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Abstract

Social comparisons are a popular behavioral nudge to promote conservation of energy
and water, partially because raising prices is politically difficult. Nudges may interact
with prevailing prices, however, potentially crowding out intrinsic motivation to con-
serve or by increasing the salience of prices. We investigate the interaction of prices and
nudges in two experiments in neighboring water utilities. First, we layer randomized
behavioral treatments on top of variation in price driven by arbitrary lot-size thresholds
that assign marginal prices to customers exogenously. Second, we explore whether be-
havioral treatments affect consumers’ price sensitivity. We find no consistent evidence
that social comparisons are more effective at inducing conservation at higher prices or
increase consumers’ price sensitivity. Ultimately, we find little empirical support that
consumers respond to behavioral treatments due to private economic benefits.
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1 Introduction

Behavioral interventions are widespread policy options for altering consumption choices.
Governments and private companies around the world now look to behavioral economics
to manage private and social costs. Behavioral economics has inspired policies targeting a
wide range of outcomes including tax evasion (Hallsworth et al., 2017), charitable donations
(Croson and Shang, 2008; Shang and Croson, 2009), education (Levitt et al., 2016), healthy
eating (Hanks et al., 2012; List and Samek, 2015), and exercise (Royer et al., 2015). These
interventions have motivated, and in some cases are the output, of government run "nudge
units" such as the United Kingdom’s Behavioural Insights Team.

Nowhere have behavioral nudges been more pervasive than for managing energy and
water consumption (e.g., Allcott, 2011; Ferraro et al., 2011; Allcott and Rogers, 2014; Brent
et al., 2015; Ito et al., 2018). Regulated industries, such as electricity or water and sewer
service, are limited by how much they can use price as a tool of conservation. In the state
of California, for example, water utilities cannot charge a price greater than cost of service,
effectively rendering scarcity pricing illegal.1 As a result, utilities often rely on nonprice
demand-management tools to encourage conservation. Researchers have shown that social
comparisons can be effective nonprice policies for conservation, reducing household energy
and water consumption between two and five percent (Allcott, 2011; Ferraro and Price, 2013;
Brent et al., 2015). At scale, these small reductions can generate substantial benefits for the
service provider at relatively low cost, potentially delaying or avoiding investment in new
power plants or water sources.

A notable feature of this literature on social comparisons is that the treatment esti-
mates are causal, rising from the randomized nature of program designs implemented
by companies such as OPower and WaterSmart. Reconciling these estimates with models
of consumer behavior, however, is less transparent. Some have claimed that norm-based
information treatments apply a moral tax to consumption of externality-producing goods
(Levitt and List, 2007; Ferraro and Price, 2013). Others, however, have claimed that infor-
mation treatments reduce the distortion in consumer’s perceptions of price and quantity
consumed, thus allowing for re-optimization to regulate informational “internalities” (All-
cott and Taubinsky, 2015; Wichman, 2017). As such, there are competing views of whether
behavioral interventions affect an individual’s intrinsic motivation to conserve, provide di-
rect economic benefits to the consumer, or both.

In line with understanding the behavioral mechanism of conservation, we posit that
behavioral policies may interact with prevailing market mechanisms in an ambiguous way.
Because behavioral interventions in electricity and water are always overlaid on top of con-

1See, e.g., http://www.latimes.com/local/orangecounty/la-me-rates-decision-20150421-story.
html.
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temporaneous pricing structures, existing estimates confound the interpretation of behav-
ioral treatments and economic incentives if there is an economically significant interaction.
Within the current literature, there is virtually no evidence of whether this interaction is
meaningful. Our paper fills this gap.

We explore the impacts of water conservation behavior in response to social messaging
experiments and large changes in marginal prices for water use. Our analysis produces
causal effects by design: first, we evaluate the effects of two independent, randomized
messaging experiments implemented by WaterSmart Software at different points in time
for neighboring water utilities in Southern California. Second, we exploit two sources of
variation that introduce price changes at the household level. One source of price variation
comes from arbitrary lot-size thresholds within nonlinear water rate structures that we
exploit in a regression discontinuity design. The second source of price variation arises
from the utilities’ rate-setting practices, included in an instrumental variables framework.
Our methodology cleanly identifies the separate impact of the social comparison treatment
and price on consumer behavior as well as their joint effect.

Within our unique empirical approach, we answer two questions. First, do customers
facing different price levels respond more strongly to norm-based conservation campaigns?
We refer to this as the price-level effect. We identify the price-level effect from comparing
responsiveness to behavioral treatments for otherwise identical households on either side
of a price discontinuity introduced by arbitrary lot-size thresholds within a utility’s rate
structure. Second, do norm-based conservation campaigns increase customers’ price sensi-
tivity? We refer to this as the price-sensitivity effect. We identify the price-sensitivity effect by
estimating demand equations and observing whether our randomized behavioral treatment
significantly alters our estimate of the price elasticity.

Our results show no consistent evidence that social comparisons generate more conser-
vation for households facing an exogenously larger marginal price of water. However, in
some specifications our estimate of the price-level effect is economically large, but statis-
tically insignificant. Additionally, we find similarly weak and inconsistent evidence for a
price sensitivity effect. Treatment induces small increases in the magnitude of demand elas-
ticity in some specifications, although these effects disappear in alternative specifications.

Because norm-based policies are implemented broadly for water and electricity, the pol-
icy implications of this research are vast. Allcott and Rogers (2014) and Brent et al. (2015)
both show that behavioral nudges interact with prevailing conservation policies. Addition-
ally, Allcott (2015) shows significant heterogeneity in treatment effects, with larger treatment
effects for utilities that participated earlier. Recent research shows that the mechanisms
through which consumers respond to behavioral nudges has important welfare implica-
tions (Allcott and Kessler, Forthcoming; Taylor et al., 2018). Nudges generate unambiguous
welfare gains if consumers conserve due to correcting internalities. However, if consumers
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respond due to a moral tax on consumption then welfare only increases if the price of
the resource is sufficiently below the marginal social cost. Strong interactions between
nudges and prices would indicate that consumers are at least in part responding to increase
private benefit, given the extensive research that consumers do not have full information
about prices (Sexton, 2015; Wichman, 2017; Brent and Ward, 2018) or are not responding
according to standard neoclassical theory (Sallee, 2014; Allcott and Wozny, 2014; Jacobsen,
2015). Therefore, although it is difficult to directly measure the welfare benefits of behav-
ioral interventions, we are able to shed light on potential mechanisms through which social
comparisons affect behavior.

