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Abstract

This paper documents that the price of analysts’ dispersion risk in the cross-section of stock returns

changes over time, and in particular turns positive in periods of high analyst dispersion. Our result

holds using 100 test portfolios that are double-sorted on their betas and their coefficients on aggregate

dispersion, as well as numerous test portfolios that have been used in the literature. We construct a

general equilibrium model in the spirit of Merton’s ICAPM, in which analysts of different types have

heterogeneous beliefs and provide different forecasts of a macroeconomic factor (aggregate earnings

growth). The consumer does not trust either analyst fully, and dynamically adjusts the weight given

to each analyst, given the history of their past forecast performance. In equilibrium, each asset’s risk

premium depends on its exposure to three factors: (i) the market portfolio, (ii) the macroeconomic

factor, and, (iii) a “flight-to-safety” factor, which is the variance of the market portfolio. The first term

increases with dispersion, while the third term declines. The latter decline occurs because consumers

shift into assets with lower cash flow betas during periods of high dispersion. The model provides

a testable implication, that the changing sign of the price of risk is due to the flight-to-safety during

periods of high dispersion. We find strong support for such a flight-to-safety in the data.
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Introduction

Asset pricing implications of dispersion in investors’ beliefs is among the most controversial

issues in finance. Alternative theoretical and empirical frameworks have led to different signs

on how dispersion affects stock returns.1 The contribution of this paper is to show that the price

of dispersion risk is time-varying in the cross-section, and potentially provides a resolution to

the different views on the sign. Empirically, we find that in the cross-section of stock returns,

aggregate dispersion is negatively priced in low dispersion months and positively priced in

high dispersion months.2 Our measure of aggregate dispersion is the value-weighted average

of the standard deviation of analyst forecasts of the earning-per-share long-term growth rate

at the firm level. This “bottom-up” measure has been used in a number of recent papers (e.g.

Yu (2011) and Hong and Sraer (2016)) and incorporates the views of a vastly greater number

of analysts than “top-down” measures, which are comprised of forecasts of the aggregate

earnings growth rate.

We begin our empirical study by replicating the results of Yu (2011), who documents a

negative relation between aggregate dispersion and market returns in the time series in the

sample period from 1981 to 2005. Extending the sample to 2016, however, we find that the

coefficient of aggregate dispersion is insignificant. Restricting the sample to 2006-2016, we

see that the coefficient of aggregate dispersion is strongly positive. Looking at the time series

of aggregate dispersion displayed in Figure 1, we see that the sample from 1981 to 2005

mainly had low dispersion months, while the sample from 2006 to 2016 mainly consisted of

high dispersion months. This finding motivates our main finding, that the sign of the price of

dispersion risk depends of the level of dispersion.

1On one hand, Varian (1985), Varian et al. (1989), Abel (1989), Qu, Starks, and Yan (2003), Doukas, Kim, and

Pantzalis (2004), Anderson, Ghysels, and Juergens (2005), David (2008), Anderson, Ghysels, and Juergens

(2009) and Carlin, Longstaff, and Matoba (2014) find a positive relation. On the other hand, Miller (1977)

theorizes that the divergence of investor’s beliefs in the presence of short sale constraints leads to over-

valuation and lower returns. In support of this hypothesis, Diether, Malloy, and Scherbina (2002), Chen,

Hong, and Stein (2002) , Park (2005), Sadka and Scherbina (2007), and Yu (2011) find a negative relation

between dispersion and excess returns.
2We define low (high) dispersion months as those when one-year lagged aggregate dispersion is lower (higher)

then the average aggregate dispersion at minus (plus) one standard deviation.
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To study the effects of aggregate dispersion on the cross-section of stock returns, we start by

estimating the market and aggregate dispersion pre-ranking risk loadings, β and δ, using one-

year rolling regressions at the monthly frequency of individual stock returns on excess market

returns as well as one-month lagged aggregate dispersion. These estimated risk loadings allow

us to analyze the price of dispersion risk using two different methods described next.

First, we form ten portfolios using, δ, the estimated aggregate dispersion loadings. Figure 2

highlights the role played by aggregate dispersion in asset’s returns using the full sample, low,

medium and high dispersion months. Using the full sample, we find a U-shaped relation be-

tween dispersion and portfolio returns. Limiting our sample to low (high) dispersion months,

we see a clear negative (positive) relation between dispersion in investor’s beliefs and returns.

During low (high) dispersion months, a portfolio of stocks in the highest decile of dispersion

loading underperforms (outperforms) a portfolio of stocks in the lowest decile of dispersion

loading. In medium dispersion months, the relationship is unclear.

Second, we control for the CAPM by forming 100 β-δ portfolios. Every month, we sort

stocks into 10 β-deciles using the pre-ranking β. Then, for every β-decile, we sort stocks

based on the pre-ranking δ into 10-deciles. Using a Fama and MacBeth (1973) style two-

stage regression on the 100 β-δ portfolios, we show that the price of dispersion risk in low

dispersion months is negative (−6.067, t-statistic = −4.52) and positive in high dispersion

months (24.92, t-statistic = 4.67). The price of dispersion risk is statistically insignificant

using the full sample period or medium-dispersion months. We next show that our finding is

robust to the choice of test portfolios, as it holds using a variety of portfolios obtained from

the website of Ken French.

To better understand the changing sign of the price of dispersion risk, we construct a pro-

duction economy N-asset general equilibrium model in the spirit of Merton’s ICAPM, in

which analysts of different types have heterogeneous beliefs and provide different forecasts of

a macroeconomic factor (aggregate earnings growth). The consumer does not trust either an-

alyst fully, and dynamically adjusts the weight given to each analyst, given the history of their

past forecast performance. The beliefs of each analyst and the weight the consumer assigns

to each analyst’s forecast, become state variables in the ICAPM framework whose shifts the

consumer hedges against. We derive an equilibrium cross-sectional pricing equation for our

model. There are three terms in each asset’s risk premium, which we discuss next.
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The first term, is the risk premium for covarying with the market portfolio, as in the CAPM;

however, in the model, the exposure to the market is measured by the relative cash-flow beta of

each asset, rather than the return beta. The second term, measures the risk premium for bear-

ing the risk in the aggregate macroeconomic factor as well as any undiversified idiosyncratic

risk. The last term, is the risk premium with respect to a “flight-to-safety” factor. This factor

depends on the variance of the market portfolio and has a negative sign. The negative sign

on the term implies that assets that provide higher returns in periods when variance is high,

obtain a lower risk premium. The negative risk premium is consistent with the variance risk

premium literature. The interesting aspect of this term is that it is time-varying and depends

on the consumer’s portfolio choices. As in Merton’s ICAPM and Cox, Ingersoll, and Ross

(1985), the representative consumer attempts to hedge against shifts in the state variables of

the economy in addition to her diversification motive. The state variables in the economy are

the beliefs of each analyst as well as well as a weight that the consumer places on the forecast

of each analyst. The risk premia for shifts in these state variables, written as a function of the

portfolio choices, collapses to the variance of the market portfolio. When analysts’ dispersion

becomes very high, consumers respond by allocating their investments to low cash flow beta

assets, and this term declines. It is also interesting that the exposure to the flight-to-safety

factor is again measured by the relative cash flow beta of each asset.

We estimate our model from 1971-2001 and out-of-sample beliefs of analysts are formu-

lated until 2017. Using an unobserved regime shifting structure in the aggregate fundamental,

which we take as aggregate S&P 500 operating earnings growth, we find two sets of param-

eters (one for each type of analyst), that maximizes the sum of the likelihoods of each agent

type observing the fundamentals, and using the conditional expectations of each type of agent,

we formulate the forecast of aggregate earnings growth, we formulate the 1-year ahead, ag-

gregate earnings dispersion among the two types. The objective function also puts weight on

matching the model dispersion to the dispersion of earnings growth from the Philadelphia Fed

Survey of Professional Forecasters. The model provides a positive correlation between the

dispersion in the analysts forecasts, and the price of dispersion risk and is higher in periods of

high aggregate dispersion, as in the data.

A large literature in asset pricing has examined the risk-return trade-off. The Capital Asset

Pricing Model of the Sharpe (1964), Lintner (1965) and Black (1972) states that the security

excess return is proportional to the sensitivity of its return to the market return, denoted by
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CAPM beta. Jensen, Black, and Scholes (1972) point out that ”high beta” assets earn lower

returns on average. More recently, Frazzini and Pedersen (2014) document that a portfolio that

holds low-beta assets and that shorts high-beta earns a positive average return. Hong and Sraer

(2016) relax the CAPM homogeneous expectation assumption and show that when aggregate

disagreement is low, expected return increases with beta due to risk-sharing confirming the

CAPM prediction. But when it is large, expected return can decrease with beta through the

”short-sale constraint” channel. Our paper complements this finding by having aggregate

dispersion as an explicitly priced factor with a generally negative price of risk, which turns

positive in periods of high aggregate dispersion.

On the theoretical front, our paper contributes the growing literature on general equilibrium

models with heterogeneous beliefs. starting with the seminal papers of Detemple and Murthy

(1994) and Basak (2000). David (2008) studies the implications of heterogeneous beliefs

for risk premium on the market index within this framework, while Dumas, Kurshev, and

Uppal (2009) study the implications for “excess volatility” of the market index. Gallmeyer and

Hollifield (2008) study the implications for asset prices in such a model with an added short-

sales constraint, while Burashi, Trojani, and Vedolin (2014) extend the framework to multiple

stocks in an exchange economy setting with multiple trees. Baker, Hollifield, and Osambela

(2016) study investment in a single production technology where the representative agent has

Epstein-Zin preferences. This paper is able to obtain a tractable equilibrium characterization

by working with the Cox-Ingersoll-Ross (1985) framework with multiple firms, each having

access to a linear production technology. In particular the scale of each firm is endogenous and

we explicitly study the riskiness of the market portfolio with changing dispersion of beliefs.

In addition, ours is the first model that makes a distinction between the beliefs of analysts,

who we assume cannot trade in stocks, and the representative consumer, who does not directly

follow firms’ fundamental, but dynamically weights the forecasts of the different analysts in

the economy.

The rest of the paper is organized as follows. In Section 1, we describe the data used, define

the aggregate dispersion measure and construct the β-δ portfolios. In Section 2, we present

the results of the two-pass regressions. In Section 3, we provide a theoretical model that prices

dispersion risk in the cross-section, and show that its pricing implications are in line with our

empirical findings. Section 4 concludes. The results of the two-pass regression analysis for a

wide range of test portfolios, and proofs of Propositions are in two appendices.
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1 Data and Variables

The data in this study are the intersection of the Institutional Brokers Estimate System (I/B/E/S)

and the Center of Research in Securities Prices database (CRSP) between December 1981 and

September 2016. From I/B/E/S database, we obtain the analyst forecasts data. From CRSP,

we obtain the monthly returns and stock characteristics (volume, shares outstanding, price...).

We include all stocks listed in New York Stock Exchange (NYSE), American Stock Exchange

(AMEX) and The Nasdaq Stock Market with share code 10 or 11 (common stocks). In order

to ensure that the illiquid stocks are not considered in our analysis, we exclude penny stocks

(price < $5) and micro-caps (stocks in the bottom 2 deciles of the monthly size distribution).

A firm is kept in our sample if it has more then 12 consecutive monthly observations. We end

up with a sample of 6428 firms.

1.1 Aggregate Dispersion

We start by displaying the main variable of interest, the aggregate dispersion. Similar to

Yu (2011), we measure the aggregate dispersion as the value-weighted average of the stock-

level dispersion, where stock-level dispersion is the standard deviation of analyst forecasts

of the earning-per-share long-term growth rate (EPS LTG). Figure 1 plots the time series of

the aggregate dispersion measure as well as the low and high dispersion thresholds shown

by the two horizontal lines. We define low (high) dispersion month (t) as the month where

aggregate dispersion is lower (higher) then the average aggregate dispersion at (t − 1) minus

(plus) one standard deviation. Out of 418 months, 87 months are considered high dispersion

months and only 55 months are considered low dispersion months. The remaining 276 months

are considered medium dispersion months. Low dispersion months are concentrated prior to

2000. However, high dispersion months happen mostly after 2000. As can be seen in Figure

1, high levels of dispersion occur both during recession and growth periods. Table 1 presents

the summary statistics of the aggregate dispersion measure. On average during the full sample

period, the aggregate dispersion equals 3.51. The average ranges from 2.8 in low dispersion

months to 4.48 in high dispersion months. Our main empirical findings also hold using the

β-weighted measure of aggregate dispersion used in Hong and Sraer (2016).

