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function of payoffs, our theory provides a novel and unified account
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provide new directions for decision theories based on the concept

of decision utility.
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I. Introduction

Economists always have to make different assumptions about the marginal util-

ity in their models to deal with different risk attitude(Schoemaker 1982). This

demand not only reflects the existence of different utility functions in correspond-

ing decision contexts but may also reflect that the neural system encoding decision

utility cannot use an identical scale to encode utility in all decision contexts. The

neural system cannot keep this scale identical in different decision contexts, it

also cannot keep it identical on different goods which are identical in nature but

only different in the relationship with the decision maker. The scale of encoding

utility will be adapted to the decision context. The need for such adaptation

comes from the conflict between the limited amount of neural resource and a

relatively unlimited amount of objects to be encoded. This conflict becomes a

problem because a perceptible encoding requires at least a certain amount of

neural resources. If we keep the scale identical in all decision contexts, we can

not make a meaningful decision in most of the contexts based on our perception,

because the difference between most options could not be perceived. Therefore,

an adaptive encoding system is necessary for effective decision making. Marginal

utility decreasing or increasing is the result of this meaningful adaptive encoding

according to the decision contexts. In this paper, we try to build an analytical

framework to model how a neural system with limited representation resources

adapt its encoding scale to encode unlimited objects and the consequence of this

adaption on risk attitude.

Attention is a mechanism, intentionally or unintentionally used by the neural

system, to guide its adaptive encoding in the decision context to avoid the conflict

from the limitations of the neural system mentioned above. The encoding system

adjusts the distribution of neural resources by taking two dimensions of attention

into account. The first one is to allocate more resources when the position is nearer

from the attention and to allocate lesser when the position is farther from the

attention, according to the location of attention; The second is to allocate more



VOL. NO. ADAPTIVE THEORY 3

resources to the position nearer from attention when the degree of attention is

higher, according to the degree of attention. Similarly, we consciously or passively

experienced the adjustment of visual attention every day. We not only adjust

the location of our visual attention, but we also adjust our distance from the

object being attended(Bundesen 1990). Our analytical framework can be used to

study how the decision-making context affects the distribution of neural resources

by adjusting the two dimensions of attention, and thus the effects of individual

utility functions and behaviors. We first apply some of the robust attention

determination mechanisms found in psychological research to make an assumption

about attention determination in a given decision context, based on which we give

a prediction about risk attitude in that context. We also use the assumption that

individuals avoid imperceptible encoding to determine the degree of attention,

which tells the story about risk coefficiency.

The location of attention is usually determined by two mechanisms, the top-

down mechanism, and the bottom-up mechanism(Buschman and Miller 2007).

We will note that the default position is assumpted at 0, determined by a top-

down mechanism, which may be a goal to earn some money in the experiment. We

then focused on the impact of bottom-up mechanisms on attention. We assume

that a potential extreme outcome may capture attention when its salience is big

enough. We define the salience by the ratio of the utility of potential outcome

to the utility of the expected value, under the initial utility function with the

default attention. When the salience is large enough, attention may be captured

by the potential extreme outcome, leading to an attention shifting. Otherwise, it

remains unchanged. This assumption about attention determination tells a good

story about the common consequence effect and the common ratio effect. It also

has the ability to distinguish them from the peanut effect, for the salience is the

key to attention shifting. Our assumptions about the determination of attention

under this framework can also be used for studying the reference point in the

Prospect theory. Our results also enrich the study of the Prospect theory.
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In our framework, a change in the degree of attention leads to a change in the

degree of concentration of neural resources distribution, which will be reflected

in the change in the utility of a given payoff. A change in utility of a given

payoff is an external manifestation of a change in neural resources distribution.

This means that almost any change in utility of a given payoff will inevitably be

an indication of a change in the utility function. This will lead to a change in

the absolute risk aversion coefficient(ARAC). When the utility of a given payoff

increases, the ARAC increases. When the utility decreases, the ARAC decreases.

We conclude that any discount in the utility of a given payoff caused by external

factors will lead to a reduction in the ARAC. For example, our framework predicts

that time discounting will lead to a less risk aversion. These predictions cannot

be explained by the Prospect theory. This is a new direction that a theory can

contribute to and our framework did well in this direction.

In terms of changes in the utility of a given value, we first consider the effect of

the upper limit of the decision set on the degree of adaptation. On the assumption

that the neural resources for representation are limited, the change of the utility

of a given value means a change of the distribution, which finally affects the

individual’s absolute risk aversion coefficient. In our theory, the change of the

utility of a given value represents the adaptation of the distribution of resources.

Thus, the size of this utility represents the degree of attention. When the upper

limit of the decision set increases, the utility of a given value will decrease, so

the absolute risk aversion coefficient of the decision maker will decrease. On the

contrary, when the upper limit of the decision set decreases, the utility of the

given value will increase, so the absolute risk aversion coefficient of the decision

maker will increase. This property of a change in the utility of a given value

shows a new approach to understand Rabin’s criticism of expected utility theory.

Rabin’s critique is based on the assumption of a stable utility function, which

implies that the distribution is stable. In this case, all the effects induced by

changes in utility must be attributed to a subjective probability function. Our
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theory, however, argues that some unusual decision-making practices and unusual

value to the decision maker result in a change of neural resources distribution,

leading to a violation of the expected utility theory.

The encoding system will adapt to the size of payoff values in the degree of at-

tention. Generally, when the payoff is large, the degree of attention does not need

to be too high to make the payoff be perceived. When the payoff goes smaller, the

degree of attention goes low correspondingly. Therefore, when the payoff is differ-

ent, the difference in the degree of attention will result in a difference in ARAC.

When the upper limit of the decision set increases, the utility of a given value

will decrease, so the absolute risk aversion coefficient of the decision maker will

decrease. On the contrary, when the upper limit of the decision set decreases, the

utility of the given value will increase, so the absolute risk aversion coefficient of

the decision maker will increase. This property of a change in the utility of a given

value shows a new approach to understand Rabin’s criticism of expected utility

theory. Rabin’s critique is based on the assumption of a stable utility function,

which implies that the distribution is stable. In this case, all the effects induced

by changes in utility must be attributed to a subjective probability function. Our

theory, however, argues that some unusual decision-making practices and unusual

value to the decision maker result in a change of neural resources distribution,

leading to a violation of the expected utility theory.

The article proceeds as follows. In Section II, we will first propose our model

and explain the psychophysiology foundation of this model. In Section III, we

will demonstrate the most basic economic implications of this theory. In Section

IV, we consider the determination of attention, and on this basis explain some

common violations of the theory of expected utility. In Section V, we will consider

the degree of attention changes corresponding to the stake sizes of the tasks. In

this section, we will also explain the new decision situations which our theory can

be applied in. In Section VI, we will discuss the advantages and disadvantages of

our theory as a descriptive model, as well as the implications for the normative
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model. Section VII concludes.

II. The Model

A. The Decision Model

Our theory is that the individual chooses between lotteries so as to maximize

the mathematical expectation of decision utility. We may define the expected

utility Ei of lottery Li, by:

Ei =
∑
j

ujpj

Faced with a choice between lotteries Li and Lk, the individual will prefer Li,

prefer Lk or be indifferent between them according to whether Ei is greater than,

less than or equal to Ek. This model of expected value is identical to the classical

expected utility model in its expression. The difference is that the utility in our

theory has different properties compared with the utility in the expected utility

model. We will explicate our ideas about utility below.

B. Utility Function, Attention and Density Function

Our theory assumes that the decision utility is encoded by the neural activity

in the relevant brain regions and this process consumes an amount of limited neu-

ral activity resource. This assumption is based on the fact that neural activity

can reveal individual preferences in advance, which is one of the most important

findings and foundations in neuroeconomics(Smith et al. 2013). This assump-

tion is also supported by other findings in related topics in neuroscience, that

is, the subjective perceptions reported by individuals in multiple sensory systems

are linearly related to the measured neural activity(Johnson, Hsiao, and Yosh-

ioka 2002,Anderson et al. (2003),Bartels and Zeki (2004),Jackson, Meltzoff, and

Decety (2005),Sabatinelli et al. (2005),Walter et al. (2008)). Decision utility is

the subjective motivation intensity perceived by the individual, and it is a kind
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of perception. Therefore, we assume that the intensity of neural activation can

encode the strength of decision utility, and the two have a linear relationship.

The decision utility that a given object can cause can be reflected in the amount

of neural resource needed to encode the utility.

On this assumption, in order to encode the decision utility of a given added

value v, v ∈ R, the neural resource must be distributed over the entire real space

R in which the added value lies. The neural resource accumulated on this added

value under this distribution, the intensity of the neural activity caused by it, is

the decision utility of this added value. If we denote this distribution by density

function f(x), the decision utility of the added value can be precisely defined as

the integral of the distribution function over the range of the added value.

Definition 1: Assuming that the current payoff value is w, the decision utility

of an added value v to w is given by the integral of density function f(x) over

that interval of [w,w + v], which is

U(v|w) =

∫ w+v

w
f(x)d(x)

We should carefully examine the characteristics of the distribution of neural

resources, i.e., the features of the density function f(x). This density function

f(x) is mathematically equivalent to the marginal utility function in previous

studies because it is exactly the first derivative of the utility function. However,

the marginal utility functions in those models are often relatively simple and less

studied. We highlight this density function here because we need to pay special

attention to the limitations and features of this function, which is key to differ our

theory from previous theories. First, we will list four basic assumptions about the

density function. We will then review the literature on the psycho-physiological

foundations of these assumptions.

