under profit maximization. This results in the expression:

1
QiH; = —PFL"
¢
which just requires that a constant fraction of developer income be spent on land. Solving this for P and
substituting into Equation (6) and solving for @); delivers the equilibrium expression:

)
Hi 1-¢
i= | — ¢
a=(11)

where ¢; = %PM c! /=1 contains the same elements as C;. In fact, the estimating equation based on the

above expression is isomorphic to that in the main text. Here, however, we identify % instead of 1. Note
that under this interpretation, ¢ (the share of land in construction costs) is between 0.54 and 0.66, according
to the estimates in Table ??. This is higher that a relatively standard value of 0.25 from Combes, Duranton,
and Gobillon (2012), Epple, Gordon, and Sieg (2010), and Ahlfeldt et al. (2015). However, in Southern
California land value anecdotally makes up high share of transacted real estate value. Alternatively, this
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could be seen as evidence in favor in immutable zoning.

As a quick aside, to complete the theoretical model, it is necessary to specify a land market clearing
condition. I assume that the total land in a tract available for any use is fixed at L;; market clearing then
requires L + LY = L;.F! This condition can be rewritten (using Equation 4):

¢ =2 W\ =
() e ()
i ad;

This equation, in conjunction with the model in the main text, is sufficient to pin down land use.F?

E.3 Agglomeration and Endogenous Land Use

Because endogenous land use did not alter identification, identification with both agglomeration and en-
dogenous land use does requires the same assumptions as for the case with agglomeration: Assumptions
S-3 and S-4 in addition to Assumptions A.

E.1. Note that this implies ALY, = —ALZ.
E.2. Note that we can also rewrite this market clearing condition as an analytic expression of the observable prices,
quantities, parameters, and the unobservable price of land:

1
$Q:H,; y (A—a)WiN"\= -
“pr N\ ) Tl

The price and land can be be calculated from this expression.
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F Additional and Supplementary Results

F1 Commuting calculations
Gravity estimates

First, a note on measure of travel time/cost:

o Network Travel Cost: calculated from a road network using GIS software. This only available in the
cross-section, but is available for all pairs.

o Travel Time: average pair travel time from the CTPP. Panel data, but only available between pairs
with positive commuting that satisfy disclosure requirements.

The Network Travel Cost (or similar variants using Google Maps) is mostly standard in the new EG litera-
ture. Table F14 shows that to translate between the two, roughly divide Network Travel Cost by 2.

Table F11 provides cross-sectional estimates of travel time disutility using several estimators and both
years. Estimates are roughly consistent with the previous literature, and suggest that the Travel Time-
Network Travel Cost conversion is reasonable.

Table F12 compares estimates of:

nije = wjt + 0ir — €£Tije + In(Djje)
niji = wjt + Oi — exije + <) +In(Dijt)
The second of these is particularly prone to measurement error in reported or modeled travel times, because

the fixed effect means that any autocorrelation in error magnifies the issue.
Table F13 first estimates gf;- , then runs:

D
Sij = —ERTij + Uij

for a particular .

Permanence of unobserved determinants of commuting flows

Roughly half of the variation in commuting flows is due to unobserved, time-invariant characteristics. This
details the analysis that leads to this conclusion. First, I run gravity models of commuting in the cross
section with and without travel time:

nij = w; + 0; — ety + In(D;;)

The inclusion of travel time increases the R? from 0.20 to 0.26 in 1990, and 0.17 to 0.21 in 2000. This suggests
that while travel time plays an important role, other factors are important.
Second, I run the panel gravity model with and without pair fixed effects:

niji = wjt + 0i¢ + <) +In(Dij)

The model without pair fixed effects has an R? of 0.18 (or 0.21 if restricted to observations that have two
non-zero commuting flows), but jumps to 0.81 with pair fixed effects. This regression excludes travel time.
Regressing the pair fixed effects on travel time or network-based measures of travel cost:

—

P = exmij + In(D;;)

lead to R? values of between 0.07 and 0.19.
Putting this together, pair fixed effects explain about 60% of the variation in the panel, conditioning
on origin- and destination-by-year fixed effects. Only about 20% of these fixed effects are explained by
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commuting time, meaning 80% are not. Putting these together, we see that about 48% of commuting flows
are explained by time-invariant, non-distance characteristics.

