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Abstract

Previous studies havemade numerous efforts in estimating the default risk for individ-

ual mortgages. However, the risk of mortgage-backed securities or banks’ mortgage

portfolios also depends on the correlation among individual mortgages. We conduct

formal statistical tests and find that conditional on the typical observable factors af-

fecting individual mortgage default risk, there is still a large degree of correlation in

defaults that would generate time clustering in defaults. We further conduct a variety

of robustness checks and find that this residual correlation cannot be explained by

the missing observable macroeconomic variables (e.g. national GDP growth or stock

market returns) or the unobserved location-specific time-invariant frailty. To quantify

the degree of this residual correlation, we calibrate a residual Gaussian copula cor-

relation parameter after conditioning on the individual default intensities estimated

from the Cox hazard model.

Keywords: Mortgage default; Default correlation; Copula; Mortgage-backed securities

1 Introduction

Mortgage default risk is one of the most critical risks facing the financial system. The

2007 financial crisis was triggered by the meltdown of the mortgage market. Accurately

analyzing mortgage default risk and correctly pricing the risk is important for households,

mortgage lenders, and mortgage-backed security (MBS) investors. A rich literature has

studied the econometric techniques in estimating individual mortgage default risk and the

empirical factors that affect individual mortgage default risk (e.g. Deng et al. (2000),

Clapp et al. (2006), and Guiso et al. (2013)). When lenders decide whether to approve a
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borrower’s mortgage application and how much interest to charge, estimating individual-

level mortgage default risk might provide sufficient information.

However, when evaluating the risk of MBSs or banks’ mortgage loan portfolios, what

matters is not only the default risk of each individual loan, but also the correlation among

them. The probability density function of MBS returns will have a heavier left tail if there

is default correlation among the mortgages in the pool. Even with accurate estimates on

the default risk at the individual level, ignoring correlation in defaults will result in un-

derestimating the MBS risk and overestimating the risk-diversification effect of pooling

mortgages together and issuing MBSs, and thus cause overpricing on MBSs. Ignoring

correlation in mortgage defaults will also cause banks to underestimate the tail risk of

banks’ mortgage loan portfolios and the level of economic capital required by the Basel

Accords to withstand extremely adverse scenarios. In addition, ignoring correlation in

mortgage defaults can cause other financial institutions to make poor risk-management

decisions, such as Freddie Mac and Fannie Mae’s decisions on mortgage-purchase activi-

ties and guarantee-fee charges and fund managers’ risk-hedging strategies. Correlation in

mortgage defaults can also enlarge the overall risk of the entire financial system, which

should be taken into consider by the regulator when making policies.

There are multiple reasons that can cause correlation among defaults of different indi-

vidual mortgages, especially the time clustering in defaults. First, risk-related observable

covariates may be correlated across different loans. For example, local house prices and

unemployment rates may be correlated across different locations. Second, unobserved

time-variant common risk factors can cause defaults to cluster in time. It is inevitable

that some relevant risk factors cannot be observed by researchers or investors but play im-

portant roles in affecting default intensities, such as soft information (Rajan et al., 2015),

lenders’ screening efforts (Keys et al., 2010, 2012), borrowers and lenders’ strategic behav-
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ior in debt renegotiation (Piskorski et al., 2010; Mayer et al., 2014; Agarwal et al., 2017),

and emotional and behavioral factors (Bhutta et al., 2017). Those unobserved factors can

have co-movements across different individual mortgages.

The third reason is spillover effects or contagion through multiple channels. One chan-

nel is that the foreclosure of a property will reduce the value of other properties in the same

neighborhood (Schuetz et al., 2008; Lin et al., 2009; Harding et al., 2009; Campbell et al.,

2011; Li, 2017) and thus make them more likely to default. Another channel is that a high

number of defaults in a location or the entire society will reduce the social stigma of s-

trategic default and convey information to borrowers about the probability of being sued,

which causes people to strategically choose to default at a lower threshold (Guiso et al.,

2013).1

Theoretically, risk analyses based on traditional econometric models for estimating

individual default risks (such as Cox proportional hazard models) can capture the default

correlation coming from some sources (e.g. the comovements of observable covariates),

but cannot capture the default correlation coming from other sources (e.g. unobserved

time-variant common risk factors and spillover or contagion effects) if those sources exist.

In this study, we test whether the comovement of observable covariates of different

mortgages is sufficient to account for the degree of time clustering in defaults that we ob-

serve in the mortgage performance data. We find that conditional on the typical observable

factors that are frequently employed by the mortgage default literature to estimate individ-

ual default risk, there is still a large degree of correlation in defaults that would generate

time clustering in defaults. To quantify the degree of this extra correlation, we calibrate
1We focus on correlation that accounts for time clustering in defaults. There are other factors that can

generate default correlation but not default clustering in time. Kau et al. (2011) included local unobserved
time-invariant frailties as random effects in the estimation of individual mortgage default risk. Deng et al.
(2005) included individual unobserved time-invariant frailties that are spatially correlated with each oth-
er. As an MBS pool usually includes mortgages throughout the entire country, the risk caused by those
unobserved time-invariant frailties can be efficiently diversified.

4



a residual Gaussian copula correlation parameter. We find that the value of this parame-

ter is comparable to the degree of residual correlation in corporate defaults that has been

documented in the corporate default literature.

The methodologies in this paper mainly follow those employed by Das et al. (2007)

in testing correlation in corporate defaults.2 A rich literature has examined correlation

in corporate defaults. As a seminal paper in this area, Das et al. (2007) tested whether

there is extra correlation accounting for time clustering in corporate defaults that are not

captured by the traditional econometric models estimating individual default intensities

with typical observable risk factors included. We employed a Cox proportional hazard

model to estimate individual mortgage default intensities, which has greater flexibility

than the econometric model used for individual corporate defaults in Das et al. (2007)

and other studies on corporate defaults. The additional flexibility comes from the baseline

hazard function in the Cox model, which is a function of time since loan origination to be

estimated nonparametrically. The reason to add this flexibility is that unlike firms, which

are supposed to exist forever unless they go bankrupt or get acquired, mortgages have a

finite horizon, such as 30 years. Even if all the other risk factors have the same values,

mortgages at different distance to maturity (or length of time since origination) should

have different default intensities.