Definition 2: Attention is a mechanism, intentionally or unintentionally used

by the neural system, to guide its adaptive encoding in the decision context, by

allocating more neural resource to the location closer to the attention point, to
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enhance the discrimination of the attention point.

Definition 2’: The degree of Attention. The degree of attention is higher when

more neural resources have been allocated to the nearby of the attention point.

A higher degree of attention means a higher degree of neural resource concen-

tration. We now turn to the definition of the density function. The definition we

give for the density function is as follows:

Definition 3. The neural resource density function for a given context is a

continuous and bounded function f(x) that satisfies four conditions:

A1. Non-negativity. Given ∀a ∈ R and ∀d ∈ R+, we have f(x) ≥ 0.

A2. Strictly Unimodality. Given any a, the first derivative of f(x) is positive

for x < a, negative for x > a, and zero only at x = a.

A3. Finity. The neural resource can be used to represent stimulus is limited is

unity, which is ∫ +∞

−∞
f(x)dx = 1

A4. A minimum resource requirement for perception. If a difference, for exam-

ple, n −m, should be perceived, the minimum resource allocated on this range

should be larger than a given amount e.

∫ n

m
f(x) > e

These four basic assumptions are actually common constraints for all neu-

ral perceptions of the external world. For example, our senses(hearing, vision,

taste, smell, touch) related neural system satisfy these four constraints. The psy-

chophysiology foundation behind these assumptions is therefore quite solid, as we

will discuss in the next section. We will then give an example function that sat-

isfies the above assumptions to provide an intuitive explanation of the economic

implications of these hypotheses.
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C. An Example Utility Function

Based on assumptions A1-A3, we give an example of the density function.

Assumption A4 is not like A1-A3, which is a factor that an individual needs to

consider when he/she wants to percept a difference, so it is not a feature of the

distribution function itself. And this assumption is not considered in the example

function. However, we reserve a parameter d in this density function, which

can give us the possibility to consider assumption A4 later. In this function, a

indicates the location of attention and d indicates the degree of attention. As

follows:

f(x) =
d

(x− a)2 + d2

This density function satisfies assumptions A1-A3 required by Definition 1 ∀a ∈

R and ∀d ∈ R+.

For instance, in this formular, because d > 0, and for ∀x and ∀a, (a− x)2+d2 >

0, we have f(x) > 0 for all a in the real numbers domain, which is requirement

1, Non-negativity.

Therefore, based on this density function, we have a utility for a value x:

U(x) =

∫ x

0
f(x)d(x) = arctan((x− a)/d) + arctan(a/d)

If we want to reflect assumption A4 in this density function, we can adapt d

for a given combination x, a to satisfy A4.

D. Psychophysiology Foundations of the distribution

In this part, we will review some literature on the psychophysiology foundation

of the four assumptions of distribution. Those assumptions are of great impor-

tance to guide how the neural resource is distributed on the whole range of the

external world. Therefore, it is needed to clarify why we should build our theory

on these assumptions.
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Minimum Requirement for Perception

A large number of neuroscience experiments, psychological measurements, and

neural measurements, in particular, use of psychometric-neurometric comparisons

(correlational research), investigate both the psychophysical responses and neuro-

biological measurements of a particular, externally quantifiable variable and test

whether the influences are in a similar manner (Kable and Glimcher 2007). One

example is to assess the relationship between the contrast increment threshold

and neural activity in the human visual cortex. Boynton et al. (1999) measured

BOLD signals in the visual cortex and associated them with the changes in visual

stimulus contrast. They find that the contrast increment is detected by human

subjects when the fMRI responses in the early visual areas increased by a criterion

amount, a visual barrier. Furthermore, while two different contrast levels evoke

different magnitudes of fMRI responses, subjects are only able to discriminate

these two contrast levels when the BOLD signal difference in the visual cortex is

larger than a specific value. Such evidence attests to the ability of BOLD signal

changes as reasonable predictors of variations in contrast threshold. It also is a

piece of evidence to suppose the A4.

Limited Resource

The neural resource used to represent utility is limited. The limitation of repre-

sentation resource comes from two aspects. The first one is imposed by the fixed

amount of overall energy available to the brain and by the high energy cost of the

neuronal activity. Neurons firing relies on metabolic resources (oxygen and glu-

cose) carried by the bloodstream. The metabolic cost of brain activity is high, so

the maximum frequency of firing of individual neurons is limited. This literature

indicates that firing rates in a system result from a controlled usage of metabolic

resources. The second limitation is imposed by the fixed amount of neurons avail-

able to represent utility at any given point in time. This claim is also supported

by the phenomenon of neuroplasticity. This discovery of a stimulus-dependent al-
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teration in the brains??? macroscopic structure contradicts the traditionally held

view that cortical plasticity is associated with functional rather than anatomical

changes. This phenomenon shows that more neurons are needed to represent the

object more clearly.

Limited Resource Allocation and Attention

Because the neural resource is limited and the neural system has the minimum

necessary resource requirements to process information, the neural resources could

not be evenly distributed over all external world. As a result, there are more neu-

ral resources in some parts and less in others. This difference in distribution is

the result of the different location of attention. Attention selectively allocates

limited neural resources effectively according to their goals, and the attended

part receives more neural resources than the unattended parts. (see Knudsen,

2007 for a review). In previous decision models in economics, the way to model

attention is to employ a weighting function, which puts more weight on the at-

tended part and less weight on the unattended part. This modeling approach

is similar to the spotlight model in spatial attention studies and has important

applications in multi-attribute decision models. A decision maker may focus on

different attributes in different environments, resulting in different attributes re-

ceiving different weights, so as to make different choices. However, this modeling

approach does not adequately address the effects of feature-based attention. For

example, at present, there are two amounts of money, what if the small amount

of money receives attention? In this case, an individual may choose the small one

other than the big one due to the weights on them. In the prospect theory, the

weighting function is incorporated into the probability function. The over-weight

of small-probability events in the original prospect theory is substantially equiv-

alent to saying that the small-probability events are overweight, which leads to a

violation of stochastic dominance. Therefore, in the cumulative prospect theory,

such attention can only be put on high ranking outcomes with small probabili-
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ties. The rank-dependent weighting function only allows the big one to receive

attention. Without this restriction, this modeling approach of attention has its

weakness.

We here in this paper take another approach to model attention, which can be

applied to model inseparable feature-based attention. The amount of money is

different from the separable objects in the space, money is inseparable. A small

amount of money is always an inseparable part of a large amount of money in

terms of values. Attention on a given amount of money is attention to a given

degree of the same feature. The purpose of this feature-based attention is to

discriminate the attended degree of that feature and other degrees of that feature.

Therefore, the effect of this kind of attention is that more neural resources will be

distributed at the point of attention. When a degree of that feature is closer to the

attended degree of that feature, more resources will be distributed at this degree.

This pattern of neural resource allocation can make sure that the attended degree

is effectively discriminated from other degrees. In this modeling approach, we do

not need restrictions imposed by their rank.

III. Basic Implications

A. Stochastic dominance

Our new method to incorporate attention into utility ensures that no matter

where attention is, the property of stochastic dominance will be kept. According

to the decision model and the utility’s definition based on the four assumptions,

our theory satisfied the principle of stochastic dominance. Firstly, let us consider

the first and second derivative of this utility function. Because the density func-

tion is the first derivative of the utility function, and none-negativity is the first

condition that the density function should satisfy, the utility function u(x) is a

nondecreasing function, which means that f(x+ ε) ≥ f(x) for ∀ε > 0. Therefore,

in a risky decision situation without distortions in probabilistic decision weights,

a decision maker evaluates a prospect Li as:
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V (Li) =
∑
i

pi · u(xi).

Our theory do not have to resort to any forms of rank-dependent subjective

probability function. This rank-dependent weighting function is a necessary com-

ponent in other non-expected utility theories(Quiggin 1992,Kahneman, Knetsch,

and Thaler (1991)). Without implementing this rank-dependent weighting func-

tion, those theories will ignore the effect induced by the attention. However, we

will argue that this rank-dependent weighting function is just an approaching

method to stimulate the effects predicted by our theory later in this article.

B. Location of Attention and Reflection effect

Now, let us consider the second derivative of this utility function. Because the

density function is the first derivative of the utility function, the first derivative of

the density function will be the second derivative of the utility function. According

to the strictly unimodality assumption, the utility function has only one inflection

point, where the second derivative of u(x), u′′(x) is 0 at x = a. The assumption

A1 ensures that the first derivative of the utility function is always non-negative,

u′(x) > 0. Therefore, we have u′(x) > 0 and u′′(x) > 0 for x < a and u′(x) > 0

and u′′(x) < 0 for x > a. This property implies the reflection effect.