Appendix Figures and Tables

Figure F1: Ridership, 1990-2000
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Figure F2: Ridership, 1990-2014
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Parameters

Figure F3: Glossary of variables and parameters

Interpretation

Homogeneity of location preferences (and wage elasticity of labor supply)
Household expenditure share on non-housing goods
Price elasticity of housing demand

Share of (production) income spent on labor

Inverse wage elasticity of labor demand

Share of housing income spent on land

Congestive cost of housing

Inverse price elasticity of housing supply
Semi-elasticity of commuting with respect to travel time
Spatial decay for instrumental variable construction
Treatment effect for outcome «

Variables

Interpretation

A ~
B=TB

lo=zxamgaasw

x
3

(2]

Q%Z\ﬂ 2

M
LH
PM

PL = (H/LM)®

Workplace productivity
Gross residential amenity
Simple residential amenity
Mean residential utility
Inverse housing efficiency
Housing productivity

Mean utility commute (net of time)
Workplace amenity (net of wage)
Consumption

Housing quantity

Wage

Housing price

Commuting friction

Travel time

Commuting share

Aggregate population
Employment at place of work
Land used for production
Housing materials

Land used for housing

Price of housing materials
Price of land
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Figure F4: Timeline of transportation in Los Angeles

1925

1951
1961
1963
1964
3/24/1985
1985
11/20/1985

7/14/1990
2/15/1991
1993
1/30/1993
10/14/1993
8/12/1995
7/13/1996
6/12/1999
6/24/2000
7/26/2003
2006
9/20/2006

11/15/2009
4-6/2012
3/5/2016

5/20/2016

Comprehensive Rapid Transit Plan for the County of Los Angeles, Kelker, De Leuw and
Co. develop at the request of local governments

Los Angeles Metropolitan Transit Authority (LAMTA) formed

Pacific Electric (Red Cars) end of service

Los Angeles Railway (Yellow Cars) end of service

Southern California Rapid Transit District (SCRTD) formed from LAMTA

Ross Dress for Less methane explosion in Wilshire-Fairfax

Construction begins on LA Metro Rail

Department of Transportation and Related Agencies Appropriation Act (1986) includes lan-
guage prohibiting funding of tunnels for transit along Wilshire corridor due to concerns
about methane (HR 3244)

Blue line opens

Metro Center station opens

Los Angeles County Metropolitan Transportation Authority forms from SCRTD

Red line opens, connects system to Union Station

Century Freeway (I-105) opens

Green line opens in median of Century Freeway

Red line expands to Wilshire/Vermont

Red line expands to Hollywood /Vine

Red line expands to North Hollywood

Gold line opens

Purple line renamed from Red line branch

HR 3244 amended to remove prohibitions on funding of tunnels for transit along Wilshire
corridor

Gold line expands in East LA

Expo line opens

Gold line expands to Azusa

Expo line expands to Santa Monica
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Table F1: Testing parallel pre-trends in tract-level commuting behavior, 1970-1990

(1) 2) ©) (4) (5) (6) ) (8)

A. Commuting by automobile
Proximity?”"” x ¢ -0.002  -0.001  -0.003 -0.001  0.00  -0.000  0.001  -0.002
(0.005)  (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)  (0.005)

N 11686 11644 1632 1629 3792 3786 4643 4631

B. Transit (rail and bus) commuters, >0
Proximity?”"” x ¢ -0.204**  0.023  0.043  0.042 -0.117** -0.007 -0.135**  0.010
(0.038)  (0.044) (0.040) (0.043) (0.040) (0.043) (0.040) (0.044)

