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This paper introduces a model of electoral choice that allows for deriva-
tion of joint distribution of turnout and voter share from unobservable
joint distribution of costs of voting and preferences over candidates. Un-
der a set of mild assumptions, we show non-parametric identification of
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1 Introduction

Elections and referenda are useful to make political decisions and to observe the pref-

erences of the population. There are many instances in which we would like to know

the preferences of the electorate. For example, a policy maker might be concerned

about public opinion regarding gay marriage, or a government trying to build a future

political agenda might seek insight on where society is heading. In the absence of
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strategic voting, electoral data delivers revealed preferences and, thus, is the most

suitable data available to study the electorate’s preferences. However, in countries

where voting is not compulsory, many people forgo voting, and then we can only

observe the preferences of the citizens that do participate in an election. Since selec-

tion bias is likely, it is impossible to observe the preferences of non-voters. However,

campaign managers or government officials might still want to know what absentee

voters are thinking. Two recent examples are the Colombia peace referendum and

the 2016 US elections. In the Colombian referendum, a long sought-after peace deal

was rejected at the polls, an unexpected outcome that left politicians without a clear

electoral mandate. The Colombian government still had to conduct negotiations with

the FARC, and had to try to do so without losing future popular support. In the 2016

US election, the unpredictable candidacy and victory of Donald Trump was a result

of overlooked preferences of a large share of the population by both Republican and

Democrat establishments. Presently, both parties are preparing for future elections.

Candidates will need as much information as possible about the current electorate, in-

cluding non-voters, because exceptional turnout of a specific type of population might

lead to a victory. An example is the unusual spike in African-American turnout in

the 2008 U.S. presidential elections due to the Obama’s popularity.1

To ascertain preferences and predict changes in the voting behavior, we propose

a structural model that allows for non-parametric identification of the preferences of

the entire population from a single election data on turnout and voter share. The

main advantages of our structural model are the ability to study a single election

or referendum, as well as the lack of assumptions about preference formation and

stability of electoral preferences over time. In addition, sometimes identification of

electoral preferences is further complicated by the presence of electoral fraud, espe-

cially ballot stuffing – illegal addition of extra ballots. The 2011 Russia parliamentary

elections (Enikolopov et al. (2013)) are an example of this type of fraud. We extend

12008 Surge in Black Voters Nearly Erased Racial Gap, NY Times, July 20, 2009.
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the proposed model to identify ballot stuffing in two different cases. The first assumes

the known voting costs at a polling station, allowing for an identification of the exact

amount of fraud. The second case assumes the existence of a ”clean” randomized

subsample (without electoral fraud) in one region, and allows for an identification of

distribution of amount of fraud in a polling station. To our knowledge, this is the

first paper that proposes a structural model that does not rely on assumptions about

preference formation for evaluation of electoral preferences and fraud.

Political preferences have been studied by economists before. However, many

papers either study turnout and voter share separately (Degan (2007), Kernell (2009),

Merlo and de Paula (2017), Coate and Conlin (2004), McMurray (2013)), or build

the model structure based on a spatial model2 that assumes that each voter has a

preferred policy and evaluates candidates based on the distances between proposed

and preferred policies (Degan and Merlo (2011)). The main disadvantages of using

the spatial model is that it requires construction of the ideology metric and data from

several elections. This paper offers a different perspective on preference evaluation.

We do not discuss the way of the formation of preferences and the variables the

preferences depend on. The preferences in our model are exogenous and we avoid

relying on the ideology index. We are interested in understanding various components

(personal, local and regional) of voter preferences and voting costs in a single election.

This is especially important in the cases of atypical elections or referenda.

In this paper, exogeneity of preferences accounts for different processes of prefer-

ence formation. For example, if voters are ideological, as in the spatial model, then

preference distribution is the distribution of relative distance from the candidates. If

one adds additional assumptions about the relative ideology metric and uses the data

from multiple elections, then it will be possible to identify the ideological distribu-

tion of the population as in Degan and Merlo (2011). Our model also includes the

uncertain-voter model – a more confident voter derives higher utility from making

2The model was introduced in Downs (1957) and developed in Riker and Ordeshook (1968) and
Hinich and Munger (1994).
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the right choice, i.e., voting for a specific candidate. Personal preferences account for

an asymmetry of information in this case. Thus, the identified preferences can be

treated as a ”reduced form” obtained from different models.

Another important contribution of the paper is evaluation of ballot stuffing. Ex-

isting literature explores three directions:

First, the analysis of different statistical irregularities in the data: Benford’s law

(Mebane (2008), Breunig and Goerres (2011)), unusual kurtosis of the distribution

of electoral data (Klimek et al. (2012)), spikes in the distribution of votes (Kobak

et al. (2016), Rozenas (2017)), and other inconsistencies. These methods are purely

statistical and often test the presence of fraud, but do not evaluate its amount.

The second direction is the evaluation of fraud through both natural experiments

(Cantu (2014)) and randomized assignment of independent observers (Enikolopov et

al. (2013)). These papers explore how much fraud occurs in polling stations with

observers, versus polling stations in the control group. Without the structural model

researchers cannot infer the amount of fraud at a polling station level. Our structural

model allows researchers to use data from randomized control trials for ballot stuffing

estimation.

The third direction of this research is to fit a parametric model. This requires as-

sumptions about parametric distribution, and what data is relevant to the estimation

of parameters. For example, Levin et al. (2009) uses the data from the preceding

electoral period coupled with an assumption on stability of electoral preferences over

time. However, previous electoral data is not always available or reliable, and the

electoral preferences are not always stable. Our model is more general, it is non-

parametrically identified and does not require the aforementioned assumptions about

preferences or historical data. In this paper, due to its simplicity, we provide a para-

metric empirical illustration to familiarize the reader with the model. However, our

model allows for derivation of non-parametric estimators, which we plan to discuss in

the future work.
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Advantages of evaluating ballot stuffing with the proposed model include: the

absence of parametric assumptions, and a flexible estimation procedure based on a

”clean” subsample that uses readily available data from independent observers. This

procedure can infer information about any polling station in the country. Finally, the

estimation procedure based on known costs of voting does not require any ”clean”

data at all. To the best of our knowledge, this is a more general and applicable way

to estimate ballot stuffing than other existing methods.

First, we propose a structural model of electoral choice. This paper supposes a

voter needs to decide between two candidates. Similar to the probabilistic voting

model (Lindbeck and Weibull (1987), Persson and Tabellini (2000)), we assume an

individual’s political preferences can be separated into three components: personal,

local and regional. Additionally, we explore voter costs: A voter, who does not find

candidates that different from one another, will not be willing to pay a high cost,

like a long wait in line at a polling station.Thus, people who are close to indifferent

between candidates will abstain from elections. To this author’s knowledge this is

the first time that the above approaches have been combined to describe electoral

choice. In addition, we suppose that the local component and costs of voting are

the same for all people in one polling station and regional characteristics affect all

residents of that region in the same way. From these assumptions, we derive values

of turnout and voter share in the population. This structure allows us to identify and

estimate the preferences in the whole population under the following assumptions:

(1) additivity of preference components, (2) independence of personal and regional

components on other characteristics, and, (3) linearity of the regional component in

regional characteristics. Note that these assumptions still allow for a more general

structure than the models based on one or another way of preference formation.

Second, this model is particularly well-suited to describe and evaluate ballot stuff-

ing.3 In this kind of electoral fraud, the administrators of a polling station place addi-

3The model allows adding several other types of electoral fraud or electoral boycott.
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tional ballots in the electoral urn. In addition, they adjust corresponding official lists

of participants and records of turnout. We suppose that only one of the candidates

has access to ballot stuffing4. This implies that the number of votes for another candi-

date is truthful in every polling station, allowing for the identification of distribution

of personal preferences and the regional component. Note that the presence of ballot

stuffing affects only the polling station variables – the local component and the costs

of voting. If the costs are known, then the local component can be recovered and the

exact amount of fraud is identified. If the costs are unknown, then the exact amount

of fraud cannot be obtained. However, a ”clean” subsample of the data may enhance

the identification of joint distribution of costs and the local component. Additionally,

if the amount of fraud is independent of costs given observables, it becomes possible

to evaluate the distribution of the amount of fraud in each polling station.