In the corporate default literature, given the positive results of the extra correlation tests

in the seminal paper Das et al. (2007), many other papers structurally modeled the sources

of this extra correlation and estimate their corporate default models. Duffie et al. (2009)

and Nickerson andGriffin (2017) estimated corporate default models with a common time-

variant unobserved risk factor that would generate time clustering in defaults. Chen and

Wu (2014) extend models with a single common unobserved risk factor to models with
2Chernobai et al. (2011) employed similar methods to test correlation in bank operational risks.
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multiple sectoral frailties. Azizpour et al. (2018) estimated a corporate default model

with contagion effects (a default by one firm has a direct impact on the health of other

firms) using Hawkes point processes. In addition, some papers built theoretical models to

illustrate the corporate default correlation coming from certain potential sources, such as

Phelan (2017) on the efficiency for financial intermediaries to manage similar investments

together. Furthermore, many studies discussed or examined the impact of correlation in

corporate defaults on the risk of portfolios or structured financial products of corporate

bonds (see Giesecke (2004); Das et al. (2007); Yu (2007); Coval et al. (2009); Duffie et al.

(2009); Driessen et al. (2009); Koopman et al. (2009); Buraschi et al. (2010); Lando and

Nielsen (2010); Azizpour et al. (2011); Nickerson and Griffin (2017); Phelan (2017)).

Therefore, the results on the extra correlation of mortgage defaults in our study would

motivate a number of future studies to be conducted on mortgage defaults.3

Although correlation in mortgage defaults plays an important role in shaping the risk

ofMBSs, banks’ mortgage portfolios, and the entire financial system, few studies have em-

pirically investigated this correlation. There are a few theoretical papers modeling corre-

lation in mortgage defaults. Liu et al. (2009) employed copula to model the co-movements

among individual property values, which can generate correlation in mortgage defaults.

Fan et al. (2012) employed counterparty risk to model the mortgage default dependence

structure. Both papers calibrate the effect of correlation in mortgage defaults on the risk

and price of MBSs. Our study provides empirical evidence of an extra correlation in mort-

gage defaults that cannot be captured by the comovements of observables and quantifies

this extra correlation by calibrating a copula model.

There are also studies analyzing correlation in other asset markets and its implication
3Our study in this paper focuses on testing the correlation in mortgage defaults that cannot be explained

by observables and on quantifying this extra correlation by the calibrations of a copula model. Explicitly
and structurally modeling the sources of this extra correlation (such as common time-variant unobserved
risk factors and contagion effects) and estimating the model are beyond the scope of this paper.
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on the systematic risk, such as Christoffersen et al. (2012) on correlation among interna-

tional equitymarkets, Patton (2006) on correlation among foreign exchange rates, DeFusco

et al. (2013) on contagion among real estate markets in different MSAs, and Case et al.

(2012) on correlation between Real Estate Investment Trust (REIT) and stock returns.

The remaining portion of this paper is organized as follows. In Section 2, we describe

the data used in this paper. In Section 3, we estimate individualmortgage default intensities

uisng a Cox proportional hazard model. In Section 4, we conduct formal statistic tests

for the extra correlation and quantify the extra correlation by calibrating a copula model.

Section 6 describes robustness checks. Section 7 provides further discussion. Then, we

conclude in Section 8.

2 Data

Freddie Mac Single Family Loan-Level Dataset The full dataset covers all the 30-year

fixed-rate mortgages originated during 1999–2014 and purchased and guaranteed by Fred-

die Mac, which includes approximately 17 million loans. The data include loan-level orig-

ination information and monthly loan performance information. The origination informa-

tion includes the FICO credit score at origination, the original loan-to-value ratio (LTV),

the original debt-to-income ratio (DTI), the original unpaid balance, the metropolitan s-

tatistical area (MSA), the 3-digit zip code, and the state. The monthly loan performance

information includes the current loan delinquency status and the loan age. Freddie Mac

also created a smaller dataset by randomly selecting 50, 000 loans from each origination

year. The analyses in this paper are based on this random sample.
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Table 1: Descriptive statistics for the data

Variable Mean SD
FICO/100 7.3243 0.5391

Debt/income 0.3419 0.1161
Current LTV 0.6747 0.1962

MSA Unemployment rate 0.0671 0.0234
MSA Per capita income growth 0.0028 0.0322

National GDP growth 0.0408 0.0294
Monthly S&P500 return 0.0034 0.0434

Federal Housing Finance Agency (FHFA) House Price Index The FHFA publishes

3-digit zip code level house price indices. We match the 3-digit zip code level house price

index to the Freddie Mac loan-level dataset by the 3-digit zip code to calculate the current

house values. The purchase price or appraisal value of a house at the mortgage origination

can be derived from the FreddieMac loan-level dataset. Following the literature, we divide

the house value at origination by the 3-digit zip code level house price index at origination

and multiply it by the current house price index to construct the current house value. The

current LTV is calculated as the current unpaid balance divided by the current house value.

Other Data We also extract MSA-level unemployment rates from the Bureau of Labor

Statistics (BLS), MSA-level per capita income from the Bureau of Economic Analysis

(BEA), and national GDP growth and S&P500 returns from the Federal Reserve.

Following the literature, default is defined asmore than 90 days past due for amortgage.

At the end of the sample horizon, the cumulated default rate of the loans in the sample is

4.15%. Table 1 reports the descriptive statistics for key variables.

3 Estimating Individual Mortgage Default Intensity

In this section, we estimate a Cox proportional hazard model to obtain the default intensity

of each individual mortgage. As a typical class of econometric methods dealing with dura-
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tion data, Cox proportional hazard models have been wildly applied in analysing mortgage

defaults (e.g. Deng et al. (2000)), corporate defaults (e.g. Doshi et al. (2013)), and bank

operational risks (e.g. Chernobai et al. (2011)).4

The default intensity of mortgage i at calendar time t, λi,t(τ), is given by

λi,t(τ) = λ0(τ) exp (xi,tβ) , (1)

where τ is the length of time since origination, λ0(τ) is the baseline hazard rate, and

xi,t is the vector of time-variant and time-invariant covariates that proportionally shift

the baseline hazard. xi,t include both mortgage-specific risk factors (FICO credit score,

DTI, and LTV) and local economic conditions (unemployment rate and per capita income

growth). The corporate default intensity model estimated by Das et al. (2007) did not have

the baseline hazard function λ0(τ) that varies in τ . The reason is that firms are supposed

to exist forever unless they go bankrupt or get acquired. However, mortgages have a finite

horizon, such as 30 years. Even if all the other risk factors have the same values, mortgages

at different distance to maturity (or length of time since origination) should have different

default intensities. Therefore, the baseline hazard rate (a function of time since origination)

is included in the mortgage default model in the literature (e.g. Deng et al. (2000), Clapp

et al. (2006), An et al. (2010), and Kau et al. (2011)).