N 9708 9669 1617 1614 3726 3721 4459 4448

C. Transit (rail and bus) commuters, all

Proximity?”” x ¢  -0.001  0.101** 0.098** 0.089** 0.051*  0.088**  0.022  0.097**
(0.020)  (0.022) (0.021) (0.022)  (0.020) (0.023)  (0.021)  (0.023)
N 11261 11195 1626 1623 3786 3776 4629 4617
D. No car households
Proximity?”"" x ¢ -0.146** -0.012  -0.006  0.014 -0.028 0.021 -0.044 0.007
(0.035)  (0.036) (0.040) (0.040) (0.055) (0.038)  (0.055)  (0.037)
N 7720 7692 1086 1084 2524 2520 3086 3078
Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y

Each column of each panel presents the results of a different regression, for thirty-two total. Estimates show pre-
trends from 1970-1990 for tracts treated by 1999, except for Panel D, which only covers 1980-1990. Panel A, C, D
estimated by PPML with exposure set to relevant tract population. Panel B uses log commuters in a linear specifi-
cation. All regressions include tract fixed effects. Standard errors clustered by tract in parentheses: *p<o.10,*
p < 0.05,** p < 0.01
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Table F2: Is treatment related to zero flows?

INge>0 1IN0 g0

™ @ ®)

O & D <500m from station  0.032+ 0.020 0.021
(0.018) (0.016) (0.016)

N 1260324 1259720 1259720
Control Network All All All
Tract Pair FE Y Y Y
POW-X-Yr FE Y Y Y
RES-X-Yr FE Y Y Y
Sbcty-X-Sbcty-X-Yr FE - Y Y
Travel Time - - Y

High-dimensional fixed effects estimates of transit on an indicator
for positive flows. Control network is ‘loose’ (see text). All estimates
include tract of work-by-year, tract of residence-by-year, and tract
pair fixed effects. Travel time is measured in minutes. Standard er-
rors clustered by tract pair, tract of residence, and tract of work in
parentheses: T p < 0.10, * p < 0.05,** p < 0.01

Table F3: Differences in initial levels

) (2) 3) (4) ) (6) ) 8)

Linear

O & D <500m from station ~ 0.213**  0.193**  0.148** 0.134** 0.132** 0.127** 0.148"* 0.150**
(0.040) (0.042) (0.037) (0.033) (0.040) (0.035) (0.038) (0.033)

N 9619 9611 37023 37020 49537 49527 145440 145239
PPML

O & D <500m from station ~ 0.328** 0.296** 0256™ 0.227** 0.223** 0206™ 0.224** 0243
(0.044)  (0.046) (0.045) (0.038) (0.045) (0.039) (0.046) (0.038)

N 34809 34804 154852 154852 203249 203232 628704 627824
1925 1925 1925 1925 PER PER
Control Network Imm Imm All All Lines Lines All All
POW FE Y Y Y Y Y Y Y Y
RES FE Y Y Y Y Y Y Y Y
Sbcty-X-Sbcty FE - Y - Y - Y - Y

High-dimensional fixed effects estimates of ex-ante (1990) differences between tracts that become treated and control tracts.
All control networks are ‘loose” (see text). All estimates include tract of work and tract of residence fixed effects. Standard
errors clustered by FIND OUT: * p < 0.10, * p < 0.05, ** p < 0.01

E-7



Table F4: Do higher initial levels lead to higher growth

Linear PPML
1 2) 3) 4) 5) (6) @) 8)
Nij 1990 -0.014**  -0.018** -0.004**  -0.004**
(0.001) (0.002) (0.001) (0.001)
In(N;j1990) -0.473**  -0.593** 0.065** -0.196**
(0.008) (0.006) (0.012) (0.012)
N 291000 290580 291000 290580 1259500 1256986 764988 758066
Control Network All All All All All All All All
Tract Pair FE Y Y Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y Y Y
Sbcty-X-Sbcty-X-Yr FE - Y - Y - Y - Y
Highway Control - Y - Y - Y - Y

High-dimensional fixed effects estimates of lagged level or log-level of flow. Control network is ‘loose” (see text). All
estimates include tract of work-by-year, tract of residence-by-year, and tract pair fixed effects. Standard errors clustered
by tract pair, tract of residence, and tract of work in parentheses: Tp<0.10,"p<0.05 *p<0.01
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Table F5: Effect of Transit on Commuting Flows (by 2000) - PPML