We begin our study by replicating and expanding Yu (2011) results. Yu (2011) docu-

ments that for the market portfolio, market dispersion is negatively related to market returns
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at different horizons. In Table 2, we regress the excess market return from month t to t + h

(h = 1, 6, 12, 24, 36 months) on the aggregate dispersion at month t. In Panel A, we use Yu

(2011)’s sample period covering observations from December 1981 to December 2005. Fig-

ure 1 shows that this period of time is composed mainly by low aggregate dispersion months.

Results are consistent with Yu (2011)’s finding. The coefficient of aggregate dispersion is

negative and significant for all return horizons and the explanatory power of aggregate disper-

sion is more pronounced for higher horizons. In Panel B, we repeat the same exercise using

our full sample period including observations from December 1981 to September 2016, the

coefficient of aggregate dispersion is negative but insignificant at all horizons. The effect of

aggregate dispersion on market returns is less pronounced using the full sample compared

to Yu (2011)’s sample. For example, at the two-year horizon, the coefficient of dispersion

equals -9.27 (t-statistic = -1.17) using the full sample and equals -29.49 (t-statistic = -3.66)

using data till December 2005. In Panel C, we only include the recent 10 years of data to run

our regressions. The last 10 years of our monthly observations are mainly considered high

dispersion months as shown in Figure 1. Results show that aggregate dispersion is positively

related to market returns. The coefficient of dispersion is significant only at the 3-year re-

turn horizon with a t-statistic of 2.74. These results motivate us to look more carefully at the

cross-sectional regression of stocks return on aggregate dispersion and examine the relation of

aggregate dispersion to assets returns at low, medium and high dispersion months.

In this part, we report the contemporaneous correlation between aggregate dispersion, stock

market excess returns and the standard pricing factors SMB, HML and UMD in Table 3. We

note that aggregate dispersion is weekly correlated with other variables using the full sample,

which may imply that, if the aggregate dispersion affects stock returns, then the reason may

be different from those for other factors. Using low dispersion months or medium dispersion

months, aggregate dispersion is positively correlated with the market excess return and the size

factor and negatively correlated with the value factor and the momentum factor. And limiting

our sample to the high dispersion months, aggregate dispersion is positively correlated with

the market excess return, the size factor and the momentum factor and negatively correlated

with the value factor. In the subsequent analysis, we show that aggregate dispersion remains

significant after controlling for the standard pricing factors in various setting.
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1.2 Pre-ranking Risk Loadings

To obtain time-varying risk loadings, we run rolling monthly time-series regressions of stock

returns on excess market returns as well as one-month lagged aggregate dispersion.

Ri,t = αi,t + βi,t × Rm,t + δi,t × Agg dispt−1 + ǫi,t (1)

For each security, every month, we estimate the pre-ranking β and δ as the slope coefficients

from time series regression of individual securities on excess market return as well as lagged

aggregate dispersion using the previous 12 months of monthly observations. The estimated

risk loadings βi,t and δi,t allow us to analyze the cross-sectional characteristics of these param-

eters in two different ways. First, we form portfolios based on δ, the dispersion risk exposure,

and we look at the average returns for these classes of stocks. Second, we use cross-sectional

two-stage regressions to examine the role of aggregate dispersion on stock returns.

1.3 Univariate Portfolio Sorts

We use the estimated aggregate dispersion exposure δ, obtained from regression 1, to test if

aggregate dispersion is priced in the cross-section of stocks returns using four sample periods:

full sample, low, medium and high dispersion months. To do so, we assign stocks into port-

folios using the aggregate dispersion loadings. Each calendar month, we sort stocks into 10

δ-deciles with the first decile having the lowest pre-ranking δ and the tenth decile having the

highest pre-ranking δ. We calculate the monthly portfolio return, RP
t , as the value weighted

average of the returns of all stocks in the P th δ-sorted portfolio. Figure 2 highlights the role

played by aggregate dispersion in asset’s returns. Panel A plots the aggregate portfolio returns

using the full sample. We notice a U-shaped relation between dispersion and returns. Panel B

uses only the low dispersion months, we clearly detect the negative relation between disper-

sion in investor’s beliefs and returns. Panel C plots the sorting results using medium dispersion

months, the graph does not show a clear relationship between dispersion and returns. Panel

D reports the sorting results for high dispersion months, we now observe a strong positive

relation between dispersion and portfolio returns.
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2 The Price of Dispersion Risk in the Cross-Section

2.1 Two-stage Regression

In this section, we turn our attention to analyze whether the aggregate dispersion is a priced

risk factor using our value weighted β-δ portfolios. To construct the β-δ portfolios, we use

the estimated parameters, β and δ, obtained from equation (1). Every month, we sort stock

into 10 β-deciles using the pre-ranking β. For every β-decile, we sort stocks based on the

pre-ranking δ. We obtain 100 portfolios formed monthly. We calculate the value weighted

monthly returns RP
t on these 100 portfolios. We report the summary statistics in Table 4 for

monthly β-δ portfolio return and pre-ranking risk loadings. The numbers reported represent

time series averages of the monthly cross-sectional mean, standard deviation and the 10th to

90th percentile.

We use four regression models to estimate portfolio post-ranking β and post-ranking δ. As

suggested by (Fama and MacBeth 1973), (Jensen, Black, and Scholes 1972) and (Cochrane

2009), we form portfolio to estimate the post-ranking risk loadings. Model one includes the

market excess returns. Model two adds the one-month lagged aggregate dispersion mea-

sure. Model three includes the (Fama and French 1993) factors and the momentum factor

( (Jegadeesh and Titman 1993)). And Model four, displayed in equation 2, includes all the

variables listed above. We obtain monthly returns on the factors (Rm
t , SMB, HML, and UMD)

from Ken Frenchs data web site. Every calendar month, post-ranking risk loadings are esti-

mated using the previous one-year of monthly returns.

RP
t = αP,t + βMKT

P,t × Rm
t + δP,t × Agg dispt−1

+ βSMB
P,t × SMBt + βHML

P,t × HMLt + βUMD
P,t × UMDt + ǫP,t, (2)

where, P = 1, ..., 100, RP
t is the value weighted monthly return of the P th β − δ-sorted

portfolio at t, Rm
t is the market excess return at t, Agg dispt−1 is the value weighted aggregate

dispersion at month (t-1), SMBt is the average return on the three small portfolios minus

the average return on the three big portfolios, HMLt is the average return on the two value

portfolios minus the average return on the two growth portfolios and UMDt is the average

return on the two high prior return portfolios minus the average return on the two low prior

return portfolios. We now define the portfolio post ranking βMKT
P as the time series average of

βMKT
P,t and the portfolio post ranking δP as the time series average of δP,t. Second, as in (Fama
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and MacBeth 1973), each calendar month, we estimate the four cross-sectional regressions

over our 100 β-δ portfolios using the specification

RP
t = κt + πt × βMKT

P + ωt × δP

+ φSMB
t × βSMB

P + φHML
t × βHML

P + φUMD
t × βUMD

P + ǫt,P , (3)

where P = 1, ..., 100, βMKT
P , δP , βSMB

P , βHML
P , βUMD

P are the time series averages of the

post-ranking portfolio loadings of the P th β− δ-sorted portfolio estimated using regression 2.

Table 5 reports the average month-by-month regression coefficients estimates as well as the

t statistics, which are adjusted as proposed by (?). We also report the average month-by-month

coefficients of determination R2. The dependent variable in columns 1 - 4, RP
t , is the return

of the P th β − δ-sorted portfolio at t. The independent variable of interest is the time series

average of dispersion risk loading δP . The first column, shows the simple CAPM results. In

the second column, we include the market loading, βMKT
P as well as the dispersion loading,

δP , as independent variables in our regression. The price of dispersion risk is positive, 0.989%

but insignificant with a t-statistic of 0.92. R2 equals to 51% higher then the CAPM R2 of

24%. In the fourth column, we extend our analysis to control for size, value and momentum

effects. The price of dispersion risk is still positive (0.851%) and insignificant with a t-statistic

of 0.76.

Evidence from both Fama MacBeth regressions and portfolio sorts suggests that the ag-

gregate dispersion effect on stock returns varies across different sample periods. To test this

hypothesis, we first retrieve a time series of the price of dispersion, ωt. Figure 3 plots the time

series of the price of dispersion risk estimated by the following two-factor regression:

RP
t = κt + πt × βMKT

P + ωt × δP + ǫt,P ,

where P = 1, ..., 100. We also plot in shaded area low and high dispersion months. We

clearly notice that low dispersion months, shown in light grey, display negative values of price

of dispersion risk. High dispersion months, shown in dark grey, display positive values of

price of dispersion risk. These results strongly confirm that aggregate dispersion display a

time varying risk premium.

In the next step, we run a two-stage regression to formally analyze the effect of aggregate

dispersion in three different sub-samples: low, medium and high dispersion months. Table 6
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column 2 reports the model two second-stage regression results, where the two independent

variables are the market and dispersion loadings. Results suggest that, in periods of low be-

liefs dispersion (panel A), the coefficient of the exposure to aggregate dispersion is negative

−6.07% and significant (t-statistic = −4.52) and in periods of high beliefs dispersion (Panel

C), the coefficient of δP is positive 24.92% and significant (t-statistic = 4.66). However, in

period of medium aggregate dispersion (Panel B), the price of dispersion risk is insignificant

(t-statistic = −0.20) and very low (−0.24%). R2s are around 50% in the three subsamples,

higher then the CAPM R2s equal to 22%, 24% and 23% in low, medium and high dispersion

months respectively. These values of R2 suggest that aggregate dispersion is an important state

variable. Controlling for size, value and momentum factors generates equally good results.

Column 4 shows that the aggregate dispersion risk loading is negatively related to portfolio

returns in low dispersion months (Panel A), the coefficient of δP is equal to −6.32% with a

t-statistic of −4.48 and it is positively related to portfolio returns in high dispersion months

(Panel C) with a coefficient of 24.84% and a t-statistic of 4.74. Again, medium aggregate

dispersion months (Panel C) display insignificant and low price of dispersion risk. The R2s

are around 54% using the three different sub-samples, again higher then the four factors model

R2s presented in column 3.

Overall, the results of Table 6 strongly suggest that the aggregate dispersion effect on port-

folio returns is time varying. In particular, it is positive in high dispersion months and negative

in low dispersion months. It is worth noting that the magnitude of the price of dispersion risk

is more pronounced in high dispersion months (24.92% in column 2 and 24.84% in column

4) compared to the low dispersion months (−6.067% in column 2 and −6.325% in column

4) and almost equals to zero (−0.236% in column 2 and −0.414% in column 4) in medium

dispersion months.

2.2 Additional Test Portfolios

In this section, we study whether the aggregate dispersion is a priced risk factor using test

portfolios. In order to alleviate the critique of (Lewellen, Nagel, and Shanken 2010), ten sets

of tests portfolios are used: 25 Value Size Portfolios, 25 Net Share Issues Size Portfolios, 10

Size Portfolios, 10 Value Portfolios, 25 Size Investment Portfolios, 100 Size Operating Prof
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Portfolios, 30 Industry Portfolios, 10 E/P Portfolios, 10 Net Share Issues Portfolios, 25 Book-

to-Market and Operating Profitability Portfolios. We obtain value weighted monthly returns

on these portfolios from Ken French’s data web site.

First, every month, we estimate the risk loadings from a rolling time series regression of

portfolio returns on excess market returns and one-month lagged aggregate dispersion using

the previous 12 months. Similar to our analysis using the 100 β-δ portfolios, we also include

(Fama and French 1993) factors and the momentum factor ((Jegadeesh and Titman 1993)) to

control for size, value and momentum effects.

