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Abstract

I assess the time-variation in predictive ability arising from the inclusion of macroeco-

nomic and financial data in a GARCH-MIDAS model for stock market volatility. I consider

whether the usefulness of augmenting a volatility model with economic data is affected by

the state of the business cycle or the market environment. Results suggest the predictive

ability of economic variables varies significantly over time, especially over long horizons.

A central result is that models including economic data are useful for forecasting in low

volatility periods. On the other hand, financial data performs overall surprisingly poorly. No

single forecasting model or combination scheme is superior on all horizons and in all time

periods, and while the term spread improves forecasting performance over long horizons,

forecast combinations perform well over the medium term.
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1 Introduction

Forecasting volatility is a crucial part of decision-making for financial market actors as well as

policy-makers. Long-horizon forecasts for volatility can be important for instance for portfolio

allocation and risk management. While standard GARCH models are accurate for short-term

volatility forecasts (e.g., Andersen and Bollerslev (1998)), using models which include economic

data, such as the GARCH-MIDAS model, have been found to be successful at longer horizons

(e.g., Engle et al. (2013), Conrad and Loch (2014)). There is mounting evidence that forecast

accuracy generally varies over time (e.g., Giacomini and Rossi (2010), Stock and Watson (2003)),

and that predictability varies over economic states (e.g., Chauvet and Potter (2013), Rapach

et al. (2010)). Regarding stock market volatility, for example, Paye (2012), Christiansen et al.

(2012) and Nonejad (2017b) considered how the usefulness of economic predictors varies over

time in predictive regression settings. When using GARCH-MIDAS models we can see that

the in-sample explanatory power of economic variables varies over time.1 In particular, the

ability of many macroeconomic variables to explain stock return volatility declines over time,

which motivates studying the time-variation in forecasting performance of GARCH-MIDAS

models including economic data. Conrad and Loch (2014) briefly considered the time-varying

impact of macroeconomic data (compared to realised volatility) for the forecasting performance

of GARCH-MIDAS models, but a thorough study of how the ability of economic data to forecast

stock market volatility varies over time and over the business cycle, compared to a benchmark

GARCH(1,1) model, does not to my knowledge exist.

This paper explores the additional time-varying predictive ability provided by macroeco-

nomic and financial variables using US data, by comparing the evolution of the out-of-sample

forecasting performance of GARCH-MIDAS models to a standard GARCH model. To consider

potential reasons for the time-variation I investigate whether the relative forecasting perfor-

mance is affected by the state of the business cycle or the market environment. While focus

is on the out-of-sample analysis, also in-sample results are interesting because the impact of

financial data on volatility has not been as thoroughly studied in a GARCH-MIDAS framework

as the impact of macroeconomic data2. Finally, I determine whether forecast accuracy can be

improved by combining the individual GARCH-MIDAS model forecasts, taking advantage of the
1See Figure 1 in Section 5.
2Asgharian et al. (2013) included financial data through principal components in a GARCH-MIDAS model,

while Conrad and Kleen (2018) included the VIX index in a daily long-term component and the NFCI in a weekly
long-term component.
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(potential) detected time-variation. Focus is thus on improving real-time forecasts of long-term

stock market volatility, with the data set representing as far as possible the information set of

the forecaster at the forecast origin.

My results suggest that when forecasting over long horizons there are clear shifts in fore-

casting performance over time implying that (time-varying) forecast combination (or selection)

methods could be useful. Macroeconomic variables – as well as the term spread and the 3M

T-bill rate – improve predictions especially in low volatility periods but also in periods of weak

economic growth, while overall financial data struggles to identify a long-term component in

volatility, leading to mostly weak forecasting performance. However, although some forecast

errors are predictable conditioning on the volatility environment (at the forecast origin), it is

difficult to use this knowledge to achieve significant improvements in forecast accuracy in real-

time forecasting. It is clear that no single forecasting model or combination scheme performs

well on all horizons and in all time periods. When forecasting 12 months ahead the best fore-

casting model is the term spread driven GARCH-MIDAS model, while when forecasting 3 or 6

months ahead forecast combinations seem like the best choice. Over the 1 month horizon there

is some evidence that a GARCH-MIDAS model, or a combination method, currently performs

best, although there are no statistically significant differences and the GARCH model performed

well especially in the first half of the sample. The standard GARCH model is rarely significantly

better than a GARCH-MIDAS model and never significantly outperforms the combination fore-

casts, indicating economic data is useful for long horizon forecasts.

The paper is organised as follows. Section 2 discusses the relevant literature, while Section 3

presents the GARCH-MIDAS model and the forecasting set-up. The data set is introduced

in Section 4, and Section 5 briefly establishes in-sample results. When discussing the out-of-

sample results in Section 6, I first present baseline full-sample results, before looking into the

time-variation in forecasting performance. I consider forecast combination methods in Section 7,

before concluding in Section 8.

2 Literature review

When forecasting stock return volatility focus has been on one-period-ahead forecasts where the

step tends to be relatively short (e.g., Engle (1982), Bollerslev (1986), Andersen and Bollerslev

(1998) and Hansen and Lunde (2005)). In these settings the GARCH(1,1) model usually performs
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well. See Poon and Granger (2003) for a thorough review of the volatility forecasting literature.

Ghysels et al. (2009) discussed multi-horizon volatility forecasts, comparing for example iterated,

direct and MIxed DAta Sampling (MIDAS) regression approaches. They found that for long

horizons (over 30 days) the MIDAS regression forecasts dominate, thus arguing that volatility

is forecastable also over long horizons, contrary to the evidence in Christoffersen and Diebold

(2000). Their study does not, however, consider GARCH-MIDAS models, or include macro-

finance variables to enhance volatility forecasts. I concentrate here on the literature considering

long horizon forecasts and models incorporating economic data (i.e., exogenous predictors).

There is ample evidence that stock return volatility is higher in recessions than in expansions

(e.g., Schwert (1989)). Nevertheless, mixed results on the usefulness of economic data for mod-

elling and forecasting volatility were found in, for example, Davis and Kutan (2003), Errunza and

Hogan (1998), Pierdzioch et al. (2008) and Paye (2012). Other papers, such as Hamilton and Lin

(1996), Cakmakli and van Dijk (2010), Christiansen et al. (2012), Diebold and Yilmaz (2008),

Nonejad (2017a) and Nonejad (2017b) were more successful in linking economic developments to

return volatility. These papers mostly rely on predictive regressions and VARs. Papers building

on the component GARCH framework, introduced by Engle and Lee (1999), have successfully

linked macroeconomic variables and stock market volatility. In particular, Engle et al. (2013) in-

troduced the GARCH-MIDAS model, which decomposes volatility into a short-term component

that fluctuates around a long-term trend determined by economic data. For example, Conrad

and Loch (2014), Asgharian et al. (2013), Asgharian et al. (2015) and Lindblad (2017) used

the GARCH-MIDAS model to show that economic data helps explain and forecast stock return

volatility. Conrad and Schienle (2018) considered testing for an omitted long-term component

in GARCH models, concluding that the one-component GARCH model can be misspecified for

stock market volatility, which motivates using a two-component model. Conrad and Kleen (2018)

provided further evidence in favour of multiplicative GARCH models, showing that models in-

corporating economic variables improve on the HAR model for forecast horizons of two to three

months.

Following the literature on time-variation in the accuracy of macroeconomic (e.g., Stock and

Watson (2003)) and stock return (Rapach et al., 2010) forecasts, it is natural to think that the

ability of economic data to forecast return volatility could be time-varying and depend on the

economic environment. Several papers point to this direction. For example, Christiansen et al.

(2012) compared the dynamic out-of-sample performance of predictive regressions (combined
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using Bayesian Model Averaging (BMA)) to autoregressive benchmarks, concluding that macro-

finance variables add to predictability over the most recent financial crisis period. Nonejad

(2017b) also found that BMA based model combinations outperform AR benchmarks around

recessions. Paye (2012) concluded using predictive regressions that macroeconomic variables are

especially useful for forecasting volatility around recessions, while Conrad and Loch (2014) noted

that GARCH-MIDAS models incorporating macroeconomic data lead to better forecasts than

the GARCH-MIDAS model driven by realised volatility between the past two recessions and

since the beginning of the financial crisis.

3 Methodology

3.1 The GARCH-MIDAS model

The GARCH-MIDAS model by Engle et al. (2013) is a multiplicative two-component model

for the conditional variance, where the high-frequency component is modelled as a standard

GARCH process, while the low-frequency component is determined by economic data.3 The

high-frequency component can be thought of as fluctuating around a slow-moving long-term

trend, which is driven by variables evolving at a lower frequency than returns. The MIxed DAta

Sampling (MIDAS) approach, introduced by Ghysels et al. (2004) in a regression model frame-

work4, deals with the challenges related to using data sampled at different frequencies within

the same model. The key feature of MIDAS is capturing the lag structure of the explanatory

variables by a known function which depends on only a few parameters.

Following the interpretation in Engle and Rangel (2008), which builds on the log-linear

dividend-ratio model in Campbell (1991) and Campbell and Shiller (1988), the stock return on

day i and in period (month or quarter) t can be modelled as having a multiplicative specification

for the conditional variance:

ri,t = Ei−1,t(ri,t) +
√
τi,t gi,t εi,t, εi,t | Φi−1,t ∼ N(0, 1), ∀i = 1, ..., Nt

where Φi−1,t represents the information set up to day i − 1, and Nt is the number of trading

days in period t. σ2
i,t = τi,t gi,t is the total conditional variance, where τt5 is the long-term

3The presentation of the model follows closely Engle et al. (2013) and Lindblad (2017).
4Discussed in detail in Ghysels et al. (2004), Ghysels et al. (2005), Ghysels et al. (2006), Ghysels et al. (2007),

Andreou et al. (2010), and Wang and Ghysels (2015).
5τi,t is fixed for all i in period t, so I drop the subscript i to ease notation and emphasise that τt evolves at a

lower frequency than gi,t.
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volatility component and gi,t the GARCH component. The expected return is assumed constant:

Ei−1,t(ri,t) = µ.

It is well established that stock return volatility is asymmetric (see e.g. Awartani and Corradi

(2005) and the references therein), i.e., that positive and negative news have different impact on

volatility. Therefore I use the asymmetric GJR-GARCH model (by Glosten et al. (1993)):

gi,t = ω + (α+ γDi−1,t)
(ri−1,t − µ)2

τt
+ βgi−1,t (1)

which was also found suitable in, e.g., Conrad and Loch (2014) for equity returns in a GARCH-

MIDAS framework. Di−1,t is an indicator function, taking the value 1 when (ri−1,t − µ) < 0

and 0 otherwise. Thus, γ describes the degree of asymmetry in volatility. ω is normalised to

ω = 1− α− β − γ/2 so that E(gi,t) = 1. To ensure stationarity the condition α + β + γ/2 < 1

is imposed. In addition, I assume α > 0, β ≥ 0 and α + γ ≥ 0 to ensure the variance remains

positive.

The MIDAS polynomial with one explanatory variable, X, takes the form:

log τt = m+ θ
K∑
k=1

ϕk(ω1, ω2)Xt−k (2)

where ϕk(ω1, ω2) is a weighting scheme and K is the number of lags of the exogenous variable

included. The logarithmic specification ensures non-negativity of the long-term volatility com-

ponent (τt) even when the explanatory variable takes negative values. If the variable does not

affect stock market volatility (i.e., θ = 0), all volatility is captured by the short-term component

and the model collapses to the GJR-GARCH model with τt = m, i.e., unconditional volatility is

constant. The standard GARCH model is therefore nested in the GARCH-MIDAS specification.

The sign of θ is interpretable: θ > 0 (θ < 0) implies that higher values of X are linked to higher

(lower) long-term volatility in stock returns.

A commonly used flexible but parsimonious weighting scheme is the beta lag polynomial6,

which guarantees positive weights (ensuring non-negativity of volatility) that add up to one (this

normalisation allows identifying θ):

ϕk(ω1, ω2) =
( k
K

)ω1−1(1− k
K

)ω2−1∑K
j=1( j

K
)ω1−1(1− j

K
)ω2−1 , where

∑K
k=1 ϕk(ω1, ω2) = 1.

The weight parameters, ω1 and ω2, govern the shape of the weighting scheme and can be
6Weighting schemes are discussed in more detail in Ghysels et al. (2007).
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estimated or fixed before estimation. The beta polynomial allows both monotonously decreasing

weights (ω1 = 1) and hump-shaped weights (ω1 < ω2 or ω1 > ω2). If ω1 = 1 the rate of decay

is determined by ω2, where a larger value indicates faster decay. If ω1 = ω2 = 1 the weights are

equal (1/K) for all lags, which corresponds to a moving average.

To assess how much the variation in a particular variable explains of the overall expected

volatility, Engle et al. (2013) suggested calculating variance ratios: V ar(log(τt))
V ar(log(τtgi,t))

. The variance

ratio can be interpreted as a measure of fit in the sense that the higher the variance ratio is, the

larger is the share of the total expected volatility that can be explained by the variation in the

long-term component. The GARCH-MIDAS model can be estimated using maximum likelihood

(or quasi-maximum likelihood if the assumption of normally distributed errors does not hold).7

3.2 Forecasting with the GARCH-MIDAS model

The one-step ahead volatility prediction is given directly by equations 1 and 2. For further

horizons I iterate forward the daily GJR-GARCH model forecasts and combine this short-term

forecast with a forecast for the long-term component, τt. For the GJR-GARCHmodel the forecast

for day i is formed as:

E
[
gi,t|FNt−1,t−1

]
= 1 + (α+ β + γ/2)i−1(g1,t − 1) (3)

where Nt is the number of trading days in period t, and FNt−1,t−1 denotes the information set

in period t− 1. The forecast for total volatility for period t can be expressed as:

E

[
Nt∑
i=1

gi,tτtε
2
i,t|FNt−1,t−1

]
= τt

[
Nt + (g1,t − 1)

1− (α+ β + γ/2)Nt

1− α− β − γ/2

]
. (4)

Following Conrad and Loch (2014) I create non-overlapping monthly forecasts by summing

the daily forecasts over the respective month while keeping τt fixed at its one-step ahead predic-

tion for all horizons. Because the forecast of the GARCH component converges to its (constant)

unconditional expectation as the forecast horizon increases, in the long run the forecast differ-

ences are entirely driven by the long-term components (τt).
7While consistency and asymptotic normality of the QML estimator for the rolling window GARCH-MIDAS

model with realised volatility was established in Wang and Ghysels (2015), it has not been shown for the more
general GARCH-MIDAS model with macroeconomic variables.
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3.3 Forecasting set-up

The GARCH-MIDAS model has relatively many parameters to estimate, meaning that the

estimation period needs to be long enough. However, in order to detect time-variation in the

out-of-sample forecasts the evaluation period needs to be as long as possible. I thus divide the

whole sample (January 1973 - June 2017) roughly into half: the first estimation period is January

1973 - December 1994, and the out-of-sample evaluation period is January 1996 - June 2017. As

the short-term GARCH components are similar across all GARCH-MIDAS specifications, the

largest gains in forecasting from including economic variables is expected to be achieved over

long horizons. I therefore consider forecast horizons from 1 to 12 months.