To illustrate this property, let us exam the second derivative of the example

utility function:

∂2

∂x2

(
arctan

(
x− a
d

)
+ arctan

(a
d

))
=

2 (a− x) d(
(x− a)2 + d2

)2
Our prediction is the same as the prospect theory if the reference point in

their theory is the attention point in our theory and the subjective probability

function is a linear function. For instance, given any gamble G yielding x1 or x2

with x1 > x2 > 0, if the agent’s attention is at a = x1, then he/she will be risk

seeking. When his/her attention is at a = 0, he/she will be risk aversion.
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The key factor that determines risk attitude is the location of attention in a

decision context. This property implies that if attention is changed, the risk

attitude will change accordingly. We will list two ways of determining where

attention is in Section IV.

C. Degree of Attention and Relative Utility

We will discuss in this part how a change in utility of a given value will affect

relative utilities between two given values. For simplicity, we first consider the

situation where the attention point is kept at zero, a = 0. We will assume

that the effect and aim of increasing a utility of a given value are to better

distinguish the differences between the attended and non-attended parts, and the

effect and aim of reducing utility are to appropriately reduce such discrepancies

between the attended and non-attended parts. Because of assumption A3, the

change in the distribution function only means that changes in how to allocate

neural resources, rather than changes in the total amount of resources. Therefore,

increased neural resources for attended parts come from sources that are left for

remote potentials parts which are absent right now; Reduced neural resources

for attended parts will be left for remote potentials parts which are absent right

now. This assumption implies that if the utility increase, the increased neural

resources per value unit increase as they become closer to attention; Conversely,

as the utility decreases, the decreased neural resources per value unit increase as

they become closer to attention. We should ensure all distribution functions still

satisfying our assumptions A1-A3.

We denote the original distribution function as o(x), And the modified distri-

bution function as m(x). Thus, we can denote the difference between these two

distributions by k(x) = m(x) − o(x). Since
∫∞
a m(x) −

∫∞
a o(x) = 0, we have∫∞

a k(x) =
∫∞
a (m(x)− o(x)) = 0. This means that there is at least one xi, such

that k(xi) = 0. And if m(x) denotes the distribution function of the increased

utility, we have
∫ xi
a k(x) > 0 and

∫∞
xi
k(x) < 0. Our assumption implies that there
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exists xj , xj in(xi,∞) and we have k(x) = m(x)− o(x) monotonically decreasing

in (a, xj) and monotonically increases in (xj ,∞). And, in (a,∞), there is only

one point xi ∈ (a, xj) such that k(xi) = 0. Under our assumptions A1˜A4, and

above, we have the following theorem:

• As the utility of a given value increases, the decision maker’s absolute risk

aversion coefficient (ARAC) becomes larger. Conversely, ARAC gets smaller

as the utility of a given value decreases.

Proof: According to Cauchy’s median value theorem and our assumptions about

the changes in distribution, we have our theorem.

Remark: This theorem shows that a change in utility of a given value, the

estimated absolute risk aversion coefficient will change accordingly. When a value

is given at y, a larger utility of this value means a more concentrated distribution

of neural resources around the attention(when attention is in [0, y]). This theorem

shows that the degree of attention determines absolute risk aversion coefficient.

Because the amount of neural resources is finite, more resources being allocated

to a given value means fewer resources left for the parts which do not contain

this given value. Therefore, the greater the utility of a given value has, the fewer

resources will be left for other parts, which leads to a change in relative utilities

of two given values.

Corollary: Given that there are two values, y > x > a = 0, we denote the

utility of x as uo(x) and the utility of y as uo(y) in context o. In another context,

we denote the utility of x as um(x) and the utility of y as um(y). (1): We

have, if um(x) > uo(x), then, um(y) > uo(y). (2): if um(x) > uo(x), then,

um(y)/um(x) > uo(y)/uo(x)

Remarks: This corollary says that any change in utility will result in a change

in relative utilities of two given values. Exceptions: if y = 2x = 2a, then a change

in utility will not lead to a change in its relative utilities.
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absolute risk aversion in the example utility function

Recall the definition of the coefficient of absolute risk aversion (ARA), we can

calculate ARA of this utility function.

ARA = −u
′′

u′
=

2 (x− a)

(a− x)2 + d2

Let’s first see the concave part of this utility function, in which we have x > a.

∂ARA

∂x
= −

2
(
a2 − 2ax− d2 + x2

)
(a2 − 2ax+ d2 + x2)2

= −
2
(

(a− x)2 − d2
)

(
(a− x)2 + d2

)2
The numerator of this expression determines whether the overall expression

∂ARA/∂x is greater than zero or less than zero. When |x− a| < |d|, which is

when x ∈ (a−d, a+d), we have∂ARA/∂x > 0; Otherwise, we have ∂ARA/∂x < 0.

∂ARA

∂d
=

4 (−x+ a) d(
(a− x)2 + d2

)2
when x < a, we have ARA(X) decreases with d, because

(
(a− x)2 + d2

)2
> 0

and a− x < 0 when x > a,∂ARA/∂d < 0; when x < a, ∂ARA/∂d > 0.

D. Implications for anomalies in Risky Choice

The probability used in our decision model is the original objective probability,

which means that all violations of the expected utility theory come from the

density changes in utility function in this theory. We show above that, if attention

a and the degree of adaptation d (reflecting the utility of a given value) stay the

same, there would be no violations of EUT.

However, a change in the attention a or a change in the degree of adaptation d

will lead to a change in risk attitude. Those changes in attention or/and degree of

adaptation are reasons for violations of expected utility model. In the following

parts of this article, we will discuss the specific impact of changes in attention
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and utility on risk attitudes.

IV. adaptive in the location of Attention

Because the distribution of neural resource should satisfy assumption A3 and

A4, the attention point could not always remain in one position. If the attention

point is fixed at one place, no matter what the degree of adaptation d is, A4 will

not be satisfied in a large set of decision situations. If you stay in one place,

you will never see the difference between two objects beyond your sight. You

will never know there are decisions that you can make. An animal that stays at

a place without moving cannot detect possible food far away from the place it

stays. Therefore, attention must be adjusted in order to better finish the tasks

of different requirements. That is, we will adjust our attention according to our

goals.

In risk decision making, we have at least two potential competing goals. The

first goal is to get some money, which is the same as to avoid ignoring the mini-

mum possible money. The second goal is to get the maximum possible outcome.

Participants will have different risk attitudes when one of the two goals wins the

attention. When the first goal wins, the decision maker will be risk averse; When

the second goal wins, the decision maker will be risk seeking.

A. Goals and Attention

A large body of literature in the field of psychology shows that attention is

usually determined in a top-down way, while a bottom-up stimulation may also

capture individuals’ attention. In our theory, we assume that attention is ini-

tially allocated in a top-down way because our attention is directed by our goals

in a specific task. A goal is usually the most important source of the top-down

attention regulation. Often, for participants who come to an economic experi-

ment, their goals could be regarded as to make some money instead of to get

the maximum possible money. Thus, we can assume that the initial purpose of
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participants is to gain some revenue and avoid losses, which is a relatively general

goal for most people. In this case, the attention will be at a = 0. This attention

can make sure that the decision maker could notice as many potential targets as

possible, which can ensure that we get some income.

For example, when we walk around, we should put our attention on the road,

so we can avoid both small and big obstacles. If you look at the sky and put

your attention there, you can avoid big obstacles but neglect small obstacles. If

we keep doing this, we will ignore many small obstacles. This will also make us

hard to walk around. On the contrary, when you put your attention at 0, you

will never ignore large gains, although these large gains may be under-evaluated.

Therefore, it is acceptable for an individual to put attention on point 0, as this

will allow he/she to survive by detecting as many gains as possible. The negative

side of putting attention at 0 is that it may weaken the power of the biggest

potential outcome.

Other potential goals can also capture attention by its salience in contexts.

The goal of getting the maximum possible outcome is a potential goal in a risk

decision. This goal can be activated by its salience relative to expected values of

the lotteries.

Previous studies in Psychology focused on the impact of different types of ex-

ternal stimuli on attention in those bottom-up attention studies. These studies

found that if the bottom-up stimulus wants to capture the attention, the stimulus

should be selected by the salience filter. For example, some stimuli are critical to

the existential for an organism, which will be encoded in the attention system of

the organism. Those stimuli could be selected by the salience filter of the organ-

ism, which can help the organism to survive by detecting those particular stimuli

when needed. Another way to capture attention through the bottom-up way is by

enhancing the intensity of the stimulus to reach a certain standard, which could

also be selected by the salience filter.

Although monetary stimulus differs from these stimuli studied in those exper-
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iments, monetary stimulus is a kind of stimuli. A stimulus capturing attention

through a bottom-up way needs to meet two basic conditions: The first one is

that this stimulus is important to the individual, and the second one is that

its strength should surpass the background stimuli in terms of neural activities.

Those two conditions are necessary for an individual to switch attention from the

current point to the salient new one. When different types of stimuli compete

for attention resources, different types of stimuli require special salience filters;

Successfully competing for attention from the same feature through the bottom-

up way is usually most likely due to its higher intensity. Of course, we do not

deny that a change in attention could be caused by other reasons, we currently

only consider the change in attention caused by its relative strength with the

background stimulus in terms of neural activities.

This neural activity is based on the initial distribution with attention at the

initial place a = 0. Under this distribution, if the utility of the maximum pos-

sible outcome surpasses the utility of expected value of the lotteries quite a lot

based on the initial distribution, the alternative goal of getting the maximum

possible outcome will be so salient that capture the attention. That requirement

is, u(xmax)/u(ev) > λ. We can illustrate this requirement in the example utility

function.

