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Abstract

This paper explores the incentives of product designers to produce complex prod-

ucts, and the resulting implications for overall product quality. In our model, there

is a consumer who can accept or reject a product proposed by a designer, who jointly

chooses the quality and the complexity of the product. While the product’s quality

determines the direct benefits of the product to the consumer, the product’s complexity

primarily affects the information she can extract about the product’s quality. Examples

include banks that design financial products that they later offer to retail investors, or

policymakers who propose policies for approval by voters. We find that complexity is

not necessarily a feature of bad quality products. For example, while an increase in

alignment between the consumer and the designer leads to more complex but better

quality products, higher demand or lower competition among designers leads to more

complex and worse quality products. We discuss how our findings can rationalize the

observed trends in complexity of financial products and of regulation.
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1 Introduction

In recent decades, the issue of rapidly increasing complexity has been raised by both financial

market participants and policymakers. In the financial industry, for instance, it is argued

that the products sold to retail investors have become increasingly complex – with product

descriptions that contain jargon and complicated or vague explanations (Carlin, 2009; Carlin

and Manso, 2011; Célérier and Vallée, 2015). Similarly, in the regulatory or the legislative

process, it has become more common to encounter policy proposals lacking specificity, with

broadly worded or ambiguous provisions (Davis, 2017). Such increase in complexity could be

a concern if it prevents consumers from evaluating the quality of the financial products that

they buy, or of the policies that they support. This, in turn, could foster the proliferation of

bad quality products and policies. Consistent with this argument, Célérier and Vallée (2015)

find that issuers of lower quality financial products deliberately increase their complexity in

order to hide risks from investors.1

In many situations, consumers evaluate a product before deciding whether to accept it or

not. Some examples include retail investors who evaluate financial products, the median-voter

who evaluates a policy proposal, the Editor of a journal who evaluates a paper. To make a

decision, a consumer gathers information from several sources, such as the description of the

product attributes, reviews, media reports, etc. The product designer, in turn, can influence

the quality of the information the consumer receives by designing a more or less complex prod-

uct.2 For example, a product can be made more complex by adding unnecessary attributes

and contingencies, or by opting for complicated jargon and lengthy and ambiguous descrip-

tions. In such an environment, however, if all (and only) bad products were complex, it would

be very easy for a consumer to reject all products whose attributes she doesn’t understand

well. This logic seems to contradict the increasing and prevalent provision of complex financial

products and complex regulation witnessed in the last two decades. Motivated by this puzzle,

we develop a framework to understand the drivers of product complexity, and its implications

for the production and proliferation of bad quality products.

In the model, there is one consumer who wants a product that can only be produced by a

product designer. When designing a product, the designer privately and separately chooses

the product’s output and complexity. While a product’s output determines the direct payoff

to the consumer, which can be good or bad, a product’s complexity influences the consumer’s

1Also related, Christoffersen and Musto (2002) show that financial institutions use distortions in trans-
parency in order to price discriminate among investors.

2We think of financial intermediaries as the designers of financial products, and of policymakers as the
designers of legislation and policy proposals.
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ability to learn the product’s output. We model this by assuming that when a product is more

complex, the consumer is more likely to extract noisy information about the product’s output.

We focus on cases in which the objective of the product designer is to have his product accepted,

while the objective of the consumer is to accept a good product. For example, the objective of

a bank is to convince a retail investor to accept a given savings account; while a policymaker

wants voters’ approval for his tax reform proposal.3 Finally, we suppose that product designers

are misaligned with the consumer, as they receive a higher payoff from having a bad product

accepted. This misalignment captures in reduced form differences between the interest of the

consumer and that of the designer, stemming from good products being more costly to design,

career concerns, ideological preferences, or privately negotiated sales commission incentives.

The timing of the game is as follows. First, a designer privately chooses a product’s output and

complexity, and proposes the designed product to the consumer. Then, the consumer obtains

information about product output and decides whether to accept or reject the product. If the

consumer accepts, product payoffs are realized; otherwise, everyone gets their outside options.

An important contribution of our paper is to model the joint decision of choosing a product’s

quality and complexity, which we view as two attributes that a designer can control separately.4

For example, the quality (i.e., output) of a financial product should be determined by the net

present value (NPV) that it generates to an investor. There are, however, many financial

contracts that generate the same NPV. Thus, for a given NPV, a financial product can be

made more complex by adding contingencies that generate zero NPV to the investor, by using

ambiguous words in the product’s description, by linking payments to financial indeces that

the consumer is unlikely to know, etc. A similar argument can be made for policymakers

in charge of writing policy proposals. By studying both attributes separately, we are able

to gain a better understanding of the incentives to produce good/bad quality products vs.

complex/simple products. For simplicity, we also assume that a product’s complexity does

not directly affect the consumer’s payoff from the product. We show that our qualitative

results do not depend on this assumption in Section 6, where we allow for deviations from

some “natural level of complexity” to be costly for the consumer.

Our framework delivers several powerful insights. We show that complexity is not always

a feature of bad quality products. In fact, designers of good quality products will sometimes

choose to complexify them, and designers of bad quality products will sometimes choose to

3Our objective as paper designers is to have the Editor accept our proposed paper for publication.
4In a different context, Bar-Isaac et al. (2010) study incentives to produce different product attributes by

exploring firms integrated strategy for marketing, pricing, and investment in quality, where marketing affects
the information consumers’ receive about the product’s other attributes.

2



simplify them. The model generates novel implications for the relationship between product

quality and complexity. In particular, as product designers become more aligned with the

consumer, both product quality and complexity increase. On the other hand, as the demand

for a product increases and/or competition among product designers decreases, product qual-

ity falls and complexity increases. With these results, we are able to discuss possible (and

novel) drivers of the recent trend towards complexification in finance and regulation, and to

better understand the resulting implications for product quality.

A key insight of our model is that incentives to design complex or simple products depend

crucially on the consumer’s acceptance strategy in the absence of information. In particular,

all designers have incentives to design a complex product when the consumer would accept

the product in the absence of information –in this case, we say the consumer is optimistic.

This result, though surprising at first, is intuitive: information can only increase the chances

of a product being rejected, since it is already accepted with probability one in the absence

of information. In contrast, when the consumer would reject a product in the absence of

information –i.e., the consumer is pessimistic,– the designers have incentives to design simple

products. Now, information weakly increases the chances of a product being accepted, since

it is rejected with probability one in the absence of information.5

It is essential for our results that communication is imperfect: in particular, the product

designer cannot ensure that the consumer receives perfect information. By choosing a simple

product, a designer can only decrease the likelihood that the consumer receives noisy infor-

mation.6 This is natural, since in most settings product designers cannot fully control the

information set of the consumer. The latter may feel comfortable with the words used in the

product description due to her education, but she could also misinterpret what she reads in it;

she may have access to reviews from other consumers or media articles that further simplify

or confuse her understanding of the product’s quality. Thus, our model suggests that in some

situations, when designers of good quality products cannot perfectly reveal their quality to

consumers, they may be better off by making their products complex.

Our model predicts that all designers have incentives to complexity their products when

(i) alignment between the consumer and the designer is high, or (ii) the consumer’s outside

option is sufficiently low, which we show can reflect high product demand or low competition

5A related finding is present in Perez-Richet and Prady (2011), who consider a setting with a privately
informed sender that can “complicate to persuade” a receiver to obtain a certification, where complication
increases the cost of the receiver to acquire information.

6We show that when the designer can choose an infinitely precise signal, there is always a perfect commu-
nication equilibrium where only good products products are designed, and this is revealed to the consumer
through a perfectly informative signal.
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among designers. At the other extreme, all designers have incentives to simplify, while in

intermediate cases bad products are made complex and good products are made simple.

We then examine the implications for the design of bad quality products. A designer trades-

off a higher probability of acceptance (with a good product) with a higher payoff conditional on

acceptance (with a bad product). As a result, when the consumer’s acceptance strategy is very

strict, designers have higher incentives to produce good products. In equilibrium, of course, the

strictness of the consumer’s acceptance strategy depends also on how complex products are.

We show that in equilibrium, the designer produces bad products with probability m ∈ (0, 1);

i.e. the equilibrium is in mixed strategies. Thus, changes in this probability determine overall

product quality. We show that products are more likely to be of worse quality when (i) the

alignment between the consumer and the designer is low, (ii) demand for the product is high,

or (iii) competition among designers is low.

Finally, we combine our previous results to obtain new predictions about the relationship

between product quality and complexity in equilibrium. First, as the alignment between the

consumer and the designer increases, products will tend to be better quality but more complex,

suggesting a positive relation between quality and complexity. Second, as the consumer’s

demand for the product increases, or competition among designers decreases, products will

tend to be worse quality and more complex, suggesting a negative relation between quality and

complexity. Therefore, in order to understand the relationship between quality and complexity

of products, it is essential to understand the underlying drivers of product heterogeneity.

We show that our results are robust to several extensions. First, we introduce aligned

designers to the model; that is, designers who obtain a higher payoff from producing good

products. We show that a (relatively) large fraction of aligned designers is needed to change

the equilibrium, in which case both quality and complexity increase. Second, we suppose that

the consumer can perfectly observe the designer’s choice of complexity (as in Perez-Richet and

Prady (2011)). We show that in this scenario, two pooling equilibria co-exist: all designers

simplify or they all complexity. Furthermore, when the consumer is sufficiently optimistic

(pessimistic), all designers are better off in the complex (simple) equilibrium. An advantage

of our approach is that it eliminates the multiplicity of equilibria that is common to signaling

games, due to the freedom in setting off-equilibrium beliefs; this in turn allows us to obtain

rich comparative statics. Third, we consider direct costs of complexity by supposing that

deviations from some “natural level” of complexity are costly to the consumer. We show

that our main results remain qualitatively unchanged, with the intuitive new prediction that

complexity decreases (increases) as it becomes more (less) costly to the consumer. Finally,
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we show that our model can be re-stated, though at a loss in tractability, as an optimal

information extraction problem, where it is more costly for the consumer to reduce uncertainty

(entropy) about the quality of a more complex product.

Even though our model is stylized and abstracts from many institutional details of real-

world settings, we nevertheless discuss our model’s predictions within the context of our

two concrete applications: financial products and regulatory policy. In financial markets,

intermediaries design financial products to offer to retail investors, such as savings account

and asset-backed securities. The design of a product consists of determining a set of cash

flows for different states of the world (price, future payments, fees, contingencies, etc.) and

of writing these contract terms down. The investor evaluates a product and decides whether

to invest/borrow or not. If she does not, her outside option is to either search for another

financial advisor, or to do nothing. In this context, our model suggests that the increase in the

complexity of financial products documented by Célérier and Vallée (2015) could be driven by

(i) an increase in investor’s trust in financial advisors, or (ii) an increased demand for financial

products. Both of these features were characteristics of financial markets prior to the 2008/09

crisis, and while the trust in the financial system may have fallen in response to the crisis,

the high demand for relatively safe financial products still persists. This suggests that the

observed proliferation of worse and more complex products could be an endogenous response

of product designers to an increasing demand for relatively safe financial products. These

results are complementary to those in Pagano and Volpin (2012), who show that securitizers

may have incentives to increase the opacity of their products in order to draw unsophisticated

investors into the market. We obtain a similar prediction of increased complexity, but through

a different mechanism. In their model, opacity is used because information release would create

a winner’s curse problem to unsophisticated investors. Meanwhile, in our model, designers

complexify products in response to high demand, because consumers in markets with high

demand are more likely to be optimistic, and thus more inclined to accept complex products.

In the political sphere, politicians are the designers in charge of proposing policies, such as

plans for taxation or regulation. We can interpret the consumer in such a setup as the median

voter, from whom the politician must obtain approval for policy proposals. A more complex

policy proposal by a politician may, for instance, take the form of less specific promises and

hazy details on the exact implementation of the policy goal. This idea is present in the

literature of strategic ambiguity, deliberate vagueness or noise by politicians (Alesina and

Cukierman, 1990; Aragones and Postlewaite, 2002; Espinosa and Ray, 2018). Our model

suggests that policy proposals are more likely to be complex when (i) public opinion about
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the politician’s alignment with the median voter is high; and (ii) there is urgency to pass a

given policy; that is, the status-quo is costly. Both of these features were present when complex

policies, such as the Affordable Care Act and the Dodd-Frank Act were passed. Moreover, in

policy areas where public opinion of politicians is low, more policy proposals tend to be simple

and to delegate subsequent details and lawmaking authority to federal agencies, for example

to the FDA in the case of the pharmaceutical industry.

Our paper is closely related to the literature on obfuscation (Carlin, 2009; Ellison and

Ellison, 2009; Carlin and Manso, 2011; Ellison and Wolitzky, 2012), and shrouding attributes

(Gabaix and Laibson, 2006) or limited awareness (Auster and Pavoni, 2018). These papers

study the incentives of sellers of homogeneous goods to obfuscate by limiting the buyers’

ability to observe certain product attributes or to compare attributes with those of competing

products. In common with these papers, in our model the producer can take an action to

affect the information that the consumer receives. Our approach, however, differs in several

respects. First, in our setting, the designer jointly chooses the quality and the complexity

of the product, resulting in heterogeneous goods being offered in equilibrium. This allows us

to study the incentives to produce complex and bad products. Second, the consumer in our

setting is Bayesian, and she rationally processes all of the information she receives; i.e., there

are no hidden-attributes or information search costs. The interaction of complexity added by

the sender and the receiver’s learning from a noisy signal relates our model to Dewatripont

and Tirole (2005); however, their focus is on costly communication in a setting with moral

hazard in teams.