1) (2) ®3) 4) ®) (6)
Subway Plan (Immediate) Sample
O & D contain station 0.101 0.150% 0.152+ 0.169* 0.163* 0.193*
(0.063) (0.079) (0.080) (0.080) (0.081)  (0.087)
O & D <250m from station 0.108 0.125 0.120 0.176*
(0.079) (0.078) (0.079)  (0.082)
O & D <500m from station 0.085 0.070 0.064 0.063 0.094
(0.055) (0.059) (0.057) (0.057)  (0.058)
N 69614 69614 69614 69596 69596 61922
Subway Plan (All) Sample
O & D contain station 0.105 0.141+ 0.142+ 0.134* 0.129%  0.162*
(0.065) (0.073) (0.073) (0.067) (0.068)  (0.067)
O & D <250m from station 0.138* 0.125+ 0.120t  0.130"
(0.070) (0.066) (0.068)  (0.068)
O & D <500m from station 0.111* 0.093 0.074 0.072 0.077
(0.050) (0.057) (0.050) (0.051) (0.052)
N 309700 309700 309700 309700 309700 299472
PER Sample
O & D contain station 0.089 0.126% 0.127t  0.110* 0.106 0.054
(0.065) (0.072) (0.072) (0.066) (0.068)  (0.069)
O & D <250m from station 0.149* 0.133* 0.128* 0.058
(0.068) (0.065) (0.067)  (0.067)
O & D <500m from station 0.125* 0.110* 0.087+ 0.085+ 0.020
(0.049) (0.056) (0.049) (0.050)  (0.049)
N 406494 406494 406494 406450 406450 383678
Full Sample
O & D contain station 0.134+ 0.163* 0.163* 0.125% 0.124+
(0.069) (0.074) (0.074) (0.065) (0.065)
O & D <250m from station 0.134* 0.101% 0.100
(0.067) (0.061) (0.063)
O & D <500m from station 0.131** 0.130* 0.079 0.078
(0.049) (0.058) (0.048) (0.049)
N 1259500 1259500 1259500 1256986 1256986
Control Network Loose Loose Loose Loose Loose Tight
Tract Pair FE Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y
Sbcty-X-Sbety-X-Yr FE - - - Y Y Y
Highway Control - - - - Y Y

High-dimensional fixed effects estimates of \”. Treatment variables are mutually exclusive with others in
each column. All estimates include tract of work-by-year, tract of residence-by-year, and tract pair fixed
effects. Standard errors clustered by tract pair, tract of residence, and tract of work in parentheses: T p <0.10,

*p<0.05 " p<0.01
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Table F6: Tracts near stations on the same line

) (2) 3) 4)
O & D contain station, same line 0.205** 0.192** 0.153* 0.144*
(0.077) (0.064) (0.062) (0.059)
O & D contain station, not same line 0.075 0.089 0.058 0.042
(0.091) (0.079) (0.078) (0.076)
O & D <250m from station, same line 0.145* 0.112* 0.093+ 0.062
(0.066) (0.055) (0.054) (0.051)
O & D <250m from station, not same line 0.105 0.093 0.085 0.047
(0.078) (0.068) (0.067) (0.065)
O & D <500m from station, same line 0.041 0.045 0.046 0.014
(0.054) (0.041) (0.040) (0.038)
O & D <500m from station, not same line -0.048 -0.052 -0.037 -0.073
(0.066) (0.054) (0.054) (0.052)
Control Network 1925Imm 1925 All PER Lines All
Tract Pair FE Y Y Y Y
POW-X-Yr FE Y Y Y Y
RES-X-Yr FE Y Y Y Y
Sbcty-X-Sbety-X-Yr FE Y Y Y Y
Highway Control Y Y Y Y
N 19222 74040 99054 290580

High-dimensional fixed effects estimates of \”. Treatment variables are mutually exclusive with
others in each column. All control networks are ‘loose” (see text). All estimates include tract of
work-by-year, tract of residence-by-year, and tract pair fixed effects. Standard errors clustered by
tract pair, tract of residence, and tract of work in parentheses: ™ p < 0.10, * p < 0.05, ** p < 0.01