For example, the attention point is initially assumed at a = 0. The expected

value of the gamble is ev, and the maximum possible outcome is xmax. Whether

the maximum possible outcome could be regarded as the new attention point

depends on whether its utility surpasses the utility of the expected value ev for a

great deal. For a given d and λ, we have

(1) r = arctan(xmax/d)/ arctan(ev/d) > λ

d indicates the degree of adaptation, reflected in the utility of given value. λ
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is used to indicate the surpass required to change attention. Indeed, the salience

function provided in this section does not cover all possible situations. This leaves

a gate for future research.

B. Implications of attention shifting

If attention will be changed according to the way we suggested above, we have

following theorem.

• If the utility of the expected value of the lotteries ev is larger or equal

than λ, u(ev) > 1/λ, there is no attention shifting according to the way

suggested.

• If the maximum possible outcome xmax is given, the possibility of xmax

being attention increases as ev decreases.

• If the utility of a given value increases, the possibility of xmax being attention

increases.

Remarks: The first point of this theorem indicates that, with an increase of

ev, the possibility of xmax being attention decreases. This means that a decision

maker will be more likely to keep risk aversion when the expected value is large

enough.

The common consequence effect and Allais paradox

Corollary: Increasing the value of the common result increases the expected

value of the lotteries. A decreasing in the common consequence of two lotteries

will increase the possibility of xmax being attention. Therefore, An decreasing

in the common consequence increase the possibility of the decision maker being

risk-seeking.

When the common consequence is small, u(ev) is small, the attention will be

xmax if the requirement is satisfied. In this case, the decision maker shows risk
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seeking. When the common consequence increases to a certain value, the require-

ment will no longer be satisfied and the attention will be kept at 0. In this case,

the decision maker will show risk aversion.

Suppose that there are two independent prospects L1 = (x1, p1;xα, 1− p2) and

L2 = (x2, p2;xα, 1 − p2), in which 1 ≥ p2 > p1 > 0 and |x2| ≥ |xα| ≥ 0. If there

exist a common consequence xα
∗, such that when xα = xα

∗, we have L1 ∼ L2,

then,

Common consequence effect: if x1 > x2 > 0, when xα < xα
∗ we have L1 � L2

and when xα > xα
∗ we have L1 ≺ L2;

Reverse common consequence effect: if x1 < x2 < 0, when xα > xα
∗ we have

L1 ≺ L2 and when xα < xα
∗ we have L1 � L2.

First, we will put the question in the positive domain, where x1 > x2 > 0.

When xα increases, the expected value ev the decision maker can get from this

choice increases. Therefore, the probability of a = xmax = x1 decreases. This

makes decision makers choosing L1 over L2 when xα < xα
∗, and choosing L2 over

L1 when xα > xα
∗. This is the pattern called common consequence effect.

In the negative domain, where x1 < x2 < 0, the expected value decreases with

xα decreasing. There would be axα
∗ < 0, when xα < xα

∗, a = 0, L1 would be

chosen; and when xα > xα
∗, a = x2, L2 would be chosen. This is the pattern

called reverse common consequence effect.

Let’s recall that subjects are asked to choose between the two lotteries:

L1(xα) = (2500, 0.33; xα, 0.66; 0, 0.01)

L2(xα) = (2400, 0.34; xα, 0.66)

When xα = 0, the expected value reaches its lowest point in this structure, a

will be x1 in this situation, and risk-seeking would be shown. This is Problem 1

in Kahneman and Tversky (1979). When xα = 2400, the expected value reaches

its highest point, a will be 0 in this situation, and risk aversion would be shown.
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This is Problem 2 in Kahneman and Tversky (1979).

Common ratio effect

Corollary: Increasing the common ratio increases the expected value of the

lotteries. A decreasing in the common ratio of two lotteries will increase the

possibility of xmax being attention. Therefore, An decreasing in the common

ratio increase the possibility of the decision maker being risked seeking.

When the common ratio is small, u(ev) is small, the attention will be xmax if

the requirement is satisfied. In this case, the decision maker shows risk seeking.

When the common ratio increases to a certain value, the requirement will no

longer be satisfied and the attention will be kept at 0. In this case, the decision

maker will show risk aversion.

Suppose that there are two independent prospects, L3 = (x3, λ · p) and L4 =

(x4, p), in which, 1 ≥ p > 0 and 1 > λ > 0. To a population, if there is a

probability p∗, such that, when p = p∗, there are 50 percents people in this

population will choose Xi and the others will choose Xk, implying that Xi ∼ Xk.

Then we have,

Common ratio effect: if x3 > x4 > 0, when p < p∗ we have L3 � L4 and when

p > p∗ we have L3 ≺ L4;

Reverse common ratio effect: if x3 < x4 < 0, when p < p∗ we have L3 ≺ L4

and when p > p∗ we have L3 � L4.

First, we will see the positive domain, where x3 > x4 > 0. When p increases, the

expected value the decision maker can get from this choice increases. Therefore,

the probability of a = xmax = x3 decreases. This makes decision makers choosing

L3 over L4 when p < p∗, and choosing L4 over L3whenp > p∗. This is the pattern

called common ratio effect.

In the negative domain, where x3 < x4 < 0, the expected value increases with

p decreasing. There would be a p∗, when p > p∗, a = 0, L3 would be chosen;

and when p < p∗, a = x3, L4 would be chosen. This is the pattern called reverse
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common ratio effect.

Let’s recall that subjects are asked to choose between the two lotteries:

L3(p) = (4000, 0.8 · p; 0, 1− 0.8 · p)

L4(p) = (3000, p; 0, 1− p)
(2)

When p = 1, (commonratio) will be Problem 3 in (Kahneman1979); and when

p = 0.25, (commonratio) will be Problem 4 in (Kahneman1979). In problem 3,

decision maker choose between x3 = 4000 with p = 0.8 and x4 = 3000 with p = 1.

In this case, the expected value is ev = 3150, making x3 = 4000 not been a and

a = 0. Therefore, L4 was being selected by the majority. In problem 4, decision

maker choose between x3 = 4000 with p = 0.2 and x4 = 3000 with p = 0.25. In

this case, the expected value is ev = 750, making x3 = 4000 been selected as a

and a = 4000. Therefore, L3 was being selected by the majority. This is typical

common ratio effect.

The peanuts effects

Corollary: This is a direct application of the theorem. When the smallest

possible expected value is large enough, its utility will larger than 1/λ, which

ensures that the requirement could not be satisfied. In this case, the maximum

possible outcome could never be the attention point, and attention will be kept

at 0. Therefore, when the smallest possible expected value is big enough, there is

no attention shifting.

The common ratio effect shows that when the common probability is small,

decision makers show more risk seeking. However, this is not true for all stake

size. Several studies find that the relative risk aversion is affected by stake size,

and the pattern could not be accounted for by prospect theory(Weber and Chap-

man 2005). For instance, decision makers are more risk seeking for small-stakes

gambles than for large-stakes gambles. This pattern cannot be accounted by the
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salience theory by Bordalo, Gennaioli, and Shleifer (2012), in which they show

that large-stakes induce more risk seeking. This kind of example of risk-seeking

behavior for small stakes was first noted by Markowitz (1952). Also, there are

experiments concerning such effects.

Let‘s see two problems in Li (1995)’s experiments, Problem 1 and Problem 2.

A = ($5, 1)

B = ($5000, 0.001; 0, 0.999)
(3)

C = ($5000, 1)

D = ($5000000, 0.001; 0, 0.999)
(4)

These two choice problems are designed to question the subjective weighting

probability function by (Kahneman1979). Therefore, if the overweighting of very

low probabilities can give rise to risk seeking in the positive domain, when pre-

sented with a choice between (a) a monetary gamble and (b) a sure thing that is

equal to the expected dollar value of the gamble, the overweighting of the small

probability p = 0.001 would predict that the gamble should still be chosen over

the sure gain. Problems 1 is identical to Problems 1 except that the expected

value of the gamble is 1,000 times larger. However, the percentage of choosing A

in problem 1 is 42% with N=95, and 74% with N=403 in problem 2. This result

cannot be explained by prospect theory.

In our model, when the payoff magnitude is small, it’s easy for participants

to adjust and have a full adaptation. However, when the payoff magnitude is

extremely big, participants have no past experiences of dealing those payoffs, so

it’s hard for them to adjust. Recall the attention function in section 2, we know

that d has an impact on which extreme payoff is the salient one. The $5,000 in

problem 1, rather than $5,000,000 is more likely to be selected as the salience.



VOL. NO. ADAPTIVE THEORY 25

Therefore, A is more likely to be selected in problem 1, not in problem 2.

V. adaptive in the degree of Attention

While the adaptation in attention(attention shifting) can play a part in making

it possible that the distribution of neural resource can satisfy both assumptions

A4 and A3 on some decision occasions, adaptation in the utility of a given value

are necessary for this purpose. The adaptation in the location of attention and

the adaptation in the utility of a given value are the two aspects of distribution

adaptation, which are indispensable. In this section, we will focus on the impact

of the adaptation in the utility of a given value on risk attitudes.