There is, however, a growing body of evidence that focuses on comparing the effects
of moral and neoclassical incentives on energy and water consumption. Ito et al. (2018)
explore the effectiveness of a standard moral suasion nudge relative to dynamic electricity
pricing treatments. They find that moral suasion induces sizable effects in the short-run that
dissipate quickly relative to dynamic prices that exhibit longer-run effects. Our project is
different in that we seek to understand how the moral suasion treatment interacts with un-
derlying economic incentives. Additionally, Brandon et al. (2018) implement a randomized
OPower experiment in which personalized energy reports were sent to electricity customers
that targeted aggregate savings or peak-load savings, and measured the response of these
treatments during peak-load and non-peak load events. They find that a combination of
treatments induced a larger effect than the joint effect of each treatment in isolation or,
in other words, that treatments were complimentary. This result suggests an important
role for exploring other policy complimentarities, particularly with respect to interactions
with economic incentives because nudges can highlight the private economic benefits of
conservation. Finally, in another project, List et al. (2017) show that economic incentives
(via a rewards program) can better target electricity consumption reductions from low-use,
low-variance households, who are typically less responsive to nudges. Importantly, elec-
tricity and water are often priced using nonlinear increasing-block rate structures where
the economic benefits from conservation are positively correlated with consumption. Thus
it feasible that low-use, low-variance consumers respond to nudges differently because of
different private economic returns from conservation. This latter effect is precisely what we
seek to estimate in this paper.

Overall, we find little evidence that moral nudges interact with underlying economic
incentives. This is an important result because nearly all behavioral public policy has the
potential to interact with existing neoclassical incentives. Placed alongside the previously
mentioned literature, our study provides a clearer view of the mechanisms underlying
responses to behavioral treatments. Behavioral nudges can be criticized for providing too
many types of information to isolate the relevant mechanism for consumer behavior, but we
fail to find convincing evidence that making economic incentives more salient is a relevant
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factor for behavioral interventions. This finding sharpens our view of past and future
conservation policies because nearly all behavioral nudges for electricity and water are
layered on top of prevailing rate structures.

2 Conceptual framework

To show how nudges and incentives may interact, we begin with the general framework of
Allcott and Kessler (Forthcoming). Consider a consumer with income y who gains utility
from the consumption of water w and numeraire good x. w generates consumption utility
of f (w; a), where a captures consumer tastes as a demand shifter. We include an inter-
nality parameter g > 0 that affects choice but not experienced utility, such as imperfect
information, mistakes in evaluating private benefits of water consumption, or some other
behavioral bias. For our purposes, it is useful to think of g as inattention to water con-
sumption. Consumers thus have perceived utility f̂ (w; a, g), which we assume takes the
form g�1 f (w; a). Thus, utility is expanded for g > 1 and contracted for 0 < g < 1.

Following Levitt and List (2007) and Ferraro and Price (2013), we include a “moral
utility” term, M = m � µw, which captures nonpecuinary impacts associated with con-
sumption of w. We define µ � 0 as a marginal “moral tax” on consumption of w.

We summarize individual-specific parameters in the vector q = {y, a, g, m, µ} so that the
consumer maximizes

max
x,w

Û(q) = x + g�1 f (w; a) + m � µw (1)

subject to her budget constraint
y = x + pw (2)

where p � 0 is the marginal price for water consumption. The consumer allocates all
non-water expenditures to the numeraire, thus satisfying her budget constraint with equal-
ity. Because water is necessary for human survival, we are comfortable ignoring corner
solutions.

Standard first-order conditions govern the consumer’s choice of water consumption, w̃:

f 0(w̃; a) = g(µ + p). (3)

Eq. 3 states that consumers will choose consumption of w̃ to equalize their marginal per-
ceived utility with the sum of perceived monetary and moral costs. Because g introduces a
wedge between experienced marginal utility and a consumer’s true marginal utility, choice
of w̃ is not required to be individually optimal. The framework so far is consistent with
stylized formulations in Sexton (2015) and Wichman (2017) who model price (and quantity)
misperceptions. The only difference is the inclusion of the Ferraro and Price (2013) moral
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cost parameter.
We can express changes in consumption by totally differentiating Eq 3:

f 00(w̃; a)dw̃ = µdg + gdµ + pdg + gdp. (4)

Now, let the nudge be represented by dg and dµ (for clarity, we assume the nudge is
corrective in that it reduces information distortions, or dg =) g ! 1). Because the nudge
sets dp = 0, we can express the demand effect of a nudge as

dw̃ =
1

f 00(·) [(µ + p)dg + gdµ] . (5)

Under standard assumptions of demand (i.e., diminishing marginal utility), f 00 is weakly
negative, which implies that the nudge will (weakly) reduce water demand in equilibrium
for g < 1.2 Eq. 5 shows that the total effect of the nudge depends on how changes in
perceptions interact with moral and explicit prices as well as how changes in moral costs
interact with perception. The vast majority of research to date assumes implicitly that
the increased salience of private economic benefits of conservation are negligible; in other
words, these studies interpret the effect of the nudge as if pdg = 0. That is, the majority
of experiments focused on exploring the effects of salience or moral suasion ignore their
underlying interaction with prices. Theoretically, this omission is a potentially important
oversight because behavioral interventions for water and energy use are implemented on
top of prevailing prices, which are often nonlinear. Furthermore, many nudges aimed
at water and energy conservation explicitly communicate the private financial benefits of
conservation.

This simplified representation of demand translates directly to our first empirical hy-
pothesis: the existence of an economically important interaction between behavioral treat-
ments and conventional pricing mechanisms. We define this effect as the price-level effect
(PLE), which measures the magnitude of dw̃ in response to the nudge that is driven by
differences in price levels. Our null price-level hypothesis posits that pdg = 0. Evidence of
a nonzero price-level effect would lend support to the notion that consumers change con-
sumption in part due to changes salience of private economic benefits from conservation.
We test this by comparing the effect of randomized nudges for households who face ex-
ogenously different marginal prices. We describe empirical identification in the subsequent
section.

Additionally, we explore a second, complementary approach to investigate whether
nudges affect consumer demand through neoclassical price mechanisms. Consider a change

2For g > 1, the nudge could increase consumption if, e.g., consumers had been initially over-perceiving the
costs of consumption. This stylized result is captured empirically in Wichman (2017).
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in price, dp. Using Eq. 3, we can define the resulting price elasticity,

#̂p =
g

f 00(·)
p
w̃

= g#p (6)

where #p is the neoclassical price elasticity of demand and the hat indicates “perceived”
price elasticities. This formulation leads directly into our second hypothesis. We define the
price-sensitivity effect (PSE) as the degree to which nudges affect price sensitivity. Because
social comparisons operate through both channels of µ and g, our null price-sensitivity
hypothesis is ∂#̂p/∂g = 0. Evidence of a nonzero price-sensitivity effect would suggest that
consumers’ sensitivity to price is affected by the nudge, thus providing support for the idea
that consumers respond to nudges, at least in part, because of private economic benefits
due to internality correction.