EF-10



Table F7: Interactions of residential and workplace station proximity

D contains D<250m from D<500m from

station station station
O contains station 0.140** 0.078 0.083
(0.045) (0.079) (0.113)
0O<250m from station 0.024 0.018 0.054
(0.051) (0.066) (0.057)
0O<500m from station 0.197* -0.100 0.059
(0.077) (0.089) (0.064)
Control Network 1925 Plan (All), Loose
Tract Pair FE Y
POW-X-Yr FE Y
RES-X-Yr FE Y
Sbcty-X-Sbety-X-Yr FE Y
Highway Control Y
N 74040

High-dimensional fixed effects estimates of A\”. Treatment variables are mutu-
ally exclusive with others in each column. All estimates include tract of work-
by-year, tract of residence-by-year, and tract pair fixed effects. Standard errors
clustered by tract pair, tract of residence, and tract of work in parentheses: +
p < 0.10, " p < 0.05, " p < 0.01

Table F8: Effect of Transit on Commuting Flows (by 2000) - Adjacencies, PPML

(1) 2) ©)

O & D contain station 0.029 0.113 0.113
(0.066) (0.094) (0.094)

O & D <250m from station -0.020 -0.003 -0.003
(0.045) (0.060) (0.060)

O & D <500m from station -0.015 -0.010 -0.010
(0.039) (0.048) (0.048)

O & D <1000m from station 0.038
(0.033)
Adjacency Base 500m  1000m  1000m
Tract Pair FE Y Y Y
Group-X-YrFE Y Y Y
N 341794 484533 484533

High-dimensional fixed effects estimates of A" estimated from adjacen-
cies (see text). Treatment variables are mutually exclusive with others in
each column. All estimates include tract pair and group-by-year fixed
effects. Standard errors clustered by tract pair, tract of residence, and
tract of work in parentheses: * p < 0.10, * p < 0.05, ** p < 0.01
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Table F9: IV estimates of labor supply elasticity (¢), untrimmed

Wit Wit Wit
1) 2) (3)
In(W;y) 1.015%  2.876**  2.968**

(0.551)  (0.844)  (0.838)
F-stat (KP) 13591 17430  17.430

w estimated: Linear, PPML PPML
Panel Yr-by-yr Panel
N 2427 2528 2528

Panel instrument variable (IV) estimates of regres-
sion of w;t on w;;. Estimated in differences using
wage instrument. KP refers to the Kleinbergen-
Papp F-statistic. Variables are not trimmed. Col-
umn 1 uses a linear specification, columns 2 and
3 assume a Poisson model. Place of work-by-year
fixed effects (w;t) estimated from a panel specifi-
cation in columns 1 and 3, relying on ¢j fixed ef-
fects to control for distance. Column 2 uses w;t esti-
mated year-by-year, using network distance to con-
trol for distance. Standard errors clustered by tract
in parentheses: ™ p < 0.10, * p < 0.05, ** p < 0.01
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Table F10: Transit and non-commuting fundamentals (other effects of transit), robustness

1) @) ) 4 ®) (6) ) ®)
A. Effect on productivity A4, o — 1 = —0.25

Proximity?”" x ¢ -0.093** 0.009  -0.009  0.007 -0.036 0.005 -0.052%  0.010
(0.028)  (0.030) (0.032) (0.034) (0.028) (0.031) (0.028)  (0.031)

N 4882 4858 780 776 1828 1826 2288 2284

B. Effect on residential amenity AB, ¢(1 — {) = 0.125
Proximity?”"™ x ¢  0.059*  -0.006 0.026  -0.029  0.018 -0.009  0.021 -0.002
(0.024)  (0.026) (0.027) (0.029) (0.024) (0.027) (0.024)  (0.027)