Finally, our paper relates to the broader literature on strategic information transmission

(Crawford and Sobel, 1982; Grossman, 1981; Milgrom, 1981; Kartik, 2009), and on Bayesian

persuasion (Green and Stokey, 2007; Kamenica and Gentzkow, 2011). These papers focus

on the optimal information structure with private information (ex-post design) or with com-

mitment (ex-ante design), which is not the focus of our paper. Although in our setting,

information transmission (i.e. complexity) is strategic and chosen ex-post, the designer does

not optimally choose an information structure. In particular, he cannot perfectly transmit,

nor perfectly obfuscate, information about the quality of the product he has chosen, which

as we have argued is essential for our results. Instead, we view our approach as closer to the

literature on rational inattention, as in Sims (2003), if we interpret product complexity as an

attribute that limits the consumer’s ability to process information.7

The rest of the paper is organized as follows. In Section 2, we present the setup of the

7For a recent survey of the literature see Wiederholt et al. (2010).
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model. In Section 3, we illustrate our main results and in Section 5, we present the model

comparative statics, which we discuss in the context of our leading applications in Section 6.

In Section 7 we show that our model is robust to several extensions. Section 8 concludes. All

of the proofs are relegated to the Appendix.

2 The Model

We consider the following interaction between a consumer and a product designer. The

consumer needs a product, that only the designer can produce. The designer privately takes

two actions {y, κ}, where y ∈ {Good,Bad} determines the product’s output, and κ ∈ {κ, κ̄}
determines the product’s complexity, which is defined in detail below. After this, the designer

proposes the product to the consumer, who evaluates it and decides whether to accept it

(a = 1) or take an outside option (a = 0).

A Product’s Output. By taking action y, the designer affects the output of the proposed

product. We assume that the payoff to the consumer from accepting a product with output

y (which we refer to as a y-product) is w(y), and her outside option if no product is accepted

is w0. The designer receives payoff v(y) from having a y-product being accepted, and zero

otherwise. We make the following assumptions on the payoffs:

Assumption 1 The payoffs satisfy the following properties:

1. w(G) > w0 > w(B) ≥ 0.

2. v(B) > v(G) > 0.

The first assumption states that the consumer wants to accept a G-product but reject a

B-product. The second assumption states that the designer is misaligned with the consumer,

as he prefers to have a B-product being accepted. A natural interpretation of the latter

assumption is that it is more costly to design good quality products than bad quality ones.8

A Product’s Complexity. The complexity of a product determines how difficult it is for the

consumer to understand the product’s output, y. Formally, we suppose that after the designer

proposes product (y, κ), the consumer is able to extract a binary signal S ∈ {b, g} about the

8In the financial products industry, misalignment can also arise due to financial advisors receiving higher
fees for selling products that are not necessarily the best fit for their clients (i.e., fixed vs. adjustable-rate
mortgages). In the policy sphere, misalignment of policymakers vis-à-vis the public may also arise due to
ideological differences, lobbying, or career concerns.
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product’s output with some noise z ≡ P(y = G|S = b) = P (y = B|S = g), where z ∼ f (·|κ)

with full support on
[
0, 1

2

]
for all κ with the property that f(z|κ̄)

f(z|κ)
increasing in z (MLRP).

That is, the signal that the consumer extracts is more likely to be noisy when the product is

complex.9 That complexity, κ, is not perfectly observed by consumers is convenient but not

essential for our main results: it rules out multiplicity of equilibria, typical of signaling games,

that arise from the freedom in specifying off-equilibrium beliefs. This facilitates comparative

statics, and it also has the natural interpretation that consumers are not able to perfectly

observe the underlying actions of the designers towards complexification. Nevertheless, we

show that our main results do not depend on this assumption in Section 7.1.

Remark 1 We have assumed that complexity does not directly affect the consumer’s payoffs.

This is convenient, as it allows us to isolate the strategic role of complexity in deterring infor-

mation acquisition or learning by consumers. For example, a product could be made “more”

complex by the use of complicated words and jargon in its description, without necessarily

affecting the product’s attributes and consumers’ payoffs. Nevertheless, we incorporate direct

costs of complexity (or simplicity) to the consumer in Section 6.2 and Appendix D.

The Consumer’s Problem. The consumer has to decide whether to accept the designer’s

product or not. Before making her decision, the consumer observes the signal realization s with

noise z, and forms her posterior beliefs about the output y, denoted by µ(s, z) ≡ P(y = G|s, z).
The consumer’s acceptance strategy maximizes her expected payoff, given by

W (a|s, z) ≡ a · [µ(s, z) · w(G) + (1− µ(s, z)) · w(B)] + (1− a) · w0. (1)

The Designer’s Problem. The designer’s expected payoff is given by

V (y, κ) ≡ P (a = 1|y, κ) · v(y) (2)

where P (a = 1|y, κ) denotes the probability that product {y, κ} is accepted by the consumer.

The designer chooses y ∈ {G,B} and κ ∈ {κ, κ̄} to maximize (2). We denote the designer’s

strategy by {m,σG, σB}, where m = P(y = G) is the probability with which the designer

chooses the G-product, and σy = P(κ = κ̄|y) is the probability with which he chooses high

complexity, conditional on him also choosing the y-product.

9The restriction to binary-symmetric signals facilitates tractability but is not crucial for our main results
(see Appendix 7.2).
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Equilibrium Concept. We use Perfect Bayesian Equilibrium (PBE) as our equilibrium con-

cept. This has the following implications. First, given her beliefs, the consumer’s acceptance

strategy must maximize her expected payoff (Consumer Optimality). Second, the designer’s

strategy must maximize his expected payoff, given the consumer’s strategy (Designer Opti-

mality). Finally, the consumer’s beliefs must be consistent with the designer’s strategy and

updated using Bayes’ rule when possible (Belief Consistency).

2.1 Benchmarks

Before we proceed to the equilibrium analysis, we find it useful to establish two benchmarks

against which our results can be contrasted. First, we consider the allocations that would

arise in the absence of asymmetric information (Perfect information). Second, we consider

the allocations that would arise if the designers were able to perfectly communicate their

product’s attributes to the consumer (Perfect communication).

The findings of this section are summarized in the following proposition.

Proposition 1 In both the perfect information and perfect communication benchmarks, there

exists an equilibrium in which only G-products are produced by the designer, and where the

consumer perfectly observes the product’s output.

Perfect information. Suppose that the consumer perfectly observes the output, y, chosen

by the designer. Since the consumer’s outside option, w0, is greater than the payoff she

obtains from a B-product, w(B), and smaller than the payoff she obtains from a G-product

(Assumption 1), it follows that she will accept a proposed product if and only if its output is

y = G. Given this acceptance strategy, it is clear that it is optimal to only choose G-products.

Perfect communication. Suppose that the designer can perfectly communicate the output

of her product to the consumer. Formally, assume the designer can freely choose the noise

z ∈ [0, 1
2
] of the signal. Then, there is always an equilibrium with perfect communication: the

designer produces G-product and chooses z = 0. To see this, first, note that it is optimal for

the designer of a G-product to perfectly reveal the product’s output, i.e. choose z = 0, since

in that case his product is accepted with probability one.10 Assume that the designer of a G-

product indeed chooses z = 0. Then, the consumer’s interim belief after observing noise z 6= 0

is µ(z) = 0; that is, the consumer infers that she has been proposed a B-product when the

10We assume that the consumer’s posterior belief after observing a perfectly informative signal is µ(g, 0) = 1
and µ(b, 0) = 0 for all prior beliefs µ ∈ [0, 1].
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designer does not perfectly communicate his product’s output. But then, since the consumer

rejects any product with z 6= 0, it is optimal for the designer to only produce G-products,

which is in turn consistent with the consumer’s beliefs. Note that this argument does not

depend on the information structure as long as perfect communication is possible.

3 Equilibrium

In this section, we characterize PBE of our game. First, we consider the consumer’s acceptance

strategy, given her beliefs about the product proposed by the designer (Section 3.1). Second,

we analyze the designer’s strategy: his choice of output (Section 3.3) and of complexity

(Section 3.2), given the consumer’s optimal acceptance strategy. Finally, we impose belief

consistency to obtain the equilibria of our model (Section 3.4).

3.1 Consumer’s Acceptance Strategy

From the consumer’s problem, as given in (1), we see that she follows a threshold strategy: she

accepts the product, a(s, z) = 1, if and only if her posterior belief about the product having

good output is sufficiently high, µ(s, z) ≥ ω, where ω ≡ w0−w(B)
w(G)−w(B)

captures the relative value

of the consumer’s outside option.11

Thus, to understand the consumer’s acceptance strategy, we need to analyze the determi-

nants of her posterior belief. Let µ ≡ P(y = G) denote the consumer’s prior belief. After the

designer proposes his product, the consumer observes signal s with noise z about the product’s

output. Since z is informative about the choice of κ, it may contain information about output

y. Let µ(z) denote the consumer’s interim belief upon observing z,

µ (z) ≡ P(y = G|z) =
µ

µ+ (1− µ) ` (z)
(3)

where prior belief µ and likelihood ratio `(z) ≡ P(z|y=B)
P(z|y=G)

are computed using the designer’s equi-

librium strategies, which the consumer takes as given. As a result, the consumer’s posterior

belief, µ(s, z), after observing signal s with noise z, is as follows

µ (s, z) =
P (S = s|y = G) · µ (z)

P (S = s|y = G) · µ (z) + P (S = s|y = B) · (1− µ (z))
. (4)

The consumer’s acceptance strategy is contingent on the observed signal only if she accepts

11If indifferent, we assume without loss that the consumer accepts the product.
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the product when she observes a good signal, S = g, and rejects it when she observes a bad

signal, S = b. For this to be optimal, the signal has to be informative enough so that:

µ (b, z) ≤ ω ≤ µ (g, z) (5)

Now, consider the threshold noise level z̄ at which µ(s, z̄) = ω for some s ∈ {b, g}. This

threshold determines the maximum noise level at which the consumer makes her acceptance

strategy contingent on the signal.12 The following definition will be useful in what follows.

Definition 1 We say that the consumer is optimistic when the threshold z̄ is given by con-

dition ω = µ(b, z̄), and that the consumer is pessimistic when it is given by ω = µ(g, z̄).

That is, the consumer is optimistic when in the absence of information she accepts the

proposed product. Intuitively, the consumer is more likely to be optimistic when “trust” in

the designer, captured by her prior belief µ, is high, or when her relative outside option,

ω, is low. Consistent with this, when the noise of the signal is relatively high (z > z̄) the

consumer disregards her signal: she always accepts the product if she is optimistic, and rejects

it if she is pessimistic. Conversely, when the signal is sufficiently informative (z ≤ z̄), the

consumer makes her acceptance decision contingent on the signal: she approves the product

after observing a good signal, and rejects it after a bad signal. These results are formalized

in the following lemma.

Lemma 1 When the consumer is optimistic, her acceptance strategy is:

a =

I{S=g} if z ≤ z̄

1 if z > z̄
, (6)

whereas when the consumer is pessimistic, her acceptance strategy is:

a =

I{S=g} if z ≤ z̄

0 if z > z̄
(7)

where I{S=s} is the indicator equal to one when the signal is equal to s.

12In principle, z̄ could take multiple values. In the Appendix we impose a condition on the distribution
of z to ensure that in equilibrium µ (b, z) is increasing in z. This guarantees the existence of a unique z̄,
since µ (g, z) can be shown to always be decreasing in z, µ(g, 0) = 1, µ(b, 0) = 0, and µ(g, 0.5) = µ(b, 0.5).
Intuitively, the condition boils down to assuming that the information content of the signal, S, is greater than
the information content of observing the realization of the noise itself, z. Though not essential for our main
results, it considerably facilitates the analysis.
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It is important to highlight the role of information in each scenario. When the consumer

is optimistic, more precise information (weakly) increases the chances that any product is

rejected, because a product is always accepted when information is sufficiently noisy (z > z̄).

The opposite holds when the consumer is pessimistic, where more precise information (weakly)

increases the chances that any product is accepted.

Before we move on, it is important to note that whether the consumer is optimistic or

pessimistic and the actual value of z̄ in each case are endogenous, as they depend on the

beliefs µ and µ(s, z) that need to be consistent with the designer’s strategy and Bayes’ rule.

3.2 The Designer’s Choice of Complexity

We next consider the designer’s choice of complexity, given his choice of output, y, and the

consumer’s acceptance strategy as described in the previous section. From the designer’s

objective in (2), it follows that a designer who chooses a y-product also chooses low complexity,

κ, whenever

P(a = 1|y, κ) ≥ P(a = 1|y, κ̄). (8)

Otherwise, the designer chooses high complexity, κ̄. Using the results from Lemma 1, we can

compute the probability of acceptance of a y-product conditional on a signal noise level, z,

which we denote by π(y, z). In the optimistic consumer case (o),

πo(G, z) =

1− z if z < z̄

1 if z ≥ z̄
and πo (B, z) =

z if z < z̄

1 if z ≥ z̄,
(9)

whereas in the pessimistic consumer case (p),

πp(G, z) =

1− z if z ≤ z̄

0 if z > z̄
and πp (B, z) =

z if z ≤ z̄

0 if z > z̄.
(10)

Thus, the designer’s expected probability of a (y, κ) product being accepted depends on

whether the consumer is optimistic (j = o) or pessimistic (j = p) and is given by:

P (a = 1|y, κ) =

∫ 1
2

0

πj (y, z) · f (z|κ) · dz. (11)

The following proposition provides the optimal choice of complexity of a designer that has

produced a y-product. We say that the designer simplifies when he chooses κ (σy = 0), and
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Figure 1: Illustrates the probability of acceptance of a y-product as a function of the signal’s noise, z. The
left panel depicts the acceptance strategy of an optimistic consumer. The right panel depicts the acceptance
strategy of a pessimistic consumer.

that he complexifies when he chooses κ̄ (σy = 1).