The necessity of adaptation in utility comes from the fact that the neural dis-

tribution should satisfy both assumptions A3 and A4 at the same time. The

requirements of A3 and A4 are in many cases conflicting, which makes it difficult

for the decision maker’s distribution function to stabilize over the entire range of

the external objects. This means that in different decision contexts, the distri-

bution has different parameters. For example, the adaptation parameter d in the

example utility function cannot be consistent with a single value in any situations.

If d remains the same at a given value in every decision situations, assumptions

A3 and A4 cannot be satisfied at the same time in most cases. For example, when

a decision maker encounters a range with a very small amount of goods, A4 may

not be satisfied. In contrast, In the case of a very large amount of values, a very

big value which is far from the attention point will be neglected by the decision

maker if d being kept at a given value, for assumption A4 has not been satisfied

for that value. d being kept at a given value will cause a very big amount of good

that is distant from the attention not be perceived. A more intuitive example is

that, as we usually read books with a font size between 10 and 12, the distance

between our eyes and the book is always maintained at a distance about 40cm,

and the image size in the retina is relatively stable at a level. If we keep the

distance same at about 40 cm, a book with a font size of 120 may be unreadable.
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We should adjust our visual distance, in this case, so the representation of a given

value will also change accordingly. Obviously, this adjustment will help us reach

our goal.

As we illustrated in Section III, when the utility of a given value changes, the

relative utilities between two given values will change accordingly. This adap-

tation will lead to a change in the relative utility. Therefore, an adaptation of

distribution will lead to a change in the ARAC. It is definitely by nature that

the utility of a given value can be adapted to a larger one or to a lesser one.

One direction will have a corresponding change in ARAC. When the utility of a

given value increases, the ARAC will increases. When the utility of a given value

decreases, the ARAC will decrease.

A. Local Sufficient Adaptation and Stable Utility Function

Context-based adaptation does not mean that decision maker cannot form a

stable distribution of neural resource under any circumstances. In fact, this stable

representation exists, so a stable utility function exists. For example, a decision

maker may be able to create a relatively stable distribution of neural resources

when dealing with her/his routine tasks. The point is this stable distribution

exists within a limited range. Therefore, this stable utility function only exists in

a limited range. Within this range, both assumptions A3 and A4 are satisfied at

the same time. When all the possible outcomes fall in this range, and when the

distribution of neural resources remains unchanged, we say that this distribution is

fully adapted to this range. For example, when we read, we form a stable reading

distance at which the usual size fonts are readable. Besides, in this usual range

of font size, we do not need to adjust our reading distance. In decision making,

stable distribution of neural resource comes from the habituation of outcome sets

of the decision tasks. Repeated exercising gives a decision maker a relatively

stable representation of the set of amount of money that they are familiar with.

The distribution function corresponding to this stable representation can satisfy
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both the requirements of assumption A3 and A4 at the same time when the

number of goods is within the familiar set.

In order to facilitate our analysis, we assume that the set mentioned here is

just a point, e.g. x. Under this assumption, a stable distribution can be defined

as a state where, given any set(a point), the neural resource allocated on this

value is given at an amount of s, s < 1. In our example utility function, a full

adaptation based on this definition means that there is a linear relation between

d and x with a fixed coefficient, for example, d = k × x. This assures that our

neural resource can be used to represent any set of values after full adaptation.

Therefore, we can assume that each decision maker i has its own stable set xi. If

attention keeps constant at a, this full adaptation will ensure that all decisions in

this range consistent with the expected utility theory. This prediction tells that

the expected utility theory is a special case of our theory.

Because the amounts of different stimuli that we normally experienced are dif-

ferent varies, the stable distributions of neural resources over those stimuli will

be different from each other. Thus, for different stimuli, our stable utility func-

tion corresponds to different degrees of adaptation. This also means that the

utilities of the same amount of different stimuli are different. In the meantime,

the utility size of a given value has an impact on the absolute risk aversion co-

efficient(ARAC), the ARAC will be different for each stimulus. Below, we will

discuss the different risk attitudes that individuals exhibit under different but re-

lated decision contexts. We will show that our theory can explain some seemingly

conflicting experimental results.

Asymmetrical Adaptations and Loss Aversion

Loss aversion, in our theory, may come precisely from the familiarity difference

between gains and losses experienced by people in their day-to-day decisions.

Often, people are more familiar with the gains, not the losses, because, in most

of the decisions we made in our daily lives, we deal with gains, not losses. Thus,
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people tend to use a more neural resource to represent the world. We can imagine

that an individual lives in a situation where he always needs to deal with losses

rather than gains. How could he survive in this situation? There is no basis

for their survival. People can only live when their gains are larger than their

losses. Therefore, our familiarities to gains differ from our familiarities to losses.

This familiarity difference is reflected in our sample utility function given in this

article as dloss < dgain. Therefore, compared with gains, a more amount of neural

resources will be distributed to the losses, thus showing the phenomenon of loss

aversion.

Based on this interpretation, we predict that people will show the diminish-

ing loss aversion as their experience of losses increases. Unfamiliarity induced

distribution will be re-adapted by As people become familiar with losses, people

can adapt to losses. Their assessment of the loss tends to be stable at a lower

level compared with their initial assessment. In this case, people will be less loss

aversion. This change has been investigating in several studies. For example, List

et al’s field experiment found that familiarity in the market lessens the degree of

loss aversion.

We have other implictions about the asymmetry between gains and losses. Ac-

cording to Theorem 1, the utility of a given value has an impact on ARAC. We

infer that the ARAC is bigger in the loss domain than that in the gains domain.

This prediction is contradicted by the prediction given by the prospect theory.

Discounting and Risk attitude

In many cases, a utility will be discounted by many factors. For example, a

common assumption in psychology and behavioral economics is that the utility of

an outcome is discounted as temporal distance from the outcome increases (see,

e.g., Ainslie, 1975; Loewenstein & Prelec, 1992; Rachlin, Brown, & Cross, 2000).

This pattern has been illustrated in many experiments, which is quite stable. For

instance, future 100 USD has less utility than current 100 USD. When people
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make decisions with hypothetical money. Other people’s money, that utility will

be discounted. Our theory predicts that, if the utility of a given value decreases,

the absolute risk aversion decrease, implying that the decision maker will be less

risk aversion. Because a change in utility will lead to a change in relative utility,

which may lead to a shift of attention to the maximum from original attention at

zero. In this case, the decision maker will be risk seeking.

Corollary 3: When the utility is discounted, the individual will be less risk

aversion; in some cases, the decision maker will be risk seeking.

Remarks: The prediction of this model is different from that of the construal-

level theory on the impact of psychological distance on risk attitudes. The

construal-level theory reasons that an increase in psychological distance leads

to individual attention shifting form probability of concrete level to reward of the

general level. Thus, the weight will be put on the reward other than the proba-

bility, and the decision maker will be risk seeking. In the construal-level theory,

the decision maker will always be risk-seeking when the lotteries are psychological

distant. In our theory, only when the utility of the maximum possible outcome

surpass the utility of the expected value quite a lot and the attention shifting to

the maximum possible outcome, the decision maker will be risk seeking. Other-

wise, the decision maker will be just less risk-averse.

This corollary can explain a series of experimental results in related fields.

Research on decision making has shown that people often take more risk and

feel more confident about the more distant future (Gilovich, Kerr, & Medvec,

1993; Nisan, M., & Minkowich, A. (1973),Shelley 1994;Onculer, A., & Onay, S.

(2009);Keren, G., & Roelofsma, P. (1995);Sagristano, Trope, & Liberman, 2002).

Individuals exhibit less risk aversion when making decisions for the future. Simi-

larly, when people evaluate other person’s utility, there is a discount. For example,

Hsee, C. K., & Weber, E. U. (1997) find that there is a fundamental prediction

error: Self–others discrepancies in risk preference. When making decisions with

hypothetical money, they also show less risk averse(Holt and Laury 2002). None
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of these results can be explained by the prevailing decision-making model in eco-

nomics.

Its impact on Attention

According to Theorem 1, the greater the utility of the maximum possible value

exceeds the utility of expected value, the more likely the maximum possible out-

come to be the new attention point. A change in utility of a given value leading

to a change in its relative utility. Therefore, a change in utility of a given amount

of money may cause a shifting of attention. If the utility of the expected value

decrease, the more likely the maximum possible outcome to be the new attention

point in case of the utility of the maximum possible outcome surpass the utility

of expected values. In this case, the decision maker will be risk seeking.

Corollary: A decrease in the utility of a given value will increase the possibility

of the maximum possible outcome being the new attention point.

Proof: According to Theorem 1 above, a change in the utility of a given amount

of money will lead to a change in the relative utility. According to Theorem 2, the

relative utility of the maximum possible outcome and the expected value will affect

where the attention would be. Therefore, a change in utility of a given amount

of money may lead to a change in risk attitude. When the utility decreases, the

utility of the maximum possible outcome will be more salient. This leads to a

fact that the maximum possible outcome is more likely to be the new attention

point.

This corollary indicates that a utility discounting will lead a decision maker

from risk averse to risk seeking.

B. Insufficient Adaptation

We will next discuss one of the most common insufficient adaptation, namely,

insufficient adaptation due to unfamiliarity with the amount of a given stimulus.