Finally, we use the 2011 Russia parliamentary election data to illustrate how the

model can be estimated and used for evaluation of the counterfactual voter shares as

well as average ballot stuffing.

Section 2 introduces a model of electoral choice. Section 3 discusses the identi-

fication of the model. In Section 4, we provide identification of ballot stuffing and

a counterfactual voter shares in the entire population. Section 5 consists of empir-

ical illustration. All derivations of estimators and asymptotics are included in the

Appendix.

2 Electoral model

There are two candidates, A and B, running for office. Each voter has preferences

over candidates: Similarly to probabilistic voting in Persson and Tabellini (2000),

4This assumption applies to many cases in which ballot stuffing is accessible only to the incumbent
party. The model can be extended to include situations in which both parties have ability to add
extra ballots, but the researcher will need to know which polling station is controlled by which
candidate for identification. However, we recognize that even with such extension we do not cover
all possible situations.
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voter i in a polling station j in region K chooses candidate A over B if

σijK
A + δjK

A + μK
A > σijK

B + δjK
B + μK

B ,

where σijK is a parameter of individual ”pure” preferences towards the candidates,

δjK is popularity of a candidate in the area of the polling station and is the same for

one polling station j, μK is a regional effect in popularity of each candidate and it is a

function of some observable characteristics of the region XK , such as average income,

level of education, share of old population, etc. Thus, μK = h̃(XK). Note that the

additive structure is not a strong assumption and it does not affect evaluation of

counterfactuals, including electoral fraud, if non-parametric estimation is used.

In order to obtain the reduced form of the model, we define parameters of difference

in preferences between candidates σijK = σijK
B − σijK

A , δjK = δjK
B − δjK

A and μK =

μK
B − μK

A = h̃B(XK) − h̃A(XK) ≡ h(XK). Therefore, voter i in a polling station j in

region K chooses candidate A over B if

σijK + δjK + h(XK) < 0,

where σijK is personal ”pure” preference for the candidate B, δjK and μK are polling

station j and regional effects on preferences, correspondingly. Moreover, μK = h(XK),

where h(∙) is a continuous and monotone in all arguments function.

To include turnout in the model, we follow the empirical evidence that suggests

voting costs affect electoral participation (Fujiwara et al. (2016), Leon (2017)). A

voter chooses to participate in elections if the difference in her preferences from dif-

ferent candidates is higher than costs of participation:

|σijK + δjK + h(XK)| ≥ cjK .

Participation costs cjK are random and the same for all voters in the same polling
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station, but might be different across different polling stations. Costs might represent

the length of line to vote, the weather, difficulty of obtaining a voter card, etc. Such

representation of participation implies that if the preferences of a voter are close to

indifference between the candidates, then she does not attend elections. And, in

contrast, if a person has very strong preferences toward one or another candidate,

then she comes to the polling station even when costs are high5.

Generally, a polling station represents a small geographical area, in which the

distance from a voter’s home to the polling station is similar for all voters. This

motivates the assumption about the fixed level of costs of voting at a polling station.

We understand that several factors, even weather conditions, might feel different for

individual participants. However, the electoral data is aggregated at a polling station

level and it would be impossible to disentangle personal costs of voting from the

preferences without personal level data or/and strong assumptions about the model

structure and behavior.

Note that the above assumption applies well if people are more or less homogenous

in terms of costs of voting in each polling station, while there can be variations across

polling stations. For example, different age groups may prefer different suburbs. If

the homogeneity does not hold, then the unique part of the voting costs for each

person will be accounted in the personal component of the preferences. This does

not cause any problems for electoral fraud estimation. However, one must be careful

while evaluating counterfactuals related to change of costs of voting as the results

might be under/overstated.

In addition, we assume that individual ”pure” preferences σijK are independent

identically distributed variables with density g(∙) and cumulative distribution G(∙).

Costs of voting cjK and local preferences δjK are independent identically distributed

variables with joint density fδ,c(∙, ∙).

5We recognize that this model does not account for ”marginal voter” way of thinking, i.e., when
voters believe that their vote does not matter and abstain from elections. The data shows that
people vote and we do not attempt to contribute to the divisive question of why they do so.
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Next we introduce ”swing voters”, σjK
A and σjK

B , in every polling station j of region

K, who are indifferent between participating and not participating in elections:

σjK
A = −δjK − μK − cjK

σjK
B = σjK

A + 2cjK .

Notice that people with ”pure” preferences σijK < σjK
A will vote for the candidate

A, people with σijK > σjK
B will vote for the candidate B, and everybody in between

the swing voters will abstain from elections. As a result, the number of people who

vote for A in a polling station j in region K is njK
A =

∫ σjK
A

−∞ dG(x) = G(σjK
A ). The

same number for candidate B is njK
B =

∫ +∞
σjK

B
dG(x) = 1 − G(σjK

B ). Thus, turnout in

the polling station is τ jK = 1 − G(σjK
B ) + G(σjK

A ) and A’s share of votes is πjK
A =

njK
A

njK
A +njK

B

=
G(σjK

A )

1−G(σjK
B )+G(σjK

A )
.

The only data available in any elections is voter share, πjK
A , and turnout, τ jK ,

across all polling stations j and all regions K. However, the following electoral vari-

ables can be easily recovered from the data:

G(σjK
A ) = πjK

A τ jK

G(σjK
B ) = 1 − τ jK + G(σjK

A ) = 1 − τ jK + πjK
A τ jK .

In everything that follows, we denote the observable electoral variables Y = G(σjK
A )

and Z = G(σjK
B ), while vector X ∈ RL is a vector of L regional characteristics.

3 Identification of the model

This section discusses how to identify unobservable g(∙), h(∙) and fδ,c(∙, ∙) from ob-

servable joint distribution of Y and Z conditional on X.

Assumption 1. Personal preferences σ is independent on X, δ and c, its support in

R is compact, and it has continuously differentiable density g(∙), strictly increasing
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on the support cumulative distribution function G(∙), and Eσ = 0.

Assumption 2. Local preferences δ and costs of voting c have continuously differ-

entiable joint density fδ,c(∙, ∙), cumulative distribution function Fδ,c(∙, ∙), and they are

independent on regional characteristics X.

The joint distribution of swing voters across polling stations in region K with

characteristics X is:

FσA,σB |X(y, z) = P (σA < y, σB < z|X) = P (−δ − c − h(X) < y,−δ + c − h(X) < z) =

= F−δ−c,−δ+c (h(X) + y, h(X) + z) .

Now we obtain the joint distribution of Y and Z conditional on X, FY,Z|X(∙, ∙), as

follows:

FY,Z|X(y, z) = P (G(σA) < y,G(σB) < z|X) = P (σA < G−1(y), σB < G−1(z)) =

= F−δ−c,−δ+c

(
h(X) + G−1(y), h(X) + G−1(z)

)
, (1)

from which we derive

fY,Z|X(y, z) =
f−δ−c,−δ+c (h(X) + G−1(y), h(X) + G−1(z))

g(G−1(y))g(G−1(z))

and

FZ|X(z) = F−δ+c

(
h(X) + G−1(z)

)
.