Proposition 2 Let ẑ denote the unique solution to
∫ ẑ

0
z · f(z|κ)dz =

∫ ẑ
0
z · f(z|κ̄)dz. Then,

when the consumer is optimistic,

σB = 1 and σG


= 1 if z̄ < ẑ

∈ [0, 1] if z̄ = ẑ

= 0 if z̄ > ẑ,

(12)

whereas, when the consumer is pessimistic,

σB


= 0 if z̄ < ẑ

∈ [0, 1] if z̄ = ẑ

= 1 if z̄ > ẑ

and σG = 0. (13)

The proposition shows that when the consumer is optimistic (pessimistic), there is a ten-

dency to complexify (simplify). The intuition for this result can be obtained from Figure

1, which illustrates the acceptance probabilities πj(y, z) as a function of z, in each region

j ∈ {o, p}. First, a B-product’s probability of acceptance increases in the noise of the signal

when the consumer is optimistic. As a result, the designer of a B-product chooses to complex-

ify in such scenario. Second, a G-product’s probability of acceptance decreases in the noise of

the signal when the consumer is pessimistic. As a result, the designer of a G-product chooses
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to simplify in such scenario. The effect of z on the probability of acceptance, however, is non-

monotonic for a B-product when the consumer is optimistic and for a G-product when the

consumer is pessimistic. Here, the choice of complexity depends critically on the consumer’s

acceptance strategy, summarized by the threshold z̄, which will be determined in equilibrium.

3.3 The Designer’s Choice of Output

We now study the designer’s problem of choosing product output. When choosing the prod-

uct’s output, the designer faces a trade-off between increasing the product’s acceptance prob-

ability (by choosing y = G) or increasing his payoff conditional on acceptance (by choosing

y = B). For a given acceptance strategy of the consumer, the net expected payoff to the

designer from choosing the G-product over the B-product is:

γ ≡ max
κ

P(a = 1|G, κ) · v(G)−max
κ

P(a = 1|B, κ) · v(B). (14)

The first term is the expected payoff from choosing the G-product given the corresponding

best choice of complexity, as characterized in Proposition 2. The second term is the expected

payoff from choosing the B-product given the corresponding best choice of complexity. The

probabilities in each scenario are computed as in equation (11), given the consumer’s ac-

ceptance strategy as characterized by the optimism/pessimism region and the threshold z̄

described in Lemma 1. The next result then follows immediately.

Proposition 3 Given the consumer’s acceptance strategy, the designer chooses the G-product

with probability

m =


= 1 if γ > 0

∈ [0, 1] if γ = 0

= 0 if γ < 0,

where γ is given by (14).

3.4 Characterization of Equilibria

In Section 3.1, we characterized the consumer’s acceptance strategy given her prior belief

µ and interim belief µ(z). In Sections 3.2 and 3.3, we characterized the designer’s choice

of output and complexity, given the consumer’s acceptance strategy. We now impose belief

consistency to characterize the equilibria of our model.
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We find it instructive to proceed in two steps. In the first step, we take the equilibrium

distribution of product output (i.e., µ) as given, and we require that the consumer’s interim

belief, µ(z), be consistent with the designer’s choice of complexity. This allows us to char-

acterize the choices of complexity that are consistent with an equilibrium belief of µ. In the

second step, we require that belief µ be also consistent with the designer’s choice of out-

put. This two-step procedure will help clearly isolate the determinants of product output and

complexity, and how these two product attributes are related in equilibrium.

3.4.1 Consistency of Interim Beliefs

For a given equilibrium belief, µ, the consumer’s interim beliefs are computed using the

designer’s strategies and Bayes rule, as given in equation (3). Since we have shown that

complexity may be informative about the product’s output (Proposition 2), the consumer’s

interim belief, µ(z) depends on {σy} through the likelihood ratio as follows

`(z) =
P(z|y = B)

P(z|y = G)
=
σBf(z|κ̄) + (1− σB)f(z|κ)

σGf(z|κ̄) + (1− σG)f(z|κ)
. (15)

Interim belief consistency requires that a y-product designer’s choice of complexity, {σy},
be consistent with the consumer’s acceptance strategy, computed using interim beliefs, which

in turn depend on {σy}. Note that the consumer’s acceptance strategy only depends on {σy}
when the equilibrium features separation in complexity levels. Otherwise, when σG = σB,

noise z does not provide information about product output and thus µ(z) = µ,∀z. This is

consistent with an equilibrium if the acceptance strategy induced by such belief results in

all product designers optimally choosing the same level of complexity. When σB > σG (the

other inequality never arises in equilibrium), the implied acceptance strategy of the consumer,

which now does depend on {σy}, needs to be consistent with the designers choosing different

complexity levels. The following proposition characterizes the choices of complexity that are

consistent with an equilibrium belief µ ∈ (0, 1).

Proposition 4 For a given equilibrium belief, µ ∈ (0, 1), there exist belief thresholds µ1−µ4,

which are given by (39)-(48), such that:

1. If µ ≤ µ1, all products are simple, σB = σG = 0.

2. If µ ∈ (µ1, µ2], G-products are simple, σG = 0, whereas B-products are complex with

probability

σB =

(
f(ẑ|κ̄)

f(ẑ|κ)
− 1

)−1(
1− ẑ
ẑ

µ

1− µ
1− ω
ω
− 1

)
.
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Figure 2: Illustrates the choice of complexity of a designer who chooses y-product, as it depends on the
consumer’s belief µ.

3. If µ ∈ (µ2, µ3], G-products are simple, σG = 0, whereas B-products are complex, σG = 1.

4. If µ ∈ (µ3, µ4), G-products are simple with probability

σG ∈

{
0, 1−

(
1− f(ẑ|κ)

f(ẑ|κ̄)

)−1(
1− 1− ẑ

ẑ

1− µ
µ

ω

1− ω

)
, 1

}
,

whereas B-products are complex, σB = 1.

5. If µ ≥ µ4, all products are complex, σB = σG = 1.

These results are illustrated in Figure 2. When µ is relatively low, all products are made

simple. This is because, when the consumer’s belief is sufficiently low, she rejects the product

after observing very noisy signals; thus, the designer benefits from producing simple products,

independently of their quality. Instead, when µ is relatively high, all products are made

complex. This is because, when the consumer’s belief is sufficiently high, she accepts the

product after observing very noisy signals; thus, the designer benefits from producing complex

products. In addition, since the benefit of complexity is higher forB-products, for intermediate

belief µ, G-products are made simple and B-products are made complex, i.e. σB > σG.

Finally, it is worth noting that there is a region of beliefs, µ ∈ (µ3, µ4), where multiple

choices of complexity are consistent with a given belief µ. As we will see next, once we impose

consistency of belief µ, complexity will be uniquely pinned down.
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Figure 3: Illustrates the designer’s net payoff from choosing the G-product, as it depends on belief µ.

3.4.2 Equilibrium

We now find the PBE of our model by requiring that the consumer’s belief µ be consistent

with the designer’s choice of output, i.e. µ = m. We begin the analysis by making explicit the

dependence of the designer’s net payoff γ(µ) from choosing the G-product (as defined in (14))

on the consumer’s belief µ. The latter determines complexity strategies, {σy} (Proposition 4),

and the consumer’s acceptance strategy. We define a correspondence Γ : [0, 1] → 2R, where

Γ(µ) is the set of γ(µ) implied by all the complexity choices consistent with an equilibrium

with belief µ. The next lemma establishes some properties of this correspondence, which will

be used to determine the set of all PBE.

Lemma 2 The set {µ > 0 : 0 ∈ Γ(µ)} is non-empty and generically has only one element,

ψ ∈ (0, 1). Furthermore, γ(µ) T 0 if and only if µ S ψ.

Figure 3 illustrates the behavior of this correspondence, which is single-valued for µ 6∈
(µ3, µ4). When µ is low (i.e., µ < ψ), the designer is better off producing a G-product,

γ(µ) > 0, as doing so increases his probability of acceptance since the consumer is more likely

to reject when her beliefs are low. For the same reason, in this region products are made
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simple. Conversely, when µ is high (i.e., µ > ψ), the designer prefers to produce a B-product,

γ(µ) < 0, as the consumer is more likely to accept when her beliefs are high. Furthermore,

this is the region where products are made complex.

The following proposition provides a characterization of the equilibrium.

Proposition 5 There are generically only two equilibria, which have the following properties:

1. Zero trade equilibrium: the designer produces bad products with probability one, m = 0,

and complexity is indeterminate as all products are rejected with probability one.

2. Positive trade equilibrium: the designer produces good products with probability m = ψ

defined in Lemma 2, and complexity is as in Proposition 4 s.t. µ = ψ and γ(ψ) = 0.

Consider first the zero trade equilibrium, in which the designer produces bad products with

probability one, i.e. m = 0. In such an equilibrium, it is optimal for the consumer to reject

products with probability one. But then, it is indeed optimal for the designer to produce such

products; finally, product complexity is irrelevant in this equilibrium.13

Next, consider the positive trade equilibrium, in which the designer produces good products

with positive probability, i.e. m > 0. Note that, if the designer were to produce good products

with probability one, i.e. m = 1, then the consumer would accept products with probability

one, but then the designer would want to deviate to produce bad products as those yield

a higher payoff when accepted, γ(1) < 0, a contradiction. Thus, we have m ∈ (0, 1) and

the designer must be indifferent between the two products, i.e. m = ψ defined in Lemma 2.

Finally, the equilibrium complexity can be computed from Proposition 4 by setting µ = ψ.

Note that when ψ ∈ (µ3, µ4), complexity is pinned down uniquely by the indifference condition

γ(ψ) = 0. Figure 3 illustrates the workings of Propositions 4 and 6.

4 Introducing aligned designers

We now complete the model by introducing product designers whose payoffs are aligned with

those of the consumer. In particular, we suppose that with probability p ∈ [0, 1] the consumer

can encounter an aligned product designer, who obtains a higher payoff from having a G-

product being accepted, v̄(G) > v̄(B) > 0. With probability 1 − p, however, the consumer

meets a misaligned designer, and thus the model analyzed in Section 3 is the particular case of

the general model with p = 0. Importantly, whether the designer is aligned or misaligned is not

13If there were a small cost of production, then no production would take place in this equilibrium.
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observable to the consumer. An aligned designer chooses product output, y, and complexity

κ, to maximize his expected payoff: P(a = 1|y, κ) · v̄(y).

First, for an aligned designer, both the probability of acceptance and the payoff conditional

on acceptance are higher with a G-product, for any choice of complexity. Thus, for any belief

µ, aligned designers produce G-products with probability one. Second, the choice of product

complexity only depends on the product’s output, and not on whether the designer is aligned

or misaligned. As a result, the choice of complexity for the G-product is as in Proposition 4,

as κG is chosen to maximize P(a = 1|G, κ).

The presence of aligned designers changes the equilibrium analyzed in Section 3 through

the likelihood of a G-product being offered in equilibrium. Consistent with this, the new

belief consistency condition is µ = p+ (1− p) ·m. As before, however, to pin down the level

of µ consistent with an equilibrium we need to analyze the incentives of misaligned product

designers to produce G-products, m, which continues to be characterized by Proposition 3.

The following proposition fully characterizes how the equilibrium changes with the presence

of aligned designers.

Proposition 6 In the presence of aligned designers, p ∈ [0, 1], an equilibrium always exists,

there are generically at most two equilibria with positive trade, with the following properties:

1. If p ≤ ψ, the Positive Trade equilibrium of Proposition 5 with m > 0 and µ = ψ exists.

2. If p > ψ or if µ3 ≤ p ≤ ψ and inf Γ(µ3) ≤ 0, an equilibrium in which the misaligned

designer produces the G-product w.p. m = 0, and thus µ = p, exists. Complexity is

given by Proposition 4 for µ = p.

When the fraction of aligned designers is small, p > ψ, they have no effect on aggregate

equilibrium outcomes, as their presence only increases the probability with which misaligned

designers produce B-products. This fully offsets the positive effect of aligned designers, as

µ = ψ remains unchanged, and so do the corresponding choices of complexity. When the

fraction of aligned designers is sufficiently high, p > ψ, the equilibrium changes as now all

misaligned designers produce B-products, with overall quality determined by the fraction of

aligned designers in the economy, µ = p. Finally, for p ∈ [µ3, ψ], both equilibria can co-

exists: one in which m > 0 and µ = ψ, and one in which m = 0 and µ = p. This type of

multiplicity arises due to the presence of multiple choices of complexity being consistent with

beliefs µ ∈ (µ3, µ4) (see Proposition 4).

The results in Propositions 4 and 6 provide a full characterization of the equilibrium of

the model with aligned and misaligned designers. In what follows, we analyze in more detail
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how overall quality and complexity vary with changes in the relative outside option, ω, and

different measures of alignment, p and v(B)− v(G).

5 Comparative Statics

In this section, we study the comparative statics properties of our model, which we later

interpret in the context of two applications (Section 6). We will say that product quality

increases when the probability of a product having a good output, P[y = G] = µ, increases;

and that overall complexity increases when the probability of a product being complex, E[σy] =

µσG + (1− µ)σB, increases. We also discuss the quality and complexity of accepted products

by conditioning these expectations on a product being accepted.14

We begin by considering the effect of a decrease in the consumer’s relative outside option.

A decrease in ω could result from a decrease in the consumer’s payoff when the product is

rejected, w0, or by an increase in the consumer’s payoffs when the product is accepted, i.e.,

higher w(G) and/or w(B). That is, a decrease in ω reflects that the net value of the product

to the consumer increases, making the product more attractive.

Proposition 7 As the consumer’s relative outside option, ω, decreases, product quality falls,

while product complexity increases. Moreover, all designers complexify if ω is sufficiently low.

Intuitively, when ω is sufficiently large, the consumer is very selective in accepting products.

This gives all designers an incentive to produce simple G-products, reflected in µ = ψ increas-

ing and average complexity decreasing. As ω decreases, however, incentives to design simpler

and better products fall, since the consumer’s acceptance strategy becomes less strict. When

ω is sufficiently low, the consumer accepts almost all products. Thus, all designers complexify

and misaligned designers exclusively produce B-products, reflected in µ = p constant and

high complexity. Figure 4 presents these results graphically, and shows that the quality and

complexity of accepted products follow the same pattern.

Next, we consider the effect of an increase in the measure of aligned designers, p.

Proposition 8 As the measure of aligned designers, p, increases, product quality increases,

while complexity decreases for µ sufficiently low, and increases otherwise. Moreover, all de-

signers complexity if p is sufficiently large.