N 4534 4518 712 710 1700 1700 2094 2092

C. Effect on inverse housing efficiency AC, ¢ = 2.292
Proximity?”"™ x ¢t ~ 0.073*  -0.009 -0.103* -0.058  0.034 -0.013  0.063 0.013
(0.039)  (0.044) (0.044) (0.050) (0.040) (0.046) (0.040)  (0.047)

N 4534 4526 712 712 1694 1694 2086 2084

D. Effect on workplace amenity AE, e =1
Proximity?”"” x ¢ -0245** -0.050 -0.095% -0.137* -0.119* -0.092 -0.131* -0.100"
(0.051) (0.054) (0.057) (0.062) (0.052) (0.057) (0.051)  (0.055)

N 4866 4842 780 776 1830 1828 2286 2282
E. Effect on workplace amenity AE, e = 0.498

Proximity?oom xt -0.271** -0.045 -0.097t -0.127* -0.128* -0.085 -0.147** -0.091%
(0.049) (0.053) (0.054) (0.059) (0.050) (0.054) (0.050) (0.053)
N 4866 4842 780 776 1830 1828 2286 2282
Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y
Controls - Y - Y - Y - Y

Results from forty regressions of transit proximity on estimated local fundamentals. All regressions include tract
fixed effects. Controls include changes in highway proximity and 1990 levels of log household income, share of
residents with at least a high school degree, and manufacturing employment. Standard errors clustered by tract in
parentheses: T p < 0.10, * p < 0.05, ** p < 0.01
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Table F11: Estimating travel costs from single year cross-sections

1990 2000
1 2) 3) 4) &) (6) 7) (8
Travel Time -0.0108**  -0.0244** -0.0085**  -0.0200**
(0.0003) (0.0008) (0.0002) (0.0007)
Network Travel Cost -0.0187**  -0.0528** -0.0186**  -0.0510**
(0.0004) (0.0019) (0.0003) (0.0010)
N 291000 290580 291000 290580 1259500 1256986 764988 758066
Model Linear PPML Linear PPML Linear PPML Linear PPML
POW FE Y Y Y Y Y Y Y Y
RES FE Y Y Y Y Y Y Y Y
Adjust: * p < 0.10, * p < 0.05, ** p < 0.01
Table F12: Estimating travel costs from the panel
(1) ) 3) 4) ®) (6)
Travel Time -0.0095**  -0.0003* -0.0220**  0.0001
(0.0002)  (0.0001) (0.0007)  (0.0002)
Network Travel Cost -0.0186** -0.0518**
(0.0003) (0.0013)
N 775721 291000 774602 785883 311334 1257775
Model Linear Linear Linear PPML PPML PPML
Tract Pair FE - Y - - Y -
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y
Adjust: T p < 0.10, * p < 0.05, ** p < 0.01
Table F13: Estimating travel costs from a two step estimation
D ) 3) 4) @) (6)
Travel Time -0.0143**  -0.0109** -0.0179**  -0.0149**
(0.0004) (0.0003) (0.0004) (0.0004)
Network Travel Cost -0.0198** -0.0244**
(0.0008) (0.0005)
N 145500 145500 145440 382697 402811 628712
Model Linear Linear Linear PPML PPML PPML
Year 1990 2000 - 1990 2000 -

Standard errors clustered tract of residence and tract of work in parentheses:

p < 0.01
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Table F14: Converting between Network Travel Cost and Travel Time

Travel Travel Travel Travel
Time Time Time Time
1) (2) 3) (4)
Network Travel Cost 0.4967** 0.5394** 0.4408** (0.4887**
(0.0026) (0.0103)  (0.0021)  (0.0086)
N 382281 382244 402524 402516

EXPLAIN * p < 0.10, * p < 0.05, ** p < 0.01

Table F15: Testing parallel pre-trends in other (non-commuting) tract characteristics, 1970-1990