For the out-of-sample evaluation I use a rolling window estimation scheme, i.e., the size of

the estimation window remains constant, but the window is shifted forward by one period and

the model is re-estimated before the next set of forecasts is calculated. A rolling window esti-

mation scheme allows for parameter instability, which is important if the relationship between

long-term stock market volatility and the economic variables changes over time. For example

Nonejad (2017a) considered the time-varying relationship between volatility and predictors in a

predictive regression and Bayesian Model Averaging framework. In addition, the forecast com-

parison methods used in this paper require that limited memory estimators are used.8

The forecasts are evaluated against realised volatility calculated as the monthly sum of

squared daily returns (RVt =
∑Nt

i=1 r
2
i,t). Forecast accuracy of a model is measured as the absolute

value of the forecast error. Squared forecast errors put significant weight on the largest forecast

errors, which is useful if one wants to penalise large forecast errors relatively heavier than small

ones. However, since I wish to study general forecasting performance over time, and not in

particular during for example the financial crisis, I use absolute forecast errors. In addition,

Poon and Granger (2003) note that when using squared returns as the quantity of interest and

using squared errors as the measure of forecast accuracy, one is effectively comparing the fourth

moments of the data, which can complicate the comparison. However, Patton (2011) argues

that while the mean squared forecast error (MSFE) loss function is robust in the sense that

using a noisy proxy for volatility (such as the sum of squared daily returns) does not change the

ranking of forecasting models, the mean absolute forecast error (MAFE) loss function is not.

This concern needs to be taken seriously, and therefore, as a robustness check, I report all MSFE

ratios in the appendix and discuss them where relevant. In general, the results are qualitatively
8For completeness and for robustness checks, Appendix F presents some results using an expanding window.
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similar, but, as expected, the statistical significance of the results is weaker when using squared

forecast errors.

The natural benchmark model is the GJR-GARCH(1,1) model, since it is nested in the

GARCH-MIDAS specification. Using the GJR-GARCH(1,1) model as benchmark thus reveals

whether economic variables are useful for forecasting stock return volatility.

3.4 Measuring the time-variation in forecasting performance

The accuracy of the forecasting framework is important, but there is often considerable un-

certainty regarding the choice of model. Thus it is important to be able to test the relative

forecasting performance of competing models, and to this end several frameworks have been

developed.9 However, the relative forecasting performance of models might be time-varying due

to, for example, structural instability (Giacomini and Rossi, 2010). Whether the relative fore-

casting performance of two models has shifted over time is an interesting and important question

to complement full-sample results. To this end Giacomini and Rossi (2010) proposed the Fluctu-

ation test, where the idea is to compare scaled and centred h-step-ahead out-of-sample forecast

losses calculated over rolling windows of size m:

Ft,m = σ̂−1m1/2

t+m/2−1∑
j=t−m/2

∆Lj(â1,j−h,R, â2,j−h,R), (5)

where t = R + h + m/2, . . . , T − m/2 + 1, R is the in-sample size, ∆Lj is the difference in

two loss functions in period j, σ̂2 is a HAC estimator of the variance (σ2) and â1 and â2

are the in-sample parameter estimates of each model.10 The Fluctuation test tests the null

hypothesis that the local relative forecasting performance equals zero at each point in time:

H0 : E[∆Lt(â1,t−h,R, â2,t−h,R)] = 0. The testing framework allows both nested and non-nested

models as well as non-linear models, but the parameters need to be estimated using a limited

memory estimation scheme, such as rolling windows. Giacomini and Rossi (2010) showed that if

the ratio betweenm and T−R (out-of-sample size) is too small, the Fluctuation test is oversized.

The size of the test is found to be largely correct for m
T−R ≈ 0.3. As my out-of-sample size is

258 I need, for example, m = 78, which corresponds to 6.5 years of monthly data. The test is

therefore designed to detect long-term shifts in forecasting performance.
9For example, Diebold and Mariano (1995), West (1996), McCracken (2000), Clark and McCracken (2001),

Clark and West (2006) and Giacomini and White (2006).
10See Giacomini and Rossi (2010) for details.
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4 Data

I use the continuously compounded daily stock market return on the CRSP index from January

1973 to June 2017. From a theoretical perspective time-variation in stock return volatility can be

linked to uncertainty regarding future cash flows, which can stem from, for example, uncertainty

regarding the true macroeconomic situation and expectations regarding the future economic en-

vironment. As exogenous variables I include a collection of commonly used (monthly) predictors

for stock return volatility, representing the financial markets, the macroeconomy and expecta-

tions regarding the economic environment. While the important role of many macroeconomic

variables in driving long-term volatility has already been established in the GARCH-MIDAS

literature (see Section 2), financial variables have been less explored in the GARCH-MIDAS

context (with the exception of the term spread and realised volatility). Asgharian et al. (2013)

included the 3-month T-bill rate and a default spread, but they were aggregated together with

macroeconomic variables into principal components. Conrad and Kleen (2018) included the VIX

index and the NFCI, but used a daily or weekly long-term component. Using predictive regres-

sions financial variables have been identified as important predictors of stock return volatility

(e.g., Christiansen et al. (2012), Nonejad (2017a)).

The macroeconomic variables included are real-time vintages of housing starts (change in

level), the real-time Aruoba-Diebold-Scotti Business Conditions index (ADS index)11, the Buy-

ing Conditions index (forward-looking sub-index of the University of Michigan consumer confi-

dence index, change in level)12, and the ISM New Orders index (level). As a leading indicator

housing starts has been among the best predictors for stock return volatility (e.g., Conrad and

Loch (2014)), the ADS index reflects the current economic situation, and the Buying Conditions

index and the ISM New Orders index represent expectations of the macroeconomic situation.

As financial data I include predictors used in predictive regressions for stock market volatility,

e.g., in Christiansen et al. (2012) and Nonejad (2017a).13 Therefore I include a realised volatility

measure (sum of the absolute value of daily returns: RVt =
∑Nt

i=1 |ri,t|), the term spread (differ-

ence between the 10-year Treasury bond yield and the 3-month T-bill rate), the short term and
11Includes, for example, industrial production and labour market data. Prior to 2008 real-time vintages are not

available.
12Found to be superior to the main consumer confidence index in Lindblad (2017).
13A requirement is that data is available from January 1971 until June 2017 (up to two years of economic data

is needed to estimate the model for the first period). Therefore, for example, the investor sentiment index by
Baker and Wurgler (2006) (available until September 2015) and the E/P and D/P ratios are not included. In
results which are available upon request I determine that these variables are not important drivers of long-term
stock market volatility in the GARCH-MIDAS framework.
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long term interest rates (level and change over month), as well as the default spread (default risk

of corporate bonds, difference between BAA and AAA bond yields), which describes credit risk.

To capture the leverage effect (?) I include lagged excess market returns. For missing values I

use the previous month’s data.14 See Appendix A for data sources.

To determine whether a broad set of macroeconomic and financial variables is more useful

than individual variables for forecasting stock market volatility I use the dataset and method-

ology in McCracken and Ng (2016) to extract factors using principal component analysis. The

dataset comprises between 106 and 135 macroeconomic and financial variables. I use the first

four principal components (PC) in the analysis, which explain a combined 34% of the total vari-

ation in the data.15 As shown in more detail in Appendix B, the first PC relates to real activity

and employment, the second one concentrates on price variables, the third one relates mainly

to interest rate spreads, while the fourth one is dominated by financial variables. I use as far as

possible real-time data for the principal components in the rolling window analysis. Historical

vintages go back to August 1999. Before that I use the August 1999 vintage and recursively

estimate the PCs for each period, so that only historical data is used. The first time-varying

PC relates mainly to the same underlying macro series – real activity and employment related

series – as the full-sample PC, as shown in Figure C.1 in Appendix C. For the second and third

PCs the compositions vary more, although the interpretation of the factors remains relatively

constant over time. The second PC mainly relates to interest rates and interest rate spreads,

but also to price variables, as in the full-sample results. For the third PC one cluster relates to

price variables, a second to interest rates, and a third one relates to housing market data.

5 In-sample results

First, I establish in-sample results for the full-sample period, then, I look at parameter stability

over the out-of-sample period using a rolling window estimation scheme. Importantly, it will

reveal how the long-term relationship between economic variables and stock market volatility

has changed over time, as identified by the GARCH-MIDAS model.

14This is important for the Buying conditions index, which is available at a quarterly frequency before 1978.
15See McCracken and Ng (2016) for details on the data, the extracted factors (which are very similar to those

extracted here) and the methodology.
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Table 1: Estimation results for GARCH-MIDAS model with one explanatory variable

µ α β γ θ ω1 ω2 m VR LLF K

GJR-GARCH(1,1) 0.0466*** 0.0217*** 0.9024*** 0.1073*** - - - 0.8500*** - -14281.88 -

(0.0074) (0.0050) (0.0136) (0.0180) (0.0872)

Realised volatility 0.0482*** 0.0133** 0.8559*** 0.1438*** 0.0639*** 2.5509*** 6.5085** -1.1786*** 34.79 -14229.19 12

(0.0073) (0.0056) (0.0175) (0.0203) (0.0050) (0.9418) (2.6167) (0.0979) [0.0094]

Buying Conditions 0.0454*** 0.0182*** 0.8936*** 0.1174*** -0.1788*** 1.8624*** 2.1397*** -0.1588* 14.24 -14253.96 24

(0.0074) (0.0052) (0.0143) (0.0186) (0.0259) (0.4391) (0.7643) (0.0844) [0.0010]

ISM New Orders 0.0456*** 0.0144*** 0.8987*** 0.1188*** -0.0522*** 1 2.6036*** 2.6681*** 15.37 -14254.51 24

index (0.0074) (0.0054) (0.0138) (0.0183) (0.0086) (0.9094) (0.4760) [0.6112]

ADS index 0.0464*** 0.0159*** 0.8968*** 0.1174*** -0.4817*** 1 3.3587*** -0.2496*** 15.09 -14255.13 24

(0.0074) (0.0053) (0.0138) (0.0183) (0.0761) (0.8423) (0.0874) [0.6067]

Housing starts 0.0463*** 0.0170*** 0.8952*** 0.1179*** -0.0150*** 2.0944*** 1.7774*** -0.2137** 17.59 -14249.16 24

(0.0074) (0.0052) (0.0143) (0.0185) (0.0022) (0.6512) (0.4682) (0.0851) [0.0000]

Term spread 0.0468*** 0.0174*** 0.8933*** 0.1174*** -0.2485*** 2.8814 1.6183* 0.2411** 13.87 -14255.26 24

(0.0073) (0.0052) (0.0149) (0.0192) (0.0417) (2.5458) (0.8912) (0.1095) [0.0148]

Default spread 0.0456*** 0.0133*** 0.8977*** 0.1217*** 0.5605*** 1 6.7455** -0.8116*** 12.07 -14261.93 12

(0.0073) (0.0051) (0.0144) (0.0193) (0.0994) (2.9512) (0.1500) [0.2594]

3M T-bill rate 0.0456*** 0.0177*** 0.9028*** 0.1127*** 0.0437*** 300 233.5683 -0.3906*** 4.46 -14273.72 24

(level) (0.0073) (0.0052) (0.0139) (0.0187) (0.0157) (499.2185) (402.5675) (0.1278) [0.0441]

3M T-bill rate 0.0458*** 0.0175*** 0.9020*** 0.1126*** -0.7768** 1 1.7220* -0.1821 3.18 -14275.57 12

(chg over month) (0.0074) (0.0052) (0.0135) (0.0181) (0.3249) (0.8999) (0.0959) [0.0795]

10Y Treasury rate 0.0462*** 0.0203*** 0.9030*** 0.1090*** 0.0221 1 1.0000 -0.3145** 0.83 -14280.65 24

(level) (0.0073) (0.0051) (0.0137) (0.0183) (0.0185) (3.7585) (0.1601) [0.3694]

10Y Treasury rate 0.0467*** 0.0204*** 0.9029*** 0.1090*** -0.6228 5.2828* 34.9021 -0.1704 2.20 -14275.41 24

(chg over month) (0.0074) (0.0050) (0.0132) (0.0176) (0.3525) (2.5327) (22.6232) (0.1016) [0.0032]

Excess market 0.0479*** 0.0159*** 0.9066*** 0.1165*** 0.1089*** 1 3.8440*** -0.2337* 9.30 -14262.94 12

return (0.0073) (0.0048) (0.0112) (0.0157) (0.0286) (0.8528) (0.1135) [1.0000]

Principal 0.0466*** 0.0163*** 0.8944*** 0.1194*** 0.9380*** 1 6.9868** -0.2252*** 16.17 -14254.73 24

component 1 (0.0074) (0.0053) (0.0141) (0.0185) (0.1450) (2.9702) (0.0847) [0.6032]

Principal 0.0459*** 0.0174*** 0.8970*** 0.1171*** -1.8320*** 12.0342 6.2691 -0.1859** 10.01 -14263.10 24

component 2 (0.0074) (0.0053) (0.0144) (0.0194) (0.4827) (28.1765) (16.0309) (0.0902) [0.0216]

Principal 0.0458*** 0.0172*** 0.8988*** 0.1154*** 1.0902*** 4.5780 2.3205 -0.1804** 10.55 -14263.59 24

component 3 (0.0074) (0.0052) (0.0145) (0.0191) (0.2500) (3.7068) (1.6009) (0.0913) [0.0031]

Principal 0.0467*** 0.0210*** 0.9012*** 0.1089*** -0.7049** 12.4661 30.6975 -0.1723* 2.47 -14276.94 24

component 4 (0.0074) (0.0051) (0.0137) (0.0181) (0.3452) (8.3094) (26.2808) (0.0987) [0.0027]

Bollerslev-Wooldridge QMLE robust standard errors are reported below the parameter estimates. *, ** and *** indicate significance at the 10%, 5%,

and 1% level, respectively. VR is the variance ratio from Section 3.1, multiplied by 100. MIDAS polynomial: log τt = m+θ
∑K

k=1 ϕk(ω1, ω2)Xt−k, where

X stands for the explanatory data, stated in the first column. All models are estimated with a restricted (ω1 = 1) and an unrestricted weighting scheme.