14Throughout this section, if multiple equilibria arise (i.e. only if µ ∈ (µ3, µ4)), we focus on the equilibrium
with the lowest level of complexity. Our qualitative results, however, remain unchanged if we focus on any of
the other possible equilibria.
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Figure 4: Product quality and complexity of proposed and of approved products as a function of the consumer’s
relative outside option ω ∈ [0, 1].

Not surprisingly, as the measure of aligned designers increases, so does product quality, since

they always produce G-products.15 The downside, however, is that the increase in average

quality relaxes the acceptance strategy of the consumer, which increases designers’ incentives

to produce complex products. Consistent with this, when p is sufficiently large, the consumer

will accept almost all products, and thus all designers complexify. Even though the quality of

proposed products increases in p, the resulting increase in complexity worsens the consumers’

ability to identify a G-product, which can result in a decrease in the quality of accepted

products, as shown in Figure 5.

We conclude by analyzing the effect of an increase in the payoff to the misaligned designer

from producing a G-product, v(G).

Proposition 9 As v(G) increases, both product quality and complexity increase for large

changes in v(G), though they may be non-monotonic locally. Moreover, all products are made

complex if v(G) is sufficiently high.

As v(G) increases, the net payoff to the misaligned designer from producing a G-product

increases, captured by an upward shift of the correspondence Γ(·). Generally, such an upward

shift leads to an increase in ψ, and thus improvement in overall product quality for p < ψ.

We say generally, however, because as ψ approaches µ4, a further increase in v(G) generates

an upward jump in equilibrium complexity, from separation to pooling at complexity, which

15For p < ψ such initial increase in quality improves the incentives of the misaligned designer to produce
B-products, resulting in an decrease in m and a constant overall quality, µ = ψ.
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Figure 5: Quality of approved products: output and complexity as a function of p

requires a downward jump in ψ from µ4 to µ3. This can be seen by inspecting Figure 6. Note,

however, that product quality is increasing in v(G) before and after the jump.

An increase in v(G) weakly increases the incentives of the designer to make products com-

plex, i.e., σG and σB weakly increase in v(G). The effect on average complexity, however, is

non-monotonic as it depends on equilibrium µ. In particular, when the initial equilibrium fea-

tures σG < σB, average complexity decreases as the designer produces simple G-products with

higher probability than complex B-products. Otherwise, complexity increases in v(G). This

non-monotonicity can be seen graphically in Figure 6. Finally, as v(G) becomes sufficiently

high, all products are made complex.

The results in Propositions 7 to 9 have implications for the relationship between product

quality and complexity, and highlight the importance of understanding the underlying drivers

of product heterogeneity. We have shown that while more alignment between the consumer

and the designer (captured by an increase in the measure of aligned designers, p, or by an

increase in the payoff to misaligned designers from producingG-products), results in better and

more complex products, higher demand for the products results in worse and more complex

products. In what follows, we interpret the results of this section in the context of two

applications.

6 Applications

We focus on two main applications that are at the center of the policy and academic discussion

on issues related to complexity, and that have motivated our work: the design of financial
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Figure 6: Quality of approved products: output and complexity as a function of v(G)

products and of regulatory policies. In what follows, we describe in detail how to map our

model to these applications, and the resulting implications. Even though our model is stylized

and not able to capture the richness of the institutional details of these environments, we

present simple extensions to address particular issues of interest that arise within a particular

application.

6.1 Financial products

Banks and other financial intermediaries design financial products that they offer retail in-

vestors, such as savings and retirement accounts, mortgages, credit lines, etc. When a retail

investor (i.e., the consumer in our model) approaches a financial advisor (i.e., the product

designer), the latter chooses which product to offer to the consumer. In practice, financial

advisors may receive different payments from selling a given financial product to investors, and

those products that give the financial advisor a higher commission need not be the best ones

for the retail investor. When incentives are not aligned, the financial advisor faces a trade-off

as the one faced by the designer in our model: to increase the probability of acceptance by of-

fering the product that best suits the needs of the investor, or to increase his payoff conditional

on acceptance by choosing the product with a higher commission. In turn, the choice of prod-

uct design within financial institutions will crucially depend on the financial advisor’s ability

to sell different types of financial products, such as more or less complex. In what follows,

we examine the drivers of product quality (i.e. the net present value of a financial product to

the investor) and of the complexity in financial products (i.e., the multidimensionality of the

23



contract) through the lenses of our model.16

Trust in financial advisors. Proposition 8 states that as the measure of aligned financial

advisors, p, increases (which we view as an increase in the fraction of advisors whom retail

investors trust, or that are “honest advisors”) the overall quality of financial product increases,

but so does their complexity. In our model, retail investors are rational and they do not

misperceive the distribution of financial advisors. However, if we allowed for such deviations,

an unjustified increase in the trust in financial advisors would generate a decrease in product

quality accompanied by an increase in complexity. This observation is consistent with the

behavior of several financial intermediaries that during the 2000s were allegedly designing

and selling increasingly worse and more complex financial products to overly optimistic retail

investors, a behavior that contributed to the financial crisis and resulted in multiple lawsuits.17

Motivated by this conflict of interest, the Securities and Exchange Comission (SEC) has

increased its efforts to forbid the use of the term “financial adviser” for those managing

brokerage accounts (particularly retirement funds) unless the broker has formally accepted a

fiduciary duty to act in the investor’s best interest.18 If we interpret such policy as increasing

the fraction of aligned financial advisors, our model predicts that it would not only increase

the quality of financial products (as intended by the SEC), but also their complexity.

Competition in financial markets. To capture competition in financial markets, we extend our

model to a dynamic search setting to capture the effects of competition. In particular, we

now suppose that, if the consumer rejects a product, she searches for a new designer, whom

she finds with probability β ∈ (0, 1). The new designer proposes a product to the consumer,

and the game repeats until the consumer accepts an offered product. In this setting, a higher

β implies lower search frictions and, hence, more competition in the market for designers.

In a stationary equilibrium, in which U denotes the consumer’s equilibrium value, we have:

U = E
[

max
a∈{0,1}

{a · [µ(s, z) · w(G) + (1− µ(s, z)) · w(B)] + (1− a) · βU}
]
. (16)

16While the net present value of a financial product is related to its dimensionality, it is also possible that
two products provide the same net present value to an investor but vary in their dimensionality, as we have
modeled it. We consider the case of complexity affecting the consumer’s payoff directly in Section 6.2.

17In 2011, the Federal Housing Finance Agency filed lawsuits against some of the
largest US financial institutions, involving allegations of securities law violations and fraud
in the packaging and sale of mortage-backed-securities. For a detailed description, see
https://www.fhfa.gov/SupervisionRegulation/LegalDocuments/Pages/Litigation.aspx.

18“Fiduciary Rule” Poised for Second Life Under Trump Administration, article by Dave Michaels on the
Wall Street Journal, January 10th, 2018: https://www.wsj.com/articles/fiduciary-rule-poised-for-second-life-
under-trump-administration-1515580200.
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If we set w0 = βU , then the static equilibrium is fully characterized in Section 3.4.

Proposition 10 An equilibrium exists, and in it βU ∈ (w(B), w(G)) provided that β is not

too low. Furthermore, βU is increasing in β.

Comparative statics with respect to β are qualitatively similar to the comparative statics

with respect to ω in Proposition 7. This is because, in a search environment, βU is the

consumer’s effective outside option, which we have shown increases in β. Thus, just as in our

baseline model, an increase in competition, β, leads to an increase in overall quality and a

decrease in complexity of products.

Demand for financial products. An increase in the relative payoff of given financial product to

the consumer is captured in our model by a decrease in the consumer’s outside option (w0),

or by an increase in the payoffs associated with a given product (w(G) and w(B)). As shown

in Proposition 7, our model suggests that as retail investors’ demand for a given financial

product increases, the quality of such products falls while their complexity increases. These

predictions are consistent with the observed trend in financial products that were perceived

as “safe” before the financial crisis. The increase in investor demand for these products,

sometimes blamed on the so-called savings glut, could have been an important driver of their

worsening quality and increased complexity, as exemplified by mortgage-backed-securities.19

Compensation structures. Our model can also be used to examine the role played by the

financial advisors’ compensation structure. If the compensation of financial advisors is linked

to the volume or the characteristics of financial products that they sell, then the advisors are

more likely to be misaligned with retail investors. In our model, we interpret this friction as

the difference between the payoff associated with selling good vs. bad product: v(B)− v(G).

As shown in Proposition 9, as the difference in payments across products is reduced and the

incentives of the financial advisor become more aligned with those of the investor, there is an

increase provision of good financial products. Interestingly, such a change in compensation

structures could result in more complexity when the effect on overall quality is strong enough.

Note, however, that complexity is not too detrimental when the overall quality of financial

products is very high.

19For evidence on the increasing demand for safe products; see Bernanke (2005), on the worsening quality
of securitized products see Jaffee et al. (2009); and on the increasing complexity of financial products see
Célérier and Vallée (2015).
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6.2 Regulatory Complexity

Politicians design and propose policies to achieve a policy agenda. In doing so, they balance

their own preferences (determined by ideology, informational lobbying etc.) and the need to

obtain voter approval for that policy. In this environment, politicians (i.e., product designers)

propose policies to voters (i.e., the consumer) who may accept or reject them. For instance,

if the policy in question is a tax reform, the policy’s quality is given by whether it implies

“higher or lower taxes” or “more or less redistribution.” In contrast, the policy is more

complex if it contains unnecessarily complicated wording, several unlikely contingencies etc.

An illustrative example of such complexity comes from the regulatory framework proposed

by the Basel Committee on Banking Supervision. An analysis of its text has shown that

an average sentence in the Basel documents consists of 25.7 words, significantly longer than

the average 21 words in a sentence of the British National Corpus.20 Moreover, the second

sentence of the very first document published by the Basel Committee on Banking supervision

spans over 72 words.21

Public opinion. In most cases, politicians do not have to wait until election time to learn about

voters’ support. Public opinion data provides politician’s with real time information about

voters’ perceptions. Public opinion in our model would be captured by the voters’ belief

about the politicians being aligned with their interests in a certain policy area, captured

by µ. Our model suggests that when public opinion is high, politicians have incentives to

complexify policies, while simplicity should arise when public opinion is low. A variant of this

implication has been used by legal scholars to explain why policy proposals coming out of the

US Congress in domains in which public opinion of politicians is low tend to be simpler, leaving

it to federal agencies to propose additional policies and to draft rules for these industries.22

For instance, voters have higher distrust of politicians when it comes to policies pertaining

to industries that are major lobbyists and contributors to campaigns, such as the financial

services or pharmaceutical industries, and politicians tend to delegate more of that lawmaking

to regulators rather than proposing complex policies themselves.

In terms of the quality of proposed policies, our model predicts that the quality of policies

should be high when the improvement in public opinion is rational, but it may low if voters

are being overly optimistic about the alignment between their interests and those of the

politicians.

20The British National Corpus is a collection of texts covering a broad range of modern British English.
21Analysis performed by Neue Zurcher Zeitung, as cited by Marie-Jose Kolly and Jurg Muller,

https://www.endofbanking.org/2018/05/22/how-banking-regulation-has-grown-out-of-all-proportions
22See Stiglitz (2017).
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Urgency. The pressure or urgency to pass a given policy may vary depending on the reform

under discussion. For example, there was a strong sense of urgency to pass financial regulation

reform after the 2008-09 crisis. One possible reason being that the public did not feel they

could trust the financial system otherwise. Other type of policies, such as environmental

policies, do not seem to be considered with the urgency that they maybe deserve. Through

the lenses of our model, urgency could be captured as the voters’ outside option, a measure

of the status-quo: i.e., the payoff to voters if the reform does not pass. In light of this, our

model suggests that when there is urgency to pass a given reform, policies will tend to be

of worse quality and more complex; while lack of urgency would result in better quality and

simpler policies. This prediction is consistent with the mere observation that in the U.S.,

reforms passed in times of urgency, such as the Dodd-Frank Act or the Affordable Care Act,

have been described as overly complex, while those passed in normal times, such as the Clean

Air Act, seem to be seen as much simpler.

Direct costs of complex or simple rules. In the context of regulation, it is natural to think that

the level of complexity may have a direct impact on the voter. On the one hand, complex

policies may be worse if they imply a higher costs of compliance, e.g. hiring accountants and

lawyers. On the other hand, more complex policies may be better when regulating complex

systems, such as the financial system. In view of this, in Appendix D we extend our model to

introduce what we refer to as a “natural level of complexity,” which we denote by κn, where

deviations from this natural level are costly to the consumer. Specifically, we suppose that

the consumer pays a cost c(κ) > 0 when a product with complexity κ 6= κn is accepted, and

zero otherwise, where κn ∈ {κ, κ̄}. Then, given information (s, z) and acceptance decision

a ∈ {0, 1}, the consumer’s payoff is:

W (a|s, z) ≡ a · E [w(y)− c(κ)|s, z] + (1− a) · w0 (17)

In contrast to our baseline model, the consumer’s acceptance strategy is now modified to

incorporate the direct cost of complexity (or simplicity). The consumer’s acceptance rule is

again contingent on the signal only when the signal is sufficiently informative, i.e., z < z̄, but

with an adjusted threshold z̄. The equilibrium analysis is analogous to the baseline model, with

the not surprising prediction that the equilibrium level of complexity will be lower (higher) if

complexity (simplicity) is costlier. Hence, our model helps us understand the policymakers’

or regulators’ strategic motives for designing more or less complex products relative to what
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would otherwise be natural, i.e. optimal for the voters.23

7 Extensions

7.1 Observable Complexity

We now consider the case in which the designer’s choice of κ ∈ {κ, κ̄} is observable to the

consumer. The rest of the model is as in the baseline setup. When κ is observed by the

consumer, it can act as a signal of the product’s output. Note that the noise z, in turn, no

longer provides any information since κ is directly observed. Thus, given prior belief µ, the

consumer does a first belief update after observing κ to interim belief

µ (κ) = Pr(y = G|κ) =
µ

µ+ (1− µ) Pr(κ|y=B)
Pr(κ|y=G)

, (18)

and a second belief update after observing the signal to posterior belief µ(s, z, κ), given by

(4) where interim belief µ(z) is replaced by µ(κ). The first important result is that, since

a B-product is never accepted by the consumer, i.e., there are no gains from trade for the

B-product, then separation cannot be obtained in equilibrium.