The Cox proportional hazard model is estimated by a partial likelihood method, which

has two steps. In the first step, β is estimated parametrically; in the second step, λ0(τ) is

estimated nonparametrically (see Cox (1975) for detailed estimation procedures). Table

2 displays the estimation results for β. All the parameters are consistent with theories,

intuition, and previous empirical results reported in the mortgage default literature. A
4Shumway (2001) discussed the advantages of hazard models compared to single-period static models

in predicting failures and proved the equivalence between hazard models and multi-period logit models.
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Table 2: Estimation of a Cox proportional hazard model for individual mortgage default
intensities

Variable Estimate SE
FICO/100 -1.1628*** 0.0160

Debt/income 2.2205*** 0.0811
Current LTV 2.9650*** 0.0391

Unemployment rate 8.5599*** 0.4323
Per capita income growth -5.7537*** 0.2569

*** denotes the 0.01% level of significance
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Figure 1: Aggregate intensities and defaults by month.

mortgage will have a higher default intensity if the credit score is low, the DTI or current

LTV is high, the local unemployment rate is high, or the local per capita income growth is

low. For each month, we aggregate the individual mortgage default intensities across all

the mortgages that are active in that month. As shown in Figure 1, the monthly aggregate

default intensity well matches the total number of defaults in each month.
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4 Testing Extra Correlation

In this section, we test whether there is extra default correlation that is not captured by the

empirical model in Section 3. Traditional methods of hypothesis testing require that under

the null hypothesis, there should be multiple observations drawn from an identical distri-

bution. However, in the data-generating process of mortgage defaults, different mortgages

have different default intensities and the same mortgage at different months has different

default intensities, which bring complications into the testing of default correlation.

We follow the time-rescaling method developed by Das et al. (2007) to address this

issue. The basic idea of the method is as follows: first, the default intensities of all the ac-

tive mortgages in a month are aggregated to obtain a monthly aggregated default intensity;

second, time bins with different lengths are constructed such that the aggregated default

intensity in each bin is identical across different bins. Thus, under the null hypothesis

that there is no extra correlation of defaults that is not captured by the empirical model in

Section 3, the realized total number of defaults in each time bin follows a standard Pois-

son distribution with a constant event rate. Section 4.1 below discusses the procedure of

rescaling calendar time into time bins; Section 4.2 discusses the analyses based on the

realized total number of defaults in each time bin.

4.1 Time Rescaling for Poisson Defaults

We suppose that the default time of the ith loan, τ ∗i , is the first jump time of a point process

with stochastic intensity process {λi,t}t∈[0,T ] for any loan index i = 1, 2, ..., n, where n is

the total number of loans in the sample. The total number of defaults in the sample up to

time t is

Nt =
nX
i=1

1{τ ∗i ≤ t}, t ∈ [0, T ],
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where T is the terminal time. The total default intensity of all surviving loans at time t in

the sample is

λt :=
nX
i=1

λi,t1{τ ∗i > t}, t ∈ [0, T ].

For each loan i, λi,t up to time τ ∗i have been estimated according to equation (1). The

aggregated intensity λt and the total number of realized defaults for each month are plotted

in Figure 1.

Denote the total accumulative default intensity of all surviving loans in the pool by

Λ(t) :=

tZ
0

λsds, t ∈ [0, T ].

To construct time bins such that each time bin contains the same amount of aggregated

intensity, we cut the calendar time at the time points {t0, t1, ..., tK} with t0 = 0, tK ≤ T

such that

Λ(tk)− Λ(tk−1) = c, for any bin index k = 1, ..., K.

The constant c is referred as the bin size, i.e., the units of aggregated intensity in each bin.

K ∈ N+ is the total number of bins cut from the sampling period (1999-2014). Denote

the number of defaults within the kth time bin, [tk−1, tk), by

Xk :=
nX
i=1

1
¦
tk−1 ≤ τi < tk

©
, k = 1, ..., K.

In theory (Meyer, 1971), under the null hypothesis that each default follows an in-

dependent process represented by the Cox proportional hazard model in equation (1),

X ≡ {Xk}k=1,2,...,K would be i.i.d. and should follow a standard Poisson distribution

with a constant event rate c. We explore multiple approaches to test this null hypothesis
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and they all show the violation.

To ensure that our results are robust to the change in the bin size, we set c = 200, 300, 400,

and 500, respectively, and conduct the analyses correspondingly. In each panel of Figure

2, vertical lines represent the time bin delimiters; each time bin has a different time length,

but the aggregated intensity or the change of total accumulative intensity within each bin

is always equal to c. The bin is narrower (wider) when the aggregated intensity is high

(low) or the total accumulative intensity is steeper (flatter).

We do not set c beyond the 200-500 range for the following consideration. On the

one hand, if c is too small, some bins would be narrower than one month, but mortgage

payments are usually monthly; on the other hand, if c is too large, the number of bins cut

from the sampling period (1999-2014) would be too small to guarantee the power of our

statistical tests. In the corporate default literature (Das et al., 2007; Lando and Nielsen,

2010), much smaller numbers are used for c because the number of corporate bonds is

much smaller than the number of mortgages, and the number of corporate defaults is much

smaller than the number of mortgage defaults. However, the average time length of bins

in our study is similar to that in Das et al. (2007) and Lando and Nielsen (2010).

4.2 Analyses based onRealizedNumbers ofDefaults inRescaledTime

Bins

4.2.1 ComparingTheoretical Distributions andMomentswithTheir Empirical Coun-

terparts

For a given bin size c, we first compare the empirical distribution and moments of the real-

ized number of defaults in each bin (Xk) with the simulated distribution andmoments from

a standard Poisson distribution with a constant event rate c. The empirical distributions
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Figure 2: Time rescaled bins. The time bin delimiters at {tk}k=1,2,... over 1999-2014 (178month-
s) are marked by vertical lines. The curve represents the total accumulative default intensity. Panels
A, B, C, and D display the time rescaled bins for the bin size c = 200, 300, 400 and 500, respective-
ly. Given c, each bin is constructed such that the change of the total accumulative default intensity
in each bin (or the aggregated default intensity within each bin) is always equal to c.
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Table 3: Comparison of empirical (data) and theoretical (Poisson) moments
This table presents a comparison of empirical and theoretical moments for the distribution of de-
faults per bin. c is the bin size;K is the corresponding number of bin observations. The theoretical
moments are either analytically derived or computationally simulated from the theoretical Poisson
distributions under the hypothesis that there is no residual correlation after conditioning on the Cox
hazard model in equation (1).

c K Mean Variance Skewness Kurtosis
Theoretical 200 60 200.00 200.00 0.07 3.00
Empirical 200 60 200.60 1,434.82 0.56 2.73
Theoretical 300 40 300.00 300.00 0.06 3.00
Empirical 300 40 300.93 2,997.76 0.52 2.39
Theoretical 400 30 400.00 400.00 0.05 3.00
Empirical 400 30 401.23 5,003.91 0.44 2.13
Theoretical 500 24 500.00 500.00 0.04 3.00
Empirical 500 24 501.54 7,118.78 0.34 2.46

of Xk for bin size c = 200, 300, 400, and 500 and the associated simulated Poisson dis-

tributions (with 10, 000 replications for each distribution) are plotted in Figure 3. Across

all the choices for bin size c, the empirical distribution is more dispersed and has heavier

tails than the simulated Poisson distribution. This pattern indicates that there exists extra

correlation of defaults that is not captured by the default intensity model in equation (1).