The model reported in the table is chosen based on a likelihood ratio test between the restricted and unrestricted specifications. The related p-value is

reported below the value of the log likelihood function (LLF).
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5.1 Full-sample results

In the MIDAS polynomial lag length K needs to be determined. I choose between K = 12 and

K = 24 for each model, i.e., one or two years of lagged economic data, and proceed with the

lag length maximising the log-likelihood function value.16 The same K is used throughout the

rolling window estimations.

Table 1 presents estimation results over the full sample for all the GARCH-MIDAS models

and the baseline GJR-GARCH model. The macroeconomic data, the term spread and realised

volatility get highly significant estimates for θ as well as high variance ratios, implying the

variables are useful for modelling stock market volatility.17 These results largely echo earlier

results (Conrad and Loch (2014) and Lindblad (2017)). The default spread and the excess

market returns seem to fit well in-sample as well. The long-term interest rate data does not

lead to good in-sample fit, as evidenced by both weakly significant parameter estimates and

low variance ratios. As such these models are unlikely to produce forecasts very different from

the baseline GJR-GARCH(1,1) model, and they are thus excluded from the subsequent out-of-

sample analysis. The variance ratios are also very low for the short-term rates, and I therefore

only include the level of the 3M T-bill rate, which gets the higher variance ratio and a significant

parameter estimate, in the out-of-sample analysis.18

The default spread, 3M T-bill rate, and excess market return get positive estimates for θ,

implying that a higher risk of default, a higher interest rate and a higher excess market return

lead to higher stock return volatility. The first PC explains a large, 16% share of the total

variance, while the two following factors explain roughly 10% each. The estimates for θ are also

highly significant. On the other hand, the fourth PC has a low variance ratio. I thus proceed

using the first three factors.

Figure 1 shows how the in-sample explanatory power of various GARCH-MIDAS models

varies over time, as indicated by the variance ratio calculated over rolling windows. The GARCH-

MIDAS model where the long-term volatility component is driven by lagged realised volatility
16The results are not, however, materially changed by the choice of 12 or 24 lags.
17Notice that when testing the significance of θ, θ and the weight parameters ωi are not separately identified

under the null hypothesis, which affects the asymptotic distribution of the test statistic. However, I follow the
convention in the GARCH-MIDAS literature (e.g., Engle et al. (2013), Conrad and Loch (2014)) and proceed
using the standard t-statistic. In addition, Appendix F discusses estimates of θ using a predetermined weighting
scheme. See Ghysels et al. (2007) for a discussion of the problem in MIDAS regressions.

18The weighting scheme of the 3M T-bill rate (level) can be considered counterintuitive, with the parameter
estimate for ω1 reaching the upper bound of the parameter space. The choice between one or two weights is also
not clear-cut, but this decision does not have a significant impact on the in-sample results. However, I am mostly
interested in the rolling window estimates of the model parameters, discussed in Section 5.2.
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Figure 1: Variance ratios of selected GARCH-MIDAS models. First rolling window: January
1973-December 1994, last rolling window: July 1995-June 2017.

(RV) explains a stable 40%-50% of total volatility, while the long-term component of the model

driven by the term spread explains a relatively stable 20%-30%. The explanatory power of the

other economic variables seems to decline over time.

5.2 Parameter instability

There are 270 out-of-sample months (January 1995 - June 2017), and hence 270 estimates for

each parameter. In this section I discuss how the parameter estimates vary over time, and how

representative the full sample results are. I will also examine whether the choice of restricted

or unrestricted weighting scheme remains constant over the out-of-sample period.19 Taking into

account parameter instability is important for forecasting if there are structural breaks, implying

the relationship between stock return volatility and the economic variables changes over time.

Table 2 presents the percentage of times the unrestricted weighting scheme is chosen over

the restricted one, chosen by a likelihood ratio test in each of the 270 out-of-sample periods.20

Clearly, for realised volatility, the ISM New Orders index and PC1 the restricted model is

always chosen, while for the Buying conditions index and housing starts we always choose the

unrestricted weighting scheme. For the ADS index, the default spread and the 3M T-bill rate

we almost always choose the restricted weighting scheme. Thus the only unclear choices are for

the term spread, the excess market return, PC2 and PC3, although the unrestricted weighting

scheme is chosen more often.21

19The graphs in this section as well as the out-of-sample analysis are based on the weighting scheme which is
chosen more often. See robustness checks in Appendix D.

20Appendix D discusses in more detail the time-variation in the choice of weighting scheme and the implications
of choosing a particular weighting scheme. Overall the differences are small.

21Notice that the variation in the optimal weighting scheme for the principal components can also be a result
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Table 2: Choice between restricted and unrestricted weighting scheme

% of total % of total % of total

Buying conditions index 100 ADS index 4.81 Housing starts 100

ISM New Orders index 0 3M T-bill rate 7.41 Term spread 54.44

Realised volatility 0 Default spread 2.22 Excess market return 69.63

PC 1 0 PC 2 65.56 PC 3 78.89

The table reports the percentage of times the unrestricted weighting scheme is chosen over the restricted

one, i.e., if the number is over 50 the unrestricted weighting scheme is chosen more often than the re-

stricted weighting scheme. The choice was made based on a likelihood ratio test (at the 5% confidence

level) in each of the 270 out-of-sample periods. See Appendix D for details.

Figure 2 plots the time-variation in the estimated GARCH parameters, as well as the time-

variation in the statistical significance of γ, which describes the degree of asymmetry in returns.

The parameters relating to the GARCH model behave very similarly over time and in line with

the baseline GJR-GARCH(1,1) model. The exception is the GARCH-MIDAS model driven by

realised volatility, for which especially β is estimated lower and γ higher compared to the other

models. Interestingly γ roughly doubles in magnitude over time in all models. This implies

that smaller-than-expected returns (with estimated parameter α+γ) affect volatility more than

larger-than-expected returns (with estimated parameter α), and this effect becomes more pro-

nounced towards the end of the sample period. γ also remains significantly different from zero

for all models in most periods (Panel 2e).

The relationship between economic data and stock return volatility is described by θ. Figure 3

shows how the estimates for θ change over the out-of-sample period in the different GARCH-

MIDAS specifications. Mostly θ fluctuates around the full-sample estimate, but, for example, for

realised volatility there is a time trend in θ, indicating a rolling estimation scheme is appropriate.

Counterintuitively the sign of θ for the excess market return changes at the end of the sample

period. For the second and third principal components the sign of θ varies over time, resulting,

most likely, from the time-varying correlation with the underlying economic variables. In most

specifications θ is significantly different from zero in almost all periods, confirming that economic

data is important for long-term volatility. The main exceptions are the second and third principal

components and the 3M T-bill rate, for which θ is, especially recently, not significantly different

from zero at the 5% level, implying we could equivalently use the GJR-GARCH model.

It is also interesting to consider how the weight parameter(s) in the different GARCH-

MIDAS specifications change over time. Figure 4 depicts the time-variation in the estimated

weight parameters for each of the GARCH-MIDAS models. The weight parameter (ω2) for

of the changing composition of the PC itself, as these are re-estimated each period as well.
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(a) Constant expected return (µ) (b) ARCH parameter (α) (c) GARCH parameter (β)

(d) Asymmetry parameter (γ) (e) t-statistics for γ (f) α+ β + 0.5γ

Figure 2: Time-variation in GJR-GARCH model parameters. Legends contain selected series.

realised volatility and the ISM New Orders index is shrinking, implying that the decay of the

weights becomes slower and further lags become increasingly important. The ADS index, the

3M T-bill rate, the default spread and the first PC mostly exhibit a similar weighting scheme as

the full-sample results, but there are time periods when only the most recent data matters (i.e.,

ω2 is very large). For the term spread, the Buying conditions index and housing starts, towards

the end of the sample period there is a tendency for the weighting schemes to put significant

weight on a specific lag, which is not necessarily the most recent one.

The time-variation in both the weighting schemes and the estimates for θ indicates that

the relationship between economic data and long-term stock market volatility varies over time

and that the chosen sample period matters. The variation in weights over time can reflect

estimation problems (e.g., related to the small sample size), but can also be due to a changing

relationship between the variables and volatility. This is of particular concern for the GARCH-

MIDAS models driven by the excess market return, the term spread and the third PC, for which

several of the weight parameters are imprecisely estimated and hit the upper bound (300) used

in the estimation. To guard against estimation problems I re-estimate the models with weight

parameters (ω1 and ω2) fixed at their full-sample values, as well as using an expanding window
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(a) Realised volatility (b) Buying conditions (c) ISM New Orders index

(d) Term spread (e) Housing starts (f) ADS index

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) First principal component (k) Second principal component (l) Third principal component

Figure 3: Time-variation in rolling window estimates of θ, compared to full-sample estimates.
Dashed lines mark 5% confidence bands.

estimation scheme.22

22See Appendix F for details. In general, fixing the weight parameters leads to very similar forecasting perfor-
mance, while the expanding window estimation scheme leads to slightly smaller forecast errors for most models.
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(a) Realised volatility (b) Buying conditions (c) ISM New Orders index

(d) Term spread (e) Housing starts (f) ADS index

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) First principal component (k) Second principal component (l) Third principal component

Figure 4: Time-variation in rolling window estimates of w, compared to full sample estimates.

6 Out-of-sample results

I first establish a benchmark and discuss the forecasting performance over the whole out-of-

sample period. Then, Section 6.2 looks at how the relative forecasting performance has changed

over time, while Section 6.3 considers whether the forecasting performance varies with the eco-
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nomic environment. Section 6.4 discusses conditional predictive ability, i.e., whether the relative

forecast losses are predictable using current information.

6.1 Forecasting performance over the whole out-of-sample period

The MAFE ratios in Table 3 indicate that the GJR-GARCH(1,1) model is hard to beat, at least

in a statistically significant way. It can only be improved upon at longer horizons, and mainly

by the GARCH-MIDAS model driven by the term spread or the second PC, which is in line

with the forward-looking nature of these variables. Other financial variables fail to improve on

the benchmark model at any horizon and in fact perform clearly worse in some cases. This is

contrary to results using predictive regressions (see e.g. Christiansen et al. (2012)), and could

reflect the fact that financial data fail to robustly extract a long-term trend of volatility, which

is crucial for the GARCH-MIDAS model.23

Table 3: Full sample results: Mean absolute forecast error ratios

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

Buying Conditions index 1.00 0.98 0.96* 0.96 0.97 0.98

ISM New Orders index 0.99 1.00 0.99 0.99 0.98 0.97

Housing starts 0.99 0.99 1.00 0.97 0.95 0.94

ADS index 1.03 1.00 1.00 0.99 1.00 1.00

Term spread 1.03 1.03 0.99 0.91*** 0.88*** 0.87***

Default spread 1.09 1.13 1.14 1.20 1.22 1.20

3M T-bill rate 1.01 1.02 1.02 1.02 1.02 1.01

Excess market return 1.08 1.03 1.02 1.04** 1.06** 1.08**

Realised volatility (RV) 1.14* 1.23** 1.22* 1.29 1.32 1.31

First principal component 0.99 1.00 1.00 1.02 1.04 1.02

Second principal component 1.01 0.99 0.98 0.96* 0.96 0.95**

Third principal component 1.05 1.00 0.99 0.98 0.98 0.99

Benchmark: GJR-GARCH(1,1). MAFE ratio: MAFEGMX
MAFEGARCH

, where MAFEGMX stands for the mean ab-

solute forecast error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X).

A value below 1 means the GARCH-MIDAS model outperforms the GJR-GARCH(1,1) model. *, ** and ***

indicate a rejection of the null hypothesis of equal (unconditional) predictive ability at the 10%, 5%, and

1% level, respectively, according to the Giacomini and White (2006) test.

6.2 Time-varying forecasting performance

We saw in the previous section that many models forecast on average roughly equally well, for

example, on the 3M horizon the MAFE ratio for housing starts and the ADS index equal one,

and that of the ISM New Orders index and the term spread equal 0.99. However, this can either

be because forecasting performance is similar across models in all time periods or there could
23The MSFE ratios (Table E.1) convey a qualitatively similar picture.
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be time-variation in relative performance which cancels out over time. To formally investigate

time-variation in forecasting performance I use the Fluctuation test by Giacomini and Rossi

(2010), see Section 3.4 for details. Figure 5 plots the scaled difference in loss functions of a

GARCH-MIDAS model and the GJR-GARCH(1,1) model (the test statistic, see equation 5),

together with two-sided confidence bands.24 For clarity I focus on a representative subset of the

results, with the full results available in Appendix G. Each row corresponds to one economic

variable, while the first column presents results for the 1 month forecasting horizon, the second

column for the 3M horizon, the third one for the 6M horizon and the rightmost column for the

12M horizon. As the test statistic is calculated over a rolling 6.5 year period the first point on

the graph describes relative forecasting performance over the period January 1996 - June 2002

and the last point covers January 2011 to June 2017. If the test statistic (solid blue line) exceeds

the upper bound (dashed line) the GARCH-MIDAS model produces significantly worse forecasts

than the baseline GJR-GARCH(1,1) model, if it drops below the lower bound (dashed line) then

the loss of the benchmark model significantly exceeds the loss of the GARCH-MIDAS model.