Second, we estimate the prices of risk by regressing the value weighted portfolio return

on the first-pass risk loadings. Tables A.1 - A.4, in the appendix summarize the second pass

regressions using the overall sample period for the 10 test portfolios listed above. Results

show that the sign of the price of dispersion risk is undetermined. Table A.2, reports the

results of the two-factor model with market excess return and aggregate dispersion being the

two factors considered. The coefficient of aggregate dispersion risk loading is positive for six

out of our ten portfolios. Only one of these six portfolios (25 Book-to-Market and Operating

Profitability Portfolios) displays significant price of dispersion risk. The average month-by-

month R2 improves in this specification compared to the standard CAPM regression results

in Table A.1. This is especially well pronounced for the 10 Size Portfolios. R2 jumped from

32.3% in Table A.1 to 58% in Table A.2. Table A.4 includes the market, dispersion, size,

value and momentum risk loadings in the regression. Only four portfolios out of ten display

positive price of dispersion risk with t-statistics below conventional significance levels. The

average month-by-month R2 slightly increases in this specification compared to the standard

four factors model shown in Table A.3.

At this stage of our analysis, we investigate the time varying characteristics of the aggregate

dispersion using the ten test assets listed above. To do that, we repeat the steps of the two-stage

regression mentioned above using the low, medium and high dispersion months. Tables A.5 -

A.11 report the second-stage regressions. The price of dispersion is negative in low dispersion

months and positive is high dispersion months for eight out of the ten test assets. These results

hold using the two-factor model in Table A.7 and the full specification model in Table A.11.

However, the t statistics are low. Adding the aggregate dispersion loading, δp, to the standard

CAPM specification, shown in Table A.5 improves the average month-by-month R2. Also,

the magnitude of the price of risk is well pronounced in high dispersion months compared to
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the low dispersion months. In particular, the two-factor regression results using the 10 size

portfolios show that the price of dispersion risk equals 41.97% ( t statistic = 1.58), compared

to −6.57% ( t statistic = 0.86) in low dispersion months.

These empirical findings emphasize that the effect of aggregate dispersion on the portfolio

returns varies with the respect to the level of disagreement on the market. Low dispersion peri-

ods are characterized with negative dispersion price and high dispersion periods are associated

with positive dispersion price of risk.

3 The Model

In this section we provide a general equilibrium model that sheds light on why the price of

dispersion risk can change sign over time depending on the level of aggregate dispersion. The

model is based on the framework of Cox, Ingersoll, and Ross (1985) with two important spec-

ification choices. First, the state variables that we choose are the beliefs of each analyst type

in the economy, and second, since we are modeling investment by a representative consumer,

we restrict all portfolio choices to be non-negative.

3.1 The Macroeconomic Factor

A macroeconomic factor follows the process:

dYt

Yt

= νtdt+ σY dW̃Y t. (4)

The drift ν follows a 2-state Markov chain and it shifts between the states {ν1, ν2} with gen-

erator matrix Λ.3

There are two types of analysts indexed by m = 1, 2. Each type m assumes that the process

for ν has the correct specification, but differs in the estimates of the states as well as the

generator. Let ν(m) denote the estimated drift vector estimated by agent of type m, and let

Λ(m) be their estimated generator matrix. Neither type of agent can observe the realizations

of ν, although each does observe the entire history of Y . Based on their assumed models,

analysts of type m form the posterior probability (see David (1997)) π
(m)
1t = prob(νt =

ν
(m)
1 |F

(m)
t ) of ν being in state 1 at time t. I denote conditional means with bars, for example,

3Over the infinitesimal time interval of length dt, Λijdt = prob (νt+dt = νj |νt = νi), for i 6= j, and

Λii = −Λij . The transition matrix over any finite interval of time, s, is exp(Λs).

12



ν
(m)
t =

∑2
i=1 π

(m)
it ν

(m)
i . Given an initial belief 0 ≤ π

(m)
10 ≤ 1, the probabilities π

(m)
1t follow

the stochastic differential equations

dπ
(m)
1t = µ

(m)
1t dt+ σ

(m)
1t dW̃

(m)
Y t , (5)

where
µ
(m)
1t = (Λ

(m)
12 + Λ

(m)
21 )[π

∗(m)
1 − π

(m)
1t ], (6)

σ
(m)
1t = π

(m)
1t (1− π

(m)
1t )

(ν
(m)
1 − ν

(m)
2 )

σY

, (7)

dW̃
(m)
Y t =

1

σY

(

dYt

Yt

− E
(m)
t [

dYt

Yt

]

)

=
(νt − ν(m))

σY

dt + dW̃Y t. (8)

In particular, π
(m)
1t mean reverts to its unconditional mean, π

∗(m)
1 = Λ

(m)
21 /(Λ

(m)
12 +Λ

(m)
21 ), with a

speed proportional to (Λ
(m)
12 +Λ

(m)
21 ), and the volatility of an agent of type m′s updating process

is the product of his uncertainty, π
(m)
1t (1− π

(m)
1t ), and the signal-to-noise ratio,

(ν
(m)
1 −ν

(m)
2 )

σY
.

The two types of agents perceive the history of fundamentals differently. The process

{W̃
(m)
Y t } is the “innovations” process of analysts of type m, and is the shock process to the

macroeconomic factor as perceived by agents of type m. According to analyst m, the macroe-

conomic factor dynamics are:

dYt

Yt

= ν̄(m)dt+ σY dW̃
(m)
Y t . (9)

Taking the difference between the innovations of the two analysts we have

dW̃
(2)
Y t = dW̃

(1)
Y t + σηtdt, (10)

where σηt = (ν̄t(2)−ν̄t
(1))

σY
. Let P

(m)
t be analyst m’s probability measure over the path of Ys,

s ∈ [0, t]. Again appealing to the results in David (2008) (see Corollary 1), the Radon-

Nikodym derivative of P
(2)
t with respect to P

(1)
t is given by the process ηt, which follows;

dηt
ηt

= σηtdW̃
(1)
Y t , (11)

which is a martingale with respect to P
(1)
t . By relating the two innovations processes, we can

write the beliefs of analyst 2 from the eyes of analyst 1 as

dπ
(2)
1t = (µ

(2)
1t + σ

(2)
1t σηt)dt+ σ

(2)
1t dW̃

(1)
Y t , (12)

and consequently solve the equilibrium of the model under analyst 1’s probability measure.4

4Alternatively, we could also solve it under analyst 2’s probability measure, or even the objective probability

measure.
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3.2 Speculation Among the Analysts

The analysts are able to speculate with each other on the realized value of the fundamental

process Y .5 Following Basak (2000), equilibrium among the analysts can be solved as the

solution to the social planner’s problem at each time t with weights λ2t/λ1t = k ηt, where ηt

is the process in (11), and k is a constant that depends on the ratio of the initial wealths of

the analysts at date 0. As discussed in David (2008), in equilibrium, ηt = ξ
(1)
t /ξ

(2)
t , which

is the ratio of the analysts’ state price densities (SPDs). Since the SPD is the state price per

unit probability of that state, and the analysts agree on the state prices, ηt is the ratio of the

probability of the state arising from the model of analyst 2, divided by the probability of the

state arising from the model of analyst 1. Clearly, ηt belongs to the interval [0,∞]. To obtain

a bounded state variable set, we define

̺t =
1

1 + ηt
, (13)

which is in [0, 1], and in the competitive equilibrium, is the probability that the macro funda-

mental Yt at date t arises from the model of analyst 2. Similarly 1 − ̺t is the probability that

the data is generated by the model of analyst 1. By Ito’s Lemma, {̺t} satisfies the process:

d̺t = ̺t (1− ̺t)
2 σηt dt− ̺t (1− ̺t) σηtdW

(1)
t . (14)

3.3 Firms in the Economy

We model firms in a production economy with stochastically linear technologies as in Cox,

Ingersoll, and Ross (1985). We assume that there are N production technologies, which we

shall simply refer to as assets. The transformation of an investment of an amount Xi of the

single good in the economy in the ith asset is given by the

dXit

Xit

= bi
dYt

Yt

+ σidW̃i. (15)

Therefore the return on each technology is driven by the macroeconomic factor and an an id-

iosyncratic firm specific shock. The coefficient bi is the “cash-flow beta” of the ith technology.

We order firms in the economy with the ratio bi/σi, so that

0 <
b1
σ1

<
b2
σ2

· · · <
bN
σN

. (16)

5This could be done by derivative securities whose value mirrors that of Y .
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Investment in the assets is made through competitive value maximizing firms. With free

entry of firms and stochastic constant returns to scale, there is no incentive for firms to enter

or leave industry i if and only if the returns on the shares of each firm are identical to the

technologically determined physical returns on that asset. The equilibrium scale of each firm

is determined by the supply of investment to that firm.

3.4 Consumers in the Economy

In contrast to models in the heterogeneous beliefs literature (for example Basak (2000) or

David (2008) and the references in the introduction), we make a distinction between analysts

and consumers. Analysts do not trade in stocks, but on derivatives on the macroeconomic

factor. The representative consumer in the economy has the standard CRRA utility function

U(c) = E(m)[

∫ ∞

0

exp(−ρs) · u(cs)ds], (17)

with time discount factor ρ and felicity u(ct) = cγt /γ. The felicity function u(.) has a constant

coefficient of relative risk aversion 1− γ, and satisfies the Inada conditions limc→0 u
′(c) = ∞

and limc→∞ u′(c) = 0.

We assume that the representative consumer does not fully trust any particular analyst in the

economy, but behaves as a Bayes’ Model Averager (BMA). However, she assesses analyst’s

relative performance and in particular uses the assessed probabilities that the data at any given

date is generated by model of analyst m and given the analysts’ equilibrium in Section 3.2,

assign weights of ̺t and 1 − ̺t, to the beliefs of analysts 1 and 2, respectively. Given the

asset return distributions in (15), the consumer’s expected return for asset i is αi = bi((1 −

̺t)ν̄
(1) + ̺tν̄

(2)). Let wi ≥ 0 be the proportion of the consumer’s wealth invested in asset

i for i = 1, · · · , N , and w0 be the proportion invested in the instantaneous riskless bond in

the economy, which offers a rate of return rt, and is in zero net supply. We will first solve

the social planner’s problem for the representative agent economy, which does not include

investment in the riskless asset, and hence the portfolio weights satisfy
∑N

i=1 wi = 1. Later,

we will find the rate at which a choice of w0 = 0 is optimal. Then, the consumer’s wealth

dynamics can be written as

dWt = −Ctdt+Wt

[

N
∑

i=1

wiαidt+ wibiσY dW̃Y t + wiσidW̃i

]

, (18)
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where Ct is the rate of consumption.

Given the beliefs and the analysts’ model probabilities, we can formulate the equilibrium

in the production economy as in Cox, Ingersoll, and Ross (1985).6 We start with the social

planner’s problem in this economy.