The moments of a standard Poisson distribution of event rate c can be calculated an-

alytically, and its mean, variance, skewness and kurtosis are c, c, 1/
√
c and 1/c + 3, re-

spectively. Then, we can carry out a comparison between these theoretical results and

their empirical counterparts. As shown in Table 3, for each bin size c, the first-order mo-

ments (means) (marked by dashed lines "- - -") are very closely matched, which indicates

that the default intensity model in equation (1) does not have systematic biases in estimat-

ing individual mortgage default intensities. However, the high order moments (variance,

skewness, and kurtosis) are not well matched. Especially, the empirical variance is much

larger than the theoretical variance, which indicates that there exists extra correlation not

captured by the model equation (1), and this extra correlation generates higher uncertainty

of aggregate-level default risks than the model in equation (1) does.
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Figure 3: Comparison between the empirical distributions and the theoretical Poisson dis-
tributions of defaults per bin. For the bin size c = 200, 300, 400, and 500, respectively, the
theoretical distribution is simulated with 10,000 replications from the Poison distribution under
the hypothesis that there is no residual correlation after conditioning on the Cox hazard model in
equation (1). Their means are marked by vertical dashed lines "- - -". The empirical distribution is
more dispersed than its theoretical counterparts.
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4.2.2 Fisher’s Dispersion Test and Upper-Tail Test

Under the null hypothesis that each default follows an independent process represented by

the Cox proportional hazard model in equation (1),X ≡ {Xk}k=1,2,...,K would be i.i.d. and

should follow a standard Poisson distribution with a constant event rate c. To formally test

this hypothesis, we first carry out the Fisher’s dispersion test (Cochran, 1954) for a given

bin size c with K bins. Under the null hypothesis that X are i.i.d. and follow a Poisson

distribution of rate c, theW statistic defined in equation

W :=
KX
k=1

(Xk − c)2

c
(2)

follows a chi-squared distribution of K − 1 degrees of freedom, i.e. W ∼ χ2
K−1. The

result of the Fisher’s dispersion test is reported in the left part of Table 4. Across all the

choices of bin size c, the null hypothesis is rejected at a 0.01% level of significance.

Alternatively, we also conduct the upper-tail test. For a given bin size c with K bins,

denote M as the sample mean of the upper quartile of the empirical distribution of X.

We simulate 10, 000 data sets, each consisting of K i.i.d. random variables drawn from a

Poisson distribution with event rate c. Then, for each simulated data set, we compute the

upper-quartile mean. The p-value is estimated as the fraction of the simulated data sets for

which the sample upper-quartile mean is high than the empirical upper-quartile meanM .

The right part of Table 4 displays the result of the upper-tail test. The empirical upper-

quartile mean is significantly higher than the simulated upper-quartile mean from a Poisson

distribution at a level of 0.01%. This result indicates that the actual default risks have a

fatter upper-quartile tail than predicted by the Cox model of (1).
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Table 4: Fisher’s dispersion test and upper-tail (UT) test
The columns on the left present Fisher’s dispersion test. Under the null hypothesis that there is
no residual correlation after conditioning on the Cox hazard model in equation (1), given the bin
size c, the defaults per bin Xk are i.i.d. and follow a Poisson distribution of rate c, and thus the
W statistic defined in equation (3) follows a chi-squared distribution ofK − 1 degrees of freedom.
The columns on the right present the upper-quartile test. Under the null hypothesis that there is
no residual correlation after conditioning on the Cox hazard model in equation (1), the simulated
upper-quartile (UQ) mean of Xk from the theoretical Poisson distribution of rate c should well
match its empirical counterpart.

Fisher’s Test UT Test
c W p-value Empirical UQ mean Simulated UQ mean p-value

200 423.38 0.0000 252.80 209.42 0.0000
300 389.82 0.0000 378.10 311.51 0.0000
400 362.90 0.0000 505.57 413.27 0.0000
500 327.58 0.0000 613.33 514.72 0.0000

5 Measuring Extra Default Correlation via Copula

5.1 One-Correlation-Parameter Model

Our previous tests provide strong evidences that there exists extra correlation of mortgage

defaults that is not captured by the traditional Cox hazard model in equation (1). The next

step is to gauge the degree to which the correlation is not captured by the traditional Cox

hazard model. Similar to Das et al. (2007), we calibrate the intensity-conditional copula

model to obtain the pairwise residual copula correlation that must be added, after condi-

tioning on the default intensities estimated by equation (1), to match the upper-quartile

means of the empirical distribution of defaults per time bin.

Similar to the corporate default literature, we use the upper-quartile mean as the bench-

mark to gauge the copula correlation parameter. The reason is that the upper-quartile mean

is a measure of tail risk widely used in both the academia and the industry, and the tail risk

of MBS returns or banks’ loan portfolios generated by the correlation among individual

mortgages have important implications for MBS pricing and financial institutions’ risk-

management decisions. Theoretically, different copula models would generate different

numeric values for the residual copula correlation. In this paper, we employ the industry
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standard "Gaussian copula", which is widely used in the pricing of structured credit prod-

ucts such as collateralized debt obligations (CDOs). The calibrating algorithm is provided

in Appendix A.

Table 5 reports the calibration results. Given a bin size c, for each gridded numeric

value of the pairwise residual copula correlation parameter ρ, we simulate the total number

of defaults for a bin and then compute the upper-quartile mean of the simulated sample.