Cumulative distribution function FY,Z|X(∙, ∙) of electoral variables conditional on

the regional characteristics is observed. The right-hand side of the above equation

is completely unknown and is to be identified. It is important to notice that the

proposed model is not identified without additional assumptions. In order to see

this, consider that there are true functions Fδ,c(∙), G−1(∙) and h(∙). Suppose that
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F−δ−c,−δ+c (t1, t2) = t1
t2

, then another functions h̃(X) = 2h(X) and G̃−1(y) = 2G−1(y)

will generate the same data.

Theorem 1. If Assumptions 1 and 2 hold, and there exists X0 such that the value

h(X0) = h is known, then fδ,c(∙, ∙), g(∙) and function h(X) are identified.

The proof of the above theorem is provided in the Appendix. In this paper,

we work with a stronger assumption on h(X). We consider linear h(X) = β′X

and normalize coefficients β. The linear form is chosen to decrease the usually high

dimensionality of regional characteristics X. We offer two different normalizations.

One implies that β equals to the vector of average derivatives of the conditional

cumulative distribution function of Z given X with respect to regional characteristics

X. This normalization is more suitable for non-parametric estimation. Another

normalization is imposed on β indirectly through function g(∙) and should be used

with parametric estimation.

Theorem 2. Functions fδ,c(∙, ∙), g(∙) and coefficients β are identified if Assumptions

1 and 2 hold, h(X) = β ′X and one of the following normalization conditions applies:

1. β1 = EX,Z
∂FZ|X(z)

∂X1 ;

2. the value of g(G−1(z)) is known at some point z0 inside the support.

Proof. Notice that g(∙) is a derivative of G(∙), thus, ∂G−1(x)
∂x

= 1
g(G−1(x))

and by taking

partial derivatives of the equation (1), we obtain the following:

fZ|X(z) =
f−δ+c (h(X) + G−1(z))

g(G−1(z))

∂FZ|X(z)

∂X i
= f−δ+c

(
h(X) + G−1(z)

)
hi(X) = g(G−1(z))fZ|X(z)βi,

where hi(X) = βi denotes partial derivatives with respect to i-th element. The last

equality is available for different values of X and z, so we integrate all the points over
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the joint density of X and z:

∫ ∫ 1

0

∂FZ|X(z)

∂X i
f(X, z)dzdX = βi

∫ ∫ 1

0

g(G−1(z))fZ|X(z)f(X, z)dzdX (2)

βi

βj

=

∫ ∫ 1

0

∂FZ|X(z)

∂Xi f(X, z)dzdX
∫ ∫ 1

0

∂FZ|X(z)

∂Xj f(X, z)dzdX
=

EX,Z
∂FZ|X(z)

∂Xi

EX,Z
∂FZ|X(z)

∂Xj

. (3)

First, we will consider the normalization condition β1 = EX,Z
∂FZ|X(z)

∂X1 and obtain

identification of h(∙): βi = EX,Z
∂FZ|X(z)

∂Xi .

Hence, β is identified. Now we apply the same logic and integrate over density

f(X) for given z, to obtain the following:

∫
∂FZ|X(z)

∂X i
f(X)dX = βig(G−1(z))

∫
fZ|X(z)f(X)dX = βig(G−1(z))fZ(z)

g(G−1(z)) =

∫ ∂FZ|X(z)

∂Xi f(X)dX

βifZ(z)
.

However, note that the linearity of h(∙) together with the proposed normalization of

β, require that
∂FZ|X(z)

∂Xi is a constant and equals to βi. By taking this into account,

we get

g(G−1(z)) =
1

fZ(z)
. (4)

If instead of the condition on β, we assume that g(G−1(z)) is known at some value

z0, then from (3) we obtain βi = aEX,Z
∂FZ|X(z)

∂Xi , where a 6= 0 is some constant. This

implies that (4) will be g(G−1(z)) = 1
afZ(z)

, implying that a = 1
fZ(z0)g(G−1(z0))

. Thus,

a, β and g(G−1(z)) are identified. The rest of the proof works for both normalization

conditions identically.

The identification of φ(x) = g(G−1(x)) provides us with the identification of G(∙):

Notice that g(G−1(x)) is density at the point where cumulative distribution function

G(∙) takes value x. It implies that we know the structure of the density but we are

missing the axis. However, expectation of personal preferences is assumed to be 0
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(Assumption 1), which is sufficient for identification of G(∙):

FZ(z) =

∫ z

0

fZ(u)du =

∫ z

0

1

φ(u)
du =

∫ z

0

1

g(G−1(u))
du = G−1(z) + const.

Using the condition for expectation:

∫ 1

0

G−1(z)g(G−1(z))dG−1(z) =

∫ 1

0

G−1(z)dz = 0

∫ 1

0

[∫ z

0

1

φ(u)
du − const

]

dz = 0.

Thus, unknown constant is

const =

∫ 1

0

∫ z

0

1

φ(u)
dudz =

∫ 1

0

∫ 1

x

1

φ(u)
dzdu =

∫ 1

0

1 − u

φ(u)
du =

∫ 1

0

(1 − u)fZ(u)du.

Suppose a random variable U is distributed with density fU (u) = 2(1−u), if u ∈ [0, 1],

and it is independent on X, then const = 0.5EU (fZ(U)). Thus, G−1(z) = FZ(z) −

0.5EU (fZ(U)). It follows that G(∙) is identified from its inverse function.

Note that under linearity assumption on h(X), we obtain that fY,Z|X(y, z) =

fY,Z|β′X(y, z). In addition, after obtaining functions G−1(∙) and h(∙), it is possible to

identify the joint density of swing voters:

f−δ−c,−δ+c

(
β′X + G−1(y), β ′X + G−1(z)

)
= fY,Z|β′X(y, z)g(G−1(y))g(G−1(z)).

Finally, by applying the transformation theorem, we derive the joint density of

local preferences and costs of voting, δ and c:

fδ,c(x, y) = 2f−δ−c,−δ+c(−x − y,−x + y).
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4 Applications

4.1 Counterfactuals

In this section, we show how to identify the would be voter shares if the voting

were mandatory and, hence, everyone showed up at the polling station. The model

allows straightforward calculation of this counterfactual. By definition, at each polling

station






Y = G(−δ − Xβ − c)

Z = G(−δ − Xβ + c)

⇒






−δ − Xβ − c = G−1(Y )

−δ − Xβ + c = G−1(Z)

.

If c were to be 0, then we would observe Ỹ = Z̃ = G(−δ − Xβ). Hence,

Ỹ = Z̃ = G(0.5G−1(Y ) + 0.5G−1(Z)).

4.2 Ballot Stuffing

This section discusses how to evaluate the amount of ballot stuffing using the devel-

oped model. Formally, ballot stuffing is defined as the illegal practice of one person

submitting multiple ballots during a vote in which only one ballot per person is per-

mitted. In non-democratic elections, ballot stuffing happens when the official staff

that runs the voting illegally puts a number of pre-filled ballots into the ballot box. In

addition, after the polling station closes, the staff illegally corrects the official turnout

to make it consistent with the number of votes in the ballot box. Video evidence of

ballot stuffing is publicly available for the 2017 Turkey referendum and the most of

Russian elections since 2011.

In this paper, we assume that only candidate A has an opportunity to rig the

election. In this case, the observables will be affected as follows:

Variable Y denotes the number of votes for the candidate A in a polling station.
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If q is a number of additional ballots due to fraud, then we will observe variable

Y f = Y + q.

Variable Z will not be affected as 1 − Z represents the number of votes for the

candidate B.

4.3 Identification

Theorem 3. Function g(∙) and coefficients β are identified if Assumptions 1 and 2

hold, h(X) = β′X and one of the following normalization conditions is true:

1. β1 = EX,Z
∂FZ|X(z)

∂X1 ;

2. the value of g(G−1(z)) is known at some point z0 inside the support.

The proof follows the first part of the proof of Theorem 2.

The joint distribution of local preferences and costs fδ,c(∙, ∙) is not identified due

to presence of fraud at the local level. Thus, we need some additional information.