Proposition 1 The value function of the representative consumer in the economy that maxi-

mizes utility takes the form:

J(Wt, π
(1)
1t , π

(2)
1t , ̺t, t) = exp(−ρt)

W γ
t

γ
I(π

(1)
1t , π

(2)
1t , ̺t), (19)

in which the function I(π
(1)
1t , π

(2)
1t , ̺t) satisfies the PDE:

0 = max
wi,s.t.wi≥0,

∑N
i=1 wi=1

[(

1

γ
− 1

)

I
γ

γ−1 −
ρ

γ
I

+ I

(

N
∑

i=1

wibi((1− ̺)ν̄(1) + ̺ν̄(2)) +
1

2
(γ − 1)

N
∑

i=1

w2
i (b

2
iσ

2
Y + σ2

i )

)

+ I
π
(1)
1

(

µ
(1)
1

γ
+ (

N
∑

i=1

wibi)σ
(1)
1 σY

)

+ I
π
(2)
1

(

µ
(2)
1 + σ

(2)
2 ση

γ
+ (

N
∑

i=1

wibi)σ
(2)
1 σY

)

+ I̺

(

̺(1− ̺)2ση

γ
− (

N
∑

i=1

wibi)̺(1− ̺)ση

)

1

2
I
π
(1)
1 π

(1)
1
(σ

(1)
1 )2 +

1

2
I
π
(2)
1 π

(2)
1
(σ

(2)
1 )2 +

1

2
I̺̺̺

2(1− ̺)2σ2
η

− Iπ(1)̺σ
(1)
1 ̺(1− ̺)ση − Iπ(2)̺σ

(2)
1 ̺(1− ̺)ση + Iπ(1)π(2)σ

(1)
1 σ

(2)
1

]

. (20)

The Kuhn-Tucker first-order conditions for the portfolio choices of the consumer are:

bi((1− ̺)ν̄(1) + ̺ν̄(2)) + (γ − 1)wi(b
2
iσ

2
Y + σ2

i ) +
I
π
(1)
1

I
biσ

(1)
1 σY +

I
π
(2)
1

I
biσ

(2)
1 σY

−
I̺
I
bi̺(1− ̺)σησY + κi −

λ(1)

I
≤ 0 for i = 1, · · · , N (21)

wi

[

bi((1− ̺)ν̄(1) + ̺ν̄(2)) + (γ − 1)wi(b
2
iσ

2
Y + σ2

i ) +
I
π
(1)
1

I
biσ

(1)
1 σY +

I
π
(2)
1

I
biσ

(2)
1 σY

−
I̺
I
bi̺(1− ̺)σησY + κi −

λ(1)

I

]

= 0 for i = 1, · · · , N (22)

6David (1997) extends the CIR model to the case with unobserved drifts of the production processes and

learning.
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N
∑

i=1

wi = 1 (23)

wi ≥ 0; i = 1, · · · , N (24)

wiκi = 0; i = 1, · · · , N, (25)

where λ(1) is the multiplier associated with the constraint
∑N

i=1 wi = 1, and κi are the multi-

pliers associated with the constraints wi ≥ 0 for i = 1, · · · , N .

The proof in Appendix 2.

We solve the PDE in (20) with Chebyshev polynomials using projection methods. A simi-

lar PDE has been solved in David (2008), and we follow the steps there in implementing this

method. One difference though is that the PDE in David (2008) did not have the portfolio

choices, which are needed here. We follow a recursive procedure to determine the portfolio

choices and the solution to the PDE. Given the nth iteration of the solution, In, we solve the

portfolio choices wn+1 using (21) – (25) using a standard equation solver at each point on the

Chebshev grid. We then, use these portfolio choices in finding the projections to the poly-

nomials, and hence find In+1. Using standard contraction mapping arguments, the recursive

procedure converges.

3.5 The Cross Section of Equilibrium Risk Premia in the Economy

We now consider the cross section of equilibrium risk premia for the different stocks in the

economy.

Proposition 2 In equilibrium, the risk premium for stock i for any stock with wi > 0 satisfies:

αi − r =
bi
bm

(αm − r) + (1 − γ)(b2iσ
2
Y + σ2

i ) −
bi
bm

(1 − γ)
N
∑

i=1

w2
i (b

2
iσ

2
Y + σ2

i ), (26)

in which bm =
∑N

i=1 wi bi is the cash flow beta of the market portfolio, and αm =
∑N

i=1 wi αi

is the expected return on the market portfolio. The riskless rate in the economy satisfies:

r =

(

N
∑

i=1

wibi

)

[

((1− ̺)ν̄(1) + ̺ν̄(2)) +
I
π
(1)
1

I
σ
(1)
1 σY +

I
π
(2)
1

I
σ
(2)
1 σY −

I̺
I
̺(1− ̺)σησY

]

+ (γ − 1)
N
∑

i=1

w2
i (b

2
iσY + σ2

i ) (27)
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The proof in Appendix 2.

We provide some comments on the equilibrium cross sectional pricing equation in (26).

There are three terms in each asset’s risk premium. The first term, is the risk premium for

covarying with the market portfolio, as in the CAPM; however, in the model, the exposure to

the market is measured by the relative cash-flow beta of each asset, rather than the return beta.

The second term, measures the risk premium for bearing the risk in the aggregate macroeco-

nomic factor as well as any undiversified idiosyncratic risk. The last term, is the risk premium

with respect to a “flight-to-safety” factor. As can be seen, this factor depends on the vari-

ance of the market portfolio. The negative sign on the term implies that assets that provide

higher returns in periods when variance is high, obtain a lower risk premium. The negative

risk premium is consistent with the variance risk premium literature. The interesting aspect

of this term is that it is time-varying and depends on the consumer’s portfolio choices. As in

Merton’s ICAPM and Cox, Ingersoll, and Ross (1985), the representative consumer attempts

to hedge against shifts in the state variables of the economy in addition to her diversification

motive. The state variables in the economy are the beliefs of each analyst π
(m)
t about the state

of the macro fundamental, as well, as the variable ̺t, which is the probability at any time that

the fundamentals are generated by the model of agent 1. The risk premia for shifts in these

state variables, written as a function of the portfolio choices, collapses to the third term, which

is the variance of the market portfolio. As we will see, when analysts’ dispersion becomes

very high, consumers respond by allocating their investments to low cash flow beta assets, and

this term declines. It is also interesting that the exposure to the flight-to-safety factor is again

measured by the relative cash flow beta of each asset.

As noted above, the most interesting aspect of our model is that the loading on aggregate

dispersion depends on the portfolio choices, which are the market weights in equilibrium.

To illustrate why our model implies that the price of dispersion risk depends on the level

of dispersion, consider the following situations. Suppose there are only two assets in the

economy, with b1 = 0.1 and b2 = 2. Suppose uncertainty about the growth rate of Y is very

high, so that w1 = 0.9, and w2 = 0.1 Now the term
∑

i w
2
i b

2
i , which is in the last term is just

0.0481. Alternatively, when uncertainty is low suppose the weights reverse, w1 = 0.1 and

w2 = 0.9, this term equals 3.24. Since the last term enters with a negative sign in the risk

premium (the consumer likes an asset that gives a positive return when variance is high), the
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model implies that the risk premium will be higher in periods of higher aggregate dispersion.

We will formalize this intuition in the calibration section below.

To address the empirical results in our paper, we proceed to two-stage regressions on the

market return, and the aggregate dispersion in the economy.

3.6 Belief Calibration and Model Two-Stage Regressions

We calibrate the model as in David (2008). A brief description of the calibration method is as

follows. Using the unobserved regime shifting structure in the aggregate fundamental, which

we take as aggregate S&P 500 operating earnings growth, we find two sets of parameters

(one for each type of analyst), that maximizes the sum of the likelihoods of each agent type

observing the fundamentals, and using the conditional expectations of each type of agent, we

formulate the forecast of aggregate earnings growth, we formulate the 1-year ahead, aggregate

earnings dispersion among the two types. The objective function also puts weight on matching

the model dispersion to the dispersion of earnings growth from the Philadelphia Fed Survey of

Professional Forecasters. The calibrated parameters are shown in Table 7. In Figure 4 we see

the beliefs of each analyst type for the sample from 1971 to 2001, as well as their estimates

of earnings growth for the period from 1971 to 2001. As seen, analyst of type 2 are more

volatile. In addition, their expectations’ differences are countercyclical, and the dispersion in

their estimates is low in upturns and significantly higher in downturns.

Using the calibrated parameters, we simulate the model. The steps taken are as follows.

We first extend the beliefs out-of-sample from 2002-2017 using the calibrated parameters and

realized earnings growth. Using these beliefs we similarly extended {̺t} series, which is the

conditional probability that the agents assign to the model of analyst 2. For the cross sectional

specification, we use 10 assets, with cash flow betas that are b1 = 0.1, b2 = 0.3, ... b10 = 0.2.

We use the same idiosyncratic volatility of 0.3 for each asset. Finally, for the consumer’s

preference, we use a time discount, ρ, of 2 percent, and a γ = 0.5. This low level of risk

aversion (similar to that in David (2008), provides a low riskless rate. In addition, this choice

implies an elasticity of intertemporal substitution, which is larger than 1, which has been

documented in various studies. Using the beliefs and ̺t, we calculate the market portfolio

weights as shown in Proposition 1. Then similar to the data, using rolling one-year lagged

stock returns, we first run first-pass regressions of each asset’s return on the market return and
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earnings dispersion. In the second-pass regression, at each date, we run the one-year lagged

stock returns for each of the 10 assets on the average of beta and delta over the full sample.

The results of the out-of-sample calibration exercise are seen in Figures 6 to 8. The top

panel Figure 6 shows the historical operating earnings growth of S&P 500 firms over the

full sample from 1971 - 2017, while the bottom panel shows the conditional probability that

the model of Analyst 2 generated the data at each time t, which is ̺t. As can be seen, the

pattern of analysts’ expectations post-2001 is very similar to that prior to 2001 (our calibration

sample). In particular, the expectations of Analyst 1 are more volatile, overshooting those of

Analyst 2 in each direction, and the gap between them is significantly wider in downturns.

Figure 7 shows the expected growth over the next one year of each analyst type (top-left),

and the dispersion of their forecasts (top-left). The bottom-left panel shows the time-series

of the market’s cash flow beta, which is obtained by using the beliefs of each type, ̺t, and

the optimal portfolio choices in Proposition 1. Finally the bottom-right panel shows well the

“flight-to-safety” pattern in the portfolio choices. Indeed, the cash flow beta of the market

portfolio is nearly perfectly negatively correlated with the dispersion in analysts’ forecasts.

That is, when the consumer sees a large dispersion, she choose lower cash-flow assets in her

portfolio.

The time-series of the model’s prices of risk from the second-pass are shown in Figure

8. While not easily evident, the two prices of risk have a negative correlation of -0.26, and

each fluctuates in sign. We focus or comments on the price of dispersion risk. As seen, the

model’s price or risk changes sign over time. Its maximum value is as high as 0.27, and as

low as -0.28. The correlation between the dispersion price of risk and dispersion of analysts’

forecasts is 0.2, so that in period of high dispersion, the price of dispersion risk tends to be

higher, as in the data. Restricting our sample to periods when the dispersion is higher than its

mean plus one standard deviation, the average price of dispersion risk is 0.06, while for the

remaining sample, it is -0.03. This is consistent with our main empirical fact. The intuition for

the positive correlation between dispersion and the price of dispersion risk is in our comments

below Proposition 2. In periods of higher dispersion, the consumer invests in lower beta assets

(as seen in Figure 7) and hence the loading on equilibrium loading on dispersion increases.
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3.7 The Flight-to-Safety Effect in the Data

As discussed above, the change in the price of risk is related to the flight-to-safety behavior of

consumers in the economy. In periods of high dispersion, consumers choose assets with lower

cash flow betas. Here we verify that such a flight-to-safety occurs in the data. To do so, we

first calculate a cash flow beta, bi for each firm in the economy, which is estimated using 5-

year rolling windows of firm level earnings growth on aggregate earnings growth. The weight,

wi is the market capitalization weight of each stock in the CRSP database. In Figure 9, we

show the time series of aggregate dispersion, as well as the term
∑

i b
2
i · w

2
i , which is in the

third term of the model risk premium in equation (26). It is interesting to see that during

recessions and financial crises, this term declines. Such periods also happen to be in periods

of high dispersion. Indeed, the two series have a correlation of -0.39, that is, there a portfolio

reallocation towards lower cash flow beta assets in periods of higher dispersion, consistent

with our model.

4 Conclusion

Understanding how dispersion in analyst’s beliefs affects security prices and returns is one of

the most fundamental issues in finance. This paper contributes by answering the following

question: when is the price of dispersion risk positive? We show that aggregate dispersion

effect on security’s returns varies across different periods of time. Contrary to previous studies,

we look at the price of dispersion risk at different sub-samples: full sample, low, medium and

high dispersion months. We find, empirically, that the price of dispersion risk is significantly

positive in high dispersion months and significantly negative in low dispersion months. The

price of dispersion risk is insignificant and close to zero using the full sample and medium

dispersion months. Also, the magnitude of the price of dispersion risk is more pronounced in

high dispersion months compared to the low dispersion months.