The numbers in bold represent the upper-quartile means of the simulated defaults per time

bin that are closest to their empirical counterparts. Across all the choices for bin size

c, the copula correlation parameter ρ at which the simulated upper-quartile mean best

approximates its empirical counterpart is always 0.5%. The residual copula correlation

calibrated by Das et al. (2007) for corporate defaults ranged from 1% to 4%, depending

on the choice of the bin size; Nickerson and Griffin (2017) obtained a similar range for

corporate defaults. The residual copula correlation calibrated in this paper for mortgage

defaults is lower than those for corporate defaults. This is consistent with intuition because

the number of mortgages is much larger than the number of corporate bonds, and mortgage

borrowers have greater heterogeneities and are more loosely connected than firms.

However, a 0.5% pairwise residual copula correlation is large enough to dramatically

increase the upper-tail risk of pool-level default risks. As shown in Table 5, ignoring the

residual correlation (letting ρ = 0) would generate a upper-quartile mean that is lower than

its empirical counterpart by 10−15% ((252.8−226.17)/252.8−1 = 10.53% for c = 200;

(378.1 − 328.79)/378.1 − 1 = 13.04% for c = 300; (505.57 − 430.74)/505.57 − 1 =

14.80% for c = 400; and (613.33 − 531.96)/613.33 − 1 = 13.27% for c = 500). Figure

4 displays the relationship between the upper-quartile mean and the residual Gaussian

copula correlation for each bin size c. Given c, the upper-quartile mean is increasing in

the residual Gaussian copula.
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Table 5: Residual Gaussian copula correlation
Given a bin size c, for each gridded numeric value of the pairwise residual copula correlation
parameter ρ, we simulate the total number of defaults for a bin and then compute the upper-quartile
mean of the simulated sample. The numbers in bold represent the upper-quartile means of the
simulated defaults per time bin that are closest to their empirical counterparts (the second column).
The last column ρ̂ represents the correlation parameter from linear interpolations.

Pairwise residual copula correlation parameter
c Data 0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ρ̂

200 252.80 226.17 245.12 258.21 273.18 279.42 292.52 299.28 307.01 312.68 0.40%
300 378.10 328.79 357.57 378.09 394.97 409.75 422.52 434.61 448.87 450.93 0.50%
400 505.57 430.74 470.83 496.86 517.65 535.41 555.59 568.29 580.62 595.11 0.60%
500 613.33 531.96 582.16 611.99 637.11 656.36 681.62 701.31 719.58 732.94 0.51%
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Figure 4: Relationship between residual Gaussian copula correlation and upper-quartile
mean. Given a bin size c, the upper-quartile mean of the simulated defaults per bin (Xk) is in-
creasing in the residual Gaussian copula correlation. The circle marks represent the empirical
upper-quartile means.
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5.2 Two-Correlation-Parameter Model

While any two mortgages can potentially be correlated in defaults, two mortgages in the

same location may have a higher correlation. This fact is different from corporate defaults.

The reason why any two mortgages can potentially be correlated in defaults is that some

unobserved common risk factors are at the national level and that some spillover effects are

transmitted through social network or social media rather than geographically (e.g., a high

number of defaults in the entire society will reduce the social stigma of strategic default

and convey information to borrowers about the probability of being sued, which causes

people to strategically choose to default at a lower threshold (Guiso et al., 2013). The

reason why two mortgages in the same location may have a higher correlation is that some

other unobserved common risk factors are at the local level and that some other spillover

effects are transmitted geographically.

In this subsection, we calibrate a two-correlation-parameter model to capture the spe-

cial property of mortgage markets, which is different from the one-correlation-parameter

model developed by Das et al. (2007) for corporate defaults. We assume that in a time bin,

the correlation between any two mortgages across different locations is ρ1 and the correla-

tion between any two mortgages in the same location is ρ1 +ρ2. Therefore, ρ1 captures the

correlation between any two mortgages in the country; and ρ2 captures the additional cor-

relation within the same location. We calibrate ρ1 and ρ2 by matching the upper quartile

mean of total default numbers and a measure of geographic dispersion of location-level

default rates in the simulated data to their empirical counterparts. The higher ρ2, the more

likely that defaults are clustered in certain locations and thus the higher geographic disper-

sion of location-level default rates; the higher ρ1 and ρ2, the higher upper quartile mean

of total default numbers.
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The measure of geographic dispersion of location-level default rates in a time bin k is

defined as follows:

dispersionk =
MX
m=1

�
default rate in location m− average default rate across locations

�2

,

(3)

where

default rate in location m =
number of defaults in location m

number of existing loans in location m
.

For a given pair of copula correlation parameters ρ1 and ρ2 and a bin size c, we use the

following procedure to simulate defaults:

1. Suppose the number of loans in bin k is nk. For each loan index i and each bin

index k, calculate Ck
i , which denotes the increment in the cumulative intensity for

this loan within this bin, i.e.,

Ck
i :=

tkZ
tk−1

λi,s1{s < τ ∗i }ds, i = 1, 2, ..., nk, k = 1, 2, ..., K.

2. Equally likely draw one of the bins, say k. Draw {Wi}i=1,2,...,nk
from a joint standard

normal distribution with the following correlation structure: for any two loans i and

j, if they are in different locations, corr(Wi,Wj) = ρ1; if they are in the same

location, corr(Wi,Wj) = ρ1 + ρ2.5

3. For each loan i, let Ui = Φ(Wi), where Φ(.) is the standard normal cumulative
5We use a modified two-factor Gaussian copula model to generate {Wi}i=1,2,...,nk

. Denote (i) ∈
{1, 2, ...,M} as the location index of loan i, where M is the total number of locations. Randomly draw
Z, {Zm}m=1,2,...,M , and {εi}i=1,2,...,nk

from the standard univariate normal distribution N(0, 1). Com-
pute

Wi =
√
ρ1Z +

√
ρ2Z(i) +

p
1− ρ1 − ρ2εi, i = 1, ..., nk.
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distribution function. Loan i will default in bin k if Ui > e−C
k
i for i = 1, 2, ..., nk,

and will be active otherwise. Then, we obtain the total number of simulated defaults

in a bin for the mortgage pool and calculate the geographic dispersion of location-

level default rates.

4. Repeat Steps 2 and 3 for 10, 000 times independently, and then calculate the upper-

quartile mean of simulated defaults per bin and the average geographic dispersion

of location-level default rates across these 10, 000 scenarios.