Generally, as long as the test statistic is negative the GARCH-MIDAS model outperforms the

GJR-GARCH(1,1) model, and we can say that the explanatory variable is useful for forecasting

volatility.

The forecast accuracy of the different GARCH-MIDAS models vary significantly over time,

with the differences in performance becoming larger as the forecasting horizon increases. There

is, however, no one model that is superior over all forecasting horizons. In general, the baseline

GJR-GARCH model has only been significantly better than some of the GARCH-MIDAS models

early in the sample period. Recently all the test statistics have been negative for all the GARCH-

MIDAS models driven by macroeconomic data and the term spread, although only the GARCH-

MIDAS model driven by housing starts has been able to outperform the baseline GJR-GARCH

model in a statistically significant way on the 6M horizon. As expected, these results are weaker

in terms of statistical significance when using mean squared forecasts errors, and the recent

superiority of the GARCH-MIDAS models is less convincing for example for the term spread (see

Appendix E). The benefit of augmenting a basic GARCH model with financial data (excluding

the term spread) remains weak even at longer horizons. The GARCH-MIDAS model driven by
24I set α = 0.1 (significance level). I use a Newey-West estimator of the asymptotic variance matrix with lag

length l = 5, based on the rule-of-thumb, l = 0.75 1/3
√
T = 4.77. The results are robust to changing the lag length

to 4 or 8, results are available upon request. See Giacomini and Rossi (2010) for details on the test and the
confidence bands.
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the ISM New Orders index significantly outperforms the baseline model in at least one time

period on most horizons, despite very small difference in full sample performance (see Table 3).

On the 6M horizon the term spread and Buying conditions index driven models outperform

the benchmark for the whole, or almost the whole, sample period, and although the differences

are mostly not statistically significant, this implies macroeconomic data does at least no worsen

forecasting performance for medium and long horizons, but rather benefits it slightly.

As expected, the statistically significant differences occur mainly at the 12 month horizon.

In particular, the GARCH-MIDAS model driven by the term spread significantly outperforms

the benchmark for most of the sample period, and the test statistic remains close to the lower

bound for the whole period. Thus it seems it is difficult to beat the term spread as a predictor

for stock market volatility when forecasting 12 months ahead. For housing starts and some

financial variables (such as the default spread) the GJR-GARCH(1,1) model first outperforms

the GARCH-MIDAS models, but performance reverses so that mid-sample macroeconomic data

is useful for forecasting. For housing starts the shifts are statistically significant, meaning there

is significant time-variation in forecasting performance.

To see more in detail how the relative forecasting performance has evolved over time, Figure 6

plots the cumulative sum of loss function differences for four different forecast horizons: 1, 3,

6 and 12 months ahead. Relative forecasting performance seems to fluctuate wildly for many

of the models during and immediately after the latest recession: on most horizons for example

the Buying conditions index and housing starts improve performance during the recession, but

relative performance deteriorates immediately after the downturn. On the other hand, the long-

term trend in relative forecasting performance has clearly been in favour of the GARCH-MIDAS

models driven by macroeconomic data and the term spread recently, while financial data has

mainly performed no better than the GJR-GARCH model, as evidenced below by the default

spread. The good performance of the GARCH-MIDAS model driven by the ISM New Orders

index documented earlier can be attributed to the ISM New Orders index improving forecasts

especially between the two recessions on all horizons.

21



6.2 Time-varying forecasting performance 22

(a) Buying conditions 1M (b) Buying conditions 3M (c) Buying conditions 6M (d) Buying conditions 12M

(e) ISM New Orders 1M (f) ISM New Orders 3M (g) ISM New Orders 6M (h) ISM New Orders 12M

(i) Housing starts 1M (j) Housing starts 3M (k) Housing starts 6M (l) Housing starts 12M

(m) ADS 1M (n) ADS 3M (o) ADS 6M (p) ADS 12M

(q) Term spread 1M (r) Term spread 3M (s) Term spread 6M (t) Term spread 12M

(u) Default spread 1M (v) Default spread 3M (w) Default spread 6M (x) Default spread 12M

Figure 5: Fluctuation test results for loss function differences between the GARCH-MIDAS
model driven by the economic data stated below the figure and the GJR-GARCH(1,1) model.
Dashed lines represent 10% confidence bands. Note that the year on the x-axis marks the end
of the rolling window period, over which the test statistic is calculated.



(a) Buying conditions index (b) ISM New Orders index (c) Housing starts

(d) ADS index (e) Term spread (f) Default spread

Figure 6: Cumulative sum of loss function differences (absolute errors) (|LossGMX | −
|LossGARCH |). An upward sloping segment thus indicates the GJR-GARCH model outperforms
the GARCH-MIDAS model. Grey areas mark NBER dated US recessions.

6.3 Effect of economic environment on forecasting performance

As shown above, the ability of economic data to predict long-term stock return volatility varies

over time. However, is this purely random variation or can it be explained by the economic or

market environment? As discussed in, for example, Hamilton and Lin (1996), it is logical to as-

sume that the dynamic behaviour of the economy is different during expansions and contractions,

and that the business cycle can thus be broken down into two distinct states. When forecasting

volatility it is also plausible that the volatility environment can affect relative forecast accuracy.

I divide the out-of-sample period into sub-samples according to a business cycle (or volatility)

indicator, and compare forecasting performance separately for recession (or high volatility) and

expansion (or low volatility) periods.25 If we, for example, anticipate entering a recession (high

volatility period) this can help us choose a more accurate forecasting model.
25see Appendix H for the robustness checks and plots of the regimes.
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6.3.1 Business cycles

I first divide the sample into positive and negative growth periods based on the sign of industrial

production growth. As a robustness check I divide the data based on the NBER dated US

recessions.

Table 4: Effect of business cycle (IP growth) on forecasting performance: MAFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Positive Negative Positive Negative Positive Negative Positive Negative

Buying Conditions index 1.00 1.00 0.98 0.95* 0.99 0.93* 1.02 0.95***

ISM New Orders index 0.99 0.99 1.00 0.99 1.00 0.98 0.98 0.97*

Housing starts 1.02 0.96 1.03 0.97 1.03 0.94** 1.01 0.90**

ADS index 0.98 1.07 1.01 0.99 1.04 0.96 1.05 0.96*

Term spread 1.01 1.06 0.96 1.01 0.91** 0.92*** 0.86*** 0.87***

Default spread 1.01 1.16 1.16 1.12 1.39 1.06 1.44 1.04

3M T-bill rate 1.03* 0.99 1.02 1.01 1.03 1.01 1.03 1.00

Excess market return 0.98 1.18* 1.02 1.01 1.07* 1.02 1.16*** 1.02

Realised volatility (RV) 1.02 1.25* 1.19 1.24 1.47 1.16 1.64 1.09

Principal component 1 0.99 0.98 1.03 0.99 1.09 0.97 1.08 0.97

Principal component 2 1.02 0.99 0.98 0.97 0.97 0.96** 0.96 0.94**

Principal component 3 1.03 1.08 0.98 1.01 1.00 0.96** 1.02 0.97**

Benchmark: GJR-GARCH(1,1). MAFE ratio: MAFEGMX
MAFEGARCH

, where MAFEGMX is the mean absolute forecast error

of the GARCH-MIDAS model driven by some economic data (X). A value below 1 means the GARCH-MIDAS model

outperforms the GJR-GARCH(1,1) model. *, ** and *** indicate rejection of the null hypothesis of equal (uncondi-

tional) predictive ability at the 10%, 5%, and 1% level, respectively, according to the Giacomini and White (2006)

test. Positive / negative growth months defined according to the sign of annualised monthly industrial production

growth (manufacturing only, most recent value): 95 low growth and 163 high growth periods.

From Table 4 we can see that the GJR-GARCH(1,1) model is difficult to beat at short

horizons in both positive and negative growth periods. Macroeconomic variables, the term spread

and the second and third PCs do, however, improve forecasts in negative growth periods over

long horizons. This is in line with the results in Figure 6, where many of the macroeconomic

variables improved forecast in particular during the latest recession. The GARCH-MIDAS model

augmented by the term spread is also the best model in expansions over long horizons, confirming,

as we saw earlier, that the term spread is a useful predictor over the full-sample period. The

main conclusions carry over to the MSFEs (Table E.3) and to using NBER recession periods

instead (Table H.1), although the results are weaker in terms of statistical significance.

6.3.2 Volatility environment

I next divide the sample period based on the VIX index, and as a robustness check the St.

Louis Fed Financial Stress Index (STLFSI)26, to determine how the forecast accuracy of the
26The STLFSI consists of 18 series, including several interest rates, yield curves and the VIX index.
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GARCH-MIDAS models are impacted by the volatility environment. The results are presented

in Table 5.

Table 5: Effect of volatility environment on forecasting performance: MAFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Low vola High vola Low vola High vola Low vola High vola Low vola High vola

Buying Conditions index 0.99 1.01 0.89** 0.98 0.83*** 0.99 0.84** 1.01

ISM New Orders index 0.97 0.99 0.88** 1.02 0.84*** 1.02 0.79*** 1.02

Housing starts 0.97 0.99 0.91* 1.02 0.88** 1.00 0.84* 0.97

ADS index 0.99 1.03 0.96 1.01 0.94* 1.01 0.92* 1.02

Term spread 1.01 1.04 0.85* 1.02 0.71*** 0.96 0.58*** 0.94**

Default spread 0.99 1.11 0.97 1.18 1.00 1.25 1.14 1.22

3M T-bill rate 0.95*** 1.02 0.84*** 1.05*** 0.80*** 1.07*** 0.76*** 1.07***

Excess market return 0.97 1.11* 0.99 1.02 1.13** 1.02 1.20** 1.05*

Realised volatility (RV) 0.94 1.19** 0.83** 1.31** 0.89 1.38 1.22 1.33

Principal component 1 0.97 0.99 0.96 1.02 0.97 1.04 0.97 1.03

Principal component 2 0.94** 1.02 0.78*** 1.02 0.68*** 1.03 0.61*** 1.03*

Principal component 3 0.98 1.07 0.83*** 1.03* 0.76*** 1.03 0.70*** 1.06**

Benchmark: GJR-GARCH(1,1) model. MAFE ratio: MAFEGMX
MAFEGARCH

, where MAFEGMX stands for the mean absolute fore-

cast error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X). A value below 1 means the

GARCH-MIDAS model outperforms the GJR-GARCH(1,1) model. *, ** and *** indicate a rejection of the null hypothesis

of equal (unconditional) predictive ability at the 10%, 5%, and 1% level, respectively, according to the Giacomini and White

(2006) test. High / low volatility months are based on the median of the VIX index: 147 months of high volatility and 111

months of low volatility.

Many of the economic variables are useful for forecasting volatility in low volatility periods,

while mainly failing to do so in high volatility periods even over long horizons. The low volatility

periods take place right before the financial crisis in 2007-2008 and after 2013 (see Figure H.2).

We could already see from Figure 6 that macroeconomic data was useful for forecasting volatility

roughly during these time periods. Thus the results in this section confirm that the differences

in forecasting performance uncovered in Section 6.2 can at least partly be explained by changes

in the volatility environment.

Even on the 1M horizon there are now some statistically significant improvements over the

baseline model in low volatility periods. Interestingly, the model driven by the 3M T-bill rate

clearly improves forecasts in low volatility periods while leading to clearly worse forecasts in the

high volatility periods. Especially the second and third principal components perform very well

in low volatility environments. Thus clearly economic variables improve the accuracy of stock

return volatility forecasts in low volatility periods. It seems intuitive that economic data is more

important for forecasts during calm markets, while the GARCHmodel, which reacts more quickly

to changes in the market environment, performs better in high volatility environments. The main

results are robust to using mean squared forecast errors (Table E.5) and to using the financial
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stress indicator (Table H.2), although they are weaker in terms of statistical significance.27

Clearly, if we could correctly anticipate being in a low volatility environment we might be able

to improve volatility forecasts by including economic data in a GARCH model.

6.4 Conditional predictive ability

In the previous section I determined that relative forecasting performance depends on the busi-

ness cycle and especially the volatility environment. This section explores whether relative fore-

casting performance is predictable using information on the state of the economy or the volatility

environment available at the forecast origin. This information could be exploited in forecast com-

bination schemes or forecast model selection. I apply the conditional predictive ability test by

Giacomini and White (2006), and statistically test whether relative forecasting performance is

predictable using the (expected) state of the business cycle (Survey of Professional Forecaster

data, real-time professional recession probabilities28), or an indicator for financial market volatil-

ity (VIX index).29 The interpretation of the test is such that if we find that the conditional test

rejects while the unconditional test (Table 3) fails to reject, then even though average perfor-

mance is roughly equal, the relative performance could have been predicted using information

on the economic or market environment at the forecast origin. On the other hand, if the uncon-

ditional test rejects while the conditional test does not, then the conditional test could have low

power or the unconditional test could be undersized (Giacomini and White, 2006).