In this paper, we offer two potential solutions: (1) costs of voting are known in each

polling station; or (2) there exists a clean (non-fraudulent) subsample of the data.

Theorem 4. If cost of voting c is known in each polling station, then the realization

of local preferences δ and the amount of fraud q are identified.

Proof. The main argument of this theorem is very simple: Notice that by the defini-

tion, Z = G(σB), where σB = −δ − h(X) + c, hence, δ = c − h(X) − G−1(Z).

By Theorem 3, h(X) and G−1(∙) are identified. If c is known, then we find δ.

Note that Y f = Y + q, where by definition Y = G(σA) and σA = −δ − h(X) − c.

Thus,

q = Y f − G(−δ − h(X) − c) = Y f − G(G−1(Z) − 2c).
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The known costs of voting might be a good assumption in situations where it is

known which variables have impact on the attendance of the voters. An example

would be the weather conditions – it is believed that heavy rainfalls affected the

turnout in the Colombian peace referendum.6 In alike cases, it is possible to relate

costs of voting to the amount of rainfall in the area. Moreover, Fujiwara et al. (2016)

show that rainfall on current and past election days affects voter turnout in the US

presidential elections. Hence, costs of voting might be estimated and predicted.

Theorem 5. The joint distribution of local preferences and costs fδ,c(∙, ∙) is identified

if fY,Z|X=Xk can be recovered from a ”clean” subsample in a region with character-

istics Xk. Moreover, if q ⊥⊥ c|X,Z, then the distribution of the amount of fraud q,

fq|X,Y f ,Z(∙), is identified at every polling station.

In some situations, a representable subsample of clean electoral data might be

available. For example, independent observers might be randomized to some polling

stations in one region. If their presence helps reduce fraud and as long as randomiza-

tion is done carefully, then the data available from these polling stations will allow

for estimation of fY,Z|Xk(y, z). However, notice that in this situation it is not pos-

sible to identify the exact amount of fraud and only the distribution conditional on

observables is available.

5 Empirical Illustration

Non-parametric identification allows for broad range of estimation procedures. Two

main approaches toward estimation would be parametric and non-parametric. In this

paper, we make parametric assumptions about distributions of the model variables,

and estimate the model with the conditional MLE. This will demonstrate how to

estimate the electoral model, counterfactuals and ballot stuffing.

6Colombia just voted no on its plebiscite for peace. Here’s why and what it means , The Washing-
ton Post, October 3, 2016.
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Below we develop an estimation procedure and apply it to evaluate the amount

of ballot stuffing during the 2011 Russia parliamentary elections in several polling

stations. The Russian political system consists of numerous parties. However, the

country’s regime is authoritarian, and the current political spectrum can be divided

into two factions: United Russia, the ruling party and all other political parties.

Hence, we combine all votes given for the various opposition parties to obtain the

number of votes for the opposition. The official results report 49.3% as the voter share

obtained by the United Russia with 60.1% turnout. Note that the below analysis is

only for illustration purposes, and the obtained results should be taken with caution 7.

5.1 Data

The main data set is the results of the 2011 Russia parliamentary elections for each

polling station. The data set is openly available on the website of the Central Electoral

Commission of the Russian Federation8. In total we use 94,795 observations after

exclusion of the voting on the foreign territory.

The choice of the unit for a region should be based on availability of data that is

being used as controls. There are no requirements regarding the region size, and a

region might consist of one polling station, if detailed information on regional char-

acteristics is available. We use a Territorial Electoral Commission (TIK) as a region

for the non-urban areas and we combine the data of several TIKs inside of the city to

form a city-region. This procedure left us with 2,483 regions. Note that such choice

of a region is not the best for Russia as TIKs do not always coincide with non-urban

regional units used by the municipalities. Hence, for proper analysis one should form

a region by including polling stations inside of the municipality rather than using the

division suggested by the Electoral Commission.

7 The proper estimation would require matching of over 90,000 data points with their municipal-
ities and collection of regional characteristics for over 2,000 municipalities, for which data is often
available in different formats. Such data collection is outside of the scope of this paper.

8http://www.izbirkom.ru/region/izbirkom
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We take the total number of voters and the average size of a polling station in a

region as regional characteristics X. We normalize them by dividing by the largest

value in the sample, hence, all values of X are between 0 and 19. Electoral variable Y

is the number of votes for the United Russia divided by the total number of voters 10

in the polling station. To obtain variable Z, we divide the number of pro-opposition

votes by the total number of voters and subtract it from 1.

We also use the data on clean polling stations from Enikolopov et al. (2013).

The authors collect the data from 156 randomly assigned independent observers in

Moscow, which revealed that even the presence of one independent observer reduced

the average share of the United Russia from 47% to 36%. We use 75 polling stations

that were reported as ”no violations” by the independent observers to constitute our

”clean” subsample.

5.2 Model

This section illustrates how the model can be estimated parametrically. Due to non-

parametric identification, any additional assumption results in overidentification and,

hence, a potentially large array of ways of estimation. Here we show only one of the

approaches. We impose assumptions about the distribution of costs of voting, and

personal and local components. Note that one could start with an assumption about

the distribution of the final data set. In that case, the logic of the estimation would

follow the non-parametric approach. The assumptions we impose below produce a

linear model, which is the simplest model for the demonstration.

Assumption 3. Suppose that σ ∼ U [−0.5, 0.5].

9Note that the proper regional characteristics should include a large number of controls such
as average income, share of old population, etc. This data can be obtained from the municipality
websites.

10To obtain the total number of voters for each polling station we add up columns n1 (the number
of registered voters) and n13 (the number of voters voted with the absentee certificates) and subtract
columns n12 (the number of absentee certificates issued by the polling station) and n15 (the number
of absentee certificates issued by the TIK) in the data set.
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Assumption 3 implies that G(x) = x + 0.5 if x ∈ [−0.5, 0.5]. This assumption au-

tomatically takes care of the necessary normalization in Theorem 2. It also guarantees

linearity of the electoral variables in their components.

Assumption 4. Suppose that




δ

c



 ∼ N








μδ

μc



 ,




σ2

δ σδ,c

σδ,c σ2
c







.

Note that Assumptions 3 and 4 imply the following.






Y = G(σA) = −δ − c − Xβ + 0.5

Z = G(σB) = −δ + c − Xβ + 0.5

⇒




Y

Z



 |X ∼ N(μX , ΣY Z),

where μX =




−μδ − μc − Xβ + 0.5

−μδ + μc − Xβ + 0.5



 and ΣY Z =




σ2

δ + 2σδc + σ2
c σ2

δ − σ2
c

σ2
δ − σ2

c σ2
δ − 2σδc + σ2

c



.

Hence, the data is conditionally normal with L + 5 parameters that we estimate by

the conditional MLE. See the Appendix for the derivation of the MLE estimators and

their asymptotics.

Table 1: Conditional MLE estimators

μδ μc β1 β2 σ2
δ σ2

c σδc

parameter -0.0699 0.1747 0.0278 1.1548 0.0252 0.0090 0.0106

standard error 0.0008 0.0004 0.0022 0.0105 0.0001 0.0001 0.0001

Table 1 presents the MLE estimates of the model parameters. Costs of voting

have average μc = 0.1747, which means that on average almost 35% of the voting

population are absent due to these costs11. The local component has negative average,

which implies that on average each locality preferences are biased toward the United

Russia. Everything else equal, the United Russia receives the support of additional

14% of the total voting population due to the local preferences component. The total

number of votes and the average size of the polling station positively affect the voter

11The official turnout is 60.1%.

19



share of the opposition, which indicates the greater support of the current regime

in rural areas. Note also that the variance of costs of voting is significantly lower

than the variance of the local component, however, the correlation between the two

variables ρδc = 0.7 is strong. This suggests that the costs of voting are greater in the

polling stations with the greater support of the opposition.