This kind of insufficient adaptation means that this amount of stimulus is not in
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the range which the decision maker has already fully adapted with and that the

decision maker has not yet adapted to that amount of stimulus. In this case, the

local full adaptation of this decision maker will no longer applicable to this new

amount of stimulus. This adaptation is similar to the case when we are reading.

When the character font is large, the reading distance will be adapted to a little

further; When the character font is small, the reading distance will be adapted

to a little closer. However, we did not sufficiently adjust the size of the font in

the retina to the same size for all sizes of fonts, but rather the image of a larger

font size was still relatively larger, while the image of a smaller font size was still

relatively smaller. When the amount of the stimulus is smaller than the normal

range, if the neural resources are distributed to fit the normal range, this amount

of stimulus may not be clearly represented, because the accumulated resources

allocated on this stimulus are too small; When the amount of the stimulus is

larger than the normal range, if the neural resources are distributed to fit the

normal range, some amounts of stimulus may not be clearly represented, because

the resources left to represent those stimuli are too small.

Therefore, for a decision with outcomes that are not in a familiar range, the

degree of adaptation of a decision maker will be somewhere between the full

adaptation associated with the familiar range of the decision maker and the full

adaptation associated with the new decision context. Thus, if the full adaptation

associated with the familiar range of the decision maker, x, is dx and the full

adaptation associated with the new decision context, xnew, is dnew, an insufficient

adaptation has a degree of adaptation dinsufficient with dinsufficient ∈ (dx, dnew) if

dx < dnew and dinsufficient ∈ (dnew, dx) if dx > dnew. According to our definition

and demonstration of the local sufficient adaptation in previous parts, if dx =

k×x, we have dinsufficient = k×(αx+(1−α)xnew). 1−α in this function indicates

the process to fully adaptation associated the new decision context, xnew. This

process to fully adaptation means that the utility of a given value when not fully

adapted is greater than its utility when fully adapted when xnew > xi, and the
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utility is smaller than that when xnew < xi.

Another issue that needs to be highlighted is that the process to full adaptation,

1 − α, is associated with the times of repetition. When the times of repetition

is different, the process 1 − α will be different. Generally, for an unfamiliar

stimulus, the result of repetitive experiences is to bring the degree of adaptation

closer to the full adaptation associated with the task. The more repetitions, the

closer the adaptation is to the full adaptation corresponding to the task. For

example, the habituation of the neural response to repeated stimuli has been well

demonstrated (Fischer et al., 2003). In this example, the intensity of the external

stimulus used in the experiment is significantly larger than that of usual external

stimulus participants experienced in daily lives. This evidence suggests that the

initial neural response to the stimulus of an individual is significantly greater

than the neural response when the stimulus is habituated, which supports our

assumption of the process of adaptive. This evidence also suggests that when the

decision maker is not familiar with the set of stimulus, its representative resource

distribution would be not stable. Therefore, the utility function in this process

will change regularly.

This process of adaptive indicates that the utility of a given value will change

accordingly to the decision contexts. This change in utility will lead to a change in

absolute risk aversion coefficient(ARAC). In the case of small value, the individual

will appropriately increase the neural resources so that the utility given by the

individual is greater than the utility under the usual stable utility function. In

the case of greater value, the individual may appropriately reduce the amount

of neural resource, leaving the individual less effective than usually stabilizing

the utility function. Therefore, ARAC will change accordingly with the decision

contexts. In the following parts, we will study several classical cases that contains

insufficient adaptation.
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Description experience gap

In the description treatment, participants are told to make only a few decisions.

In some experiments, Individuals have only one chance to do the task in the

description treatment. However, in the experience treatment, participants have

to make a lot of decisions. This repetition makes decision maker feel less utility

for the same amount of money.

In our model, given an amount of money, the absolute risk aversion is small in

the context where the utility of this amount of money is small, and the absolute

risk averse is big in the context where the utility is big. Therefore, we predict that

in the description treatment, the absolute risk averse is big; and in the experience

treatment, the absolute risk aversion is small. In some cases where the maximum

possible outcome is very salient in the experience treatment, decision-makers will

be risk seeking if attention being shifted to the maximum possible outcome. This

model can tell the description-experience gap by the difference between the utility

of a given amount of money. Because constant repetition of one thing will reduce

the resources we allocate for a given Good. Other models concerning risk aversion

in economics could not tell this difference. In our model, we can attribute the

description-experience gap as the difference between decision makers’ familiarity

and unfamiliarity to the amount of value and tasks used in the experiments.

Preference Reversal

Preference Reversals (PRs) were first discovered by Lichtenstein and Slovic

(1971) and Lindman (1971), and were brought to the attention of economists

by Grether and Plott (1979). PRs occur when subjects are confronted with two

prospects, a p-bet which offers a relatively large sum of money, but a relatively

small probability of winning, and a P-bet, which offers a more modest sum of

money, but a greater probability of winning. Subjects are then asked to per-

form three tasks: to choose between the two prospects and to attach a certainty

equivalent to each prospect. The typical finding is that subjects prefer the P-bet,
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while paradoxically, the p-bet is given the higher valuation. The opposite pattern,

choosing the p-bet but valuing the P-bet higher, is rarely observed(Bleichrodt and

Wakker 2015). Let’s see Table 8 in Bleichrodt and Wakker (2015), in which, the

p-bet is {18, 30%; 0, 70%} and P-bet is {8, 60%; 0, 30%}.

When these two bets are evaluated separately, the d for each bet is d(18) and

d(8), respectively. Therefore, the the equivalent sum of money for the p-bet is

given by:

equal(£− bet) = 18 · tan(0.3 · arctan(18/18)) ≈ 4.32

the equivalent sum of money for the P-bet is

equal(P − bet) = 8 · tan(0.6 · arctan(8/8)) ≈ 4.08

In this situation, we have equal(£−bet) = 4.32 > 4.08 = equal(P−bet). However,

when they are evaluated together, the d will be d(18), and in this case we have:

0.3 · arctan(18/18)) < 0.6 · arctan(8/18)

This shows that, when evaluated separately, p-bet has a higher equivalent sum

of money. However, when evaluated together, p-bet is less attractive than the

P-bet. This is the PRs, and caused by the degree of adaptation in different

contexts(tasks), in our model.

Rabin’s Concern

When the stake sizes in different decision contexts are not in a range in which

a stable distribution could be reached, the degree of adaptation will be different

across contexts. ARAC is different because of the different degree of adjustment.

Therefore, stake size can affect ARAC.

We can see two impacts on ARAC of stake sizes. One is the large stake size with

larger d and less resource concentration, so the ARAC is smaller when Stake size
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is larger. Second, if we make a full adjustment under each decision, the decision

maker’s risk appetite will not change because of the same structure’s decision-

making (the stake ratio increases proportionally), because the change of stake

size will not cause the change of utility at this moment. However, in the case

of inadequate adjustment, the larger stake is accompanied by a greater utility,

and thus the risk coefficient of the individual is greater under the assumption

of isomorphic risk with larger stake size. Third, because stake size can cause a

change in distribution, policymakers do not anticipate Rabin’s predictions.

Contrast effect and Regret theory

One of the definitive features of regret theory is that, the value of choosing some-

thing is dependent on the nature of the things simultaneously rejected(Loomes

and Sugden 1982, Landman (1987)). In other words, there is an addition of a

regret term to the classical utility function. According to a typical regret theory,

the expected utility of choice X is a multiplicative function of the probability of

X and the value of X plus or minus the amount of regret for not-X, some possi-

ble alternative not chosen(Landman 1987). Actually, the effect of this additional

regret term in utility function is similar with the contrast effect, which was a

fundamental principle of perception and widely found in many areas.

For instance, there are two amounts of money x and y, x > y, and have their

own the degree of adaptation separately, dx and dy, general dx ≥ dy for a given

agent at a time. However, When two amounts of money being evaluated together,

the degree of adaptation d, generally, will not be separated for each of the two

amounts anymore. In this case, if dx 6= dy

Before comparing, the separated utility for x is u(x) = arctan(x/dx) and y,

u(y) = arctan(y/dy). Therefore, the relevant will be arctan(x/dx)/ arctan(y/dy)

if being evaluated separately. However, the ratio will be arctan(x/d)/ arctan(y/d)

when being evaluated together.
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r(d) =
arctan(x/dx)

arctan(y/dy)
· arctan(y/d)

arctan(x/d)

And we have, ∂r(d)/∂d < 0 when x > y and d > dy.

This property implies that as the common d increases, the relevant utility of the

bigger amount u(x) increases, generating the same effect as adding an additional

regret term to the original utility function. Therefore, in terms of relevant utility,

our utility function could be applied in the classical regret theory.

VI. Discussion

A. New insights as a descriptive model

This article is based on the most fundamental hypothesis of neuroeconomics

that the degree of neural activities can be used to represent the utility used

in decision models. For the first time, under this assumption, we propose to

construct utility by investigating accumulated neural resources distributed on the

target product. Therefore, how neural resources are distributed over the whole

range of objects is critical to figure out the amount of neural resource accumulated

on the target. Because the overall neural resource for representing utility is limited

(assumption A3), and there is a resource barrier for perception (assumption A4),

the distribution of neural resource should not be fixed at any contexts. Studying

how the distribution varies across contexts is of great importance in this sense.