We construct a general equilibrium model in which analysts of different types have hetero-

geneous beliefs and provide different forecasts of a macroeconomic factor (aggregate earnings

growth). The consumer does not trust either analyst fully, and dynamically adjusts the weight

given to each analyst, given the history of their past forecast performance. The model is esti-

mated from 1971-2001, and out-of-sample beliefs of analysts are formulated until 2017. The

model provides a positive correlation between the dispersion in the analysts forecasts, and the



price of dispersion risk. A crucial part of the model’s mechanism is that the market weights

assigned to lower cash flow beta assets increases in periods of higher dispersion, leading to

a large loading on the dispersion risk factor. We provide support for such a flight-to-safety

phenomenon in the data.



Table 1: The table reports the summary statistics of aggregate dispersion from December 1981

to September 2016. Aggregate dispersion is the value-weighted average of the stock-level

dispersion. Stock-level dispersion is measured as the standard deviation of analyst forecasts

of the earning-per-share long-term growth rate (EPS LTG). We define low (high) dispersion

months as the months where aggregate dispersion is lower (higher) then the average aggregate

dispersion at t− 1 minus (plus) one standard deviation.

Aggregate Dispersion

obs mean sd p10 p25 Median p75 p90

Full Sample 418 3.51 0.63 2.84 2.98 3.33 3.93 4.53

Low Dispersion Months 55 2.80 0.09 2.70 2.73 2.79 2.87 2.92

Medium Dispersion Months 276 3.35 0.38 2.92 3.03 3.28 3.58 3.87

High Dispersion Months 86 4.48 0.32 4.10 4.32 4.50 4.68 4.81



Table 2: The table reports the regressions results of ex-post market excess returns on the

market on aggregate dispersion. The t-statistics are adjusted for auto-correlation and het-

eroskedasticity using Newey and West (1987) with the number of lags equal to the return

horizons. Panel A, the sample period is December 1981 to December 2005. Panel B, the sam-

ple period is December 1981 to September 2016 and Panel C, the sample period is January

2006 to September 2016.

Panel A: 12/1981 - 12/2005

Return horizon (in months) 1 6 12 24 36

Aggregate dispersion -0.622 -6.517∗∗ -16.17∗∗∗ -29.45∗∗∗ -36.83∗

(-1.20) (-2.85) (-4.24) (-3.66) (-2.59)

Constant 2.732 25.94∗∗∗ 62.69∗∗∗ 115.8∗∗∗ 151.6∗∗∗

(1.62) (3.61) (5.12) (4.41) (3.36)

Observations 288 283 277 265 253

Adjusted R2 0.15 % 8.66 % 25.24 % 40.85 % 33.59 %
Panel B: 12/1981 - 09/2016

Return horizon (in months) 1 6 12 24 36

Aggregate dispersion -0.200 -2.906 -6.559 -9.277 -10.18

(-0.67) (-1.78) (-1.91) (-1.17) (-0.83)

Constant 1.365 14.62∗∗ 32.15∗∗ 50.85 65.00

(1.27) (2.68) (2.83) (1.94) (1.58)

Observations 417 412 406 394 382

Adjusted R2 -0.14 % 2.64 % 6.70 % 6 % 4.10 %
Panel C: 01/2006 - 09/2016

Return horizon (in months) 1 6 12 24 36

Aggregate dispersion 0.333 -0.473 2.380 18.38 31.48∗∗

(0.53) (-0.20) (0.53) (1.84) (2.74)

Constant -0.852 5.745 -2.728 -62.19 -107.9

(-0.31) (0.55) (-0.12) (-1.27) (-1.87)

Observations 128 123 117 105 93

Adjusted R2 -0.59 % -0.78 % -0.26 % 14.23 % 32.92 %



Table 3: The table reports the contemporaneous correlation between aggregate dispersion,

stock market excess returns and the standard pricing factors SMB, HML and UMD using the

full sample (Panel A), low dispersion months (Panel B), medium dispersion months (Panel C)

and the high dispersion months (Panel D).

Panel A: Full sample

Aggregate dispersion Rm −Rf SMB HML UMD

Aggregate dispersion 1

Rm −Rf 0.0354 1

SMB 0.0952 0.205 1

HML -0.0319 -0.261 -0.304 1

UMD -0.0458 -0.187 0.0643 -0.176 1

Panel B: Low dispersion months

Aggregate dispersion Rm −Rf SMB HML UMD

Aggregate dispersion 1

Rm −Rf 0.335 1

SMB 0.186 0.409 1

HML -0.133 -0.455 -0.446 1

UMD -0.180 -0.467 -0.357 0.286 1

Panel C: Medium dispersion months

Aggregate dispersion Rm −Rf SMB HML UMD

Aggregate dispersion 1

Rm −Rf 0.0622 1

SMB 0.149 0.158 1

HML -0.158 -0.266 -0.129 1

UMD -0.0834 -0.246 -0.153 -0.0567 1

Panel D: High dispersion months

Aggregate dispersion Rm −Rf SMB HML UMD

Aggregate dispersion 1

Rm −Rf 0.398 1

SMB 0.0759 0.265 1

HML -0.130 -0.220 -0.493 1

UMD 0.129 0.0371 0.542 -0.477 1



Table 4: Summary statistics: Sample: December 1981 - September 2016. The table reports

the summary statistics of pre-ranking and post-ranking β and δ, and the average returns on

the β-δ portfolios using the full sample (Panel A), low dispersion months (Panel B), medium

dispersion (Panel C) and high dispersion months (Panel D). Pre-ranking β and δ are obtained

from one-year rolling regression of individual stock return on the market excess return and

lagged aggregate dispersion:

Ri,t = αi,t + βi,t × Rm,t + δi,t × Agg dispt−1 + ǫi,t

Every month, we construct the β-δ Portfolios. We sort stock into 10 β-deciles using the pre-

ranking β. For every β-decile, we sort stocks based on the pre-ranking δ. Post-ranking β and

δ are the time series average of the estimated risk exposure obtained from one-year rolling

regressions of portfolio return on the market excess return and lagged aggregate dispersion:

RP,t = αP,t + βP,t × Rm,t + δP,t × Agg dispt−1 + ǫP,t.

The β-δ portfolios return RP
t is the value weighted monthly portfolio return. The numbers

represent the time series averages of the cross-sectional mean, standard deviation (sd), the

10th to 90th percentiles (p10 to p90) of each variables.

mean sd p10 p25 Median p75 p90

Panel A: Full Sample

pre-ranking β 1.09 0.94 0.04 0.49 1.01 1.60 2.27

pre-ranking δ -0.01 0.24 -0.29 -0.14 -0.01 0.12 0.20

post-ranking β 1.01 0.76 0.06 0.49 0.95 1.47 2.05

post-ranking δ -0.00 0.19 -0.24 -0.12 -0.01 0.11 0.24

β-δ Portfolio return (× 100): RP
t 1.50 5.32 -4.82 -1.76 1.30 4.58 8.03

Panel B: Low dispersion months

pre-ranking β 1.12 1.04 -0.03 0.45 1.03 1.69 2.43

pre-ranking δ 0.00 0.33 -0.37 -0.18 0.00 0.19 0.38

post-ranking β 1.03 0.78 0.06 0.47 0.94 1.52 2.13

post-ranking δ 0.01 0.28 -0.33 -0.17 -0.00 0.17 0.37

β-δ Portfolio return (× 100): RP
t 1.85 4.87 -3.91 -1.12 1.62 4.62 7.82

Panel C: Medium dispersion months

pre-ranking β 1.10 0.95 0.04 0.49 1.01 1.61 2.29

pre-ranking δ -0.02 0.26 -0.32 -0.16 -0.01 0.13 0.28

post-ranking β 1.01 0.77 0.06 0.50 0.96 1.46 2.05

post-ranking δ -0.01 0.20 -0.26 -0.13 -0.01 0.11 0.25

β-δ Portfolio return (× 100): RP
t 1.35 5.32 -4.97 -1.91 1.13 4.42 7.91

Panel D: High dispersion months

pre-ranking β 1.06 0.84 0.09 0.50 0.98 1.52 2.12

pre-ranking δ -0.00 0.11 -0.13 -0.06 0.00 0.06 0.12

post-ranking β 0.99 0.75 0.07 0.47 0.93 1.44 2.03

post-ranking δ 0.00 0.09 -0.11 -0.05 0.01 0.06 0.12

β-δ Portfolio return (× 100): RP
t 1.80 5.64 -4.91 -1.69 1.63 5.13 8.60



Table 5: The table reports results from second-stage regression:

RP
t = κt+πt×βMKT

P +ωt× δP +φSMB
t ×βSMB

P +φHML
t ×βHML

P +φUMD
t ×βUMD

P + ǫt,P .

RP
t is the value weighted returns of stocks in the P th β − δ-sorted portfolio at t, βMKT

P ,

δP , βSMB , βHML and βUMD the time series averages of the post-ranking portfolio loadings.

Sample: December 1981 - September 2016. t-statistics are reported in parenthesis and are

corrected for estimation error as formulated by Shanken (1992).

(1) (2) (3) (4)

π̄ 0.00157 0.00149 -0.00189 -0.00204

(0.67) (0.65) (-0.73) (-0.84)

ω̄ 0.00989 0.00851

(0.92) (0.76)

φ̄SMB 0.0102∗∗ 0.00824∗∗∗

(2.86) (3.98)

φ̄HML -0.000568 -0.00534∗∗

(-0.10) (-2.59)

φ̄UMD -0.0105∗∗ -0.00683∗∗

(-2.76) (-3.08)

Constant 0.00998∗∗∗ 0.0101∗∗∗ 0.0118∗∗∗ 0.0127∗∗∗

(6.84) (7.02) (6.13) (8.43)

Num. portfolios 100 100 100 100

Num. time period 396 396 396 396

R2 0.236 0.511 0.459 0.541

adjusted-R2 0.228 0.501 0.436 0.517



Table 6: The table reports results from second-stage regression:

RP
t = κt+πt×βMKT

P +ωt× δP +φSMB
t ×βSMB

P +φHML
t ×βHML

P +φUMD
t ×βUMD

P + ǫt,P ,

RP
t is the value weighted returns of stocks in the P th β − δ-sorted portfolio at t, βMKT

P , δP ,

βSMB, βHML and βUMD are the post-ranking portfolio risk loadings. Sample: Low (Panel A),

medium (Panel B) and high (Panel C) aggregate dispersion months. t-statistics are reported in

parenthesis and are corrected for estimation error as formulated by Shanken (1992).