3 Empirical setting and strategy

3.1 Data

The data we use in this analysis are household-level water consumption records for two util-
ities in Southern California. We obtained these data through partnership with WaterSmart
Software. We refer to the larger utility in our sample as “Large Utility” and, correspond-
ingly, the smaller utility is “Small Utility.”3 These two utilities share a geographic border
and their residents form a common labor market along with other nearby municipalities.
Both utilities combine water and sewer services and also serve as the electric utility. Figure
1 shows the geographic distribution of households in the treatment and control groups in
each utility.

Large and Small Utility have different pricing structures, and the water rates have
changed over time. Large Utility has “budget-based” increasing-block rates in which con-
sumption thresholds for the marginal price blocks vary with geographic region and lot size.
This means different households will move to higher marginal prices at different levels of
consumption. There are three geographic zones: low, medium, and high. The geographic
zones refer to the water requirements based on temperature conditions; the low zone has the
most moderate weather and the high zone has hotter weather. There are five lot size thresh-
olds leading to fifteen unique sets of consumption tiers that determine marginal prices.
Small Utility has a standard increasing-block rate structure. Figure 2 displays the full water
rate structure over time for both utilities.

For each household in our sample, we have consumption for the given billing period
and the relevant prices for the consumption. Households receive water bills every two

3As part of the confidentiality agreement we cannot disclose the names of these utilities.
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Figure 1: Water utility service area (partial), sample boundaries, and households by treat-
ment status

Note: The small utility is contained within the black border and the large utility is outside the border.
Household locations are scrambled by .001 decimal degrees to preserve anonymity.

months. To protect anonymity, geographic coordinates for each household were scrambled
within 0.001 degrees (a maximum of approximately 365 feet), which permits us to identify
the neighborhood of the household. Each account in our sample was randomized into the
treatment or control group by WaterSmart Software. All households in each utility begin
receiving HWRs at the same time. Households in both utilities are billed bimonthly leading
to six billing periods each year. Treatment began during the sixth billing period of 2014 in
Small Utility and during the second billing period of 2015 in Large Utility.
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Figure 2: Marginal Prices Over Time
Note: The colors depict the marginal price for different consumption tiers. The dashed lines show prices
for the Large Utility and the solid lines show marginal prices for the Small Utility. The vertical dashed and
solid lines depict the treatment start date for the Large and Small Utilities respectively.

3.2 Treatment design

WaterSmart Software (henceforth WaterSmart) is a clean technology company that contracts
with water utilities to help them manage demand.4 In addition to assistance with analyz-
ing and interpreting meter reading data, WaterSmart primarily focuses on helping utilities
reduce water consumption by providing consumers with additional information through
customized Home Water Reports (HWRs) (Figure 3) and an online customer account por-
tal. For many utilities WaterSmart randomizes the assignment of households who receive
HWRs in order to evaluate the causal impact on water consumption (see, e.g., Brent et al.
(2015)). Since customers opt-in to view their online account, we focus here on the treatment
effect for households receiving a HWR.

The one-page HWR as tested has three components. The main component (in the upper
left of the figure) is a social comparison. WaterSmart estimates the household’s total water
consumption over the prior two months from utility billing records and compared that to
the consumption of “average neighbors” and “efficient neighbors”. “Neighbors" are defined
as households that have the same number of occupants and similar irrigable area across
the utility, such that the general water requirements within a peer group are comparable.
“Efficient neighbors” were peers with consumption in the bottom 20%. Households with
consumption above the median of their peer group receive a “Red” normative message

4More information is available on their website: http://www.watersmartsoftware.com/.
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Table 1: Summary statistics and balance on observables

Sample Variable Treat Control Difference KS MW T
Small Utility Pre-Treatment Water 442.0 437.9 4.2 0.86 0.56 0.42
Small Utility Pre-Treatment Water (Summer) 503.8 499.8 4.0 0.92 0.84 0.50
Small Utility Pre-Treatment Water (Winter) 403.0 399.4 3.6 0.50 0.48 0.45
Small Utility Lot Size 9923.5 9606.3 317.2 0.65 0.56 0.13
Small Utility Sq. Ft. 1950.3 1947.3 3.0 0.91 0.72 0.88
Small Utility Beds 3.0 3.0 -0.0 0.85 0.96 0.89
Small Utility Baths 2.2 2.2 0.0 0.99 0.52 0.62
Large Utility Pre-Treatment Water 598.7 599.2 -0.5 0.81 0.98 0.85
Large Utility Pre-Treatment Water (Summer) 708.9 709.4 -0.5 0.87 0.79 0.90
Large Utility Pre-Treatment Water (Winter) 544.0 544.7 -0.7 0.62 0.87 0.80
Large Utility Lot Size 10147.8 10121.6 26.2 0.88 0.70 0.81
Large Utility Sq. Ft. 2135.4 2159.3 -23.9 0.07 0.26 0.05
Large Utility Beds 3.5 3.5 -0.0 0.65 0.91 0.69
Large Utility Baths 2.5 2.5 -0.0 0.97 0.67 0.59

Note: The table shows the average values for a variety of households characteristics for the treatment and
control groups in each utility. All the pre-treatment water variables are measured in gallons-per-day. Lot size
and sq. ft. (indoor living space) are measured in square feet. Beds and baths are the number of bedrooms
and bathrooms. The last three columns present the p-values from test statistics. KS is the non-parametric
Kolmogorov-Smirnov equality of distributions test, MW is the non-parametric rank-order test, and T is the
two-sided t-test for difference in means.

(shown in Figure 3), those with consumption between the median and 20th percentile receive
a “Yellow” message, and those below the 20th percentile receive a “Green” message. (Home
Water Reports showing the latter two categories are provided in the Appendix).

The second component (across the bottom of Figure 3) is a list of three personalized rec-
ommendations for strategies to save water. Recommendations include installing low-flow
toilets and switching to native plants. Based on data available from the utility (described
more below) or on results from a baseline household survey with limited responses, Wa-
terSmart personalized these recommendations to the extent possible. For example, if a
household had no outdoor area it was not given a recommendation regarding irrigation.
The personalized recommendations provide estimates of the water savings in gallons and
in dollars, and the dollar estimates rely on the marginal price the household faces. The
third component (in the upper right of Figure 3) cycles between a variety of messages about
water conservation and utility programs.