Our theory proposes to investigate the distribution function of neural resource

other than utility function when we study decision making under risk. This in-

vestigation could help us to understand those violations of expected utility theory

deeply. Our theory focuses on how context features will affect the distribution

of the neural resource. This means that there is no stable utility function across

all contexts. We do not insist that there is no stable utility function at all. In

fact, we assume that there is a range in which the decision maker will keep a

stable distribution function, a stable utility function. This range cannot cover
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all possible decision contexts designed by experimental economists and psychol-

ogists. Therefore, the expected utility theory could not deal with all behavior

patterns in lab experiments. From the perspective of our theory, a stable utility

function can only exist within a limited range. Thus, the expected utility theory

can be and can only be supported in a given decision situation within a range

with familiar outcomes. When facing decisions with outcomes in this range, the

decision maker does have a stable utility function and can make decisions accord-

ing to this stable utility function. Beyond this range, the stable utility function

no longer exists. The classical experiments design by Allais effectively introduced

a decision context that exceeds most participants’ familiar decision range, which

requires a redistribute of the neural resource. In this case, of course, the decision

maker will violate the expected utility theory.

Prospect theory uses an S-shaped rank-dependent subjective probability func-

tion that exactly mimics the phenomenon of distributional changes induced by

attention shifting in our theory. The reason why rank-dependent subjective prob-

ability functions can approach this phenomenon is that this function captures a

major feature of attentional shifting, namely, from the initial place at zero to the

most likely alternative, the maximum possible outcome. Thus, a rank-dependent

subjective probability function places more emphasis on the effect of large out-

comes than that of small probabilities, although a small probability is necessary.

In fact, we can also see this emphasis from the differences between OPT and CPT,

in which the decision maker only overweight a small probability with high ranked

outcomes. This combination of small probability and high ranked outcomes in

an actuarially fair choice always contains a fact that the utility of the maximum

outcome is much larger than the utility of the expected values. In this case, the

decision maker will shift his/her attention, so the risk attitude will change accord-

ingly. In this paper, we only show this mechanism of attention shifting, for it may

be the main reason for a rational decision maker to make a change. Thus, the

S-shaped rank-dependent subjective probability function can capture the impact
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of attention shifting in the neural resource distribution on risk attitude. However,

our theory predicts that not all similar combination will lead to this change in

attention. In our theory, a change in attention induced by this combination is the

difference between the utility of the maximum possible outcome and the utility of

the expected value, not the difference between those values. Therefore, the pre-

diction of our theory when all the values in the choices are quite large is different

from the prediction given by the prospect theory. The peanuts effect support our

theory, which indicates that the rank-dependent subjective probability function

is not always successful.

Our model expands our understanding of utility. In previous models, without

taking the limitation of neural resources into account, the authors could not

identify the relative utility changing caused by the utility changing of a given

value. In our model, due to the limited neural resource of the total amount of

resources, the utility changing of a given value is not just a linear translation

of a given curvature curve, but a changing of the utility function. Therefore,

the utility of a given value in our model not only shows the size of the utility

of that value itself but more importantly, indicates the degree of distortions of

neural resource allocation. As a result, neglecting this limitation neglects the

effect of differences in utility size on risk attitudes. Our model can consider the

changes in attitudes toward risk resulting from changes in utility over a range of

decision-making scenarios.

Previous decision models also did not consider the minimum resource require-

ment for discriminating different motivations. As a result, these models do not

need to adjust the distribution of resources according to the context adjustment.

This makes the past models assume that there should be a stable utility func-

tion in different scenarios. Rabin concludes that utility function alone could not

explain the risk aversion in small risks. This leads to the subjective probability

becoming a necessary device to explain the risk aversion under small risks. In

our model, the minimum requirement requires the brain to adapt neural resource
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distribution according to the context. The utility changes reflect distribution

changes in our model, which leads different risk attitudes. This article provides a

different mechanism to explain risk attitudes in small stakes rather than Rabin.

Our model extends existing methods of modeling attention in decision making

theories. Previous models incorporate attention by inducing a weighting function

or through subjective probability functions. We provide a way to internalize the

effects of attention into utility, which could also be used to model attention to

any inseparable features. This method to incorporate attention has many advan-

tages. One of them is that we do not need rank-dependent subjective probability

functions anymore. In addition, we do not need to construct additional weight-

ing functions, so we do not need to model probabilistic effects with probabilistic

subjectivity.

We provide an example utility function according to our model, and that utility

function only contains two parameters, the degree of adaptation and attention

point. If we need to estimate the parameters in this model, we only have two

parameters, the number of which is much less than that of the previous models.

For instance, in the Prospect theory, we have to estimate at least three parameters,

two for the utility function and one for the weighting function. Even though this

is just a parsimony approach, the explanation power is significant.

Our model provides a new perspective on understanding behavioral anomalies in

risky decisions. To those anomalies, our model has different interpretations. For

example, the Allais Paradox, in the prospect theory, is explained by overweighting

small probabilities and underweight big probabilities. In our model, when the

common result is small, the expected value is small, and thus the utility of the

maximum possible return is far greater than the utility of the expected value

in those lotteries, resulting in an attention shifting from the original zero to the

maximum possible outcome. In this case, the decision maker may be risk seeking.

When the common result is large, the expected value is large, and thus the utility

of the maximum possible return exceeds the expected value not too much. In
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this case, there is no attention shifting. The attention remains at zero, so the

decision makers are still risk-averse. Therefore, in our model, the risk attitudes

depends on the difference between the maximum possible outcome and expected

value in terms of utility. This logic also applies to the common ratio effect. When

the common ratio is small, the expected value is smaller, and thus the utility

of the maximum possible outcome is far greater than the utility of the expected

value, resulting in an attention shifting from the original point at zero to the

maximum possible outcome. In this case, the decision maker is risk seeking.

When the common ratio is larger, the expected value is larger. Therefore, the

utility of the maximum possible outcome exceeds the utility of expected value not

so much. In this case, there is no attention shifting and the attention keeps at

zero. The decision maker is risk-averse. The effects of attention shifting in our

model have been interpreted as overweighting small probabilities and underweight

big probabilities in prospect theory.

As a result, some inconsistencies between our model and previous models can

arise. For example, prospect theory predicts a so-called fourfold pattern. How-

ever, our model argues that only when the decision maker’s utility of the maximum

possible outcome surpasses the utility of an expected value for a great deal, the

so-called fourfold pattern would come out. If in terms of utility, the maximum

possible outcome surpasses the expected value not large enough, the decision

maker will still be risk-averse while keeping attention at zero. As a result, our

model and previous theories will make a huge difference in the prediction of indi-

vidual risk attitudes in those scenarios. Our model does not always predict the

so-called fourfold pattern unless a transfer of attention has taken place.

Another important property of this model is that it can be applied to many

decision situations in which previous models cannot work. The utility of a given

value has an impact on decision maker’s absolute risk aversion and finally the

attention point. This connection between utility and risk attitude can be used

to predict risk attitude in many decision situations. Previous models did not tell
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this connection, so they have no predictions in this kind of situations.

Our theory attributes the violations of expected utility theory to the changes

of the distribution function of neural resource, including changes in attention

and changes in the utility of a given value. Therefore, our theory can only deal

with those anomalies induced by the changes of these two factors. Including

changes in attention and utility, other factors may also lead to changes in risk

attitudes. For example, a decision maker’s misunderstanding and miscalculation

of tasks may lead to a violation of rational axioms. For another example, the

attitude of decision-makers on the risk itself will also affect its risk behavior.

Therefore, although having shown that our theory provides certain predictions

and explanations that the other theories mentioned do not, we should make it clear

that we are not claiming that adaptive theory can explain all of the behavioral

regularities revealed by experimental research into choice under uncertainty.

In this article, we only consider several main factors that lead to a change in the

attention point and the utility of a given value. There are other factors that will

have an impact on attention and the degree of adaptation, which has not been

included in this paper. For example, other than the relative utilities mentioned in

this article may cause changes in attention, other factors may also lead to a change

in attention. Simple repetition of an outcome may capture the attention of the

decision maker, making the decision maker put more weight on those outcomes.

This may serve as an explanation for the split effect in risk decision making. The

visual impact of the split may lead the decision maker to focus directly on those

split outcomes, resulting in an attention shifting from the initial attention point

discussed in this article to the split outcomes. If only attending on those split

outcomes, the decision maker may show a split effect. In addition, emotions may

also lead to changes in attention. For example, optimistic people may be more

likely to pay attention to the maximum possible results and pessimists are more

likely to pay attention to the smallest possible outcome. Emotions also have an

impact on the utility of a given value, leading to a change in the relative utilities
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between two given values. Therefore, by changing the attention and utility of a

given value, other factors will have an impact on risk attitudes, which has not

been investigated in this article.

B. Suggestions for normative thinking

Our model may help build a bridge between descriptive and normative mod-

els. As a descriptive model, our model shows that violations of expected utility

theory in risk decision-making come from changes in neural resource distribution,

including changes in attention and changes in the degree of adaptation(the utility

of a given value). A change in attention can lead to a change in risk attitude;

a change in the degree of adaptation will lead to a change in relative utilities of

two given values and the absolute risk aversion coefficient. At the same time,

our model states that a change in relative utility may also lead to a change in

attention, so a change in utility of a given value may also lead to a change in risk

attitude. Therefore, if there is no change in the distribution of neural resource,

that is, if both the attention and the utility of a given value remain unchanged,

the individual’s risk attitude and absolute risk aversion coefficient will not change.