(The calibration results of ρ1 and ρ2 for different bin sizes are coming soon)

6 Robustness Checks

The results in the previous section indicate that there is a significant amount of default cor-

relation that cannot be explained by the co-movement of observable risk factors. There-

fore, the traditional risk model may perform well in predicting default risks for individual

mortgages, but will underestimate the risk of banks’ mortgage portfolios or MBSs based

on mortgage pools. As one of the robustness checks, we examine whether the extra cor-

relation comes from the nonlinear effects of observables on defaults. We try a variety of

specifications for equation (1), including adding quadratic and cubic terms of observables

or dividing the observables into bins and using bin fixed effects. Similar results on cor-

relation tests and calibrations are obtained.6 As another robustness check, we examine

whether the extra correlation comes from other individual characteristics missing from

the baseline regression in Table 2, including occupancy status (whether the property is

owner occupied, second home, or investment property), whether originated through a bro-

ker, loan purpose (for house purchase or for refinance), whether first-time homebuyer, and
6The results are available upon request.
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whether with a second mortgage. We add those variables into the estimation of equation

(1) and similar results on correlation tests and calibrations are obtained.7

In this section, we examine whether the residual correlation can be explained by two

other channels. One channel is the macroeconomic variables observable to researchers but

missing in the model specifications. The other channel is the unobserved location-specific

time-invariant frailty shared by mortgages originated from the same location.

6.1 Testing for Missing Covariates

It is possible that national level macroeconomic conditions can affect the default risks of

mortgages all over the country and thus generate default correlation. One key variable

measuring macroeconomic conditions is the GDP growth rate. In the previous model

specification, we have already included local unemployment rate and per capita income

growth, which are highly correlated with the national GDP growth rate. Here, we test

whether the residual correlation of defaults can be caused by the missing national GDP

growth, after controlling for local economic conditions. Following Das et al. (2007), given

a bin size, we use the number of defaults in a bin in excess of the mean (Xk − c) as the

dependent variable and run regressions on the national GDP growth rates. As shown in

Table 6, for all the bin sizes, GDP growth is not significant. As noted in Das et al. (2007),

if an additional variable does not contribute to predicting the default risk after controlling

for the existing variables, this additional variable should be uncorrelated with the number

of defaults in a bin in excess of the mean.

Another macro variable we examine is S&P500 returns. First, stock market perfor-

mance is also an important indicator of the macro economy. Second, losing money from

the stock market may make households more likely default on their mortgages. As shown
7The results are available upon request.
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Table 6: Testing for missing covariates
For each bin size c, we run regressions of the number of defaults in excess of themean, Yk = Xk−c,
on the previous quarter’s GDP growth rate and the previous month’s return on S&P 500 index. The
number of observations in each regression is the number of bins of size c. *** denotes the 0.01%
level of significance. Coefficients without * are insignificant at a level of 10%.

c Intercept GDP growth (%) S&P500 return (%)
200 208.8355*** -2.9731

(6.2988) (1.4198)
300 311.7991*** -3.9292

(11.2779) (2.8202)
400 411.2938*** -3.6407

(16.1073) (3.7028)
500 512.6674*** -3.7929

(23.5721) (5.3663)
200 201.1104*** -0.9895

(5.088) (1.4855)
300 301.2067*** -0.8309

(8.9122) (2.4823)
400 401.6607*** -2.5373

(13.1075) (3.9133)
500 502.4382*** -3.4222

(17.4235) (5.0756)
200 208.8102*** -2.9513 -0.0682

(6.3425) (1.4446) (1.2718)
300 311.9551*** -4.019 0.2733

(11.4894) (2.8958) (2.1957)
400 410.2706*** -3.1844 -1.4107

(15.9464) (3.73) (3.7425)
500 510.4558*** -2.8508 -2.106

(23.693) (5.3606) (4.7942)

in Table 6, S&P500 returns are insignificant in the regressions of (Xk − c) for all the bin

sizes.

We also addGDP growth and S&P 500 returns in the estimation of default intensity and

repeat Fisher’s dispersion test, the upper-tail test, and the calibration of copula correlation.

The results are similar to those based on the default intensity estimation without including

GDP growth and S&P 500 returns.8

6.2 Incorporating Location-specific Time-invariant Frailty

Mortgages originated in the same local area may share common unobserved factors that

affect default intensities. This could be one source of mortgage default correlation. Kau
8The results are available upon request.
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et al. (2011) estimated a Cox proportional hazard model with shared MSA-specific time-

invariant frailty for mortgage defaults. In this subsection, we estimate a similar model and

obtain the default intensities of each mortgage; then, we repeat Fisher’s dispersion test, the

upper-tail test, and the calibration of the copula correlation. The results are very similar

to those based on the Cox model without shared frailty, which indicates that there is still

a significant amount of default correlation coming from sources other than shared local

time-invariant frailty.

Suppose the default intensity is determined by equation

λi,t(τ) = λ0(τ) exp (xi,tβ) vm, (4)

where vm is the unobserved time-invariant risk factor shared by all the mortgages origi-

nated in location m, and vm is different across different locations. Following the typical

literature employing Cox models with shared frailty, vm is assumed to follow a Gamma

distribution Γ
�
1
θ
, θ
�
with θ > 0. The parameter θ measures the heterogeneity of the un-

observed time-invariant frailty across different locations. Because the variance of Γ
�
1
θ
, θ
�

is θ (1
θ
× θ2 = θ), this model will degenerate to a Cox model without shared frailty as θ

approaches to zero.

Themodel is estimatedwith the expectation-maximization (EM) algorithm; seeDemp-

ster et al. (1977) and Therneau and Grambsch (2000, p.253–255) for detailed estimation

procedures. The algorithm not only generates estimates of λ0(τ), β, and θ, but also gener-

ates estimates of vm for all the locations. Table 7 displays the estimates of β and θ, where a

location is defined as a 3-digit zip code area.9 All the β parameters are consistent with the-

ories and intuition. The estimate of θ is 0.0613 and the standard error is 0.0104. Based on
9We also estimate a shared-frailty model in which a location is defined as an MSA. The corresponding

results for Fisher’s dispersion test, the upper-tail test, and the calibration of the copula correlation are similar.
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a likelihood ratio test, θ is significantly positive at the level of 0.1%, which indicates that

mortgages originated in the same location do share common unobserved time-invariant

risk factors that affect default intensities. This result is consistent with the result in Kau

et al. (2011).

The estimated default intensity of each mortgage at calendar time t is calculated by

bλi,t(τ) = bλ0(τ) exp
�
xi,t bβ� bvm.

We aggregate bλi,t(τ) of all the active mortgages in our sample at calendar time t to obtain

the aggregated default intensity for calendar time t. Based on the aggregated default inten-

sity for calender time t, we rescale the time and construct bins to repeat Fisher’s dispersion

test, the upper-tail test, and the calibration of the copula correlation.