To show that the randomization was conducted properly we graph average water use
over time across treatment groups and perform a variety of balance tests. Figure 4 shows the
average historical water consumption for the treatment and control groups in both utilities.
The treatment and control groups had similar consumption prior to the intervention and
after treatment the treatment groups use less water. Table 1 shows that treatment and
control groups are well balanced on a range of observables based on a variety of parametric
and non-parametric tests. Out of the 42 tests performed none has a p-value below 0.05 and
only two have a p-value below 0.1.
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Note: This is an example of a generic “Red” Home Water Report (HWR). These households used less than
the median of their peer group.
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Figure 4: Historical Water Consumption by Treatment Status and Utility
Note: The graph displays the average consumption of the treatment and control groups in each utility
for every billing period in the sample. The solid lines represent the control groups and the dotted lines
represent the treatment groups. The vertical dashed lines designate the start of the treatment period for
each utility. The line colors designate utilities.
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3.3 Base treatment effects

The basic regression framework follows Allcott and Rogers (2014) where we regress nor-
malized water use on the treatment indicator while restricting the sample to the treatment
period. While this setup does not allow for the inclusion of household fixed effects we can
more flexibly control for household observables and the randomization alleviates concerns
of static confounding effects. Normalized water use simply divides each household’s wa-
ter use in gallons-per-day (GPD) by the average consumption of the control group in the
post-treatment period within the same utility. This specification maintains the interpreta-
tion of coefficients as percentage changes in water consumption, but unlike the logarithmic
transformation does not dampen the effect of high users. This is important in the context of
social comparisons because prior research shows that most of the savings are concentrated
among high users (Allcott, 2011; Brent et al., 2015).

We interact the treatment indicator with a Large Utility indicator to evaluate the differ-
ential effects across the Large and Small utilities. We refer to this as the double difference
model (DD) since it examines differences in treatment and control groups as well as dif-
ferences across utilities. To control for differential effects specific to the utilities that may
impact the responsiveness to treatment we examine the treatment effect model restricted to
households within 10 kilometers (km) from the shared utility border.

Our primary regression equation used to estimate treatment effects regresses normal-
ized average daily water consumption (w̃it) for household i during billing period t,

w̃it = a + g1Treati + g2(Treati ⇥ Largei) + bXit + tit + # it, (7)

where Treati identifies the treatment group, Largei indicates whether the household is
served by the Large Utility, Xit is a vector of controls including weather variables and pre-
treatment water consumption, tit is a period-by-utility fixed effect, and # it is the residual
error term. The set of g coefficients are estimates of the utility-specific average treatment
effects of HWRs.

3.4 Identifying price-level and price-sensitivity effects

In order to identify the differential impact of HWRs for households facing different prices
we estimate a difference-in-discontinuity model (DD) that exploits a discontinuity in the
rate structure of the Large Utility. As described above Large Utility uses a budget-based
increasing-block rate structure, where the tier thresholds depend on the climate zone and
lot size (in square feet). There are five lot size tiers (0-7499, 7500-10999, 11000-17499, 17500-
43559, � 43560), and households with lower lot sizes are allocated less water before moving
to a higher pricing tier. Therefore, houses that are just below the lot size tier (e.g. 7499 sq.
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ft.) on average face higher prices than houses just above a tier (e.g. 7500 sq. ft.). Because
this budget-based billing only occurs in the Large Utility, we use a third difference (in a
difference-in-difference-in-discontinuity design, or DDD) to compare similar households
above and below the lot-size threshold across utility boundaries. These households below
the lot-size discontinuity will only face higher prices in the Large Utility. We restrict the
analysis to various lot-size bandwidths such that the households are relatively close to the
lot size thresholds (within 1000 square feet).

To clarify, the primary differences we exploit are as follows. The first difference is
identified via random assignment of treatment status, the second difference is identified by
the discontinuity in rate structure, and, as a robustness check, we include a third difference
across utilities. The primary motivation for the robustness check across utilities is that our
discontinuity depends on lot size, which in turn affects water consumption. Since many
studies find that households that use more water are more responsive to social comparisons,
we also estimate a difference in discontinuities model that nets out any primary effect of
the lot size threshold.

Figure 5 shows how the lot size threshold has a differential effect on marginal prices
in each utility. These figures present mean marginal (average) prices relative to lot size in
100 sq. ft. bins. There is a distinct jump in the expected marginal price for households
just below the lot-size threshold in the Large Utility (panel (a)), but not in the Small Utility
(panel (b)). To highlight the difference in typical marginal prices induced by the lot-size
threshold we define "low" households as those who less than 1000 feet below a lot-size
threshold (e.g. 6499-7499 sq. ft.). We define "high" households as those less than 1000 feet
above a lot-size threshold (7500-8500 sq. ft.). The raw data shows that in the Small Utility the
average marginal price for low and high size households is $3.65 and $3.77 respectively—so
high-size households on average pay more for water because they are higher users. In the
Large Utility the average marginal price for low- and high-size households is $5.98 and
$5.81 respectively—low-size households pay more for water despite the fact that they are
lower users. Note that while the average price difference in the Large Utility from the lot-
size threshold is only $0.20, the marginal price increase from moving to the higher tier is
more than $1. The average marginal prices reflect the both the change in marginal prices
and the probability that a household moves into the higher consumption tier. Therefore,
some households will face significant marginal price increases due to the lot-size threshold
discontinuity.

In Figure 6, we present a different way to visualize the price variation that we are
exploiting. Here we show the different rate structures for households in three different
lot-size groups. Each lot-size group faces the same set of marginal prices, but larger lots are
allocated a larger proportion of bi-monthly consumption at the lower marginal price. As
shown, a household with a 7400 sq. ft. lot is bumped into the second price tier at 28 ccf,
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(a) RD treatment in marginal prices at lot-size thresholds for both utilities
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Figure 5: Discontinuities in average and marginal price driven by lot-size

15



4.
5

5
5.

5
6

6.
5

7
M

ar
gi

na
l p

ri
ce

 ($
/c

cf
)

0
.0

1
.0

2
.0

3
D

en
si

ty

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Bi-monthly water use (ccf)

0-7499 sqft
7500-10,999 sqft
11,000-17,499 sqft
Consumption density

Figure 6: Changes price structure driven by lot-size groups

whereas a household with a 7500 sq. ft. lot is bumped into the second price tier at 37 ccf.
Further, a household with an 11,000 sq. ft. lot isn’t bumped into the second price tier until
after 55 ccf. Moreover, these inframarginal price differences are not trivial: households
with lots smaller than 7500 sq. ft. face a marginal price increase of 19.4% nine units of
consumption sooner than do households with slightly larger lot sizes. At the 11,000 sq. ft.
threshold, this inframarginal price difference is sustained for 18 ccf every two months.