Lemma 3 In any equilibrium, there is pooling on complexity; that is, σG = σB ∈ {0, 1}.

Thus, even though complexity can in principle be used as a signaling device by design-

ers, those designing B-products choose to always mimic the complexity choice of G-product

designers. Intuitively, any equilibrium in which different product types come with different

complexities can be ruled out by requiring belief consistency from the consumer. However,

the freedom of assigning off-equilibrium beliefs gives rise to multiple equilibria in this setting.

As a result, both equilibrium with complex and equilibrium with simple products can be

supported, as we formalize in the following proposition.

Proposition 11 There is always two equilibria with positive trade with the following features:

• Simple equilibrium (S): σSG = σSB = 1, with µS = max{ψS, p}.

• Complex equilibrium (C): σCG = σCB = 0, with µC = max{ψC , p}.

where ψC < ψS are given by equations (71)-(72) respectively.

23It is straightforward to show that under full information, i.e. if (y, κ) were observable to the consumer,
then all designers would produce (G, κn) products.
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Therefore, even when complexity is observable, there exists an equilibrium in which G-

products are made complex, and an equilibrium in which B-products are made simple. In what

follows, we show that, as in the baseline model, when the consumer is sufficiently optimistic,

all designers are better off when producing complex products.

Proposition 12 If p is large enough or ω is low enough, all designers are better off in the

complex equilibrium.

Thus, the main insights of our model are robust to a setting where the choice of κ is

observable. When the fraction of aligned designers is sufficiently large, or the consumer’s

relative outside option relatively low, all designers benefit from the consumer having access to

less precise information, as she will accept all products when information is sufficiently noisy.

Furthermore, we can show that for a given equilibrium (complex or simple) the comparative

statics on product quality, µ, are as described in the baseline model (see Section 5).

7.2 Optimal Information Extraction with Limited Attention

In this section, we show that our information structure captures the idea that learning about

a more complex product requires more of the consumer’s attention. To do so, we follow the

rational attention literature by assuming that the consumer can choose how much uncertainty

about the product output to reduce subject to an entropy-reduction cost, where entropy

measures the consumer’s uncertainty (Sims, 2003). In particular, a more complex product has

a higher cost of entropy reduction. As in our baseline model, we refine the set of equilibria

by supposing that the mapping between the designer’s action and the actual entropy cost

faced by the consumer is imperfect. The advantage of this approach is that it micro-founds

the relation between a product’s complexity and the type of information received by the

consumer. The drawback, however, is that we can no longer obtain as sharp of an equilibrium

characterization as in our baseline setting. Nevertheless, we show next that the model’s main

mechanisms remain robust under the optimal information choice by the consumer.

The main difference with the baseline setup is that now the consumer chooses the distri-

bution of the signal about product output that she receives. The uncertainty faced by a

consumer with belief µ̃ = P (y = g) is measured by the entropy function, as given by:

H (µ̃) = − (µ̃ · log (µ̃) + (1− µ̃) · log (1− µ̃)) , (19)

which reaches a minimum of zero at µ̃ ∈ {0, 1} and a maximum of −log
(

1
2

)
at µ̃ = 1

2
. As

before, let S denote the signal observed by the consumer and s denote its realization. The
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signal has a distribution conditional on the product’s output, π (s|y) ≡ P (S = s|y), which

determines the consumer’s posterior belief:

µ̃ (s) ≡ P (y = G|s) =
π (s|G) · µ̃

π (s|G) · µ̃+ π (s|B) · (1− µ̃)
. (20)

The entropy associated with the posterior belief is H(µ̃ (s)).

We measure the amount of information that the consumer obtains from a particular infor-

mation structure π as the expected reduction in entropy:

I (π) = H (µ̃)−
∫
s

H (µ̃ (s)) · π (s) · ds, (21)

and we assume that the consumer faces a cost c · I(π) of entropy reduction for some c > 0.

We suppose that more complex products are more attention intensive. And, as before, we

refine the set of equilibria by assuming that the mapping from complexity κ to the cost of

entropy reduction is imperfect. In particular, we assume that the parameter c is random and

satisfies c ∼ F (c|κ) with pdf f(c|κ) that has full support on some interval [c, c̄] and where
f(c|κ̄)
f(c|κ)

is increasing in c (MLRP).

Since the consumer’s action is binary, i.e. she chooses to accept or reject the product, it

is without loss of generality to focus on binary signals S ∈ {b, g} (Woodford, 2009; Yang,

2015). Let πy denote the probability that the consumer receives signal g, conditional on the

designer producing a y-product. Let µ(c) be the consumer’s interim belief after observing the

cost c. For a given c, the consumer’s information extraction problem is to choose πG and πB

to maximize her expected payoff:

µ(c) · πG · (w (G)− w0) + (1− µ(c)) · πB · (w (B)− w0)− c · I (π) (22)

where

I (π) = H (µ(c) · πG + (1− µ(c)) · πB)− µ(c) ·H (πG)− (1− µ(c)) ·H (πB) . (23)

Figure 7 depicts the solution to the consumer’s problem for a given prior belief µ and

an interim belief µ(c) = µ, i.e. the figure assumes that the equilibrium features pooling at

complexity level. As we can see, the resulting probabilities of acceptance are closely related

to those in our baseline model, as depcited in Figure 1. When the cost c is low enough, the

consumer extracts an informative signal and makes her decision contingent on its realization.
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Figure 7: Illustrates the probability of acceptance of a y-product as a function of the entropy-reduction cost,
c. The left panel depicts the acceptance strategy of an optimistic consumer. The right panel depicts the
acceptance strategy of a pessimistic consumer

Otherwise, the consumer makes her decision solely based on her interim belief. Finally, observe

that when c is high enough, then the consumer either accepts the product w.p.1 (left panel) or

she rejects it w.p.1 (right panel). As in our baseline model, which of the two scenarios arises

depends on whether the consumer is optimistic or pessimistic; that is, what she would do in

the absence of information.24

Naturally, an equilibrium requires that the consumer’s prior belief µ and her interim be-

lief µ(c) be consistent with the designer’s strategies {m,σG, σB} and Bayes’ rule. Although

a full analytical characterization of the equilibrium set is now difficult to obtain, we show

next (numerically) that the equilibrium set of the model with optimal information extraction

resembles closely that of our baseline model.

Figure 8 is the analogue of the Figures 2 and 3, in the model with optimal information

extraction. The left panel illustrates the choices of complexity σG and σB that are consistent

with an equilibrium belief µ. As in our baseline model (see Figure 2), if the consumer’s belief µ

is relatively low (high), then both products are made simple (complex), while G-products are

made simple and B-products are made complex if µ is intermediate. The right panel depicts

the correspondence Γ as defined in Section 3.4.2. Given strategy σy and the correspondence

Γ, equilibrium product quality and complexity can be found as in the baseline model using

Propositions 5 and 6.

24In this setting, the consumer is optimistic if µ(c̄) ≥ ω, and she is pessimistic otherwise.
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Figure 8: The left panel illustrates the choice of complexity of a designer who produces a y-product and is
consistent with a consumer’s belief of µ. The right panel illustrates the misaligned designer’s net payoff from
choosing the G-product given consumer’s belief µ.

8 Conclusion

We presented a model of complexity, in which both product quality and complexity are a

strategic choice made by product designers. The model sheds light on the incentives of de-

signers to add complexity to products in order to increase their chance of acceptance by a

consumer. The model delivers two powerful insights. First, complexity is not necessarily a

feature of worse quality products. The designer may complexify good products, or simplify

bad products. We show how this choice depends crucially on the consumer’s beliefs about

the average quality of products and the consumer’s outside option. Second, the relationship

between average product quality and complexity depends on the underlying drivers of prod-

uct heterogeneity. More alignment between the consumer and the designer increases average

quality as well as average complexity. More competition between designers, however, increases

average product quality and decreases average complexity.

Our model provides a tractable framework for analyzing the joint choice of a product’s

quality and complexity, and it can be extended along several dimensions. In particular, future

work may examine the evolution of quality and complexity over time for financial products

and policies which are subject to amendments or renegotiations.
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A Appendix: Proofs and Complementary Lemmas

A.1 Proofs for Section 3

Proof of Lemma 1. See text.

Proof of Proposition 2. We begin by studying the designer’s optimal choice of κ in the

optimistic region, as in Definition 1.

Case 1 (consumer is optimistic). In this region, the designer is accepted w.p.1 when informa-

tion is noisy enough, z > z̄. So, his optimal choice of κ solves:

max
κ∈{κ,κ̄}

∫ z̄

0

P (s = g|y) · f(z|κ)dz +

∫ 1/2

z̄

f(z|κ)dz. (24)

Thus, it is optimal for the designer of B-product to choose κ̄ if∫ z̄

0

z · f(z|κ̄)dz +

∫ 1/2

z̄

f(z|κ̄)dz ≥
∫ z̄

0

z · f(z|κ)dz +

∫ 1/2

z̄

f(z|κ)dz, (25)

and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ z̄

0

(1− z) · (f(z|κ)− f(z|κ̄))dz ≥ 0. (26)

But, note that we have:∫ z̄

0

(1− z) · (f(z|κ)− f(z|κ̄))dz > (1− z̄)(F (z̄|κ)− F (z̄|κ̄)) > 0. (27)

for z̄ > 0, as will be the case in equilibrium. Thus, condition (25) is satisfied with strict

inequality, and it is uniquely optimal for the designer of the B-product to choose κ̄.

On the other hand, it is optimal for the designer of G-product to choose κ̄ if∫ z̄

0

(1− z) · f(z|κ̄)dz +

∫ 1/2

z̄

f(z|κ̄)dz ≥
∫ z̄

0

(1− z) · f(z|κ)dz +

∫ 1/2

z̄

f(z|κ)dz, (28)

and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ z̄

0

z · (f(z|κ)− f(z|κ̄))dz ≥ 0. (29)

Condition (28) is satisfied if z̄ ≤ ẑ, and holds with strictly inequality if z̄ < ẑ. Thus, if z̄ < ẑ,
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it is uniquely optimal for the designer of G-product to choose κ̄. Otherwise, if z̄ = ẑ, the

designer is indifferent to the choice of κ, and if z̄ > ẑ, it is uniquely optimal to choose κ.

Next, we study the designer’s optimal choice of κ in the pessimistic region.

Case 2 (consumer is pessimistic). In the region, the designer is rejected if information is too

noisy, z > z̄. So, his optimal choice of κ solves:

max
κ∈{κ,κ̄}

∫ z̄

0

P (s = g|y) · f(z|κ)dz. (30)

Thus, it is optimal for the designer of B-product to choose κ if∫ z̄

0

z · f(z|κ̄)dz ≤
∫ z̄

0

z · f(z|κ)dz, (31)

and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ z̄

0

z · (f(z|κ)− f(z|κ̄))dz ≥ 0. (32)

Condition (31) is satisfied if z̄ ≤ ẑ, and holds with strict inequality if z̄ < ẑ. Thus, if z̄ < ẑ,

it is uniquely optimal for the designer of B-product to choose κ. Otherwise, if z̄ = ẑ, the

designer is indifferent to the choice of κ, and if z̄ > ẑ, it is uniquely optimal to choose κ̄.

On the other hand, it is optimal for the designer of the G-product to choose κ if∫ z̄

0

(1− z) · f(z|κ̄)dz ≤
∫ z̄

0

(1− z) · f(z|κ)dz, (33)

and it is uniquely optimal if the inequality is strict. This is equivalent to:∫ z̄

0

(1− z) · (f(z|κ)− f(z|κ̄))dz ≥ 0. (34)

Re-writing the above condition, we have∫ z̄

0

(f(z|κ)− f(z|κ̄))dz >

∫ z̄

0

z · (f(z|κ)− f(z|κ̄))dz, (35)

which immediately implies that condition (33) is satisfied for all z̄ > 0, as will be the case in

equilibrium, and it is uniquely optimal for the designer of the G-product to choose κ.
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Proof of Proposition 3. The designer’s net benefit from choosing the G-product is:

γ(µ) = max
κ

Pµ(a = 1|G, κ) · v(G)−max
κ

Pµ(a = 1|B, κ) · v(B). (36)

Since again Pµ(a = 1|G, κ) ≥ Pµ(a = 1|B, κ) > 0 and v(G) > v(B), we can have γ(µ) S

0. Thus, the designer chooses the G-product whenever γ(µ) > 0, the B-product whenever

γ(µ) < 0, and he is indifferent whenever γ(µ) = 0.

Proof of Proposition 4. Suppose that, in equilibrium, the consumer’s belief that the

designer has produced a G-product is µ ∈ (0, 1).

Pooling equilibria. Consider first the candidate pooling equilibrium in which σB = σG = 0.

By Proposition 2, this requires that µ ≤ ω and z̄ ≤ ẑ. On equilibrium path, the consumer

does not update from observation of z and, thus, threshold z̄ is given by

µ(g, z̄) = ω, (37)

which is equivalent to:

z̄ =
(1− ω) · µ

(1− ω) · µ+ ω · (1− µ)
. (38)

This is an equilibrium if and only if z̄ ≤ ẑ, which is equivalent to:

µ ≤
ω · ẑ

1−ẑ

ω · ẑ
1−ẑ + 1− ω

≡ µ1. (39)

Consider next the candidate pooling equilibrium in which σB = σG = 1. By Proposition 2,

this requires that µ ≥ ω and z̄ ≤ ẑ. On equilibrium path, the consumer does not update from

observation of z and, thus, threshold z̄ is given by

µ(b, z̄) = ω, (40)

which is equivalent to:

z̄ =
ω · (1− µ)

(1− ω) · µ+ ω · (1− µ)
. (41)

This is an equilibrium if and only if z̄ ≤ ẑ, which is equivalent to:

µ ≥
ω · 1−ẑ

ẑ

ω · 1−ẑ
ẑ

+ 1− ω
≡ µ3. (42)
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Therefore, σB = σG = 0 is an equilibrium if and only if µ ∈ (0, µ1], whereas σB = σG = 1 is

an equilibrium if and only if µ ∈ [µ3, 1).