Comparing the significance of the loss function differences in Table 6 to those in Table 3,

we can see that when using information on the (expected) business cycle, the forecast errors are

predictable over long horizons for the GARCH-MIDAS model driven by the Buying Conditions

index, and to a lesser degree when the ISM New Orders index is used. However, as is clear from

Table 7, there is more predictability in forecast errors when using the volatility environment

as the conditioning variable: the forecast errors are now predictable over long horizons when

long-term volatility is driven by the Buying Conditions index, housing starts or the second

or third PC. Thus there is some evidence of predictability in forecast errors, especially when

conditioning on the volatility environment. However, using a decision rule based on conditional

predictive ability, as suggested by Giacomini and White (2006), does not lead to significant
27These results do not get strong support from the MSFE ratios when dividing the sample based on the financial

stress index (Table E.6), indicating low volatility rather than low financial stress is important.
28Quarterly data transformed into monthly by keeping it fixed within each quarter.
29As a robustness check I have also use the NBER recession dates, industrial production growth, and the

STLFSI, which all confirm the main results in this section. Results are available upon request.
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Table 6: Conditional test using SPF recession probabilities: MAFE ratios

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

Buying Conditions index 1.00 0.98 0.96 0.96** 0.97** 0.98**

ISM New Orders index 0.99 1.00 0.99 0.99 0.98* 0.97*

Housing starts 0.99 0.99 1.00 0.97 0.95 0.94

ADS index 1.03 1.00 1.00 0.99 1.00 1.00

Term spread 1.03 1.03 0.99* 0.91*** 0.88*** 0.87***

Default spread 1.09 1.13 1.14 1.20 1.22 1.20

3M T-bill rate 1.01 1.02 1.02 1.02 1.02*** 1.01

Excess market return 1.08 1.03 1.02 1.04* 1.06** 1.08**

Realised volatility (RV) 1.14 1.23* 1.22 1.29 1.32 1.31

First principal component 0.99 1.00 1.00 1.02 1.04 1.02*

Second principal component 1.01 0.99 0.98 0.96 0.96 0.95*

Third principal component 1.05 1.00 0.99 0.98* 0.98* 0.99

Benchmark: GJR-GARCH(1,1). MAFE ratio: MAFEGMX
MAFEGARCH

, where MAFEGMX stands for the mean ab-

solute forecast error from the GARCH-MIDAS model driven by economic data (X). A value below 1 means

the GARCH-MIDAS model outperforms the GJR-GARCH(1,1) model. *, ** and *** indicate a rejection of

the null hypothesis of equal (conditional) predictive ability at the 10%, 5%, and 1% level, respectively, ac-

cording to the Giacomini and White (2006) test. Conditioning variable: Survey of Professional Forecasters

recession probabilities. 1Q ahead for 1M to 3M ahead forecasts, 2Q ahead for 6M, 3Q ahead for 9M, and

4Q ahead for 12M ahead forecasts. Test function: ht = [1 vt], where vt is the conditioning information.

Table 7: Conditional test using the VIX index: MAFE ratios

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

Buying Conditions index 1.00 0.98 0.96 0.96** 0.97** 0.98**

ISM New Orders index 0.99 1.00 0.99 0.99 0.98 0.97

Housing starts 0.99 0.99 1.00 0.97** 0.95*** 0.94**

ADS index 1.03 1.00 1.00 0.99 1.00 1.00

Term spread 1.03 1.03 0.99 0.91*** 0.88*** 0.87***

Default spread 1.09 1.13 1.14 1.20 1.22 1.20

3M T-bill rate 1.01 1.02 1.02 1.02* 1.02*** 1.01

Excess market return 1.08 1.03 1.02 1.04 1.06** 1.08**

Realised volatility (RV) 1.14 1.23* 1.22 1.29 1.32 1.31

First principal component 0.99 1.00 1.00 1.02 1.04 1.02

Second principal component 1.01 0.99 0.98 0.96 0.96*** 0.95**

Third principal component 1.05 1.00 0.99 0.98 0.98** 0.99*

Benchmark: GJR-GARCH(1,1). MAFE ratio: MAFEGMX
MAFEGARCH

, where MAFEGMX stands for the mean ab-

solute forecast error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X).

A value below 1 means the GARCH-MIDAS model outperforms the GJR-GARCH(1,1) model. *, ** and ***

indicate a rejection of the null hypothesis of equal (conditional) predictive ability at the 10%, 5%, and 1%

level, respectively, according to the Giacomini and White (2006) test. Conditioning variable: level of VIX

index. Test function: ht = [1 vt], where vt is the conditioning information.

forecast improvements.30

30The simple decision rule used here adaptively selects either the GARCH-MIDAS based forecast or the baseline
GJR-GARCH forecast, depending on whether equal conditional predictive ability can be rejected at the forecast
origin or not, see Section 4 in Giacomini and White (2006) for details. The results are available upon request.
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7 Forecast combination schemes

If the relative forecasting performance of models varies over time, forecast combination methods

can be useful. The seminal paper by Bates and Granger (1969) already concluded that combi-

nation forecasts can outperform the individual forecasts, a conclusion widely confirmed in later

literature.31 In practice, simple forecast combination methods, such as equal weights, often lead

to more accurate forecasts than more complicated schemes (e.g., Clemen (1989))

This section combines forecasts produced by the GARCH-MIDAS models, using both simple

and time-varying combination schemes. The simple combination schemes are the mean, the me-

dian and the trimmed mean of the GARCH-MIDAS forecasts, where the trimmed mean refers to

removing the smallest and the largest forecasts each period and taking a mean of the remaining

forecasts. Because the financial variables produced clearly inferior forecasts on all horizons over

most time periods, I focus on combining the forecasts produced by the macroeconomic vari-

ables and the term spread.32 The time-varying alternatives either use time-varying weights (the

discounted mean absolute (or square) prediction error (DMAPE/DMSPE) following Stock and

Watson (2004)) or choose the forecast(s) to be used by ranking the forecast based on past perfor-

mance, i.e., past forecast errors (similar to, e.g., Aiolfi and Timmermann (2006)). The DMSPE

forecast combination scheme is used by, for example, Rapach et al. (2010) for equity premium

prediction and Paye (2012) for stock market volatility forecasts in a predictive regression setting.

The combination forecasts are weighted averages of the N individual forecasts (σ̂2
i,t+1):

σ̂2
c,t+1 = ΣN

i=1ωi,tσ̂
2
i,t+1, where the weights depend on the chosen combination method. For ex-

ample, the mean combination puts ωi,t = 1
N . The DMAPE weights depend on the historical

performance of the models:

ωi,t =
φ−1
i,t

ΣNj=1φ
−1
j,t

, where φi,t = Σt−h
s=1η

t−h−s|σ2
s+h − σ̂2

i,s+h|

and h is the forecasting horizon. 0 < η ≤ 1 is the discount factor: η = 1 is the basic case from

Bates and Granger (1969) for uncorrelated individual forecasts. When η < 1 recent forecast

accuracy is weighted more heavily. I use η = 0.5, but choosing a larger η does not influence the

results significantly.33 Stock and Watson (2004) conclude that for macroeconomic forecasting
31See, for example, Clemen (1989), Chan et al. (1999) and Stock and Watson (1999).
32As expected, if the generally inferior forecasts produced using financial data are included the combination

forecasts perform clearly worse. Results are available upon request.
33Results using other choices for η are available upon request.
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more discounting (η = 0.9) usually performs at least no better than less discounting (e.g.,

η = 1).

Table 8: Combination forecasts: MAFE ratios

1 month ahead 3 month ahead 6 month ahead 9 month ahead 12 month ahead

Mean 1.00 0.96** 0.95** 0.94** 0.94**

Median 0.99 0.97* 0.96* 0.96 0.94***

Trimmed mean 0.99 0.97* 0.95* 0.95* 0.94***

DMAPE 1.00 0.96** 0.94** 0.94** 0.93**

Previously best 1.05 0.98 0.91*** 0.89*** 0.87***

Mean (best three) 1.00 0.97 0.94*** 0.94** 0.93***

Benchmark: GJR-GARCH(1,1). MAFE ratio: MAFEcombo
MAFEGARCH

, where MAFEcombo stands for the mean abso-

lute forecast error from the combination forecast using the method stated in the first column. A value below 1

means the combination forecast outperforms the GJR-GARCH(1,1) model. *, ** and *** indicate a rejection

of the null hypothesis of equal (unconditional) predictive ability at the 10%, 5%, and 1% level, respectively,

according to the Giacomini and White (2006) test. The last four combination schemes are based on the fore-

casting performance over an expanding window of initial size 12 months. Note that due to initial calculations

all forecast comparisons are for the period January 1998 - June 2017 (234 periods).

On the other hand, if there is clear persistence in forecasting performance and the differences

between model accuracy are large, we can potentially improve on the simple mean by excluding

the worst performing models in each period. It is clear from the previous section that there were

some models which produced inferior forecasts for a prolonged period of time, and preselecting

the included forecasting models based on past performance can thus be beneficial. I rank the

forecasting models in each period and for each horizon based on average past performance over

an expanding window with initial size of 12 months. In each out-of-sample period I then pick the

forecast of the model that has had the best average forecasting performance up until the forecast

origin (’Previously best’), as well as take the mean of the forecasts of the best-performing three

models (’Mean (best three)’).

Table 8 gives the mean absolute forecast error ratios of the combination forecasts. Over the

1 month horizon performance is similar to the benchmark. However, already from the 3 month

horizon the forecast combinations tend to significantly outperform the benchmark, contrary to

most of the individual forecasts. The MSFEs (Appendix E) imply a similar ranking of models,

although the results are less statistically significant.
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(a) Mean, 1M (b) Mean, 3M (c) Mean, 6M (d) Mean, 12M

(e) Median, 1M (f) Median, 3M (g) Median, 6M (h) Median, 12M

(i) Trimmed mean, 1M (j) Trimmed mean, 3M (k) Trimmed mean, 6M (l) Trimmed mean, 12M

(m) DMAPE, 1M (n) DMAPE, 3M (o) DMAPE, 6M (p) DMAPE, 12M

(q) Previously best, 1M (r) Previously best, 3M (s) Previously best, 6M (t) Previously best, 12M

(u) Mean (best 3), 1M (v) Mean (best 3), 3M (w) Mean (best 3), 6M (x) Mean (best 3), 12M

Figure 7: Fluctuation test applied to forecast combinations of the individual GARCH-MIDAS
models. Dashed lines represent 10% confidence bands. Benchmark: GJR-GARCH(1,1) model.
Note that the year on the x-axis marks the end of the rolling window period, over which the test
statistics is calculated. m = 78



(a) Mean (b) Median (c) Trimmed mean

(d) DMAPE (e) Previously best (f) Mean (best three)

Figure 8: Cumulative sum of loss function differences (absolute errors) of forecast combinations of
the individual GARCH-MIDAS models, compared to the GJR-GARCH(1,1) model (|Losscombo−
LossGARCH |). An upward sloping segment thus indicates the GJR-GARCH model outperforms
the combination forecast. Grey areas mark NBER dated US recessions.

The Fluctuation test, which tests whether the forecasting performance is time-varying, re-

veals (see Figure 7) that the test statistics are, especially on horizons longer than 1 month,

predominantly negative, and the GJR-GARCH(1,1) never significantly outperforms any of the

combination forecasts. Thus the combination forecasts outperform most of the individual fore-

casts in more consistently outperforming the benchmark model. The performance of most of

the combination methods seems to have slightly deteriorated immediately after the financial

crisis, which is reflected over the whole 6.5 year period for the Fluctuation test. During the first

half of the sample the differences in forecasting performance are often statistically significant

on the 12 month horizon, but also to a lesser degree on the 6 month horizon, in favour of the

combination methods. We can see that most of the combination schemes produce qualitatively

similar forecasts, implying that it does not greatly matter whether a simple or a time-varying

combination scheme is chosen.34 The exception is the combination scheme using only the fore-

cast of the best performing model, which on longer horizons largely replicates the performance

of the term spread driven GARCH-MIDAS model, but seems to perform somewhat worse than
34The number of models being combined is modest (5), and a larger amount of individual models could reveal

larger differences between the different combination schemes.
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the other combination forecasts on the shortest horizon.

The mean squared forecast errors (Table E.2), suggest qualitatively similar conclusions, but

the differences in forecasting performance are mostly not statistically significant. The most

important differences occur on the 3M horizon, where the MSFEs tend to imply slightly worse

performance of the combination forecasts, and towards the end of the sample period on the 6M

and 12M horizons, where the MSFEs imply that forecast combinations do not perform better

than the benchmark model. Comparing the forecast combinations to the principal component

driven models (see Appendix G for results on the PC driven models) reveals that forecast

combinations perform better than the models using information from a large set of economic

data.

To shed further light on the performance of the combination forecasts I plot the cumulative

sum of the loss function differences in Figure 8. The period of weak performance for most of

the combination schemes, evident in the Fluctuation test statistics, is confirmed to stem mainly

from weak performance immediately after the latest recession. However, many of the combination

forecasts perform well during the recession for horizons longer than one month, a finding that

is highlighted by the squared forecast errors (see Figure E.5). Thus, forecast combinations seem

useful for forecasting volatility in many periods and provide forecasts that are consistently at

least no worse than the benchmark model, for horizons longer than one month.

8 Conclusion

This paper evaluates the time-variation in the relative forecasting performance of models for

stock return volatility, with focus on using macroeconomic and financial data to enhance long-

horizon volatility forecasts. The paper contributes to the current literature in three ways. First,

it establishes the time-variation in the additional predictive ability provided by macroeconomic

and financial variables in a GARCH-MIDAS context. Second, it considers whether forecast

accuracy is related to different economic or market environments. Lastly, the paper evaluates

the performance of forecast combinations of GARCH-MIDAS model forecasts.

When forecasting over long horizons there are clear shifts in forecasting performance over

time. Macroeconomic variables improve predictions especially in low volatility periods but also

in periods of weak economic growth, while financial data driven GARCH-MIDAS models – with

the exception of the term spread, and the 3M T-bill rate in low volatility periods – struggle to
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outperform the benchmark GJR-GARCH model even over long horizons. This discrepancy com-

pared to predictive regressions, where financial data is often found highly useful, is interesting.

It is clear that the best forecasting model or strategy depends on the forecasting horizon and the

time period. As the GJR-GARCH model is rarely significantly better than the GARCH-MIDAS

models and never significantly outperforms the combination forecasts, it is useful to augment

the model with economic data for long horizon forecasts. This paper only briefly considers using

conditional predictive ability to improve forecast accuracy. An interesting question for future

research is establishing whether a forecast selection method, which consistently and significantly

outperforms the GJR-GARCH model, exists.
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A Data sources and plots

• CRSP index: Kenneth French’s Data Library

• ISM New Orders index: FRED database and the Institute for Supply Management (https:

https://www.instituteforsupplymanagement.org/)

• Buying Conditions index: the University of Michigan consumer confidence report (https:

https://data.sca.isr.umich.edu/)

• Housing starts: Philadelphia Fed real time center

• ADS index: Philadelphia Fed real time center, see https://www.philadelphiafed.org/

research-and-data/real-time-center/business-conditions-index for details

• Interest rates (including term spread): FRED database

• Default spread: St. Louis Fed, FRED database

• Excess market returns: Kenneth French’s Data Library

• VIX index: St. Louis Fed, FRED database

• St. Louis Fed Financial Stress Index (STLFSI): St. Louis Fed, FRED database

• Survey of Professional Forecaster data, real-time professional recession probabilities: Philadel-

phia Fed real time center

• NBER recession dates: NBER (http://www.nber.org/cycles.html)
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Figure A.1: Plots of explanatory data and return data used in the out-of-sample analysis.
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B PCA, marginal R2s for first four factors, full sample

This appendix presents the ten highest marginal R2s for the first four factors, extracted from the

FRED-MD dataset. See McCracken and Ng (2016) for details on the data and the methodology

to calculate the PCs.