The standard identifying assumptions in RD frameworks are that (a) other covariates
move smoothly through the discontinuity induced by the running variable and (b) the
running variable cannot be manipulated. The latter assumption is satisfied by noting that
lot sizes are effectively fixed over time. In our setting, if other variables associated with
water consumption changed discontinuously then we would worry that (a) is not satisfied.
As a visual test of this assumption, we present in Figure 7 three relevant variables for
water consumption across our RD threshold: irrigable area of lot, indoor square footage of
home, and number of bathrooms. Notably, irrigable area, which we anticipate to be highly
correlated with lot size, moves nearly linearly through the lot-size discontinuities, which
provides convincing support for the RD assumptions. We observe no obvious discontinuity
in square footage and number of bathrooms at the discontinuities either. This analysis for
additional covariates is presented in Figure A.3.

Formally the DD model interacts the variables in equation 7 with an indicator for
whether the household is below the lot size threshold:

w̃it = a + g1Treat + g2(Treat ⇥ Low) + q1Low + bXit + tit + # it, (8)
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Figure 7: Covariate distributions across lot-size thresholds for both utilities
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where all variables are the same as in equation 7, except we add a new indicator (Low),
which signifies that a household is below any of the lot-size thresholds in the Large Utility.
We estimate this equation using Large Utility households only. We vary the bandwidth of
lot-size from +/�1000 sq. ft., +/�750 sq. ft., and +/�500 sq. ft. of lot-size thresholds. In
additional specifications, we include a continuous lot size variable interacted both with the
lot size and treatment dummies to control for differential trends in water use on either side
of the lot-size threshold and across treatment and control households. This model with lot
size interactions mimics the standard local linear regression discontinuity design. We also
estimate this model for the three primary lot-size discontinuities (at 7000 sq. ft., 11,000 sq.
ft., and 17,500 sq. ft.) individually.

The price-level effect, the amount of the HWR treatment effect that is driven by exoge-
nously different marginal price levels, is given by g2. This model allows us to test the
hypothesis that g2 = 0. The regressions include both household and weather controls
(Xit) and billing period-by-utility (tit) fixed effects. As a robustness check, we add a third
difference with the Large Utility in the following framework:

w̃it =a + g1Treat + g2(Treat ⇥ Large) + g3(Treat ⇥ Large ⇥ Low)+

q1Large + q2Low + q3(Large ⇥ Low) + bXit + tt + # it,
(9)

In this setup, g3 is our estimate of the PLE. The q parameters (q1, q2, q3) control for lot
size and utility-specific variation in the treatment period across both treatment and control
groups.5

The price-sensitivity effect is how treatment induces differential responses to price changes.
We exploit price changes over time and across the utilities in order to estimate the demand
elasticity and then interact this with the treatment variables. Our demand elasticity regres-
sions take the following form:

ln(wit) =b1 ln( p̂) + b2(ln( p̂)⇥ Treat) + b3(ln( p̂)⇥ Period)+

g1Treat + q1Period + ai + tt + # it
(10)

The price sensitivity effect is b2, and this model allows us to test the price level hypoth-
esis if b2 = 0. Studies debate whether marginal or average price is the relevant price
signal when consumers face increasing block rates (Nataraj and Hanemann, 2011; Ito, 2014;
Wichman, 2014) so we model price as both average and marginal price.6 The presence of

5One might wonder why we did not consider the utility boundary as a spatial regression discontinuity
similar to Ito (2014). In our setting, water utility boundaries also serve as political boundaries that induce
numerous other changes in tax rates, city regulations, and so forth, thus we did not believe the abrupt change
in prices at utility borders would provide a viable identification strategy.

6We define average price as the volumetric proportion of the bill divided by quantity consumed that month.
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increasing block rates also makes price endogenous because the marginal price the con-
sumers faces depends on the quantity consumed. The model is therefore estimated using
two-stage-least squares (2SLS) where price and the associated interactions are endogenous
variables. Following Olmstead (2009) and Wichman et al. (2016), we instrument for the
actual price the consumer faces (either marginal or average) with the full set of marginal
prices from the rate structure. All marginal price instruments are transformed by natural
logarithms. Therefore, our identification comes from variation in water rates set by the util-
ity as opposed to changes in the households’ consumption. The regressions include both
household (ai) and billing period (ti) fixed effects. We also estimate the demand model
with interactions with utility indicators to capture utility-specific price elasticities.

4 Results and discussion

4.1 Baseline treatment and demand models

We first summarize our initial results from our baseline treatment effects. In Table 2, we
present average treatment effects of home water reports. In the first two columns, our
treatment effects for the Large and Small utilities are -4.5% and -3.5% reductions in water
consumption due to randomized HWRs. In the third column, we pool both utilities, but
allow for different treatment responses by including an interaction between our treatment
variable and and an indicator for Large Utility. In the final column, we restrict the sample
of the Large Utility to households within 10km of the Small Utility’s border to ensure
common support across both utilities. Overall, we find consistent evidence in line with
previous research that HWRs reduce water consumption by 3–5% (Ferraro and Price, 2013;
Brent et al., 2015).

Additionally, we present our initial demand specifications in Table 3. In the first two
columns, we present naïve models using endogenous marginal and average price variables.
As expected with increasing block-rate structures, we observe positive price elasticities.
Our IV approach, in columns (3) and (4), performs comparatively better, providing sensible
demand elasticities (�0.25 for MP and �0.17 for AP) well within the range of previous
estimates (Dalhuisen et al., 2003). In the present analysis, we do not take a stand on whether
average or marginal price responsiveness is the correct specification, rather we model them
side-by-side. In columns (5) and (6), we restrict the sample to within 10km of the shared
border, and the results are essentially the same.