Separating equilibria. Consider the candidate separating equilibrium in which σB = 1 and

σG = 0. There are two cases to consider, depending on whether the consumer is optimistic or

pessimistic.

First, suppose that

µ

(
g,

1

2

)
= µ

(
b,

1

2

)
=

µ

µ+ (1− µ) · `
(

1
2

) ≤ ω, (43)

where `(·) = f(·|κ̄)
f(·|κ)

. Then, the consumer must be pessimistic. On equilibrium path, there is

updating from observation of z, and thus threshold z̄ is given by

µ (g, z̄) =
µ

µ+ (1− µ) · `(z̄) · z̄
1−z̄

= ω. (44)

This is an equilibrium if and only if also z̄ ≥ ẑ, i.e.

µ2 ≡
ω · `(ẑ) · ẑ

1−ẑ

ω · `(ẑ) · ẑ
1−ẑ + 1− ω

≤ µ ≤
ω · `

(
1
2

)
ω · `

(
1
2

)
+ 1− ω

≡ µ̃. (45)

Second, suppose that

µ

(
g,

1

2

)
= µ

(
b,

1

2

)
=

µ

µ+ (1− µ) · `
(

1
2

) > ω, (46)

Then, the consumer must be optimistic. The threshold z̄ is now given by

µ(b, z̄) =
µ

µ+ (1− µ) · `(z̄) · 1−z̄
z̄

= ω. (47)

This is an equilibrium if and only if also z̄ ≥ ẑ, i.e.

µ̃ =
ω · `

(
1
2

)
ω · `

(
1
2

)
+ 1− ω

< µ ≤
ω · `(ẑ) · 1−ẑ

ẑ

ω · `(ẑ) · 1−ẑ
ẑ

+ 1− ω
≡ µ4. (48)

Therefore, σB = 0 and σG = 1 is an equilibrium if and only if µ ∈ [µ2, µ4].

Semi-separating equilibria. Consider the candidate semi-separating equilibrium, in which

σB ∈ (0, 1). By Proposition 2, such an equilibrium requires that the consumer be pessimistic

and so σG = 0. On equilibrium path, there is updating from observation of z, and threshold
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z̄ must exactly equal ẑ so that the designer of B-product is indifferent to the choice of κ

(Proposition 2) and is willing to mix:

µ (g, ẑ) =
µ

µ+ (1− µ) · (σB · `(ẑ) + 1− σB) · ẑ
1−ẑ

= ω, (49)

which in turn implies that:

σB =

1−ẑ
ẑ
· µ

1−µ ·
1−ω
ω
− 1

f(ẑ|κ̄)
f(ẑ|κ)

− 1
. (50)

Since the posterior belief µ (g, ẑ) is continuous and decreasing in σB (MLRP implies that

`(ẑ) > 1), this equilibrium exists if and only if:

µ(g, ẑ)|σB=1 < ω < µ(g, ẑ)|σB=0, (51)

which is equivalent to:

µ1 =
ω · ẑ

1−ẑ

ω · ẑ
1−ẑ + 1− ω

< µ <
ω · `(ẑ) · ẑ

1−ẑ

ω · `(ẑ) · ẑ
1−ẑ + 1− ω

= µ2. (52)

Therefore, σG = 0 and σB ∈ (0, 1) is an equilibrium if and only if µ ∈ (µ1, µ2).

Consider the candidate semi-separating equilibrium in which σG ∈ (0, 1). By Proposition 2,

such an equilibrium requires that the consumer be optimistic and so σB = 1. On equilibrium

path, there is updating from observation of z, and threshold z̄ must exactly equal ẑ so that

the designer of G-product is indifferent to the choice of κ and is willing to mix::

µ (b, ẑ) =
µ

µ+ (1− µ) · 1−ẑ
ẑ
· 1
σG+(1−σG)·`(ẑ)−1

= ω. (53)

which in turn implies that

σG = 1−
1− 1−ẑ

ẑ
· 1−µ

µ
· ω

1−ω

1− f(ẑ|κ)
f(ẑ|κ̄)

. (54)

Since the posterior belief µ (b, ẑ) is continuous and increasing in σG, this equilibrium exists if

and only if:

µ(b, ẑ)|σG=0 < ω < µ(b, ẑ)|σG=1, (55)
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which is equivalent to:

µ3 =
ω · 1−ẑ

ẑ

ω · 1−ẑ
ẑ

+ 1− ω
< µ <

ω · `(ẑ) · 1−ẑ
ẑ

ω · `(ẑ) · 1−ẑ
ẑ

+ 1− ω
= µ4. (56)

Therefore, σG ∈ (0, 1) and σB = 1 is an equilibrium if and only if µ ∈ (µ3, µ4).

We have thus characterized all the possible equilibrium {σy}, as a function of equilibrium

belief µ:

1. If µ ≤ µ1, the equilibrium is σB = σG = 0.

2. If µ ∈ (µ1, µ2), then σG = 0 and σB =
1−ẑ
ẑ
· µ
1−µ ·

1−ω
ω
−1

f(ẑ|κ̄)
f(ẑ|κ)

−1
.

3. If µ ∈ [µ2, µ4], then σG = 0 and σB = 1.

4. If µ ∈ (µ3, µ4), σB = 1 and σG ∈
{

0, 1− 1− 1−ẑ
ẑ
· 1−µ
µ
· ω
1−ω

1− f(ẑ|κ)
f(ẑ|κ̄)

, 1

}
.

5. If µ ≥ µ4, then σB = σG = 1.

This establishes the stated result.

Proof of Lemma 2. The designer’s expected net payoff from choosing G-product is:

γ(µ) = max
κ

Pµ(a = 1|G, κ) · v(G)−max
κ

Pµ(a = 1|B, κ) · v(B). (57)

Consider the correspondence Γ(µ) as defined in text. First, note that 0 ∈ Γ(0), and it is its

unique element, since γ(0) = 0 always, as all products are rejected with probability one when

the consumer’s belief is µ = 0. Next, let us look at µ ∈ (0, 1].

The values maxκ Pµ(a = 1|G, κ) and maxκ Pµ(a = 1|B, κ) depend on the corresponding

equilibrium {σy}, given in Proposition 4. Note that Γ(µ) is a singleton for µ 6∈ (µ3, µ4), since

equilibrium {σy} corresponding to such µ are unique. On the other hand, Γ(µ) consists of

three elements when µ ∈ (µ3, µ4), since then the equilibrium can feature either (σG = 0 and

σB = 1), (σG ∈ (0, 1) and σB = 1), or (σG = 1 and σB = 1).

In this proof, we will heavily rely on the results in Proposition 4 and the thresholds µ1−µ4

defined in its proof, without referencing them. To follow this proof, please read the proposition

and its proof in advance.

Case µ ≤ µ1. In this region, the equilibrium has σG = σB = 0, and the consumer is pessimistic,
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since µ1 < µ̃. Furthermore, Γ(µ) is single-valued and given by:

Γ (µ) = v(G) ·
∫ z̄(µ)

0

(1− z) f (z|κ) dz − v(B) ·
∫ z̄(µ)

0

zf (z|κ) dz. (58)

Therefore:

Γ′ (µ) = [v(G)− (v(G) + v(B)) · z̄(µ)] · f (z|κ) · dz̄
dµ
. (59)

where z̄(µ) is given by (38). It is easy to check that dz̄
dµ
> 0, z̄ (0) = 0, and z̄(µ1) = ẑ. As a

result, for µ sufficiently small, Γ′(µ) > 0 and thus Γ(µ) > 0. Next, consider µv such that:

z̄(µv) =
v(G)

v(G) + v(B)
=⇒ µv ≡

v(G)ω

v(G)ω + v(B)(1− ω)
. (60)

Observe that, if µv > µ1, then Γ′ (µ) > 0 ∀µ ∈ (0, µ1). Otherwise, Γ′ (µ) > 0 for µ ∈ (0, µv)

and Γ′ (µ) < 0 for µ ∈ (µv, µ1).

Case µ ∈ (µ1, µ2]. In this region, the equilibrium has σG = 0 and σB ∈ (0, 1), and the

consumer is pessimistic, i.e. µ2 < µ̃. Most importantly, in this case z̄ = ẑ and, thus, Γ(µ) is

single-valued and given by:

Γ (µ) = v(G) ·
∫ ẑ

0

(1− z) f (z|κ) dz − v(B) ·
∫ ẑ

0

zf (z|κ) dz (61)

Since z̄(µ1) = ẑ, it is immediate that Γ is continuous at µ1 and constant on interval (µ1, µ2).

Case µ ∈ (µ2, µ3]. In this region, the equilibrium has σG = 0 and σB = 1. The consumer is

pessimistic if µ < µ̃, and she is optimistic otherwise.

Suppose that µ < µ̃. Then, Γ(µ) is single-valued and given by:

Γ (µ) = v(G) ·
∫ z̄(µ)

0

(1− z) f (z|κ) dz − v(B) ·
∫ z̄(µ)

0

zf (z|κ̄) dz. (62)

Therefore:

Γ′ (µ) = [v(G) · (1− z̄(µ)) · f (z̄(µ)|κ)− v(B) · z̄(µ) · f (z̄(µ)|κ̄)]
dz̄

dµ
. (63)

where z̄(µ) is given by (44). Since z̄(µ2) = ẑ, Γ is contiuous at µ2. Furthermore, Γ′ (µ) ≥ 0 iff

z̄(µ) ≤ 1

1 + v(B)
v(G)
· ` (z̄(µ))

⇐⇒ (1− µ) · ω
µ · (1− ω)

≥ v(B)

v(G)
⇐⇒ µ ≤ µv, (64)
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and Γ′ (µ) > 0 if µ < µv. Furthermore, since (1−µ)·ω
µ·(1−ω)

≥ v(B)
v(G)

is decreasing in µ and equal to

`(1
2
) < 1 when µ = µ̃, it follows that µv < µ̃ and thus Γ′ (µ̃) < 0.

Next, suppose that µ > µ̃. Now, z̄(µ) ≥ ẑ and is given by (47), and note that dz̄
dµ

< 0.

Therefore:

Γ (µ) =v(G) ·

[∫ z̄(µ)

0

(1− z) f (z|κ) dz + (1− F (z̄|κ))

]
− v(B) ·

[∫ z̄(µ)

0

zf (z|κ̄) dz + (1− F (z̄|κ̄))

]

=v(G)− v(G) ·
∫ z̄(µ)

0

zf (z|κ) dz − v(B) ·

[∫ z̄(µ)

0

zf (z|κ̄) dz + (1− F (z̄|κ̄))

]
, (65)

and thus:

Γ′ (µ) = [v(B) · (1− z̄(µ)) · f (z̄(µ)|κ̄)− v(G) · z̄(µ) · f (z̄(µ)|κ)]
dz̄

dµ
< 0, (66)

where we use the fact that `(z̄(µ)) ≥ `(ẑ) > 1. Recall that µ̃ is the threshold between

the region where the consumer is pessimistic and the region where she is optimistic. Since

z̄ (µ̃) = 1
2
, it is easy to check that Γ is continuous at µ̃.

To summarize, we have shown that Γ(µ) is positive and (weakly) increasing for µ ∈ (0, µv],

and (weakly) decreasing for µ ∈ (µv, µ3], with µv ∈ (0, µ̃). We are left to consider regions

µ ∈ (µ3, µ4) and µ ∈ [µ4, 1]

Case µ ≥ µ4. In this region, the equilibrium has σG = σB = 1, and the consumer is optimistic.

Moreover, z̄(µ) given by (41). We have that Γ is single-valued and given by

Γ (µ) = v(G)·

[∫ z̄(µ)

0

(1− z) f (z|κ̄) dz + (1− F (z̄(µ)|κ̄))

]
−v(B)·

[∫ z̄(µ)

0

zf (z|κ̄) dz + (1− F (z̄(µ)|κ̄))

]
.

Then, Γ decrease in µ for µ > µ4.

Γ′ (µ) = [v(B) · (1− z̄)− v(G) · z̄] · f (z|κ̄) · dz̄
dµ

< 0.

Finally, note that Γ(1) = v(G)− v(B) < 0.

Case µ ∈ (µ3, µ4). In this region, Γ(µ) is not single-valued. For j ∈ {S,M, P}, let γj(µ) ∈ Γ(µ)

denotes the net expected payoff to the L-type from choosing G-product, when the equilibrium

complexity is given respectively by (i) Separating on complexity σG = 0, σB = 1, (ii) M ixing

of the H-type designer with σG ∈ (0, 1), σB = 1, and (iii) Pooling on complexity σG = σB = 1.

We have already shown that the functions γS(µ) (i.e., given by Γ(µ) analyzed for µ ∈ (µ̃, µ3)
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above) and γP (µ) (i.e., given by Γ(µ) analyzed for µ > µ4 above) are decreasing in µ. We

are therefore left to consider γM(µ). For the producer of a G-product to mix, it must be that

z̄(µ) = ẑ for all µ ∈ (µ3, µ4). Since the consumer is optimistic in this region, we have that:

γM (µ) = v(G)− v(G) ·
∫ ẑ

0

zf (z|κ̄) dz − v(B) ·
∫ ẑ

0

zf (z|κ̄) dz − v(B) · (1− F (ẑ|κ̄)) , (67)

which is independent of µ. Furthermore, since z̄ (µ3) = ẑ when pooling at complexity and

z̄(µ4) = ẑ when separating at complexity, it follows that γM (µ) = γP (µ3) = γS (µ4). Fur-

thermore, it is straightforward that limµ↑µ3 Γ(µ) = γS(µ3) and limµ↓µ4 Γ(µ) = γP (µ4).