The numbers in the parentheses denote the marginal R2 for each factor, i.e., how much each

factor explains of the overall variation in the data.

Table B.1: Ten highest marginal R2s for the first four factors

PC 1 (0.1472) PC 3 (0.0685)

Employment: Goods-Prod. Industries (USGOOD) 0.7106 Moody’s Aaa Corporate Bond - Fed Funds (AAAFFM) 0.4487

Total nonfarm employment (PAYEMS) 0.7101 10Y Treasury C - Fed Funds (T10YFFM) 0.4438

IP: Manufacturing (SIC) (IPMANSICS) 0.6888 Moody’s Baa Corporate Bond - Fed Funds (BAAFFM) 0.4333

IP Index (INDPRO) 0.6552 5Y Treasury C - Fed Funds (T5YFFM) 0.3956

Employment: Manufacturing (MANEMP) 0.6512 3M Treasury C - Fed Funds (TB3SMFFM) 0.3290

IP: Final Products and Nonindustrial Supplies (IPFPNSS) 0.6116 6M Treasury C - Fed Funds (TB6SMFFM) 0.3118

Employment: Durable goods (DMANEMP) 0.6001 1Y Treasury C - Fed Funds (T1YFFM) 0.2648

Capacity Utilization (manufacturing) (CUMFNS) 0.5927 CPI: Commodities (CUSR0000SAC) 0.2467

IP: Final Products (Market Group) (IPFINAL) 0.5137 Pers. Cons. Exp: Nondur. goods (DNDGRG3M086SBEA) 0.2437

IP: Durable Materials (SRVPRD) 0.4803 CPI (excl. shelter) (CUUR0000SA0L2) 0.2383

PC 2 (0.0708) PC 4 (0.0558)

CPI: Commodities (CUSR0000SAC) 0.5680 1Y Treasury Rate (GS1) 0.5073

Personal Cons. Exp. (Nondur.) (DNDGR3M086SBEA) 0.5573 5Y Treasury Rate (GS5) 0.4922

CPI (excl. shelter) (CUUR0000SA0L2) 0.5441 Moody’s Seasoned Aaa Corporate Bond Yield (AAA) 0.4830

CPI: All Items (CPIAUCSL) 0.5321 6M Treasury Bill (TB6MS) 0.4707

CPI (excl. medical care) (CUSR0000SA0L5) 0.5016 10Y Treasury Rate (GS10) 0.4537

Personal Cons. Expenditure: Chain index (PCEPI) 0.4762 Moody’s Seasoned Baa Corporate Bond Yield (BAA) 0.4374

CPI: Transportation (CPITRNSL) 0.4702 3M Treasury Bill: (TB3MS) 0.3749

CPI (excl. food) (CPIULFSL) 0.4299 3M AA Financial Commercial Paper Rate (CP3Mx) 0.3749

PPI: Finished Consumer Goods (PPIFCG) 0.3121 New Orders for Consumer Goods (ACOGNO) 0.2009

PPI: Finished goods (PPIFGS) 0.3595 S&P’s Comp. Common Stock: Div. Yield (S&P div yield) 0.1864

Sample period: M12 1959 - M5 2017. Data set is the FRED-MD dataset, vintage June 2017 by McCracken and Ng (2016).
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C Rolling window principal components analysis (PCA)

This appendix presents rolling window results for the principal components analysis, detailing

which series are most often chosen into the first three principal components. See McCracken and

Ng (2016) for details on the series, and to link the series number to the name of the series.

(a) (b)

(c) (d)

Figure C.1: Time-varying composition of the first three PCs. Panel (a) shows how the number
of series in the data set varies over time.

D Robustness check: Choice between restricted and unrestricted model

This appendix explores the implications of estimating one or two weights in the MIDAS poly-

nomial. This is especially crucial for the term spread, excess market returns, PC2 and PC3, for

which the choice of the optimal weighting schemes varies over time.

Figure D.1 shows the time variation in p-values from the likelihood ratio test between a
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model with one or two weights for each GARCH-MIDAS model. It shows that for the model

driven by the term spread or the second PC two weights have been preferred lately, while the

opposite is true for the excess market return and the third PC.

Figure D.2 plots the estimates for θ, which are mostly similar for the two different choices

of weighting schemes, except when the model with two weights is clearly superior.
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(a) Buying conditions index (b) ISM New Orders index (c) Housing starts

(d) ADS index (e) Term spread (f) Default spread

(g) 3M T-bill rate (h) Excess market return (i) Realised volatility

(j) Principal component 1 (k) Principal component 2 (l) Principal component 3

Figure D.1: p-values from the likelihood ratio test between the restricted and unrestricted models.
Horizontal light blue line indicates the 5% significance level.



(a) Buying conditions index (b) ISM New Orders index (c) Housing starts

(d) ADS index (e) Term spread (f) Default spread

(g) 3M T-bill rate (h) Excess market return (i) Realised volatility

(j) Principal component 1 (k) Principal component 2 (l) Principal component 3

Figure D.2: Rolling window estimates of θ from the MIDAS polynomial with one or two weights.
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(a) Term spread (b) 3M T-bill rate (c) Excess market returns

(d) Realised volatility (abs ret) (e) Second principal component (f) Third principal component

Figure D.3: Cumulative forecast loss differences between models estimated using one weight and
two weights. An upward sloping line indicates the model estimated using two weights is superior.

Table D.1: MAFE ratios between models with one or two weight parameters

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Term spread 1.00 1.01 1.03 1.03

3M T-bill rate 1.00 1.00 1.00 1.00

Excess market return 0.98 1.01 0.99 1.00

Realised volatility (RV) 0.96 1.00 1.02 1.03

Second principal component 1.00 1.01 1.00 0.99

Third principal component 0.97 0.99 0.99 0.97

Benchmark: GJR-GARCH(1,1). The MAFE ratios take the form: MAFEGMX1w
MAFEGMX2w

, where

MAFEGMX1w stands for the mean absolute forecast error from the GARCH-MIDAS model driven

by some macroeconomic or financial data (X) with one estimated weight parameter in the MIDAS

polynomial. A value below 1 means the GARCH-MIDAS model with one estimated weight parameter

outperforms the GARCH-MIDAS model with two estimated weights parameters. RVt =
∑Nt

i=1 |ri,t|.

Figure D.3 and Table D.1 consider how the forecast errors change in the models estimated

with one or two weight parameters (only the models for which the choice is ambiguous are

considered). Over the full sample the differences in forecasting performance seem small, as the

MAFE ratios are close to one. Over time the differences in forecasting performance vary, but

the differences remain modest.
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E Mean squared forecast errors

This appendix presents results for squared forecast errors, as a robustness check to the absolute

forecast errors presented in the main text. Despite the MSFE ratios being often relatively far

from one, the predictive ability test by Giacomini and White (2006) and the Fluctuation test by

Giacomini and Rossi (2010) mostly fail to reject the null hypothesis of equal predictive ability.

The ranking of the models is, however, largely similar to the MAFE ratios. In the Fluctuation

test (Figures E.1 and E.2) the recent performance of the GARCH-MIDAS models has been less

convincing when looking at MSFEs than MAFEs.

Table E.1: Full sample results: Mean squared forecast error ratios

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

Buying Conditions index 0.98 0.94 0.91 0.92 0.95 0.98

ISM New Orders index 1.00 1.00 1.00 1.00 0.99 0.99

Housing starts 0.98 0.97 0.96 0.93 0.90 0.90

ADS index 1.12 0.92 0.96 0.96 0.97 0.98

Term spread 1.22 1.07 1.00 0.94 0.91 0.91

Default spread 1.23 1.12 1.12 1.21 1.25 1.26

3M T-bill rate 1.04* 1.03** 1.04*** 1.04*** 1.03*** 1.03**

Excess market return 1.36* 1.04 1.01 1.02 1.04 1.04

Realised volatility (RV) 1.24 1.32** 1.28 1.43 1.48 1.49

First principal component 0.88 0.95 0.96 0.97 0.98 0.98

Second principal component 1.04 1.00 1.00 0.98 0.97 0.97

Third principal component 1.21 1.03 1.00 0.98 1.01 1.00

Benchmark: GJR-GARCH(1,1). The MSFE ratios take the form: MSFEGMX
MSFEGARCH

, where MSFEGMX stands

for the mean squared forecast error from the GARCH-MIDAS model driven by some macroeconomic or finan-

cial data (X). A value below 1 means the GARCH-MIDAS model outperforms the GJR-GARCH(1,1) model.

*, ** and *** indicate a rejection of the null hypothesis of equal (unconditional) predictive ability at the

10%, 5%, and 1% level, respectively, according to the Giacomini and White (2006) test. RVt =
∑Nt

i=1 |ri,t|.

Table E.2: Combination forecasts: MSFE ratios

1 month ahead 3 month ahead 6 month ahead 9 month ahead 12 month ahead

Mean 1.04 0.96 0.94 0.94 0.95

Median 0.99 0.96 0.94 0.95 0.96*

Trimmed mean 1.01 0.96 0.94 0.94 0.95

DMSPE 1.04 0.95 0.94 0.93 0.94

Previously best 1.13 0.91 0.94 0.91 0.91*

Mean (best three) 1.02 0.94 0.94 0.95 0.95

Benchmark: GJR-GARCH(1,1). MSFE ratio: MSFEcombo
MSFEGARCH

, where MSFEcombo stands for the mean squared

forecast error from the combination forecast using the method stated in the first column. A value below 1

means the combination forecast outperforms the GJR-GARCH(1,1) model. *, ** and *** indicate a rejection

of the null hypothesis of equal (unconditional) predictive ability at the 10%, 5%, and 1% level, respectively,

according to the Giacomini and White (2006) test. The last three combination schemes are based on the fore-

casting performance over an expanding window of initial size 12 months. Note that due to initial calculations

all forecast comparisons are for the period January 1998 - June 2017 (234 periods).
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(a) Buying conditions 1M (b) Buying conditions 3M (c) Buying conditions 6M (d) Buying conditions 12M

(e) ISM New Orders 1M (f) ISM New Orders 3M (g) ISM New Orders 6M (h) ISM New Orders 12M

(i) Housing starts 1M (j) Housing starts 3M (k) Housing starts 6M (l) Housing starts 12M

(m) ADS index 1M (n) ADS index 3M (o) ADS index 6M (p) ADS index 12M

(q) Term spread 1M (r) Term spread 3M (s) Term spread 6M (t) Term spread 12M

(u) Default spread 1M (v) Default spread 3M (w) Default spread 6M (x) Default spread 12M

Figure E.1: Fluctuation test results for selected loss function differences. Squared forecast errors.
Dashed lines represent 10% confidence bands. Note that the year on the x-axis marks the end
of the rolling window period, over which the test statistics is calculated. Benchmark: GJR-
GARCH(1,1) model. l = 5, m = 78
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(a) 3M T-bill rate 1M (b) 3M T-bill rate 3M (c) 3M T-bill rate 6M (d) 3M T-bill rate 12M

(e) Excess return 1M (f) Excess return 3M (g) Excess return 6M (h) Excess return 12M

(i) RV 1M (j) RV 3M (k) RV 6M (l) RV 12M

(m) PC1 1M (n) PC1 3M (o) PC1 6M (p) PC1 12M

(q) PC2 1M (r) PC2 3M (s) PC2 6M (t) PC2 12M

(u) PC3 1M (v) PC3 3M (w) PC3 6M (x) PC3 12M

Figure E.2: Fluctuation test results for selected loss function differences. Squared forecast errors.
Dashed lines represent 10% confidence bands. Note that the year on the x-axis marks the end
of the rolling window period, over which the test statistics is calculated. Benchmark: GJR-
GARCH(1,1) model. l = 5, m = 78



(a) Buying conditions (b) ISM New Orders index (c) Housing starts

(d) ADS index (e) Term spread (f) Default spread

(g) 3M T-bill rate (h) Excess market return (i) Realised volatility

(j) First principal component (k) Second principal component (l) Third principal component

Figure E.3: Cumulative sum of loss function differences (squared errors) ((Losscombo −
LossGARCH)2). An upward sloping segment thus indicates the GJR-GARCH model outperforms
the GARCH-MIDAS model. Grey areas mark NBER dated US recessions.
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(a) Mean, 1M (b) Mean, 3M (c) Mean, 6M (d) Mean, 12M

(e) Median, 1M (f) Median, 3M (g) Median, 6M (h) Median, 12M

(i) Trimmed mean, 1M (j) Trimmed mean, 3M (k) Trimmed mean, 6M (l) Trimmed mean, 12M

(m) DMSPE, 1M (n) DMSPE, 3M (o) DMSPE, 6M (p) DMSPE, 12M

(q) Previously best, 1M (r) Previously best, 3M (s) Previously best, 6M (t) Previously best, 12M

(u) Mean (best 3), 1M (v) Mean (best 3), 3M (w) Mean (best 3), 6M (x) Mean (best 3), 12M

Figure E.4: Fluctuation test applied to forecast combinations of the individual GARCH-
MIDAS models. Squared errors. Dashed lines represent 10% confidence bands. Benchmark:
GJR-GARCH(1,1) model. Note that the year on the x-axis marks the end of the rolling window
period, over which the test statistics is calculated. l = 5, m = 78



(a) Mean (b) Median (c) Trimmed mean

(d) DMSPE (e) Previously best (f) Mean (best three)

Figure E.5: Cumulative sum of loss function differences (squared errors) of forecast combina-
tions of the individual GARCH-MIDAS models, compared to the GJR-GARCH(1,1) model
((Losscombo−LossGARCH)2). An upward sloping segment thus indicates the GJR-GARCHmodel
outperforms the combination forecast. Grey areas mark NBER dated US recessions.