Because our interpretation of the violations of expected utility theory does not

rely on subjective probabilistic weights, this invariance will lead our model to be

a classical expected utility model. In this case, our model is consistent with the

classical expected utility theory and satisfies the three axioms of rational decision

making suggested by many economists, which means that the expected utility

model is a special case of our theory.

Attention and the utility of a given value can only be kept fixed in a small

range. This means that a stable distribution function can and can only exist

in a small range and that the rational axioms can be applied in this range. As

we suggested, repetitions may form a relatively stable distribution of the neural

resource. Therefore, for a familiar decision task and a familiar range of money, a

decision maker can form a relatively stable neural resource distribution and then
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a stable utility function. Within this range, the density distribution function of

the decision makers will not change with upside limits of specific decision sets.

Thus, in this case, individuals can satisfy the three axioms. This also explains the

fact that satisfying the rational axioms can be learned by repetition. However,

this stable distribution induced by familiarity can only exist in a small range and

cannot cover all the extreme data that may appear in experiments. A stable

distribution requires assumptions A3 and A4 being satisfied at the same time,

which is impossible over the whole range if the utility is represented by the neural

resource. As suggested by the proponents of the expected utility theory, the

violations of EUT in experiments are some of the decisions that are hard to come

by in everyday life. From the perspective of our theory, those classical experiments

provided participants with unfamiliar tasks and unmanageable extreme values (a

simple choice immediately determines whether you got $ 0 or $ 1000), resulting

in a failure to hold a stable distribution. Any change in the distribution will

lead to a deviation from the expected utility theory. Therefore, the three axioms

of rational decision making can only be applied in a small range in which the

distribution is stable and this kind of rationality may be just local rationality.

Therefore, whether normative requirements by the three axioms are feasible

for individuals is a more fundamental issue that should be discussed before dis-

cussing normative issues. Generally, a normative theory usually discusses what

you should do and a descriptive theory focuses on what you actually did.

Since our theory takes the assumption A4 into account, we need to add a di-

mension to the discussion, that is, whether we human beings can obey the three

axioms on all occasions. This same question in our theory is could the decision

maker apply the same stable distribution function on all occasions? The next

question will be whether he/she should fix his distribution on all occasions? If

utility for an individual is represented by neural resources, the physiological as-

pects of the nervous system must impose its limitation on the representation.

Therefore, the importance of feasibility issues is particularly prominent, because
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the normative issues can only be discussed if the feasibility is guaranteed. From

our previous analysis, we can see that it is impossible to maintain a consistent and

stable distribution across the entire decision space. A fixed distribution across

all possible decision space means the decision maker should give up most of his

possible decisions. This just likes the case that a person who stands on a point

without moving his eyes and fixes his positions should give up seeing most sights

in the earth. Thus, keeping all three axioms in all decision-making space means

giving up a large part of the overall decision-making space.

Therefore, the normative implication of our model is that individuals should

satisfy the three axioms when it is possible to form a stable distribution of the

neural resource. In a larger decision space in which a fixed distribution cannot

be satisfied, an individual who insists on the rational axioms will lose his/her de-

cisions entirely because he/her can hardly percept the utilities in those decisions.

There are some decisions which will never be familiarized for ordinary people.

For example, when facing a choice between A: to get 20 bottles of purified water

for sure and B: 10 percent to get 10,000 bottles of purified water, 90 percent

to get nothing, which one will you choose? If you are currently in a city where

purified water is not scarce, which one will you choose? Or if you are currently in

a desert where 20 bottles of purified water can make you survive, which one will

you choose? We can assume that in both cases you have 10000 bottles of purified

water at your home in another city as your wealth. Should a rational decision

maker choose the same option in those two cases? No! We can imagine that

the choice pattern violating the three axioms will be corrected in the subsequent

introspection when a stable distribution of neural resource can be formed. In the

absence of a stable distribution, when a decision maker reflects his/her choice

pattern that violates the three axioms, they will still insist on the chosen pattern

that violating the three axioms.

The assumption A3 and A4 make it hard and complex to think of what is

rationality and whether should we insist on the three axioms. The complexity of
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the environment itself makes the distribution of neural resource should be adapted

according to the goals of the decision maker in each particular environment. This

makes the stable distribution of the representation cannot be guaranteed. The

three axioms of reason can only be applied when there is a stable distribution.

Therefore, the three axioms can only be satisfied in the stable distribution within a

local decision space. A good normative decision model can only suggest a decision

maker obey the three axioms when a stable distribution could be realized in a

local context. Indeed, the three axioms are a necessary condition for a decision

maker to make good decisions if there is a stable utility function. Without a

stable utility function, insisting the three axioms will lead the decision maker to

make bad decisions. Therefore, the three axioms can only be rational within a

certain range. On other occasions, it is reasonable to violate the three axioms of

rationality.

VII. Conclusion Remarks

In this paper, based on the assumption that the strength of neural activities

can represent subjective utility, we imposed four key assumptions on the basic as-

sumption, which systematically regulates individual decision making in the risky

domain. The idea of using neural activities to represent subjective utility is not

a new in economics, which is precisely the basis of neuroeconomics and gradually

accepted by economics. This trend makes us consider the impact of the neural

system on subjective utility and we propose a density function for the distribution

of neural resource representing subjective utility. We identified four important

assumptions about the distribution of neural resource that a system should obey,

two of which are significant. The first one is all neural system only have limited

resources, and the second one is that a perceptible motivation requires a minimum

amount of neural activities. Those assumptions need the brain allocating repre-

sentative resources and adaptive distribution accordingly. Thus, this adaptation

of distribution may have a significant impact on all behavioral studies which def-
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initely are determined by neural resources. This article gives new interpretations

of the anomalies in risk decision making and new predictions about risky behavior

in new situations. And, all those new interpretations and predictions come from

the four assumptions about the distribution of neural representative resources.

Our model deals with how limited nerve resource is distributed in different

contexts. We also show that the changes of the utility of a given value reflect

the changes of the distribution. We find that the changes of the utility of a given

value will affect its relative utility with that of another value. This property has

significant implications for decision making theories that taking utility as their

currencies. Notably, the relative utility change is related to all models related to

utility discounts. Relative utility change is a kind of utility discounts. Therefore, if

we ignore this effect, this effect will be misunderstood. Because, if different values

correspond to different discounts, changes in relative utility size will correspond to

different results. For example, in the intertemporal selection model, a reduction

in long-term utility leads to a change in relative utility, and the measured discount

rate also changes. In the social preference discount model, the return of others

relative to their own earnings smaller, the relative impact of the utility will be

different. Therefore, the model of this paper is of great significance to a series of

problems considered in economics. And may change our deeper understanding of

the behavioral foundations of the visions that emerge from our past models.

The new method of modeling attention provides an additional approach to think

about the effect of attention on behavior. This new method proposes a model

approach to inseparable feature attention, which has not been considered be-

fore in decision making theories. Previous models incorporating attention mainly

focus on separable attention. Our model completes those models. This model

also provides the most fundamental part of attention between different features.

Attention in a given feature has an impact on the precepted relative size in that

feature, finally determining which feature is important to the decision among sev-

eral features. For example, there are several models deal with attention between
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different features. Our model for attention can help to figure out which feature

is significant for those models. Thus, if decision maker relies on the relative size

of amounts of the same feature, our approach to attention should not be ignored

for separable attentions. The competition between different features, the inher-

ent law should give priority to explore the same characteristics of the size of the

characterization. Therefore, it is fundamental to examine this issue.

In our model, rational consistency requires the decision maker to stick a fixed

distribution in every context. This means that the attention and scales should be

fixed in the same and could not be adjusted as the environment changes. This

requirement will lead to many problems in decision-making. Therefore, should

we define rationality as consistency at the behavioral level is an open question?

The behavioral level consistency requires at least two levels consistencies, one is

the relationship between internal representation and behavior, and another one is

the relationship between outside world and internal representation. This article

suggests that the behavior consistency in the canonical model should be replaced

by the consistency of utility in the descriptive model. If the relationship between

outside world and internal representation keeps constant, the decision maker will

not identify the importance in different contexts. In this case, the decision maker

may not survive in some contexts. For surviving, the decision maker should

notice the relative importance of goods in different situations. Therefore, we

should reconsider the meaning of rationality of decision making.

Our model could also shed light on the research about the relationship be-

tween neural activities and subjective feelings in the psychophysiology. Previous

research on the neuro basis of perception and behavior provide a solid founda-

tion for understanding this relationship. For example, Several rules or laws are

proposed to model these relations, such as Weber’s law, Weber-Fechner law, and

Stevens’ power law, etc. Our model may provide a new approach to understand

those unclear mechanical behind that psychology-law, by clarifying the impacts

of limitation of neural resources. Our model uses the evidence found in these
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studies and combines their implications to reach new predictions. In addition, we

can also use the same rules for them to study probability. Thus, our model helps

understand the understanding of the visions that emerge in psychophysiology.

Because of these psychological laws are not generally accepted in psychology yet.
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