To summarize, we have that Γ(µ) is single-valued for µ < µ3, with limµ→0 Γ(µ) > 0 and

Γ(µ) increasing for µ ≤ µv and decreasing for µ ∈ (µv, µ3). We have also shown that (i)

limµ↑µ3 Γ(µ) = γS(µ3), with γS(µ) decreasing in µ, (ii) γS(µ4) = γM(µ) = γP (µ3), and (iii)

γP (µ) decreasing for µ > µ3, and (iv) Γ(µ) = γP (µ) for µ > µ4, and thus single-valued and

decreasing until Γ(1) < 0. These results are depicted in Figure 3.

Since Γ is single-valued and positive for µ small, then increases until it reaches a maximum,

and decreases (i.e. does not jump up in the region where it is not single-valued) and becomes

single-valued and negative for µ relatively large, it follows that Γ intersects 0 generically once.

Proof of Proposition 6. First, consider the zero trade equilibrium. If µ = 0, then the

consumer rejects all proposed products. This is consistent with the designer only producing

bad products, m = 0, which is consistent with the consumer’s belief. Thus, the zero trade

equilibrium always exists.

Now consider an equilibrium in which G-products are produced with positive probability,

m > 0. Since in equilibrium µ = m, if m < ψ, then γ(µ) ∈ Γ(µ) > 0, i.e., the designer

produces G-product with probability one (m = 1), which is consistent with a belief of µ = 1,

reaching a contradiction since ψ < 1. Thus, there cannot be an equilibrium with µ ∈ (0, ψ). If

instead m > ψ, γ(µ) ∈ Γ(µ) < 0, i.e., the designer produces B-products with probability zero

(m = 0), which is consistent with a belief of µ = 0, reaching a contradiction as well. Thus,

there cannot be an equilibrium with µ ∈ (ψ, 1]. Thus, the equilibrium requires the designer

to follow a mixed strategy m = ψ, so that the designer is indifferent between producing a

B- or a G-product. Lemma 2 shows that generically there is a unique ψ ∈ (0, 1) such that

γ(ψ) ∈ Γ(ψ) = 0.

Note that if ψ ∈ (µ3, µ4), there could be multiple complexity levels consistent with an

equilibrium belief of µ = ψ. However, there is only one choice of complexity consistent with
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γ(ψ) ∈ Γ(ψ) = 0, and thus the equilibrium is pinned down uniquely.

A.2 Proofs for Section 5

For the purpose of generality, the proofs for the model’s comparative statics are done for

the more general case in which the consumer can encounter an aligned designer (one with

v̄(G) > v̄(B)), with probability p ∈ [0, 1]. The results stated in Proposition 7 and 9 are

obtained immediately by supposing that p = 0, as we did in our baseline model. A full

characterization of the equilibrium with p > 0 can be found in the Proof of Proposition 8

below.

Proof of Proposition 7. For this comparative static, we focus on the simplest equilibrium

as multiple equilibria with positive trade may arise when p > 0 (see Proof of Proposition 8

for details). It is easy to check that an increase in ω affects thresholds µ1 − µ4 as follows

dµ1

dω
> 0;

dµ2

dω
> 0;

dµ̃

dω
> 0;

dµ3

dω
> 0;

dµ4

dω
> 0.

but has no effect effect on Γ otherwise; that is, Γ(µ) is unchanged if we condition on the

complexity choices. Thus, it follows that ψ also weakly increase in ω, but note that it will

always stay in the same region; that is, at µ = ψ the complexity choices of the designers

remain unchanged (even as ψ increases with ω).

If p ≤ ψ (e.g. p = 0), an increase in ω generates an improvement in average quality as µ = ψ

increases. In this scenario, however, σy do not change since ψ has not changed complexity

regions (e.g. if it is between (µ2, µ3) it continues to be in this region after the change in ω,

even though thresholds have changed). Thus, average complexity increases as µ increases only

when σG < σB; that is, for µ = ψ ∈ (µ1, µ4).

If p > ψ, an increase in ω does not affect average quality which stays constant at µ = p. It

may, however, result in a decrease in average complexity, as µ stays constant but thresholds

µ1, µ4, and thus σy(µ), increase.

Proof of Proposition 9. For this comparative static, we focus on the simplest equilibrium

as multiple equilibria with positive trade may arise when p > 0 (see Proof of Proposition 8 for

details). Note that an increase in v(G) does not affect the choices of complexity for a given µ.

That is, thresholds µ1 − µ4 and σy(µ) remain unchanged (where σy(µ) denotes the mapping

from beliefs, µ, to complexity choices given in Proposition 4, where simplicity is the chosen
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equilibrium for µ ∈ (µ3, µ4)). We can re-state Γ as follows

Γ(µ) = P (a = 1|σG(µ))v(G)− P (a = 1|σB(µ))v(B) (68)

It is immediate that since σy is independent of v(G), Γ(µ) increases in v(G) for all µ ∈ (0, 1).

Thus, ψ given by Γ(ψ) = 0 must increase as well*.

When p ≤ ψ (e.g. p = 0), an increase in v(G) generates an increase in average quality, since

µ = ψ has increased. In contrast, when p > ψ, an increase in v(G) does not affect average

quality which stays constant at µ = p.

Since the thresholds µ1−µ4 remain unchanged, when average quality increases, σy (weakly)

increase as a result (otherwise complexity remains unchanged). As a result, the effect on

average complexity may be non-monotonic. In particular, the increase in µ has no effect on

complexity if µ < µ1, as both designers simplify in this region, average complexity decreases

if σG(µ) < σB(µ), which occurs for µ ∈ (µ2, µ4), but eventually increases as all designers

produce complex products when µ is sufficiently high, i.e., µ > µ4.

*Caveat: when p < ψ ∈ (µ3, µ4), an increase in v(G) can generate a jump from the

separating equilibrium to pooling at complexity. In this case, an increase in V (G) can generate

a downward shift in average quality ψ from µ4 to µ3. Note, however, that average quality is

increasing in v(G) before and after the jump.

Proof of Proposition 8. We now extend the analysis of our model to incorporate aligned

designers. We suppose that with probability p the consumer can encounter a designer with

payoffs v̄(G) > v̄(B). The aligned designer’s net benefit from choosing the G-product is:

γ(µ) = max
κ

Pµ(a = 1|G, κ) · v̄(G)−max
κ

Pµ(a = 1|B, κ) · v̄(B). (69)

Since Pµ(a = 1|G, κ) ≥ Pµ(a = 1|B, κ) > 0 for all κ and v̄(G) > v̄(G), it follows that the

net benefit for the aligned designer is positive, and it is optimal for him to produce only a

G-product. Thus, belief consistency now requires that µ = p+ (1− p)m.

First consider the case of p > ψ. From Lemma 2, there exists a γ(p) ∈ Γ(p) < 0. Then, there

exists an equilibrium in which the misaligned designer produces a B-product with probability

m = 1, consistent with an equilibrium belief of µ = p.

Suppose instead that p < µ3, then γ(p) ∈ Γ(p) > 0. Thus, if µ = p, the misaligned designer

wants to produce a G-product with probability one, i.e., m = 1, which is consistent with a

belief of µ = 1, reaching a contradiction. Thus, there cannot be an equilibrium with µ < µ3.

Thus, for p < µ3 the equilibrium requires the misaligned designer to follow a mixed strategy,

46



m ∈ (0, 1) such that the designer is indifferent between producing a B- or a G-product: µ = ψ,

which indicates there exists a γ(ψ) ∈ Γ(ψ) = 0. Note that this is the unique equilibrium of

our baseline model with p = 0.

Finally, consider p ∈ [µ3, ψ]. If min{Γ(µ3)} > 0, then the equilibrium is as the one described

above for p < µ3, as all γ(µ) ∈ Γ(µ) > 0 for µ < ψ. If instead min{Γ(µ3)} < 0, multiple

equilibria arise. In particular, (i) µ = ψ is consistent with an equilibrium in which the

misaligned designer follows the mixed strategy, m = ψ−p
1−p , since there exists a j such that

γj(ψ) ∈ Γ(ψ) = 0, (ii) µ = p[µ3, ψ] is consistent with an equilibrium since there exists

γj(p) ∈ Γ(p) < 0, where j ∈ {S,M, P}, denotes the different choices of complexity, Separating,

Mixing, Pooling, consistent with an equilibrium belief of µ.

Furthermore, if µ ∈ (µ3, µ4), there could be multiple complexity levels consistent with an

equilibrium belief of µ if γj(µ) ∈ Γ(µ) ≤ 0 for more than one j ∈ {S,M,P}.
For the comparative statics on p we focus on the simplest equilibrium. We consider an

increase from p to p′.

If p′ ≤ ψ, equilibrium average quality stays constant at µ = ψ, with complexity given by

Proposition 4. As the fraction of H-types increases, so does the fraction of L-types producing

B-products, mL, and thus µ = ψ, and complexity, are constant.

If p′ > ψ, then the equilibrium features mL = 1, and average quality µ = p′ > max{p, ψ}.
Thus, average quality has increased. As for the effect on average complexity,

E[σ] = µσG(µ) + (1− µ)σB(µ),

note that σy (weakly) increases in µ. Thus, the increase in µ has no effect on complexity if µ <

µ1, as both designers simplify in this region, average complexity decreases if σG(µ) < σB(µ),

i.e., for µ ∈ (µ2, µ4), and eventually increases as all designers produce complex products when

µ is sufficiently high, i.e., µ > µ4.

B Proofs of Section 6

Proof of Proposition 10. For the existence result, it is without loss of generality to

focus on the most simple equilibrium (proof analogous for the most complex). For each

U ∈ [w (B) , w (G)], consider the map Tβ : U 7→ R defined by:

Tβ (U) = E
{

max
a∈{0,1}

{a · (µ (s, z) · w (G) + (1− µ (s, z)) · w (B)) + (1− a) · βU}
}
, (70)
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where µ(s, z) is the consumer’s equilibrium belief that the proposed product has output G,

given signal s with noise z. For an exogenously given consumer value U , which pins down

the consumer’s outside option w0 = βU , this map gives us a new ex-ante welfare Tβ(U). An

equilibrium is a fixed point of this map, and we denote it by U∗. Since we have selected the

simplest equilibrium, Tβ(·) is single-valued. Since we have selected the simplest equilibrium,

Tβ(·) is single-valued.

Since, in equilibrium, the consumer has some information, it must be that Tβ (w (B)) >

pw(G)+(1−p)w(B). Also, in equilibrium, B-products are produced with positive probability

and the consumer’s information is imperfect, it must be that Tβ(w(G)) < w(G). Thus, if

β (pw(G) + (1− p)w(B)) > w(B), then the outside option βU∗ will satisfy Assumption 1, i.e.

βU∗ ∈ (w(B), w(G)). We assume that β is not too low, so that this condition holds.25

Therefore, to show that an equilibrium exists, it suffices to show that Tβ (·) is increasing.

But, the consumer’s ex-ante welfare increases in the outside option βU , and for three reasons.

First, there is the direct effect of the outside option. Second, in equilibrium, σB and σG are

decreasing in the outside option. To see this, recall that the thresholds µ1− µ4 are increasing

in the outside option (see proof of Proposition 7) and, when µ ∈ (µ1, µ2], which is the only case

where complexity is interior in the most simple equilibrium, σB is decreasing in the outside

option and σG = 0. Finally, also by Proposition 7, the probability that the designers propose

G-product, µ, is increasing in the outside option.

For comparative statics, note that, for a given U , an increase from β to some β′ is equivalent

to an increase in the consumer’s outside option. But then again, it must be that Tβ (U) <

Tβ′ (U). If there is a unique solution to Tβ′ (U) = U , then the solution must be higher at β′

than any solution at β, since Tβ(·) is increasing. If there are multiple solutions to Tβ′ (U) = U ,

then the statement holds for the maximal solution.

C Proofs of Section 7

Proof of Lemma 3. First, note that µ(κ) = 1 is not consistent with an equilibrium for

any κ ∈ {κ, κ̄}. If that was the case, the L-type designer would produce a B-product with

complexity κ, since it would be accepted with probability one, which implies a contradiction.

Second, note that µ(κ) = 0 is not consistent for any equilibrium complexity level κ ∈ {κ, κ̄}.
Suppose WLOG that µ(κ) = 0, that is, only the B-type designer chooses κ in equilibrium. If

this was the case, the B-product designer would be better off by choosing complexity κ̄, since it

25Otherwise, when β is small enough, then the consumer will accept all products and the equilibrium
strategies and payoffs will be independent of β in that region.

48



would give him a positive expected payoff (note that µ(κ̄) > 0), which is higher than the payoff

of zero associated with the choice of κ, which reaches a contradiction. Thus, it must be that

in any equilibrium either (1) σG ∈ (0, 1) and σB ∈ (0, 1), or (2) σG = σB ∈ {0, 1}. Suppose

(1) holds. Since the designer of either product is mixing, he must be indifferent between

choosing a complex or a simple product. However, it is easy to check that for any interim

belief function, if the B-product designer is indifferent, then the G-product designer strictly

prefers simple products; while if the G-product designer is indifferent, the B-product designer

strictly prefers complex products, a contradiction. Thus, (2) must holds in equilibrium.

Proof of Proposition 11. Lemma 3 has established that there are only two candidates for

complexity levels in equilibrium. To support either complexity level as part of an equilibrium,

suppose that off-equilibrium beliefs are such that they assign a deviation to off-equilibrium

complexity levels to the B-product designer. Then, any deviations from equilibrium com-

plexity yield a payoff of zero and are never optimal. Finally, it remains to show that with

such beliefs, both equilibria exist. The proof is analogous to the proof of Proposition 6.