Overall, our initial analysis produces estimates of average treatment effects for HWRs
and estimates of price elasticities that are squarely within the results of previous studies.
This consistency provides us with confidence that the experiments were conducted accu-
rately and that our identification of price effects is valid.
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Table 2: Baseline treatment effects

(1) (2) (3) (4)
Large Small Both 10km

Treat -0.045⇤⇤⇤ -0.035⇤⇤⇤ -0.032⇤⇤⇤ -0.035⇤⇤⇤
(0.004) (0.007) (0.007) (0.007)

Treat*Large -0.014⇤ -0.017
(0.008) (0.011)

Observations 275,173 258,535 533,708 326,028
Households 26,104 19,119 45,223 25,602
Household FEs – – – –
Sample Full Full Full 10km
Period-by-utility FEs Y Y Y Y

Notes: Dependent variable is average daily water consumption normalized
by utility-specific control group consumption. All specifications control for
evapotranspiration, precipitation, and pre-treatment water consumption. Ro-
bust standard errors are clustered at the household level. ⇤p<0.1; ⇤⇤p<0.05;
⇤⇤⇤p<0.01

Table 3: Base demand models

(1) (2) (3) (4) (5) (6)
MP AP MP AP MP AP

ln(MP) 0.549⇤⇤⇤ -0.246⇤⇤⇤ -0.278⇤⇤⇤
(0.007) (0.012) (0.017)

ln(AP) 0.564⇤⇤⇤ -0.169⇤⇤⇤ -0.187⇤⇤⇤
(0.008) (0.011) (0.016)

Observations 939,775 929,842 928,032 921,537 572,528 570,981
Households 43,133 43,132 43,124 43,120 25,990 25,987
Household FEs Y Y Y Y Y Y
Period FEs Y Y Y Y Y Y
IV Y Y Y Y Y Y
Sample Full Full Full Full 10km 10km
First-stage F-stat 35,572 49,538 15,432 29,797

Note: Dependent variable is the natural log of average daily water consumption. All specifications
control for evapotranspiration and precipitation. Prices are instrumented with full set of marginal
prices from the utility rate schedule and associated interactions with exogenous variables. Robust
standard errors are clustered at the household level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

4.2 Price-level effects

We now turn to Table 4, in which we present our primary results of the price-level effect.
Recall, the PLE in our setting is the interaction between the treatment effect of the HWR
and the exogenous assignment of a higher marginal price via the lot-size discontinuity. We
present results only for the Large Utility because the Small Utility does not have discon-
tinuous changes in price due to lot-size (see Fig. 5). In our framework, the coefficient on
the interaction Treat*Low is our estimate of the PLE. We vary the bandwidth (distance from
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Table 4: Price-level effect: Large utility only

(1) (2) (3)
1000sqft 750sqft 500sqft

Treat -0.050⇤⇤⇤ -0.050⇤⇤⇤ -0.043⇤⇤⇤
(0.008) (0.009) (0.010)

Treat*Low 0.003 -0.006 -0.006
(0.011) (0.013) (0.015)

Observations 124,067 97,015 70,068
Households 12,302 9,607 6,920
Sample Large only Large only Large only
Period-by-utility FEs Y Y Y

Notes: Dependent variable is average daily water consumption normal-
ized by utility-specific control group consumption. All specifications
control for evapotranspiration, precipitation, and pre-treatment water
consumption. Robust standard errors are clustered at the household
level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

the lot-size discontinuity) in each of the columns. For all bandwidths, we estimate a precise
zero effect. In our narrowest bandwidth, the interacted coefficient is �0.006 with a standard
error (robust to within-household correlation) of 0.015. This estimate is based on a sample
of nearly 7000 households totaling more than 70,000 observations, thus we have sufficient
power to identify a statistically meaningful effect. We do not, however, find any evidence
of a PLE with a magnitude that is economically meaningful.

It is possible that our PLE estimate in Table 4 is biased because we pool all lot-size
discontinuities in the rate structure together. In Table 5, we estimate PLE effects for each
discontinuity separately, again for the Large Utility only. For the 7500 and 11,000 sq. ft.
discontinuities in panels (a) and (b), we again find precisely estimated null effects, with
standard errors increasing slightly with smaller bandwidths. For the larger discontinuity
at 17,500 sq. ft., we observe both a substantially larger base treatment effect (9 � 12%
reductions in daily consumption) and a larger PLE within 500 sq. ft. of the discontinuity.
The PLE, however, is estimated with large confidence intervals, due in part to the smaller
amount of households near this discontinuity.

We include several additional analyses to support our results. In Table A.1, we re-run
our primary PLE specifications but we include interaction terms with lot-size, as is typical in
RD designs. Results are virtually unchanged: we find precisely estimated null effects for the
PLE. Additionally, we perform a falsification test in the Large Utility at false discontinuities
of 9000 sq. ft. and 13,000 sq. ft. We choose these thresholds because they are near our true
thresholds without overlapping at the largest bandwidths (1000 sq. ft.). These falsification
tests examines whether our lot size thresholds would partially pick up the smaller treatment
effects (in absolute value), associated with smaller lots that use less water. If the true PLE
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Table 5: Price-level effect: Large utility only, no lot size inter-
actions, at individual discontinuities

(a) 7500 sq. ft. discontinuity
(1) (2) (3)

1000sqft 750sqft 500sqft
Treat -0.041⇤⇤⇤ -0.038⇤⇤⇤ -0.036⇤⇤⇤

(0.009) (0.010) (0.011)
Treat*Low 0.000 -0.009 -0.008

(0.012) (0.014) (0.016)
Observations 79,351 61,908 43,096
Households 7,934 6,181 4,290
Sample Large only Large only Large only
Period-by-utility FEs Y Y Y

(b) 11,000 sq. ft. discontinuity
(1) (2) (3)

1000sqft 750sqft 500sqft
Treat -0.041⇤⇤⇤ -0.043⇤⇤⇤ -0.036⇤⇤

(0.015) (0.016) (0.018)
Treat*Low -0.005 -0.011 -0.003

(0.024) (0.028) (0.033)
Observations 32,471 25,263 19,719
Households 3,180 2,472 1,924
Sample Large only Large only Large only
Period-by-utility FEs Y Y Y

(c) 17,500 sq. ft. discontinuity
(1) (2) (3)

1000sqft 750sqft 500sqft
Treat -0.123⇤⇤⇤ -0.136⇤⇤⇤ -0.092⇤⇤

(0.037) (0.041) (0.043)
Treat*Low 0.022 0.021 -0.024

(0.053) (0.061) (0.065)
Observations 11,855 9,517 7,002
Households 1,150 922 681
Sample Large only Large only Large only
Period-by-utility FEs Y Y Y

Notes: Dependent variable is average daily water consumption normal-
ized by utility-specific control group consumption within 1,000 sq. ft.
of the lot-size discontinuity. All specifications control for evapotran-
spiration, precipitation, and pre-treatment water consumption. Robust
standard errors are clustered at the household level. ⇤p<0.1; ⇤⇤p<0.05;
⇤⇤⇤p<0.01
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is negative (households who face higher prices are more responsive to HWRs) the small
lot size effect will bias our estimates of the PLE towards zero. These results are presented
in Table A.2. Here again, we find statistical zeros, and the point estimates switch between
positive and negative values.