As shown in Table 8, for each bin size c, the first-order moments (means) (marked by

dashed lines "- - -") are very closely matched. However, the high order moments (variance,

skewness, and kurtosis) are not well matched. Especially, the empirical variance is much

larger than the theoretical variance. These results are similar to those in Table 3 for the

Cox model without frailties. Table 9 displays the results of Fisher’s dispersion test and

the upper-tail test. The hypothesis that the default correlation is fully captured by the co-

movement of observables xi,t and the existence of shared location-specific time-invariant

unobserved frailty is rejected again at a very high significant level. There are only small

changes in the statistics of those tests after adding shared frailty to the model, compared

to Table 4. As shown in Table 10, compared to Table 5, the calibrated residual copula

correlations also do not change much after adding shared frailty to the model.
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Table 7: Estimation of a proportional hazard model with location-specific time-invariant
frailty

Variable Estimate SE
FICO/100 -1.1628*** 0.0160

Debt/income 2.2205*** 0.0811
Current LTV 2.9650*** 0.0391

Unemployment rate 8.5599*** 0.4323
Per capita income growth -5.7537*** 0.2569

θ 0.0613** 0.0104

** denotes the 0.1% level of significance. *** denotes the 0.01% level of significance.

Table 8: Comparison of empirical (data) and theoretical (Poisson) moments (frailty case)
This table presents a comparison of the empirical and theoretical moments for the distribution of
defaults per bin. c is the bin size; K is the corresponding number of bin observations. The theo-
retical moments are either analytically derived or computationally simulated from the theoretical
Poisson distributions under the hypothesis that there is no residual correlation after conditioning on
the proportional hazard model with location-specific time-invariant frailty according to equation
(4).

c K Mean Variance Skewness Kurtosis
Theoretical 200 60 200.00 200.00 0.07 3.00
Empirical 200 60 200.53 1,292.29 0.30 2.92
Theoretical 300 40 300.00 300.00 0.06 3.00
Empirical 300 40 300.82 2,750.66 0.32 2.90
Theoretical 400 30 400.00 400.00 0.05 3.00
Empirical 400 30 401.10 4,496.44 0.39 3.15
Theoretical 500 24 500.00 500.00 0.04 3.00
Empirical 500 24 501.38 6,709.11 0.45 3.43

Table 9: Fisher’s dispersion test and upper-tail (UT) test (frailty case)
The columns on the left present Fisher’s dispersion test. Under the null hypothesis that there is
no residual correlation after conditioning on the proportional hazard model with location-specific
time-invariant frailty according to equation (4), given the bin size c, the defaults per binXk are i.i.d.
and follow a Poisson distribution of rate c, and thus theW statistic defined in equation (3) follows a
chi-squared distribution ofK− 1 degrees of freedom. The columns on the right present the upper-
quartile test. Under the null hypothesis that there is no residual correlation after conditioning on
the proportional hazard model with location-specific time-invariant frailty according to equation
(4), the simulated upper-quartile (UQ) mean ofXk from the theoretical Poisson distribution of rate
c should well match its empirical counterpart.

Fisher’s Test UT Test
c W p-value Empirical UQ mean Simulated UQ mean p-value

200 381.31 0.0000 248.07 209.39 0.0000
300 357.68 0.0000 369.60 311.54 0.0000
400 326.08 0.0000 494.43 413.31 0.0000
500 308.71 0.0000 606.67 514.82 0.0000
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Table 10: Residual Gaussian copula correlation (frailty case)
Given a bin size c, for each gridded numeric value of the pairwise residual copula correlation
parameter ρ, we simulate the total number of defaults for a bin and then compute the upper-quartile
mean of the simulated sample. The numbers in bold represent the upper-quartile means of the
simulated defaults per time bin that are closest to their empirical counterparts (the second column).
The last column ρ̂ represents the correlation parameter from linear interpolations

Pairwise residual copula correlation parameter
c Data 0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ρ̂

200 248.07 229.40 249.02 263.25 273.91 285.48 292.03 303.59 311.86 319.00 0.24%
300 369.60 329.43 359.07 377.45 395.20 410.69 421.86 437.96 444.12 460.52 0.39%
400 494.43 432.07 473.95 498.20 519.83 537.12 550.74 575.23 585.69 596.66 0.46%
500 606.67 533.81 584.30 614.56 640.71 660.93 683.61 702.83 719.89 739.48 0.43%

7 Further Discussion

This paper provides empirical evidence of extra correlation in mortgage defaults that can-

not be captured by the traditional Cox hazard models. This extra correlation does not

come from the co-movements of observable risk factors and cannot be explained by ei-

ther observable macroeconomic variables missing from the model specification or shared

unobservable location-specific time-invariant frailty.

One concern is that with the technology of big data, more detailed information about

borrowers can be collected, and fewer unobservables will be left in the residuals (for exam-

ple, some studies used borrowersąŕ mobile-phone usage and social network information

to predict loan defaults). Consequently, is it still worthwhile to calibrate the residual cor-

relation of defaults?

First, although researchers can obtain many additional variables with the technology of

big data, for each variable, usually there are a large proportion of observations withmissing

values. Those additional variables are helpful in predicting individual default risks for the

sample with non-missing values. However, for the risk analysis at the portfolio or MBS

level, all the individual mortgages in the pool matter. Calibrating the residual correlation

is still helpful to improve the portfolio or MBS level risk analysis.

Second, those additional variables regarding borrowersąŕ information are usually cost-
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ly to obtain and maintain. The costs include not only monetary costs but also time costs

to go through the legal process because of privacy-protection laws. Practitioners need to

make balance between obtaining these costly additional variables to improve the predic-

tion of individual default risk and consuming more computation power in calibrating the

residual correlation to improve the portfolio or MBS level risk analysis.

Third, to predict future mortgage default risks and the resulting portfolio or MBS level

risks, the future movements of observables need to be predicted. Macroeconomic-level

observables are much easier to predict than detailed-level observables. First, macroeco-

nomic variables usually have longer historical data. Second, the performance of forecast-

ing models for macroeconomic variables are more stable, robust, and reliable. Therefore,

using a limited set of observables and taking into account extra residual correlations would

be enough in predicting portfolio or MBS level risk. In the corporate default correlation

literature, Das et al. (2007) and Duffie et al. (2009) used two firm-level observables and

two macroeconomic observables; Nickerson and Griffin (2017) used one firm-level ob-

servables and six macroeconomic observables.

The results in this paper wouldmotivatemultiple future research topics regardingmort-

gage defaults that are beyond the scope of the current paper.