Panel A: Low Dispersion Months

(1) (2) (3) (4)

π̄ 0.00642 0.00861 0.00600 0.00862

(1.32) (1.80) (1.11) (1.73)

ω̄ -0.0607∗∗∗ -0.0632∗∗∗

(-4.52) (-4.48)

φ̄SMB -0.0101∗ 0.00164

(-2.36) (0.50)

φ̄HML -0.0198∗∗∗ -0.00615∗

(-4.31) (-2.14)

φ̄UMD 0.00381 0.00443

(1.20) (1.68)

Constant 0.0106∗∗ 0.00869∗ 0.0121∗∗ 0.00890∗

(3.08) (2.44) (3.38) (2.51)

Num. time period 51 51 51 51

R2 0.223 0.506 0.486 0.540

adjusted-R2 0.215 0.496 0.464 0.516

Panel B: Medium Dispersion Months

π̄ 0.00196 0.00188 -0.00216 -0.00224

(0.69) (0.67) (-0.74) (-0.79)

ω̄ -0.00236 -0.00414

(-0.20) (-0.34)

φ̄SMB 0.00730∗∗ 0.00852∗∗∗

(3.04) (4.19)

φ̄HML -0.00504∗ -0.00414

(-2.02) (-1.77)

φ̄UMD -0.00728 -0.00823∗∗∗

(-1.37) (-3.41)

Constant 0.00859∗∗∗ 0.00867∗∗∗ 0.0119∗∗∗ 0.0119∗∗∗

(5.16) (5.29) (6.63) (7.02)

Num. time period 267 267 267 267

R2 0.240 0.514 0.303 0.546

adjusted-R2 0.232 0.504 0.273 0.522

Panel C: High Dispersion Months

π̄ -0.0000816 -0.000618 -0.00631 -0.00340

(-0.01) (-0.10) (-0.97) (-0.51)

ω̄ 0.249∗∗∗ 0.248∗∗∗

(4.66) (4.74)

φ̄SMB 0.0116∗ 0.00650

(2.35) (1.40)

φ̄HML 0.0276∗∗∗ 0.00186

(4.48) (0.53)

φ̄UMD 0.00190 -0.000195

(0.38) (-0.04)

Constant 0.0114∗∗ 0.0111∗ 0.0156∗∗ 0.0129∗∗

(2.69) (2.62) (3.42) (2.74)

Num. time period 78 78 78 78

R2 0.234 0.507 0.488 0.531

adjusted-R2 0.226 0.496 0.466 0.506



Table 7: Two-State Heterogeneity Model Calibration Top Panel: GMM estimates of the fol-

lowing (discretized) model for real consumption, xt, and real earnings, qt:

xt+1 = xt · e
(κ

(m)
t − 1

2
σxσ

′

x)∆t+σxεt+1 ; qt+1 = qt · e
(θ

(m)
t − 1

2
σqσ

′

q)∆t+σqεt+1 .

where σq = (σq1, σq2), σx = (0, σx,2), and (θ
(m)
t , κ

(m)
t ) jointly follows a 2-state regime-

switching model. The estimates of the quarterly transition probability matrix are shown. The

implied generator is Λ(m) =
∑∞

i=1(−1)i+1 ·
(

(P (m)(0.25))4 − I
)i
/i, whose value is estimated

using a series approximation of length 10 (see Israel, Rosenthal, and Wei (2001)). The GMM

errors include the scores of the likelihood function of each type of agent and the difference in

model-implied and historical dispersion in forecasts of Professional Forecasters as described

in Appendix D. The χ2(4) statistic for the specification test of the model is 7.6341, which has

a p-value of 0.1059. Bottom Panel: Standard errors of parameter estimates are in parentheses.

Units of measurement are quarterly and in percentage points. T-statistics are in parentheses.

All t-statistics are adjusted for heteroskedasticity and autocorrelation using the methodology

of Newey and West (1987). Figure 3 (top panel) shows the belief processes of the two agents.

The top panel shows the actual and model-implied four-quarter-ahead dispersions of earnings

growth, which are in the third regression.

Series Used: Real Earnings, Real Consumption,

and Dispersion of Earnings Growth Forecasts

Time Span (Quarterly): 1971-2001

Analyst 1 Analyst 2

————————————————— ——————————————————-

Drifts: θ
(1)
1 θ

(1)
2 κ

(1)
1 κ

(2)
2 θ

(2)
1 θ

(2)
2 κ

(2)
1 κ

(2)
2

-0.2440 0.0828 0.0280 0.0280 -0.2305 0.0795 0.0280 0.0280

(0.0194) (0.0289) (0.0103) (0.0103) (0.0192) (0.0258) (0.0103) (0.0103)

Generator Elements: λ
(1)
12 λ

(1)
21 P12

(1) P21
(1) λ

(2)
12 λ

(2)
21 P12

(2) P21
(2)

0.5061 0.3427 0.1611 0.0772 1.3194 0.3727 0.2749 0.0776

(0.0612) (0.0444) (0.0656) (0.0462)

Volatilities: σq,1 σx,1 σx,2

0.0833 0.0109 0.0200

(0.0003) (0.0001) (0.0001)

Model Fits: ∆log(q) (t) = α + β · (θ
(m)
1 π

(m)
1 (t|t) + θ

(m)
2 π

(m)
1 (t|t)) + ǫ(t), m = 1,2

Analyst 1 Analyst 2

————————————– —————————————–

α̂ β̂ R2 α̂ β̂ R2

0.0932 1.4885 0.6476 -0.2116 1.8240 0.6737

(0.2224) (8.8857) (-0.5248) (10.0718)

Dispersion: d(t, 4) = α + β · d(π(1)(t, 4), π(2)(t, 4)) + ǫ(t)

α̂ β̂ R2

4.1301 0.7190 0.1982

(12.1873) (4.0921)



Figure 1: The figure plots the monthly aggregate dispersion measured as the value-weighted average of the

stock-level dispersion. Stock-level dispersion is measured as the dispersion in analyst forecasts of the earnings-

per-share (EPS) long-term growth rate. We define low dispersion months as the months where aggregate disper-

sion is lower then the average aggregate dispersion minus one standard deviation, shown in the figure as the low

horizontal line. We define high dispersion months as the months where aggregate dispersion is higher then the

average aggregate dispersion plus one standard deviation, shown in the figure as the high horizontal line.
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Figure 2: This figure plots the average monthly value weighted portfolio returns formed on aggregate disper-

sion loading. The dispersion loadings ,pre-ranking δs, are obtained using one year rolling regression of individual

stock return on the market excess return and one-month lagged aggregate dispersion:

Ri,t = αi,t + βi,t × Rm,t + δi,t × Agg dispt−1 + ǫi,t.

Panel A reports the sorting results using the full sample, Panel B shows the results using low dispersion months,

Panel C presents the results using medium dispersion months and Panel D reports the results using high dispersion

months.
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(a) Full Sample
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(b) Low Dispersion Months
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(c) Medium Dispersion Months
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Figure 3: The figure plots the time series of the price of dispersion, ωt, obtained form the following regression:

RP
t = κt + πt × βMKT

P + ωt × δP + ǫt,P

where P = 1, ..., 100. RP
t is the value weighted returns of stocks in the P th β − δ-sorted portfolio at t and βMKT

P , δP , are the time series averages of the

post-ranking portfolio loadings. Light grey shaded area refer to low dispersion periods and dark grey to high dispersion periods. Month t is considered low (high)

dispersion month if the aggregate dispersion at t− 1 is lower (higher) then the average aggregate dispersion minus (plus) one standard deviation.
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Figure 4: Investor Beliefs, Expected Growth Rates of Earnings From Calibrated Model (1971

– 2001)
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The top panel has the time series of filtered beliefs about real earnings growth of the two types of agents. Filtered

beliefs of the two agents are obtained from the discretized version of the belief processes as shown in equation

(5). The calibrated parameters for each type of agent shown in Table 7. The second panel displays the actual and

expected earnings growth of the two types of agents using these filtered beliefs.



Figure 5: Dispersion in Earning Growth and the Disagreement Value Process (1971 - 2001)
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The top panel shows the dispersion of the analysts expectations in the calibrated model with parameters in Table

7, as well as the dispersion of forecasted growth from the Philadelphia Fed Survey of Professional Forecasters.

The bottom panel shows the disagreement value ηt, which is formulated using the two analyst’s beliefs using

equation (11).



Figure 6: S&P 500 Operating Earnings Growth and the Weight Given to the Forecast of Ana-

lyst 2 (1971 - 2017)
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Historical S&P 500 operating earnings growth is obtained from Standard and Poor’s. The weight given to Analyst

2 is is formulated in equation. (14).



Figure 7: Model Forecasted Growth, Dispersion, and the Cash Flow Beta of the Market Port-

folio, An (1971 - 2017)
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Scatter Plot of Analysts’ Dispersion and Cash Flow Beta of the Market Portfolio

Using the parameters in Table 7 and realized earnings growth from (1971-2017), we formulate the expected the

1-year ahead forecasted earnings growth of each analyst type, and then report the dispersion as the standard

deviation of their forecasts. The cash flow beta of the market portfolio is formulated using the market portfolio

weights in Proposition 1.



Figure 8: Market Prices of Risk From Simulated 2nd Stage Regression (1971 - 2017)
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Figure 9: The Flight-to-Safety Effect in the Data
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The dispersion series is the value-weighted average of the stock-level dispersion. For each stock, i, the cash flow

beta, bi is estimated using 5-year rolling windows of firm level earnings growth on aggregate earnings growth.

The weight, wi is the market capitalization weights of each stock in the CRSP database.



A Appendix



Table A.1: The table reports results from second-stage regression using observations from December 1981 to September 2016 for ten

test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size Portfolios, (4) 10 Value Portfolios, (5) 25

Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios, (8) 10 E/P Portfolios, (9) 10 Net Share

Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. We obtain value weighted monthly returns on these

portfolios from from Ken French’s data web site. The table reports the results from:

RP
t = κt + πt × βMKT

P + ǫt,P

, RP
t is the value weighted Portfolio return at t, βMKT

P , isthetimeseriesaverageofthepost− rankingportfoliomarketriskloading.t-
statistics are reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -0.794 -0.772 0.202 0.282 -0.691 -0.948 -0.236 -0.372 -0.828 -0.455

(-3.24) (-2.30) (0.91) (0.61) (-3.37) (-4.00) (-1.71) (-1.05) (-1.40) (-1.82)

Constant 1.588 1.571 0.484 0.450 1.493 1.740 0.943 1.084 1.504 1.190

(6.00) (4.07) (1.97) (1.00) (6.72) (6.71) (6.60) (3.19) (2.39) (4.51)

R2 0.314 0.187 0.095 0.045 0.331 0.141 0.095 0.122 0.196 0.126

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 396 396 396 396 396 396 396 396 396 396



Table A.2: The table reports results from second-stage regression using observations from December 1981 to September 2016 for ten

test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size Portfolios, (4) 10 Value Portfolios, (5) 25

Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios, (8) 10 E/P Portfolios, (9) 10 Net Share

Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. We obtain value weighted monthly returns on these

portfolios from from Ken French’s data web site. The table reports the results from:

RP
t = κt + πt × βMKT

P + ωt × δP + ǫt,P

. RP
t is the value weighted Portfolio return at t, βMKT

P and γP are the time series average of the post-ranking portfolio risk loadings.

t-statistics are reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -0.918 -1.168 -0.149 0.294 -0.671 -0.810 -0.183 -0.141 -2.035 0.0445

(-2.52) (-2.52) (-0.67) (0.63) (-2.66) (-3.09) (-1.22) (-0.19) (-1.55) (0.16)

ω̄ -0.954 -5.102 -6.196 4.808 1.365 3.931 2.240 2.775 -15.85 7.289

(-0.25) (-1.06) (-2.69) (1.02) (0.43) (1.43) (1.26) (0.39) (-0.99) (3.14)

Constant 1.714 1.982 0.836 0.414 1.470 1.607 0.879 0.852 2.747 0.657

(4.42) (3.89) (3.53) (0.91) (5.51) (5.75) (5.62) (1.14) (2.02) (2.26)

R2 0.316 0.238 0.560 0.181 0.337 0.141 0.146 0.132 0.308 0.385

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 396 396 396 396 396 396 396 396 396 396



Table A.3: The table reports results from second-stage regression using observations from December 1981 to September 2016 for ten

test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size Portfolios, (4) 10 Value Portfolios, (5) 25

Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios, (8) 10 E/P Portfolios, (9) 10 Net Share

Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. We obtain value weighted monthly returns on these

portfolios from from Ken French’s data web site. The table reports the results from

RP
t = κt + πt × βMKT

P + φSMB
t × βSMB

P + φHML
t × βHML

P + φUMD
t × βUMD

P + ǫt,P

. RP
t is the value weighted Portfolio return at t, βMKT

P , βSMB
P , βHML

P and βumd
P are the time series average of the post-ranking portfolio

risk loadings. t-statistics are reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -0.423 -0.423 0.752 2.059 0.0266 -0.903 -0.0985 -0.804 -0.572 1.559

(-0.75) (-0.57) (1.72) (3.65) (0.06) (-2.06) (-0.36) (-1.28) (-0.68) (3.14)

φ̄SMB -0.0388 0.000397 0.00969 0.0575 -0.123 0.181 -0.245 0.554 -1.075 -0.620

(-0.52) (0.00) (0.14) (0.19) (-1.98) (2.01) (-1.61) (1.70) (-2.19) (-3.23)

φ̄HML 0.283 0.452 -0.200 -0.0196 0.553 -0.176 -0.180 0.400 -1.120 0.233

(3.14) (1.40) (-0.49) (-0.26) (3.53) (-0.61) (-1.84) (4.00) (-2.72) (3.35)

φ̄UMD 1.676 4.045 -1.101 0.741 1.578 1.136 -0.0452 0.990 0.878 0.787

(1.61) (2.53) (-1.04) (1.99) (1.92) (1.96) (-0.16) (1.55) (0.65) (1.29)

Constant 1.159 1.181 -0.0560 -1.347 0.731 1.568 0.841 1.520 1.281 -0.855

(2.00) (1.53) (-0.13) (-2.40) (1.66) (3.43) (3.22) (2.43) (1.54) (-1.72)

R2 0.434 0.383 0.746 0.838 0.565 0.127 0.327 0.901 0.862 0.641

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 396 396 396 396 396 396 396 396 396 396



Table A.4: The table reports results from second-stage regression using observations from December 1981 to September 2016 for ten

test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size Portfolios, (4) 10 Value Portfolios, (5) 25

Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios, (8) 10 E/P Portfolios, (9) 10 Net Share

Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. We obtain value weighted monthly returns on these

portfolios from from Ken French’s data web site. The table reports the results from

RP
t = κt + πt × βMKT

P + ωt × δP + φSMB
t × βSMB

P + φHML
t × βHML

P + φUMD
t × βUMD

P + ǫt,P .