Figure E.3 shows that the differences in forecasting performance were huge during the finan-

cial crisis, but qualitatively the results are similar to using absolute forecast errors. The main

difference is that 12M ahead the improvements in GARCH-MIDAS forecasts seem to have been

more modest than when using absolute errors.

Tables E.3-E.6 provide robustness checks using MSFE ratios for the tables in Section 6.3.

The MSFE ratios confirm that macroeconomic, and in some cases also financial data, is useful

for forecasting stock market volatility in especially low volatility environments.
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Table E.3: Effect of business cycle (IP growth) on forecasting performance: MSFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Pos. growth Neg. growth Positive Negative Positive Negative Positive Negative

Buying Conditions index 1.00 0.97 1.01 0.89 1.03 0.90 1.07 0.96*

ISM New Orders index 1.00 0.99 1.03 0.99 1.05 0.99 0.99 0.99

Housing starts 1.01 0.96 1.03 0.95 1.05 0.91 1.01 0.88

ADS index 0.99 1.18 1.01 0.94 1.05 0.95 1.04 0.97

Term spread 1.03 1.30 1.01 1.00 1.00 0.93 0.96 0.90

Default spread 1.02 1.31 1.50 1.05 2.44 1.00 2.52 1.05

3M T-bill rate 1.04* 1.05 1.08** 1.03** 1.10** 1.03** 1.11** 1.01

Excess market return 0.98 1.51* 1.03 1.01 0.99 1.02 1.13 1.02

Realised volatility (RV) 1.02 1.33 1.56 1.22 2.85 1.18 3.69 1.11

First principal component 1.00 0.83 1.00 0.96 1.13 0.95 1.08 0.97

Second principal component 1.04 1.04 1.07 0.98 1.09 0.96 1.04 0.98

Third principal component 1.04 1.29 1.04 0.99 1.10 0.98 1.11 0.99

Benchmark: GJR-GARCH(1,1) mode. MSFE ratio: MSFEGMX
MSFEGARCH

, where MSFEGMX stands for the mean squred forecast er-

ror from the GARCH-MIDAS model driven by some macroeconomic or financial data (X). A value below 1 means the GARCH-

MIDAS model outperforms the GJR-GARCH(1,1) model. *, ** and *** indicate a rejection of the null hypothesis of equal

(unconditional) predictive ability at the 10%, 5%, and 1% level, respectively, according to the Giacomini and White (2006) test.

Low / high growth months are defined according to the sign of annualised industrial production growth data (manufacturing

only, most recent release). RVt =
∑Nt

i=1 |ri,t|.

Table E.4: Effect of business cycle (NBER) on forecasting performance: MSFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Expansion Recession Expansion Recession Expansion Recession Expansion Recession

Buying Conditions index 1.00 0.96 1.01 0.88 1.00 0.89 1.02 0.96*

ISM New Orders index 1.00 0.99 1.03 0.99 1.03 0.99 0.97 1.00

Housing starts 1.00 0.96 1.03 0.94 1.03 0.89 0.99 0.87*

ADS index 0.98 1.21 1.01 0.94 1.02 0.94* 1.00 0.98

Term spread 1.05 1.33 1.02 1.00 0.97 0.93 0.91* 0.91*

Default spread 1.01 1.36 1.36 1.04 1.97 0.98 2.13 0.99

3M T-bill rate 1.03 1.05 1.08** 1.02** 1.09** 1.02** 1.08* 1.01***

Excess market return 1.01 1.59 1.01 1.01 0.98 1.03 1.08 1.03*

Realised volatility (RV) 1.02 1.39 1.37 1.25 2.19 1.19 3.19 0.97

First principal component 0.99 0.81 1.00 0.95 1.09 0.94 1.04 0.97

Second principal component 1.03 1.04 1.06 0.97 1.06 0.95 1.01 0.98

Third principal component 1.04 1.33 1.04 0.99 1.03 0.98 1.06 0.99*

Benchmark: GJR-GARCH(1,1) mode. MSFE ratio: MSFEGMX
MSFEGARCH

, where MSFEGMX stands for the mean squared forecast error

from the GARCH-MIDAS model driven by some macroeconomic or financial data (X). A value below 1 means the GARCH-MIDAS

model outperforms the GJR-GARCH(1,1) model, and vice versa. *, ** and *** indicate a rejection of the null hypothesis of equal

(unconditional) predictive ability at the 10%, 5%, and 1% level, respectively, according to the Giacomini and White (2006) test. Re-

cession months are defined according to the NBER Business Cycle Dating Committee. RVt =
∑Nt

i=1 |ri,t|.
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Table E.5: Effect of volatility environment on forecasting performance: MSFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Low vola High vola Low vola High vola Low vola High vola Low vola High vola

Buying Conditions index 0.98 0.98 0.72 0.91 0.71** 0.92 0.73 0.98

ISM New Orders index 0.92** 1.00 0.70 1.01 0.72** 1.00 0.64** 1.00

Housing starts 1.01 0.98 0.75 0.96 0.86 0.93 0.74 0.90

ADS index 0.98 1.13 0.83 0.96 0.87 0.97 0.83 0.98

Term spread 1.00 1.23 0.72 1.01 0.58*** 0.94 0.37*** 0.92

Default spread 0.98 1.23 0.90 1.12 1.03 1.22 3.66 1.21

3M T-bill rate 0.95** 1.05* 0.71* 1.04*** 0.72*** 1.04*** 0.61*** 1.04***

Excess market return 0.90* 1.37* 0.86 1.02 1.26* 1.01 1.56 1.03

Realised volatility (RV) 0.78** 1.26 0.72 1.29 0.97 1.44 3.80 1.44

First principal component 0.92* 0.88 0.81 0.97 0.93 0.97 1.00 0.98

Second principal component 0.91* 1.04 0.59** 1.00 0.51*** 0.99 0.39*** 1.00

Third principal component 0.97 1.22 0.69* 1.01 0.68** 1.00 0.53*** 1.01

Benchmark: GJR-GARCH(1,1) model. MSFE ratio: MSFEGMX
MSFEGARCH

, where MSFEGMX stands for the mean squared forecast

error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X). A value below 1 means the GARCH-

MIDAS model outperforms the GJR-GARCH(1,1) model. *, ** and *** indicate a rejection of the null hypothesis of equal (un-

conditional) predictive ability at the 10%, 5%, and 1% level, respectively, according to the Giacomini and White (2006) test.

High / low volatility months are defined according to the VIX index, where the median over the sample period is the cut off

point. RVt =
∑Nt

i=1 |ri,t|.

Table E.6: Effect of financial market stress on forecasting performance: MSFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Low stress High stress Low stress High stress Low stress High stress Low stress High stress

Buying Conditions index 0.97 0.98 0.98 0.90 1.02 0.90 1.14 0.96*

ISM New Orders index 0.97 1.00 0.97 1.00 1.01 1.00 0.95 1.00

Housing starts 0.98 0.97 0.97 0.96 1.00 0.92 0.93 0.90

ADS index 0.96 1.16 0.96 0.96 1.01 0.96 0.90 0.98

Term spread 1.01 1.27 1.02 1.00 1.02 0.93 0.94 0.91

Default spread 0.97 1.29 0.98 1.14 1.83 1.14 3.40 1.01

3M T-bill rate 1.00 1.06* 1.00 1.04*** 1.04 1.04*** 1.04 1.03***

Excess market return 0.99 1.45* 0.99 1.02 0.95 1.03 1.15 1.02

Realised volatility (RV) 0.97 1.32 1.07 1.31 1.95 1.37 6.17 0.95**

First principal component 0.98 0.86 0.89* 0.97 1.01 0.97 1.08 0.97

Second principal component 1.00 1.05 1.05 0.99 1.08 0.97 0.98 0.99

Third principal component 1.03 1.26 1.03 0.99 1.05 0.99 1.13 0.99

Benchmark: GJR-GARCH(1,1) model. MSFE ratio: MSFEGMX
MSFEGARCH

, where MSFEGMX stands for the mean squared forecast error from the

GARCH-MIDAS model driven by some macroeconomic or financial data (X). A value below 1 means the GARCH-MIDAS model outperforms

the GJR-GARCH(1,1) model, and vice versa. *, ** and *** indicate a rejection of the null hypothesis of equal (unconditional) predictive

ability at the 10%, 5%, and 1% level, respectively, according to the Giacomini and White (2006) test. High / low financial stress months

are defined according to the St. Louis Fed Financial Stress Index: 115 high stress months and 143 low stress months. RVt =
∑Nt

i=1 |ri,t|.



F Robustness check: Estimation and weighting scheme

In this appendix I discuss the robustness of the results to (i) the weighting scheme, i.e. fixed

weights instead of weights re-estimated each period, and (ii) the estimation scheme, i.e. expand-

ing window instead of rolling window. Thus I have, first of all, estimated the models over the

full sample, saved the weights of the weighting schemes, and then re-estimated the models using

a rolling window with the weights fixed at the full-sample weights. The other parameters of the

GARCH-MIDAS model are re-estimated each period. Secondly, I have estimated each GARCH-

MIDAS model using an expanding window, i.e., adding one month to the estimation in each

period. In this exercise all parameters are re-estimated each period, but in the last period the

parameters correspond to the full-sample estimates. The differences in the forecasts produced,

the in-sample fit (in terms of the variance ratio) and the parameter estimates are discussed

below.

Table F.1: Full sample MAFE ratios: fixed vs. re-estimated weights

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

Buying Conditions index 0.99 0.99 0.99 1.00 0.99 1.00

ISM New Orders index 1.00 1.00 0.99 1.01 1.01 1.01

Housing starts 1.01 1.01 0.99 1.00 1.03 1.03

ADS index 0.97 1.02 1.02 1.04 1.03 1.02

Term spread 1.00 1.00 0.99 1.00 1.01 1.01

Default spread 1.00 1.00 0.99 1.00 1.01 1.00

3M T-bill rate 1.00 0.99 0.99 0.99 0.99 0.99

Excess market return 0.93 0.96 0.98 0.96 0.94 0.92

Realised volatility (RV) 1.00 1.00 1.01 1.01 1.01 1.00

First principal component 1.00 1.01 1.01 1.01 1.01 1.01

Second principal component 0.99 1.00 1.00 1.00 1.00 1.00

Third principal component 0.95 0.98 0.98 0.98 0.97 0.95

MAFE ratio:
MAFEGMXfix

MAFEGMX
, where MAFEGMXfix (MAFEGMX) stands for the mean absolute forecast

error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X) estimated us-

ing fixed (re-estimated) weights. A value below 1 means the fixed weights forecast outperforms the forecast

using weights re-estimated in each period. RVt =
∑Nt

i=1 |ri,t|.

Starting with (i), over the full sample the choice of fixed or rolling weights has little effect

on the out-of-sample forecasts (Table F.1 and F.2), with the exception of the excess market

return and PC3, for which fixed weights produce a more accurate forecast. Figure F.2 (and F.3)

looks at the cumulative loss function differences vis-à-vis the GJR-GARCH(1,1) model. Mostly

the weighting scheme does not matter much for the relative performance of the models over

time. However, large difference occur for the GARCH-MIDAS model driven by the ADS index,

housing starts, excess market returns and PC3. For the ADS index and housing starts fixing the
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Table F.2: Full sample MSFE ratios: fixed vs. re-estimated weights

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

Buying Conditions index 0.99 1.01 1.02 1.01 1.00 1.00

ISM New Orders index 0.99 0.99 0.99 0.97 1.00 1.00

Housing starts 1.01 1.01 1.00 1.02 1.03 1.05

ADS index 0.80 1.03 1.03 1.03 1.02 1.02

Term spread 0.99 1.00 1.00 1.00 1.00 1.00

Default spread 1.05 1.00 0.98 1.00 1.01 1.01

3M T-bill rate 1.00 1.00 1.00 1.00 1.00 1.00

Excess market return 0.81 0.96 0.98 0.98 0.95 0.96

Realised volatility (RV) 1.11 1.08 1.08 1.11 1.11 1.12

First principal component 1.01 1.01 1.01 1.01 1.01 1.01

Second principal component 0.99 1.00 1.00 1.01 1.00 0.99

Third principal component 0.83 0.98 1.01 1.00 0.98 0.98

MSFE ratio:
MSFEGMXfix

MSFEGMX
, where MSFEGMXfix (MSFEGMX) stands for the mean squared forecast

error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X) estimated us-

ing fixed (re-estimated) weights. A value below 1 means the fixed weights forecast outperforms the forecast

using weights re-estimated in each period. RVt =
∑Nt

i=1 |ri,t|.

weight(s) lead to a clearly different performance after the latest recession: the 12M (and also

3M for the ADS index) ahead forecasts are worse when fixing the weights, while for the ADS

index the 1M ahead forecast is better. For excess returns and PC3, the forecasts using fixed

weights mostly perform clearly better than the forecasts from the models where the weights are

re-estimated each period.

Mostly the differences in in-sample fit (variance ratios) are relatively small (Figure F.4), with

the exception of the GARCH-MIDAS model driven by the term spread towards the end of the

period and for the model driven by excess market returns. In both cases the model with weight

parameters re-estimated each period produces a better fit.

Figure F.5 shows the estimates for θ for fixed and re-estimated weights. The differences are

mostly relatively small, and show up especially in those periods when the weighting schemes

differ from each other the most. The main exception is again excess market returns, for which θ

has the opposite sign when weights are fixed, compared to other estimation schemes. However,

as we can see from Figure F.6 the negative θ estimate from the fixed weights model is only

borderline statistically significant. The changes in the sign of the second and third PC still hold,

confirming it is not a consequence of imprecisely estimated weights but rather the changing

composition of the PC.