Consider the equilibrium with pooling at κ̄. Following in the footsteps for that proof, it is

straightforward to show that there exists a unique ψC > 0 such that

γC(ψC) = P(a = 1|G, κ̄)v(G)− P(a = 1|B, κ̄)v(B) = 0 (71)

with γC (µ) > 0 for µ < ψC and γC (µ) < 0 for µ > ψC , and where the probabilities are

computed with a consumer’s prior belief µ. We denote by γj the function in the equilibrium

with complexity j ∈ {C, S}. Similarly, in the equilibrium with pooling at simplicity, κ, there

exists a unique ψS = 0 such that

γS(ψS) = P(a = 1|G, κ)v(G)− P(a = 1|B, κ)v(B) = 0, (72)

with γS (µ) > 0 for µ < ψS and γS (µ) < 0 for µ > ψS, and where the probabilities are

computed with a consumer’s prior belief µ. Therefore, it is optimal for the designer to produce

G-product w.p. m = ψj for j ∈ {C, S} respectively, which is in turn consistent with the

consumer’s prior belief µ = ψj.

We are left to show that ψC < ψS, which will follow from the MLRP property of the f(z|κ).

There are two cases to consider.

Case 1. If ψS ≥ ω, the simple equilibrium is in the optimistic region. If ψC < ω, then the
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result follows. Otherwise, suppose that ψC ≥ ω as well. In the simple equilibrium we have

γS
(
ψS
)

= v(G)− v(B)−
∫ z̄(ψS)

0

(v(G) · z − v(B) · (1− z)) · f (z|κ) dz = 0. (73)

Since v(G) · z − v(B) · (1− z) < 0 and increasing in z, the MLRP property implies that

γC
(
ψS
)

= v(G)− v(B)−
∫ z̄(ψS)

0

(v(G) · z − v(B) · (1− z)) · f (z|κ̄) dz < 0. (74)

and thus z̄
(
ψC
)
> z̄

(
ψS
)
. Since in the optimistic region dz̄

dµ
< 0, it follows that ψC < ψS.

Case 2. If ψS < ω, the simple equilibrium is in the pessimistic region. We have

γS
(
ψS
)

=

∫ z̄(ψS)

0

(v(G) · (1− z)− v(B) · z) · f (z|κ) dz =0, (75)

Since v(G) · (1− z)− v(B) · z is decreasing in z, the MLRP property implies:

∫ z̄(ψS)

0

(v(G) · (1− z)− v(B) · z) · f (z|κ̄) dz < 0, (76)

This implies that γC(ψS) < 0, and given the shown properties of the γ function (Lemma 2),

that ψC < ψS.

Proof of Proposition 12. First, we show that if p > max{µ3, ψS}, defined in (42) and (72)

respectively, then all designers are better off in the complex equilibrium. Second, we show

that this condition holds for p large enough or ω small enough. Remember that ψC < ψS, as

shown in Proposition 11.

Suppose that p > max{µ3, ψS}. Then, we have that µS = µC = p and that both equilibria

(C and S) are in the optimistic region, as p > µ3 ≥ ω. Given this, the differential payoff to the

aligned (A) designer from being in the complex relative to the simple equilibrium equilibrium

is as follows

∆UA = v̄(G) ·

[∫ z̄(p)

0

(1− z) · (f (z|κ̄)− f (z|κ)) dz +

∫ 1
2

z̄(p)

(f (z|κ̄)− f (z|κ)) · dz

]
(77)

= v̄(G) ·
∫ z̄(p)

0

z · (f (z|κ)− f (z|κ̄)) dz. (78)

Then, from MLPR we have that ∆UA > 0 whenever z̄ (p) < ẑ, defined in Proposition 2,
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i.e.,

ω (1− p)
ω (1− p) + p · (1− ω)

< ẑ (79)

⇐⇒ p >
ω (1− ẑ)

ω (1− ẑ) + ẑ (1− ω)
= µ3. (80)

Then, the aligned designer prefers the equilibrium with complex products.

Deriving the relative benefit of being in the complex equilibrium for the misaligned designer

(M), who produces B-products with probability one, we obtain

∆UM = v(B) ·

[∫ z̄(p)

0

z · (f (z|κ̄)− f (z|κ)) dz +

∫ 1
2

z̄(p)

(f (z|κ̄)− f (z|κ)) · dz

]
(81)

= v(G) ·
∫ z̄(p)

0

(1− z) · (f (z|κ)− f (z|κ̄)) dz > 0. (82)

Thus, the misaligned designer is always better off in the equilibrium with complex products.

Finally, note that ψS ∈ (0, 1), µ3 ∈ (0, 1), and both are independent of p. Thus, condition

p > max{µ3, ψS} holds for p large enough. Analogously, as ψS → 0 and µ3 → 0 as ω → 0

(this is easy to check), continuity of both ψS and µ3 on ω imply that the condition also holds

for small enough ω.

D Costly Complexity

In this extension, we incorporate a direct cost for the consumer if the product deviates from a

‘natural level of complexity.’ We suppose that the consumer pays a cost c(κ) when a product

with complexity κ is approved. The cost is c(κ) = 0 if κ = κn and c(κ) = c̄ > 0 otherwise.

Thus, the consumer’s utility becomes:

W (a|s, z) ≡ a · E [w(y)− c(κ)|s, z] + (1− a) · w0 (83)

We continue to study the case of binary complexity, and we make the following assumptions

for payoffs.

Assumption 2 The payoffs satisfy the following property: w(G)− c̄ > w0.

The assumption states that the cost of complexity is not too large, so that a product is ap-

proved if the consumer is sufficiently confident that it is a G-product. We begin by considering
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the case in which κn = κ. Later, we discuss the converse case when κn = κ̄. The only differ-

ence with our model described in Section 3 is that the consumer’s acceptance strategy is now

modified to incorporate this direct cost of complexity. In particular, the consumer’s expected

payoff can be re-written as follows,

a · {µ (s, z) · [w (G)− σG (z) · c̄] + (1− µ (s, z)) · [w (B)− σB (z) · c̄]}+ (1− a) · w0, (84)

where

σy(z) ≡ P(κ = κ̄|y, z) =
σyf(z|κ̄)

σyf(z|κ̄) + (1− σy)f(z|κ)
. (85)

In contrast to our baseline model, the consumer now also updates her beliefs about the com-

plexity of the product after observing noise z, since z ∼ f(z|κ). Note that σy(z) weakly

increases in z for all y.

By inspection of (84), we see that the consumer approves the product if:

µ (s, z) ≥ w0 − w (B) + σB (z) · c̄
w (G)− w (B) + (σB (z)− σG (z)) · c̄

≡ ω(z). (86)

The left-hand side of condition (86) is the consumer’s posterior belief about being offered

a G-product, and it is the same as in (4). The right-hand side incorporates the fact that

complexity is costly to the consumer. The new relative outside option, ω(z), differs from ω in

Section 3 for two reasons. First, it is higher for all z, to reflect the fact that complex products

are more costly to the consumer. Second, its value weakly increases in the noise of the signal.

As in Section 3, we let z̄ be defined as the solution to (86) with equality for some s. Then,

the solution to ω(z̄) = µ(b, z̄) gives the threshold z̄ when the consumer is optimistic, and the

solution to ω(z̄) = µ(g, z̄) gives the threshold z̄ when the consumer is pessimistic.

The following Lemma then characterizes the consumer’s acceptance strategy.

Lemma 4 The threshold z̄ is unique provided that c̄ is not too large, and the consumer’s

acceptance strategy is as in Lemma 1. Furthermore, threshold z̄ is increasing in the cost of

complexity, c̄, when the consumer is optimistic, and decreasing when the consumer is pes-

simistic.

The acceptance strategy depends, through beliefs µ(z) and σy(z), on the t-designer’s equi-

librium strategies {mt, σt}, which the consumer takes as given. As in the no cost model, the

consumer’s acceptance strategy rule is contingent on the signal only when the signal is suffi-

ciently informative, i.e. z < z̄. However, when complexity is costly, the consumer’s decision
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rule becomes more tight as she tends to reject products more often. The optimistic consumer

relies more on the signal than in the no cost case making acceptance less likely to occur, while

the pessimistic consumer relies less on the signal making rejection more likely to occur.

The equilibrium characterization follows analogously to the no cost case, and it is summa-

rized in the following proposition.

Proposition 13 The equilibrium characterization is as in Propositions 4 and 6, but with

modified thresholds µ1-µ4 and ψ are given in (90) − (92). In particular, the equilibrium level

of product complexity is decreasing in the cost c̄.

Thus, the main qualitative results of our model carry over to the case with a direct cost

to complexity for the consumer, with the not very surprising prediction that the equilibrium

level of complexity will be lower if it is costlier.

To complete the analysis, we now turn to the case when κn = κ̄. The cost of complexity

then becomes c(κ) = c̄ and c(κ̄) = 0. The analysis is analogous to the above. Lemma 4 holds

as before, and, perhaps surprisingly, the qualitative result of Proposition 13 continues to hold.

An increase in c̄ still results in lower equilibrium complexity. A higher cost of owning low

complexity products increases the consumer’s relative outside option, since buying the product

yields a lower expected payoff. This in turn raises the threshold on the informativeness of

the product that is needed for acceptance. Hence, in equilibrium, designers who want their

products accepted simplify them in order make them more informative for the consumer,

even if doing so is costlier for the consumer. We conclude, therefore, that having a cost to

complexity implies a lower equilibrium level of complexity, regardless of the value of κn.

Proofs of Lemmas and Propositions in this Appendix

Proof of Lemma 4. To drive the value of z̄, we must consider the possible equilibria in

each region. Consider first the pessimistic consumer.

Case 1: Equilibrium with σG = σB = 0. In this case, z̄ is given by (38).

Case 2: Equilibrium with σG = 0 and σB ∈ (0, 1). In this case, for the designer of the

B-product to mix, it must be that z̄ = ẑ.

Case 3: Equilibrium with σG = 0 and σB = 1. For this to be an equilibrium, it requires

that
f
(

1
2
|κ
)
· µ

f
(

1
2
|κ
)
· µ+ f

(
1
2
|κ
)
· (1− µ)

<
w0 − w (B) + c̄

w (G)− w (B) + c̄
.
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Then, z̄ is given by

(1− z̄) · µ · `(z̄)

(1− z̄) · µ · `(z̄) + z̄ · (1− µ)
=

w0 − w (B) + c̄

w (G)− w (B) + c̄
, (87)

where `(z̄) is defined in (15). In (87), the solution z̄ is unique under Assumption 2 about

the magnitude of c̄. Notice that the threshold ω(z) is increasing in c̄. The left-hand side of

equation (87) is decreasing in z̄. Thus, as c̄ increases, z̄ decreases.

Consider next the optimistic consumer.

Case 1: Equilibrium with σG = σB = 1. In this case, z̄ is given by

z̄ · µ
z̄ · µ+ (1− z̄) · (1− µ)

=
w0 − w (B) + c̄

w (G)− w (B)
. (88)

Case 2: Equilibrium with σB = 1 and σG ∈ (0, 1). In this case, for the holder of the

G-product to mix, it must be that z̄ = ẑ.

Case 3: Equilibrium with σG = 0 and σB = 1. For this to be an equilibrium, it requires

that
f
(

1
2
|κ
)
· µ

f
(

1
2
|κ
)
· µ+ f

(
1
2
|κ
)
· (1− µ)

≥ w0 − w (B) + c̄

w (G)− w (B) + c̄
.

Then, z̄ is given by

z̄ · µ · `(z̄)

z̄ · µ · `(z̄) + (1− z̄) · (1− µ)
=

w0 − w (B) + c̄

w (G)− w (B) + c̄
. (89)

In both (88) and (89), the solution z̄ is unique under Assumption 2. The left-hand side of

equations (88) and (89) is increasing in z̄. Thus, as c̄ increases, ω(z) increases, and thus z̄

increases.

Proof of Proposition 13. The proof is analogous to the proof from the case with no

cost. We highlight here the differences in the values of the thresholds µ1 − µ4 given the cost

parameter. For the equilibrium with σG = σB = 0, the threshold for acceptance is the same as

before, so µ1 is given by (39). For the equilibrium with σG = 0 and σB ∈ (0, 1) , the threshold

for acceptance is given by:

µ (G; ẑ) =
(1− ẑ) · µ

(1− ẑ) · µ+ ẑ · (1− µ) · (σB + (1− σB) · ` (ẑ))
.
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This leads to threshold µ2 :

µ2 =
wcc · ẑ

wcc · ẑ + (1− wcc) · `(ẑ) · (1− ẑ)
, (90)

where

wcc ≡
ω0 − ω(B) + c̄

ω(G)− ω(B) + c̄
.

For the equilibrium with σG = 0 and σB = 1, the threshold at which the pessimistic

consumer region ends is given by

µ̃ =
wcc

wcc + (1− wcc)
f(0.5|κ)
f(0.5|κ̄)

. (91)

An equilibrium with σG = 0 and σB = 1, exists in the optimistic consumer region for µ > µ̃

and µ < µ4, with

µ4 =
wc

wc + (1− wc) ẑ
1−ẑ

, (92)

where

wc ≡ ω0 − ω(B) + c̄

ω(G)− ω(B)
.

The equilibrium with σB = 1 and σG = 0 exists in the optimistic consumer region between

thresholds µ3 and µ4, with

µ3 =
wcc

wcc + (1− wcc)
f(ẑ|κ)
f(ẑ|κ̄)

ẑ
1−ẑ

. (93)

As shown in the model with no cost of complexity, the equilibrium with σB = 1 and

σG ∈ (0, 1) , exists between to thresholds µ3 and µ4.

From (90)-(92),
dµ2

dwcc
> 0 ,

dµ3

dwcc
> 0 ,

dµ4

dwc
> 0.

Also
dwcc
dc̄

> 0 ,
dwc

dc̄
> 0.

Then, a marginal increase in c weakly increases thresholds µ2 − µ4, which implies a decrease

in the size of the interval (µ2, µ4) over which σB > 0. Moreover, since µ3 increases as well,

the interval [µ3, 1] over which σG > 0 decreases. Thus, an increase in c̄ reduces expected

equilibrium complexity.
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