In In % %
Res. In In House Coll. Pow. Moved
Emp.  #HHs HHI Value Grads Rate <5yrs
) 2 (©) (4) () (6) @)
Subway Plan (Immediate) Sample
Proximity?””™ x ¢ 0.029 -0.011 -0.013 -0.002 -0.008* 0.008* -0.011*
(0.020) (0.017) (0.013) (0.019)  (0.004)  (0.005)  (0.006)
N 1629 1629 1628 1555 1629 1629 1629
Subway Plan (All) Sample
Proximity?”"” x ¢  0.012 -0.031* -0.019 -0.017 -0.013** 0.012** -0.014**
(0.020) (0.017) (0.012) (0.018)  (0.003)  (0.004)  (0.005)
N 3786 3786 3779 3688 3786 3786 3786
PER Sample
Proximity?”"" xt  0.002 -0.032* -0.020 -0.034* -0.015** 0.013** -0.014**
(0.021) (0.017) (0.013) (0.018)  (0.004)  (0.004)  (0.005)
N 4631 4629 4619 4502 4631 4632 4631
Full Sample
Proximity?®™ x ¢  0.025  -0.027 -0.016 -0.022 -0.015** 0.015** -0.016**
(0.020) (0.017) (0.012) (0.017)  (0.003)  (0.004)  (0.005)
N 11651 11641 11567 11407 11657 11733 11659
Tract FE Y Y Y Y Y Y Y
Sbcty-X-Yr FE Y Y Y Y Y Y Y

Each column of each panel presents the results of a different regression, for twenty-eight total. Estimates
show pre-trends from 1970-1990 for tracts treated by 1999. All regressions include tract and subcounty-
by-year fixed effects. Standard errors clustered by tract in parentheses: ™ p < 0.10, * p < 0.05, **
p < 0.01
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Table F16: Control group validity: labor demand shocks and treatment status

1925 Plan Sample PER Lines Sample

LD,e LD,w LD,e LD,e LD,w LD,w LD,e LD,e LD,w LD,w
Zjt i it it i j it it i Zjt

Hmn @ B w5 ® o ® @ o0

A. Tract centroid within 500 meters of station

1[Transit] -0.004 -0.002 -0.006 0.000 -0.003 0.000 -0.006 0.002 -0.002 0.001
(0.006) (0.003) (0.006) (0.007) (0.003) (0.003) (0.006) (0.007) (0.003) (0.003)

N 5,074 5,074 1,422 1,422 1,422 1,422 1,884 1,880 1,884 1,880

B. Any part of tract within 500 meters of station

1[Transit] -0.002  -0.003  -0.004 0.005 -0.004* -0.000 -0.005 0.005 -0.004*  0.000
(0.004) (0.002) (0.004) (0.005) (0.002) (0.002) (0.004) (0.005) (0.002) (0.002)

N 5,074 5,074 1,458 1,458 1,458 1,458 1,924 1,920 1,924 1,920

Tract FE Y Y Y Y Y Y Y Y Y Y

Subcty-x-yr FE - - - Y - Y - Y - Y

Each column of each panel presents the results of a different regression of the labor demand shock (measured in
wage or employment) on treatment status, for twenty total. Regressions include year and tract fixed effects, and
some include subcounty-by-year fixed effects. Standard errors clustered by tract in parentheses: ¥ p < 0.10, *
p < 0.05," p <0.01

Table F17: Transit, income change, and land use change

) 2 ©) (4) (5) (6) (7) (8)

A. Change in residential land
Proximity?®"" x ¢ -0.016** 0.006** 0.01  0.01  0.001 0.001 -0.000  0.002
(0.002)  (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 4948 4930 774 770 1840 1838 2306 2300

B. Change in household income

Proximity?”™ x ¢  -0.015  -0.016  0.03 -0.019 -0.001 -0.005 -0.006 -0.005
(0.015)  (0.017) (0.017) (0.018) (0.016) (0.017) (0.016) (0.017)
N 4954 4940 762 760 1824 1824 2280 2278
Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y
Controls - Y - Y - Y - Y

Results from sixteen regressions of transit proximity on residential land and household income measures. All
regressions include tract fixed effects. Controls include changes in highway proximity and 1990 levels of log
household income, share of residents with at least a high school degree, and manufacturing employment.
Standard errors clustered by tract in parentheses: ™ p < 0.10, * p < 0.05, ** p < 0.01
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