5.3 Counterfactual analysis

Evaluation of counterfactuals is straightforward. In this section, we consider the

electoral preferences of the entire population or the voter shares that the candi-

dates would receive if the voting were mandatory, i.e., c = 0. Generally, Y c
i =

G(0.5G−1(Yi) + 0.5G−1(Zi)).

In the Russian example, G(∙) is a uniform cumulative distribution function, so

the counterfactual value is simply Y c
i = 0.5Yi + 0.5Zi at each polling station. We

recalculate this value for all polling stations in the data set and obtain that the

voter share of the United Russia would be 50.03% instead of 49.31% in the 2011

parliamentary election if the voting were mandatory. Note that this result relies on

uniformity of the personal component, which possibly does not hold in the Russian

case.

5.4 Ballot Stuffing

First, note that under the proposed assumptions Z|X ∼ N(μc − μδ − Xβ + 0.5, σ2
Z).

According to the identification results, β is identifiable, while μc and μδ cannot be

separated as well as the variances. Hence, we estimate the coefficients β of the regional

characteristics X using Z only. In this case, the conditional MLE is equivalent to the

linear regression. The estimates are shown below in Table 2.

Notice that the impact of the total number of voters in the region on the electoral

variables, β1, is the same as in the MLE estimation of the entire sample. However,

the effect of the average polling station size, β2, is significantly larger. This has to
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Table 2: Estimators of β

const β1 β2

coefficient 0.7550 0.0221 1.5986

standard error 0.0008 0.0021 0.0297

be because the ballot stuffing is correlated with the average polling station size. We

believe this due to increased availability of the empty ballots in the larger polling

stations. If the ballot stuffing occurs before the closure of the polls, then the smaller

polling station is more likely to run out of ballots than a larger one.

Second, we fit the clean subsample into the normal distribution and obtain the

following estimates of the parameters in Moscow.

Table 3: Distribution parameters in Moscow

μ̂Y |X̃ μ̂Z|X̃ σ̂2
Y |X̃

σ̂2
Z|X̃

σ̂Y Z|X̃

parameter 0.1258 0.6270 0.0015 0.0023 -0.0001

standard error 0.0044 0.0056 0.0002 0.0004 0.0002

Third, we calculate estimators for the distribution parameters for a region with

the characteristics X̄ as follows.

μ̂Y |X̄ = μ̂Y |X̃ + (X̃ − X̄)β̂

μ̂Z|X̄ = μ̂Z|X̃ + (X̃ − X̄)β̂

We estimate these parameters for the city of Kostroma and obtain the values12

reported in Table 4.

12Note that the conditional covariance matrix ΣY Z is the same in each region, so we do not need
to estimate it again.
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Table 4: Distribution parameters in Kostroma

μ̂Y |X̃ μ̂Z|X̃ σ̂2
Y |X̃

σ̂2
Z|X̃

σ̂Y Z|X̃

parameter 0.1535 0.6547 0.0015 0.0023 -0.0001

standard error 0.0044 0.0056 0.0002 0.0004 0.0002

Finally, we evaluate the average amount of ballot stuffing based on observables:

E(q|X,Z, Y f ) = Y f − μY |X,Z ,

where

μY |X,Z = μY |X +
σY Z|X

σ2
Z|X

(Z − μZ|X) and σ2
Y |X,Z = σ2

Y |X −
σ2

Y Z|X

σ2
Z|X

.

See the Appendix for the asymptotic variance of this estimator.

We calculate the average ballot stuffing in two polling stations in Moscow: one

”clean” (UIK 265) and one of unknown quality (UIK 856). In addition, we randomly

pick two polling stations in Kostroma (UIK 213 and UIK 299) and evaluate the

average fraud there. The results are shown in Table 5.

Table 5: Estimators of average ballot stuffing

UIK 265 UIK 856 UIK 213 UIK 299

Y f 0.1275 0.2934 0.1499 0.1964

average ballot stuffing 0.0011 0.1749 -0.0046 0.0404

standard error 0.0045 0.0121 0.0047 0.0058

reported voter share of United Russia 25.02% 53.97% 29.30% 33.68%

expected voter share of United Russia 24.85% 32.13% 29.93% 28.74%

UIK 265 in Moscow is part of the ”clean” subsample and the fraud estimation

confirms it. Similarly, we do not report any evidence of ballot stuffing in UIK 213 in
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Kostroma. In contrast, UIK 856 in Moscow and UIK 299 in Kostroma show significant

levels of ballot stuffing. In UIK 856, the administrative staff filled in ballots for 17.49%

of the voter population of the polling station, which resulted in the increase of the

voter share of the United Russia from 32.13% to 53.97% after taking the turnout into

account. In UIK 299, the administrative personnel stuffed ballots for 4.04% of the

voter population, which augmented the United Russia voter share from 28.74% to

33.68%.

6 Conclusion

We introduced a structural model of electoral preferences that accounts for turnout

and voter share and does not rely on assumptions about preference formation. The

advantage of the model is that it is well-suited for the evaluation of a single election

and ballot stuffing. We showed how the model can be non-parametrically identified

and parametrically estimated.

The future work might develop in three dimensions. First, it is possible to develop

non-parametric estimators of the model. In this case, the estimation will rely on

the weakest assumptions, which will deliver robustness. Second, the model can be

modified to account for electoral boycott and other types of electoral fraud. Third,

it might be possible to relax some of the independence assumptions.
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A Appendix

A.1 Proof of Theorem 1

Notice that g(∙) is a derivative of G(∙), thus, ∂G−1(x)
∂x

= 1
g(G−1(x))

and by taking partial

derivatives of the equation (1), we obtain the following:

fZ|X(z) =
f−δ+c (h(X) + G−1(z))

g(G−1(z))

∂FZ|X(z)

∂X i
= f−δ+c

(
h(X) + G−1(z)

)
hi(X) = g(G−1(z))fZ|X(z)hi(X)

where hi(∙) denotes partial derivatives with respect to i-th element.

Take the last expression for pairs (X, z1) and (X, z2) and obtain the following

ratio.

∂FZ|X(z1)

∂Xi

∂FZ|X(z2)

∂Xi

=
g(G−1(z1))

g(G−1(z2))

fZ|X(z1)

fZ|X(z2)
.

Functions
∂FZ|X(z)

∂Xi and fZ|X(z) are observable, hence, we identify the ratio g(G−1(z1))
g(G−1(z2))

.

Now pick a point z0 and denote g(G−1(z0)) = t, then

g(G−1(z)) = t
g(G−1(z))

g(G−1(z0))
.

In addition, g(∙) is a density, thus,

∫ 1

0

g(G−1(z))dz = t

∫ 1

0

g(G−1(z))

g(G−1(z0))
dz = 1,

implying that t is identified together with g(G−1(z)).

Identification of g(∙) and G−1(∙) under Eσ = 0 is shown in detail in Theorem 2.

Now it is possible to identify the joint density of swing voters: Fix X at the value
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X0, then

f−δ−c,−δ+c

(
h + G−1(y), h + G−1(z)

)
= fY,Z|X0(y, z)g(G−1(y))g(G−1(z)).

Finally, by applying the transformation theorem, we derive the joint density of

local preferences and costs of voting, δ and c:

fδ,c(x, y) = 2f−δ−c,−δ+c(−x − y,−x + y).

A.2 Proof of Theorem 5

Note that

f−δ−c,−δ+c

(
h(Xk) + G−1(y), h(Xk) + G−1(z)

)
= fY,Z|X=Xk(y, z)g(G−1(y))g(G−1(z)).