In an additional robustness check, we add a third difference to our difference-in-discontinuity
design because it is possible that response to HWRs is greater for households with higher
consumption levels, which is correlated positively with lot size (our running variable in the
regression discontinuity). To implement the third difference, we estimate Equation 10 on a
sample including both utilities. We present these results in Table 6. In these specifications,
the PLE is the coefficient on Treat*Low*Large, or, the marginal change in the treatment effect
effect due to facing an exogenously higher marginal price by being just below the lot-size
threshold relative to similar households in the small utility who face no price discontinuity.
In these specifications, we find no statistical evidence of a PLE, which is a precisely esti-
mated zero for bandwidths of 1000 sq. ft. and 750 sq. ft. Within 500 sq. ft. of the lot-size
threshold, however, we find an economically large PLE of �0.057. Although not significant
at the p < 0.1 level, this estimate is larger in magnitude than our initial treatment effect.
Because we did not see such an effect in our Large Utility Only RD (Table 2), we suspect
that this is an artifact of unexplained increases in consumption in the Small Utility near the
lot-size threshold.

Table 6: Price-level effect: Full sample, no lot size in-
teractions

(1) (2) (3)
1000sqft 750sqft 500sqft

Treat -0.054⇤⇤⇤ -0.062⇤⇤⇤ -0.077⇤⇤⇤
(0.019) (0.022) (0.028)

Treat*Large 0.003 0.011 0.034
(0.021) (0.024) (0.030)

Treat*Low 0.006 0.013 0.051
(0.026) (0.031) (0.039)

Treat*Low*Large -0.003 -0.018 -0.057
(0.029) (0.033) (0.041)

Observations 194,802 149,703 106,029
Households 17,752 13,658 9,686
Sample Full Full Full
Period-by-utility FEs Y Y Y

Notes: Dependent variable is average daily water consumption
normalized by utility-specific control group consumption. All
specifications control for evapotranspiration, precipitation, and
pre-treatment water consumption. Robust standard errors are
clustered at the household level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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We explore this result further in Figure 8, in which we plot the base treatment effect
coefficients interacted with 250 sq. ft. lot-size bins near the lot-size thresholds. We do so
for both utilities. Evidence of a nonzero PLE would be revealed by a discontinuous jump in
treatment effect estimates at the lot-size thresholds (represented by solid red vertical lines).
Specifically, in the presence of a signficant PLE we expect the treatment effect immediately
to the left of the threshold to be larger in magnitude than the treatment effect immediately to
the right of the threshold. For the 7500 sq. ft. discontinuity, we observe the treatment effect
move smoothly through the discontinuity for both utilities. All estimates are statistically
similar, shown by overlapping 95% confidence intervals. The results for the 11,000 and
17,500 sq. ft. thresholds are noisier: point estimates jump around a bit more, but confidence
intervals also overlap for all estimates within a utility. The majority of households included
in our RD samples are located near the 7500 sq. ft. threshold.

To recap, we find no statistical evidence that exogenously assigned differences in marginal
prices affect the responsiveness of HWRs. This result is somewhat surprising because the
HWRs make the private economic benefits of water conservation more salient (e.g., bottom
panel in Figure 3). HWRs provide cost-savings information that consumers might expect
from changing behavior or technology. Consumers just above/below the price discontinu-
ities we use for identification would thus face nontrivial differences in expected cost-savings
despite being otherwise similar types of households, but we observe no statistical different
in their response to HWRs. Our analysis thus far suggests that the primary mechanism for
the HWR operates through channels of increasing (the salience of) the moral costs of water
consumption.

24



RD cutoff at 7500 sqft

-.2
5

-.2
-.1

5
-.1

-.0
5

0
.0

5
.1

.1
5

Tr
ea

tm
en

t e
ffe

ct
 (9

5%
 C

I)
 

65
00

-67
49

67
50

-69
99

70
00

-72
49

72
50

-74
99

75
00

-77
49

77
50

-79
99

80
00

-82
49

82
50

-84
99

Lot size bin (sq. ft.)

Large utility

RD cutoff at 7500 sqft

-.2
5

-.2
-.1

5
-.1

-.0
5

0
.0

5
.1

.1
5

Tr
ea

tm
en

t e
ffe

ct
 (9

5%
 C

I)
 

65
00

-67
49

67
50

-69
99

70
00

-72
49

72
50

-74
99

75
00

-77
49

77
50

-79
99

80
00

-82
49

82
50

-84
99

Lot size bin (sq. ft.)

Small utility

RD cutoff at 11,000 sqft

-.2
5

-.2
-.1

5
-.1

-.0
5

0
.0

5
.1

.1
5

Tr
ea

tm
en

t e
ffe

ct
 (9

5%
 C

I)
 

10
00

0-1
02

49

10
25

0-1
04

99

10
50

0-1
07

49

10
75

0-1
09

99

11
00

0-1
12

49

11
25

0-1
14

99

11
50

0-1
17

49

11
75

0-1
19

99

Lot size bin (sq. ft.)

Large utility

RD cutoff at 11,000 sqft
-.2

5
-.2

-.1
5

-.1
-.0

5
0

.0
5

.1
.1

5

Tr
ea

tm
en

t e
ffe

ct
 (9

5%
 C

I)
 

10
00

0-1
02

49

10
25

0-1
04

99

10
50

0-1
07

49

10
75

0-1
09

99

11
00

0-1
12

49

11
25

0-1
14

99

11
50

0-1
17

49

11
75

0-1
19

99

Lot size bin (sq. ft.)

Small utility

RD cutoff at 17,500 sqft

-.2
5

-.2
-.1

5
-.1

-.0
5

0
.0

5
.1

.1
5

Tr
ea

tm
en

t e
ffe

ct
 (9

5%
 C

I)
 

16
50

0-1
67

49

16
75

0-1
69

99

17
00

0-1
72

49

17
25

0-1
74

99

17
50

0-1
77

49

17
75

0-1
79

99

18
00

0-1
82

49

18
25

0-1
84

99

Lot size bin (sq. ft.)

Large utility

RD cutoff at 17,500 sqft

-.2
5

-.2
-.1

5
-.1

-.0
5

0
.0

5
.1

.1
5

Tr
ea

tm
en

t e
ffe

ct
 (9

5%
 C

I)
 

16
50

0-1
67

49

16
75

0-1
69

99

17
00

0-1
72

49

17
25

0-1
74

99

17
50

0-1
77

49

17
75

0-1
79

99

18
00

0-1
82

49

18
25

0-1
84

99

Lot size bin (sq. ft.)