Moving on to (ii), as can be seen from Tables F.3 and F.4, the expanding window estimation

scheme leads to lower forecast errors in most cases, which is especially pronounced for the MAFE
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Table F.3: Full sample MAFE ratios: expanding vs. rolling window estimation scheme

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

GJR-GARCH(1,1) 0.98 0.98 0.97 0.95 0.97 0.97

Buying Conditions index 0.98 0.99 0.99 0.98 0.97 0.96

ISM New Orders index 0.98 0.98 0.96 0.96 0.98 0.97

Housing starts 0.99 0.98 0.95 0.96 0.98 0.98

ADS index 0.95 0.99 0.97 0.98 0.98 0.98

Term spread 0.97 0.97 0.97 1.00 1.01 1.01

Default spread 0.90 0.88 0.85 0.82 0.83 0.83

3M T-bill rate 0.97 0.96 0.95 0.95 0.96 0.96

Excess market return 0.96 0.97 0.96 0.94 0.95 0.94

Realised volatility (RV) 0.96 0.95 0.95 0.96 0.96 0.96

First principal component 0.99 0.99 0.97 0.96 0.95 0.96

Second principal component 0.97 0.99 0.98 0.99 1.00 1.00

Third principal component 0.94 0.97 0.96 0.96 0.96 0.95

MAFE ratio:
MAFEGMXexp

MAFEGMX
, where MAFEGMXexp (MAFEGMX) stands for the mean absolute forecast

error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X) estimated using

expanding (rolling) estimation scheme. A value below 1 means the expanding window forecast outperforms

the rolling window forecast. RVt =
∑Nt

i=1 |ri,t|.

Table F.4: Full sample MSFE ratios: expanding vs. rolling window estimation scheme

1M ahead 2M ahead 3M ahead 6M ahead 9M ahead 12M ahead

GJR-GARCH(1,1) 1.03 0.99 0.98 0.99 1.00 1.00

Buying Conditions index 1.09 1.07 1.08 1.06 1.03 1.01

ISM New Orders index 1.04 0.99 0.99 1.00 1.00 1.00

Housing starts 1.09 1.03 1.02 1.04 1.05 1.04

ADS index 0.87 1.06 1.03 1.02 1.02 1.01

Term spread 0.98 0.99 1.02 1.04 1.04 1.04

Default spread 0.87 0.90 0.88 0.83 0.82 0.81

3M T-bill rate 1.02 0.99 0.98 0.99 1.00 1.00

Excess market return 0.90 0.96 0.97 0.98 0.98 0.97

Realised volatility (RV) 0.98 0.95 0.96 0.96 0.96 0.96

First principal component 1.12 1.03 1.01 1.01 1.00 1.00

Second principal component 1.05 1.03 1.02 1.04 1.03 1.02

Third principal component 0.89 0.99 1.02 1.01 1.00 1.00

MSFE ratio:
MSFEGMXexp

MSFEGMX
, where MSFEGMXexp (MSFEGMX) stands for the mean squared forecast

error from the GARCH-MIDAS model driven by some macroeconomic or financial data (X) estimated using

expanding (rolling) estimation scheme. A value below 1 means the expanding window forecast outperforms

the rolling window forecast. RVt =
∑Nt

i=1 |ri,t|.

ratios. Note that the statistical tests by Giacomini and White (2006) and Giacomini and Rossi

(2010) are not valid for the expanding window. As expected, the expanding window leads to

more stable parameter estimates which are closer to the full-sample estimates for all models

(Figures F.5 and F.7), and as seen from Tables F.3 and F.4 this also has a favourable impact

on many forecasts. Figure F.6 indicates that the estimate of θ also tend to be more strongly
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Figure F.1: Cumulative loss function difference between the GJR-GARCH model, estimated
using either a rolling window or an expanding window. When the line is upward sloping the
model estimated using the expanding window outperforms the model estimated using a rolling
window.

statistically significant for the expanding window estimation scheme. From Figure F.4 we can

see that also the variance ratios fluctuate less when an expanding scheme is used, but they tend

to be lower, implying a worse in-sample fit.

Regarding the cumulative sum of loss function differences, there is a significant difference

already for the benchmark GJR-GARCHmodel (Figure F.1), with the expanding window scheme

performing better. In particular, the GJR-GARCH model estimated using the expanding window

performs better on all horizons and in most time periods. Secondly, when comparing the GARCH-

MIDAS models to the GJR-GARCH model we see that the largest differences, in favour of

the expanding window scheme, occur for the ADS index (1M horizon), the default spread (all

horizons) and the 3M T-bill rate (3M horizon). On the 12 month horizon the expanding window

estimation scheme leads to less accurate forecasts (relative to the benchmark) for example when

the GARCH-MIDAS model is driven by the term spread, housing starts or the second principal

component.
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(a) Realised volatility (abs ret) (b) Buying conditions (c) ISM New Orders

(d) ADS index (e) Housing starts (f) Term spread

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) First principal component (k) Second principal component (l) Third principal component

Figure F.2: Cumulative sum of loss function differences (absolute errors) of rolling window
GARCH-MIDAS models with fixed weights (dashed line), GARCH-MIDAS models estimated
using an expanding window (dotted line), and rolling window GARCH-MIDAS models with
weights re-estimated each period (solid line). Baseline model: the GJR-GARCH(1,1) model,
estimated using either a rolling window or an expanding window. When the line is upward
sloping the GJR-GARCH model outperforms the GARCH-MIDAS model.
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(a) Realised volatility (abs ret) (b) Buying conditions (c) ISM New Orders

(d) ADS index (e) Housing starts (f) Term spread

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) First principal component (k) Second principal component (l) Third principal component

Figure F.3: Cumulative sum of loss function differences (squared errors) of rolling window
GARCH-MIDAS models with fixed weights (dashed line), GARCH-MIDAS models estimated
using an expanding window (dotted line), and rolling window GARCH-MIDAS models with
weights re-estimated each period (solid line). Baseline model: the GJR-GARCH(1,1) model, es-
timated using either a rolling window or an expanding window. When the line is upward sloping
the GJR-GARCH model outperforms the GARCH-MIDAS model.
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(a) Realised volatility (b) Buying conditions (c) ISM New Orders index

(d) ADS index (e) Housing starts (f) Term spread

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) PC 1 (k) PC2 (l) PC3

Figure F.4: Variance ratios of the rolling window GARCH-MIDAS models with fixed weights
and the rolling and expanding window GARCH-MIDAS models with the weights re-estimated
each period.
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(a) Realised volatility (abs ret) (b) Buying conditions (c) ISM New Orders

(d) ADS index (e) Housing starts (f) Term spread

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) First principal component (k) Second principal component (l) Third principal component

Figure F.5: Estimates for θ of the rolling window GARCH-MIDAS models with fixed weights
and the rolling and expanding window GARCH-MIDAS models with the weights re-estimated
each period.
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(a) Realised volatility (abs ret) (b) Buying conditions (c) ISM New Orders

(d) ADS index (e) Housing starts (f) Term spread

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) First principal component (k) Second principal component (l) Second principal component

Figure F.6: t-statistics for the estimated θ parameters of the rolling window GARCH-MIDAS
models with fixed weights and the rolling and expanding window GARCH-MIDAS models with
the weights re-estimated each period.
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(a) Realised volatility (b) Buying conditions (c) ISM New Orders

(d) ADS index (e) Housing starts (f) Term spread

(g) Default spread (h) 3M T-bill rate (i) Excess market return

(j) First principal component (k) Second principal component (l) Second principal component

Figure F.7: Estimates for w of the GARCH-MIDAS models estimated using a rolling window
(darker line) and GARCH-MIDAS models estimated using an expanding window (lighter line).



G Additional time-varying forecasting results

This appendix presents the cumulative sums of the loss function differences and the graphical

results of the Fluctuation test, complementing those presented in Section 6.2. The decision to

exclude these figures from the main text relies on 1) the 3M T-bill rate leads to a mainly similar

Fluctuation test result as the default spread, 2) the excess market return and realised volatility

lead to a generally weak performance throughout the sample period, as was clear from the full-

sample results, making the time-varying results less interesting, and 3) the principal components

driven models lead to largely similar, and at least no better, forecast accuracy as the series they

are based on.

(a) 3M T-bill rate (b) Excess market return (c) Realised volatility

(d) First principal component (e) Second principal component (f) Third principal component

Figure G.1: Cumulative sum of loss function differences (absolute errors) (|LossGMX | −
|LossGARCH |). An upward sloping segment thus indicates the GJR-GARCH model outperforms
the GARCH-MIDAS model. Grey areas mark NBER dated US recessions.
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(a) 3M T-bill rate 1M (b) 3M T-bill rate 3M (c) 3M T-bill rate 6M (d) 3M T-bill rate 12M

(e) Excess return 1M (f) Excess return 3M (g) Excess return 6M (h) Excess return 12M

(i) RV 1M (j) RV 3M (k) RV 6M (l) RV 12M

(m) PC1 1M (n) PC1 3M (o) PC1 6M (p) PC1 12M

(q) PC2 1M (r) PC2 3M (s) PC2 6M (t) PC2 12M

(u) PC3 1M (v) PC3 3M (w) PC3 6M (x) PC3 12M

Figure G.2: Fluctuation test result for selected loss function differences. Dashed lines represent
10% confidence bands. Benchmark: GJR-GARCH(1,1) model. Note that the year on the x-axis
marks the end of the rolling window period, over which the test statistics is calculated. l = 5,
m = 78



H Robustness check: Effect of economic environment

I begin by plotting the NBER recession dates, industrial production growth, VIX index and

the St. Louis Fed Financial Stress Index in Figures H.1 and H.2, to illustrate how the data is

divided.

Figure H.1: NBER recession dates and industrial production growth. Zero is the cut-off point
for industrial production growth.

Figure H.2: VIX index and St. Louis Fed Financial Stress Index. Dashed lines denote the cut-off
point of high versus low volatility (or financial stress) periods for each series.

There has only been two recessions during the sample period (from March 2001 to November

2001 (8 months) and from December 2007 to June 2009 (18 months)) and two longer episodes

of negative industrial production growth, but several shorter spells of negative growth. The VIX

index divides the out-of-sample period into roughly four episodes when using the median as the

cut-off: high volatility from 1996 to 2003, low volatility from 2003 until the beginning of the
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financial crisis in 2007, the financial crisis and its aftermath, and the largely low volatility since

then. The St. Louis Fed Financial Stress Index, which is defined so that zero is the cut-off point

between high and low stress regimes, divides the data roughly similarly.

Table H.1: Effect of business cycle (NBER) on forecasting performance: MAFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Expansion Recession Expansion Recession Expansion Recession Expansion Recession

Buying Conditions index 1.00 1.01 0.99 0.91** 0.99 0.90* 0.99 0.96

ISM New Orders index 0.99 1.00 0.99 0.99 0.99 0.99* 0.95 1.01

Housing starts 1.00 0.96 1.02 0.95 1.01 0.91** 0.98 0.88**

ADS index 0.98 1.13 1.01 0.99 1.02 0.94** 1.01 0.98

Term spread 1.01 1.09 0.96 1.04 0.90*** 0.93** 0.85*** 0.90***

Default spread 1.02 1.26 1.13 1.16 1.28 1.05 1.32 0.99

3M T-bill rate 1.02 1.00 1.01 1.03*** 1.01 1.03*** 1.00 1.02***

Excess market return 0.99 1.32** 1.01 1.03 1.04 1.04*** 1.09** 1.04***

Realised volatility (RV) 1.02 1.42* 1.13 1.40* 1.30 1.26 1.48 1.01

Principal component 1 0.99 0.99 1.02 0.98 1.06 0.95** 1.05 0.97

Principal component 2 1.01 1.00 0.98 0.98 0.95 0.97 0.94* 0.97

Principal component 3 1.02 1.12 0.98 1.02 0.96 1.00 0.99 0.98**

Benchmark: GJR-GARCH(1,1). MAFE ratio: MAFEGMX
MAFEGARCH

, where MAFEGMX is the mean absolute forecast error of the

GARCH-MIDAS model driven by some economic data (X). A value below 1 means the GARCH-MIDAS model outperforms the

GJR-GARCH(1,1) model. *, ** and *** indicate a rejection of the null hypothesis of equal (unconditional) predictive ability at the

10%, 5%, and 1% level, respectively, according to the Giacomini and White (2006) test. Recession months are defined according

to the NBER Business Cycle Dating Committee: 26 recession months and 232 expansion months. RVt =
∑Nt

i=1 |ri,t|.

Table H.2: Effect of financial market stress on forecasting performance (STLFSI): MAFE ratios

1 month ahead 3 month ahead 6 month ahead 12 month ahead

Low stress High stress Low stress High stress Low stress High stress Low stress High stress

Buying Conditions index 0.98 1.02 0.94** 0.98 0.95 0.96 1.02 0.96

ISM New Orders index 0.95** 1.01 0.92** 1.04** 0.92 1.02* 0.92 1.00

Housing starts 0.97 1.00 0.97 1.01 0.95 0.99 0.94 0.94

ADS index 0.96 1.06 0.96 1.02 0.98 1.00 0.99 1.00

Term spread 0.97 1.07 0.92 1.02 0.86** 0.94** 0.79*** 0.90***

Default spread 0.96* 1.16 0.99 1.22 1.21 1.19 1.55 1.04*

3M T-bill rate 0.98 1.03* 0.94** 1.06*** 0.93* 1.06*** 0.92 1.05***

Excess market return 0.95 1.16** 1.00 1.02 1.06 1.03** 1.16** 1.03

Realised volatility (RV) 0.96 1.25** 1.04 1.31* 1.31 1.27 2.01 0.97

Principal component 1 0.96 1.00 0.95 1.03 1.02 1.03 1.07 0.99

Principal component 2 0.97 1.03 0.92* 1.01 0.88** 1.00 0.85** 1.00

Principal component 3 1.02 1.08 0.95 1.02 0.90** 1.01 0.97 1.00

Benchmark: GJR-GARCH(1,1). MAFE ratio: MAFEGMX
MAFEGARCH

, where MAFEGMX is the mean absolute forecast error of the GARCH-

MIDAS model driven by some economic data (X). A value below 1 means GARCH-MIDAS model outperforms the GJR-GARCH(1,1)

model. *, ** and *** indicate rejection of the null hypothesis of equal (unconditional) predictive ability at the 10%, 5%, and 1% level,

respectively, according to the Giacomini and White (2006) test. High / low financial stress months are defined according to the St. Louis

Fed Financial Stress Index: 115 high and 143 low financial stress months. RVt =
∑Nt

i=1 |ri,t|
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