By Theorem 3, h(X) and g(∙) are identified. It also implies that G−1(∙) and g(G−1(∙))

can be recovered (see proof of Theorem 2). Thus, the only part that prevents us from

identifying f−δ−c,−δ+c(∙, ∙) is fY,Z|X=Xk(y, z), and the existence of the ”clean” data

solves this problem. Finally, fδ,c(∙, ∙) can be easily obtained from

fδ,c(x, y) = f−δ−c,−δ+c(−x − y,−x + y).

Also note that fY,Z|X(∙, ∙) is identified for any region:

fY,Z|X(y, z) =
f−δ−c,−δ+c (h(X) + G−1(y), h(X) + G−1(z))

g(G−1(y))g(G−1(z))
.

Notice that the condition q ⊥⊥ c|X,Z is equivalent to Y ⊥⊥ q|X,Z. In addition,
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we observe Ȳ = Y + q at every polling station and we know fY |X,Z(∙). Hence,

Fq|X,Ȳ ,Z(t) = P (q ≤ t|Y + q = Ȳ , X, Z) = P (Ȳ − Y ≤ t|q = Ȳ − Y,X,Z) = P (Y ≥ Ȳ − t|X,Z)

= 1 − FY |X,Z(Ȳ − t) = 1 − FY |X,Z(Ȳ − t).

Thus, cdf Fq|X,Ȳ ,Z(∙) is identified.

A.3 MLE derivations

In this section, we derive MLE estimators of the structural model for the case of

jointly normal electoral variables. Hence, Y, Z|X ∼ N(μ, Σ), where μ =




μY

μZ



 and

Σ =




σ2

Y σY Z

σY Z σ2
Z



. The model structure implies that

μY = −μδ − μc − Xβ + 0.5

μZ = −μδ + μc − Xβ + 0.5

σ2
Y = σ2

δ + 2σδ,c + σ2
c

σ2
Z = σ2

δ − 2σδ,c + σ2
c

σY Z = σ2
δ − σ2

c .

Our purpose is to estimate θ = (μδ, μc, β
′, σ2

δ , σ
2
c , σδ,c)

′.

First, we write down the log-likelihood of the data:

logL = −n log(2π) − 0.5n log |ΣY Z | − 0.5|ΣY Z |
−1

N∑

i=1

[
σ2

Z(Yi + μδ + μc + Xiβ − 0.5)2−

−2σY Z(Yi + μδ + μc + Xiβ − 0.5)(Zi + μδ − μc + Xiβ − 0.5) + 2σ2
Y (Zi + μδ − μc + Xiβ − 0.5)2

]

By taking partial derivatives, we get the following system of equations.
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(σ2
c − σδ,c)

N∑

i=1

Yi + (σ2
c + σδ,c)

N∑

i=1

Zi + 2σ2
c

N∑

i=1

Xiβ + 2n((μδ − 0.5)σ2
c − μcσδ,c) = 0

(σ2
δ − σδ,c)

N∑

i=1

Yi − (σ2
δ + σδ,c)

N∑

i=1

Zi + 2n(μcσ
2
δ − (μδ − 0.5)σδ,c) = 0

(σ2
c − σδ,c)

N∑

i=1

Xj
i Yi + (σ2

c + σδ,c)
N∑

i=1

Xj
i Zi + 2σ2

c

N∑

i=1

Xj
i Xiβ+

+2((μδ − 0.5)σ2
c − μcσδ,c)

N∑

i=1

Xj
i = 0 for j = 1, k.

N∑

i=1

[σδ,c(Yi − Zi + 2μc) − σ2
c (Yi + Zi + 2μδ + 2Xiβ − 1)]2 = 4n|Σδ,c|σ

2
c

N∑

i=1

[σ2
δ (Yi − Zi + 2μc) − σδ,c(Yi + Zi + 2μδ + 2Xiβ − 1)]2 = 4n|Σδ,c|σ

2
δ

N∑

i=1

[σ2
δσδ,c(Yi − Zi + 2μc)

2 − (σ2
δ,c + σ2

cσ
2
δ )(Yi − Zi + 2μc)(Yi + Zi + 2μδ + 2Xiβ − 1)+

+σ2
cσδ,c(Yi + Zi + 2μδ + 2Xiβ − 1)2] = 4n|Σδ,c|σδ,c

Denote ai = Yi − Zi + 2μc and bi = Yi + Zi + 2μδ + 2Xiβ − 1, then the above

system can be rewritten as follows.

σ2
c

N∑

i=1

bi − σδ,c

N∑

i=1

ai = 0 (5)

σ2
δ

N∑

i=1

ai − σδ,c

N∑

i=1

bi = 0 (6)
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σ2
c

N∑

i=1

Xj
i bi − σδ,c

N∑

i=1

Xj
i ai = 0 for j = 1, k (7)

σ2
δ,c

σ2
c

N∑

i=1

a2
i − 2σδ,c

N∑

i=1

aibi + σ2
c

N∑

i=1

bi = 4n|Σδ,c| (8)

σ2
δ

N∑

i=1

a2
i − 2σδ,c

N∑

i=1

aibi +
σ2

δ,c

σ2
δ

N∑

i=1

bi = 4n|Σδ,c| (9)

σ2
δ

N∑

i=1

a2
i −

(

σδ,c +
σ2

δσ
2
c

σδ,c

) N∑

i=1

aibi + σ2
c

N∑

i=1

bi = 4n|Σδ,c| (10)

First, note that Equation (5) and Equation (6) give us
∑N

i=1 ai =
∑N

i=1 bi = 0 as

long as |Σδ,c| 6= 0. Hence, we obtain that μ̂c = 0.5(Z̄ − Ȳ ) and μ̂δ = 0.5(1 − Ȳ − Z̄ −

2X̄β). By plugging these values back into ai and bi, we derive

ai = (Yi − Ȳ ) − (Zi − Z̄)

bi = (Yi − Ȳ ) + (Zi − Z̄) + 2(Xi − X̄)β.

Note that ai depends only on the observable data, while β is the only parameter

vector in bi. Then by subtracting Equation (8) from Equation (9), we get
∑N

i=1 b2
i =

σ2
δ

σ2
c

∑N
i=1 a2

i and plug it into Equation (8) and Equation (10), obtaining
∑N

i=1 aibi =

σδ,c

σ2
c

∑N
i=1 a2

i . Now by plugging it back into Equation (8) or Equation (10), we derive
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∑N
i=1 a2

i = 4nσ2
c ,
∑N

i=1 aibi = 4nσδ,c, and
∑N

i=1 b2
i = 4nσ2

δ . Hence, we have

σ̂2
c =

1

4n

N∑

i=1

((Yi − Ȳ ) − (Zi − Z̄))2

σ̂2
δ =

1

4n

N∑

i=1

((Yi − Ȳ ) + (Zi − Z̄) + 2(Xi − X̄)β̂)2.

Now we use k equations eq. (7) together with
∑N

i=1 aibi = 4nσδ,c to get the system

of k+1 linear equations with k+1 unknowns, which are β and σδ,c, then




β̂

σ̂δ,c



 = A−1b,

where A is a (k + 1) × (k + 1) matrix with the following elements:

At,m = 2σ̂2
c

N∑

i=1

X t
i (X

m
i − X̄m) if t,m = 1, k

Ak+1,m = 2
N∑

i=1

((Yi − Ȳ ) − (Zi − Z̄))(Xm
i − X̄m) if m = 1, k

Am,k+1 = −
N∑

i=1

X t
i ((Yi − Ȳ ) − (Zi − Z̄)) if t = 1, k

Ak+1,k+1 = −4N

and b is a vector with k + 1 elements:

bt = −σ̂2
c

N∑

i=1

Xj
i ((Yi − Ȳ ) − (Zi − Z̄)) if t = 1, k

bk+1 = −
N∑

i=1

((Yi − Ȳ )2 − (Zi − Z̄)2).