Small utility
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4.3 Price-sensitivity effects

Lastly, we present results for the PSE in Table 7. Recall, the PSE is the degree to which
HWRs increase consumers’ price sensitivity, e.g., by making the costs of consumption more
salient. Identification of this effect is straightforward: we estimate price elasticities of water
demand equation as in Equation 10 and interact our price variables with the randomized
HWR treatment. The resulting coefficient on that interaction is the PSE.

In columns (1) and (2) of Table 7, we report PSE estimates for our pooled sample.
We find statistically significant evidence that HWRs increase price sensitivity under the
marginal price, but not the average price, demand specification. The PSE increases price
sensitivity by approximately 13% for the MP specification. We might be concerned, that in
addition to price variation, there is significant variation in unobservables across utilities that
could impact price elasticity. In an attempt to control for these cross border differences, we
restrict the sample to households within 10km of the border. Columns (3) and (4) present
the PSE estimates in the restricted sample, and we find no evidence of a signficant PSE in
either the MP or AP specification. These results are less decisive than our PLE results, but
still do not find conclusive evidence that social comparisons have meaningful interactions
with prevailing economic incentives.
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Table 7: Price-sensitivity effect

(1) (2) (3) (4)
MP AP MP AP

Treat -0.035⇤⇤⇤ -0.042⇤⇤⇤ -0.041⇤⇤⇤ -0.044⇤⇤⇤
(0.003) (0.003) (0.005) (0.005)

ln(MP) -0.221⇤⇤⇤ -0.236⇤⇤⇤
(0.011) (0.015)

ln(MP)*Treat -0.030⇤⇤ -0.012
(0.014) (0.020)

ln(AP) -0.191⇤⇤⇤ -0.189⇤⇤⇤
(0.010) (0.014)

ln(AP)*Treat -0.002 0.002
(0.012) (0.016)

Observations 928,032 921,537 572,528 570,981
Households 43,124 43,120 25,990 25,987
Household FEs Y Y Y Y
Period FEs Y Y Y Y
IV Y Y Y Y
Sample Full Full 10km 10km
First-stage F-stat 11,253 13,298 4,819 6,034

Note: Dependent variable is the natural log of average daily water con-
sumption. All specifications control for evapotranspiration and precip-
itation. Prices are instrumented with full set of marginal prices from
the utility rate schedule and associated interactions with exogenous vari-
ables. Interactions with indicators for treatment periods are included but
coefficients are not reported for clarity. Robust standard errors are clus-
tered at the household level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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5 Concluding remarks

Behavioral nudges do not exist in a vacuum. While the randomized deployment of many
behavioral nudges produces strong internal validity for the estimation of causal effects, as
Allcott (2015) shows the treatment effects of any location may be a function of the under-
lying characteristics of the specific population. In order to ensure that the estimates from
any one location are externally valid, it is critical to identify the sources of heterogeneity
and adjust the magnitude based on the characteristics of the target population. This is
challenging when the entire experimental sample faces the same set of existing policies. We
focus on how variation in prevailing water prices affects consumer responsiveness to HWRs
aimed at water conservation that include social comparisons. We do not find any evidence
that the response to this prevalent behavioral nudge has any meaningful interactions with
underlying water rates.

In addition to external validity, our results have implications for the behavioral mecha-
nisms through which nudges operate. Finding no evidence of heterogeneity due to different
private benefits of conservation leads us to conclude that consumers are not primarily re-
sponding to social comparisons due to private financial motivations. This has important
implications for the welfare effect of nudges as shown by Allcott and Kessler (Forthcom-
ing). If nudges are essentially just a moral tax, they will only be welfare enhancing if the
social cost of energy/water exceeds the current private costs. This suggests a re-thinking of
behavioral policies that specifically target welfare as opposed to simply changing behavior.
Given substantial evidence of behavioral biases in energy and water markets (Allcott and
Wozny, 2014; Sexton, 2015; Wichman, 2017; Brent and Ward, Forthcoming, 2018) it is worth-
while to find ways to promote pro-social behavior that also improves private decisions.
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Figure A.1: Home Water Report
Note: This is an example of a generic “Yellow” Home Water Report
(HWR). Households receiving this report used less water than their peer
group average.
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Figure A.2: Home Water Report
Note: This is an example of a generic “Green” Home Water Report
(HWR). Households receiving this report were in the bottom 20% of their
peer group.
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Figure A.3: Additional covariate distributions across lot-size thresholds for both utilities
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Table A.1: Price-level effect: Large utility only, with lot-size
interactions

(1) (2) (3)
1000sqft 750sqft 500sqft

Treat -0.050⇤⇤⇤ -0.050⇤⇤⇤ -0.042⇤⇤⇤
(0.008) (0.009) (0.010)

Treat*Low -0.002 -0.012 -0.011
(0.014) (0.015) (0.017)

Treat*Sq.ft. -0.000 -0.017 0.013
(0.039) (0.044) (0.053)

Treat*Low*Sq.ft. -0.041 -0.049 -0.065
(0.065) (0.067) (0.081)

Observations 124,067 97,015 70,068
Households 12,302 9,607 6,920
Sample Large only Large only Large only
Period-by-utility FEs Y Y Y

Notes: Dependent variable is average daily water consumption normal-
ized by utility-specific control group consumption. All specifications
control for evapotranspiration, precipitation, and pre-treatment water
consumption. Robust standard errors are clustered at the household
level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A.2: Price-level effect falsification test: Large utility
only, no lot size interactions, at individual discontinuities

(a) False 9000 sq. ft. discontinuity
(1) (2) (3)

1000sqft 750sqft 500sqft
Treat -0.035⇤⇤ -0.043⇤⇤ -0.051⇤⇤⇤

(0.016) (0.017) (0.019)
Treat*Low -0.006 0.003 0.022

(0.020) (0.022) (0.027)
Observations 37,810 27,019 17,709
Households 3,763 2,691 1,758
Sample Large only Large only Large only
Period-by-utility FEs Y Y Y

(b) False 13,000 sq. ft. discontinuity
(1) (2) (3)

1000sqft 750sqft 500sqft
Treat -0.072⇤⇤ -0.080⇤⇤ -0.080⇤

(0.029) (0.033) (0.041)
Treat*Low -0.011 -0.009 0.004

(0.040) (0.046) (0.059)
Observations 15,963 11,498 7,415
Households 1,577 1,139 734
Sample Large only Large only Large only
Period-by-utility FEs Y Y Y

Notes: Dependent variable is average daily water consumption normal-
ized by utility-specific control group consumption within 1,000 sq. ft.
of the lot-size discontinuity. All specifications control for evapotran-
spiration, precipitation, and pre-treatment water consumption. Robust
standard errors are clustered at the household level. ⇤p<0.1; ⇤⇤p<0.05;
⇤⇤⇤p<0.01
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