RP
t is the value weighted Portfolio return at t, βMKT

P , δP , βSMB
P , βHML

P and βumd
P are the time series average of the post-ranking portfolio

risk loadings. t-statistics are reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -0.593 -0.972 0.856 2.097 0.0754 -0.421 -0.0923 -1.012 -1.907 1.583

(-1.05) (-1.36) (1.61) (2.72) (0.17) (-1.03) (-0.35) (-1.85) (-1.62) (3.01)

ω̄ -0.469 -5.122 0.525 -1.871 0.668 2.087 2.443 -2.120 -9.904 -1.281

(-0.09) (-0.90) (0.10) (-0.35) (0.18) (0.82) (1.80) (-0.54) (-1.10) (-0.45)

φ̄SMB -0.0218 0.00395 0.0506 0.117 -0.102 0.110 -0.217 0.543 -0.642 -0.585

(-0.31) (0.04) (0.49) (0.17) (-1.66) (1.23) (-1.44) (1.53) (-1.26) (-2.72)

φ̄HML 0.301 0.482 -0.523 -0.0345 0.549 0.296 -0.192 0.422 -0.674 0.242

(3.56) (1.56) (-0.85) (-0.37) (3.23) (1.18) (-2.00) (4.36) (-1.00) (3.30)

φ̄UMD 1.987 3.061 -1.398 0.667 1.745 1.695 -0.0886 1.081 0.0496 1.071

(2.13) (3.06) (-1.12) (1.55) (2.64) (3.49) (-0.29) (1.72) (0.03) (1.72)

Constant 1.322 1.722 -0.151 -1.385 0.672 1.073 0.821 1.724 2.595 -0.881

(2.29) (2.33) (-0.28) (-1.80) (1.53) (2.55) (3.18) (3.17) (2.23) (-1.67)

R2 0.536 0.504 0.746 0.881 0.615 0.226 0.401 0.945 0.896 0.663

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 396 396 396 396 396 396 396 396 396 396



Table A.5: The table reports results from second-stage regression using using three sub-samples: low (Panel A), medium (Panel B) and

high (Panel C) dispersion months for ten test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size

Portfolios, (4) 10 Value Portfolios, (5) 25 Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios,

(8) 10 E/P Portfolios, (9) 10 Net Share Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. We obtain

value weighted monthly returns on these portfolios from from Ken French’s data web site. The table reports the results from:

RP
t = κt + πt × βMKT

P + ǫt,P .

RP
t is the value weighted Portfolio return at t, βMKT

P is the time series average of the post-ranking portfolio risk loadings. t-statistics are

reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992)

Panel A: Low Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ 0.164 0.756 1.181 -0.0554 0.418 0.183 0.452 0.108 0.348 0.193

(0.23) (1.03) (1.32) (-0.05) (0.57) (0.26) (0.47) (0.14) (0.40) (0.25)

Constant 1.122 0.433 0.0498 1.374 0.856 1.148 0.628 1.244 0.894 1.117

(1.97) (0.77) (0.07) (1.47) (1.74) (2.73) (0.83) (1.89) (1.16) (1.86)

R2 0.173 0.121 0.232 0.187 0.193 0.081 0.133 0.174 0.208 0.194

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 51 51 51 51 51 51 51 51 51 267



Table A.6: *

—Continued

Panel B: Medium Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -0.904 -0.781 -0.211 0.643 -0.802 -0.855 -0.0830 -0.393 -0.427 -0.692

(-1.83) (-1.54) (-0.30) (0.84) (-1.84) (-2.02) (-0.20) (-0.71) (-0.86) (-1.53)

Constant 1.599 1.489 0.851 0.0387 1.526 1.560 0.754 1.042 1.037 1.344

(3.50) (3.32) (1.31) (0.05) (4.48) (4.41) (2.29) (2.00) (2.28) (3.23)

R2 0.231 0.190 0.332 0.203 0.207 0.109 0.116 0.222 0.210 0.180

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 267 267 267 267 267 267 267 267 267 267

Panel C: High Dispersion Months

π̄ 0.00601 -0.641 1.341 -0.202 -0.170 -1.517 -0.405 -0.251 -2.352 -0.203

(0.00) (-0.37) (0.81) (-0.19) (-0.11) (-1.24) (-0.51) (-0.21) (-1.73) (-0.21)

Constant 0.727 1.371 -0.903 0.754 0.880 2.233 0.981 0.771 2.886 0.820

(0.37) (0.82) (-0.58) (0.87) (0.66) (2.04) (1.70) (0.72) (2.39) (0.95)

R2 0.218 0.209 0.376 0.313 0.248 0.099 0.220 0.221 0.220 0.166

Num. time period 78 78 78 78 78 78 78 78 78 78



Table A.7: The table reports results from second-stage regression using using three sub-samples: low (Panel A), medium (Panel B) and

high (Panel C) dispersion months for ten test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size

Portfolios, (4) 10 Value Portfolios, (5) 25 Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios,

(8) 10 E/P Portfolios, (9) 10 Net Share Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. We obtain

value weighted monthly returns on these portfolios from from Ken French’s data web site. The table reports the results from:

RP
t = κt + πt × βMKT

P + ωt × δP + ǫt,P

. RP
t is the value weighted Portfolio return at t, βMKT

P , δP are the time series average of the post-ranking portfolio risk loadings.

t-statistics are reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992)

Panel A: Low Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -0.00770 0.0723 0.648 -0.0549 0.184 -0.114 0.828 0.103 0.0861 0.188

(-0.01) (0.08) (0.50) (-0.05) (0.20) (-0.15) (0.80) (0.13) (0.10) (0.24)

ω̄ -1.648 -6.121 -6.572 -0.759 -3.345 -4.687 -7.701 0.980 -4.640 -0.242

(-0.64) (-2.33) (-0.86) (-0.22) (-0.79) (-1.98) (-2.28) (0.24) (-1.21) (-0.08)

Constant 1.329 1.233 0.665 1.385 1.139 1.496 0.397 1.251 1.174 1.124∗

(2.71) (1.85) (0.62) (1.41) (1.75) (3.21) (0.49) (1.78) (1.58) (2.07)

R2 0.272 0.197 0.549 0.445 0.310 0.120 0.203 0.373 0.330 0.317

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 51 51 51 51 51 51 51 51 51 267



Table A.8: *

—Continued

Panel B: Medium Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -1.151∗ -1.220 -0.500 0.772 -0.843 -0.871∗ 0.0880 -1.415 -0.697 -0.185

(-2.00) (-1.89) (-0.49) (1.02) (-1.83) (-2.01) (0.22) (-1.36) (-0.77) (-0.39)

ω̄ -3.377 -6.337 -4.072 -6.494 -0.328 0.423 3.596 -8.698 -2.803 6.647∗∗

(-0.98) (-1.60) (-0.60) (-1.21) (-0.12) (0.23) (1.50) (-1.33) (-0.32) (2.61)

Constant 1.834∗∗∗ 1.912∗∗ 1.128 -0.0709 1.560∗∗∗ 1.571∗∗∗ 0.573 2.067∗ 1.308 0.833

(3.41) (3.28) (1.17) (-0.09) (4.37) (4.37) (1.87) (2.04) (1.51) (1.95)

R2 0.283 0.265 0.551 0.303 0.276 0.135 0.170 0.317 0.313 0.241

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 267 267 267 267 267 267 267 267 267 267

Panel C: High Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ 0.717 -0.232 3.022 -0.475 0.183 -0.981 -0.328 0.384 -2.262 -0.129

(0.51) (-0.17) (1.47) (-0.47) (0.13) (-0.81) (-0.43) (0.35) (-1.69) (-0.14)

ω̄ 15.87 15.09 41.97 21.14 20.79 -13.69 8.186 33.74 33.53∗∗ 10.92

(0.73) (0.90) (1.58) (1.17) (1.74) (-1.41) (0.75) (1.08) (2.77) (0.65)

Constant -0.0941 0.910 -2.691 0.898 0.493 1.657 0.907 0.0215 2.677∗ 0.667

(-0.08) (0.74) (-1.37) (1.04) (0.40) (1.58) (1.68) (0.02) (2.28) (0.86)

R2 0.377 0.248 0.440 0.500 0.336 0.111 0.268 0.407 0.303 0.283

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 78 78 78 78 78 78 78 78 78 78



Table A.9: The table reports results from second-stage regression using using three sub-samples: low (Panel A), medium (Panel B) and

high (Panel C) dispersion months for ten test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size

Portfolios, (4) 10 Value Portfolios, (5) 25 Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios,

(8) 10 E/P Portfolios, (9) 10 Net Share Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. the table

reports the results from:

RP
t = κt + πt × βMKT

P + φSMB
t × βSMB

P + φHML
t × βHML

P + φUMD
t × βUMD

P + ǫt,P .