Now we are left to derive the asymptotic variance of the MLE estimators. Define
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the score function as s(Y, Z|X, θ) =
∂ log fY,Z|X(Y,Z)

∂θ
, which is (k + 5)-vector as follows.























− 1
2|Σδ,c|

((σ2
c − σδ,c)Y + (σ2

c + σδ,c)Z + 2(σ2
cXβ + (μδ − 0.5)σ2

c − μcσδ,c))

− 1
2|Σδ,c|

((σ2
δ − σδ,c)Y − (σ2

δ + σδ,c)Z − 2(σδ,cXβ + (μδ − 0.5)σδ,c − μcσ
2
δ ))

− X1

2|Σδ,c|
((σ2

c − σδ,c)Y + (σ2
c + σδ,c)Z + 2(σ2

cXβ + (μδ − 0.5)σ2
c − μcσδ,c))

...

− Xk

2|Σδ,c|
((σ2

c − σδ,c)Y + (σ2
c + σδ,c)Z + 2(σ2

cXβ + (μδ − 0.5)σ2
c − μcσδ,c))

− σ2
c

2|Σδ,c|
+ 1

8|Σδ,c|2
(σδ,c(Y − Z + 2μc) − σ2

c (Y + Z + 2μδ + 2Xβ − 1))
2

− σ2
δ

2|Σδ,c|
+ 1

8|Σδ,c|2
(σ2

δ (Y − Z + 2μc) − σδ,c(Y + Z + 2μδ + 2Xβ − 1))
2

σδ,c

|Σδ,c|
− 1

4|Σδ,c|2

(
σ2

δσδ,c(Y − Z + 2μc)
2 − (σ2

δ,c + σ2
δσ

2
c )(Y − Z + 2μc)(Y + Z + 2μδ + 2Xβ − 1) + σ2

cσδ,c(Y + Z + 2μδ + 2Xβ − 1)2
)























Then the asymptotic variance of the MLE estimator can be calculated as the

inverse of the information, i.e., Vθ = (E[s(Y, Z|X)s(Y, Z|X)′])−1. We use the analog

estimator of the variance in our calculations.

A.4 Derivation of asymptotics of the clean subsample esti-

mators

We assume that




Y

Z



 |X = Xk ∼ N (μ, Σ), where μ =




μY

μZ



 and Σ =




σ2

Y σY Z

σY Z σ2
Z



.

In addition, the density is estimated parametrically:

fY,Z|X=Xk(y, z) =
1

2π|Σ|0.5
exp





−

1

2








y

z



− μ





′

Σ−1








y

z



− μ









.

Five parameters are estimated from the clean data θ = (μY , μZ , σY , σZ , σY Z)′ as

follows.

μ̂Y =
1

Nk

Nk∑

i=1

Yi = Ȳ and μ̂Z =
1

Nk

Nk∑

i=1

Zi = Z̄
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σ̂2
Y =

1

Nk − 1

Nk∑

i=1

(Yi − Ȳ )2 and σ̂2
Z =

1

Nk − 1

Nk∑

i=1

(Zi − Z̄)2

σ̂Y Z =
1

Nk − 1

Nk∑

i=1

(Yi − Ȳ )(Zi − Z̄).

We want to derive VfK and show that
√

n(f̂Y,Z|X=Xk(y, z) − fY,Z|X=Xk(y, z))
d
→

N(0, VfK ).

First, we trivially use multivariate CLT and obtain that
√

n(θ̂ − θ)
d
→ N(0, Vθ).

To derive Vθ, note the following: μ̂Y ∼ N
(
μY ,

σ2
Y

Nk

)
and μ̂Z ∼ N

(
μZ ,

σ2
Z

Nk

)
, and

(Nk − 1)σ̂2
Y

σ2
Y

∼ χ2(Nk − 1) ⇒ V

(
(Nk − 1)σ̂2

Y

σ2
Y

)

= 2(Nk − 1) ⇒ V (σ̂2
Y ) =

2σ4
Y

Nk − 1
.

By analogy, V (σ̂2
Z) =

2σ4
Z

Nk−1
. In addition, due to independence cov(μ̂Y , σ̂2

Y ) = cov(μ̂Z , σ̂2
Z) =

0. And cov(μ̂Y , μ̂Z) = σY Z

Nk
.

Due to normality μ̂Y ⊥⊥ (Yi−Ȳ ), μ̂Y ⊥⊥ (Zi−Z̄), μ̂Z ⊥⊥ (Yi−Ȳ ) and μ̂Z ⊥⊥ (Zi−Z̄).

Hence, cov(μ̂Y , σ̂2
Z) = cov(μ̂Z , σ̂2

Y ) = cov(μ̂Y , σ̂Y Z) = cov(μ̂Z , σ̂Y Z) = 0.

Thus, we are left to obtain V (σ̂Y Z), cov(σ̂2
Y , σ̂2

Z), cov(σ̂2
Y , σ̂Y Z) and cov(σ̂2

Z , σ̂Y Z).

To calculate those, we will need the following elements.

E(YiZi) = σY Z + μY μZ

E(Y 2
i Zi) = (σ2

Y + μ2
Y )μZ + 2μY σY Z

E(YiZ
2
i ) = (σ2

Z + μ2
Z)μY + 2μZσY Z

E(Y 2
i Z2

i ) = (σ2
Y + μ2

Y )μ2
Z + (σ2

Y + μ2
Y )σ2

Z + 4μY μZσY Z + 2σ2
Y Z

Hence,

V (YiZi) = (σ2
Y + μ2

Y )μ2
Z + (σ2

Y + μ2
Y )σ2

Z + 4μY μZσY Z + 2σ2
Y Z − (σY Z + μY μZ)2 =

= σ2
Y μ2

Z + σ2
Y σ2

Z + μ2
Y σ2

Z + 2μY μZσY Z + σ2
Y Z .

33



By analogy, one can obtain

V (Ȳ Z̄) =
1

Nk

σ2
Y μ2

Z +
1

N2
k

σ2
Y σ2

Z +
1

Nk

μ2
Y σ2

Z +
2

Nk

μY μZσY Z +
1

N2
k

σ2
Y Z .

Also

cov(YiZi, YiZj) = E(Y 2
i Zi)μZ − E(YiZi)μY μZ = ((σ2

Y + μ2
Y )μZ + 2μY σY Z)μZ−

−(σY Z + μY μZ)μY μZ = σ2
Y μ2

Z + μY μZσY Z

and

cov(YiZi, Ȳ Z̄) =
1

N2
k

cov

(

YiZi,
∑

i

∑

j

YiZj

)

=
1

N2
k

cov

(

YiZi, YiZi +
∑

j 6=i

YiZj +
∑

j 6=i

YjZi

)

=
1

N2
k

(V (YiZi) + (Nk − 1)cov(YiZi, YiZj) + (Nk − 1)cov(YiZi, YjZi))

=
1

N2
k

(σ2
Y Z + σ2

Y σ2
Z + Nkσ

2
Y μ2

Z + Nkσ
2
Zμ2

Y + 2NkμY μZσY Z).

Now we can derive V (σ̂Y Z):

V (σ̂Y Z) =
1

(Nk − 1)2
(NkV (YiZi) + N2

kV (Ȳ Z̄) − 2N2
k cov(YiZi, Ȳ Z̄))

=
1

(Nk − 1)2
(Nk(σ

2
Y μ2

Z + σ2
Y σ2

Z + μ2
Y σ2

Z + 2μY μZσY Z + σ2
Y Z) + Nkσ

2
Y μ2

Z+

+σ2
Y σ2

Z + Nkμ
2
Y σ2

Z + 2NkμY μZσY Z + σ2
Y Z − 2(σ2

Y Z + σ2
Y σ2

Z + Nkσ
2
Y μ2

Z+

+Nkσ
2
Zμ2

Y + 2NkμY μZσY Z)) =
1

Nk − 1
(σ2

Y σ2
Z + σ2

Y Z).