One future research topic is to estimate structural models to explore the sources and

structure of this extra correlation, which is currently the frontier of studies on the extra cor-

relation in corporate defaults. For example, Duffie et al. (2009) and Nickerson and Griffin

(2017) estimated corporate default models with a common time-variant unobserved risk

factor that could generate time clustering in defaults. Azizpour et al. (2018) estimated a

corporate default model with contagion effects (the default by one firm has a direct im-

pact on the health of other firms). Analyzing the extra correlation in mortgage defaults

along those directions has the potential to provide deeper understanding of the sources
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and structure of correlation, better estimates for the degree of correlation, and more accu-

rate predictions for pool-level default risks.

Another future research topic is to study how MBSs should be priced when taking

into account the extra correlation or how much MBSs were mispriced previously for not

considering the extra correlation. In the corporate default literature, Broer (2018) built a

theoretical model to analyze the mis-pricing of CDOs due to correlation in corporate de-

faults. In the current industrial practice, the calibrated residual copula correlation has been

applied in pricing corporate-debt financial products, such as CDOs, but not for mortgage

related financial products (MBSs). The forecasting of pool-level mortgage default risks is

usually conducted using the following procedure (see e.g. Duarte and McManus (2016)).

In the first step, Cox hazard models are fitted for individual mortgage defaults. Second,

time series models are fitted for the movement of observable risk factors (e.g. local house

price index and unemployment rates). Third, given the current and past values of those

observable risk factors, future values are simulated based on the time series models for a

large number of paths. Fourth, the simulated future value of those observable risk factors

are plugged into the Cox hazard model to predict the future default risk for each indi-

vidual mortgage, and the pool-level future default risk is obtained by simply aggregating

individual mortgage risks. Therefore, the risk forecasting procedure in current industrial

practice only captures the mortgage default correlation generated from the co-movements

of observable risk factors. The MBS pricing based on the risk analyses ignoring the extra

residual correlation should be biased, which could play an important part in causing the

2007 financial crisis.
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8 Conclusion

When evaluating the risk of MBSs or banks’ mortgage loan portfolios, in addition to the

default risk of each individual loan in the pool, the correlation among them should matter.

Ignoring correlation among individual mortgage defaults will lead to underestimating the

MBS risk and overestimating the risk-diversification effect of pooling mortgages together

and issuingMBSs, and thus cause overpricing onMBSs. Ignoring correlation in mortgage

defaults will also cause banks to underestimate the tail risk of banks’ mortgage loan portfo-

lios and the level of economic capital required by the Basel Accords to withstand extremely

adverse scenarios. In addition, ignoring correlation in mortgage defaults can cause other

financial institutions to make poor risk-management decisions, such as Freddie Mac and

Fannie Mae’s decisions on mortgage-purchasing activities and guarantee-fee charges and

fund managers’ risk-hedging strategies. Correlation in mortgage defaults can also enlarge

the overall risk of the entire financial system, which should be taken into consider by the

regulator when making policies.

There are multiple reasons that can cause correlation among defaults of individual

mortgages, especially the time clustering in defaults. These reasons include comovements

of observable covariates of different mortgages, unobserved time-variant common risk fac-

tors, and the spillover or contagion effects of defaults. Theoretically, risk analyses based on

traditional econometric models for estimating individual default risks, such as Cox propor-

tional hazard models, can capture the default correlation coming from the comovements of

observable covariates, but they cannot capture the default correlation coming from other

sources, if those sources exist.

In this study, we extend the methodologies used in the corporate default correlation

literature to the residential mortgage market. We conduct formal statistical tests and find
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that conditional on the typical observable factors that are frequently employed by the mort-

gage default literature in estimating individual default risk, there is still a large degree of

correlation in defaults that would generate time clustering in defaults. We further conduct

a variety of robustness checks and find that this residual correlation cannot be explained

by the missing observable macroeconomic variables (e.g. national GDP growth or stock

market returns) and the shared unobservable location-specific time-invariant frailty. To

quantify the degree of this residual correlation, we calibrate a residual Gaussian copula

correlation parameter. The parameter value is comparable to the degree of residual corre-

lation in corporate defaults that has been documented in the corporate default literature.

These results motivate multiple future research topics, such as estimating structural

mortgage default models with a common time-variant unobserved risk factor or a con-

tagion process, the methodologies of which have been newly developed in the corporate

default literature.

Appendices

A Simulation Algorithm

According to Lando (1998), if each default follows a Cox process, then the default time τ∗i of the

ith loan for any i can be defined by

τ∗i = inf

8<:t :

tZ
0

λi,sds ≥ Ei

9=; ,
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where Ei is an exponential random variable of rate 1, i.e., Ei ∼ Exp(1), and {Ei}i=1,2,...,n are

i.i.d. It is well known that Ei can be simply constructed by

Ei = − lnUi,

where Ui is a standard continuous uniform random variable, i.e., Ui ∼ U[0, 1], and {Ui}i=1,2,...,n

are i.i.d. Therefore, we can rewrite the default time τ∗i above by

τ∗i = inf

8<:t : exp

�
−

tZ
0

λi,sds

�
≤ Ui

9=; .
Conditional on the realization of intensity path {λi,s}0≤s≤t for any i = 1, 2, ..., n, all default times

{τ∗i }i=1,2,...,n should be independent of each other under the Cox framework. However, an extra

dependency for {τ∗i }i=1,2,...,n can be further constructed easily via a dependent series {Ui}i=1,2,...,n

using a n-dimensional copula function, for example, the industrial standard Gaussian copula.

Therefore, following the algorithm developed by Schönbucher and Schubert (2001) and ap-

plied by Das et al. (2007), we use the procedure below to simulate the defaults for a given copula

correlation ρ and a bin size c:

1. For each loan index i and each bin index k, calculate Cki , which denotes the increment in

the cumulative intensity for this loan within this bin, i.e.,

Cki :=

tkZ
tk−1

λi,s1{s < τ∗i }ds, i = 1, 2, ..., n, k = 1, 2, ...,K.

2. Equally likely draw one of the bins, say k. Draw {Wi}i=1,2,...,n from a joint standard normal

distribution with corr(Wi,Wj) = ρ whenever i 6= j.

3. For each loan i, let Ui = Φ(Wi), where Φ(.) is the standard normal cumulative distribution

function. Loan i will default in bin k if Ui > e−C
k
i for i = 1, 2, ..., n, and will be active

otherwise. Then, we obtain the total number of simulated defaults in a bin for the mortgage

34



pool.

4. Repeat Steps 2 and 3 for 10, 000 times independently, and then calculate the upper-quartile

mean of simulated defaults per bin across these 10, 000 scenarios, which is reported in Table

5.
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