RP
t is the value weighted Portfolio return at t, βMKT

P , βSMB
P , βHML

P and βumd
P are the time series average of the post-ranking portfolio

risk loadings. t-statistics are reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992)

Panel A: Low Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ 0.496 0.768 1.348 1.311 0.855 0.662 1.678 -0.350 1.226 0.739

(0.95) (1.19) (1.36) (0.95) (1.62) (1.15) (1.52) (-0.29) (0.79) (1.03)

φ̄SMB -0.174 -0.126 -0.186 -0.467 -0.165 -0.269 -0.823 0.630 -0.0725 -0.192

(-0.52) (-0.36) (-0.57) (-0.77) (-0.46) (-0.81) (-1.80) (0.72) (-0.11) (-0.45)

φ̄HML 0.00618 -0.425 0.316 -0.0404 -0.178 -0.253 -0.340 0.468 0.482 -0.00167

(0.02) (-1.23) (0.41) (-0.13) (-0.43) (-0.78) (-0.91) (1.21) (0.40) (-0.01)

φ̄UMD 0.867 1.482 0.837 0.639 1.480 0.339 0.435 0.863 2.183 0.330

(1.72) (2.62) (1.78) (1.01) (2.85) (1.06) (0.97) (0.96) (1.16) (0.65)

Constant 0.882 0.590 0.0254 0.00779 0.520 0.826 -0.506 1.706 0.0716 0.574

(1.90) (1.01) (0.03) (0.01) (1.04) (1.94) (-0.55) (1.30) (0.05) (0.94)

R2 0.582 0.471 0.757 0.621 0.550 0.255 0.319 0.688 0.569 0.428

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 51 51 51 51 51 51 51 51 51 267



Table A.10: *

—Continued

Panel B: Medium Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -1.076 -0.511 0.427 2.658 -0.956 -0.820 -0.0619 -1.349 -1.273 1.327

(-2.12) (-0.88) (0.51) (3.11) (-2.06) (-1.92) (-0.12) (-1.18) (-1.21) (2.02)

φ̄SMB -0.107 -0.160 -0.0814 0.440 -0.140 -0.0717 -0.197 0.866 -0.600 -0.681

(-0.64) (-0.85) (-0.47) (0.73) (-0.80) (-0.44) (-0.68) (1.92) (-1.26) (-2.38)

φ̄HML 0.262 0.395 -0.00966 -0.139 0.290 0.142 -0.113 0.409 -0.625 0.240

(1.65) (1.32) (-0.02) (-0.70) (1.24) (0.64) (-0.56) (1.70) (-1.37) (1.37)

φ̄UMD 0.476 0.745 -0.0770 0.344 -0.548 0.647 -0.0766 1.865 -1.191 0.530

(0.77) (1.01) (-0.10) (0.71) (-0.95) (2.10) (-0.16) (1.65) (-0.96) (1.14)

Constant 1.736 1.210 0.228 -2.007 1.649 1.497 0.763 2.014 1.903 -0.682

(4.24) (2.28) (0.29) (-2.36) (4.32) (4.38) (1.61) (1.85) (1.99) (-1.10)

R2 0.531 0.469 0.766 0.605 0.541 0.246 0.325 0.592 0.518 0.401

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 267 267 267 267 267 267 267 267 267 267

Panel C: High Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ 0.477 -2.008 1.039 0.473 0.566 0.0812 -0.771 0.522 -0.250 0.273

(0.54) (-2.01) (0.59) (0.22) (0.45) (0.10) (-0.80) (0.26) (-0.15) (0.23)

φ̄SMB 0.189 0.483 0.292 1.678 0.0201 1.674 -0.0162 -0.597 -0.696 -0.0413

(0.32) (0.85) (0.65) (1.36) (0.04) (3.44) (-0.03) (-0.32) (-0.62) (-0.07)

φ̄HML 0.464 0.119 0.234 0.0356 1.326 -1.745 -0.201 0.308 -1.472 0.362

(0.99) (0.23) (0.27) (0.08) (2.69) (-3.20) (-0.37) (0.52) (-2.04) (0.75)

φ̄UMD 1.871 4.708 2.104 2.160 2.691 -3.686 -0.792 0.665 3.442 1.444

(2.25) (3.13) (0.74) (2.26) (2.53) (-2.78) (-0.69) (0.71) (2.35) (1.52)

Constant 0.0542 2.489 -0.624 0.0209 -0.0826 -0.269 1.279 -0.00517 0.640 0.261

(0.07) (3.11) (-0.37) (0.01) (-0.08) (-0.36) (1.68) (-0.00) (0.42) (0.24)

R2 0.557 0.437 0.745 0.629 0.560 0.236 0.377 0.626 0.541 0.460

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 78 78 78 78 78 78 78 78 78 78



Table A.11: The table reports results from second-stage regression using using three sub-samples: low (Panel A), medium (Panel B) and

high (Panel C) dispersion months for ten test assets: (1) 25 Value Size Portfolios, (2) 25 Net Share Issues Size Portfolios , (3) 10 Size

Portfolios, (4) 10 Value Portfolios, (5) 25 Size Investment Portfolios, (6) 100 Size Operating Prof Portfolios, (7) 30 Industry Portfolios,

(8) 10 E/P Portfolios, (9) 10 Net Share Issues Portfolios and (10) 25 Book-to-Market and Operating Profitability Portfolios. The table

reports the results from:

RP
t = κt + πt × βMKT

P + ωt × δP + φSMB
t × βSMB

P + φHML
t × βHML

P + φUMD
t × βUMD

P + ǫt,P .

RP
t is the value weighted Portfolio return at t, βMKT

P , δP , βSMB
P , βHML

P and βumd
P are the time series average of the post-ranking portfolio

risk loadings. t-statistics are reported in parenthesis and are corrected for estimation error as formulated by Shanken (1992)

Panel A: Low Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ 0.184 0.264 0.941 1.220 0.531 0.386 2.496∗ -0.601 0.641 0.928

(0.34) (0.44) (0.93) (0.85) (1.16) (0.67) (2.09) (-0.53) (0.65) (1.07)

ω̄ -2.042 -2.821 -5.151 -1.900 -0.00406 -2.356 -10.56∗∗∗ 1.233 -9.434∗ -2.914

(-1.24) (-1.58) (-1.42) (-0.61) (-0.00) (-1.57) (-3.97) (0.44) (-2.17) (-1.50)

φ̄SMB -0.159 -0.127 0.104 -0.446 -0.0916 -0.219 -0.628 1.034 -0.347 -0.412

(-0.46) (-0.35) (0.28) (-0.81) (-0.24) (-0.66) (-1.44) (1.38) (-0.63) (-1.11)

φ̄HML 0.0664 -0.350 -1.765 -0.0319 -0.142 -0.393 -0.522 0.478 1.191 0.00487

(0.23) (-1.01) (-1.37) (-0.10) (-0.36) (-1.33) (-1.45) (1.26) (1.31) (0.02)

φ̄UMD 1.243∗ 1.477∗∗ 0.378 0.639 1.231∗ 0.490 1.166∗ 1.222 1.181 0.249

(2.34) (2.99) (0.80) (1.08) (2.51) (1.70) (2.48) (1.37) (0.71) (0.56)

Constant 1.179∗ 1.096 0.408 0.1000 0.817 1.075∗ -1.180 1.980 0.613 0.378

(2.48) (1.95) (0.47) (0.07) (1.75) (2.61) (-1.18) (1.63) (0.62) (0.56)

R2 0.624 0.516 0.830 0.714 0.585 0.279 0.361 0.734 0.673 0.475

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 51 51 51 51 51 51 51 51 51 51



Table A.12: *

—Continued

Panel B: Medium Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ -1.407∗∗ -0.938 0.732 2.629∗∗ -0.858 -0.746 -0.00291 -2.110 -3.795∗∗ 1.297

(-2.78) (-1.70) (0.93) (3.05) (-1.90) (-1.80) (-0.01) (-1.62) (-2.75) (1.93)

ω̄ -5.989 -6.080∗ 2.438 -6.809 -0.0798 -0.631 2.986 -0.486 -13.67 1.293

(-1.57) (-2.22) (0.37) (-1.24) (-0.03) (-0.48) (1.38) (-0.09) (-1.60) (0.43)

φ̄SMB -0.0763 -0.0843 -0.0877 -0.0159 -0.138 -0.0577 -0.133 1.174∗ 0.303 -0.607∗

(-0.46) (-0.46) (-0.50) (-0.02) (-0.80) (-0.37) (-0.46) (2.44) (0.53) (-2.03)

φ̄HML 0.284 0.521 -0.0486 -0.0837 0.298 0.132 -0.151 0.435 -0.159 0.215

(1.76) (1.65) (-0.11) (-0.40) (1.24) (0.63) (-0.76) (1.66) (-0.32) (1.20)

φ̄UMD 0.705 1.762∗ 0.0852 -0.102 -0.104 0.891∗ -0.162 2.495∗ 0.121 0.585

(1.19) (2.33) (0.11) (-0.15) (-0.17) (2.49) (-0.32) (2.09) (0.10) (1.27)

Constant 2.051∗∗∗ 1.617∗∗ -0.0692 -1.979∗ 1.558∗∗∗ 1.412∗∗∗ 0.697 2.768∗ 4.368∗∗ -0.653

(4.79) (3.21) (-0.10) (-2.35) (4.12) (4.10) (1.53) (2.18) (3.29) (-1.04)

R2 0.582 0.505 0.830 0.683 0.599 0.272 0.363 0.683 0.623 0.443

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 267 267 267 267 267 267 267 267 267 267

Panel C: High Dispersion Months

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

π̄ 0.338 -1.530 1.266 0.976 -0.349 0.831 -0.474 0.922 -0.991 0.157

(0.38) (-1.72) (0.70) (0.45) (-0.34) (1.07) (-0.51) (0.36) (-0.61) (0.15)

ω̄ 13.56 19.96 26.81 18.62 23.83∗ -42.23∗ 11.39 12.42 34.38∗ 11.92

(1.10) (1.65) (1.84) (0.68) (2.37) (-2.57) (1.14) (0.35) (2.18) (1.05)

φ̄SMB 0.197 0.465 0.360 1.564 0.142 0.446 -0.128 -1.209 -1.277 -0.0184

(0.34) (0.83) (0.82) (0.84) (0.26) (1.06) (-0.27) (-0.47) (-1.04) (-0.03)

φ̄HML 0.477 0.195 0.359 0.00531 0.891 1.195∗ -0.212 0.178 -1.644∗ 0.406

(1.08) (0.40) (0.46) (0.01) (1.64) (2.49) (-0.38) (0.27) (-2.38) (0.91)

φ̄UMD 1.870∗ 4.138∗∗ 3.147 2.184∗ 3.027∗∗ -4.722∗∗ -0.398 0.797 2.990∗ 1.239

(2.48) (3.31) (1.14) (2.00) (2.88) (-3.07) (-0.43) (0.74) (2.14) (1.28)

Constant 0.185 1.931∗ -0.941 -0.468 0.813 -0.710 0.989 -0.393 1.389 0.352

(0.25) (2.64) (-0.53) (-0.23) (0.98) (-0.93) (1.34) (-0.16) (0.91) (0.37)

R2 0.583 0.467 0.824 0.729 0.602 0.299 0.443 0.704 0.601 0.512

Num. portfolios 25 25 10 10 25 100 30 10 10 25

Num. time period 78 78 78 78 78 78 78 78 78 78



Appendix 2

Proof of Proposition 1

The following moments are used to formulate the value function of consumers below:

E[
dXit

Xit

dπ
(m)
1t ] = bi σ

(m)
1t σY dt, for i = 1, · · · , N,m = 1, 2 (28)

E[

(

dXit

Xit

)2
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2
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i , for i = 1, · · · , N, (29)
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(m)
1t , for m = 1, 2. (30)

The value function J(Wt, π
(1)
1t , π

(2)
1t , ̺t, t) under the measure of analyst 1 satisfies the Hamilton-

Jacobi-Bellman (HJB) equation:
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. (31)

The envelope optimality condition for consumption is:

UC = JW (32)

Given the CRRA preference of the representative consumer, her value function takes the

form:

J(Wt, π
(1)
1t , π

(2)
1t , ̺t, t) = exp(−ρt)

W γ
t

γ
I(π

(1)
1t , π

(2)
1t , ̺t). (33)

The partial derivatives of J therefore satisfy: Jt = −ρJ ; JW = (γJ)/W ; JWW = (γ(γ −

1)J)/W 2; J
π
(m)
1

= (I
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1

/I)J , for m = 1, 2; J
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(m)
1 π

(m)
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1

= (γJ)/W (I
π
(m)
1

/I) , for m = 1, 2; JW̺ = (γJ)/W (I̺/I).



Substituting these and the optimality condition for consumption (32) into the HJB equation

(31) implies the PDE in (20). The Kuhn-Tucker first-order conditions for the portfolio choices

of the consumer follow. �

Proof of Proposition 2

First consider the derived utility of wealth function in the decentralized economy. By

following the same steps as for the central planner’s problem, the function I(π
(1)
1t , π

(2)
1t , ̺t)

satisfies the PDE:

0 = max
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where now w0 is the portfolio choice in the riskless asset. We allow for w0 to be positive

(riskless lending) or negative (riskless borrowing). The first order condition for w0 is

r =
λ(1)

I
. (35)

Now set the optimal choices for wi for i = 1, · · · , N , as for the central planner, and in addition,

let r satisfy (35) Then, w0 = 0 is optimal in the decentralized choice. Now, summing (22)

over i = 1, · · · , N , and using (23) and (25) implies that

(
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= r (36)

Now using (21), which holds with equality for any asset with wi > 0, and (36), implies (26)

once we recognize that αi = bi((1− ̺)ν̄(1) + ̺ν̄(2)). �
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