In order to find covariances of the estimators of variances we will need the follow-
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ing.

cov(Y 2
i , Z2

i ) = 4μY μZσY Z + 2σ2
Y Z

cov(Z2
i , (Ȳ )2) =

1

N2
k

cov

(

Z2
i ,
∑

i

Y 2
i +

∑

j

∑

k 6=j

YjYk

)

=
1

N2
k

cov
(
Z2

i , Y
2
i + 2YiYj

)

=
1

N2
k

(4NkμY μZσY Z + 2σ2
Y Z)

By analogy, cov(Y 2
i , (Z̄)2) = 1

N2
k
(4NkμY μZσY Z+2σ2

Y Z) and cov((Ȳ )2, (Z̄)2) = 1
N2

k
(4NkμY μZσY Z+

2σ2
Y Z). Hence,

cov(σ̂2
Y , σ̂2

Z) =
1

(Nk − 1)2

(
Nkcov(Y 2

i , Z2
i ) − N2

k cov(Z2
i , (Ȳ )2) − N2

k cov(Y 2
i , (Z̄)2) + N2

k cov((Ȳ )2, (Z̄)2)
)

=
1

(Nk − 1)2
(Nk(4μY μZσY Z + 2σ2

Y Z) − 4NkμY μZσY Z − 2σ2
Y Z − 4NkμY μZσY Z − 2σ2

Y Z+

+4NkμY μZσY Z + 2σ2
Y Z) =

2

Nk − 1
σ2

Y Z .

Finally, for the last covariance, we need to calculate the following values.

E(Y 3
i Zi) = (σ2

Y + μ2
Y )μY μZ + 2μY μZσ2

Y + 3(σ2
Y + μ2

Y )σY Z

cov(Y 2
i , YiZi) = (σ2

Y + μ2
Y )μY μZ + 2μY μZσ2

Y + 3(σ2
Y + μ2

Y )σY Z − (σ2
Y + μ2

Y )(σY Z + μY μZ)

= 2μY μZσ2
Y + 2(σ2

Y + μ2
Y )σY Z

cov(YiZi, (Ȳ )2) =
1

N2
k

cov(YiZi, Y
2
i + 2(Nk − 1)YiYj) =

1

N2
k

(2μY μZσ2
Y + 2(σ2

Y + μ2
Y )σY Z

+2(Nk − 1)μY (σ2
Y μZ + μY σY Z)) =

1

N2
k

(2NkμY μZσ2
Y + 2Nkμ

2
Y σY Z + 2σ2

Y σY Z)
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cov(Y 2
i , Ȳ Z̄) =

1

N2
k

cov(Y 2
i , YiZi + (Nk − 1)YiZj + (Nk − 1)YjZi)

=
1

N2
k

(2μY μZσ2
Y + 2(σ2

Y + μ2
Y )σY Z + (Nk − 1)μZ((μ3

Y + 3μY σ2
Y ) − μY (μ2

Y + σ2
Y ))

+(Nk − 1)((σ2
Y + μ2

Y )μY μZ + 2μ2
Y σY Z − μY μZ(σ2

Y + μ2
Y )))

=
2

N2
k

(NkμY μZσ2
Y + σ2

Y σY Z + Nkμ
2
Y σY Z)

cov((Ȳ )2, Ȳ Z̄) =
2

N2
k

(NkμY μZσ2
Y + σ2

Y σY Z + Nkμ
2
Y σY Z)

Thus,

cov(σ̂2
Y , σ̂Y Z) =

1

(Nk − 1)2
(Nkcov(Y 2

i , YiZi) − N 2
k cov(YiZi, (Ȳ )2) − N2

k cov(Y 2
i , Ȳ Z̄) + N2

k cov((Ȳ )2, Ȳ Z̄))

=
1

(Nk − 1)2
(2NkμY μZσ2

Y + 2Nk(σ
2
Y + μ2

Y )σY Z − 2NkμY μZσ2
Y − 2Nkμ

2
Y σY Z − 2σ2

Y σY Z

−2NkμY μZσ2
Y − 2σ2

Y σY Z − 2Nkμ
2
Y σY Z + 2NkμY μZσ2

Y + 2σ2
Y σY Z + 2Nkμ

2
Y σY Z)

=
2

Nk − 1
σ2

Y σY Z .

By analogy, cov(σ̂2
Z , σ̂Y Z) = 2

Nk−1
σ2

ZσY Z . Finally, we obtain Vθ:

Vθ =














σ2
Y σY Z 0 0 0

σY Z σ2
Z 0 0 0

0 0 2σ4
Y 2σ2

Y Z 2σY Zσ2
Y

0 0 2σ2
Y Z 2σ4

Z 2σY Zσ2
Z

0 0 2σY Zσ2
Y 2σY Zσ2

Z σ2
Y Z + σ2

Y σ2
Z














.

Hence,
√

Nk(θ̂ − θ)
d
→ N(0, Vθ).
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A.5 Estimation of parameters of other than the clean sub-

sample region

In the clean subsample, the distribution parameters suggest that






μY |X̃ = −μδ − μc − X̃β + 0.5

μZ|X̃ = −μδ + μc − X̃β + 0.5

.

On the other hand, distribution means of the electoral variables with the regional

characteristics X̄ can be calculated similarly, i.e.,






μY |X̄ = −μδ − μc − X̄β + 0.5

μZ|X̄ = −μδ + μc − X̄β + 0.5

, hence,






μY |X̄ = μY |X̃ + (X̃ − X̄)β

μZ|X̄ = μZ|X̃ + (X̃ − X̄)β

.

We use analog estimators in this case. The distribution variance estimator is the

same as in the clean subsample due to equality of the conditional variances in the

normal distribution. Thus, we are left to derive the asymptotic covariance of all the

estimators together. Note that the clean subsample parameters are estimated from

the clean subsample, which is a very small part of the entire sample (75 points out of

94,795), hence, the estimators variance will be dominated by the estimators derived

from the clean subsample, and the covariance between estimators can be ignored.

Thus, the asymptotic variance is

Vθ|X̄ =














σ2
Y + (X̃ − X̄)Vβ(X̃ − X̄)′ σY Z + (X̃ − X̄)Vβ(X̃ − X̄)′ 0 0 0

σY Z + (X̃ − X̄)Vβ(X̃ − X̄)′ σ2
Z + (X̃ − X̄)Vβ(X̃ − X̄)′ 0 0 0

0 0 2σ4
Y 2σ2

Y Z 2σY Zσ2
Y

0 0 2σ2
Y Z 2σ4

Z 2σY Zσ2
Z

0 0 2σY Zσ2
Y 2σY Zσ2

Z σ2
Y Z + σ2

Y σ2
Z














.

Hence,
√

Nk(θ̂X̄ − θX̄)
d
→ N(0, Vθ|X̄).
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Lemma 1. Suppose that

√
N



























μ̂Y

μ̂Z

σ̂2
Y

σ̂2
Z

σ̂Y Z














−














μY

μZ

σ2
Y

σ2
Z

σY Z



























d
→ N(0, Vθ),

μY |Z = μY + σY Z

σ2
Z

(Z − μZ) and σ2
Y |Z = σ2

Y − σ2
Y Z

σ2
Z

, then

√
N








μ̂Y |Z

σ̂2
Y |Z



−




μY |Z

σ2
Y |Z







 d
→ N(0,W ),

where W = ΓVθΓ
′ and

Γ =




1 −σY Z

σ2
Z

0 −σY Z(Z−μZ)

σ4
Z

Z−μZ

σ2
Z

0 0 1 −σ2
Y Z

σ4
Z

−2σY Z

σ2
Z



 .

Proof. The proof is straightforward from the Δ-method.
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